Corvid caching: Insights from a cognitive model.
van der Vaart, Elske; Verbrugge, Rineke; Hemelrijk, Charlotte K
2011-07-01
Caching and recovery of food by corvids is well-studied, but some ambiguous results remain. To help clarify these, we built a computational cognitive model. It is inspired by similar models built for humans, and it assumes that memory strength depends on frequency and recency of use. We compared our model's behavior to that of real birds in previously published experiments. Our model successfully replicated the outcomes of two experiments on recovery behavior and two experiments on cache site choice. Our "virtual birds" reproduced declines in recovery accuracy across sessions, revisits to previously emptied cache sites, a lack of correlation between caching and recovery order, and a preference for caching in safe locations. The model also produced two new explanations. First, that Clark's nutcrackers may become less accurate as recovery progresses not because of differential memory for different cache sites, as was once assumed, but because of chance effects. And second, that Western scrub jays may choose their cache sites not on the basis of negative recovery experiences only, as was previously thought, but on the basis of positive recovery experiences instead. Alternatively, both "punishment" and "reward" may be playing a role. We conclude with a set of new insights, a testable prediction, and directions for future work. PsycINFO Database Record (c) 2011 APA, all rights reserved
Development of Optimal Stressor Scenarios for New Operational Energy Systems
2017-12-01
Analyzing the previous model using a design of experiments (DOE) and regression analysis provides critical information about the associated operational...from experimentation. The resulting system requirements can be used to revisit the design requirements and develop a more robust system. This process...stressor scenarios for acceptance testing. Analyzing the previous model using a design of experiments (DOE) and regression analysis provides critical
A Generalized Quantum-Inspired Decision Making Model for Intelligent Agent
Loo, Chu Kiong
2014-01-01
A novel decision making for intelligent agent using quantum-inspired approach is proposed. A formal, generalized solution to the problem is given. Mathematically, the proposed model is capable of modeling higher dimensional decision problems than previous researches. Four experiments are conducted, and both empirical experiments results and proposed model's experiment results are given for each experiment. Experiments showed that the results of proposed model agree with empirical results perfectly. The proposed model provides a new direction for researcher to resolve cognitive basis in designing intelligent agent. PMID:24778580
Pattarino, Franco; Piepel, Greg; Rinaldi, Maurizio
2018-03-03
A paper by Foglio Bonda et al. published previously in this journal (2016, Vol. 83, pp. 175–183) discussed the use of mixture experiment design and modeling methods to study how the proportions of three components in an extemporaneous oral suspension affected the mean diameter of drug particles (Z ave). The three components were itraconazole (ITZ), Tween 20 (TW20), and Methocel® E5 (E5). This commentary addresses some errors and other issues in the previous paper, and also discusses an improved model relating proportions of ITZ, TW20, and E5 to Z ave. The improved model contains six of the 10 terms inmore » the full-cubic mixture model, which were selected using a different cross-validation procedure than used in the previous paper. In conclusion, compared to the four-term model presented in the previous paper, the improved model fit the data better, had excellent cross-validation performance, and the predicted Z ave of a validation point was within model uncertainty of the measured value.« less
Pattarino, Franco; Piepel, Greg; Rinaldi, Maurizio
2018-05-30
A paper by Foglio Bonda et al. published previously in this journal (2016, Vol. 83, pp. 175-183) discussed the use of mixture experiment design and modeling methods to study how the proportions of three components in an extemporaneous oral suspension affected the mean diameter of drug particles (Z ave ). The three components were itraconazole (ITZ), Tween 20 (TW20), and Methocel® E5 (E5). This commentary addresses some errors and other issues in the previous paper, and also discusses an improved model relating proportions of ITZ, TW20, and E5 to Z ave . The improved model contains six of the 10 terms in the full-cubic mixture model, which were selected using a different cross-validation procedure than used in the previous paper. Compared to the four-term model presented in the previous paper, the improved model fit the data better, had excellent cross-validation performance, and the predicted Z ave of a validation point was within model uncertainty of the measured value. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattarino, Franco; Piepel, Greg; Rinaldi, Maurizio
A paper by Foglio Bonda et al. published previously in this journal (2016, Vol. 83, pp. 175–183) discussed the use of mixture experiment design and modeling methods to study how the proportions of three components in an extemporaneous oral suspension affected the mean diameter of drug particles (Z ave). The three components were itraconazole (ITZ), Tween 20 (TW20), and Methocel® E5 (E5). This commentary addresses some errors and other issues in the previous paper, and also discusses an improved model relating proportions of ITZ, TW20, and E5 to Z ave. The improved model contains six of the 10 terms inmore » the full-cubic mixture model, which were selected using a different cross-validation procedure than used in the previous paper. In conclusion, compared to the four-term model presented in the previous paper, the improved model fit the data better, had excellent cross-validation performance, and the predicted Z ave of a validation point was within model uncertainty of the measured value.« less
Equilibrium Conformations of Concentric-tube Continuum Robots
Rucker, D. Caleb; Webster, Robert J.; Chirikjian, Gregory S.; Cowan, Noah J.
2013-01-01
Robots consisting of several concentric, preshaped, elastic tubes can work dexterously in narrow, constrained, and/or winding spaces, as are commonly found in minimally invasive surgery. Previous models of these “active cannulas” assume piecewise constant precurvature of component tubes and neglect torsion in curved sections of the device. In this paper we develop a new coordinate-free energy formulation that accounts for general preshaping of an arbitrary number of component tubes, and which explicitly includes both bending and torsion throughout the device. We show that previously reported models are special cases of our formulation, and then explore in detail the implications of torsional flexibility for the special case of two tubes. Experiments demonstrate that this framework is more descriptive of physical prototype behavior than previous models; it reduces model prediction error by 82% over the calibrated bending-only model, and 17% over the calibrated transmissional torsion model in a set of experiments. PMID:25125773
Previous comparisons of air quality modeling results from various forecast models with aircraft measurements of sulfate aerosol collected during the ICARTT field experiment indicated that models that included detailed treatment of gas- and aqueous-phase atmospheric sulfate format...
ERIC Educational Resources Information Center
Marx, Adam A.; Smith, Amy R.; Smalley, Scott W.; Miller, Courtney
2017-01-01
The purpose of this study was to identify key career choice items which lead students without previous experience in school-based agricultural education (SBAE) to pursuing agricultural education. The Ag Ed FIT-Choice® model adapted by Lawver (2009) and developed by Richardson and Watt (2006) provided the investigative framework to design this…
Investigation of models for large-scale meteorological prediction experiments
NASA Technical Reports Server (NTRS)
Spar, J.
1973-01-01
Studies are reported of the long term responses of the model atmosphere to anomalies in snow cover and sea surface temperature. An abstract of a previously issued report on the computed response to surface anomalies in a global atmospheric model is presented, and the experiments on the effects of transient sea surface temperature on the Mintz-Arakawa atmospheric model are reported.
None of the above: A Bayesian account of the detection of novel categories.
Navarro, Daniel J; Kemp, Charles
2017-10-01
Every time we encounter a new object, action, or event, there is some chance that we will need to assign it to a novel category. We describe and evaluate a class of probabilistic models that detect when an object belongs to a category that has not previously been encountered. The models incorporate a prior distribution that is influenced by the distribution of previous objects among categories, and we present 2 experiments that demonstrate that people are also sensitive to this distributional information. Two additional experiments confirm that distributional information is combined with similarity when both sources of information are available. We compare our approach to previous models of unsupervised categorization and to several heuristic-based models, and find that a hierarchical Bayesian approach provides the best account of our data. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Colombant, Denis; Manheimer, Wallace
2008-11-01
The Krook model described in the previous talk has been incorporated into a fluid simulation. These fluid simulations are then compared with Fokker Planck simulations and also with a recent NRL Nike experiment. We also examine several other models for electron energy transport that have been used in laser fusion research. As regards comparison with Fokker Planck simulation, the Krook model gives better agreement than the other models, especially in the time asymptotic limit. As regards the NRL experiment, all models except one give reasonable agreement.
Inductive reasoning about causally transmitted properties.
Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D; Tenenbaum, Joshua B
2008-11-01
Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates' context-sensitive use of taxonomic and food web knowledge to guide reasoning about causal transmission and shows good qualitative agreement between model predictions and human inferences. A second experiment demonstrates strong quantitative and qualitative fits to inferences about a more complex artificial food web. A third experiment investigates human reasoning about complex novel food webs where species have known taxonomic relations. Results demonstrate a double-dissociation between the predictions of our causal model and a related taxonomic model [Kemp, C., & Tenenbaum, J. B. (2003). Learning domain structures. In Proceedings of the 25th annual conference of the cognitive science society]: the causal model predicts human inferences about diseases but not genes, while the taxonomic model predicts human inferences about genes but not diseases. We contrast our framework with previous models of category-based induction and previous formal instantiations of intuitive theories, and outline challenges in developing a complete model of context-sensitive reasoning.
Weck, Florian; Neng, Julia M B; Göller, Kathrin; Müller-Marbach, Alexis M
2014-01-01
Previous experiences with illness and traumatic experiences are considered as important risk factors for the development of health anxiety and hypochondriasis. However, empirical research is insufficient and lacks adequate comparison groups. Therefore, we sought to determine whether experiences with illness and traumatic experiences are really specific risk factors for hypochondriasis. In the current study, patients with the diagnosis of hypochondriasis (n = 80), patients with a primary anxiety disorder (n = 80), and healthy controls (n = 83) were investigated regarding their previous experiences with illness (self and other) and traumatic childhood experiences. We found that patients with hypochondriasis reported a higher level of experience with illness and with traumatic childhood experiences than healthy controls. However, no differences were found between patients with hypochondriasis and those with an anxiety disorder, regarding their level of experience with illness and traumatic experiences. Previous experiences with illness and traumatic childhood experiences did not prove to be specific risk factors for the development of hypochondriasis. The importance of both experiences with illness and traumatic experiences as risk factors, as considered in the Diagnostic and Statistical Manual and in established cognitive-behavioral models, does not seem to be supported empirically. Further research should therefore also consider other potential risk factors discussed in the literature. © 2013 Published by Academy of Psychosomatic Medicine on behalf of Academy of Psychosomatic Medicine.
DIRAC in Large Particle Physics Experiments
NASA Astrophysics Data System (ADS)
Stagni, F.; Tsaregorodtsev, A.; Arrabito, L.; Sailer, A.; Hara, T.; Zhang, X.; Consortium, DIRAC
2017-10-01
The DIRAC project is developing interware to build and operate distributed computing systems. It provides a development framework and a rich set of services for both Workload and Data Management tasks of large scientific communities. A number of High Energy Physics and Astrophysics collaborations have adopted DIRAC as the base for their computing models. DIRAC was initially developed for the LHCb experiment at LHC, CERN. Later, the Belle II, BES III and CTA experiments as well as the linear collider detector collaborations started using DIRAC for their computing systems. Some of the experiments built their DIRAC-based systems from scratch, others migrated from previous solutions, ad-hoc or based on different middlewares. Adaptation of DIRAC for a particular experiment was enabled through the creation of extensions to meet their specific requirements. Each experiment has a heterogeneous set of computing and storage resources at their disposal that were aggregated through DIRAC into a coherent pool. Users from different experiments can interact with the system in different ways depending on their specific tasks, expertise level and previous experience using command line tools, python APIs or Web Portals. In this contribution we will summarize the experience of using DIRAC in particle physics collaborations. The problems of migration to DIRAC from previous systems and their solutions will be presented. An overview of specific DIRAC extensions will be given. We hope that this review will be useful for experiments considering an update, or for those designing their computing models.
The synergy of modeling and novel experiments for melt crystal growth research
NASA Astrophysics Data System (ADS)
Derby, Jeffrey J.
2018-05-01
Computational modeling and novel experiments, when performed together, can enable the identification of new, fundamental mechanisms important for the growth of bulk crystals from the melt. In this paper, we present a compelling example of this synergy via the discovery of previously unascertained physical mechanisms that govern the engulfment of silicon carbide particles during the growth of crystalline silicon.
Learning from Trending, Precursor Analysis, and System Failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngblood, R. W.; Duffey, R. B.
2015-11-01
Models of reliability growth relate current system unreliability to currently accumulated experience. But “experience” comes in different forms. Looking back after a major accident, one is sometimes able to identify previous events or measurable performance trends that were, in some sense, signaling the potential for that major accident: potential that could have been recognized and acted upon, but was not recognized until the accident occurred. This could be a previously unrecognized cause of accidents, or underestimation of the likelihood that a recognized potential cause would actually operate. Despite improvements in the state of practice of modeling of risk and reliability,more » operational experience still has a great deal to teach us, and work has been going on in several industries to try to do a better job of learning from experience before major accidents occur. It is not enough to say that we should review operating experience; there is too much “experience” for such general advice to be considered practical. The paper discusses the following: 1. The challenge of deciding what to focus on in analysis of operating experience. 2. Comparing what different models of learning and reliability growth imply about trending and precursor analysis.« less
Determination of Global Stability of the Slosh Motion in a Spacecraft via Num Erical Experiment
NASA Astrophysics Data System (ADS)
Kang, Ja-Young
2003-12-01
The global stability of the attitude motion of a spin-stabilized space vehicle is investigated by performing numerical experiment. In the previous study, a stationary solution and a particular resonant condition for a given model were found by using analytical method but failed to represent the system stability over parameter values near and off the stationary points. Accordingly, as an extension of the previous work, this study performs numerical experiment to investigate the stability of the system across the parameter space and determines stable and unstable regions of the design parameters of the system.
NASA Technical Reports Server (NTRS)
Holms, A. G.
1982-01-01
A previous report described a backward deletion procedure of model selection that was optimized for minimum prediction error and which used a multiparameter combination of the F - distribution and an order statistics distribution of Cochran's. A computer program is described that applies the previously optimized procedure to real data. The use of the program is illustrated by examples.
Planetary Boundary Layer Simulation Using TASS
NASA Technical Reports Server (NTRS)
Schowalter, David G.; DeCroix, David S.; Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael
1996-01-01
Boundary conditions to an existing large-eddy simulation model have been changed in order to simulate turbulence in the atmospheric boundary layer. Several options are now available, including the use of a surface energy balance. In addition, we compare convective boundary layer simulations with the Wangara and Minnesota field experiments as well as with other model results. We find excellent agreement of modelled mean profiles of wind and temperature with observations and good agreement for velocity variances. Neutral boundary simulation results are compared with theory and with previously used models. Agreement with theory is reasonable, while agreement with previous models is excellent.
Steps for the autologous ex vivo perfused porcine liver-kidney experiment.
Chung, Wen Yuan; Eltweri, Amar M; Isherwood, John; Haqq, Jonathan; Ong, Seok Ling; Gravante, Gianpiero; Lloyd, David M; Metcalfe, Matthew S; Dennison, Ashley R
2013-12-18
The use of ex vivo perfused models can mimic the physiological conditions of the liver for short periods, but to maintain normal homeostasis for an extended perfusion period is challenging. We have added the kidney to our previous ex vivo perfused liver experiment model to reproduce a more accurate physiological state for prolonged experiments without using live animals. Five intact livers and kidneys were retrieved post-mortem from sacrificed pigs on different days and perfused for a minimum of 6 hr. Hourly arterial blood gases were obtained to analyze pH, lactate, glucose and renal parameters. The primary endpoint was to investigate the effect of adding one kidney to the model on the acid base balance, glucose, and electrolyte levels. The result of this liver-kidney experiment was compared to the results of five previous liver only perfusion models. In summary, with the addition of one kidney to the ex vivo liver circuit, hyperglycemia and metabolic acidosis were improved. In addition this model reproduces the physiological and metabolic responses of the liver sufficiently accurately to obviate the need for the use of live animals. The ex vivo liver-kidney perfusion model can be used as an alternative method in organ specific studies. It provides a disconnection from numerous systemic influences and allows specific and accurate adjustments of arterial and venous pressures and flow.
The Family Contexts of Children's Sibling Relationships.
ERIC Educational Resources Information Center
McHale, Susan M.; Crouter, Ann C.
1996-01-01
Unlike much previous research on sibling relationships, which emphasizes the congruence across various types of family experiences, the research described in this article explored between-family differences in patterns of experiences within families. The work is built upon Bronfenbrenner's ecological model and Magnusson's interactional…
MODELING SUBSTRATE TRANSPORT INTO BIOFILMS: ROLE OF MULTIPLE IONS AND PH EFFECTS
Steady-state substrate utilization in biofilms has traditionally been modeled by coupling Fickian diffusion with Monod reaction kinetics. An inherent assumption in most of the previous models was that the pH remains constant within the biofilm. Experiments have shown differences ...
Birth Order and Susceptibility to Peer Modeling Influences in Young Boys
ERIC Educational Resources Information Center
Finley, Gordon E.; Cheyne, James A.
1976-01-01
Susceptibility to peer modeling influences as a function of birth order was studied by examining the data of 390 boys from kindergarten through third grade who previously had participated in moral transgression experiments. (MS)
Nebiker, Christian Andreas; Mechera, Robert; Rosenthal, Rachel; Thommen, Sarah; Marti, Walter Richard; von Holzen, Urs; Oertli, Daniel; Vogelbach, Peter
2015-07-01
Laparoscopy has become the gold standard for many abdominal procedures. Among young surgeons, experience in laparoscopic surgery increasingly outweighs experience in open surgery. This study was conducted to compare residents' performance in laparoscopic versus open bench-model task. In an international surgical skills course, we compared trainees' performance in open versus laparoscopic cholecystectomy in a cadaveric animal bench-model. Both exercises were evaluated by board-certified surgeons using an 8-item checklist and by the trainees themselves. 238 trainees with a median surgical experience of 24 months (interquartile range 14-48) took part. Twenty-two percent of the trainees had no previous laparoscopic and 62% no previous open cholecystectomy experience. Significant differences were found in the overall score (median difference of 1 (95% CI: 1, 1), p < 0.001), gallbladder perforation rate (73% vs. 29%, p < 0.001), safe dissection of the Calot's triangle (98% vs. 90%, p = 0.001) and duration of surgery (42 (13) minutes vs. 26 (10) minutes (mean differences 17.22 (95% CI: 15.37, 19.07), p < 0.001)), all favouring open surgery. The perforation rate in open and laparoscopic cholecystectomies was not consistently decreasing with increasing years of experience or number of previously performed procedures. Self-assessment was lower than the assessment by board-certified surgeons. Despite lower experience in open compared to laparoscopic cholecystectomy, better performance was observed in open task. It may be explained by a wider access with easier preparation. Open cholecystectomy is the rescue manoeuvre and therefore, it is important to provide also enough training opportunities in open surgery. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tinio, Pablo P. L.
2017-07-01
The Vienna Integrated Model of Art Perception (VIMAP; [5]) is the most comprehensive model of the art experience today. The model incorporates bottom-up and top-down cognitive processes and accounts for different outcomes of the art experience, such as aesthetic evaluations, emotions, and physiological and neurological responses to art. In their presentation of the model, Pelowski et al. also present hypotheses that are amenable to empirical testing. These features make the VIMAP an ambitious model that attempts to explain how meaningful, complex, and profound aspects of the art experience come about, which is a significant extension of previous models of the art experience (e.g., [1-3,10]), and which gives the VIMAP good explanatory power.
Met expectations and the wellbeing of diaspora immigrants: a longitudinal study.
Mähönen, Tuuli Anna; Leinonen, Elina; Jasinskaja-Lahti, Inga
2013-01-01
Previous research has pointed to the importance of expectations for the adaptation of immigrants. However, most studies have been methodologically retrospective with only limited possibilities to show the optimal relationship between migrants' expectations and actual acculturation experiences for their wellbeing and other aspects of psychological adaptation. Moreover, previous research has been conducted mostly among sojourners and students. This longitudinal study focused on the relationship between premigration expectations and postmigration experiences of diaspora immigrants from Russia to Finland (N = 153). We examined how the fulfillment of premigration expectations in social (i.e., family relations, friendships, and free time) and economic (i.e., occupational position, working conditions, and economic and career situation) domains affects immigrants' wellbeing (i.e., satisfaction with life and general mood) after migration. Three alternative models of expectation confirmation (i.e., disconfirmation model, ideal point model, and the importance of experiences only) derived from previous organizational psychological research were tested with polynomial regression and response surface analysis. In the economic domain, immigrants' expectations, experiences, and their interrelationship did not affect wellbeing in the postmigration stage. However, in the social domain, the more expectations were exceeded by actual experiences, the better were life satisfaction and the general mood of immigrants. The results underline the importance of social relationships and the context-dependent nature of immigrants' wellbeing. Interventions in the preacculturation stage should create positive but realistic expectations for diaspora immigrants and other groups of voluntary (re)migrants. Furthermore, policies concerning the postmigration stage should facilitate the fulfillment of these expectations and support the social adaptation of immigrants.
Etchemendy, Pablo E; Eguia, Manuel C; Mesz, Bruno
2014-03-01
In this work, the overall perceived pitch (principal pitch) of pure tones modulated in frequency with an asymmetric waveform is studied. The dependence of the principal pitch on the degree of asymmetric modulation was obtained from a psychophysical experiment. The modulation waveform consisted of a flat portion of constant frequency and two linear segments forming a peak. Consistent with previous results, significant pitch shifts with respect to the time-averaged geometric mean were observed. The direction of the shifts was always toward the flat portion of the modulation. The results from the psychophysical experiment, along with those obtained from previously reported studies, were compared with the predictions of six models of pitch perception proposed in the literature. Even though no single model was able to predict accurately the perceived pitch for all experiments, there were two models that give robust predictions that are within the range of acceptable tuning of modulated tones for almost all the cases. Both models point to the existence of an underlying "stability sensitive" mechanism for the computation of pitch that gives more weight to the portion of the stimuli where the frequency is changing more slowly.
People learn other people's preferences through inverse decision-making.
Jern, Alan; Lucas, Christopher G; Kemp, Charles
2017-11-01
People are capable of learning other people's preferences by observing the choices they make. We propose that this learning relies on inverse decision-making-inverting a decision-making model to infer the preferences that led to an observed choice. In Experiment 1, participants observed 47 choices made by others and ranked them by how strongly each choice suggested that the decision maker had a preference for a specific item. An inverse decision-making model generated predictions that were in accordance with participants' inferences. Experiment 2 replicated and extended a previous study by Newtson (1974) in which participants observed pairs of choices and made judgments about which choice provided stronger evidence for a preference. Inverse decision-making again predicted the results, including a result that previous accounts could not explain. Experiment 3 used the same method as Experiment 2 and found that participants did not expect decision makers to be perfect utility-maximizers. Copyright © 2017 Elsevier B.V. All rights reserved.
Use of the Flipped Classroom Instructional Model in Higher Education: Instructors' Perspectives
ERIC Educational Resources Information Center
Long, Taotao; Cummins, John; Waugh, Michael
2017-01-01
The flipped classroom model is an instructional model in which students learn basic subject matter knowledge prior to in-class meetings, then come to the classroom for active learning experiences. Previous research has shown that the flipped classroom model can motivate students towards active learning, can improve their higher-order thinking…
Assimilative modeling of low latitude ionosphere
NASA Technical Reports Server (NTRS)
Pi, Xiaoqing; Wang, Chunining; Hajj, George A.; Rosen, I. Gary; Wilson, Brian D.; Mannucci, Anthony J.
2004-01-01
In this paper we present an observation system simulation experiment for modeling low-latitude ionosphere using a 3-dimensional (3-D) global assimilative ionospheric model (GAIM). The experiment is conducted to test the effectiveness of GAIM with a 4-D variational approach (4DVAR) in estimation of the ExB drift and thermospheric wind in the magnetic meridional planes simultaneously for all longitude or local time sectors. The operational Global Positioning System (GPS) satellites and the ground-based global GPS receiver network of the International GPS Service are used in the experiment as the data assimilation source. 'The optimization of the ionospheric state (electron density) modeling is performed through a nonlinear least-squares minimization process that adjusts the dynamical forces to reduce the difference between the modeled and observed slant total electron content in the entire modeled region. The present experiment for multiple force estimations reinforces our previous assessment made through single driver estimations conducted for the ExB drift only.
Evaluation of Fast-Time Wake Models Using Denver 2006 Field Experiment Data
NASA Technical Reports Server (NTRS)
Ahmad, Nash’at N.; Pruis, Matthew J.
2015-01-01
The National Aeronautics and Space Administration conducted a series of wake vortex field experiments at Denver in 2003, 2005, and 2006. This paper describes the lidar wake vortex measurements and associated meteorological data collected during the 2006 deployment, and includes results of recent reprocessing of the lidar data using a new wake vortex algorithm and estimates of the atmospheric turbulence using a new algorithm to estimate eddy dissipation rate from the lidar data. The configuration and set-up of the 2006 field experiment allowed out-of-ground effect vortices to be tracked in lateral transport further than any previous campaign and thereby provides an opportunity to study long-lived wake vortices in moderate to low crosswinds. An evaluation of NASA's fast-time wake vortex transport and decay models using the dataset shows similar performance as previous studies using other field data.
Gypsum-wallboard formaldehyde-sorption model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silberstein, S.
1989-11-01
Gypsum wallboard was shown to absorb formaldehyde in a prototype house and in a measuring chamber, as reported previously by researchers at Oak Ridge National Laboratory (ORNL). Also as reported previously, formaldehyde concentrations attained equilibrium in two phases in response to a change in the air exchange rate or to the removal of the formaldehyde source. A rapid initial phase was followed by a slow phase lasting several days. A formaldehyde sorption model that accounts for the biphasic concentration pattern is presented here. Experiments for testing the predictability of the model are proposed.
Evidence for view-invariant face recognition units in unfamiliar face learning.
Etchells, David B; Brooks, Joseph L; Johnston, Robert A
2017-05-01
Many models of face recognition incorporate the idea of a face recognition unit (FRU), an abstracted representation formed from each experience of a face which aids recognition under novel viewing conditions. Some previous studies have failed to find evidence of this FRU representation. Here, we report three experiments which investigated this theoretical construct by modifying the face learning procedure from that in previous work. During learning, one or two views of previously unfamiliar faces were shown to participants in a serial matching task. Later, participants attempted to recognize both seen and novel views of the learned faces (recognition phase). Experiment 1 tested participants' recognition of a novel view, a day after learning. Experiment 2 was identical, but tested participants on the same day as learning. Experiment 3 repeated Experiment 1, but tested participants on a novel view that was outside the rotation of those views learned. Results revealed a significant advantage, across all experiments, for recognizing a novel view when two views had been learned compared to single view learning. The observed view invariance supports the notion that an FRU representation is established during multi-view face learning under particular learning conditions.
Narrative event boundaries, reading times, and expectation.
Pettijohn, Kyle A; Radvansky, Gabriel A
2016-10-01
During text comprehension, readers create mental representations of the described events, called situation models. When new information is encountered, these models must be updated or new ones created. Consistent with the event indexing model, previous studies have shown that when readers encounter an event shift, reading times often increase. However, such increases are not consistently observed. This paper addresses this inconsistency by examining the extent to which reading-time differences observed at event shifts reflect an unexpectedness in the narrative rather than processes involved in model updating. In two reassessments of prior work, event shifts known to increase reading time were rated as less expected, and expectedness ratings significantly predicted reading time. In three new experiments, participants read stories in which an event shift was or was not foreshadowed, thereby influencing expectedness of the shift. Experiment 1 revealed that readers do not expect event shifts, but foreshadowing eliminates this. Experiment 2 showed that foreshadowing does not affect identification of event shifts. Finally, Experiment 3 found that, although reading times increased when an event shift was not foreshadowed, they were not different from controls when it was. Moreover, responses to memory probes were slower following an event shift regardless of foreshadowing, suggesting that situation model updating had taken place. Overall, the results support the idea that previously observed reading time increases at event shifts reflect, at least in part, a reader's unexpected encounter with a shift rather than an increase in processing effort required to update a situation model.
Response to conflict among wilderness visitors
Ingrid Schneider
2000-01-01
Previous conceptual efforts suggest that response to recreational conflict should be framed within an adapted stresscoping response model. An important element in understanding response to conflict is the context of the experience. A basic underlying component of the wilderness experience is privacy, which indicates wilderness visitors are interested in releasingâ...
North Atlantic observations sharpen meridional overturning projections
NASA Astrophysics Data System (ADS)
Olson, R.; An, S.-I.; Fan, Y.; Evans, J. P.; Caesar, L.
2018-06-01
Atlantic Meridional Overturning Circulation (AMOC) projections are uncertain due to both model errors, as well as internal climate variability. An AMOC slowdown projected by many climate models is likely to have considerable effects on many aspects of global and North Atlantic climate. Previous studies to make probabilistic AMOC projections have broken new ground. However, they do not drift-correct or cross-validate the projections, and do not fully account for internal variability. Furthermore, they consider a limited subset of models, and ignore the skill of models at representing the temporal North Atlantic dynamics. We improve on previous work by applying Bayesian Model Averaging to weight 13 Coupled Model Intercomparison Project phase 5 models by their skill at modeling the AMOC strength, and its temporal dynamics, as approximated by the northern North-Atlantic temperature-based AMOC Index. We make drift-corrected projections accounting for structural model errors, and for the internal variability. Cross-validation experiments give approximately correct empirical coverage probabilities, which validates our method. Our results present more evidence that AMOC likely already started slowing down. While weighting considerably moderates and sharpens our projections, our results are at low end of previously published estimates. We project mean AMOC changes between periods 1960-1999 and 2060-2099 of -4.0 Sv and -6.8 Sv for RCP4.5 and RCP8.5 emissions scenarios respectively. The corresponding average 90% credible intervals for our weighted experiments are [-7.2, -1.2] and [-10.5, -3.7] Sv respectively for the two scenarios.
A Research Methodology for Studying What Makes Some Problems Difficult to Solve
ERIC Educational Resources Information Center
Gulacar, Ozcan; Fynewever, Herb
2010-01-01
We present a quantitative model for predicting the level of difficulty subjects will experience with specific problems. The model explicitly accounts for the number of subproblems a problem can be broken into and the difficultly of each subproblem. Although the model builds on previously published models, it is uniquely suited for blending with…
High Demand for Psychotherapy in Patients with Inflammatory Bowel Disease.
Klag, Thomas; Mazurak, Nazar; Fantasia, Laura; Schwille-Kiuntke, Juliane; Kirschniak, Andreas; Falch, Claudius; Goetz, Martin; Malek, Nisar P; Enck, Paul; Wehkamp, Jan
2017-10-01
The relative contribution of psychological factors to the onset and course of inflammatory bowel diseases (IBD) is a matter of constant debate since its beginning, as is the clinical need and the efficacy of psychotherapeutic interventions. However, the perspective of patients with IBD has largely been ignored in this debate. Psychometric tests including the Short-Form IBD Questionnaire (SIBDQ), the ADAP test measuring demand for psychotherapy, and the Fear-of-Progression Questionnaire Short Form as well as disease-related questions were positioned on the internet between December 2014 and January 2016. The study was advertised through DCCV (German branch of the European Federation of Crohn's and Ulcerative Colitis Associations). n = 631 patients responded, and complete data from n = 578 (356 Crohn's disease, 219 ulcerative colitis, 3 unclear) were available for analysis. n = 296 had previous experiences with psychotherapy, whereas n = 282 had not. This distribution clearly determined the factor "demand for psychotherapy" (chi-square = 23.7, P < 0.001). When all available data were entered into a (stepwise-forward) regression model, psychotherapy demand was dependent on previous experience (P < 0.001), fear of progression (P < 0.001), quality of life (P = 0.001), smoking (P = 0.003), and previous surgery (P = 0.005) with the total model explaining 29.7% of the variance. The total explained variance of this model was higher in ulcerative colitis (37.6%) than in Crohn's disease alone (25.4%). The demand for psychotherapy as additional therapy in IBD depends on previous experience with psychotherapy, fear for disease progression but also other disease or social characteristics and quality of life.
Developing the Precision Magnetic Field for the E989 Muon g{2 Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Matthias W.
The experimental value ofmore » $$(g\\hbox{--}2)_\\mu$$ historically has been and contemporarily remains an important probe into the Standard Model and proposed extensions. Previous measurements of $$(g\\hbox{--}2)_\\mu$$ exhibit a persistent statistical tension with calculations using the Standard Model implying that the theory may be incomplete and constraining possible extensions. The Fermilab Muon g-2 experiment, E989, endeavors to increase the precision over previous experiments by a factor of four and probe more deeply into the tension with the Standard Model. The $$(g\\hbox{--}2)_\\mu$$ experimental implementation measures two spin precession frequencies defined by the magnetic field, proton precession and muon precession. The value of $$(g\\hbox{--}2)_\\mu$$ is derived from a relationship between the two frequencies. The precision of magnetic field measurements and the overall magnetic field uniformity achieved over the muon storage volume are then two undeniably important aspects of the e xperiment in minimizing uncertainty. The current thesis details the methods employed to achieve magnetic field goals and results of the effort.« less
Following the Template: Transferring Modeling Skills to Nonstandard Problems
ERIC Educational Resources Information Center
Tyumeneva, Yu. A.; Goncharova, M. V.
2017-01-01
This study seeks to analyze how students apply a mathematical modeling skill that was previously learned by solving standard word problems to the solution of word problems with nonstandard contexts. During the course of an experiment involving 106 freshmen, we assessed how well they were able to transfer the mathematical modeling skill that is…
NASA Astrophysics Data System (ADS)
Chodera, John D.; Noé, Frank
2010-09-01
Discrete-state Markov (or master equation) models provide a useful simplified representation for characterizing the long-time statistical evolution of biomolecules in a manner that allows direct comparison with experiments as well as the elucidation of mechanistic pathways for an inherently stochastic process. A vital part of meaningful comparison with experiment is the characterization of the statistical uncertainty in the predicted experimental measurement, which may take the form of an equilibrium measurement of some spectroscopic signal, the time-evolution of this signal following a perturbation, or the observation of some statistic (such as the correlation function) of the equilibrium dynamics of a single molecule. Without meaningful error bars (which arise from both approximation and statistical error), there is no way to determine whether the deviations between model and experiment are statistically meaningful. Previous work has demonstrated that a Bayesian method that enforces microscopic reversibility can be used to characterize the statistical component of correlated uncertainties in state-to-state transition probabilities (and functions thereof) for a model inferred from molecular simulation data. Here, we extend this approach to include the uncertainty in observables that are functions of molecular conformation (such as surrogate spectroscopic signals) characterizing each state, permitting the full statistical uncertainty in computed spectroscopic experiments to be assessed. We test the approach in a simple model system to demonstrate that the computed uncertainties provide a useful indicator of statistical variation, and then apply it to the computation of the fluorescence autocorrelation function measured for a dye-labeled peptide previously studied by both experiment and simulation.
Scale-up of ecological experiments: Density variation in the mobile bivalve Macomona liliana
Schneider, Davod C.; Walters, R.; Thrush, S.; Dayton, P.
1997-01-01
At present the problem of scaling up from controlled experiments (necessarily at a small spatial scale) to questions of regional or global importance is perhaps the most pressing issue in ecology. Most of the proposed techniques recommend iterative cycling between theory and experiment. We present a graphical technique that facilitates this cycling by allowing the scope of experiments, surveys, and natural history observations to be compared to the scope of models and theory. We apply the scope analysis to the problem of understanding the population dynamics of a bivalve exposed to environmental stress at the scale of a harbour. Previous lab and field experiments were found not to be 1:1 scale models of harbour-wide processes. Scope analysis allowed small scale experiments to be linked to larger scale surveys and to a spatially explicit model of population dynamics.
Hypersonic Wind Tunnel Calibration Using the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
Rhode, Matthew N.; DeLoach, Richard
2005-01-01
A calibration of a hypersonic wind tunnel has been conducted using formal experiment design techniques and response surface modeling. Data from a compact, highly efficient experiment was used to create a regression model of the pitot pressure as a function of the facility operating conditions as well as the longitudinal location within the test section. The new calibration utilized far fewer design points than prior experiments, but covered a wider range of the facility s operating envelope while revealing interactions between factors not captured in previous calibrations. A series of points chosen randomly within the design space was used to verify the accuracy of the response model. The development of the experiment design is discussed along with tactics used in the execution of the experiment to defend against systematic variation in the results. Trends in the data are illustrated, and comparisons are made to earlier findings.
Vinnakota, Kalyan C; Beard, Daniel A; Dash, Ranjan K
2009-01-01
Identification of a complex biochemical system model requires appropriate experimental data. Models constructed on the basis of data from the literature often contain parameters that are not identifiable with high sensitivity and therefore require additional experimental data to identify those parameters. Here we report the application of a local sensitivity analysis to design experiments that will improve the identifiability of previously unidentifiable model parameters in a model of mitochondrial oxidative phosphorylation and tricaboxylic acid cycle. Experiments were designed based on measurable biochemical reactants in a dilute suspension of purified cardiac mitochondria with experimentally feasible perturbations to this system. Experimental perturbations and variables yielding the most number of parameters above a 5% sensitivity level are presented and discussed.
Tracer adsorption in sand-tank experiments of saltwater up-coning
NASA Astrophysics Data System (ADS)
Jakovovic, Danica; Post, Vincent E. A.; Werner, Adrian D.; Männicke, Oliver; Hutson, John L.; Simmons, Craig T.
2012-01-01
SummaryThis study aims to substantiate otherwise unresolved double-peaked plumes produced in recent saltwater up-coning experiments (see Jakovovic et al. (2011), Numerical modelling of saltwater up-coning: Comparison with experimental laboratory observations, Journal of Hydrology 402, 261-273) through additional laboratory testing and numerical modelling. Laboratory experimentation successfully reproduced the double-peaked plume demonstrating that this phenomenon was not an experimental nuance in previous experiments. Numerical modelling by Jakovovic et al. (2011) was extended by considering adsorption effects, which were needed to explain the observed up-coning double peaks of both previous and current laboratory experiments. A linear adsorption isotherm was applied in predicting dye tracer (Rhodamine WT) behaviour in the sand-tank experiments using adsorption parameters obtained experimentally. The same adsorption parameters were tested on all laboratory experiments and it was found that adsorption had insignificant effect on experiments with high pumping rates. However, low pumping rates produced pronounced spatial velocity variations within the dense salt plume beneath the pumping well, with velocities within the plume increasing from the centre of the plume towards the interface. The dye tracer was retarded relative to the salt and was transported preferentially along the higher-velocity paths (i.e. along the edges of the salt plume) towards the well forming double-peaked up-coning patterns. This illustrates the sensitive adsorptive nature of Rhodamine WT and that care should be taken when it is used in similar sand-tank experiments. Observations from this study offer insight into the separation of chemicals in natural systems due to different adsorption characteristics and under conditions of density-dependent flow.
Spain, Seth M; Miner, Andrew G; Kroonenberg, Pieter M; Drasgow, Fritz
2010-08-06
Questions about the dynamic processes that drive behavior at work have been the focus of increasing attention in recent years. Models describing behavior at work and research on momentary behavior indicate that substantial variation exists within individuals. This article examines the rationale behind this body of work and explores a method of analyzing momentary work behavior using experience sampling methods. The article also examines a previously unused set of methods for analyzing data produced by experience sampling. These methods are known collectively as multiway component analysis. Two archetypal techniques of multimode factor analysis, the Parallel factor analysis and the Tucker3 models, are used to analyze data from Miner, Glomb, and Hulin's (2010) experience sampling study of work behavior. The efficacy of these techniques for analyzing experience sampling data is discussed as are the substantive multimode component models obtained.
Capturing and Understanding Experiment Provenance using NiNaC
NASA Astrophysics Data System (ADS)
Rosati, C.
2017-12-01
A problem the model development team faces at the GFDL is determining climate model experiment provenance. Each experiment is configured with at least one configuration file which may reference other files. The experiment then passes through three phases before completion. Configuration files or other input files may be modified between phases. Finding the modifications later is tedious due to the expanse of the experiment input and duplication across phases. Determining provenance may be impossible if any file has been changed or deleted. To reduce these efforts and address these problems, we propose a new toolset, NiNaC, for archiving experiment provenance from the beginning of the experiment to the end and every phase in-between. Each of the three phases, check-out, build, and run, of the experiment depends on the previous phase. We use a graph to model the phase dependencies. Let each phase be represented by a node. Let each edge correspond to a dependency between phases where the node incident with the tail depends on the node incident with the head. It follows that the dependency graph is a tree. We reduce the problem to finding the lowest common ancestor and diffing the successor nodes. All files related to input for a phase are assigned a checksum. A new file is created to aggregate the checksums. Then each phase is assigned a checksum of aforementioned file as an identifier. Any change to part of a phase configuration will create unique checksums in all subsequent phases. Finding differences between experiments with this toolset is as simple as diffing two files containing checksums found by traversing the tree. One new benefit is that this toolset now allows differences in source code to be found after experiments are run, which was previously impossible for executables that cannot be linked to a known version controlled source code. Knowing that these changes exist allows us to give priority to help desk tickets concerning unmodified supported experiment releases, and minimize effort spent on unsupported experiments. It is also possible that a change is made, either by mistake or by system error. NiNaC would find the exact file in the precise phase with the change. In this way, NiNaC makes provenance tracking less tedious and solves problems where tracking provenance may previously have been impossible to do.
Validity of thermally-driven small-scale ventilated filling box models
NASA Astrophysics Data System (ADS)
Partridge, Jamie L.; Linden, P. F.
2013-11-01
The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.
A Comprehensive Model for Developing and Evaluating Study Abroad Programs in Counselor Education
ERIC Educational Resources Information Center
Santos, Syntia Dinora
2014-01-01
This paper introduces a model to guide the process of designing and evaluating study abroad programs, addressing particular stages and influential factors. The main purpose of the model is to serve as a basic structure for those who want to develop their own program or evaluate previous cultural immersion experiences. The model is based on the…
Postsecondary Student Mobility from College to University: Student Expectations and Experience
ERIC Educational Resources Information Center
Gerhardt, Kris; Ackerman, Michael
2014-01-01
While studies focused on student GPA scores, transfer credits and the nature of articulation agreements help to inform research related to the transfer student experience, studies investigating the students themselves are still very limited. This study extends the direction modeled by previous literature that has gathered perceptions and comments…
Behavioral momentum and resurgence: Effects of time in extinction and repeated resurgence tests
Shahan, Timothy A.
2014-01-01
Resurgence is an increase in a previously extinguished operant response that occurs if an alternative reinforcement introduced during extinction is removed. Shahan and Sweeney (2011) developed a quantitative model of resurgence based on behavioral momentum theory that captures existing data well and predicts that resurgence should decrease as time in extinction and exposure to the alternative reinforcement increases. Two experiments tested this prediction. The data from Experiment 1 suggested that without a return to baseline, resurgence decreases with increased exposure to alternative reinforcement and to extinction of the target response. Experiment 2 tested the predictions of the model across two conditions, one with constant alternative reinforcement for five sessions, and the other with alternative reinforcement removed three times. In both conditions, the alternative reinforcement was removed for the final test session. Experiment 2 again demonstrated a decrease in relapse across repeated resurgence tests. Furthermore, comparably little resurgence was observed at the same time point in extinction in the final test, despite dissimilar previous exposures to alternative reinforcement removal. The quantitative model provided a good description of the observed data in both experiments. More broadly, these data suggest that increased exposure to extinction may be a successful strategy to reduce resurgence. The relationship between these data and existing tests of the effect of time in extinction on resurgence is discussed. PMID:23982985
Crane, Cory A.; Testa, Maria
2014-01-01
Anger is an empirically established precipitant to aggressive responding toward intimate partners. The current investigation examined the effects of anger, as experienced by both partners, as well as gender and previous aggression, on in vivo intimate partner aggression using a prospective daily diary methodology. Participants (N = 118 couples) individually provided 56 consecutive, daily reports of affective experience and partner aggression. Multilevel models were estimated using the Actor Partner Interdependence Model framework to analyze the daily associations between anger and partner aggression perpetration among male and female participants as moderated by aggression history. Results revealed that both Actor and Partner anger were generally associated with subsequently reported daily conflict. Further, increases in daily Partner anger were associated with corresponding increases in partner aggression among females who reported high anger and males, regardless of their own anger experience. Increases in Actor anger were associated with increases in daily partner aggression only among previously aggressive females. Previously aggressive males and females consistently reported greater perpetration than their nonaggressive counterparts on days of high Actor anger experience. Results emphasize the importance of both Actor and Partner factors in partner aggression and suggest that female anger may be a stronger predictor of both female-to-male and male-to-female partner aggression than male anger, when measured at the daily level. PMID:24866529
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrage, Clare; Kuribayashi-Coleman, Andrew; Stevenson, James
We apply the new constraints from atom-interferometry searches for screening mechanisms to the symmetron model, finding that these experiments exclude a previously unexplored region of the parameter space. We discuss the possibility of networks of domain walls forming in the vacuum chamber, and how this could be used to discriminate between models of screening.
AveBoost2: Boosting for Noisy Data
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.
2004-01-01
AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the pre- vious base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. In previous work, we developed an algorithm, AveBoost, that constructed distributions orthogonal to the mistake vectors of all the previous models, and then averaged them to create the next base model s distribution. Our experiments demonstrated the superior accuracy of our approach. In this paper, we slightly revise our algorithm to allow us to obtain non-trivial theoretical results: bounds on the training error and generalization error (difference between training and test error). Our averaging process has a regularizing effect which, as expected, leads us to a worse training error bound for our algorithm than for AdaBoost but a superior generalization error bound. For this paper, we experimented with the data that we used in both as originally supplied and with added label noise-a small fraction of the data has its original label changed. Noisy data are notoriously difficult for AdaBoost to learn. Our algorithm's performance improvement over AdaBoost is even greater on the noisy data than the original data.
ERIC Educational Resources Information Center
Melamed, Barbara G.; And Others
1978-01-01
Evaluated influence of film preparation on children undergoing dental sessions with respect to peer modeling v demonstration of procedures and amount of information. Children exposed to peer-model videotaped presentations immediately preceding their restorative treatment exhibited fewer disruptive behaviors and less apprehension than those…
ERIC Educational Resources Information Center
Baayen, R. Harald; Milin, Petar; Durdevic, Dusica Filipovic; Hendrix, Peter; Marelli, Marco
2011-01-01
A 2-layer symbolic network model based on the equilibrium equations of the Rescorla-Wagner model (Danks, 2003) is proposed. The study first presents 2 experiments in Serbian, which reveal for sentential reading the inflectional paradigmatic effects previously observed by Milin, Filipovic Durdevic, and Moscoso del Prado Martin (2009) for unprimed…
Broadband Scattering from Sand and Sand/Mud Sediments with Extensive Environmental Characterization
2017-01-30
experiment , extensive envi- ronmental characterization was also performed to support data/model comparisons for both experimental efforts. The site...mechanisms, potentially addressing questions left unresolved from the previous sediment acoustics experiments , SAX99 and SAX04. This work was also to provide...environmental characterization to support the analysis of data collected during the Target and Reverberation Experiment in 2013 (TREX13) as well as
Williams, Terrinieka T; McMahon, Susan D; Keys, Christopher B
2014-01-01
School experiences can have positive effects on student academic achievement, yet less is known about intermediary processes that contribute to these positive effects. We examined pathways between school experiences and academic achievement among 117 low-income urban students of color, many with disabilities, who transitioned to other schools following a school closure. Using structural equation modeling, we tested two ecological models that examined the relationships among self-reported school experiences, school support, academic self-efficacy, and school-reported academic achievement. The model in which the relationship between school experiences and academic achievement is mediated by both school support and academic self-efficacy, and that takes previous academic achievement into account, was an excellent fit with the data. The roles of contextual and individual factors as they relate to academic achievement, and the implications of these findings, are discussed.
Modelling Influence and Opinion Evolution in Online Collective Behaviour
Gend, Pascal; Rentfrow, Peter J.; Hendrickx, Julien M.; Blondel, Vincent D.
2016-01-01
Opinion evolution and judgment revision are mediated through social influence. Based on a large crowdsourced in vitro experiment (n = 861), it is shown how a consensus model can be used to predict opinion evolution in online collective behaviour. It is the first time the predictive power of a quantitative model of opinion dynamics is tested against a real dataset. Unlike previous research on the topic, the model was validated on data which did not serve to calibrate it. This avoids to favor more complex models over more simple ones and prevents overfitting. The model is parametrized by the influenceability of each individual, a factor representing to what extent individuals incorporate external judgments. The prediction accuracy depends on prior knowledge on the participants’ past behaviour. Several situations reflecting data availability are compared. When the data is scarce, the data from previous participants is used to predict how a new participant will behave. Judgment revision includes unpredictable variations which limit the potential for prediction. A first measure of unpredictability is proposed. The measure is based on a specific control experiment. More than two thirds of the prediction errors are found to occur due to unpredictability of the human judgment revision process rather than to model imperfection. PMID:27336834
Punishment in human choice: direct or competitive suppression?
Critchfield, Thomas S; Paletz, Elliott M; MacAleese, Kenneth R; Newland, M Christopher
2003-01-01
This investigation compared the predictions of two models describing the integration of reinforcement and punishment effects in operant choice. Deluty's (1976) competitive-suppression model (conceptually related to two-factor punishment theories) and de Villiers' (1980) direct-suppression model (conceptually related to one-factor punishment theories) have been tested previously in nonhumans but not at the individual level in humans. Mouse clicking by college students was maintained in a two-alternative concurrent schedule of variable-interval money reinforcement. Punishment consisted of variable-interval money losses. Experiment 1 verified that money loss was an effective punisher in this context. Experiment 2 consisted of qualitative model comparisons similar to those used in previous studies involving nonhumans. Following a no-punishment baseline, punishment was superimposed upon both response alternatives. Under schedule values for which the direct-suppression model, but not the competitive-suppression model, predicted distinct shifts from baseline performance, or vice versa, 12 of 14 individual-subject functions, generated by 7 subjects, supported the direct-suppression model. When the punishment models were converted to the form of the generalized matching law, least-squares linear regression fits for a direct-suppression model were superior to those of a competitive-suppression model for 6 of 7 subjects. In Experiment 3, a more thorough quantitative test of the modified models, fits for a direct-suppression model were superior in 11 of 13 cases. These results correspond well to those of investigations conducted with nonhumans and provide the first individual-subject evidence that a direct-suppression model, evaluated both qualitatively and quantitatively, describes human punishment better than a competitive-suppression model. We discuss implications for developing better punishment models and future investigations of punishment in human choice. PMID:13677606
Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; ...
2015-10-27
We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale formore » those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.« less
Influences of High School Curriculum on Determinants of Labor Market Experiences.
ERIC Educational Resources Information Center
Gardner, John A.; And Others
This study extends previous research on labor market effects of vocational education by explicitly modeling the intervening factors in the relationship between secondary vocational education and labor market outcomes. The strategy is to propose and estimate a simplified, recursive model that can contribute to understanding why positive earnings…
Data publication and dissemination of interactive keys under the open access model
USDA-ARS?s Scientific Manuscript database
The concepts of publication, citation and dissemination of interactive keys and other online keys are discussed and illustrated by a sample paper published in the present issue (doi: 10.3897/zookeys.21.271). The present model is based on previous experience with several existing examples of publishi...
Posture Affects How Robots and Infants Map Words to Objects
Morse, Anthony F.; Benitez, Viridian L.; Belpaeme, Tony; Cangelosi, Angelo; Smith, Linda B.
2015-01-01
For infants, the first problem in learning a word is to map the word to its referent; a second problem is to remember that mapping when the word and/or referent are again encountered. Recent infant studies suggest that spatial location plays a key role in how infants solve both problems. Here we provide a new theoretical model and new empirical evidence on how the body – and its momentary posture – may be central to these processes. The present study uses a name-object mapping task in which names are either encountered in the absence of their target (experiments 1–3, 6 & 7), or when their target is present but in a location previously associated with a foil (experiments 4, 5, 8 & 9). A humanoid robot model (experiments 1–5) is used to instantiate and test the hypothesis that body-centric spatial location, and thus the bodies’ momentary posture, is used to centrally bind the multimodal features of heard names and visual objects. The robot model is shown to replicate existing infant data and then to generate novel predictions, which are tested in new infant studies (experiments 6–9). Despite spatial location being task-irrelevant in this second set of experiments, infants use body-centric spatial contingency over temporal contingency to map the name to object. Both infants and the robot remember the name-object mapping even in new spatial locations. However, the robot model shows how this memory can emerge –not from separating bodily information from the word-object mapping as proposed in previous models of the role of space in word-object mapping – but through the body’s momentary disposition in space. PMID:25785834
A model of clutter for complex, multivariate geospatial displays.
Lohrenz, Maura C; Trafton, J Gregory; Beck, R Melissa; Gendron, Marlin L
2009-02-01
A novel model of measuring clutter in complex geospatial displays was compared with human ratings of subjective clutter as a measure of convergent validity. The new model is called the color-clustering clutter (C3) model. Clutter is a known problem in displays of complex data and has been shown to affect target search performance. Previous clutter models are discussed and compared with the C3 model. Two experiments were performed. In Experiment 1, participants performed subjective clutter ratings on six classes of information visualizations. Empirical results were used to set two free parameters in the model. In Experiment 2, participants performed subjective clutter ratings on aeronautical charts. Both experiments compared and correlated empirical data to model predictions. The first experiment resulted in a .76 correlation between ratings and C3. The second experiment resulted in a .86 correlation, significantly better than results from a model developed by Rosenholtz et al. Outliers to our correlation suggest further improvements to C3. We suggest that (a) the C3 model is a good predictor of subjective impressions of clutter in geospatial displays, (b) geospatial clutter is a function of color density and saliency (primary C3 components), and (c) pattern analysis techniques could further improve C3. The C3 model could be used to improve the design of electronic geospatial displays by suggesting when a display will be too cluttered for its intended audience.
Retrieving relevant time-course experiments: a study on Arabidopsis microarrays.
Şener, Duygu Dede; Oğul, Hasan
2016-06-01
Understanding time-course regulation of genes in response to a stimulus is a major concern in current systems biology. The problem is usually approached by computational methods to model the gene behaviour or its networked interactions with the others by a set of latent parameters. The model parameters can be estimated through a meta-analysis of available data obtained from other relevant experiments. The key question here is how to find the relevant experiments which are potentially useful in analysing current data. In this study, the authors address this problem in the context of time-course gene expression experiments from an information retrieval perspective. To this end, they introduce a computational framework that takes a time-course experiment as a query and reports a list of relevant experiments retrieved from a given repository. These retrieved experiments can then be used to associate the environmental factors of query experiment with the findings previously reported. The model is tested using a set of time-course Arabidopsis microarrays. The experimental results show that relevant experiments can be successfully retrieved based on content similarity.
Cloud computing and validation of expandable in silico livers.
Ropella, Glen E P; Hunt, C Anthony
2010-12-03
In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware.
Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model.
Liu, Fang; Velikina, Julia V; Block, Walter F; Kijowski, Richard; Samsonov, Alexey A
2017-02-01
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexible representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplified treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼ 200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure.
Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model
Velikina, Julia V.; Block, Walter F.; Kijowski, Richard; Samsonov, Alexey A.
2017-01-01
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexibl representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplifie treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure. PMID:28113746
Visual Working Memory Cannot Trade Quantity for Quality.
Ramaty, Ayelet; Luria, Roy
2018-01-01
Two main models have been proposed to describe how visual working memory (WM) allocates its capacity: the slot-model and the continuous resource-model. The purpose of the current study was to test a direct prediction of the resource model suggesting that WM can trade-off between the quantity and quality of the encoded information. Previous research reported equivocal results, with studies that failed to find such a trade-off and other studies that reported a trade-off. Following the design of previous studies, in Experiment 1 we replicated this trade-off, by presenting the memory array for 1200 ms. Experiment 2 failed to observe a trade-off between quantity and quality using a memory array interval of 300 ms (a standard interval for visual WM). Experiment 3 again failed to find this trade-off, when reinstating the 1200 ms memory array interval but adding an articulatory suppression manipulation. We argue that while participants can trade quantity for quality, this pattern depends on verbal encoding and transfer to long-term memory processes that were possible to perform only during the long retention interval. When these processes were eliminated, the trade-off disappeared. Thus, we didn't find any evidence that the trade-off between quantity for quality can occur within visual WM.
Refining new-physics searches in B→Dτν with lattice QCD.
Bailey, Jon A; Bazavov, A; Bernard, C; Bouchard, C M; Detar, C; Du, Daping; El-Khadra, A X; Foley, J; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Kim, Jongjeong; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Meurice, Y; Neil, E T; Oktay, M B; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran
2012-08-17
The semileptonic decay channel B→Dτν is sensitive to the presence of a scalar current, such as that mediated by a charged-Higgs boson. Recently, the BABAR experiment reported the first observation of the exclusive semileptonic decay B→Dτ(-)ν, finding an approximately 2σ disagreement with the standard-model prediction for the ratio R(D)=BR(B→Dτν)/BR(B→Dℓν), where ℓ = e,μ. We compute this ratio of branching fractions using hadronic form factors computed in unquenched lattice QCD and obtain R(D)=0.316(12)(7), where the errors are statistical and total systematic, respectively. This result is the first standard-model calculation of R(D) from ab initio full QCD. Its error is smaller than that of previous estimates, primarily due to the reduced uncertainty in the scalar form factor f(0)(q(2)). Our determination of R(D) is approximately 1σ higher than previous estimates and, thus, reduces the tension with experiment. We also compute R(D) in models with electrically charged scalar exchange, such as the type-II two-Higgs-doublet model. Once again, our result is consistent with, but approximately 1σ higher than, previous estimates for phenomenologically relevant values of the scalar coupling in the type-II model. As a by-product of our calculation, we also present the standard-model prediction for the longitudinal-polarization ratio P(L)(D)=0.325(4)(3).
Power-Stepped HF Cross-Modulation Experiments: Simulations and Experimental Observations
NASA Astrophysics Data System (ADS)
Greene, S.; Moore, R. C.
2014-12-01
High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. The interaction between the heating wave and the probing pulse depends on the ambient and modified conditions of the D-region ionosphere. Cross-modulation observations are employed as a measure of the HF-modified refractive index. We employ an optimized version of Fejer's method that we developed during previous experiments. Experiments were performed in March 2013 at the High Frequency Active Auroral Research Program (HAARP) observatory in Gakona, Alaska. During these experiments, the power of the HF heating signal incrementally increased in order to determine the dependence of cross-modulation on HF power. We found that a simple power law relationship does not hold at high power levels, similar to previous ELF/VLF wave generation experiments. In this paper, we critically compare these experimental observations with the predictions of a numerical ionospheric HF heating model and demonstrate close agreement.
NASA Astrophysics Data System (ADS)
Brattico, Elvira; Brattico, Pauli; Vuust, Peter
2017-07-01
In their target article published in this journal issue, Pelowski et al. [1] address the question of how humans experience, and respond to, visual art. They propose a multi-layered model of the representations and processes involved in assessing visual art objects that, furthermore, involves both bottom-up and top-down elements. Their model provides predictions for seven different outcomes of human aesthetic experience, based on few distinct features (schema congruence, self-relevance, and coping necessity), and connects the underlying processing stages to ;specific correlates of the brain; (a similar attempt was previously done for music by [2-4]). In doing this, the model aims to account for the (often profound) experience of an individual viewer in front of an art object.
A high-efficiency regime for gas-phase terahertz lasers.
Wang, Fan; Lee, Jeongwon; Phillips, Dane J; Holliday, Samuel G; Chua, Song-Liang; Bravo-Abad, Jorge; Joannopoulos, John D; Soljačić, Marin; Johnson, Steven G; Everitt, Henry O
2018-06-11
We present both an innovative theoretical model and an experimental validation of a molecular gas optically pumped far-infrared (OPFIR) laser at 0.25 THz that exhibits 10× greater efficiency (39% of the Manley-Rowe limit) and 1,000× smaller volume than comparable commercial lasers. Unlike previous OPFIR-laser models involving only a few energy levels that failed even qualitatively to match experiments at high pressures, our ab initio theory matches experiments quantitatively, within experimental uncertainties with no free parameters, by accurately capturing the interplay of millions of degrees of freedom in the laser. We show that previous OPFIR lasers were inefficient simply by being too large and that high powers favor high pressures and small cavities. We believe that these results will revive interest in OPFIR laser as a powerful and compact source of terahertz radiation.
Dynamic self-organisation of haematopoiesis and (a)symmetric cell division.
Måløy, Marthe; Måløy, Frode; Jakobsen, Per; Olav Brandsdal, Bjørn
2017-02-07
A model of haematopoiesis that links self-organisation with symmetric and asymmetric cell division is presented in this paper. It is assumed that all cell divisions are completely random events, and that the daughter cells resulting from symmetric and asymmetric stem cell divisions are, in general, phenotypically identical, and still, the haematopoietic system has the flexibility to self-renew, produce mature cells by differentiation, and regenerate undifferentiated and differentiated cells when necessary, due to self-organisation. As far as we know, no previous model implements symmetric and asymmetric division as the result of self-organisation. The model presented in this paper is inspired by experiments on the Drosophila germline stem cell, which imply that under normal conditions, the stem cells typically divide asymmetrically, whereas during regeneration, the rate of symmetric division increases. Moreover, the model can reproduce several of the results from experiments on female Safari cats. In particular, the model can explain why significant fluctuation in the phenotypes of haematopoietic cells was observed in some cats, when the haematopoietic system had reached normal population level after regeneration. To our knowledge, no previous model of haematopoiesis in Safari cats has captured this phenomenon. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Selection of Thermal Worst-Case Orbits via Modified Efficient Global Optimization
NASA Technical Reports Server (NTRS)
Moeller, Timothy M.; Wilhite, Alan W.; Liles, Kaitlin A.
2014-01-01
Efficient Global Optimization (EGO) was used to select orbits with worst-case hot and cold thermal environments for the Stratospheric Aerosol and Gas Experiment (SAGE) III. The SAGE III system thermal model changed substantially since the previous selection of worst-case orbits (which did not use the EGO method), so the selections were revised to ensure the worst cases are being captured. The EGO method consists of first conducting an initial set of parametric runs, generated with a space-filling Design of Experiments (DoE) method, then fitting a surrogate model to the data and searching for points of maximum Expected Improvement (EI) to conduct additional runs. The general EGO method was modified by using a multi-start optimizer to identify multiple new test points at each iteration. This modification facilitates parallel computing and decreases the burden of user interaction when the optimizer code is not integrated with the model. Thermal worst-case orbits for SAGE III were successfully identified and shown by direct comparison to be more severe than those identified in the previous selection. The EGO method is a useful tool for this application and can result in computational savings if the initial Design of Experiments (DoE) is selected appropriately.
Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer.
Bowling, Jerry C; Zheng, Chunmiao; Rodriguez, Antonio B; Harry, Dennis L
2006-05-05
Approximately 3000 measurements of hydraulic conductivity in over 50 flowmeter boreholes were available at the Macro-Dispersion Experiment (MADE) site in Columbus, Mississippi, USA to quantify the heterogeneity in hydraulic conductivity at the site scale. This high-density measurement approach is perhaps infeasible for time and expense in typical groundwater remediation sites. A natural-gradient tracer experiment from the MADE site was simulated by a groundwater flow and solute transport model incorporating direct-current (DC) resistivity data collected over the observed plume location. Hydraulic conductivity from one borehole collected during the original site characterization was used to calibrate the electrical resistivity data to hydraulic conductivity using a previously derived log-log relationship. Application of this relationship, using site-specific empirical constants determined from the data, transforms the 3D electrical resistivity data into a 3D description of hydraulic conductivity that can be used in groundwater models. The validity of this approach was tested by using the geophysically derived hydraulic conductivity representation in numerical simulations of the natural-gradient tracer experiment. The agreement between the simulated and observed tracer plumes was quantified to gauge the effectiveness of geophysically derived and flowmeter based representations of the hydraulic conductivity field. This study demonstrates that a highly heterogeneous aquifer can be modeled with minimal hydrological data supplemented with geophysical data at least as well as previous models of the site using purely hydrologic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Ackeem; Herrera, David; Hijal, Tarek
We describe a method for predicting waiting times in radiation oncology. Machine learning is a powerful predictive modelling tool that benefits from large, potentially complex, datasets. The essence of machine learning is to predict future outcomes by learning from previous experience. The patient waiting experience remains one of the most vexing challenges facing healthcare. Waiting time uncertainty can cause patients, who are already sick and in pain, to worry about when they will receive the care they need. In radiation oncology, patients typically experience three types of waiting: Waiting at home for their treatment plan to be prepared Waiting inmore » the waiting room for daily radiotherapy Waiting in the waiting room to see a physician in consultation or follow-up These waiting periods are difficult for staff to predict and only rough estimates are typically provided, based on personal experience. In the present era of electronic health records, waiting times need not be so uncertain. At our centre, we have incorporated the electronic treatment records of all previously-treated patients into our machine learning model. We found that the Random Forest Regression model provides the best predictions for daily radiotherapy treatment waiting times (type 2). Using this model, we achieved a median residual (actual minus predicted value) of 0.25 minutes and a standard deviation residual of 6.5 minutes. The main features that generated the best fit model (from most to least significant) are: Allocated time, median past duration, fraction number and the number of treatment fields.« less
NASA Technical Reports Server (NTRS)
Kurzeja, R. J.; Haggard, K. V.; Grose, W. L.
1984-01-01
The distribution of ozone below 60 km altitude has been simulated in two experiments employing a nine-layer quasi-geostrophic spectral model and linear parameterization of ozone photochemistry, the first of which included thermal and orographic forcing of the planetary scale waves, while the second omitted it. The first experiment exhibited a high latitude winter ozone buildup which was due to a Brewer-Dodson circulation forced by large amplitude (planetary scale) waves in the winter lower stratosphere. Photochemistry was also found to be important down to lower altitudes (20 km) in the summer stratosphere than had previously been supposed.
Discrimination reversal and attentional sets in zebrafish (Danio rerio)
Parker, Matthew O.; Gaviria, Jessica; Haigh, Alastair; Millington, Mollie E.; Brown, Verity J.; Combe, Fraser J.; Brennan, Caroline H.
2014-01-01
The potential of zebrafish as a comparative model in behavioural neuroscience is currently hampered only by the lack of reliable and validated behavioural assays available to researchers. In the present experiment, we describe the performance of zebrafish in a test of attentional set formation. The fish were initially trained on a two-choice colour discrimination. Upon reaching acquisition criterion, the reinforced alternative was switched to the previously unreinforced alternative. Again, upon reaching criterion, the cues were replaced with a novel pair of colours (intra-dimensional shift) and reversed again on reaching criteria. We found that zebrafish show a steady decrease in trials-to-criteria over the four phases of the experiment, suggesting that they are forming and maintaining an attentional set, as has previously been demonstrated with mammals. Reversal learning deficits have been implicated in a variety of human psychological disorders (e.g., disorders of impulse control) and as such, we propose that performance of zebrafish in this procedure may represent a useful comparative model to complement existing rodent models. PMID:22561034
Reordering of Nuclear Quantum States in Rare Isotopes
NASA Astrophysics Data System (ADS)
Flanagan, Kieran
2010-02-01
A key question in modern nuclear physics relates to the ordering of quantum states, and whether the predictions made by the shell model hold true far from stability. Recent innovations in technology and techniques at radioactive beam facilities have allowed access to rare isotopes previously inaccessible to experimentalists. Measurements that have been performed in several regions of the nuclear chart have yielded surprising and dramatic changes in nuclear structure, where level ordering is quite different than expected from previous theoretical descriptions. In order to reconcile the difference between experiment and theory, new shell-model interactions have been proposed, which include the role of the tensor force as part of the monopole term from the expansion of the residual proton-neutron interaction. This has motivated a series of laser spectroscopy experiments that have studied the neutron-rich copper and gallium isotopes at the ISOLDE facility. This work has deduced without nuclear-model dependence the spin, moments and charge radii. The results of this work and their implications for nuclear structure near ^78Ni will be discussed. )
Preliminary Experiments with a Triple-Layer Phoswich Detector for Radioxenon Detection
2008-09-01
Figure 7b; with a significant attenuation which was predicted by our MCNP modeling (Farsoni et al., 2007). The 81 keV peak in the NaI spectrum has a...analysis technique and confirmed our previous MCNP modeling. Our future work includes use of commercially available radioxenon gas (133Xe) to test
General Education Models: Continuity and Change in the U.S. Undergraduate Curriculum, 1975-2000
ERIC Educational Resources Information Center
Brint, Steven; Proctor, Kristopher; Murphy, Scott Patrick; Turk-Bicakci, Lori; Hanneman, Robert A.
2009-01-01
General education requirements comprise, on average, approximately 30% of the undergraduate curriculum and therefore represent an important feature of the student academic experience in American colleges and universities. Previous studies have not fully examined the origins of the most important models of general education, the distribution of…
Is Game Behavior Related to Behavior in Any Other Situation?
ERIC Educational Resources Information Center
McTavish, Jeanne
This paper begins by reviewing previous research concerning the external validity of mixed-motive games as models of international conflict, interpersonal behavior, and behavior in large-scale social dilemmas. Two further experiments are then described, both of which cast further doubt upon the usefulness of such games as models of any real-world…
A Computer Model of Simple Forms of Learning.
ERIC Educational Resources Information Center
Jones, Thomas L.
A basic unsolved problem in science is that of understanding learning, the process by which people and machines use their experience in a situation to guide future action in similar situations. The ideas of Piaget, Pavlov, Hull, and other learning theorists, as well as previous heuristic programing models of human intelligence, stimulated this…
Chapter 6: Implementation of Model-Based Instruction--The Induction Years
ERIC Educational Resources Information Center
Gurvitch, Rachel; Blankenship, Bonnie Tjeerdsma
2008-01-01
In previous chapters, student teachers' views and the use of model-based instruction (MBI) were determined to be largely positive. But do these positive attitudes and the actual use of MBI continue after completing a teacher education program? Many novice teachers experience "washout" when the attitudes and instructional practices they…
Aging and Confidence Judgments in Item Recognition
ERIC Educational Resources Information Center
Voskuilen, Chelsea; Ratcliff, Roger; McKoon, Gail
2018-01-01
We examined the effects of aging on performance in an item-recognition experiment with confidence judgments. A model for confidence judgments and response time (RTs; Ratcliff & Starns, 2013) was used to fit a large amount of data from a new sample of older adults and a previously reported sample of younger adults. This model of confidence…
Novelty and Inductive Generalization in Human Reinforcement Learning.
Gershman, Samuel J; Niv, Yael
2015-07-01
In reinforcement learning (RL), a decision maker searching for the most rewarding option is often faced with the question: What is the value of an option that has never been tried before? One way to frame this question is as an inductive problem: How can I generalize my previous experience with one set of options to a novel option? We show how hierarchical Bayesian inference can be used to solve this problem, and we describe an equivalence between the Bayesian model and temporal difference learning algorithms that have been proposed as models of RL in humans and animals. According to our view, the search for the best option is guided by abstract knowledge about the relationships between different options in an environment, resulting in greater search efficiency compared to traditional RL algorithms previously applied to human cognition. In two behavioral experiments, we test several predictions of our model, providing evidence that humans learn and exploit structured inductive knowledge to make predictions about novel options. In light of this model, we suggest a new interpretation of dopaminergic responses to novelty. Copyright © 2015 Cognitive Science Society, Inc.
Novelty and Inductive Generalization in Human Reinforcement Learning
Gershman, Samuel J.; Niv, Yael
2015-01-01
In reinforcement learning, a decision maker searching for the most rewarding option is often faced with the question: what is the value of an option that has never been tried before? One way to frame this question is as an inductive problem: how can I generalize my previous experience with one set of options to a novel option? We show how hierarchical Bayesian inference can be used to solve this problem, and describe an equivalence between the Bayesian model and temporal difference learning algorithms that have been proposed as models of reinforcement learning in humans and animals. According to our view, the search for the best option is guided by abstract knowledge about the relationships between different options in an environment, resulting in greater search efficiency compared to traditional reinforcement learning algorithms previously applied to human cognition. In two behavioral experiments, we test several predictions of our model, providing evidence that humans learn and exploit structured inductive knowledge to make predictions about novel options. In light of this model, we suggest a new interpretation of dopaminergic responses to novelty. PMID:25808176
NASA Astrophysics Data System (ADS)
Chiogna, Gabriele; Bellin, Alberto
2013-05-01
The laboratory experiments of Gramling et al. (2002) showed that incomplete mixing at the pore scale exerts a significant impact on transport of reactive solutes and that assuming complete mixing leads to overestimation of product concentration in bimolecular reactions. Successively, several attempts have been made to model this experiment, either considering spatial segregation of the reactants, non-Fickian transport applying a Continuous Time Random Walk (CTRW) or an effective upscaled time-dependent kinetic reaction term. Previous analyses of these experimental results showed that, at the Darcy scale, conservative solute transport is well described by a standard advection dispersion equation, which assumes complete mixing at the pore scale. However, reactive transport is significantly affected by incomplete mixing at smaller scales, i.e., within a reference elementary volume (REV). We consider here the family of equilibrium reactions for which the concentration of the reactants and the product can be expressed as a function of the mixing ratio, the concentration of a fictitious non reactive solute. For this type of reactions we propose, in agreement with previous studies, to model the effect of incomplete mixing at scales smaller than the Darcy scale assuming that the mixing ratio is distributed within an REV according to a Beta distribution. We compute the parameters of the Beta model by imposing that the mean concentration is equal to the value that the concentration assumes at the continuum Darcy scale, while the variance decays with time as a power law. We show that our model reproduces the concentration profiles of the reaction product measured in the Gramling et al. (2002) experiments using the transport parameters obtained from conservative experiments and an instantaneous reaction kinetic. The results are obtained applying analytical solutions both for conservative and for reactive solute transport, thereby providing a method to handle the effect of incomplete mixing on multispecies reactive solute transport, which is simpler than other previously developed methods.
Fear of childbirth: mothers' experiences of team-midwifery care - a follow-up study.
Lyberg, Anne; Severinsson, Elisabeth
2010-05-01
The aim of this study was to illuminate mothers' fear of childbirth and their experiences of the team-midwifery care model during pregnancy, childbirth and the postnatal period. Maternal anxiety and fear of childbirth lead to emotional suffering and affected women's well-being. A previous negative experience of childbirth may result in postnatal depression or avoidance of future pregnancies. This hermeneutic study comprised interviews with 13 women, which were audio-taped and transcribed verbatim, after which interpretative content analysis was performed. Ethical approval was granted. The findings revealed one main theme: The woman's right to ownership of the pregnancy, childbirth and postnatal care as a means of maintaining dignity and three themes; Being aware of barriers and reasons for fear; Being prepared for childbirth and Being confirmed and treated with dignity by the midwife. Each theme contained several sub-themes. The findings contribute insights into how midwives can be educated to reduce fear of childbirth and promote positive birth experiences, despite the existence of negative memories of previous births. In order to achieve continuity and a trusting relationship it is necessary to organise leadership and to adopt models that are flexible and support women's health.
Experience Modulates Vicarious Freezing in Rats: A Model for Empathy
Atsak, Piray; Orre, Marie; Bakker, Petra; Cerliani, Leonardo; Roozendaal, Benno
2011-01-01
The study of the neural basis of emotional empathy has received a surge of interest in recent years but mostly employing human neuroimaging. A simpler animal model would pave the way for systematic single cell recordings and invasive manipulations of the brain regions implicated in empathy. Recent evidence has been put forward for the existence of empathy in rodents. In this study, we describe a potential model of empathy in female rats, in which we studied interactions between two rats: a witness observes a demonstrator experiencing a series of footshocks. By comparing the reaction of witnesses with or without previous footshock experience, we examine the role of prior experience as a modulator of empathy. We show that witnesses having previously experienced footshocks, but not naïve ones, display vicarious freezing behavior upon witnessing a cage-mate experiencing footshocks. Strikingly, the demonstrator's behavior was in turn modulated by the behavior of the witness: demonstrators froze more following footshocks if their witness froze more. Previous experiments have shown that rats emit ultrasonic vocalizations (USVs) when receiving footshocks. Thus, the role of USV in triggering vicarious freezing in our paradigm is examined. We found that experienced witness-demonstrator pairs emitted more USVs than naïve witness-demonstrator pairs, but the number of USVs was correlated with freezing in demonstrators, not in witnesses. Furthermore, playing back the USVs, recorded from witness-demonstrator pairs during the empathy test, did not induce vicarious freezing behavior in experienced witnesses. Thus, our findings confirm that vicarious freezing can be triggered in rats, and moreover it can be modulated by prior experience. Additionally, our result suggests that vicarious freezing is not triggered by USVs per se and it influences back onto the behavior of the demonstrator that had elicited the vicarious freezing in witnesses, introducing a paradigm to study empathy as a social loop. PMID:21765921
On the predictability of land surface fluxes from meteorological variables
NASA Astrophysics Data System (ADS)
Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.
2018-01-01
Previous research has shown that land surface models (LSMs) are performing poorly when compared with relatively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appear to provide information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available in the meteorological forcing data that are used by LSMs for predicting land surface fluxes, by interrogating FLUXNET data, and extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement is possible for empirical models using meteorological data alone, with no explicit vegetation or soil properties, thus setting lower bounds on a priori expectations on LSM performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble of empirical benchmarks that are simple to reproduce and provide a range of behaviours and predictive performance, acting as a baseline benchmark set for future studies. We reanalyse previously published LSM simulations and show that there is more diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much worse than simple empirical models.
Birnbaum; Zimmermann
1998-05-01
Judges evaluated buying and selling prices of hypothetical investments, based on the previous price of each investment and estimates of the investment's future value given by advisors of varied expertise. Effect of a source's estimate varied in proportion to the source's expertise, and it varied inversely with the number and expertise of other sources. There was also a configural effect in which the effect of a source's estimate was affected by the rank order of that source's estimate, in relation to other estimates of the same investment. These interactions were fit with a configural weight averaging model in which buyers and sellers place different weights on estimates of different ranks. This model implies that one can design a new experiment in which there will be different violations of joint independence in different viewpoints. Experiment 2 confirmed patterns of violations of joint independence predicted from the model fit in Experiment 1. Experiment 2 also showed that preference reversals between viewpoints can be predicted by the model of Experiment 1. Configural weighting provides a better account of buying and selling prices than either of two models of loss aversion or the theory of anchoring and insufficient adjustment. Copyright 1998 Academic Press.
Weidlich, P; Adam, C; Sroka, R; Lanzl, I; Assmann, W; Stief, C
2007-09-01
The treatment of urethral strictures represents an unsolved urological problem. The effect of a (32)P-coated urethral catheter in the sense of low-dose rate brachytherapy to modulate wound healing will be analyzed in an animal experiment. Unfortunately it is not possible to present any results because this is being studied for the first time and there are no experiences with low-dose rate brachytherapy and this form of application in the lower urinary tract. Furthermore the animal experiment will only start in the near future. Both decade-long experiences with radiotherapy to treat benign diseases and our own results of previous studies in otolaryngology and ophthalmology let us expect a significantly lower formation of urethral strictures after internal urethrotomy. This study will contribute to improving the treatment of urethral strictures as demanded in previous papers.
Water-water correlations in electrolyte solutions probed by hyper-Rayleigh scattering
NASA Astrophysics Data System (ADS)
Shelton, David P.
2017-12-01
Long-range ion-induced correlations between water molecules have been observed by second-harmonic or hyper-Rayleigh scattering experiments with conflicting results. The most recent work observed a large difference between the results for H2O and D2O, and large discrepancies with the previously proposed theory. However, the present observations are in quantitative agreement with the model where the ion electric field induces second harmonic generation by the water molecules, and ion-ion correlations given by the Debye-Huckel theory account for intensity saturation at high ion concentration. This work compares experimental results with theory and addresses the apparent discrepancies with previous experiments.
Interaction Metrics for Feedback Control of Sound Radiation from Stiffened Panels
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.; Cox, David E.; Gibbs, Gary P.
2003-01-01
Interaction metrics developed for the process control industry are used to evaluate decentralized control of sound radiation from bays on an aircraft fuselage. The metrics are applied to experimentally measured frequency response data from a model of an aircraft fuselage. The purpose is to understand how coupling between multiple bays of the fuselage can destabilize or limit the performance of a decentralized active noise control system. The metrics quantitatively verify observations from a previous experiment, in which decentralized controllers performed worse than centralized controllers. The metrics do not appear to be useful for explaining control spillover which was observed in a previous experiment.
Climate Modeling and Causal Identification for Sea Ice Predictability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark
This project aims to better understand causes of ongoing changes in the Arctic climate system, particularly as decreasing sea ice trends have been observed in recent decades and are expected to continue in the future. As part of the Sea Ice Prediction Network, a multi-agency effort to improve sea ice prediction products on seasonal-to-interannual time scales, our team is studying sensitivity of sea ice to a collection of physical process and feedback mechanism in the coupled climate system. During 2017 we completed a set of climate model simulations using the fully coupled ACME-HiLAT model. The simulations consisted of experiments inmore » which cloud, sea ice, and air-ocean turbulent exchange parameters previously identified as important for driving output uncertainty in climate models were perturbed to account for parameter uncertainty in simulated climate variables. We conducted a sensitivity study to these parameters, which built upon a previous study we made for standalone simulations (Urrego-Blanco et al., 2016, 2017). Using the results from the ensemble of coupled simulations, we are examining robust relationships between climate variables that emerge across the experiments. We are also using causal discovery techniques to identify interaction pathways among climate variables which can help identify physical mechanisms and provide guidance in predictability studies. This work further builds on and leverages the large ensemble of standalone sea ice simulations produced in our previous w14_seaice project.« less
NASA Astrophysics Data System (ADS)
Moon, M.; Choi, Y.; Ha, K. J.
2017-12-01
The effects of sea surface temperature (SST) gradient induced by the previous typhoon and intensity of the previous typhoon on the following typhoon motion over East Asia have been investigated using Weather Research and Forecasting (WRF) model for the previous Typhoon Bolaven (1215) and following Typhoon Tembin (1214). Using the WRF experiments for the imposed cold wake over Yellow Sea (YS) and over East China Sea (ECS), this study demonstrates that the effects of eastward SST gradient including cold wake over YS is much significant rather than that over ECS in relation to unexpected Tembin's deflection and the effect of the strong previous typhoon is faster than weaker previous typhoon in relation to Tembin. This difference between two experiments is attributed to the fact that cold wake over YS increases the magnitude of SST gradient under the eastward SST gradient around East Asia and the resultant asymmetric flow deflects Typhoon Tembin eastward, which is mainly due to the different atmospheric response to the SST forcing between ECS and YS. the effect of the previous typhoon intensity developed mid-latitude trough and makes the following typhoon favorable to move fast.
NASA Technical Reports Server (NTRS)
Sebok, Angelia; Wickens, Christopher; Sargent, Robert
2015-01-01
One human factors challenge is predicting operator performance in novel situations. Approaches such as drawing on relevant previous experience, and developing computational models to predict operator performance in complex situations, offer potential methods to address this challenge. A few concerns with modeling operator performance are that models need to realistic, and they need to be tested empirically and validated. In addition, many existing human performance modeling tools are complex and require that an analyst gain significant experience to be able to develop models for meaningful data collection. This paper describes an effort to address these challenges by developing an easy to use model-based tool, using models that were developed from a review of existing human performance literature and targeted experimental studies, and performing an empirical validation of key model predictions.
Modeling the Restraint of Liquid Jets by Surface Tension in Microgravity
NASA Technical Reports Server (NTRS)
Chato, David J.; Jacqmim, David A.
2001-01-01
An axisymmetric phase field model is developed and used to model surface tension forces on liquid jets in microgravity. The previous work in this area is reviewed and a baseline drop tower experiment selected 'for model comparison. A mathematical model is developed which includes a free surface. a symmetric centerline and wall boundaries with given contact angles. The model is solved numerically with a compact fourth order stencil on a equally spaced axisymmetric grid. After grid convergence studies, a grid is selected and all drop tower tests modeled. Agreement was assessed by comparing predicted and measured free surface rise. Trend wise agreement is good but agreement in magnitude is only fair. Suspected sources of disagreement are suspected to be lack of a turbulence model and the existence of slosh baffles in the experiment which were not included in the model.
Mentally walking through doorways causes forgetting: The location updating effect and imagination.
Lawrence, Zachary; Peterson, Daniel
2016-01-01
Researchers have documented an intriguing phenomenon whereby simply walking through a doorway causes forgetting (the location updating effect). The Event Horizon Model is the most commonly cited theory to explain these data. Importantly, this model explains the effect without invoking the importance or reliance upon perceptual information (i.e., seeing oneself pass through the doorway). This generates the intriguing hypothesis that the effect may be demonstrated in participants who simply imagine walking through a doorway. Across two experiments, we explicitly test this hypothesis. Participants familiarised themselves with both real (Experiment 1) and virtual (Experiment 2) environments which served as the setting for their mental walk. They were then provided with an image to remember and were instructed to imagine themselves walking through the previously presented space. In both experiments, when the mental walk required participants to pass through a doorway, more forgetting occurred, consistent with the predictions laid out in the Event Horizon Model.
Dilution jets in accelerated cross flows. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Lipshitz, A.; Greber, I.
1984-01-01
Results of flow visualization experiments and measurements of the temperature field produced by a single jet and a row of dilution jets issued into a reverse flow combustor are presented. The flow in such combustors is typified by transverse and longitudinal acceleration during the passage through its bending section. The flow visualization experiments are designed to examine the separate effects of longitudinal and transverse acceleration on the jet trajectory and spreading rate. A model describing a dense single jet in a lighter accelerating cross flow is developed. The model is based on integral conservation equations, including the pressure terms appropriate to accelerating flows. It uses a modified entrainment correlation obtained from previous experiments of a jet in a cross stream. The flow visualization results are compared with the model calculations in terms of trajectories and spreading rates. Each experiment is typified by a set of three parameters: momentum ratio, density ratio and the densimetric Froude number.
Transactional processes in the development of adult personality disorder symptoms.
Carlson, Elizabeth A; Ruiz, Sarah K
2016-08-01
The development of adult personality disorder symptoms, including transactional processes of relationship representational and behavioral experience from infancy to early adolescence, was examined using longitudinal data from a risk sample (N = 162). Significant preliminary correlations were found between early caregiving experience and adult personality disorder symptoms and between representational and behavioral indices across time and adult symptomatology. Significant correlations were also found among diverse representational assessments (e.g., interview, drawing, and projective narrative) and between concurrent representational and observational measures of relationship functioning. Path models were analyzed to investigate the combined relations of caregiving experience in infancy; relationship representation and experience in early childhood, middle childhood, and early adolescence; and personality disorder symptoms in adulthood. The hypothesized model representing interactive contributions of representational and behavioral experience represented the data significantly better than competing models representing noninteractive contributions. Representational and behavioral indicators mediated the link between early caregiving quality and personality disorder symptoms. The findings extend previous studies of normative development and support an organizational developmental view that early relationship experiences contribute to socioemotional maladaptation as well as adaptation through the progressive transaction of mutually informing expectations and experience.
The Muon g-2 experiment at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapelain, Antoine
The upcoming Fermilab E989 experiment will measure the muon anomalous magnetic moment aμ. This measurement is motivated by the previous measurement performed in 2001 by the BNL E821 experiment that reported a 3-4 standard deviation discrepancy between the measured value and the Standard Model prediction. The new measurement at Fermilab aims to improve the precision by a factor of four reducing the total uncertainty from 540 parts per billion (BNL E821) to 140 parts per billion (Fermilab E989). This paper gives the status of the experiment.
The Muon g-2 experiment at Fermilab
NASA Astrophysics Data System (ADS)
Chapelain, Antoine
2017-03-01
The upcoming Fermilab E989 experiment will measure the muon anomalous magnetic moment aμ. This measurement is motivated by the previous measurement performed in 2001 by the BNL E821 experiment that reported a 3-4 standard deviation discrepancy between the measured value and the Standard Model prediction. The new measurement at Fermilab aims to improve the precision by a factor of four reducing the total uncertainty from 540 parts per billion (BNL E821) to 140 parts per billion (Fermilab E989). This paper gives the status of the experiment.
Factorial Comparison of Working Memory Models
van den Berg, Ronald; Awh, Edward; Ma, Wei Ji
2014-01-01
Three questions have been prominent in the study of visual working memory limitations: (a) What is the nature of mnemonic precision (e.g., quantized or continuous)? (b) How many items are remembered? (c) To what extent do spatial binding errors account for working memory failures? Modeling studies have typically focused on comparing possible answers to a single one of these questions, even though the result of such a comparison might depend on the assumed answers to both others. Here, we consider every possible combination of previously proposed answers to the individual questions. Each model is then a point in a 3-factor model space containing a total of 32 models, of which only 6 have been tested previously. We compare all models on data from 10 delayed-estimation experiments from 6 laboratories (for a total of 164 subjects and 131,452 trials). Consistently across experiments, we find that (a) mnemonic precision is not quantized but continuous and not equal but variable across items and trials; (b) the number of remembered items is likely to be variable across trials, with a mean of 6.4 in the best model (median across subjects); (c) spatial binding errors occur but explain only a small fraction of responses (16.5% at set size 8 in the best model). We find strong evidence against all 6 documented models. Our results demonstrate the value of factorial model comparison in working memory. PMID:24490791
NASA Astrophysics Data System (ADS)
Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Calvin, K. V.
2016-12-01
The C4MIP and CMIP5 model intercomparison projects (MIPs) highlighted uncertainties in climate projections, driven to a large extent by interactions between the terrestrial carbon cycle and climate feedbacks. In addition, the importance of feedbacks between human (energy and economic) systems and natural (carbon and climate) systems is poorly understood, and not considered in the previous MIP protocols. The experiments conducted under the previous Integrated Earth System Model (iESM) project, which coupled a earth system model with an integrated assessment model (GCAM), found that the inclusion of climate feedbacks on the terrestrial system in an RCP4.5 scenario increased ecosystem productivity, resulting in declines in cropland extent and increases in bioenergy production and forest cover. As a follow-up to these studies and to further understand climate-carbon cycle interactions and feedbacks, we examined the robustness of these results by running a suite of GCAM-only experiments using changes in ecosystem productivity derived from both the CMIP5 archive and the Agricultural Model Intercomparison Project. In our results, the effects of climate on yield in an RCP8.5 scenario tended to be more positive than those of AgMIP, but more negative than those of the other CMIP models. We discuss these results and the implications of model-to-model variability for integrated coupling studies of the future earth system.
Discrete Spring Model for Predicting Delamination Growth in Z-Fiber Reinforced DCB Specimens
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; OBrien, T. Kevin
2004-01-01
Beam theory analysis was applied to predict delamination growth in Double Cantilever Beam (DCB) specimens reinforced in the thickness direction with pultruded pins, known as Z-fibers. The specimen arms were modeled as cantilever beams supported by discrete springs, which were included to represent the pins. A bi-linear, irreversible damage law was used to represent Z-fiber damage, the parameters of which were obtained from previous experiments. Closed-form solutions were developed for specimen compliance and displacements corresponding to Z-fiber row locations. A solution strategy was formulated to predict delamination growth, in which the parent laminate mode I critical strain energy release rate was used as the criterion for delamination growth. The solution procedure was coded into FORTRAN 90, giving a dedicated software tool for performing the delamination prediction. Comparison of analysis results with previous analysis and experiment showed good agreement, yielding an initial verification for the analytical procedure.
Discrete Spring Model for Predicting Delamination Growth in Z-Fiber Reinforced DCB Specimens
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; O'Brien, T. Kevin
2004-01-01
Beam theory analysis was applied to predict delamination growth in DCB specimens reinforced in the thickness direction with pultruded pins, known as Z-fibers. The specimen arms were modeled as cantilever beams supported by discrete springs, which were included to represent the pins. A bi-linear, irreversible damage law was used to represent Z-fiber damage, the parameters of which were obtained from previous experiments. Closed-form solutions were developed for specimen compliance and displacements corresponding to Z-fiber row locations. A solution strategy was formulated to predict delamination growth, in which the parent laminate mode I fracture toughness was used as the criterion for delamination growth. The solution procedure was coded into FORTRAN 90, giving a dedicated software tool for performing the delamination prediction. Comparison of analysis results with previous analysis and experiment showed good agreement, yielding an initial verification for the analytical procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaRow, Timothy
The SSTs used in our study come from the Community Climate System Model version 4 (CCSM4) (Gent et al 2011) and from the Canadian Centre for Climate Modeling and Analysis (CanESM2) (Chylek et al20ll) climate models from the fifth Coupled Model Intercomparison Project (CMIP5) (Taylor et al2012). We've examined the tropical cyclones using both the historical simulation that employs volcanic and aerosol forcing as well as the representative concentration pathway 4.5 (RCP4.5). In addition, we've compared the present day North Atlantic tropical cyclone metrics from a previous study (LaRow, 2013) to these climate change experiments. The experimental setup is shownmore » in Table 1. We considered the CMIP5 experiment number '3.2 historical' (Taylor et al,201l), which provides simulations of the recent past (1850-2005). The second set of CMIP5 SSTs is the RCp4.5 experiment where the radiative forcing stabilizes at 45W m-2 after 2100 (experiment number 4.1 in Taylor etal2}ll).« less
A Comparison of Computational Cognitive Models: Agent-Based Systems Versus Rule-Based Architectures
2003-03-01
Java™ How To Program , Prentice Hall, 1999. Friedman-Hill, E., Jess, The Expert System Shell for the Java Platform, Sandia National Laboratories, 2001...transition from the descriptive NDM theory to a computational model raises several questions: Who is an experienced decision maker? How do you model the...progression from being a novice to an experienced decision maker? How does the model account for previous experiences? Are there situations where
Transpiration during life cycle in controlled wheat growth
NASA Technical Reports Server (NTRS)
Volk, Tyler; Rummel, John D.
1990-01-01
A previously developed model of wheat growth, designed for convenient incorporation into system level models of advanced space life support systems is described. The model is applied to data from an experiment that grew wheat under controlled conditions and measured fresh biomass and cumulated transpiration as a function of time. The adequacy of modeling the transpiration as proportional to the inedible biomass and an age factor that varies during the life cycle are discussed.
Gadolinia depletion analysis by CASMO-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Y.; Saji, E.; Toba, A.
1993-01-01
CASMO-4 is the most recent version of the lattice physics code CASMO introduced by Studsvik. The principal aspects of the CASMO-4 model that differ from the models in previous CASMO versions are as follows: (1) heterogeneous model for two-dimensional transport theory calculations; and (2) microregion depletion model for burnable absorbers, such as gadolinia. Of these aspects, the first has previously been benchmarked against measured data of critical experiments and Monte Carlo calculations, verifying the high degree of accuracy. To proceed with CASMO-4 benchmarking, it is desirable to benchmark the microregion depletion model, which enables CASMO-4 to calculate gadolinium depletion directlymore » without the need for precalculated MICBURN cross-section data. This paper presents the benchmarking results for the microregion depletion model in CASMO-4 using the measured data of depleted gadolinium rods.« less
Li, S K; Ghanem, A H; Teng, C L; Hardee, G E; Higuchi, W I
2001-07-01
The objective of this study was to investigate the transport behavior of a series of oligonucleotides with human epidermal membrane (HEM) and to examine the applicability of the modified NERNST-PLANCK model to transdermal iontophoresis of these macromolecules. Iontophoretic transport experiments were first carried out in a synthetic model membrane system (Nuclepore membranes) with a four-electrode potentiostat to examine the baseline modified NERNST-PLANCK model. The modified NERNST-PLANCK model derived from the Einstein relation and the Stokes-Einstein equation taken from previous work did not hold for the oligonucleotides. Results obtained in the Nuclepore studies were, however, consistent with predictions of the modified NERNST-PLANCK model using the experimentally determined electromobilities and diffusion coefficients. The electromobilities of the oligonucleotides (determined by capillary electrophoresis) were found to be more than a factor of two smaller than expected from the Einstein relation between electromobilities and diffusion coefficients (the latter determined in diffusion cell experiments). A correlation between these electromobilities and the theoretical electromobilities estimated by considering the effects of counterion binding and the effects of mobility reduction according to colloid theory was also observed. These results suggest that the modified NERNST-PLANCK model predictions are satisfactory only when the electromobilities and the effective molecular size of the oligonucleotides are known and are used directly to predict the iontophoretically enhanced transport. Results with the HEM experiments generally agreed with model predictions based on the experimental electromobilities. The oligonucleotide HEM flux data also suggest the existence of pores with effective pore radii greater than the effective radii estimated in previous studies with small molecular weight model permeants.
Previous experience in manned space flight: A survey of human factors lessons learned
NASA Technical Reports Server (NTRS)
Chandlee, George O.; Woolford, Barbara
1993-01-01
Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.
ERIC Educational Resources Information Center
Mahan, James M.; Lacefield, Warren E.
The two studies reported in this paper extend the knowledge about the effects of longer field experience with multiple role models (supervising teachers) upon student teachers' value orientations toward education and schooling. Previous research indicates that student teachers tend to adopt the values and attitudes toward education modeled for…
Eutectic melting in the MgO-SiO2 system and its implication to Earth's lower mantle evolution
NASA Astrophysics Data System (ADS)
Baron, M. A.; Lord, O. T.; Myhill, R.; Thomson, A.; Wang, W.; Tronnes, R. G.; Walter, M. J.
2017-12-01
Eutectic melting curves in the system MgO-SiO2 have been experimentally studied at lower mantle pressures using laser-heated diamond anvil cell (LH-DAC) techniques. We investigated eutectic melting of bridgmanite plus periclase in the MgO-MgSiO3 binary and bridgmanite plus stishovite in the MgSiO3-SiO2 sub-system as the simplest models of natural peridotite and basalt. The eutectic melting have been detected on the basis of the thermal perturbations (i.e. melting plateau) during the experiment but also post-experimental textural and chemical analyses of the recovered samples. We also performed a suite of sub-solidus experiments in order to compare and bracket the eutectic melting experiments. The melting curve of model basalt occurs at lower temperatures, has a shallower dT/dP slope and slightly less curvature than the model peridotitic melting curve. Overall, melting temperatures detected in this study are in good agreement with previous experiments and ab initio simulations at 25 GPa (Liebske and Frost, 2012; de Koker et al., 2013). However, at higher pressures the measured eutectic melting curves are systematically lower in temperature than curves extrapolated on the basis of thermodynamic modelling of low-pressure experimental data, and those calculated from atomistic simulations. In turn, when comparing with previously published solidus curves obtained for natural basalt and peridotite (e.g. Fiquet et al., 2010; Andrault et al. 2011; Nomura et al. 2014; Hirose et al. 1999; Andrault et al. 2014 and Pradhan et al. 2015) the melting curves from this study are higher. However, the difference in temperature is less significant than previously though. Based on the comparison of the curvature of the model peridotite eutectic relative to an MgSiO3 melt adiabat we infer that crystallization in a global magma ocean would begin at 100 GPa rather than at the bottom of the mantle, allowing for an early basal melt layer. The model peridotite melting curve lies 500 K above the mantle geotherm at the core-mantle boundary, indicating that it will not be molten. The model basalt melting curve intersects the geotherm at the base of the mantle, and partial melting of subducted oceanic crust is therefore expected.
Murphy, Siobhan; Murphy, Jamie; Shevlin, Mark
2015-09-01
Previous research has identified an association between traumatic experiences and psychotic symptoms. Few studies, however, have explored the underlying mechanisms and contingent nature of these associations in an integrated model. This study aimed to test a moderated mediation model of negative childhood experiences, associated cognitive processes, and psychotic experiences within a context of adolescent loneliness. Cross-sectional survey. A total of 785 Northern Irish secondary school adolescents completed the survey. A moderated mediation model was specified and tested. Childhood experiences of threat and subordination were directly associated with psychotic experiences. Analyses indicated that peer victimization was a mediator of this effect and that loneliness moderated this mediated effect. A new model is proposed to provide an alternative framework for assessing the association between trauma and psychotic experience in adolescence that recognizes loneliness as a significant contextual moderator that can potentially strengthen the trauma-psychosis relationship. Moderated mediation analyses poses an alternative framework to the understanding of trauma-psychosis associations Adolescent loneliness is a vulnerability factor within this association Data are based on a Northern Irish sample with relatively low levels of loneliness Cross-sectional data cannot explore the developmental course of these experiences in adolescence. © 2015 The British Psychological Society.
Ion exchange of several radionuclides on the hydrous crystalline silicotitanate, UOP IONSIV IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huckman, M.E.; Latheef, I.M.; Anthony, R.G.
1999-04-01
The crystalline silicotitanate, UOP IONSIV IE-911, is a proven material for removing radionuclides from a wide variety of waste streams. It is superior for removing several radionuclides from the highly alkaline solutions typical of DOE wastes. This laboratory previously developed an equilibrium model applicable to complex solutions for IE-910 (the power form of the granular IE-911), and more recently, the authors have developed several single component ion-exchange kinetic models for predicting column breakthrough curves and batch reactor concentration histories. In this paper, the authors model ion-exchange column performance using effective diffusivities determined from batch kinetic experiments. This technique is preferablemore » because the batch experiments are easier, faster, and cheaper to perform than column experiments. They also extend these ideas to multicomponent systems. Finally, they evaluate the ability of the equilibrium model to predict data for IE-911.« less
NASA Astrophysics Data System (ADS)
Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.
2015-06-01
We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulations and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.
Tourret, D.; Karma, A.; Clarke, A. J.; ...
2015-06-11
We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulationsmore » and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.« less
Stepping Up the Pressure: Arousal Can Be Associated with a Reduction in Male Aggression
Ward, Andrew; Mann, Traci; Westling, Erika H.; Creswell, J. David; Ebert, Jeffrey P.; Wallaert, Matthew
2009-01-01
The attentional myopia model of behavioral control (Mann & Ward, 2007) was tested in an experiment investigating the relationship between physiological arousal and aggression. Drawing on previous work linking arousal and narrowed attentional focus, the model predicts that arousal will lead to behavior that is relatively disinhibited in situations in which promoting pressures to aggress are highly salient. In situations in which inhibitory pressures are more salient, the model predicts behavior that is relatively restrained. In the experiment, 81 male undergraduates delivered noise-blasts against a provoking confederate while experiencing either high or low levels of physiological arousal and, at the same time, being exposed to cues that served either to promote or inhibit aggression. In addition to supporting the predictions of the model, this experiment provided some of the first evidence for enhanced control of aggression under conditions of heightened physiological arousal. Implications for interventions designed to reduce aggression are discussed. PMID:18561301
NASA Astrophysics Data System (ADS)
Ferguson, Matthew Lee
A principal component in the protein coats of certain post-golgi and endocytic vesicles is clathrin, which appears as a three-legged heteropolymer (known as a triskelion) that assembles into polyhedral baskets principally made up of pentagonal and hexagonal faces. In vitro, this assembly depends on the pH, with baskets forming more readily at low pH and less readily at high pH. We have developed procedures, based on static and dynamic light scattering, to determine the radius of gyration, Rg, and hydrodynamic radius, RH, of isolated triskelia under conditions where basket assembly occurs. Calculations based on rigid molecular bead models of a triskelion show that the measured values can be accounted for by bending of the legs and a puckering at the vertex. We also show that the values of Rg and R H measured for clathrin triskelia in solution are qualitatively consistent with the conformation of an individual triskelion that is part of a "D6 barrel" basket assembly measured by cryo-EM tomography. We extended this study by performing small angle neutron scattering (SANS) experiments on isolated triskelia in solution under conditions where baskets do not assemble. SANS experiments were consistent with previous static light scattering experiments but showed a shoulder in the scattering function at intermediate q-values just beyond the central diffraction peak (the Guinier regime). Theoretical calculations based on rigid bead models of a triskelion showed well-defined features in this region different from the experiment. A flexible bead-spring model of a triskelion and Brownian dynamics simulations were used to generate a time averaged scattering function. This model adequately described the experimental data for flexibilities close to previous estimates from the analysis of electron micrographs.
Morra, Sergio
2015-01-01
Whether rehearsal has a causal role in verbal STM has been controversial in the literature. Recent theories of working memory emphasize a role of attentional resources, but leave unclear how they contribute to verbal STM. Two experiments (with 49 and 102 adult participants, respectively) followed up previous studies with children, aiming to clarify the contributions of attentional capacity and rehearsal to verbal STM. Word length and presentation modality were manipulated. Experiment 1 focused on order errors, Experiment 2 on predicting individual differences in span from attentional capacity and articulation rate. Structural equation modeling showed clearly a major role of attentional capacity as a predictor of verbal STM span; but was inconclusive on whether rehearsal efficiency is an additional cause or a consequence of verbal STM. The effects of word length and modality on STM were replicated; a significant interaction was also found, showing a larger modality effect for long than short words, which replicates a previous finding on children. Item errors occurred more often with long words and correlated negatively with articulation rate. This set of findings seems to point to a role of rehearsal in maintaining item information. The probability of order errors per position increased linearly with list length. A revised version of a neo-Piagetian model was fit to the data of Experiment 2. That model was based on two parameters: attentional capacity (independently measured) and a free parameter representing loss of partly-activated information. The model could partly account for the results, but underestimated STM performance of the participants with smaller attentional capacity. It is concluded that modeling of verbal STM should consider individual and developmental differences in attentional capacity, rehearsal rate, and (perhaps) order representation. PMID:25798114
Morra, Sergio
2015-01-01
Whether rehearsal has a causal role in verbal STM has been controversial in the literature. Recent theories of working memory emphasize a role of attentional resources, but leave unclear how they contribute to verbal STM. Two experiments (with 49 and 102 adult participants, respectively) followed up previous studies with children, aiming to clarify the contributions of attentional capacity and rehearsal to verbal STM. Word length and presentation modality were manipulated. Experiment 1 focused on order errors, Experiment 2 on predicting individual differences in span from attentional capacity and articulation rate. Structural equation modeling showed clearly a major role of attentional capacity as a predictor of verbal STM span; but was inconclusive on whether rehearsal efficiency is an additional cause or a consequence of verbal STM. The effects of word length and modality on STM were replicated; a significant interaction was also found, showing a larger modality effect for long than short words, which replicates a previous finding on children. Item errors occurred more often with long words and correlated negatively with articulation rate. This set of findings seems to point to a role of rehearsal in maintaining item information. The probability of order errors per position increased linearly with list length. A revised version of a neo-Piagetian model was fit to the data of Experiment 2. That model was based on two parameters: attentional capacity (independently measured) and a free parameter representing loss of partly-activated information. The model could partly account for the results, but underestimated STM performance of the participants with smaller attentional capacity. It is concluded that modeling of verbal STM should consider individual and developmental differences in attentional capacity, rehearsal rate, and (perhaps) order representation.
MBA: Is the Traditional Model Doomed?
ERIC Educational Resources Information Center
Lataif, Louis E.; And Others
1992-01-01
Presents 13 commentaries on a previously published case study about the value of a Master's of Business Administration to employers today. Critiques center on the case study method, theory-practice gap, and value of practical experience and include international perspectives. (SK)
The role of RT carry-over for congruence sequence effects in masked priming.
Huber-Huber, Christoph; Ansorge, Ulrich
2017-05-01
The present study disentangles 2 sources of the congruence sequence effect with masked primes: congruence and response time of the previous trial (reaction time [RT] carry-over). Using arrows as primes and targets and a metacontrast masking procedure we found congruence as well as congruence sequence effects. In addition, congruence sequence effects decreased when RT carry-over was accounted for in a mixed model analysis, suggesting that RT carry-over contributes to congruence sequence effects in masked priming. Crucially, effects of previous trial congruence were not cancelled out completely indicating that RT carry-over and previous trial congruence are 2 sources feeding into the congruence sequence effect. A secondary task requiring response speed judgments demonstrated general awareness of response speed (Experiments 1), but removing this secondary task (Experiment 2) showed that RT carry-over effects were also present in single-task conditions. During (dual-task) prime-awareness test parts of both experiments, however, RT carry-over failed to modulate congruence effects, suggesting that some task sets of the participants can prevent the effect. The basic RT carry-over effects are consistent with the conflict adaptation account, with the adaptation to the statistics of the environment (ASE) model, and possibly with the temporal learning explanation. Additionally considering the task-dependence of RT carry-over, the results are most compatible with the conflict adaptation account. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Novel characterization of capsule x-ray drive at the National Ignition Facility.
MacLaren, S A; Schneider, M B; Widmann, K; Hammer, J H; Yoxall, B E; Moody, J D; Bell, P M; Benedetti, L R; Bradley, D K; Edwards, M J; Guymer, T M; Hinkel, D E; Hsing, W W; Kervin, M L; Meezan, N B; Moore, A S; Ralph, J E
2014-03-14
Indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%-25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the data from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.
Shock, release and reshock of PBX 9502: experiments and modeling
NASA Astrophysics Data System (ADS)
Aslam, Tariq; Gustavsen, Richard; Whitworh, Nicholas; Menikoff, Ralph; Tarver, Craig; Handley, Caroline; Bartram, Brian
2017-06-01
We examine shock, release and reshock into the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502 (95% TATB, 5% Kel-F 800) from both an experimental and modeling point of view. The experiments are performed on the 2-stage light gas gun at Los Alamos National Laboratory and are composed of a multi-layered impactor impinging on PBX 9502 backed by a polymethylmethacrylate window. The objective is to initially shock the PBX 9502 in the 7 GPa range (too weak to start significant reaction), then allow a rarefaction fan to release the material to a lower pressure/temperature state. Following this release, a strong second shock will recompress the PBX. If the rarefaction fan releases the PBX to a very low pressure, the ensuing second shock can increase the entropy and temperature substantially more than in previous double-shock experiments without an intermediate release. Predictions from a variety of reactive burn models (AWSD, CREST, Ignition and Growth, SURF) demonstrate significantly different behaviors and thus the experiments are an excellent validation test of the models, and may suggest improvements for subsequent modeling efforts.
Cheng, Zhenbo; Deng, Zhidong; Hu, Xiaolin; Zhang, Bo; Yang, Tianming
2015-12-01
The brain often has to make decisions based on information stored in working memory, but the neural circuitry underlying working memory is not fully understood. Many theoretical efforts have been focused on modeling the persistent delay period activity in the prefrontal areas that is believed to represent working memory. Recent experiments reveal that the delay period activity in the prefrontal cortex is neither static nor homogeneous as previously assumed. Models based on reservoir networks have been proposed to model such a dynamical activity pattern. The connections between neurons within a reservoir are random and do not require explicit tuning. Information storage does not depend on the stable states of the network. However, it is not clear how the encoded information can be retrieved for decision making with a biologically realistic algorithm. We therefore built a reservoir-based neural network to model the neuronal responses of the prefrontal cortex in a somatosensory delayed discrimination task. We first illustrate that the neurons in the reservoir exhibit a heterogeneous and dynamical delay period activity observed in previous experiments. Then we show that a cluster population circuit decodes the information from the reservoir with a winner-take-all mechanism and contributes to the decision making. Finally, we show that the model achieves a good performance rapidly by shaping only the readout with reinforcement learning. Our model reproduces important features of previous behavior and neurophysiology data. We illustrate for the first time how task-specific information stored in a reservoir network can be retrieved with a biologically plausible reinforcement learning training scheme. Copyright © 2015 the American Physiological Society.
A Study on Phase Changes of Heterogeneous Composite Materials
NASA Astrophysics Data System (ADS)
Hirasawa, Yoshio; Saito, Akio; Takegoshi, Eisyun
In this study, a phase change process in heterogeneous composite materials which consist of water and coiled copper wires as conductive solid is investigated by four kinds of typical calculation models : 1) model-1 in which the effective thermal conductivity of the composite material is used, 2) model-2 in which a fin metal acts for many conductive solids, 3) model-3 in which the effective thermal conductivities between nodes are estimated and three-dimensional calculation is performed, 4) model-4 proposed by authors in the previous paper in which effective thermal conductivity is not needed. Consequently, model-1 showed the phase change rate considerably lower than the experimental results. Model-2 gave the larger amount of the phase change rate. Model-3 agreed well with the experiment in the case of small coil diameter and relatively large Vd. Model-4 showed a very well agreement with the experiment in the range of this study.
A dynamic model of reasoning and memory.
Hawkins, Guy E; Hayes, Brett K; Heit, Evan
2016-02-01
Previous models of category-based induction have neglected how the process of induction unfolds over time. We conceive of induction as a dynamic process and provide the first fine-grained examination of the distribution of response times observed in inductive reasoning. We used these data to develop and empirically test the first major quantitative modeling scheme that simultaneously accounts for inductive decisions and their time course. The model assumes that knowledge of similarity relations among novel test probes and items stored in memory drive an accumulation-to-bound sequential sampling process: Test probes with high similarity to studied exemplars are more likely to trigger a generalization response, and more rapidly, than items with low exemplar similarity. We contrast data and model predictions for inductive decisions with a recognition memory task using a common stimulus set. Hierarchical Bayesian analyses across 2 experiments demonstrated that inductive reasoning and recognition memory primarily differ in the threshold to trigger a decision: Observers required less evidence to make a property generalization judgment (induction) than an identity statement about a previously studied item (recognition). Experiment 1 and a condition emphasizing decision speed in Experiment 2 also found evidence that inductive decisions use lower quality similarity-based information than recognition. The findings suggest that induction might represent a less cautious form of recognition. We conclude that sequential sampling models grounded in exemplar-based similarity, combined with hierarchical Bayesian analysis, provide a more fine-grained and informative analysis of the processes involved in inductive reasoning than is possible solely through examination of choice data. PsycINFO Database Record (c) 2016 APA, all rights reserved.
Cloud computing and validation of expandable in silico livers
2010-01-01
Background In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. Results The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. Conclusions The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware. PMID:21129207
Sannino, Annalisa
2016-03-01
This study explores what human conduct looks like when research embraces uncertainty and distance itself from the dominant methodological demands of control and predictability. The context is the waiting experiment originally designed in Kurt Lewin's research group, discussed by Vygotsky as an instance among a range of experiments related to his notion of double stimulation. Little attention has been paid to this experiment, despite its great heuristic potential for charting the terrain of uncertainty and agency in experimental settings. Behind the notion of double stimulation lays Vygotsky's distinctive view of human beings' ability to intentionally shape their actions. Accordingly, human beings in situations of uncertainty and cognitive incongruity can rely on artifacts which serve the function of auxiliary motives and which help them undertake volitional actions. A double stimulation model depicting how such actions emerge is tested in a waiting experiment conducted with collectives, in contrast with a previous waiting experiment conducted with individuals. The model, validated in the waiting experiment with individual participants, applies only to a limited extent to the collectives. The analysis shows the extent to which double stimulation takes place in the waiting experiment with collectives, the differences between the two experiments, and what implications can be drawn for an expanded view on experiments.
ERIC Educational Resources Information Center
Healy, Michael R.; Light, Leah L.; Chung, Christie
2005-01-01
In 3 experiments, young and older adults studied lists of unrelated word pairs and were given confidence-rated item and associative recognition tests. Several different models of recognition were fit to the confidence-rating data using techniques described by S. Macho (2002, 2004). Concordant with previous findings, item recognition data were best…
A Multi-Faceted Analysis of a New Therapeutic Model of Linking Appraisals to Affective Experiences.
ERIC Educational Resources Information Center
McCarthy, Christopher; And Others
I. Roseman, M. Spindel, and P. Jose (1990) had previously demonstrated that specific appraisals of events led to discrete emotional responses, but this model has not been widely tested by other research teams using alternative research methods. The present study utilized four qualitative research methods, taught by Patti Lather at the 1994…
Integrating Adaptability into Special Operations Forces Intermediate Level Education
2010-10-01
This model is based on the Experiential Learning Theory (ELT), which states that learning occurs by the transfer of experience into knowledge ( Kolb ...Report 529. Arlington, VA. Kolb , D.A., Boyatzis, R.E., & Mainemelis, C. (2000). Experiential Learning Theory : Previous research and new dimensions. In...adaptive thinking materials. Integrating this information will provide some continuity among concepts for instruction. Experiential Learning Model
Language and Cognition Interaction Neural Mechanisms
Perlovsky, Leonid
2011-01-01
How language and cognition interact in thinking? Is language just used for communication of completed thoughts, or is it fundamental for thinking? Existing approaches have not led to a computational theory. We develop a hypothesis that language and cognition are two separate but closely interacting mechanisms. Language accumulates cultural wisdom; cognition develops mental representations modeling surrounding world and adapts cultural knowledge to concrete circumstances of life. Language is acquired from surrounding language “ready-made” and therefore can be acquired early in life. This early acquisition of language in childhood encompasses the entire hierarchy from sounds to words, to phrases, and to highest concepts existing in culture. Cognition is developed from experience. Yet cognition cannot be acquired from experience alone; language is a necessary intermediary, a “teacher.” A mathematical model is developed; it overcomes previous difficulties and leads to a computational theory. This model is consistent with Arbib's “language prewired brain” built on top of mirror neuron system. It models recent neuroimaging data about cognition, remaining unnoticed by other theories. A number of properties of language and cognition are explained, which previously seemed mysterious, including influence of language grammar on cultural evolution, which may explain specifics of English and Arabic cultures. PMID:21876687
NASA Astrophysics Data System (ADS)
Grigoriev, V. F.; Korotaev, S. M.; Kruglyakov, M. S.; Orekhova, D. A.; Popova, I. V.; Tereshchenko, E. D.; Tereshchenko, P. E.; Schors, Yu. G.
2013-05-01
The first Russian six-component seafloor electromagnetic (EM) receivers were tested in an experiment carried out in Kola Bay in the Barents Sea. The signals transmitted by a remote high-power ELF source at several frequencies in the decahertz range were recorded by six receivers deployed on the seafloor along the profile crossing the Kola Bay. Although not all the stations successfully recorded all the six components due to technical failures, the quality of the data overall is quite suitable for interpretation. The interpretation was carried out by the three-dimensional (3D) modeling of an electromagnetic field with neural network inversion. The a priori geoelectrical model of Kola Bay, which was reconstructed by generalizing the previous geological and geophysical data, including the data of the ground magnetotelluric sounding and magnetovariational profiling, provided the EM fields that are far from those measured in the experiment. However, by a step-by-step modification of the initial model, we achieved quite a satisfactory fit. The resulting model provides the basis for introducing the corrections into the previous notions concerning the regional geological and geophysical structure of the region and particularly the features associated with fault tectonics.
Modulation of Thalamic Somatosensory Neurons by Arousal and Attention
1988-08-23
posterior lateral thalamus of the awake , behaving monkey that respond to somatosensory stimuli applied to the body surface. - to detect and quantfy...tested in pilot experiments to determine their feasibility for use in the awake monkey. These are discussed under the appropriate sections below. I I l~i...somatosensory responsiveness. This model is based on focal cortical suppression using MgSO 4 . Our previous experiments in the anesthetized and awake
NASA Astrophysics Data System (ADS)
Zappa, G.; Pithan, F.; Shepherd, T. G.
2018-01-01
Previous single-model experiments have found that Arctic sea ice loss can influence the atmospheric circulation. To evaluate this process in a multimodel ensemble, a novel methodology is here presented and applied to infer the influence of Arctic sea ice loss in the CMIP5 future projections. Sea ice influence is estimated by comparing the circulation response in the RCP8.5 scenario against the circulation response to sea surface warming and CO2 increase inferred from the AMIPFuture and AMIP4xCO2 experiments, where sea ice is unperturbed. Multimodel evidence of the impact of sea ice loss on midlatitude atmospheric circulation is identified in late winter (January-March), when the sea ice-related surface heat flux perturbation is largest. Sea ice loss acts to suppress the projected poleward shift of the North Atlantic jet, to increase surface pressure in northern Siberia, and to lower it in North America. These features are consistent with previous single-model studies, and the present results indicate that they are robust to model formulation.
Zappa, G; Pithan, F; Shepherd, T G
2018-01-28
Previous single-model experiments have found that Arctic sea ice loss can influence the atmospheric circulation. To evaluate this process in a multimodel ensemble, a novel methodology is here presented and applied to infer the influence of Arctic sea ice loss in the CMIP5 future projections. Sea ice influence is estimated by comparing the circulation response in the RCP8.5 scenario against the circulation response to sea surface warming and CO 2 increase inferred from the AMIPFuture and AMIP4xCO2 experiments, where sea ice is unperturbed. Multimodel evidence of the impact of sea ice loss on midlatitude atmospheric circulation is identified in late winter (January-March), when the sea ice-related surface heat flux perturbation is largest. Sea ice loss acts to suppress the projected poleward shift of the North Atlantic jet, to increase surface pressure in northern Siberia, and to lower it in North America. These features are consistent with previous single-model studies, and the present results indicate that they are robust to model formulation.
Jerath, Ravinder; Crawford, Molly W.; Barnes, Vernon A.
2015-01-01
The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system. PMID:26379573
NASA Astrophysics Data System (ADS)
Kürten, Andreas; Li, Chenxi; Bianchi, Federico; Curtius, Joachim; Dias, António; Donahue, Neil M.; Duplissy, Jonathan; Flagan, Richard C.; Hakala, Jani; Jokinen, Tuija; Kirkby, Jasper; Kulmala, Markku; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Onnela, Antti; Rissanen, Matti P.; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Tröstl, Jasmin; Ye, Penglin; McMurry, Peter H.
2018-01-01
A recent CLOUD (Cosmics Leaving OUtdoor Droplets) chamber study showed that sulfuric acid and dimethylamine produce new aerosols very efficiently and yield particle formation rates that are compatible with boundary layer observations. These previously published new particle formation (NPF) rates are reanalyzed in the present study with an advanced method. The results show that the NPF rates at 1.7 nm are more than a factor of 10 faster than previously published due to earlier approximations in correcting particle measurements made at a larger detection threshold. The revised NPF rates agree almost perfectly with calculated rates from a kinetic aerosol model at different sizes (1.7 and 4.3 nm mobility diameter). In addition, modeled and measured size distributions show good agreement over a wide range of sizes (up to ca. 30 nm). Furthermore, the aerosol model is modified such that evaporation rates for some clusters can be taken into account; these evaporation rates were previously published from a flow tube study. Using this model, the findings from the present study and the flow tube experiment can be brought into good agreement for the high base-to-acid ratios (˜ 100) relevant for this study. This confirms that nucleation proceeds at rates that are compatible with collision-controlled (a.k.a. kinetically controlled) NPF for the conditions during the CLOUD7 experiment (278 K, 38 % relative humidity, sulfuric acid concentration between 1 × 106 and 3 × 107 cm-3, and dimethylamine mixing ratio of ˜ 40 pptv, i.e., 1 × 109 cm-3).
The high-energy-density counterpropagating shear experiment and turbulent self-heating
Doss, F. W.; Fincke, J. R.; Loomis, E. N.; ...
2013-12-06
The counterpropagating shear experiment has previously demonstrated the ability to create regions of shockdriven shear, balanced symmetrically in pressure and experiencing minimal net drift. This allows for the creation of a high-Mach-number high-energy-density shear environment. New data from the counterpropagating shear campaign is presented, and both hydrocode modeling and theoretical analysis in the context of a Reynolds-averaged-Navier-Stokes model suggest turbulent dissipation of energy from the supersonic flow bounding the layer is a significant driver in its expansion. A theoretical minimum shear flow Mach number threshold is suggested for substantial thermal-turbulence coupling.
Two kinds of phase transitions in a voting model
NASA Astrophysics Data System (ADS)
Hisakado, M.; Mori, S.
2012-08-01
In this paper, we discuss a voting model with two candidates, C0 and C1. We consider two types of voters—herders and independents. The voting of independents is based on their fundamental values, while the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in the Ising model. The other is a transition of super and normal diffusions. These phase transitions coexist. We compared our results to the conclusions of experiments and identified the phase transitions in the upper limit of the time t by using the analysis of human behavior obtained from experiments.
The Influence of Atmosphere-Ocean Interaction on MJO Development and Propagation
2014-09-30
evaluate modeling results and process studies. The field phase of this project is associated with DYNAMO , which is the US contribution to the...influence on ocean temperature 4. Extended run for DYNAMO with high vertical resolution NCOM RESULTS Summary of project results The work funded...model experiments of the November 2011 MJO – the strongest MJO episode observed during the DYNAMO . The previous conceptual model that was based on TOGA
Wheeler, Matthew W; Bailer, A John
2007-06-01
Model averaging (MA) has been proposed as a method of accounting for model uncertainty in benchmark dose (BMD) estimation. The technique has been used to average BMD dose estimates derived from dichotomous dose-response experiments, microbial dose-response experiments, as well as observational epidemiological studies. While MA is a promising tool for the risk assessor, a previous study suggested that the simple strategy of averaging individual models' BMD lower limits did not yield interval estimators that met nominal coverage levels in certain situations, and this performance was very sensitive to the underlying model space chosen. We present a different, more computationally intensive, approach in which the BMD is estimated using the average dose-response model and the corresponding benchmark dose lower bound (BMDL) is computed by bootstrapping. This method is illustrated with TiO(2) dose-response rat lung cancer data, and then systematically studied through an extensive Monte Carlo simulation. The results of this study suggest that the MA-BMD, estimated using this technique, performs better, in terms of bias and coverage, than the previous MA methodology. Further, the MA-BMDL achieves nominal coverage in most cases, and is superior to picking the "best fitting model" when estimating the benchmark dose. Although these results show utility of MA for benchmark dose risk estimation, they continue to highlight the importance of choosing an adequate model space as well as proper model fit diagnostics.
The Origin of Systematic Errors in the GCM Simulation of ITCZ Precipitation
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Suarez, M. J.; Bacmeister, J. T.; Chen, B.; Takacs, L. L.
2006-01-01
Previous GCM studies have found that the systematic errors in the GCM simulation of the seasonal mean ITCZ intensity and location could be substantially corrected by adding suitable amount of rain re-evaporation or cumulus momentum transport. However, the reason(s) for these systematic errors and solutions has remained a puzzle. In this work the knowledge gained from previous studies of the ITCZ in an aqua-planet model with zonally uniform SST is applied to solve this puzzle. The solution is supported by further aqua-planet and full model experiments using the latest version of the Goddard Earth Observing System GCM.
NASA Technical Reports Server (NTRS)
Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.
1992-01-01
In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.
Medlyn, Belinda E; De Kauwe, Martin G; Zaehle, Sönke; Walker, Anthony P; Duursma, Remko A; Luus, Kristina; Mishurov, Mikhail; Pak, Bernard; Smith, Benjamin; Wang, Ying-Ping; Yang, Xiaojuan; Crous, Kristine Y; Drake, John E; Gimeno, Teresa E; Macdonald, Catriona A; Norby, Richard J; Power, Sally A; Tjoelker, Mark G; Ellsworth, David S
2016-08-01
The response of terrestrial ecosystems to rising atmospheric CO2 concentration (Ca ), particularly under nutrient-limited conditions, is a major uncertainty in Earth System models. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodland presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. We applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experiments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluate data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercomparison. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutrient uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements. © 2016 John Wiley & Sons Ltd.
Medlyn, Belinda E.; De Kauwe, Martin G.; Zaehle, Sönke; ...
2016-05-09
One major uncertainty in Earth System models is the response of terrestrial ecosystems to rising atmospheric CO 2 concentration (Ca), particularly under nutrient-lim- ited conditions. The Eucalyptus Free-Air CO 2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodlands, presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. Moreover, we applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experi- ments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluatemore » data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercompari- son. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutri- ent uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Finally, knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medlyn, Belinda E.; De Kauwe, Martin G.; Zaehle, Sönke
One major uncertainty in Earth System models is the response of terrestrial ecosystems to rising atmospheric CO 2 concentration (Ca), particularly under nutrient-lim- ited conditions. The Eucalyptus Free-Air CO 2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodlands, presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. Moreover, we applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experi- ments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluatemore » data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercompari- son. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutri- ent uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Finally, knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit
The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report,more » we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.« less
Barrett, Frederick S; Johnson, Matthew W; Griffiths, Roland R
2015-11-01
The 30-item revised Mystical Experience Questionnaire (MEQ30) was previously developed within an online survey of mystical-type experiences occasioned by psilocybin-containing mushrooms. The rated experiences occurred on average eight years before completion of the questionnaire. The current paper validates the MEQ30 using data from experimental studies with controlled doses of psilocybin. Data were pooled and analyzed from five laboratory experiments in which participants (n=184) received a moderate to high oral dose of psilocybin (at least 20 mg/70 kg). Results of confirmatory factor analysis demonstrate the reliability and internal validity of the MEQ30. Structural equation models demonstrate the external and convergent validity of the MEQ30 by showing that latent variable scores on the MEQ30 positively predict persisting change in attitudes, behavior, and well-being attributed to experiences with psilocybin while controlling for the contribution of the participant-rated intensity of drug effects. These findings support the use of the MEQ30 as an efficient measure of individual mystical experiences. A method to score a "complete mystical experience" that was used in previous versions of the mystical experience questionnaire is validated in the MEQ30, and a stand-alone version of the MEQ30 is provided for use in future research. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Lyssenko, Nikita; Martínez-Espiñeira, Roberto
2012-11-01
Endogeneity bias arises in contingent valuation studies when the error term in the willingness to pay (WTP) equation is correlated with explanatory variables because observable and unobservable characteristics of the respondents affect both their WTP and the value of those variables. We correct for the endogeneity of variables that capture previous experience with the resource valued, humpback whales, and with the geographic area of study. We consider several endogenous behavioral variables. Therefore, we apply a multivariate Probit approach to jointly model them with WTP. In this case, correcting for endogeneity increases econometric efficiency and substantially corrects the bias affecting the estimated coefficients of the experience variables, by isolating the decreasing effect on option value caused by having already experienced the resource. Stark differences are unveiled between the marginal effects on WTP of previous experience of the resource in an alternative location versus experience in the location studied, Newfoundland and Labrador (Canada).
Lyssenko, Nikita; Martínez-Espiñeira, Roberto
2012-11-01
Endogeneity bias arises in contingent valuation studies when the error term in the willingness to pay (WTP) equation is correlated with explanatory variables because observable and unobservable characteristics of the respondents affect both their WTP and the value of those variables. We correct for the endogeneity of variables that capture previous experience with the resource valued, humpback whales, and with the geographic area of study. We consider several endogenous behavioral variables. Therefore, we apply a multivariate Probit approach to jointly model them with WTP. In this case, correcting for endogeneity increases econometric efficiency and substantially corrects the bias affecting the estimated coefficients of the experience variables, by isolating the decreasing effect on option value caused by having already experienced the resource. Stark differences are unveiled between the marginal effects on WTP of previous experience of the resource in an alternative location versus experience in the location studied, Newfoundland and Labrador (Canada).
Kolb, Brian; Guo, Hua
2016-07-07
Scattering and dissociative chemisorption of DCl on Au(111) are investigated using ab initio molecular dynamics with a slab model, in which the top two layers of Au are mobile. Substantial kinetic energy loss in the scattered DCl is found, but the amount of energy transfer is notably smaller than that observed in the experiment. On the other hand, the dissociative chemisorption probability reproduces the experimental trend with respect to the initial kinetic energy, but is about one order of magnitude larger than the reported initial sticking probability. While the theory-experiment agreement is significantly improved from the previous rigid surface model, the remaining discrepancies are still substantial, calling for further scrutiny in both theory and experiment.
Homogeneous Freezing of Water Droplets and its Dependence on Droplet Size
NASA Astrophysics Data System (ADS)
Schmitt, Thea; Möhler, Ottmar; Höhler, Kristina; Leisner, Thomas
2014-05-01
The formulation and parameterisation of microphysical processes in tropospheric clouds, such as phase transitions, is still a challenge for weather and climate models. This includes the homogeneous freezing of supercooled water droplets, since this is an important process in deep convective systems, where almost pure water droplets may stay liquid until homogeneous freezing occurs at temperatures around 238 K. Though the homogeneous ice nucleation in supercooled water is considered to be well understood, recent laboratory experiments with typical cloud droplet sizes showed one to two orders of magnitude smaller nucleation rate coefficients than previous literature results, including earlier results from experiments with single levitated water droplets and from cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. This motivated us to re-analyse homogeneous droplet freezing experiments conducted during the previous years at the AIDA cloud chamber. This cloud chamber has a volume of 84m3 and operates under atmospherically relevant conditions within wide ranges of temperature, pressure and humidity, whereby investigations of both tropospheric mixed-phase clouds and cirrus clouds can be realised. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. According to our new results and their comparison to the results from single levitated droplet experiments, the homogeneous freezing of water droplets seems to be a volume-dependent process, at least for droplets as small as a few micrometers in diameter. A contribution of surface induced freezing can be ruled out, in agreement to previous conclusions from the single droplet experiments. The obtained volume nucleation rate coefficients are in good agreement, within error bars, with some previous literature data, including our own results from earlier AIDA experiments, but they do not agree with recently published lower volume nucleation rate coefficients. This contribution will show the results from the re-analysis of AIDA homogeneous freezing experiments with pure water droplets and will discuss the comparison to the literature data.
Trailed vorticity modeling for aeroelastic wind turbine simulations in stand still
Pirrung, Georg; Madsen, Helge; Schreck, Scott
2016-10-03
Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The predictionmore » of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, Cheryl
Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure charge-parity (CP) violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. We present the MINERvA experiment's first double-differential scattering cross sections for antineutrinos on scintillator, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also present total antineutrino-scintillator quasi-elastic crossmore » sections as a function of energy, which we compare to measurements from previous experiments. As well as being useful to help reduce oscillation experiments' uncertainty, our data can also be used to study the prevalence of various cor relation and final-state interaction effects within the nucleus. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models.« less
Thermal release of D2 from new Be-D co-deposits on previously baked co-deposits
NASA Astrophysics Data System (ADS)
Baldwin, M. J.; Doerner, R. P.
2015-12-01
Past experiments and modeling with the TMAP code in [1, 2] indicated that Be-D co-deposited layers are less (time-wise) efficiently desorbed of retained D in a fixed low-temperature bake, as the layer grows in thickness. In ITER, beryllium rich co-deposited layers will grow in thickness over the life of the machine. Although, compared with the analyses in [1, 2], ITER presents a slightly different bake efficiency problem because of instances of prior tritium recover/control baking. More relevant to ITER, is the thermal release from a new and saturated co-deposit layer in contact with a thickness of previously-baked, less-saturated, co-deposit. Experiments that examine the desorption of saturated co-deposited over-layers in contact with previously baked under-layers are reported and comparison is made to layers of the same combined thickness. Deposition temperatures of ∼323 K and ∼373 K are explored. It is found that an instance of prior bake leads to a subtle effect on the under-layer. The effect causes the thermal desorption of the new saturated over-layer to deviate from the prediction of the validated TMAP model in [2]. Instead of the D thermal release reflecting the combined thickness and levels of D saturation in the over and under layer, experiment differs in that, i) the desorption is a fractional superposition of desorption from the saturated over-layer, with ii) that of the combined over and under -layer thickness. The result is not easily modeled by TMAP without the incorporation of a thin BeO inter-layer which is confirmed experimentally on baked Be-D co-deposits using X-ray micro-analysis.
Weighted analysis of paired microarray experiments.
Kristiansson, Erik; Sjögren, Anders; Rudemo, Mats; Nerman, Olle
2005-01-01
In microarray experiments quality often varies, for example between samples and between arrays. The need for quality control is therefore strong. A statistical model and a corresponding analysis method is suggested for experiments with pairing, including designs with individuals observed before and after treatment and many experiments with two-colour spotted arrays. The model is of mixed type with some parameters estimated by an empirical Bayes method. Differences in quality are modelled by individual variances and correlations between repetitions. The method is applied to three real and several simulated datasets. Two of the real datasets are of Affymetrix type with patients profiled before and after treatment, and the third dataset is of two-colour spotted cDNA type. In all cases, the patients or arrays had different estimated variances, leading to distinctly unequal weights in the analysis. We suggest also plots which illustrate the variances and correlations that affect the weights computed by our analysis method. For simulated data the improvement relative to previously published methods without weighting is shown to be substantial.
Children's experiences of dental anxiety.
Morgan, Annie G; Rodd, Helen D; Porritt, Jenny M; Baker, Sarah R; Creswell, Cathy; Newton, Tim; Williams, Chris; Marshman, Zoe
2017-03-01
Dental anxiety is common among children. Although there is a wealth of research investigating childhood dental anxiety, little consideration has been given to the child's perspective. This qualitative study sought to explore with children their own experiences of dental anxiety using a cognitive behavioural therapy assessment model. Face-to-face, semi-structured interviews were conducted with dentally anxious children aged 11-16 years. The Five Areas model was used to inform the topic guide and analysis. Data were analysed using a framework approach. In total, 13 children were interviewed. Participants described their experiences of dental anxiety across multiple dimensions (situational factors and altered thoughts, feelings, physical symptoms, and behaviours). Participants placed considerable value on communication by dental professionals, with poor communication having a negative influence on dental anxiety and the dentist-patient relationship. This study confirms the Five Areas model as an applicable theoretical model for the assessment of childhood dental anxiety. Children provided insights about their own dental anxiety experiences that have not previously been described. © 2016 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Optimal design of focused experiments and surveys
NASA Astrophysics Data System (ADS)
Curtis, Andrew
1999-10-01
Experiments and surveys are often performed to obtain data that constrain some previously underconstrained model. Often, constraints are most desired in a particular subspace of model space. Experiment design optimization requires that the quality of any particular design can be both quantified and then maximized. This study shows how the quality can be defined such that it depends on the amount of information that is focused in the particular subspace of interest. In addition, algorithms are presented which allow one particular focused quality measure (from the class of focused measures) to be evaluated efficiently. A subclass of focused quality measures is also related to the standard variance and resolution measures from linearized inverse theory. The theory presented here requires that the relationship between model parameters and data can be linearized around a reference model without significant loss of information. Physical and financial constraints define the space of possible experiment designs. Cross-well tomographic examples are presented, plus a strategy for survey design to maximize information about linear combinations of parameters such as bulk modulus, κ =λ+ 2μ/3.
Wolverton, Christopher; Hattrick-Simpers, Jason; Mehta, Apurva
2018-01-01
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, but there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict. PMID:29662953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fang; Ward, Logan; Williams, Travis
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, butmore » there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict.« less
Ren, Fang; Ward, Logan; Williams, Travis; ...
2018-04-01
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, butmore » there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict.« less
Krajbich, Ian; Rangel, Antonio
2011-08-16
How do we make decisions when confronted with several alternatives (e.g., on a supermarket shelf)? Previous work has shown that accumulator models, such as the drift-diffusion model, can provide accurate descriptions of the psychometric data for binary value-based choices, and that the choice process is guided by visual attention. However, the computational processes used to make choices in more complicated situations involving three or more options are unknown. We propose a model of trinary value-based choice that generalizes what is known about binary choice, and test it using an eye-tracking experiment. We find that the model provides a quantitatively accurate description of the relationship between choice, reaction time, and visual fixation data using the same parameters that were estimated in previous work on binary choice. Our findings suggest that the brain uses similar computational processes to make binary and trinary choices.
Simulation-based instruction of technical skills
NASA Technical Reports Server (NTRS)
Towne, Douglas M.; Munro, Allen
1991-01-01
A rapid intelligent tutoring development system (RAPIDS) was developed to facilitate the production of interactive, real-time graphical device models for use in instructing the operation and maintenance of complex systems. The tools allowed subject matter experts to produce device models by creating instances of previously defined objects and positioning them in the emerging device model. These simulation authoring functions, as well as those associated with demonstrating procedures and functional effects on the completed model, required no previous programming experience or use of frame-based instructional languages. Three large simulations were developed in RAPIDS, each involving more than a dozen screen-sized sections. Seven small, single-view applications were developed to explore the range of applicability. Three workshops were conducted to train others in the use of the authoring tools. Participants learned to employ the authoring tools in three to four days and were able to produce small working device models on the fifth day.
Pan, Qing; Yao, Jialiang; Wang, Ruofan; Cao, Ping; Ning, Gangmin; Fang, Luping
2017-08-01
The vessels in the microcirculation keep adjusting their structure to meet the functional requirements of the different tissues. A previously developed theoretical model can reproduce the process of vascular structural adaptation to help the study of the microcirculatory physiology. However, until now, such model lacks the appropriate methods for its parameter settings with subsequent limitation of further applications. This study proposed an improved quantum-behaved particle swarm optimization (QPSO) algorithm for setting the parameter values in this model. The optimization was performed on a real mesenteric microvascular network of rat. The results showed that the improved QPSO was superior to the standard particle swarm optimization, the standard QPSO and the previously reported Downhill algorithm. We conclude that the improved QPSO leads to a better agreement between mathematical simulation and animal experiment, rendering the model more reliable in future physiological studies.
Warnke, Ingeborg; Gamma, Alex; Buadze, Maria; Schleifer, Roman; Canela, Carlos; Strebel, Bernd; Tényi, Tamás; Rössler, Wulf; Rüsch, Nicolas; Liebrenz, Michael
2018-01-01
Psychiatry as a medical discipline is becoming increasingly important due to the high and increasing worldwide burden associated with mental disorders. Surprisingly, however, there is a lack of young academics choosing psychiatry as a career. Previous evidence on medical students’ perspectives is abundant but has methodological shortcomings. Therefore, by attempting to avoid previous shortcomings, we aimed to contribute to a better understanding of the predictors of the following three outcome variables: current medical students’ attitudes toward psychiatry, interest in psychiatry, and estimated likelihood of working in psychiatry. The sample consisted of N = 1,356 medical students at 45 medical schools in Germany and Austria as well as regions of Switzerland and Hungary with a German language curriculum. We used snowball sampling via Facebook with a link to an online questionnaire as recruitment procedure. Snowball sampling is based on referrals made among people. This questionnaire included a German version of the Attitudes Toward Psychiatry Scale (ATP-30-G) and further variables related to outcomes and potential predictors in terms of sociodemography (e.g., gender) or medical training (e.g., curriculum-related experience with psychiatry). Data were analyzed by linear mixed models and further regression models. On average, students had a positive attitude to and high general interest in, but low professional preference for, psychiatry. A neutral attitude to psychiatry was partly related to the discipline itself, psychiatrists, or psychiatric patients. Female gender and previous experience with psychiatry, particularly curriculum-related and personal experience, were important predictors of all outcomes. Students in the first years of medical training were more interested in pursuing psychiatry as a career. Furthermore, the country of the medical school was related to the outcomes. However, statistical models explained only a small proportion of variance. The findings indicate that particularly curriculum-related experience is important for determining attitudes toward psychiatry, interest in the subject and self-predicted professional career choice. We therefore encourage the provision of opportunities for clinical experience by psychiatrists. However, further predictor variables need to be considered in future studies. PMID:29593577
Warnke, Ingeborg; Gamma, Alex; Buadze, Maria; Schleifer, Roman; Canela, Carlos; Strebel, Bernd; Tényi, Tamás; Rössler, Wulf; Rüsch, Nicolas; Liebrenz, Michael
2018-01-01
Psychiatry as a medical discipline is becoming increasingly important due to the high and increasing worldwide burden associated with mental disorders. Surprisingly, however, there is a lack of young academics choosing psychiatry as a career. Previous evidence on medical students' perspectives is abundant but has methodological shortcomings. Therefore, by attempting to avoid previous shortcomings, we aimed to contribute to a better understanding of the predictors of the following three outcome variables: current medical students' attitudes toward psychiatry, interest in psychiatry, and estimated likelihood of working in psychiatry. The sample consisted of N = 1,356 medical students at 45 medical schools in Germany and Austria as well as regions of Switzerland and Hungary with a German language curriculum. We used snowball sampling via Facebook with a link to an online questionnaire as recruitment procedure. Snowball sampling is based on referrals made among people. This questionnaire included a German version of the Attitudes Toward Psychiatry Scale (ATP-30-G) and further variables related to outcomes and potential predictors in terms of sociodemography (e.g., gender) or medical training (e.g., curriculum-related experience with psychiatry). Data were analyzed by linear mixed models and further regression models. On average, students had a positive attitude to and high general interest in, but low professional preference for, psychiatry. A neutral attitude to psychiatry was partly related to the discipline itself, psychiatrists, or psychiatric patients. Female gender and previous experience with psychiatry, particularly curriculum-related and personal experience, were important predictors of all outcomes. Students in the first years of medical training were more interested in pursuing psychiatry as a career. Furthermore, the country of the medical school was related to the outcomes. However, statistical models explained only a small proportion of variance. The findings indicate that particularly curriculum-related experience is important for determining attitudes toward psychiatry, interest in the subject and self-predicted professional career choice. We therefore encourage the provision of opportunities for clinical experience by psychiatrists. However, further predictor variables need to be considered in future studies.
NASA Astrophysics Data System (ADS)
Chirskaia, Natalia; Novikov, Lev; Voronina, Ekaterina
2016-07-01
Atomic oxygen (AO) of the upper atmosphere is one of the most important space factors that can cause degradation of spacecraft surface. In our previous mathematical model the Monte Carlo method and the "large particles" approximation were used for simulating processes of polymer etching under the influence of AO [1]. The interaction of enlarged AO particles with the polymer was described in terms of probabilities of reactions such as etching of polymer and specular and diffuse scattering of the AO particles on polymer. The effects of atomic oxygen on protected polymers and microfiller containing composites were simulated. The simulation results were in quite good agreement with the results of laboratory experiments on magnetoplasmadynamic accelerator of the oxygen plasma of SINP MSU [2]. In this paper we present a new model that describes the reactions of AO interactions with polymeric materials in more detail. Reactions of formation and further emission of chemical compounds such as CO, CO _{2}, H _{2}O, etc. cause the modification of the chemical composition of the polymer and change the probabilities of its consequent interaction with the AO. The simulation results are compared with the results of previous simulation and with the results of laboratory experiments. The reasons for the differences between the results of natural experiments on spacecraft, laboratory experiments and simulations are discussed. N. Chirskaya, M. Samokhina, Computer modeling of polymer structures degradation under the atomic oxygen exposure, WDS'12 Proceedings of Contributed Papers: Part III - Physics, Matfyzpress Prague, 2012, pp. 30-35. E. Voronina, L. Novikov, V. Chernik, N. Chirskaya, K. Vernigorov, G. Bondarenko, and A. Gaidar, Mathematical and experimental simulation of impact of atomic oxygen of the earth's upper atmosphere on nanostructures and polymer composites, Inorganic Materials: Applied Research, 2012, vol. 3, no. 2, pp. 95-101.
MacLaren, S. A.; Schneider, M. B.; Widmann, K.; ...
2014-03-13
Here, indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%–25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the datamore » from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.« less
The Kinetics of Dissolution Revisited
NASA Astrophysics Data System (ADS)
Antonel, Paula S.; Hoijemberg, Pablo A.; Maiante, Leandro M.; Lagorio, M. Gabriela
2003-09-01
An experiment analyzing the kinetics of dissolution of a solid with cylindrical geometry in water is presented. The dissolution process is followed by measuring the solid mass and its size parameters (thickness and diameter) as a function of time. It is verified that the dissolution rate follows the Nernst model. Data treatment is compared with the dissolution of a spherical solid previously described. Kinetics, diffusion concepts, and polynomial fitting of experimental data are combined in this simple experiment.
Modelling landscape evolution at the flume scale
NASA Astrophysics Data System (ADS)
Cheraghi, Mohsen; Rinaldo, Andrea; Sander, Graham C.; Barry, D. Andrew
2017-04-01
The ability of a large-scale Landscape Evolution Model (LEM) to simulate the soil surface morphological evolution as observed in a laboratory flume (1-m × 2-m surface area) was investigated. The soil surface was initially smooth, and was subjected to heterogeneous rainfall in an experiment designed to avoid rill formation. Low-cohesive fine sand was placed in the flume while the slope and relief height were 5 % and 20 cm, respectively. Non-uniform rainfall with an average intensity of 85 mm h-1 and a standard deviation of 26 % was applied to the sediment surface for 16 h. We hypothesized that the complex overland water flow can be represented by a drainage discharge network, which was calculated via the micro-morphology and the rainfall distribution. Measurements included high resolution Digital Elevation Models that were captured at intervals during the experiment. The calibrated LEM captured the migration of the main flow path from the low precipitation area into the high precipitation area. Furthermore, both model and experiment showed a steep transition zone in soil elevation that moved upstream during the experiment. We conclude that the LEM is applicable under non-uniform rainfall and in the absence of surface incisions, thereby extending its applicability beyond that shown in previous applications. Keywords: Numerical simulation, Flume experiment, Particle Swarm Optimization, Sediment transport, River network evolution model.
Studies on Vapor Adsorption Systems
NASA Technical Reports Server (NTRS)
Shamsundar, N.; Ramotowski, M.
1998-01-01
The project consisted of performing experiments on single and dual bed vapor adsorption systems, thermodynamic cycle optimization, and thermal modeling. The work was described in a technical paper that appeared in conference proceedings and a Master's thesis, which were previously submitted to NASA. The present report describes some additional thermal modeling work done subsequently, and includes listings of computer codes developed during the project. Recommendations for future work are provided.
A Numerical Simulation and Statistical Modeling of High Intensity Radiated Fields Experiment Data
NASA Technical Reports Server (NTRS)
Smith, Laura J.
2004-01-01
Tests are conducted on a quad-redundant fault tolerant flight control computer to establish upset characteristics of an avionics system in an electromagnetic field. A numerical simulation and statistical model are described in this work to analyze the open loop experiment data collected in the reverberation chamber at NASA LaRC as a part of an effort to examine the effects of electromagnetic interference on fly-by-wire aircraft control systems. By comparing thousands of simulation and model outputs, the models that best describe the data are first identified and then a systematic statistical analysis is performed on the data. All of these efforts are combined which culminate in an extrapolation of values that are in turn used to support previous efforts used in evaluating the data.
Risk-Based Fire Safety Experiment Definition for Manned Spacecraft
NASA Technical Reports Server (NTRS)
Apostolakis, G. E.; Ho, V. S.; Marcus, E.; Perry, A. T.; Thompson, S. L.
1989-01-01
Risk methodology is used to define experiments to be conducted in space which will help to construct and test the models required for accident sequence identification. The development of accident scenarios is based on the realization that whether damage occurs depends on the time competition of two processes: the ignition and creation of an adverse environment, and the detection and suppression activities. If the fire grows and causes damage faster than it is detected and suppressed, then an accident occurred. The proposed integrated experiments will provide information on individual models that apply to each of the above processes, as well as previously unidentified interactions and processes, if any. Initially, models that are used in terrestrial fire risk assessments are considered. These include heat and smoke release models, detection and suppression models, as well as damage models. In cases where the absence of gravity substantially invalidates a model, alternate models will be developed. Models that depend on buoyancy effects, such as the multizone compartment fire models, are included in these cases. The experiments will be performed in a variety of geometries simulating habitable areas, racks, and other spaces. These simulations will necessitate theoretical studies of scaling effects. Sensitivity studies will also be carried out including the effects of varying oxygen concentrations, pressures, fuel orientation and geometry, and air flow rates. The experimental apparatus described herein includes three major modules: the combustion, the fluids, and the command and power modules.
Finding Useful Questions: On Bayesian Diagnosticity, Probability, Impact, and Information Gain
ERIC Educational Resources Information Center
Nelson, Jonathan D.
2005-01-01
Several norms for how people should assess a question's usefulness have been proposed, notably Bayesian diagnosticity, information gain (mutual information), Kullback-Liebler distance, probability gain (error minimization), and impact (absolute change). Several probabilistic models of previous experiments on categorization, covariation assessment,…
Fast machine-learning online optimization of ultra-cold-atom experiments.
Wigley, P B; Everitt, P J; van den Hengel, A; Bastian, J W; Sooriyabandara, M A; McDonald, G D; Hardman, K S; Quinlivan, C D; Manju, P; Kuhn, C C N; Petersen, I R; Luiten, A N; Hope, J J; Robins, N P; Hush, M R
2016-05-16
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our 'learner' discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system.
Fast machine-learning online optimization of ultra-cold-atom experiments
Wigley, P. B.; Everitt, P. J.; van den Hengel, A.; Bastian, J. W.; Sooriyabandara, M. A.; McDonald, G. D.; Hardman, K. S.; Quinlivan, C. D.; Manju, P.; Kuhn, C. C. N.; Petersen, I. R.; Luiten, A. N.; Hope, J. J.; Robins, N. P.; Hush, M. R.
2016-01-01
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system. PMID:27180805
NASA Astrophysics Data System (ADS)
Prime, M. B.; Vaughan, D. E.; Preston, D. L.; Buttler, W. T.; Chen, S. R.; Oró, D. M.; Pack, C.
2014-05-01
Experiments applying a supported shock through mating surfaces (Atwood number = 1) with geometrical perturbations have been proposed for studying strength at strain rates up to 107/s using Richtmyer-Meshkov (RM) instabilities. Buttler et al. recently reported experimental results for RM instability growth in copper but with an unsupported shock applied by high explosives and the geometrical perturbations on the opposite free surface (Atwood number = -1). This novel configuration allowed detailed experimental observation of the instability growth and arrest. We present results and interpretation from numerical simulations of the Buttler RM instability experiments. Highly-resolved, two-dimensional simulations were performed using a Lagrangian hydrocode and the Preston-Tonks-Wallace (PTW) strength model. The model predictions show good agreement with the data. The numerical simulations are used to examine various assumptions previously made in an analytical model and to estimate the sensitivity of such experiments to material strength.
Active machine learning-driven experimentation to determine compound effects on protein patterns.
Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F
2016-02-03
High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance.
Validation of the revised Mystical Experience Questionnaire in experimental sessions with psilocybin
Barrett, Frederick S; Johnson, Matthew W; Griffiths, Roland R
2016-01-01
The 30-item revised Mystical Experience Questionnaire (MEQ30) was previously developed within an online survey of mystical-type experiences occasioned by psilocybin-containing mushrooms. The rated experiences occurred on average eight years before completion of the questionnaire. The current paper validates the MEQ30 using data from experimental studies with controlled doses of psilocybin. Data were pooled and analyzed from five laboratory experiments in which participants (n=184) received a moderate to high oral dose of psilocybin (at least 20 mg/70 kg). Results of confirmatory factor analysis demonstrate the reliability and internal validity of the MEQ30. Structural equation models demonstrate the external and convergent validity of the MEQ30 by showing that latent variable scores on the MEQ30 positively predict persisting change in attitudes, behavior, and well-being attributed to experiences with psilocybin while controlling for the contribution of the participant-rated intensity of drug effects. These findings support the use of the MEQ30 as an efficient measure of individual mystical experiences. A method to score a “complete mystical experience” that was used in previous versions of the mystical experience questionnaire is validated in the MEQ30, and a stand-alone version of the MEQ30 is provided for use in future research. PMID:26442957
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirrung, Georg; Madsen, Helge; Schreck, Scott
Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The predictionmore » of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.« less
Retrospective revaluation in sequential decision making: a tale of two systems.
Gershman, Samuel J; Markman, Arthur B; Otto, A Ross
2014-02-01
Recent computational theories of decision making in humans and animals have portrayed 2 systems locked in a battle for control of behavior. One system--variously termed model-free or habitual--favors actions that have previously led to reward, whereas a second--called the model-based or goal-directed system--favors actions that causally lead to reward according to the agent's internal model of the environment. Some evidence suggests that control can be shifted between these systems using neural or behavioral manipulations, but other evidence suggests that the systems are more intertwined than a competitive account would imply. In 4 behavioral experiments, using a retrospective revaluation design and a cognitive load manipulation, we show that human decisions are more consistent with a cooperative architecture in which the model-free system controls behavior, whereas the model-based system trains the model-free system by replaying and simulating experience.
Robinson, Eric; Sharps, Maxine; Price, Nicola; Dallas, Rebecca
2014-11-01
There is consistent evidence that people model the eating behaviour of others. The extent to which people model the amount of food consumed by other people of different weight statuses has received less attention. Here we tested the effect on food consumption of exposing female participants to information about the food consumption of either normal/healthy weight or overweight individuals. Eighty female participants took part in a between-subjects experiment, in which we used a remote-confederate design and manipulated whether participants saw intake information about normal/healthy weight or overweight previous participants (remote confederates). Regardless of the weight-status of the remote confederates, participants ate more food when they believed that previous participants had eaten a large amount of food, in comparison with when they believed previous participants had eaten a smaller amount of food. These findings indicate that women may model the food intake of other women, even when they believe they are of a different weight status to themselves. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hattori, Masasi
2016-12-01
This paper presents a new theory of syllogistic reasoning. The proposed model assumes there are probabilistic representations of given signature situations. Instead of conducting an exhaustive search, the model constructs an individual-based "logical" mental representation that expresses the most probable state of affairs, and derives a necessary conclusion that is not inconsistent with the model using heuristics based on informativeness. The model is a unification of previous influential models. Its descriptive validity has been evaluated against existing empirical data and two new experiments, and by qualitative analyses based on previous empirical findings, all of which supported the theory. The model's behavior is also consistent with findings in other areas, including working memory capacity. The results indicate that people assume the probabilities of all target events mentioned in a syllogism to be almost equal, which suggests links between syllogistic reasoning and other areas of cognition. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Shuai; Wang, Lumin; Huang, Hongliang; Zhang, Xun
2017-10-01
From August 25 to 29, 2014, the project team carried out the experiment of Antarctic krill trawl in the Beihai Bay of the South China Sea. In order to understand the flow field of the network model in the course of the experiment, it is necessary to record the speed of the ship and to grasp the flow field of the ocean. Therefore, the ocean velocity is measured during the experiment. The flow rate in this experiment was measured using an acoustic Doppler flow meter (Vectoring Plus, Nortek, Norway). In order to compensate for the flow rate error caused by ship drift, the drift condition of the ship was also measured by the positioning device (Snapdragon MSM8274AB, Qualcomm, USA) used in the flow rate measurement. The results show that the actual velocity of the target sea area is in the range of 0.06-0.49 m / s and the direction is 216.17-351.70. And compared with the previous research, the influencing factors were analysed. This study proves that it is feasible to use point Doppler flow meter for velocity study in trawl model experiment.
The role of first impression in operant learning.
Shteingart, Hanan; Neiman, Tal; Loewenstein, Yonatan
2013-05-01
We quantified the effect of first experience on behavior in operant learning and studied its underlying computational principles. To that goal, we analyzed more than 200,000 choices in a repeated-choice experiment. We found that the outcome of the first experience has a substantial and lasting effect on participants' subsequent behavior, which we term outcome primacy. We found that this outcome primacy can account for much of the underweighting of rare events, where participants apparently underestimate small probabilities. We modeled behavior in this task using a standard, model-free reinforcement learning algorithm. In this model, the values of the different actions are learned over time and are used to determine the next action according to a predefined action-selection rule. We used a novel nonparametric method to characterize this action-selection rule and showed that the substantial effect of first experience on behavior is consistent with the reinforcement learning model if we assume that the outcome of first experience resets the values of the experienced actions, but not if we assume arbitrary initial conditions. Moreover, the predictive power of our resetting model outperforms previously published models regarding the aggregate choice behavior. These findings suggest that first experience has a disproportionately large effect on subsequent actions, similar to primacy effects in other fields of cognitive psychology. The mechanism of resetting of the initial conditions that underlies outcome primacy may thus also account for other forms of primacy. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.
Massey, Steven M; Spring, Justin B; Russell, Timothy H
2008-07-21
Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.
Merdad, Leena; El-Housseiny, Azza A
2017-01-16
Oral health-related quality of life (OHRQoL) has been used to describe the consequences of oral health conditions and treatments in children. A better understanding of OHRQoL and its relationship with dental fear and previous dental experience is necessary to improve children's oral health status. The aim of this study was to investigate the association of dental history and experience with dental fear and the OHRQoL of children aged 11 to 14 years. A cross-sectional study was conducted using a multi-stage stratified sample of 1,312 middle school children. Information regarding OHRQoL was collected from the children using the Child Perceptions Questionnaire (CPQ 11-14 ), and information regarding dental fear was collected using the Children's Fear Survey Schedule-Dental Subscale (CFSS-DS). Information on past dental experiences and sociodemographic data were collected from the parents using self-administered questionnaires. Dental examinations were performed to assess caries experience. The multivariable model indicated that dental fear was the strongest predictor of OHRQoL as the fearful children had on average CPQ 11-14 scores that were 10 units higher than those of the non-fearful children. Regarding past dental experience, pain as the reason for the most recent dental visit was associated with poor OHRQoL, while receiving a filling during the previous dental visits was significantly associated with better OHRQoL. In addition, a larger number of siblings, a lower family income, a lower paternal education level, health problems and prior hospitalization were significantly associated with poor OHRQoL. This study identified that dental fear and some factors related to previous dental experience are associated with OHRQoL. In dental practice, children with dental fear should be identified, guided and treated early to avoid deterioration of their OHRQoL.
Generic Safety Requirements for Developing Safe Insulin Pump Software
Zhang, Yi; Jetley, Raoul; Jones, Paul L; Ray, Arnab
2011-01-01
Background The authors previously introduced a highly abstract generic insulin infusion pump (GIIP) model that identified common features and hazards shared by most insulin pumps on the market. The aim of this article is to extend our previous work on the GIIP model by articulating safety requirements that address the identified GIIP hazards. These safety requirements can be validated by manufacturers, and may ultimately serve as a safety reference for insulin pump software. Together, these two publications can serve as a basis for discussing insulin pump safety in the diabetes community. Methods In our previous work, we established a generic insulin pump architecture that abstracts functions common to many insulin pumps currently on the market and near-future pump designs. We then carried out a preliminary hazard analysis based on this architecture that included consultations with many domain experts. Further consultation with domain experts resulted in the safety requirements used in the modeling work presented in this article. Results Generic safety requirements for the GIIP model are presented, as appropriate, in parameterized format to accommodate clinical practices or specific insulin pump criteria important to safe device performance. Conclusions We believe that there is considerable value in having the diabetes, academic, and manufacturing communities consider and discuss these generic safety requirements. We hope that the communities will extend and revise them, make them more representative and comprehensive, experiment with them, and use them as a means for assessing the safety of insulin pump software designs. One potential use of these requirements is to integrate them into model-based engineering (MBE) software development methods. We believe, based on our experiences, that implementing safety requirements using MBE methods holds promise in reducing design/implementation flaws in insulin pump development and evolutionary processes, therefore improving overall safety of insulin pump software. PMID:22226258
Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.
2008-01-01
In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.
An Application of Fuzzy AHP for Evaluating Course Website Quality
ERIC Educational Resources Information Center
Lin, Hsiu-Fen
2010-01-01
Although previous studies have identified various influences on course website effectiveness, the evaluation of the relative importance of these factors across different online learning experience groups has not been empirically determined. This study develops an evolution model that integrates triangular fuzzy numbers and analytic hierarchy…
The evolution of extreme cooperation via shared dysphoric experiences
Whitehouse, Harvey; Jong, Jonathan; Buhrmester, Michael D.; Gómez, Ángel; Bastian, Brock; Kavanagh, Christopher M.; Newson, Martha; Matthews, Miriam; Lanman, Jonathan A.; McKay, Ryan; Gavrilets, Sergey
2017-01-01
Willingness to lay down one’s life for a group of non-kin, well documented historically and ethnographically, represents an evolutionary puzzle. Building on research in social psychology, we develop a mathematical model showing how conditioning cooperation on previous shared experience can allow individually costly pro-group behavior to evolve. The model generates a series of predictions that we then test empirically in a range of special sample populations (including military veterans, college fraternity/sorority members, football fans, martial arts practitioners, and twins). Our empirical results show that sharing painful experiences produces “identity fusion” – a visceral sense of oneness – which in turn can motivate self-sacrifice, including willingness to fight and die for the group. Practically, our account of how shared dysphoric experiences produce identity fusion helps us better understand such pressing social issues as suicide terrorism, holy wars, sectarian violence, gang-related violence, and other forms of intergroup conflict. PMID:28290499
The evolution of extreme cooperation via shared dysphoric experiences.
Whitehouse, Harvey; Jong, Jonathan; Buhrmester, Michael D; Gómez, Ángel; Bastian, Brock; Kavanagh, Christopher M; Newson, Martha; Matthews, Miriam; Lanman, Jonathan A; McKay, Ryan; Gavrilets, Sergey
2017-03-14
Willingness to lay down one's life for a group of non-kin, well documented historically and ethnographically, represents an evolutionary puzzle. Building on research in social psychology, we develop a mathematical model showing how conditioning cooperation on previous shared experience can allow individually costly pro-group behavior to evolve. The model generates a series of predictions that we then test empirically in a range of special sample populations (including military veterans, college fraternity/sorority members, football fans, martial arts practitioners, and twins). Our empirical results show that sharing painful experiences produces "identity fusion" - a visceral sense of oneness - which in turn can motivate self-sacrifice, including willingness to fight and die for the group. Practically, our account of how shared dysphoric experiences produce identity fusion helps us better understand such pressing social issues as suicide terrorism, holy wars, sectarian violence, gang-related violence, and other forms of intergroup conflict.
García Rodríguez, Y
1997-06-01
Various studies have explored the relationships between unemployment and expectation of success, commitment to work, motivation, causal attributions, self-esteem and depression. A model is proposed that assumes the relationships between these variables are moderated by (a) whether or not the unemployed individual is seeking a first job and (b) age. It is proposed that for the unemployed who are seeking their first job (seekers) the relationships among these variables will be consistent with expectancy-value theory, but for those who have had a previous job (losers), the relationships will be more consistent with learned helplessness theory. It is further assumed that within this latter group the young losers will experience "universal helplessness" whereas the adult losers will experience "personal helplessness".
Multiscale modelling and analysis of collective decision making in swarm robotics.
Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey
2014-01-01
We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable.
Zhu, Qing; Iversen, Colleen M.; Riley, William J.; ...
2016-12-23
Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Qing; Iversen, Colleen M.; Riley, William J.
Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less
Feasibility of Virtual Machine and Cloud Computing Technologies for High Performance Computing
2014-05-01
Hat Enterprise Linux SaaS software as a service VM virtual machine vNUMA virtual non-uniform memory access WRF weather research and forecasting...previously mentioned in Chapter I Section B1 of this paper, which is used to run the weather research and forecasting ( WRF ) model in their experiments...against a VMware virtualization solution of WRF . The experiment consisted of running WRF in a standard configuration between the D-VTM and VMware while
Gerster, Samuel; Namer, Barbara; Elam, Mikael
2017-01-01
Abstract Skin conductance responses (SCR) are increasingly analyzed with model‐based approaches that assume a linear and time‐invariant (LTI) mapping from sudomotor nerve (SN) activity to observed SCR. These LTI assumptions have previously been validated indirectly, by quantifying how much variance in SCR elicited by sensory stimulation is explained under an LTI model. This approach, however, collapses sources of variability in the nervous and effector organ systems. Here, we directly focus on the SN/SCR mapping by harnessing two invasive methods. In an intraneural recording experiment, we simultaneously track SN activity and SCR. This allows assessing the SN/SCR relationship but possibly suffers from interfering activity of non‐SN sympathetic fibers. In an intraneural stimulation experiment under regional anesthesia, such influences are removed. In this stimulation experiment, about 95% of SCR variance is explained under LTI assumptions when stimulation frequency is below 0.6 Hz. At higher frequencies, nonlinearities occur. In the intraneural recording experiment, explained SCR variance is lower, possibly indicating interference from non‐SN fibers, but higher than in our previous indirect tests. We conclude that LTI systems may not only be a useful approximation but in fact a rather accurate description of biophysical reality in the SN/SCR system, under conditions of low baseline activity and sporadic external stimuli. Intraneural stimulation under regional anesthesia is the most sensitive method to address this question. PMID:28862764
Noureldin, Yasser A.; Elkoushy, Mohamed A.; Andonian, Sero
2015-01-01
Introduction: The first objective was to assess percutaneous renal access (PCA) skills of urology postgraduate trainees (PGTs) during the Objective Structured Clinical Examinations (OSCEs). The second objective was to determine whether previous experience with percutaneous nephrolithotomy (PCNL) improved performance. Methods: After obtaining ethics approval, we recruited PGTs from two urology programs in Quebec between postgraduate years (PGY-3 to PGY-5). Each trainee was asked to answer a short questionnaire regarding previous experience in endourologic procedures. After a 3-minute orientation on the PERC Mentor simulator (Simbionix, Cleveland, OH), each trainee was asked to perform task 4, where they had to correctly access all of the renal calyces and pop the balloons in a normal left kidney model. We collected and analyzed data from the questionnaire and the performance report generated by the simulator. Results: In total, 13 PGTs participated in this study. PGTs had performed a median of 200 (range: 50–1000) cystoscopies, 50 (range: 10–125) TURBTs, 30 (range: 0–100) TURPs, 5 (range: 0–50) laser prostatectomies, and 50 (range: 2–125) ureteroscopies prior to this OSCE. PGTs with previous PCNL experience (8/13) had performed a mean of 18.6 ± 6.3 PCNLs. PGTs with previous PCNL experience performed significantly better in terms of shorter fluoroscopy time (10 ± 1.5 vs. 5.1 ± 0.7 min; p = 0.04), fewer attempts required for successful puncture of the pelvi-calyceal system (PCS) (21 ± 2.3 vs. 13 ± 1.8; p = 0.02), and had significantly lower complications in terms of fewer infundibular injury (7.4 ± 1.5 vs. 2 ± 0.4; p = 0.004) and fewer PCS perforations (11 ± 1.7 vs. 4.5 ± 1.2; p = 0.01). Conclusion: It is feasible to use the PERC Mentor simulator during OSCEs to assess PCA skills of urology PGTs. PGTs who had previous PCNL experience performed significantly better with fewer complications. PMID:25844094
Spit-Hole Effects on the Ballistics of a 7.62-mm Cartridge
2014-02-01
barrel retains 0.50 in (12.7 mm) of rifling. The midchamber pressure transducer, Kistler Model 6215 (8), is consistent with previous experiments...Nemours and Company. 2 Kistler Model 9031A Load Washer (9). Force transducer selection was driven by the anticipated load and the necessity of an...Development and Engineering Center, Picatinny Arsenal, NJ, January 1986. 8. Kistler Operating Instructions, Quartz High-Pressure Sensor Type 6215
ERIC Educational Resources Information Center
Larsson, Caroline; Tibell, Lena A.
2015-01-01
A well-ordered biological complex can be formed by the random motion of its components, i.e. self-assemble. This is a concept that incorporates issues that may contradict students' everyday experiences and intuitions. In previous studies, we have shown that a tangible model of virus self-assembly, used in a group exercise, helps students to grasp…
Continually Plastic Modeling of Non-Stationary Systems
2016-09-01
ples, we had previously been unable to generate effective models of SWE. For Experiment Set I, therefore, air temperature was the only meteorological...input. Air temperature is known to be a highly effective predictor of melt rate because it is correlated with long- wave atmospheric radiation, the...us to compose datasets large enough for effective machine learning. However, the inclu- sion of air temperature did not have a significant impact on
Almeida, Rita; Barbosa, João; Compte, Albert
2015-09-01
The amount of information that can be retained in working memory (WM) is limited. Limitations of WM capacity have been the subject of intense research, especially in trying to specify algorithmic models for WM. Comparatively, neural circuit perspectives have barely been used to test WM limitations in behavioral experiments. Here we used a neuronal microcircuit model for visuo-spatial WM (vsWM) to investigate memory of several items. The model assumes that there is a topographic organization of the circuit responsible for spatial memory retention. This assumption leads to specific predictions, which we tested in behavioral experiments. According to the model, nearby locations should be recalled with a bias, as if the two memory traces showed attraction or repulsion during the delay period depending on distance. Another prediction is that the previously reported loss of memory precision for an increasing number of memory items (memory load) should vanish when the distances between items are controlled for. Both predictions were confirmed experimentally. Taken together, our findings provide support for a topographic neural circuit organization of vsWM, they suggest that interference between similar memories underlies some WM limitations, and they put forward a circuit-based explanation that reconciles previous conflicting results on the dependence of WM precision with load. Copyright © 2015 the American Physiological Society.
Stochastic model predicts evolving preferences in the Iowa gambling task
Fuentes, Miguel A.; Lavín, Claudio; Contreras-Huerta, L. Sebastián; Miguel, Hernan; Rosales Jubal, Eduardo
2014-01-01
Learning under uncertainty is a common task that people face in their daily life. This process relies on the cognitive ability to adjust behavior to environmental demands. Although the biological underpinnings of those cognitive processes have been extensively studied, there has been little work in formal models seeking to capture the fundamental dynamic of learning under uncertainty. In the present work, we aimed to understand the basic cognitive mechanisms of outcome processing involved in decisions under uncertainty and to evaluate the relevance of previous experiences in enhancing learning processes within such uncertain context. We propose a formal model that emulates the behavior of people playing a well established paradigm (Iowa Gambling Task - IGT) and compare its outcome with a behavioral experiment. We further explored whether it was possible to emulate maladaptive behavior observed in clinical samples by modifying the model parameter which controls the update of expected outcomes distributions. Results showed that the performance of the model resembles the observed participant performance as well as IGT performance by healthy subjects described in the literature. Interestingly, the model converges faster than some subjects on the decks with higher net expected outcome. Furthermore, the modified version of the model replicated the trend observed in clinical samples performing the task. We argue that the basic cognitive component underlying learning under uncertainty can be represented as a differential equation that considers the outcomes of previous decisions for guiding the agent to an adaptive strategy. PMID:25566043
Stochastic model predicts evolving preferences in the Iowa gambling task.
Fuentes, Miguel A; Lavín, Claudio; Contreras-Huerta, L Sebastián; Miguel, Hernan; Rosales Jubal, Eduardo
2014-01-01
Learning under uncertainty is a common task that people face in their daily life. This process relies on the cognitive ability to adjust behavior to environmental demands. Although the biological underpinnings of those cognitive processes have been extensively studied, there has been little work in formal models seeking to capture the fundamental dynamic of learning under uncertainty. In the present work, we aimed to understand the basic cognitive mechanisms of outcome processing involved in decisions under uncertainty and to evaluate the relevance of previous experiences in enhancing learning processes within such uncertain context. We propose a formal model that emulates the behavior of people playing a well established paradigm (Iowa Gambling Task - IGT) and compare its outcome with a behavioral experiment. We further explored whether it was possible to emulate maladaptive behavior observed in clinical samples by modifying the model parameter which controls the update of expected outcomes distributions. Results showed that the performance of the model resembles the observed participant performance as well as IGT performance by healthy subjects described in the literature. Interestingly, the model converges faster than some subjects on the decks with higher net expected outcome. Furthermore, the modified version of the model replicated the trend observed in clinical samples performing the task. We argue that the basic cognitive component underlying learning under uncertainty can be represented as a differential equation that considers the outcomes of previous decisions for guiding the agent to an adaptive strategy.
Flight simulator fidelity assessment in a rotorcraft lateral translation maneuver
NASA Technical Reports Server (NTRS)
Hess, R. A.; Malsbury, T.; Atencio, A., Jr.
1992-01-01
A model-based methodology for assessing flight simulator fidelity in closed-loop fashion is exercised in analyzing a rotorcraft low-altitude maneuver for which flight test and simulation results were available. The addition of a handling qualities sensitivity function to a previously developed model-based assessment criteria allows an analytical comparison of both performance and handling qualities between simulation and flight test. Model predictions regarding the existence of simulator fidelity problems are corroborated by experiment. The modeling approach is used to assess analytically the effects of modifying simulator characteristics on simulator fidelity.
An evolutionary model of cooperation, fairness and altruistic punishment in public good games.
Hetzer, Moritz; Sornette, Didier
2013-01-01
We identify and explain the mechanisms that account for the emergence of fairness preferences and altruistic punishment in voluntary contribution mechanisms by combining an evolutionary perspective together with an expected utility model. We aim at filling a gap between the literature on the theory of evolution applied to cooperation and punishment, and the empirical findings from experimental economics. The approach is motivated by previous findings on other-regarding behavior, the co-evolution of culture, genes and social norms, as well as bounded rationality. Our first result reveals the emergence of two distinct evolutionary regimes that force agents to converge either to a defection state or to a state of coordination, depending on the predominant set of self- or other-regarding preferences. Our second result indicates that subjects in laboratory experiments of public goods games with punishment coordinate and punish defectors as a result of an aversion against disadvantageous inequitable outcomes. Our third finding identifies disadvantageous inequity aversion as evolutionary dominant and stable in a heterogeneous population of agents endowed initially only with purely self-regarding preferences. We validate our model using previously obtained results from three independently conducted experiments of public goods games with punishment.
An Evolutionary Model of Cooperation, Fairness and Altruistic Punishment in Public Good Games
Hetzer, Moritz; Sornette, Didier
2013-01-01
We identify and explain the mechanisms that account for the emergence of fairness preferences and altruistic punishment in voluntary contribution mechanisms by combining an evolutionary perspective together with an expected utility model. We aim at filling a gap between the literature on the theory of evolution applied to cooperation and punishment, and the empirical findings from experimental economics. The approach is motivated by previous findings on other-regarding behavior, the co-evolution of culture, genes and social norms, as well as bounded rationality. Our first result reveals the emergence of two distinct evolutionary regimes that force agents to converge either to a defection state or to a state of coordination, depending on the predominant set of self- or other-regarding preferences. Our second result indicates that subjects in laboratory experiments of public goods games with punishment coordinate and punish defectors as a result of an aversion against disadvantageous inequitable outcomes. Our third finding identifies disadvantageous inequity aversion as evolutionary dominant and stable in a heterogeneous population of agents endowed initially only with purely self-regarding preferences. We validate our model using previously obtained results from three independently conducted experiments of public goods games with punishment. PMID:24260101
English vowel learning by speakers of Mandarin
NASA Astrophysics Data System (ADS)
Thomson, Ron I.
2005-04-01
One of the most influential models of second language (L2) speech perception and production [Flege, Speech Perception and Linguistic Experience (York, Baltimore, 1995) pp. 233-277] argues that during initial stages of L2 acquisition, perceptual categories sharing the same or nearly the same acoustic space as first language (L1) categories will be processed as members of that L1 category. Previous research has generally been limited to testing these claims on binary L2 contrasts, rather than larger portions of the perceptual space. This study examines the development of 10 English vowel categories by 20 Mandarin L1 learners of English. Imitation of English vowel stimuli by these learners, at 6 data collection points over the course of one year, were recorded. Using a statistical pattern recognition model, these productions were then assessed against native speaker norms. The degree to which the learners' perception/production shifted toward the target English vowels and the degree to which they matched L1 categories in ways predicted by theoretical models are discussed. The results of this experiment suggest that previous claims about perceptual assimilation of L2 categories to L1 categories may be too strong.
Duong, Thien C.; Hackenberg, Robert E.; Landa, Alex; ...
2016-09-20
In this paper, thermodynamic and kinetic diffusivities of uranium–niobium (U–Nb) are re-assessed by means of the CALPHAD (CALculation of PHAse Diagram) methodology. In order to improve the consistency and reliability of the assessments, first-principles calculations are coupled with CALPHAD. In particular, heats of formation of γ -U–Nb are estimated and verified using various density-functional theory (DFT) approaches. These thermochemistry data are then used as constraints to guide the thermodynamic optimization process in such a way that the mutual-consistency between first-principles calculations and CALPHAD assessment is satisfactory. In addition, long-term aging experiments are conducted in order to generate new phase equilibriamore » data at the γ 2/α+γ 2 boundary. These data are meant to verify the thermodynamic model. Assessment results are generally in good agreement with experiments and previous calculations, without showing the artifacts that were observed in previous modeling. The mutual-consistent thermodynamic description is then used to evaluate atomic mobility and diffusivity of γ-U–Nb. Finally, Bayesian analysis is conducted to evaluate the uncertainty of the thermodynamic model and its impact on the system's phase stability.« less
Bakker, Arnold B; Demerouti, Evangelia; Dollard, Maureen F
2008-07-01
This study among 168 couples of dual-earner parents uses insights from previous work-family conflict and crossover research to propose an integrative model delineating how job demands experienced by men and women carry over to the home domain. The authors hypothesized that for both men and women, job demands foster their own work-family conflict (WFC), which in turn contributes to their partners' home demands, family-work conflict (FWC), and exhaustion. In addition, they hypothesized that social undermining mediates the relationship between individuals' WFC and their partners' home demands. The results of structural equation modeling analyses provided strong support for the proposed model. The hypothesis that gender would moderate the model relationships was rejected. These findings integrate previous findings on work-family conflict and crossover theories and suggest fluid boundaries between the work and home domains.
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kalluri, Sreeramesh
2001-01-01
The experiments described herein were performed to determine whether damage imposed by axial loading interacts with damage imposed by torsional loading. This paper is a follow on to a study that investigated effects of load-type sequencing on the cumulative fatigue behavior of a cobalt base superalloy, Haynes 188 at 538 C Both the current and the previous study were used to test the applicability of cumulative fatigue damage models to conditions where damage is imposed by different loading modes. In the previous study, axial and torsional two load level cumulative fatigue experiments were conducted, in varied combinations, with the low-cycle fatigue (high amplitude loading) applied first. In present study, the high-cycle fatigue (low amplitude loading) is applied initially. As in the previous study, four sequences (axial/axial, torsion/torsion, axial/torsion, and torsion/axial) of two load level cumulative fatigue experiments were performed. The amount of fatigue damage contributed by each of the imposed loads was estimated by both the Palmgren-Miner linear damage rule (LDR) and the non-linear damage curve approach (DCA). Life predictions for the various cumulative loading combinations are compared with experimental results.
Neural Mechanism for Stochastic Behavior During a Competitive Game
Soltani, Alireza; Lee, Daeyeol; Wang, Xiao-Jing
2006-01-01
Previous studies have shown that non-human primates can generate highly stochastic choice behavior, especially when this is required during a competitive interaction with another agent. To understand the neural mechanism of such dynamic choice behavior, we propose a biologically plausible model of decision making endowed with synaptic plasticity that follows a reward-dependent stochastic Hebbian learning rule. This model constitutes a biophysical implementation of reinforcement learning, and it reproduces salient features of behavioral data from an experiment with monkeys playing a matching pennies game. Due to interaction with an opponent and learning dynamics, the model generates quasi-random behavior robustly in spite of intrinsic biases. Furthermore, non-random choice behavior can also emerge when the model plays against a non-interactive opponent, as observed in the monkey experiment. Finally, when combined with a meta-learning algorithm, our model accounts for the slow drift in the animal’s strategy based on a process of reward maximization. PMID:17015181
NASA Astrophysics Data System (ADS)
Miyoshi, Takemasa; Kunii, Masaru
2012-03-01
The local ensemble transform Kalman filter (LETKF) is implemented with the Weather Research and Forecasting (WRF) model, and real observations are assimilated to assess the newly-developed WRF-LETKF system. The WRF model is a widely-used mesoscale numerical weather prediction model, and the LETKF is an ensemble Kalman filter (EnKF) algorithm particularly efficient in parallel computer architecture. This study aims to provide the basis of future research on mesoscale data assimilation using the WRF-LETKF system, an additional testbed to the existing EnKF systems with the WRF model used in the previous studies. The particular LETKF system adopted in this study is based on the system initially developed in 2004 and has been continuously improved through theoretical studies and wide applications to many kinds of dynamical models including realistic geophysical models. Most recent and important improvements include an adaptive covariance inflation scheme which considers the spatial and temporal inhomogeneity of inflation parameters. Experiments show that the LETKF successfully assimilates real observations and that adaptive inflation is advantageous. Additional experiments with various ensemble sizes show that using more ensemble members improves the analyses consistently.
Pedersen, Kristine Bondo; Kirkelund, Gunvor M; Ottosen, Lisbeth M; Jensen, Pernille E; Lejon, Tore
2015-01-01
Chemometrics was used to develop a multivariate model based on 46 previously reported electrodialytic remediation experiments (EDR) of five different harbour sediments. The model predicted final concentrations of Cd, Cu, Pb and Zn as a function of current density, remediation time, stirring rate, dry/wet sediment, cell set-up as well as sediment properties. Evaluation of the model showed that remediation time and current density had the highest comparative influence on the clean-up levels. Individual models for each heavy metal showed variance in the variable importance, indicating that the targeted heavy metals were bound to different sediment fractions. Based on the results, a PLS model was used to design five new EDR experiments of a sixth sediment to achieve specified clean-up levels of Cu and Pb. The removal efficiencies were up to 82% for Cu and 87% for Pb and the targeted clean-up levels were met in four out of five experiments. The clean-up levels were better than predicted by the model, which could hence be used for predicting an approximate remediation strategy; the modelling power will however improve with more data included. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kandler
Battery Life estimation is one of the key inputs required for Hybrid applications for all GM Hybrid/EV/EREV/PHEV programs. For each Hybrid vehicle program, GM has instituted multi-parameter Design of Experiments generating test data at Cell level and also Pack level on a reduced basis. Based on experience, generating test data on a pack level is found to be very expensive, resource intensive and sometimes less reliable. The proposed collaborative project will focus on a methodology to estimate Battery life based on cell degradation data combined with pack thermal modeling. NREL has previously developed cell-level battery aging models and pack-level thermal/electricalmore » network models, though these models are currently not integrated. When coupled together, the models are expected to describe pack-level thermal and aging response of individual cells. GM and NREL will use data collected for GM's Bas+ battery system for evaluation of the proposed methodology and assess to what degree these models can replace pack-level aging experiments in the future.« less
NASA Astrophysics Data System (ADS)
Kempema, Nathan J.; Ma, Bin; Long, Marshall B.
2016-09-01
Soot optical properties are essential to the noninvasive study of the in-flame evolution of soot particles since they allow quantitative interpretation of optical diagnostics. Such experimental data are critical for comparison to results from computational models and soot sub-models. In this study, the thermophoretic sampling particle diagnostic (TSPD) technique is applied along with data from a previous spectrally resolved line-of-sight light attenuation experiment to determine the soot volume fraction and absorption function. The TSPD technique is applied in a flame stabilized on the Yale burner, and the soot scattering-to-absorption ratio is calculated using the Rayleigh-Debye-Gans theory for fractal aggregates and morphology information from a previous sampling experiment. The soot absorption function is determined as a function of wavelength and found to be in excellent agreement with previous in-flame measurements of the soot absorption function in coflow laminar diffusion flames. Two-dimensional maps of the soot dispersion exponent are calculated and show that the soot absorption function may have a positive or negative exponential wavelength dependence depending on the in-flame location. Finally, the wavelength dependence of the soot absorption function is related to the ratio of soot absorption functions, as would be found using two-excitation-wavelength laser-induced incandescence.
History, ethics, advantages and limitations of experimental models for hepatic ablation.
Ong, Seok Ling; Gravante, Gianpiero; Metcalfe, Matthew S; Dennison, Ashley R
2013-01-14
Numerous techniques developed in medicine require careful evaluation to determine their indications, limitations and potential side effects prior to their clinical use. At present this generally involves the use of animal models which is undesirable from an ethical standpoint, requires complex and time-consuming authorization, and is very expensive. This process is exemplified in the development of hepatic ablation techniques, starting experiments on explanted livers and progressing to safety and efficacy studies in living animals prior to clinical studies. The two main approaches used are ex vivo isolated non-perfused liver models and in vivo animal models. Ex vivo non perfused models are less expensive, easier to obtain but not suitable to study the heat sink effect or experiments requiring several hours. In vivo animal models closely resemble clinical subjects but often are expensive and have small sample sizes due to ethical guidelines. Isolated perfused ex vivo liver models have been used to study drug toxicity, liver failure, organ transplantation and hepatic ablation and combine advantages of both previous models.
Two spatial memories are not better than one: evidence of exclusivity in memory for object location.
Baguley, Thom; Lansdale, Mark W; Lines, Lorna K; Parkin, Jennifer K
2006-05-01
This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue. Experiment 2 confirms this finding in a within-subject design where both cues have previously elicited recall. Experiment 3 shows that these findings are only consistent with a model in which two representations of the same object location are mutually exclusive at both encoding and retrieval, and inconsistent with models that assume information from both representations is available. We propose that these representations quantify directionally specific judgments of location relative to specific anchor points in the stimulus; a format that precludes the parallel processing of like representations. Finally, we consider the apparent paradox of how such representations might contribute to the acquisition of spatial knowledge from multiple experiences of the same stimuli.
Conceptualizing the Essence of Presence in E-Learning through Digital Dasein
ERIC Educational Resources Information Center
Haj-Bolouri, Amir; Flensburg, Per
2017-01-01
Previous research on e-learning elucidates the notion of presence and learning. Scholars have conceptualized different concepts and theories based on the idea of distance education and learning. However, the "experience" of learning has been overshadowed with emphasizes on pedagogical models for social presence, theories on how to…
ERIC Educational Resources Information Center
You, Sukkyung; Kim, Ann Y.; Lim, Sun Ah
2017-01-01
This study applied multilevel modeling to examine how individual characteristics, such as gender and teaching experience, and contextual characteristics, such as principal leadership and perceived colleague support, influenced Korean secondary school teachers' sense of job satisfaction. Previous research identified teachers with high job…
Kulakovskiy, Ivan V; Vorontsov, Ilya E; Yevshin, Ivan S; Sharipov, Ruslan N; Fedorova, Alla D; Rumynskiy, Eugene I; Medvedeva, Yulia A; Magana-Mora, Arturo; Bajic, Vladimir B; Papatsenko, Dmitry A; Kolpakov, Fedor A; Makeev, Vsevolod J
2018-01-04
We present a major update of the HOCOMOCO collection that consists of patterns describing DNA binding specificities for human and mouse transcription factors. In this release, we profited from a nearly doubled volume of published in vivo experiments on transcription factor (TF) binding to expand the repertoire of binding models, replace low-quality models previously based on in vitro data only and cover more than a hundred TFs with previously unknown binding specificities. This was achieved by systematic motif discovery from more than five thousand ChIP-Seq experiments uniformly processed within the BioUML framework with several ChIP-Seq peak calling tools and aggregated in the GTRD database. HOCOMOCO v11 contains binding models for 453 mouse and 680 human transcription factors and includes 1302 mononucleotide and 576 dinucleotide position weight matrices, which describe primary binding preferences of each transcription factor and reliable alternative binding specificities. An interactive interface and bulk downloads are available on the web: http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco11. In this release, we complement HOCOMOCO by MoLoTool (Motif Location Toolbox, http://molotool.autosome.ru) that applies HOCOMOCO models for visualization of binding sites in short DNA sequences. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Laboratory Experiments and Modeling of Pooled NAPL Dissolution in Porous Media
NASA Astrophysics Data System (ADS)
Copty, N. K.; Sarikurt, D. A.; Gokdemir, C.
2017-12-01
The dissolution of non-aqueous phase liquids (NAPLs) entrapped in porous media is commonly modeled at the continuum scale as the product of a chemical potential and an interphase mass transfer coefficient, the latter expressed in terms of Sherwood correlations that are related to flow and porous media properties. Because of the lack of precise estimates of the interface area separating the NAPL and aqueous phase, numerous studies have lumped the interfacial area into the interphase mass transfer coefficient. In this paper controlled dissolution experiments from a pooled NAPL were conducted. The immobile NAPL mass is placed at the bottom of a flow cell filled with porous media with water flowing on top. Effluent aqueous phase concentrations were measured for a wide range of aqueous phase velocities and for two types of porous media. To interpret the experimental results, a two-dimensional pore network model of the NAPL dissolution was developed. The well-defined geometry of the NAPL-water interface and the observed effluent concentrations were used to compute best-fit mass transfer coefficients and non-lumped Sherwood correlations. Comparing the concentrations predicted with the pore network model to simple previously used one-dimensional analytic solutions indicates that the analytic model which ignores the transverse dispersion can lead to over-estimation of the mass transfer coefficient. The predicted Sherwood correlations are also compared to previously published data and implications on NAPL remediation strategies are discussed.
Re-evaluation of Apollo 17 Lunar Seismic Profiling Experiment data
NASA Astrophysics Data System (ADS)
Heffels, Alexandra; Knapmeyer, Martin; Oberst, Jürgen; Haase, Isabel
2017-01-01
We re-analyzed Apollo 17 Lunar Seismic Profiling Experiment (LSPE) data to improve our knowledge of the subsurface structure of this landing site. We use new geometrically accurate 3-D positions of the seismic equipment deployed by the astronauts, which were previously derived using high-resolution images by Lunar Reconnaissance Orbiter (LRO) in combination with Apollo astronaut photography. These include coordinates of six Explosive Packages (EPs) and four geophone stations. Re-identified P-wave arrival times are used to calculate two- and three-layer seismic velocity models. A strong increase of seismic velocity with depth can be confirmed, in particular, we suggest a more drastic increase than previously thought. For the three-layer model the P-wave velocities were calculated to 285, 580, and 1825 m/s for the uppermost, second, and third layer, respectively, with the boundaries between the layers being at 96 and 773 m depth. When compared with results obtained with previously published coordinates, we find (1) a slightly higher velocity (+4%) for the uppermost layer, and (2) lower P-wave velocities for the second and third layers, representing a decrease of 34% and 12% for second and third layer, respectively. Using P-wave arrival time readings of previous studies, we confirm that velocities increase when changing over from old to new coordinates. In the three-layer case, this means using new coordinates alone leads to thinned layers, velocities rise slightly for the uppermost layer and decrease significantly for the layers below.
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Curtis, Gary P.; Lane, John W.
2013-01-01
Anomalous solute transport, modeled as rate-limited mass transfer, has an observable geoelectrical signature that can be exploited to infer the controlling parameters. Previous experiments indicate the combination of time-lapse geoelectrical and fluid conductivity measurements collected during ionic tracer experiments provides valuable insight into the exchange of solute between mobile and immobile porosity. Here, we use geoelectrical measurements to monitor tracer experiments at a former uranium mill tailings site in Naturita, Colorado. We use nonlinear regression to calibrate dual-domain mass transfer solute-transport models to field data. This method differs from previous approaches by calibrating the model simultaneously to observed fluid conductivity and geoelectrical tracer signals using two parameter scales: effective parameters for the flow path upgradient of the monitoring point and the parameters local to the monitoring point. We use regression statistics to rigorously evaluate the information content and sensitivity of fluid conductivity and geophysical data, demonstrating multiple scales of mass transfer parameters can simultaneously be estimated. Our results show, for the first time, field-scale spatial variability of mass transfer parameters (i.e., exchange-rate coefficient, porosity) between local and upgradient effective parameters; hence our approach provides insight into spatial variability and scaling behavior. Additional synthetic modeling is used to evaluate the scope of applicability of our approach, indicating greater range than earlier work using temporal moments and a Lagrangian-based Damköhler number. The introduced Eulerian-based Damköhler is useful for estimating tracer injection duration needed to evaluate mass transfer exchange rates that range over several orders of magnitude.
NASA Astrophysics Data System (ADS)
Qin, H.; Pritchard, M. S.; Kooperman, G. J.; Parishani, H.
2017-12-01
Conventional General Circulation Models (GCMs) in the Global Land-Atmosphere Coupling Experiment (GLACE) tend to produce overly strong Land-Atmosphere coupling (L-A coupling) strength. We investigate the effects of cloud SuperParameterization (SP) on L-A coupling on timescales longer than the diurnal where it has been previously shown to have a strong effect. Using the Community Atmosphere Model v3.5 (CAM3.5) and its SuperParameterized counterpart SPCAM3.5, we conducted experiments following the GLACE and Atmospheric Model Intercomparison Project (AMIP) protocols. On synoptic-to-subseasonal timescales, SP significantly mutes hydrologic L-A coupling on a global scale, through the atmospheric segment. But on longer seasonal timescales, SP does not exhibit detectable effects on hydrologic L-A coupling. Two regional effects of SP on thermal L-A coupling are also discovered and explored. Over the Arabian Peninsula, SP strikingly reduces thermal L-A coupling due to a control by mean regional rainfall reduction. Over the Southwestern US and Northern Mexico, however, SP remarkably enhances the thermal L-A coupling independent of rainfall or soil moisture. We argue that the cause may be a previously unrecognized effect of SP to amplify the simulated Bowen ratio. Not only does this help reconcile a puzzling local enhancement of thermal L-A coupling over the Southwestern US, but it is also demonstrated to be a robust, global effect of SP over land that is independent of model version and experiment design, and that has important consequences for climate change prediction.
Analytical Solution for Reactive Solute Transport Considering Incomplete Mixing
NASA Astrophysics Data System (ADS)
Bellin, A.; Chiogna, G.
2013-12-01
The laboratory experiments of Gramling et al. (2002) showed that incomplete mixing at the pore scale exerts a significant impact on transport of reactive solutes and that assuming complete mixing leads to overestimation of product concentration in bimolecular reactions. We consider here the family of equilibrium reactions for which the concentration of the reactants and the product can be expressed as a function of the mixing ratio, the concentration of a fictitious non reactive solute. For this type of reactions we propose, in agreement with previous studies, to model the effect of incomplete mixing at scales smaller than the Darcy scale assuming that the mixing ratio is distributed within an REV according to a Beta distribution. We compute the parameters of the Beta model by imposing that the mean concentration is equal to the value that the concentration assumes at the continuum Darcy scale, while the variance decays with time as a power law. We show that our model reproduces the concentration profiles of the reaction product measured in the Gramling et al. (2002) experiments using the transport parameters obtained from conservative experiments and an instantaneous reaction kinetic. The results are obtained applying analytical solutions both for conservative and for reactive solute transport, thereby providing a method to handle the effect of incomplete mixing on multispecies reactive solute transport, which is simpler than other previously developed methods. Gramling, C. M., C. F. Harvey, and L. C. Meigs (2002), Reactive transport in porous media: A comparison of model prediction with laboratory visualization, Environ. Sci. Technol., 36(11), 2508-2514.
Gillen, Sonja; Gröne, Jörn; Knödgen, Fritz; Wolf, Petra; Meyer, Michael; Friess, Helmut; Buhr, Heinz-Johannes; Ritz, Jörg-Peter; Feussner, Hubertus; Lehmann, Kai S
2012-08-01
Natural orifice translumenal endoscopic surgery (NOTES) is a new surgical concept that requires training before it is introduced into clinical practice. The endoscopic–laparoscopic interdisciplinary training entity (ELITE) is a training model for NOTES interventions. The latest research has concentrated on new materials for organs with realistic optical and haptic characteristics and the possibility of high-frequency dissection. This study aimed to assess both the ELITE model in a surgical training course and the construct validity of a newly developed NOTES appendectomy scenario. The 70 attendees of the 2010 Practical Course for Visceral Surgery (Warnemuende, Germany) took part in the study and performed a NOTES appendectomy via a transsigmoidal access. The primary end point was the total time required for the appendectomy, including retrieval of the appendix. Subjective evaluation of the model was performed using a questionnaire. Subgroups were analyzed according to laparoscopic and endoscopic experience. The participants with endoscopic or laparoscopic experience completed the task significantly faster than the inexperienced participants (p = 0.009 and 0.019, respectively). Endoscopic experience was the strongest influencing factor, whereas laparoscopic experience had limited impact on the participants with previous endoscopic experience. As shown by the findings, 87.3% of the participants stated that the ELITE model was suitable for the NOTES training scenario, and 88.7% found the newly developed model anatomically realistic. This study was able to establish face and construct validity for the ELITE model with a large group of surgeons. The ELITE model seems to be well suited for the training of NOTES as a new surgical technique in an established gastrointestinal surgery skills course.
Walking through doorways causes forgetting: Further explorations.
Radvansky, Gabriel A; Krawietz, Sabine A; Tamplin, Andrea K
2011-08-01
Previous research using virtual environments has revealed a location-updating effect in which there is a decline in memory when people move from one location to another. Here we assess whether this effect reflects the influence of the experienced context, in terms of the degree of immersion of a person in an environment, as suggested by some work in spatial cognition, or by a shift in context. In Experiment 1, the degree of immersion was reduced by using smaller displays. In comparison, in Experiment 2 an actual, rather than a virtual, environment was used, to maximize immersion. Location-updating effects were observed under both of these conditions. In Experiment 3, the original encoding context was reinstated by having a person return to the original room in which objects were first encoded. However, inconsistent with an encoding specificity account, memory did not improve by reinstating this context. Finally, we did a further analysis of the results of this and previous experiments to assess the differential influence of foregrounding and retrieval interference. Overall, these data are interpreted in terms of the event horizon model of event cognition and memory.
Hohlraum modeling for opacity experiments on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Dodd, E. S.; DeVolder, B. G.; Martin, M. E.; Krasheninnikova, N. S.; Tregillis, I. L.; Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; Moore, A. S.; Kline, J. L.; Johns, H. M.; Liedahl, D. A.; Cardenas, T.; Olson, R. E.; Wilde, B. H.; Urbatsch, T. J.
2018-06-01
This paper discusses the modeling of experiments that measure iron opacity in local thermodynamic equilibrium (LTE) using laser-driven hohlraums at the National Ignition Facility (NIF). A previous set of experiments fielded at Sandia's Z facility [Bailey et al., Nature 517, 56 (2015)] have shown up to factors of two discrepancies between the theory and experiment, casting doubt on the validity of the opacity models. The purpose of the new experiments is to make corroborating measurements at the same densities and temperatures, with the initial measurements made at a temperature of 160 eV and an electron density of 0.7 × 1022 cm-3. The X-ray hot spots of a laser-driven hohlraum are not in LTE, and the iron must be shielded from a direct line-of-sight to obtain the data [Perry et al., Phys. Rev. B 54, 5617 (1996)]. This shielding is provided either with the internal structure (e.g., baffles) or external wall shapes that divide the hohlraum into a laser-heated portion and an LTE portion. In contrast, most inertial confinement fusion hohlraums are simple cylinders lacking complex gold walls, and the design codes are not typically applied to targets like those for the opacity experiments. We will discuss the initial basis for the modeling using LASNEX, and the subsequent modeling of five different hohlraum geometries that have been fielded on the NIF to date. This includes a comparison of calculated and measured radiation temperatures.
The impact of parametrized convection on cloud feedback.
Webb, Mark J; Lock, Adrian P; Bretherton, Christopher S; Bony, Sandrine; Cole, Jason N S; Idelkadi, Abderrahmane; Kang, Sarah M; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D; Zhao, Ming
2015-11-13
We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that 'ConvOff' models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed. © 2015 The Authors.
The impact of parametrized convection on cloud feedback
Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming
2015-01-01
We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed. PMID:26438278
Measuring and Modeling Behavioral Decision Dynamics in Collective Evacuation
2014-02-10
Phit (t), was generated in advance from a well-defined stochastic process previously studied in [67]; details of its construction can be found there. The...value of Phit (t) on the Disaster Tab which is updated every second, Figure 1. Overview of behavioral network science experiment. A: Experimental setup at...Volume 9 | Issue 2 | e87380 7 however the overall trajectory is not shown. There were a total of 23 Phit (t) trajectories used in the experiment, with many
Mirror neuron system and observational learning: behavioral and neurophysiological evidence.
Lago-Rodriguez, Angel; Lopez-Alonso, Virginia; Fernández-del-Olmo, Miguel
2013-07-01
Three experiments were performed to study observational learning using behavioral, perceptual, and neurophysiological data. Experiment 1 investigated whether observing an execution model, during physical practice of a transitive task that only presented one execution strategy, led to performance improvements compared with physical practice alone. Experiment 2 investigated whether performing an observational learning protocol improves subjects' action perception. In experiment 3 we evaluated whether the type of practice performed determined the activation of the Mirror Neuron System during action observation. Results showed that, compared with physical practice, observing an execution model during a task that only showed one execution strategy does not provide behavioral benefits. However, an observational learning protocol allows subjects to predict more precisely the outcome of the learned task. Finally, intersperse observation of an execution model with physical practice results in changes of primary motor cortex activity during the observation of the motor pattern previously practiced, whereas modulations in the connectivity between primary and non primary motor areas (PMv-M1; PPC-M1) were not affected by the practice protocol performed by the observer. Copyright © 2013 Elsevier B.V. All rights reserved.
Microgravity nucleation and particle coagulation experiments support
NASA Technical Reports Server (NTRS)
Lilleleht, L. U.; Lass, T. J.
1987-01-01
A hollow sphere model is developed to predict the range of supersaturation ratio values for refractory metal vapors in a proposed experimental nucleation apparatus. Since the experiments are to be carried out in a microgravity environment, the model neglects the effects of convection and assumes that the only transfer of vapors through an inert gas atmosphere is by conduction and molecular diffusion. A consistent set of physical properties data is assembled for the various candidate metals and inert ambient gases expected to be used in the nucleation experiments. Transient partial pressure profiles are computed for the diffusing refractory species for two possible temperature distributions. The supersaturation ratio values from both candidate temperature profiles are compared with previously obtained experimetnal data on a silver-hydrogen system. The model is used to simulate the diffusion of magnesium vapor through argon and other inert gas atmospheres over ranges of initial and boundary conditions. These results identify different combinations of design and operating parameters which are liekly to produce supersaturation ratio values high enough to induce homogeneous nucleation in the apparatus being designed for the microgravity nucleation experiments.
Modeling the integration of bacterial rRNA fragments into the human cancer genome.
Sieber, Karsten B; Gajer, Pawel; Dunning Hotopp, Julie C
2016-03-21
Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ecker, Uwe
1991-01-01
The Fermilab experiment E665 took its first data during the period 1987 /1988. 490 GeV and 100 GeV muons are scattered off various nuclear targets. In this analysis a study of the longitudinal and transverse momentum distributions of charged final state hadrons produced in muon-deuterium-interactions is performed. Semi inclusive muoproduction data are presented in a kinematic regime up to a previously unreached invariant mass ofmore » $$\\sim$$30 GeV. The data are discussed in the framework of the quark parton model and quantum chromodynamics. A comparison to various leptoproduction and $e^+e^-$ -annihilation experiments is shown. Subsequently the data are confronted with predictions from the Lund model. The data agree well with a QCD based parton model picture.« less
Sequential effects in pigeon delayed matching-to-sample performance.
Roitblat, H L; Scopatz, R A
1983-04-01
Pigeons were tested in a three-alternative delayed matching-to-sample task in which second-choices were permitted following first-choice errors. Sequences of responses both within and between trials were examined in three experiments. The first experiment demonstrates that the sample information contained in first-choice errors is not sufficient to account for the observed pattern of second choices. This result implies that second-choices following first-choice errors are based on a second examination of the contents of working memory. Proactive interference was found in the second experiment in the form of a dependency, beyond that expected on the basis of trial independent response bias, of first-choices from one trial on the first-choice emitted on the previous trial. Samples from the previous trial were not found to exert a significant influence on later trials. The magnitude of the intertrial association (Experiment 3) did not depend on the duration of the intertrial interval. In contrast, longer intertrial intervals and longer sample durations did facilitate choice accuracy, by strengthening the association between current samples and choices. These results are incompatible with a trace-decay and competition model; they suggest strongly that multiple influences act simultaneously and independently to control delayed matching-to-sample responding. These multiple influences include memory for the choice occurring on the previous trial, memory for the sample, and general effects of trial spacing.
Predicting mutant selection in competition experiments with ciprofloxacin-exposed Escherichia coli.
Khan, David D; Lagerbäck, Pernilla; Malmberg, Christer; Kristoffersson, Anders N; Wistrand-Yuen, Erik; Sha, Cao; Cars, Otto; Andersson, Dan I; Hughes, Diarmaid; Nielsen, Elisabet I; Friberg, Lena E
2018-03-01
Predicting competition between antibiotic-susceptible wild-type (WT) and less susceptible mutant (MT) bacteria is valuable for understanding how drug concentrations influence the emergence of resistance. Pharmacokinetic/pharmacodynamic (PK/PD) models predicting the rate and extent of takeover of resistant bacteria during different antibiotic pressures can thus be a valuable tool in improving treatment regimens. The aim of this study was to evaluate a previously developed mechanism-based PK/PD model for its ability to predict in vitro mixed-population experiments with competition between Escherichia coli (E. coli) WT and three well-defined E. coli resistant MTs when exposed to ciprofloxacin. Model predictions for each bacterial strain and ciprofloxacin concentration were made for in vitro static and dynamic time-kill experiments measuring CFU (colony forming units)/mL up to 24 h with concentrations close to or below the minimum inhibitory concentration (MIC), as well as for serial passage experiments with concentrations well below the MIC measuring ratios between the two strains with flow cytometry. The model was found to reasonably well predict the initial bacterial growth and killing of most static and dynamic time-kill competition experiments without need for parameter re-estimation. With parameter re-estimation of growth rates, an adequate fit was also obtained for the 6-day serial passage competition experiments. No bacterial interaction in growth was observed. This study demonstrates the predictive capacity of a PK/PD model and further supports the application of PK/PD modelling for prediction of bacterial kill in different settings, including resistance selection. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Construct validity of the ovine model in endoscopic sinus surgery training.
Awad, Zaid; Taghi, Ali; Sethukumar, Priya; Tolley, Neil S
2015-03-01
To demonstrate construct validity of the ovine model as a tool for training in endoscopic sinus surgery (ESS). Prospective, cross-sectional evaluation study. Over 18 consecutive months, trainees and experts were evaluated in their ability to perform a range of tasks (based on previous face validation and descriptive studies conducted by the same group) relating to ESS on the sheep-head model. Anonymized randomized video recordings of the above were assessed by two independent and blinded assessors. A validated assessment tool utilizing a five-point Likert scale was employed. Construct validity was calculated by comparing scores across training levels and experts using mean and interquartile range of global and task-specific scores. Subgroup analysis of the intermediate group ascertained previous experience. Nonparametric descriptive statistics were used, and analysis was carried out using SPSS version 21 (IBM, Armonk, NY). Reliability of the assessment tool was confirmed. The model discriminated well between different levels of expertise in global and task-specific scores. A positive correlation was noted between year in training and both global and task-specific scores (P < .001). Experience of the intermediate group was variable, and the number of ESS procedures performed under supervision had the highest impact on performance. This study describes an alternative model for ESS training and assessment. It is also the first to demonstrate construct validity of the sheep-head model for ESS training. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Iontophoretic transport of charged macromolecules across human sclera.
Chopra, Poonam; Hao, Jinsong; Li, S Kevin
2010-03-30
The mechanisms of transscleral iontophoresis have been investigated previously with small molecules in rabbit sclera. The objective of the present study was to examine transscleral iontophoretic transport of charged macromolecules across excised human sclera. Passive and 2mA iontophoretic transport experiments were conducted in side-by-side diffusion cells with human sclera. The effects of iontophoresis upon transscleral transport of model permeants bovine serum albumin (BSA) and polystyrene sulfonic acid (PSS) as well as a model drug bevacizumab (BEV) were determined. Passive and iontophoretic transport experiments of tetraethylammonium (TEA) and salicylic acid (SA) and passive transport experiments of the macromolecules served as the controls. The results of iontophoresis enhanced transport of TEA and SA across human sclera were consistent with those in a previous rabbit sclera study. For the iontophoretic transport of macromolecules BSA and BEV, higher iontophoretic fluxes were observed in anodal iontophoresis as compared to passive and cathodal iontophoresis. This suggests the importance of electroosmosis. For the polyelectrolyte PSS, higher iontophoretic flux was observed in cathodal iontophoresis compared to anodal iontophoresis. Both electroosmosis and electrophoresis affected iontophoretic fluxes of the macromolecules; the relative contributions of electroosmosis and electrophoresis were a function of molecular size and charge of the macromolecules. Copyright (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fomin, A. K.; Serebrov, A. P.; Zherebtsov, O. M.; Leonova, E. N.; Chaikovskii, M. E.
2017-01-01
We propose an experiment on search for neutron-antineutron oscillations based on the storage of ultracold neutrons (UCN) in a material trap. The sensitivity of the experiment mostly depends on the trap size and the amount of UCN in it. In Petersburg Nuclear Physics Institute (PNPI) a high-intensity UCN source is projected at the WWR-M reactor, which must provide UCN density 2-3 orders of magnitude higher than existing sources. The results of simulations of the designed experimental scheme show that the sensitivity can be increased by ˜ 10-40 times compared to sensitivity of previous experiment depending on the model of neutron reflection from walls.
Chai, Bian-fang; Yu, Jian; Jia, Cai-Yan; Yang, Tian-bao; Jiang, Ya-wen
2013-07-01
Latent community discovery that combines links and contents of a text-associated network has drawn more attention with the advance of social media. Most of the previous studies aim at detecting densely connected communities and are not able to identify general structures, e.g., bipartite structure. Several variants based on the stochastic block model are more flexible for exploring general structures by introducing link probabilities between communities. However, these variants cannot identify the degree distributions of real networks due to a lack of modeling of the differences among nodes, and they are not suitable for discovering communities in text-associated networks because they ignore the contents of nodes. In this paper, we propose a popularity-productivity stochastic block (PPSB) model by introducing two random variables, popularity and productivity, to model the differences among nodes in receiving links and producing links, respectively. This model has the flexibility of existing stochastic block models in discovering general community structures and inherits the richness of previous models that also exploit popularity and productivity in modeling the real scale-free networks with power law degree distributions. To incorporate the contents in text-associated networks, we propose a combined model which combines the PPSB model with a discriminative model that models the community memberships of nodes by their contents. We then develop expectation-maximization (EM) algorithms to infer the parameters in the two models. Experiments on synthetic and real networks have demonstrated that the proposed models can yield better performances than previous models, especially on networks with general structures.
NASA Astrophysics Data System (ADS)
Chai, Bian-fang; Yu, Jian; Jia, Cai-yan; Yang, Tian-bao; Jiang, Ya-wen
2013-07-01
Latent community discovery that combines links and contents of a text-associated network has drawn more attention with the advance of social media. Most of the previous studies aim at detecting densely connected communities and are not able to identify general structures, e.g., bipartite structure. Several variants based on the stochastic block model are more flexible for exploring general structures by introducing link probabilities between communities. However, these variants cannot identify the degree distributions of real networks due to a lack of modeling of the differences among nodes, and they are not suitable for discovering communities in text-associated networks because they ignore the contents of nodes. In this paper, we propose a popularity-productivity stochastic block (PPSB) model by introducing two random variables, popularity and productivity, to model the differences among nodes in receiving links and producing links, respectively. This model has the flexibility of existing stochastic block models in discovering general community structures and inherits the richness of previous models that also exploit popularity and productivity in modeling the real scale-free networks with power law degree distributions. To incorporate the contents in text-associated networks, we propose a combined model which combines the PPSB model with a discriminative model that models the community memberships of nodes by their contents. We then develop expectation-maximization (EM) algorithms to infer the parameters in the two models. Experiments on synthetic and real networks have demonstrated that the proposed models can yield better performances than previous models, especially on networks with general structures.
The role of patients' explanatory models and daily-lived experience in hypertension self-management.
Bokhour, Barbara G; Cohn, Ellen S; Cortés, Dharma E; Solomon, Jeffrey L; Fix, Gemmae M; Elwy, A Rani; Mueller, Nora; Katz, Lois A; Haidet, Paul; Green, Alexander R; Borzecki, Ann M; Kressin, Nancy R
2012-12-01
Uncontrolled hypertension remains a significant problem for many patients. Few interventions to improve patients' hypertension self-management have had lasting effects. Previous work has focused largely on patients' beliefs as predictors of behavior, but little is understood about beliefs as they are embedded in patients' social contexts. This study aims to explore how patients' "explanatory models" of hypertension (understandings of the causes, mechanisms or pathophysiology, course of illness, symptoms and effects of treatment) and social context relate to their reported daily hypertension self-management behaviors. Semi-structured qualitative interviews with a diverse group of patients at two large urban Veterans Administration Medical centers. PARTICIPANTS (OR PATIENTS OR SUBJECTS): African-American, white and Latino Veterans Affairs (VA) primary care patients with uncontrolled blood pressure. We conducted thematic analysis using tools of grounded theory to identify key themes surrounding patients' explanatory models, social context and hypertension management behaviors. Patients' perceptions of the cause and course of hypertension, experiences of hypertension symptoms, and beliefs about the effectiveness of treatment were related to different hypertension self-management behaviors. Moreover, patients' daily-lived experiences, such as an isolated lifestyle, serious competing health problems, a lack of habits and routines, barriers to exercise and prioritizing lifestyle choices, also interfered with optimal hypertension self-management. Designing interventions to improve patients' hypertension self-management requires consideration of patients' explanatory models and their daily-lived experience. We propose a new conceptual model - the dynamic model of hypertension self-management behavior - which incorporates these key elements of patients' experiences.
NASA Astrophysics Data System (ADS)
Bray, J. D.
2016-04-01
Various experiments have been conducted to search for the radio emission from ultra-high-energy (UHE) particles interacting in the lunar regolith. Although they have not yielded any detections, they have been successful in establishing upper limits on the flux of these particles. I present a review of these experiments in which I re-evaluate their sensitivity to radio pulses, accounting for effects which were neglected in the original reports, and compare them with prospective near-future experiments. In several cases, I find that past experiments were substantially less sensitive than previously believed. I apply existing analytic models to determine the resulting limits on the fluxes of UHE neutrinos and cosmic rays (CRs). In the latter case, I amend the model to accurately reflect the fraction of the primary particle energy which manifests in the resulting particle cascade, resulting in a substantial improvement in the estimated sensitivity to CRs. Although these models are in need of further refinement, in particular to incorporate the effects of small-scale lunar surface roughness, their application here indicates that a proposed experiment with the LOFAR telescope would test predictions of the neutrino flux from exotic-physics models, and an experiment with a phased-array feed on a large single-dish telescope such as the Parkes radio telescope would allow the first detection of CRs with this technique, with an expected rate of one detection per 140 h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yongliang; Kirkes, Leslie Dawn; Marrs, Cassandra
In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH) 3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH) 3(micro cr), avoiding the possibility of phase change.
Xiong, Yongliang; Kirkes, Leslie Dawn; Marrs, Cassandra
2017-12-01
In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH) 3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH) 3(micro cr), avoiding the possibility of phase change.
High flexibility of DNA on short length scales probed by atomic force microscopy.
Wiggins, Paul A; van der Heijden, Thijn; Moreno-Herrero, Fernando; Spakowitz, Andrew; Phillips, Rob; Widom, Jonathan; Dekker, Cees; Nelson, Philip C
2006-11-01
The mechanics of DNA bending on intermediate length scales (5-100 nm) plays a key role in many cellular processes, and is also important in the fabrication of artificial DNA structures, but previous experimental studies of DNA mechanics have focused on longer length scales than these. We use high-resolution atomic force microscopy on individual DNA molecules to obtain a direct measurement of the bending energy function appropriate for scales down to 5 nm. Our measurements imply that the elastic energy of highly bent DNA conformations is lower than predicted by classical elasticity models such as the worm-like chain (WLC) model. For example, we found that on short length scales, spontaneous large-angle bends are many times more prevalent than predicted by the WLC model. We test our data and model with an interlocking set of consistency checks. Our analysis also shows how our model is compatible with previous experiments, which have sometimes been viewed as confirming the WLC.
Single-layer model to predict the source/sink behavior of diffusion-controlled building materials.
Kumar, Deept; Little, John C
2003-09-01
Building materials may act as both sources of and sinks forvolatile organic compounds (VOCs) in indoor air. A strategy to characterize the rate of absorption and desorption of VOCs by diffusion-controlled building materials is validated. A previously developed model that predicts mass transfer between a flat slab of material and the well-mixed air within a chamber or room is extended. The generalized model allows a nonuniform initial material-phase concentration and a transient influent gas-phase concentration to be simultaneously considered. An analytical solution to the more general model is developed. Experimental data are obtained by placing samples of vinyl flooring inside a small stainless steel chamber and exposing them to absorption/desorption cycles of n-dodecane and phenol. Measured values for the material-air partition coefficient and the material-phase diffusion coefficient were obtained previously in a series of completely independent experiments. The a priori model predictions are in close agreement with the observed experimental data.
Lateral specialization in unilateral spatial neglect: a cognitive robotics model.
Conti, Daniela; Di Nuovo, Santo; Cangelosi, Angelo; Di Nuovo, Alessandro
2016-08-01
In this paper, we present the experimental results of an embodied cognitive robotic approach for modelling the human cognitive deficit known as unilateral spatial neglect (USN). To this end, we introduce an artificial neural network architecture designed and trained to control the spatial attentional focus of the iCub robotic platform. Like the human brain, the architecture is divided into two hemispheres and it incorporates bio-inspired plasticity mechanisms, which allow the development of the phenomenon of the specialization of the right hemisphere for spatial attention. In this study, we validate the model by replicating a previous experiment with human patients affected by the USN and numerical results show that the robot mimics the behaviours previously exhibited by humans. We also simulated recovery after the damage to compare the performance of each of the two hemispheres as additional validation of the model. Finally, we highlight some possible advantages of modelling cognitive dysfunctions of the human brain by means of robotic platforms, which can supplement traditional approaches for studying spatial impairments in humans.
Speeded Probed Recall Is Affected by Grouping.
Morra, Sergio; Epidendio, Valentina
2015-01-01
Most of the evidence from previous studies on speeded probed recall supported primacy-gradient models of serial order representation. Two experiments investigated the effect of grouping on speeded probed recall. Six-word lists, followed by a number between 1 and 6, were presented for speeded recall of the word in the position indicated by the number. Grouping was manipulated through interstimulus intervals. In both experiments, a significant Position × Grouping interaction was found in RT. It is concluded that the results are not consistent with models of order representation only based on a primacy gradient. Possible alternative representations of serial order are also discussed; a case is made for a holistic order representation.
Protection characteristics of a Faraday cage compromised by lightning burnthrough.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warne, Larry Kevin; Bystrom, Edward; Jorgenson, Roy Eberhardt
2012-01-01
A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scopemore » and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).« less
Sensory, Cognitive, and Sensorimotor Learning Effects in Recognition Memory for Music.
Mathias, Brian; Tillmann, Barbara; Palmer, Caroline
2016-08-01
Recent research suggests that perception and action are strongly interrelated and that motor experience may aid memory recognition. We investigated the role of motor experience in auditory memory recognition processes by musicians using behavioral, ERP, and neural source current density measures. Skilled pianists learned one set of novel melodies by producing them and another set by perception only. Pianists then completed an auditory memory recognition test during which the previously learned melodies were presented with or without an out-of-key pitch alteration while the EEG was recorded. Pianists indicated whether each melody was altered from or identical to one of the original melodies. Altered pitches elicited a larger N2 ERP component than original pitches, and pitches within previously produced melodies elicited a larger N2 than pitches in previously perceived melodies. Cortical motor planning regions were more strongly activated within the time frame of the N2 following altered pitches in previously produced melodies compared with previously perceived melodies, and larger N2 amplitudes were associated with greater detection accuracy following production learning than perception learning. Early sensory (N1) and later cognitive (P3a) components elicited by pitch alterations correlated with predictions of sensory echoic and schematic tonality models, respectively, but only for the perception learning condition, suggesting that production experience alters the extent to which performers rely on sensory and tonal recognition cues. These findings provide evidence for distinct time courses of sensory, schematic, and motoric influences within the same recognition task and suggest that learned auditory-motor associations influence responses to out-of-key pitches.
Aerosol physical properties from satellite horizon inversion
NASA Technical Reports Server (NTRS)
Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.
1973-01-01
The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.
Leave or stay? Battered women's decision after intimate partner violence.
Kim, Jinseok; Gray, Karen A
2008-10-01
Battered women's reasons for staying with or leaving their male partners are varied and complex. Using data from the Domestic Violence Experience in Omaha, Nebraska, a discrete-time hazard model was employed to examine a woman's decision based on four factors: financial independence, witness of parental violence, psychological factors, and the police response to the domestic violence call. Findings regarding the first three factors are consistent with previous findings. However, a negative police response did not deter a woman from leaving, which is a different finding from previous studies.
Multiscale Modelling and Analysis of Collective Decision Making in Swarm Robotics
Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey
2014-01-01
We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable. PMID:25369026
NASA Astrophysics Data System (ADS)
Leguy, G.; Lipscomb, W. H.; Asay-Davis, X.
2017-12-01
Ice sheets and ice shelves are linked by the transition zone, the region where the grounded ice lifts off the bedrock and begins to float. Adequate resolution of the transition zone is necessary for numerically accurate ice sheet-ice shelf simulations. In previous work we have shown that by using a simple parameterization of the basal hydrology, a smoother transition in basal water pressure between floating and grounded ice improves the numerical accuracy of a one-dimensional vertically integrated fixed-grid model. We used a set of experiments based on the Marine Ice Sheet Model Intercomparison Project (MISMIP) to show that reliable grounding-line dynamics at resolutions 1 km is achievable. In this presentation we use the Community Ice Sheet Model (CISM) to demonstrate how the representation of basal lubrication impacts three-dimensional models using the MISMIP-3D and MISMIP+ experiments. To this end we will compare three different Stokes approximations: the Shallow Shelf Approximation (SSA), a depth-integrated higher-order approximation, and the Blatter-Pattyn model. The results from our one-dimensional model carry over to the 3-D models; a resolution of 1 km (and in some cases 2 km) remains sufficient to accurately simulate grounding-line dynamics.
76 FR 80831 - Clarification of Policy Regarding Approved Training Programs
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... approval multiple curriculums for a particular crewmember position and aircraft make/model/variant. For example, a part 135 certificate holder may have a an initial new-hire curriculum designed to meet the... may then also apply for a reduced new hire curriculum for pilots that have previous experience as a...
Reanalysis of Clause Boundaries in Japanese as a Constraint-Driven Process.
ERIC Educational Resources Information Center
Miyamoto, Edson T.
2003-01-01
Reports on two experiments that focus on clause boundaries in Japanese that suggest that minimal change restriction is unnecessary to characterize reanalysis. Proposes that the data and previous observations are more naturally explained by a constraint-driven model in which revisions are performed only when required by parsing constraints.…
Burning of forest materials under late Paleozoic high atmospheric oxygen levels
Richard A., Jr. Wildman; Leo J. Hickey; Matthew B. Dickinson; Robert A. Berner; Jennifer M. Robinson; Michael Dietrich; Robert H. Essenhigh; Craig B. Wildman
2004-01-01
Theoretical models suggest that atmospheric oxygen reached concentrations as high as 35% O2 during the past 550 m.y. Previous burning experiments using strips of paper have challenged this idea, concluding that ancient wildfires would have decimated plant life if O2 significantly exceeded its present level of 21%. New...
ERIC Educational Resources Information Center
Chapman, Dane M.; And Others
Three critical procedural skills in emergency medicine were evaluated using three assessment modalities--written, computer, and animal model. The effects of computer practice and previous procedure experience on skill competence were also examined in an experimental sequential assessment design. Subjects were six medical students, six residents,…
Matching Voice and Face Identity from Static Images
ERIC Educational Resources Information Center
Mavica, Lauren W.; Barenholtz, Elan
2013-01-01
Previous research has suggested that people are unable to correctly choose which unfamiliar voice and static image of a face belong to the same person. Here, we present evidence that people can perform this task with greater than chance accuracy. In Experiment 1, participants saw photographs of two, same-gender models, while simultaneously…
Student Outcomes Assessment of a Logistics and Supply Chair Management Major
ERIC Educational Resources Information Center
Walter, Clyde Kenneth
2012-01-01
Assessment of specialized programs, such as logistics and supply chain management program described here, may pose challenges because previous experience are less widely shared than in the more mainline subjects. This case study provides one model that may guide other faculties facing a similar assignment. The report detailed the steps followed to…
A Model for Analyzing Precepting in the Clinical Setting.
ERIC Educational Resources Information Center
Edelstein, Ronald A.
Teaching strategies used by precepters at a hospital-based family medicine center were investigated with seven preceptors who had previous teaching experiences and were board certified (six in family medicine). A third-year senior resident presented and discussed two patient cases to the preceptors in separate one-to-one teaching sessions, and the…
ERIC Educational Resources Information Center
Blunt, Kesha
2007-01-01
Migration across national borders has resulted in demographic changes in the United States, causing the country to become more multi-ethnic. This presents considerable challenges for graduate level educators who need to be responsive to the unique academic needs of diverse populations by considering students' previous experiences, values, and…
What Influences College Students to Continue Using Business Simulation Games? The Taiwan Experience
ERIC Educational Resources Information Center
Tao, Yu-Hui; Cheng, Chieh-Jen; Sun, Szu-Yuan
2009-01-01
Previous studies have pointed out that computer games could improve students' motivation to learn, but these studies have mostly targeted teachers or students in elementary and secondary education and are without user adoption models. Because business and management institutions in higher education have been increasingly using educational…
Children Perseverate to a Human's Actions but Not to a Robot's Actions
ERIC Educational Resources Information Center
Moriguchi, Yusuke; Kanda, Takayuki; Ishiguro, Hiroshi; Itakura, Shoji
2010-01-01
Previous research has shown that young children commit perseverative errors from their observation of another person's actions. The present study examined how social observation would lead children to perseverative tendencies, using a robot. In Experiment 1, preschoolers watched either a human model or a robot sorting cards according to one…
Active machine learning-driven experimentation to determine compound effects on protein patterns
Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F
2016-01-01
High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance. DOI: http://dx.doi.org/10.7554/eLife.10047.001 PMID:26840049
Model-based high-throughput design of ion exchange protein chromatography.
Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo
2016-08-12
This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process development. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Junker, Philipp; Jaeger, Stefanie; Kastner, Oliver; Eggeler, Gunther; Hackl, Klaus
2015-07-01
In this work, we present simulations of shape memory alloys which serve as first examples demonstrating the predicting character of energy-based material models. We begin with a theoretical approach for the derivation of the caloric parts of the Helmholtz free energy. Afterwards, experimental results for DSC measurements are presented. Then, we recall a micromechanical model based on the principle of the minimum of the dissipation potential for the simulation of polycrystalline shape memory alloys. The previously determined caloric parts of the Helmholtz free energy close the set of model parameters without the need of parameter fitting. All quantities are derived directly from experiments. Finally, we compare finite element results for tension tests to experimental data and show that the model identified by thermal measurements can predict mechanically induced phase transformations and thus rationalize global material behavior without any further assumptions.
Mesoscopic modeling of DNA denaturation rates: Sequence dependence and experimental comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlen, Oda, E-mail: oda.dahlen@ntnu.no; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no
Using rare event simulation techniques, we calculated DNA denaturation rate constants for a range of sequences and temperatures for the Peyrard-Bishop-Dauxois (PBD) model with two different parameter sets. We studied a larger variety of sequences compared to previous studies that only consider DNA homopolymers and DNA sequences containing an equal amount of weak AT- and strong GC-base pairs. Our results show that, contrary to previous findings, an even distribution of the strong GC-base pairs does not always result in the fastest possible denaturation. In addition, we applied an adaptation of the PBD model to study hairpin denaturation for which experimentalmore » data are available. This is the first quantitative study in which dynamical results from the mesoscopic PBD model have been compared with experiments. Our results show that present parameterized models, although giving good results regarding thermodynamic properties, overestimate denaturation rates by orders of magnitude. We believe that our dynamical approach is, therefore, an important tool for verifying DNA models and for developing next generation models that have higher predictive power than present ones.« less
Chappell, Jackie; Hawes, Nick
2012-01-01
Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended. PMID:22927571
NASA Astrophysics Data System (ADS)
Sonntag, Sebastian; Pongratz, Julia; Reick, Christian H.; Schmidt, Hauke
2016-06-01
We assess the potential and possible consequences for the global climate of a strong reforestation scenario for this century. We perform model experiments using the Max Planck Institute Earth System Model (MPI-ESM), forced by fossil-fuel CO2 emissions according to the high-emission scenario Representative Concentration Pathway (RCP) 8.5, but using land use transitions according to RCP4.5, which assumes strong reforestation. Thereby, we isolate the land use change effects of the RCPs from those of other anthropogenic forcings. We find that by 2100 atmospheric CO2 is reduced by 85 ppm in the reforestation model experiment compared to the reference RCP8.5 model experiment. This reduction is higher than previous estimates and is due to increased forest cover in combination with climate and CO2 feedbacks. We find that reforestation leads to global annual mean temperatures being lower by 0.27 K in 2100. We find large annual mean warming reductions in sparsely populated areas, whereas reductions in temperature extremes are also large in densely populated areas.
Chappell, Jackie; Hawes, Nick
2012-10-05
Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended.
Shoe-Floor Interactions in Human Walking With Slips: Modeling and Experiments.
Trkov, Mitja; Yi, Jingang; Liu, Tao; Li, Kang
2018-03-01
Shoe-floor interactions play a crucial role in determining the possibility of potential slip and fall during human walking. Biomechanical and tribological parameters influence the friction characteristics between the shoe sole and the floor and the existing work mainly focus on experimental studies. In this paper, we present modeling, analysis, and experiments to understand slip and force distributions between the shoe sole and floor surface during human walking. We present results for both soft and hard sole material. The computational approaches for slip and friction force distributions are presented using a spring-beam networks model. The model predictions match the experimentally observed sole deformations with large soft sole deformation at the beginning and the end stages of the stance, which indicates the increased risk for slip. The experiments confirm that both the previously reported required coefficient of friction (RCOF) and the deformation measurements in this study can be used to predict slip occurrence. Moreover, the deformation and force distribution results reported in this study provide further understanding and knowledge of slip initiation and termination under various biomechanical conditions.
Müller, Dirk K; Pampel, André; Möller, Harald E
2013-05-01
Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hackett, J. E.; Sampath, S.; Phillips, C. G.
1981-01-01
The development of an improved jet-in-crossflow model for estimating wind tunnel blockage and angle-of-attack interference is described. Experiments showed that the simpler existing models fall seriously short of representing far-field flows properly. A new, vortex-source-doublet (VSD) model was therefore developed which employs curved trajectories and experimentally-based singularity strengths. The new model is consistent with existing and new experimental data and it predicts tunnel wall (i.e. far-field) pressures properly. It is implemented as a preprocessor to the wall-pressure-signature-based tunnel interference predictor. The supporting experiments and theoretical studies revealed some new results. Comparative flow field measurements with 1-inch "free-air" and 3-inch impinging jets showed that vortex penetration into the flow, in diameters, was almost unaltered until 'hard' impingement occurred. In modeling impinging cases, a 'plume redirection' term was introduced which is apparently absent in previous models. The effects of this term were found to be very significant.
Investigation of wing crack formation with a combined phase-field and experimental approach
NASA Astrophysics Data System (ADS)
Lee, Sanghyun; Reber, Jacqueline E.; Hayman, Nicholas W.; Wheeler, Mary F.
2016-08-01
Fractures that propagate off of weak slip planes are known as wing cracks and often play important roles in both tectonic deformation and fluid flow across reservoir seals. Previous numerical models have produced the basic kinematics of wing crack openings but generally have not been able to capture fracture geometries seen in nature. Here we present both a phase-field modeling approach and a physical experiment using gelatin for a wing crack formation. By treating the fracture surfaces as diffusive zones instead of as discontinuities, the phase-field model does not require consideration of unpredictable rock properties or stress inhomogeneities around crack tips. It is shown by benchmarking the models with physical experiments that the numerical assumptions in the phase-field approach do not affect the final model predictions of wing crack nucleation and growth. With this study, we demonstrate that it is feasible to implement the formation of wing cracks in large scale phase-field reservoir models.
NASA Astrophysics Data System (ADS)
Wong, Jessina; Jahn, David A.; Giovambattista, Nicolas
2015-08-01
We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - TMCT)-γ as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, TMCT = 209 K and γ = 2.14, very close to the corresponding experimental values TMCT = 221 K and γ = 2.2.
Wong, Jessina; Jahn, David A; Giovambattista, Nicolas
2015-08-21
We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - T(MCT))(-γ) as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, T(MCT) = 209 K and γ = 2.14, very close to the corresponding experimental values T(MCT) = 221 K and γ = 2.2.
Experience and Sentence Processing: Statistical Learning and Relative Clause Comprehension
Wells, Justine B.; Christiansen, Morten H.; Race, David S.; Acheson, Daniel J.; MacDonald, Maryellen C.
2009-01-01
Many explanations of the difficulties associated with interpreting object relative clauses appeal to the demands that object relatives make on working memory. MacDonald and Christiansen (2002) pointed to variations in reading experience as a source of differences, arguing that the unique word order of object relatives makes their processing more difficult and more sensitive to the effects of previous experience than the processing of subject relatives. This hypothesis was tested in a large-scale study manipulating reading experiences of adults over several weeks. The group receiving relative clause experience increased reading speeds for object relatives more than for subject relatives, whereas a control experience group did not. The reading time data were compared to performance of a computational model given different amounts of experience. The results support claims for experience-based individual differences and an important role for statistical learning in sentence comprehension processes. PMID:18922516
Larsen, Aud; Egge, Jorun K; Nejstgaard, Jens C; Di Capua, Iole; Thyrhaug, Runar; Bratbak, Gunnar; Thingstad, T Frede
2015-03-01
A minimum mathematical model of the marine pelagic microbial food web has previously shown to be able to reproduce central aspects of observed system response to different bottom-up manipulations in a mesocosm experiment Microbial Ecosystem Dynamics (MEDEA) in Danish waters. In this study, we apply this model to two mesocosm experiments (Polar Aquatic Microbial Ecology (PAME)-I and PAME-II) conducted at the Arctic location Kongsfjorden, Svalbard. The different responses of the microbial community to similar nutrient manipulation in the three mesocosm experiments may be described as diatom-dominated (MEDEA), bacteria-dominated (PAME-I), and flagellated-dominated (PAME-II). When allowing ciliates to be able to feed on small diatoms, the model describing the diatom-dominated MEDEA experiment give a bacteria-dominated response as observed in PAME I in which the diatom community comprised almost exclusively small-sized cells. Introducing a high initial mesozooplankton stock as observed in PAME-II, the model gives a flagellate-dominated response in accordance with the observed response also of this experiment. The ability of the model originally developed for temperate waters to reproduce population dynamics in a 10°C colder Arctic fjord, does not support the existence of important shifts in population balances over this temperature range. Rather, it suggests a quite resilient microbial food web when adapted to in situ temperature. The sensitivity of the model response to its mesozooplankton component suggests, however, that the seasonal vertical migration of Arctic copepods may be a strong forcing factor on Arctic microbial food webs.
Larsen, Aud; Egge, Jorun K; Nejstgaard, Jens C; Di Capua, Iole; Thyrhaug, Runar; Bratbak, Gunnar; Thingstad, T Frede
2015-01-01
A minimum mathematical model of the marine pelagic microbial food web has previously shown to be able to reproduce central aspects of observed system response to different bottom-up manipulations in a mesocosm experiment Microbial Ecosystem Dynamics (MEDEA) in Danish waters. In this study, we apply this model to two mesocosm experiments (Polar Aquatic Microbial Ecology (PAME)-I and PAME-II) conducted at the Arctic location Kongsfjorden, Svalbard. The different responses of the microbial community to similar nutrient manipulation in the three mesocosm experiments may be described as diatom-dominated (MEDEA), bacteria-dominated (PAME-I), and flagellated-dominated (PAME-II). When allowing ciliates to be able to feed on small diatoms, the model describing the diatom-dominated MEDEA experiment give a bacteria-dominated response as observed in PAME I in which the diatom community comprised almost exclusively small-sized cells. Introducing a high initial mesozooplankton stock as observed in PAME-II, the model gives a flagellate-dominated response in accordance with the observed response also of this experiment. The ability of the model originally developed for temperate waters to reproduce population dynamics in a 10°C colder Arctic fjord, does not support the existence of important shifts in population balances over this temperature range. Rather, it suggests a quite resilient microbial food web when adapted to in situ temperature. The sensitivity of the model response to its mesozooplankton component suggests, however, that the seasonal vertical migration of Arctic copepods may be a strong forcing factor on Arctic microbial food webs. PMID:26074626
McDonald, Sarah D; Sword, Wendy; Eryuzlu, Leyla E; Biringer, Anne B
2014-09-26
Group prenatal care (GPC) originated in 1994 as an innovative model of prenatal care delivery. In GPC, eight to twelve pregnant women of similar gestational age meet with a health care provider to receive their prenatal check-up and education in a group setting. GPC offers significant health benefits in comparison to traditional, one-on-one prenatal care. Women in GPC actively engage in their healthcare and experience a supportive network with one another. The purpose of this study was to better understand the GPC experience of women and care providers in a lower risk group of women than often has been previously studied. This qualitative descriptive study collected data through three focus group interviews--two with women who had completed GPC at a midwifery clinic in Ontario, Canada and one with the midwives at the clinic. Data was analyzed through open coding to identify themes. Nine women and five midwives participated in the focus groups, from which eight categories as well as further subcategories were identified: The women and midwives noted reasons for participating (connections, education, efficiency). Participants suggested both benefits (learning from the group, normalizing the pregnancy experience, preparedness for labour and delivery, and improved relationships as all contributing to positive health outcomes) and concerns with GPC (e.g. sufficient time with the midwife) which generally diminished with experience. Suggestions for change focused on content, environment, partners, and access to the midwives. Challenges to providing GPC included scheduling and systems-level issues such as funding and regulation. Flexibility and commitment to the model facilitated it. Comparison with other models of care identified less of a relationship with the midwife, but more information received. In promoting GPC, women would emphasize the philosophy of care to other women and the midwives would promote the reduction in workload and women's independence to colleagues. Overall, women and midwives expressed a high level of satisfaction with their GPC experience. This study gained insight into previously unexplored areas of the GPC experience, perceptions of processes that contribute to positive health outcomes, strategies to promote GPC and elements that enhance the feasibility of GPC.
Matching novel face and voice identity using static and dynamic facial images.
Smith, Harriet M J; Dunn, Andrew K; Baguley, Thom; Stacey, Paula C
2016-04-01
Research investigating whether faces and voices share common source identity information has offered contradictory results. Accurate face-voice matching is consistently above chance when the facial stimuli are dynamic, but not when the facial stimuli are static. We tested whether procedural differences might help to account for the previous inconsistencies. In Experiment 1, participants completed a sequential two-alternative forced choice matching task. They either heard a voice and then saw two faces or saw a face and then heard two voices. Face-voice matching was above chance when the facial stimuli were dynamic and articulating, but not when they were static. In Experiment 2, we tested whether matching was more accurate when faces and voices were presented simultaneously. The participants saw two face-voice combinations, presented one after the other. They had to decide which combination was the same identity. As in Experiment 1, only dynamic face-voice matching was above chance. In Experiment 3, participants heard a voice and then saw two static faces presented simultaneously. With this procedure, static face-voice matching was above chance. The overall results, analyzed using multilevel modeling, showed that voices and dynamic articulating faces, as well as voices and static faces, share concordant source identity information. It seems, therefore, that above-chance static face-voice matching is sensitive to the experimental procedure employed. In addition, the inconsistencies in previous research might depend on the specific stimulus sets used; our multilevel modeling analyses show that some people look and sound more similar than others.
NASA Astrophysics Data System (ADS)
Majdalani, Samer; Guinot, Vincent; Delenne, Carole; Gebran, Hicham
2018-06-01
This paper is devoted to theoretical and experimental investigations of solute dispersion in heterogeneous porous media. Dispersion in heterogenous porous media has been reported to be scale-dependent, a likely indication that the proposed dispersion models are incompletely formulated. A high quality experimental data set of breakthrough curves in periodic model heterogeneous porous media is presented. In contrast with most previously published experiments, the present experiments involve numerous replicates. This allows the statistical variability of experimental data to be accounted for. Several models are benchmarked against the data set: the Fickian-based advection-dispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly proposed transport model based on pure advection. A salient property of the latter model is that its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour for large time scales. Model performance is assessed using a novel objective function accounting for the statistical variability of the experimental data set, while putting equal emphasis on both small and large time scale behaviours. Besides being as accurate as the other models, the new purely advective model has the advantages that (i) it does not exhibit the undesirable effects associated with the usual Fickian operator (namely the infinite solute front propagation speed), and (ii) it allows dispersive transport to be simulated on every heterogeneity scale using scale-independent parameters.
NASA Astrophysics Data System (ADS)
Chinoune, M.; Houamer, S.; Dal Cappello, C.; Galstyan, A.
2016-10-01
Recently Isik et al (2016 J. Phys B: At. Mol. Opt. Phys. 49 065203) performed measurements of the triple differential cross sections (TDCSs) of methane by electron impact. Their data clearly show that post-collisional interaction (PCI) effects are present in the angular distributions of ejected electrons. A model describing the ejected electron by a distorted wave and including PCI is applied for the single ionization of atomic targets and for methane. Extensive comparisons between this model and other previous models are made with available experiments.
Evaluation of observed blast loading effects on NIF x-ray diagnostic collimators.
Masters, N D; Fisher, A; Kalantar, D; Prasad, R; Stölken, J S; Wlodarczyk, C
2014-11-01
We present the "debris wind" models used to estimate the impulsive load to which x-ray diagnostics and other structures are subject during National Ignition Facility experiments. These models are used as part of the engineering design process. Isotropic models, based on simulations or simplified "expanding shell" models, are augmented by debris wind multipliers to account for directional anisotropy. We present improvements to these multipliers based on measurements of the permanent deflections of diagnostic components: 4× for the polar direction and 2× within the equatorial plane-the latter relaxing the previous heuristic debris wind multiplier.
Compaction of North-sea chalk by pore-failure and pressure solution in a producing reservoir
NASA Astrophysics Data System (ADS)
Keszthelyi, Daniel; Dysthe, Dag; Jamtveit, Bjorn
2016-02-01
The Ekofisk field, Norwegian North sea,is an example of compacting chalk reservoir with considerable subsequent seafloor subsidence due to petroleum production. Previously, a number of models were created to predict the compaction using different phenomenological approaches. Here we present a different approach, we use a new creep model based on microscopic mechanisms with no fitting parameters to predict strain rate at core scale and at reservoir scale. The model is able to reproduce creep experiments and the magnitude of the observed subsidence making it the first microstructural model which can explain the Ekofisk compaction.
Classifying medical relations in clinical text via convolutional neural networks.
He, Bin; Guan, Yi; Dai, Rui
2018-05-16
Deep learning research on relation classification has achieved solid performance in the general domain. This study proposes a convolutional neural network (CNN) architecture with a multi-pooling operation for medical relation classification on clinical records and explores a loss function with a category-level constraint matrix. Experiments using the 2010 i2b2/VA relation corpus demonstrate these models, which do not depend on any external features, outperform previous single-model methods and our best model is competitive with the existing ensemble-based method. Copyright © 2018. Published by Elsevier B.V.
Laboratory constraints on chameleon dark energy and power-law fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steffen, Jason H.; /Fermilab; Upadhye, Amol
2010-10-01
We report results from the GammeV Chameleon Afterglow Search - a search for chameleon particles created via photon/chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of chameleon power-law models and dark energy models not previously explored. These results exclude five orders of magnitude in the coupling of chameleons to photons covering a range of four orders of magnitude in chameleon effective mass and, for individual chameleon models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.
NASA Astrophysics Data System (ADS)
Aur, K. A.; Poppeliers, C.; Preston, L. A.
2017-12-01
The Source Physics Experiment (SPE) consists of a series of underground chemical explosions at the Nevada National Security Site (NNSS) designed to gain an improved understanding of the generation and propagation of physical signals in the near and far field. Characterizing the acoustic and infrasound source mechanism from underground explosions is of great importance to underground explosion monitoring. To this end we perform full waveform source inversion of infrasound data collected from the SPE-6 experiment at distances from 300 m to 6 km and frequencies up to 20 Hz. Our method requires estimating the state of the atmosphere at the time of each experiment, computing Green's functions through these atmospheric models, and subsequently inverting the observed data in the frequency domain to obtain a source time function. To estimate the state of the atmosphere at the time of the experiment, we utilize the Weather Research and Forecasting - Data Assimilation (WRF-DA) modeling system to derive a unified atmospheric state model by combining Global Energy and Water Cycle Experiment (GEWEX) Continental-scale International Project (GCIP) data and locally obtained sonde and surface weather observations collected at the time of the experiment. We synthesize Green's functions through these atmospheric models using Sandia's moving media acoustic propagation simulation suite (TDAAPS). These models include 3-D variations in topography, temperature, pressure, and wind. We compare inversion results using the atmospheric models derived from the unified weather models versus previous modeling results and discuss how these differences affect computed source waveforms with respect to observed waveforms at various distances. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Modelling of hydrogen conditioning, retention and release in Tore Supra
NASA Astrophysics Data System (ADS)
Grisolia, C.; Horton, L. D.; Ehrenberg, J. K.
1995-04-01
A model based on a local mixing model has been previously developed at JET to explain the recovery of tritium after the first PTE experiment. This model is extended by a 0D plasma particle balance model and is applied to data from Tore Supra wall saturation experiments. With only two free parameters, representing the diffusion of hydrogen atoms and the volume recombination process between hydrogen atoms into molecules, the model can reproduce experimental data. The time evolution of the after-shot outgassing and the integral amount of particles recovered after the shot (assuming 13 m 2 of interacting surfaces between plasma and walls) are in good agreement with the experimental observations. The same set of parameters allows the model to simulate after-shot outgassing of five consecutive discharges. However, the model fails to predict the observed saturation of the walls by the plasma. Results from helium glow discharge (HeGD) can only be partially described. Good agreement with the experimental hydrogen release and its time evolution during HeGD is observed, but the model fails to describe the stability of a saturated graphite wall.
Howell, Lydia Pleotis; Joad, Jesse P; Callahan, Edward; Servis, Gregg; Bonham, Ann C
2009-08-01
Multigenerational teams are essential to the missions of academic health centers (AHCs). Generational forecasting using Strauss and Howe's predictive model, "the generational diagonal," can be useful for anticipating and addressing issues so that each generation is effective. Forecasts are based on the observation that cyclical historical events are experienced by all generations, but the response of each generation differs according to its phase of life and previous defining experiences. This article relates Strauss and Howe's generational forecasts to AHCs. Predicted issues such as work-life balance, indebtedness, and succession planning have existed previously, but they now have different causes or consequences because of the unique experiences and life stages of current generations. Efforts to address these issues at the authors' AHC include a work-life balance workgroup, expanded leave, and intramural grants.
Preliminary SAGE Simulations of Volcanic Jets Into a Stratified Atmosphere
NASA Astrophysics Data System (ADS)
Peterson, A. H.; Wohletz, K. H.; Ogden, D. E.; Gisler, G. R.; Glatzmaier, G. A.
2007-12-01
The SAGE (SAIC Adaptive Grid Eulerian) code employs adaptive mesh refinement in solving Eulerian equations of complex fluid flow desirable for simulation of volcanic eruptions. The goal of modeling volcanic eruptions is to better develop a code's predictive capabilities in order to understand the dynamics that govern the overall behavior of real eruption columns. To achieve this goal, we focus on the dynamics of underexpended jets, one of the fundamental physical processes important to explosive eruptions. Previous simulations of laboratory jets modeled in cylindrical coordinates were benchmarked with simulations in CFDLib (Los Alamos National Laboratory), which solves the full Navier-Stokes equations (includes viscous stress tensor), and showed close agreement, indicating that adaptive mesh refinement used in SAGE may offset the need for explicit calculation of viscous dissipation.We compare gas density contours of these previous simulations with the same initial conditions in cylindrical and Cartesian geometries to laboratory experiments to determine both the validity of the model and the robustness of the code. The SAGE results in both geometries are within several percent of the experiments for position and density of the incident (intercepting) and reflected shocks, slip lines, shear layers, and Mach disk. To expand our study into a volcanic regime, we simulate large-scale jets in a stratified atmosphere to establish the code's ability to model a sustained jet into a stable atmosphere.
Binocular contrast discrimination needs monocular multiplicative noise
Ding, Jian; Levi, Dennis M.
2016-01-01
The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms. PMID:26982370
Binocular contrast discrimination needs monocular multiplicative noise.
Ding, Jian; Levi, Dennis M
2016-01-01
The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms.
Quantum ratchet effect in a time non-uniform double-kicked model
NASA Astrophysics Data System (ADS)
Chen, Lei; Wang, Zhen-Yu; Hui, Wu; Chu, Cheng-Yu; Chai, Ji-Min; Xiao, Jin; Zhao, Yu; Ma, Jin-Xiang
2017-07-01
The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.
Compact continuum brain model for human electroencephalogram
NASA Astrophysics Data System (ADS)
Kim, J. W.; Shin, H.-B.; Robinson, P. A.
2007-12-01
A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reedlunn, Benjamin
Room D was an in-situ, isothermal, underground experiment conducted at the Waste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under-predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recentlymore » by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under-predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reedlunn, Benjamin
Room D was an in-situ, isothermal, underground experiment conducted at theWaste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recentlymore » by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, Paolo; Theiler, C.; Fasoli, A.
A methodology for plasma turbulence code validation is discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The present work extends the analysis carried out in a previous paper [P. Ricci et al., Phys. Plasmas 16, 055703 (2009)] where the validation observables were introduced. Here, it is discussed how to quantify the agreement between experiments and simulations with respect to each observable, how to define a metric to evaluate this agreement globally, and - finally - how to assess the quality of a validation procedure. The methodology is then applied to the simulation of the basic plasmamore » physics experiment TORPEX [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulation models.« less
Note taking, review, memory, and comprehension.
Bohay, Mark; Blakely, Daniel P; Tamplin, Andrea K; Radvansky, Gabriel A
2011-01-01
In previous work assessing memory at various levels of representation, namely the surface form, textbase, and situation model levels, participants read texts but were otherwise not actively engaged with the texts. The current study tested the influence of active engagement with the material via note taking, along with the opportunity to review such notes, and the modality of presentation (text vs. spoken). The influence of these manipulations was assessed both immediately and 1 week later. In Experiment 1 participants read a text, whereas in Experiment 2 participants watched a video recording of the material being read as a lecture. For each experiment the opportunity to take notes was manipulated within participants, and the opportunity to review these notes before the test was manipulated between participants. Note taking improved performance at the situation model level in both experiments, although there was also some suggestion of benefit for the surface form. Thus, active engagement with material, such as note taking, appears to have the greatest benefit at the deeper levels of understanding.
Results from phase 1 of the HAYSTAC microwave cavity axion experiment
NASA Astrophysics Data System (ADS)
Zhong, L.; Al Kenany, S.; Backes, K. M.; Brubaker, B. M.; Cahn, S. B.; Carosi, G.; Gurevich, Y. V.; Kindel, W. F.; Lamoreaux, S. K.; Lehnert, K. W.; Lewis, S. M.; Malnou, M.; Maruyama, R. H.; Palken, D. A.; Rapidis, N. M.; Root, J. R.; Simanovskaia, M.; Shokair, T. M.; Speller, D. H.; Urdinaran, I.; van Bibber, K. A.
2018-05-01
We report on the results from a search for dark matter axions with the HAYSTAC experiment using a microwave cavity detector at frequencies between 5.6 and 5.8 GHz. We exclude axion models with two photon coupling ga γ γ≳2 ×10-14 GeV-1 , a factor of 2.7 above the benchmark KSVZ model over the mass range 23.15
Virtual geotechnical laboratory experiments using a simulator
NASA Astrophysics Data System (ADS)
Penumadu, Dayakar; Zhao, Rongda; Frost, David
2000-04-01
The details of a test simulator that provides a realistic environment for performing virtual laboratory experimentals in soil mechanics is presented. A computer program Geo-Sim that can be used to perform virtual experiments, and allow for real-time observations of material response is presented. The results of experiments, for a given set of input parameters, are obtained with the test simulator using well-trained artificial neural-network-based soil models for different soil types and stress paths. Multimedia capabilities are integrated in Geo-Sim, using software that links and controls a laser disc player with a real-time parallel processing ability. During the simulation of a virtual experiment, relevant portions of the video image of a previously recorded test on an actual soil specimen are dispalyed along with the graphical presentation of response from the feedforward ANN model predictions. The pilot simulator developed to date includes all aspects related to performing a triaxial test on cohesionless soil under undrained and drained conditions. The benefits of the test simulator are also presented.
Robust speech perception: Recognize the familiar, generalize to the similar, and adapt to the novel
Kleinschmidt, Dave F.; Jaeger, T. Florian
2016-01-01
Successful speech perception requires that listeners map the acoustic signal to linguistic categories. These mappings are not only probabilistic, but change depending on the situation. For example, one talker’s /p/ might be physically indistinguishable from another talker’s /b/ (cf. lack of invariance). We characterize the computational problem posed by such a subjectively non-stationary world and propose that the speech perception system overcomes this challenge by (1) recognizing previously encountered situations, (2) generalizing to other situations based on previous similar experience, and (3) adapting to novel situations. We formalize this proposal in the ideal adapter framework: (1) to (3) can be understood as inference under uncertainty about the appropriate generative model for the current talker, thereby facilitating robust speech perception despite the lack of invariance. We focus on two critical aspects of the ideal adapter. First, in situations that clearly deviate from previous experience, listeners need to adapt. We develop a distributional (belief-updating) learning model of incremental adaptation. The model provides a good fit against known and novel phonetic adaptation data, including perceptual recalibration and selective adaptation. Second, robust speech recognition requires listeners learn to represent the structured component of cross-situation variability in the speech signal. We discuss how these two aspects of the ideal adapter provide a unifying explanation for adaptation, talker-specificity, and generalization across talkers and groups of talkers (e.g., accents and dialects). The ideal adapter provides a guiding framework for future investigations into speech perception and adaptation, and more broadly language comprehension. PMID:25844873
NASA Technical Reports Server (NTRS)
Lund, Kurt O.
1991-01-01
The simplified geometry for the analysis is an infinite, axis symmetric annulus with a specified solar flux at the outer radius. The inner radius is either adiabatic (modeling Flight Experiment conditions), or convective (modeling Solar Dynamic conditions). Liquid LiF either contacts the outer wall (modeling ground based testing), or faces a void gap at the outer wall (modeling possible space based conditions). The analysis is presented in three parts: Part 3 considers and adiabatic inner wall and linearized radiation equations; part 2 adds effects of convection at the inner wall; and part 1 includes the effect of the void gap, as well as previous effects, and develops the radiation model further. The main results are the differences in melting behavior which can occur between ground based 1 g experiments and the microgravity flight experiments. Under 1 gravity, melted PCM will always contact the outer wall having the heat flux source, thus providing conductance from this source to the phase change front. In space based tests where a void gap may likely form during solidification, the situation is reversed; radiation is now the only mode of heat transfer and the majority of melting takes place from the inner wall.
Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments
NASA Technical Reports Server (NTRS)
LeVan, M. Douglas; Finn, John E.
1997-01-01
The goal of this research was to develop a dynamic model which can predict the effect of humidity swings on activated carbon adsorption beds used to remove trace contaminants from the atmosphere in spacecraft. Specifically, the model was to be incorporated into a computer simulation to predict contaminant concentrations exiting the bed as a function of time after a humidity swing occurs. Predicted breakthrough curves were to be compared to experimentally measured results. In all respects the research was successful. The two major aspects of this research were the mathematical model and the experiments. Experiments were conducted by Mr. Appel using a fixed-bed apparatus at NASA-Ames Research Center during the summers of 1994 and 1995 and during the first 8 months of 1996. Mr. Appel conducted most of his mathematical modeling work at the University of Virginia. The simulation code was used to predict breakthrough curves using adsorption equilibrium correlations developed previously by M. D. LeVan's research group at the University of Virginia. These predictions were compared with the experimental measurements, and this led to improvements in both the simulation code and the apparatus.
Harville, E W; Xiong, X; Smith, B W; Pridjian, G; Elkind-Hirsch, K; Buekens, P
2011-05-01
Few studies have assessed the results of multiple exposures to disaster. Our objective was to examine the effect of experiencing Hurricane Gustav on mental health of women previously exposed to Hurricane Katrina. A total of 102 women from Southern Louisiana were interviewed by telephone. Experience of the hurricanes was assessed with questions about injury, danger and damage, while depression was assessed with the Edinburgh Depression Scale and post-traumatic stress disorder using the Post-Traumatic Checklist. Minor stressors, social support, trait resilience and perceived benefit had been measured previously. Mental health was examined with linear and log-linear models. Women who had a severe experience of both Gustav and Katrina scored higher on the mental health scales, but finding new ways to cope after Katrina or feeling more prepared was not protective. About half the population had better mental health scores after Gustav than at previous measures. Improvement was more likely among those who reported high social support or low levels of minor stressors, or were younger. Trait resilience mitigated the effect of hurricane exposure. Multiple disaster experiences are associated with worse mental health overall, although many women are resilient. Perceiving benefit after the first disaster was not protective. © 2010 Blackwell Publishing.
Separating conditional and unconditional cooperation in a sequential Prisoner’s Dilemma game
Mieth, Laura; Buchner, Axel
2017-01-01
Most theories of social exchange distinguish between two different types of cooperation, depending on whether or not cooperation occurs conditional upon the partner’s previous behaviors. Here, we used a multinomial processing tree model to distinguish between positive and negative reciprocity and cooperation bias in a sequential Prisoner’s Dilemma game. In Experiments 1 and 2, the facial expressions of the partners were varied to manipulate cooperation bias. In Experiment 3, an extinction instruction was used to manipulate reciprocity. The results confirm that people show a stronger cooperation bias when interacting with smiling compared to angry-looking partners, supporting the notion that a smiling facial expression in comparison to an angry facial expression helps to construe a situation as cooperative rather than competitive. Reciprocity was enhanced for appearance-incongruent behaviors, but only when participants were encouraged to form expectations about the partners’ future behaviors. Negative reciprocity was not stronger than positive reciprocity, regardless of whether expectations were manipulated or not. Experiment 3 suggests that people are able to ignore previous episodes of cheating as well as previous episodes of cooperation if these turn out to be irrelevant for predicting a partner’s future behavior. The results provide important insights into the mechanisms of social cooperation. PMID:29121671
Σ--antihyperon correlations in Z0 decay and investigation of the baryon production mechanism
NASA Astrophysics Data System (ADS)
Abbiendi, G.; Ainsley, C.; Åkesson, P. F.; Alexander, G.; Anagnostou, G.; Anderson, K. J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R. J.; Batley, R. J.; Bechtle, P.; Behnke, T.; Bell, K. W.; Bell, P. J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, R. M.; Burckhart, H. J.; Campana, S.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, M.; de Roeck, A.; de Wolf, E. A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I. P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, J. W.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, M.; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwé, M.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G. G.; Harel, A.; Hauschild, M.; Hawkes, C. M.; Hawkings, R.; Herten, G.; Heuer, R. D.; Hill, J. C.; Horváth, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T. R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Krämer, T.; Krasznahorkay, A.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G. D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S. L.; Loebinger, F. K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A. J.; Mashimo, T.; Mättig, P.; McKenna, J.; McPherson, R. A.; Meijers, F.; Menges, W.; Merritt, F. S.; Mes, H.; Meyer, N.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D. J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H. A.; O'Neale, S. W.; Oh, A.; Oreglia, M. J.; Orito, S.; Pahl, C.; Pásztor, G.; Pater, J. R.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Pooth, O.; Przybycień, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J. M.; Rossi, A. M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E. K. G.; Schaile, A. D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schörner-Sadenius, T.; Schröder, M.; Schumacher, M.; Seuster, R.; Shears, T. G.; Shen, B. C.; Sherwood, P.; Skuja, A.; Smith, A. M.; Sobie, R.; Söldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, D.; Ströhmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M. A.; Torrence, E.; Toya, D.; Trigger, I.; Trócsányi, Z.; Tsur, E.; Turner-Watson, M. F.; Ueda, I.; Ujvári, B.; Vollmer, C. F.; Vannerem, P.; Vértesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Wells, P. S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G. W.; Wilson, J. A.; Wolf, G.; Wyatt, T. R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, L.
2009-12-01
Data collected around sqrt{s}=91 GeV by the OPAL experiment at the LEP e+e- collider are used to study the mechanism of baryon formation. As the signature, the fraction of Σ- hyperons whose baryon number is compensated by the production of a overline{Σ-},overline{Λ} or overline{Ξ-} antihyperon is determined. The method relies entirely on quantum number correlations of the baryons, and not rapidity correlations, making it more model independent than previous studies. Within the context of the JETSET implementation of the string hadronization model, the diquark baryon production model without the popcorn mechanism is strongly disfavored with a significance of 3.8 standard deviations including systematic uncertainties. It is shown that previous studies of the popcorn mechanism with Λ overline{Λ} and p\\uppi overline{p} correlations are not conclusive, if parameter uncertainties are considered.
Strain-based diffusion solver for realistic representation of diffusion front in physical reactions
2017-01-01
When simulating fluids, such as water or fire, interacting with solids, it is a challenging problem to represent details of diffusion front in physical reaction. Previous approaches commonly use isotropic or anisotropic diffusion to model the transport of a quantity through a medium or long interface. We have identified unrealistic monotonous patterns with previous approaches and therefore, propose to extend these approaches by integrating the deformation of the material with the diffusion process. Specifically, stretching deformation represented by strain is incorporated in a divergence-constrained diffusion model. A novel diffusion model is introduced to increase the global rate at which the solid acquires relevant quantities, such as heat or saturation. This ensures that the equations describing fluid flow are linked to the change of solid geometry, and also satisfy the divergence-free condition. Experiments show that our method produces convincing results. PMID:28448591
Bartle, Naomi C; Harvey, Kate
2017-11-01
Breastfeeding confers important health benefits to both infants and their mothers, but rates are low in the United Kingdom and other developed countries despite widespread promotion. This study examined the relationships between personal and vicarious experience of infant feeding, self-efficacy, the theory of planned behaviour variables of attitudes and subjective norm, and the likelihood of breastfeeding at 6-8 weeks post-natally. A prospective questionnaire study of both first-time mothers (n = 77) and experienced breastfeeders (n = 72) recruited at an antenatal clinic in South East England. Participants completed a questionnaire at 32 weeks pregnant assessing personal and vicarious experience of infant feeding (breastfeeding, formula-feeding, and maternal grandmother's experience of breastfeeding), perceived control, self-efficacy, intentions, attitudes (to breastfeeding and formula-feeding), and subjective norm. Infant feeding behaviour was recorded at 6-8 weeks post-natally. Multiple linear regression modelled the influence of vicarious experience on attitudes, subjective norm, and self-efficacy (but not perceived control) and modelled the influence of attitude, subjective norm, self-efficacy, and past experience on intentions to breastfeed. Logistic regression modelled the likelihood of breastfeeding at 6-8 weeks. Previous experience (particularly personal experience of breastfeeding) explained a significant amount of variance in attitudes, subjective norm, and self-efficacy. Intentions to breastfeed were predicted by subjective norm and attitude to formula-feeding and, in experienced mothers, self-efficacy. Breastfeeding at 6 weeks was predicted by intentions and vicarious experience of formula-feeding. Vicarious experience, particularly of formula-feeding, has been shown to influence the behaviour of first-time and experienced mothers both directly and indirectly via attitudes and subjective norm. Interventions that reduce exposure to formula-feeding (perhaps by limiting advertising) or cushion mothers from its effects may enable more mothers to meet their breastfeeding goals. Statement of contribution What is already known on this subject? Rates of breastfeeding in the United Kingdom are low and resistant to change. Self-efficacy may be an important and modifiable factor for breastfeeding initiation and maintenance. What does this study add? Self-efficacy may only be a relevant factor among mothers who already have personal experience of breastfeeding. Vicarious experience of formula-feeding has been shown to be related to a lower rate of breastfeeding at 6 weeks. © 2017 The Authors. British Journal of Health Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Crown, Scott B; Kelleher, Joanne K; Rouf, Rosanne; Muoio, Deborah M; Antoniewicz, Maciek R
2016-10-01
In many forms of cardiomyopathy, alterations in energy substrate metabolism play a key role in disease pathogenesis. Stable isotope tracing in rodent heart perfusion systems can be used to determine cardiac metabolic fluxes, namely those relative fluxes that contribute to pyruvate, the acetyl-CoA pool, and pyruvate anaplerosis, which are critical to cardiac homeostasis. Methods have previously been developed to interrogate these relative fluxes using isotopomer enrichments of measured metabolites and algebraic equations to determine a predefined metabolic flux model. However, this approach is exquisitely sensitive to measurement error, thus precluding accurate relative flux parameter determination. In this study, we applied a novel mathematical approach to determine relative cardiac metabolic fluxes using 13 C-metabolic flux analysis ( 13 C-MFA) aided by multiple tracer experiments and integrated data analysis. Using 13 C-MFA, we validated a metabolic network model to explain myocardial energy substrate metabolism. Four different 13 C-labeled substrates were queried (i.e., glucose, lactate, pyruvate, and oleate) based on a previously published study. We integrated the analysis of the complete set of isotopomer data gathered from these mouse heart perfusion experiments into a single comprehensive network model that delineates substrate contributions to both pyruvate and acetyl-CoA pools at a greater resolution than that offered by traditional methods using algebraic equations. To our knowledge, this is the first rigorous application of 13 C-MFA to interrogate data from multiple tracer experiments in the perfused heart. We anticipate that this approach can be used widely to study energy substrate metabolism in this and other similar biological systems. Copyright © 2016 the American Physiological Society.
Kelleher, Joanne K.; Rouf, Rosanne; Muoio, Deborah M.; Antoniewicz, Maciek R.
2016-01-01
In many forms of cardiomyopathy, alterations in energy substrate metabolism play a key role in disease pathogenesis. Stable isotope tracing in rodent heart perfusion systems can be used to determine cardiac metabolic fluxes, namely those relative fluxes that contribute to pyruvate, the acetyl-CoA pool, and pyruvate anaplerosis, which are critical to cardiac homeostasis. Methods have previously been developed to interrogate these relative fluxes using isotopomer enrichments of measured metabolites and algebraic equations to determine a predefined metabolic flux model. However, this approach is exquisitely sensitive to measurement error, thus precluding accurate relative flux parameter determination. In this study, we applied a novel mathematical approach to determine relative cardiac metabolic fluxes using 13C-metabolic flux analysis (13C-MFA) aided by multiple tracer experiments and integrated data analysis. Using 13C-MFA, we validated a metabolic network model to explain myocardial energy substrate metabolism. Four different 13C-labeled substrates were queried (i.e., glucose, lactate, pyruvate, and oleate) based on a previously published study. We integrated the analysis of the complete set of isotopomer data gathered from these mouse heart perfusion experiments into a single comprehensive network model that delineates substrate contributions to both pyruvate and acetyl-CoA pools at a greater resolution than that offered by traditional methods using algebraic equations. To our knowledge, this is the first rigorous application of 13C-MFA to interrogate data from multiple tracer experiments in the perfused heart. We anticipate that this approach can be used widely to study energy substrate metabolism in this and other similar biological systems. PMID:27496880
Rapoza, Amanda; Sudderth, Erika; Lewis, Kristin
2015-10-01
To evaluate the relationship between aircraft noise exposure and the quality of national park visitor experience, more than 4600 visitor surveys were collected at seven backcountry sites in four U.S. national parks simultaneously with calibrated sound level measurements. Multilevel logistic regression was used to estimate parameters describing the relationship among visitor responses, aircraft noise dose metrics, and mediator variables. For the regression models, survey responses were converted to three dichotomous variables, representing visitors who did or did not experience slightly or more, moderately or more, or very or more annoyance or interference with natural quiet from aircraft noise. Models with the most predictive power included noise dose metrics of sound exposure level, percent time aircraft were audible, and percentage energy due to helicopters and fixed-wing propeller aircraft. These models also included mediator variables: visitor ratings of the "importance of calmness, peace and tranquility," visitor group composition (adults or both adults and children), first visit to the site, previously taken an air tour, and participation in bird-watching or interpretive talks. The results complement and extend previous research conducted in frontcountry areas and will inform evaluations of air tour noise effects on visitors to national parks and remote wilderness sites.
Wilson, Preston S; Dunton, Kenneth H
2009-04-01
Previous in situ investigations of seagrass have revealed acoustic phenomena that depend on plant density, tissue gas content, and free bubbles produced by photosynthetic activity, but corresponding predictive models that could be used to optimize acoustic remote sensing, shallow water sonar, and mine hunting applications have not appeared. To begin to address this deficiency, low frequency (0.5-2.5 kHz) acoustic laboratory experiments were conducted on three freshly collected Texas Gulf Coast seagrass species. A one-dimensional acoustic resonator technique was used to assess the biomass and effective acoustic properties of the leaves and rhizomes of Thalassia testudinum (turtle grass), Syringodium filiforme (manatee grass), and Halodule wrightii (shoal grass). Independent biomass and gas content estimates were obtained via microscopic cross-section imagery. The acoustic results were compared to model predictions based on Wood's equation for a two-phase medium. The effective sound speed in the plant-filled resonator was strongly dependent on plant biomass, but the Wood's equation model (based on tissue gas content alone) could not predict the effective sound speed for the low irradiance conditions of the experiment, in which no free bubbles were generated by photosynthesis. The results corroborate previously published results obtained in situ for another seagrass species, Posidonia oceanica.
Managing a work-life balance: the experiences of midwives working in a group practice setting.
Fereday, Jennifer; Oster, Candice
2010-06-01
To explore how a group of midwives achieved a work-life balance working within a caseload model of care with flexible work hours and on-call work. in-depth interviews were conducted and the data were analysed using a data-driven thematic analysis technique. Children, Youth and Women's Health Service (CYWHS) (previously Women's and Children's Hospital), Adelaide, where a midwifery service known as Midwifery Group Practice (MGP) offers a caseload model of care to women within a midwife-managed unit. 17 midwives who were currently working, or had previously worked, in MGP. analysis of the midwives' individual experiences provided insight into how midwives managed the flexible hours and on-call work to achieve a sustainable work-life balance within a caseload model of care. it is important for midwives working in MGP to actively manage the flexibility of their role with time on call. Organisational, team and individual structure influenced how flexibility of hours was managed; however, a period of adjustment was required to achieve this balance. the study findings offer a description of effective, sustainable strategies to manage flexible hours and on-call work that may assist other midwives working in a similar role or considering this type of work setting. Copyright 2008 Elsevier Ltd. All rights reserved.
Sterile Neutrino Searches in MINOS and MINOS+ Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Junting
2015-05-01
This dissertation presents the searches on sterile neutrinos using the data collected in MINOS+ Experiment from September 2013 to September 2014, and the full data set of MINOS Experiment collected from 2005 to 2012. Anomalies in short baseline experiments, such as LSND and MiniBooNE, showed hints of sterile neutrinos, a type of neutrino that does not interact with the Standard Model particles. In this work, two models are considered: 3+1 and large extra dimension (LED). In the 3+1 model, one sterile neutrino state is added into the standard oscillation scheme consisting of three known active neutrino states v e, vmore » μ and v τ. In the LED model, sterile neutrinos arise as Kaluza-Klein (KK) states due to assumed large extra dimensions. Mixing between sterile and active neutrino states may modify the oscillation patterns observed in the MINOS detectors. Both searches yield null results. For 3+1, a combined fit of MINOS and MINOS+ data gives a stronger limit on θ 24 in the range of 10 -2 eV 2 < Δm 41 2 < 1 eV 2 than previous experiments. For LED, with the complete MINOS data set, the size of extra dimensions is constrained to be smaller than ~ 0.35 μm at 90% C.L. in the limit of a vanishing lightest neutrino mass.« less
Creating opportunities to influence self-efficacy through modeling instruction
NASA Astrophysics Data System (ADS)
Sawtelle, Vashti; Brewe, Eric; Goertzen, Renee Michelle; Kramer, Laird H.
2012-02-01
In this paper we present an initial analysis connecting key elements of Modeling Instruction (MI) to self-efficacy experience opportunities. Previously, we demonstrated that MI has positive effects on self-efficacy when compared with traditional Lecture instruction [1]. We also found a particularly strong positive effect on the social persuasion source of self-efficacy for women in the MI class. Our current study seeks to understand through what mechanisms MI influences self-efficacy. We demonstrate this connection through an in-depth analysis of video chosen to exemplify Modeling techniques used in a problem-solving episode by three female participants enrolled in a MI introductory physics class. We provide a rich and descriptive analysis of the self-efficacy experiences opportunities within this context and discuss how these opportunities provide a potential explanation of how MI influences self-efficacy.
Bennett-Levy, James; Lee, Nicole K
2014-01-01
Previous studies of self-practice/self-reflection (SP/SR) CBT training have found that trainees report significant benefits from practising CBT techniques on themselves (self-practice) and reflecting on their experience (self-reflection) as a formal part of their CBT training. However, not all trainees experience the same level of benefit from SP/SR and not all types of training course produce benefits to the same extent. This paper examines the question: What factors influence trainees' reported benefit from SP/SR? The aim was to develop a model to maximize the value of SP/SR training. The authors used a grounded theory analysis of four SP/SR training courses, varying along several dimensions, to derive a model that could account for the data. A model was derived comprising of seven elements: Two outcomes - "Experience of Benefit" and "Engagement with the Process" - that mutually influence one another; and five other influencing factors - "Course Structure and Requirements", "Expectation of Benefit", "Feeling of Safety with the Process", "Group Process", and "Available Personal Resources" - that mediate the impact on Engagement with the Process and Experience of Benefit from SP/SR. A model that provides guidance about the best ways to set up and develop SP/SR programs has been developed. This model may now be subject to empirical testing by trainers and researchers. Implications and recommendations for the design and development of future SP/SR programs are discussed.
Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology
NASA Astrophysics Data System (ADS)
Weiler, Markus; McDonnell, Jeff
2004-01-01
We present an approach for process conceptualization in hillslope hydrology. We develop and implement a series of virtual experiments, whereby the interaction between water flow pathways, source and mixing at the hillslope scale is examined within a virtual experiment framework. We define these virtual experiments as 'numerical experiments with a model driven by collective field intelligence'. The virtual experiments explore the first-order controls in hillslope hydrology, where the experimentalist and modeler work together to cooperatively develop and analyze the results. Our hillslope model for the virtual experiments (HillVi) in this paper is based on conceptualizing the water balance within the saturated and unsaturated zone in relation to soil physical properties in a spatially explicit manner at the hillslope scale. We argue that a virtual experiment model needs to be able to capture all major controls on subsurface flow processes that the experimentalist might deem important, while at the same time being simple with few 'tunable parameters'. This combination makes the approach, and the dialog between experimentalist and modeler, a useful hypothesis testing tool. HillVi simulates mass flux for different initial conditions under the same flow conditions. We analyze our results in terms of an artificial line source and isotopic hydrograph separation of water and subsurface flow. Our results for this first set of virtual experiments showed how drainable porosity and soil depth variability exert a first order control on flow and transport at the hillslope scale. We found that high drainable porosity soils resulted in a restricted water table rise, resulting in more pronounced channeling of lateral subsurface flow along the soil-bedrock interface. This in turn resulted in a more anastomosing network of tracer movement across the slope. The virtual isotope hydrograph separation showed higher proportions of event water with increasing drainable porosity. When combined with previous experimental findings and conceptualizations, virtual experiments can be an effective way to isolate certain controls and examine their influence over a range of rainfall and antecedent wetness conditions.
NASA Astrophysics Data System (ADS)
Lee, Tsung Hung; Jan, Fen-Hauh
2015-07-01
The scientific understanding of the recreation experience and the environmentally responsible behavior of nature-based tourists is limited. This study examines the relationship among the recreation experience, environmental attitude, biospheric value, and the general and site-specific environmentally responsible behavior of nature-based tourists in Taomi, Liuqiu Island, and Aowanda and Najenshan in Taiwan. A total of 1342 usable questionnaires were collected for this study. The empirical results indicate that the recreation experience influences biospheric value and environmental attitude; subsequently, it then indirectly influences the general and site-specific environmentally responsible behavior of nature-based tourists. Our theoretical behavioral model elucidates previously proposed but unexamined behavioral models among nature-based tourists, and it offers a theoretical framework for researchers, decision makers, managers, and tourists in the field of nature-based tourism. We conclude that when an individual participates in nature-based tourism as described here, these recreation experiences strengthen their environmental attitude and biospheric value, and consequently increase their engagement in both general and site-specific environmentally responsible behaviors.
Lee, Tsung Hung; Jan, Fen-Hauh
2015-07-01
The scientific understanding of the recreation experience and the environmentally responsible behavior of nature-based tourists is limited. This study examines the relationship among the recreation experience, environmental attitude, biospheric value, and the general and site-specific environmentally responsible behavior of nature-based tourists in Taomi, Liuqiu Island, and Aowanda and Najenshan in Taiwan. A total of 1342 usable questionnaires were collected for this study. The empirical results indicate that the recreation experience influences biospheric value and environmental attitude; subsequently, it then indirectly influences the general and site-specific environmentally responsible behavior of nature-based tourists. Our theoretical behavioral model elucidates previously proposed but unexamined behavioral models among nature-based tourists, and it offers a theoretical framework for researchers, decision makers, managers, and tourists in the field of nature-based tourism. We conclude that when an individual participates in nature-based tourism as described here, these recreation experiences strengthen their environmental attitude and biospheric value, and consequently increase their engagement in both general and site-specific environmentally responsible behaviors.
National Transonic Facility Wall Pressure Calibration Using Modern Design of Experiments (Invited)
NASA Technical Reports Server (NTRS)
Underwood, Pamela J.; Everhart, Joel L.; DeLoach, Richard
2001-01-01
The Modern Design of Experiments (MDOE) has been applied to wind tunnel testing at NASA Langley Research Center for several years. At Langley, MDOE has proven to be a useful and robust approach to aerodynamic testing that yields significant reductions in the cost and duration of experiments while still providing for the highest quality research results. This paper extends its application to include empty tunnel wall pressure calibrations. These calibrations are performed in support of wall interference corrections. This paper will present the experimental objectives, and the theoretical design process. To validate the tunnel-empty-calibration experiment design, preliminary response surface models calculated from previously acquired data are also presented. Finally, lessons learned and future wall interference applications of MDOE are discussed.
The Fermilab Muon g-2 experiment: laser calibration system
Karuza, M.; Anastasi, A.; Basti, A.; ...
2017-08-17
The anomalous muon dipole magnetic moment can be measured (and calculated) with great precision thus providing insight on the Standard Model and new physics. Currently an experiment is under construction at Fermilab (U.S.A.) which is expected to measure the anomalous muon dipole magnetic moment with unprecedented precision. One of the improvements with respect to the previous experiments is expected to come from the laser calibration system which has been designed and constructed by the Italian part of the collaboration (INFN). Furthermore, an emphasis of this paper will be on the calibration system that is in the final stages of constructionmore » as well as the experiment which is expected to start data taking this year.« less
A new approach to electrophoresis in space
NASA Technical Reports Server (NTRS)
Snyder, Robert S.; Rhodes, Percy H.
1990-01-01
Previous electrophoresis experiments performed in space are reviewed. There is sufficient data available from the results of these experiments to show that they were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. Redesigning laboratory chambers and operating procedures developed on Earth for space without understanding both the advantages and disadvantages of the microgravity environment has yielded poor separations of both cells and proteins. However, electrophoreris is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.
Advanced approach to the analysis of a series of in-situ nuclear forward scattering experiments
NASA Astrophysics Data System (ADS)
Vrba, Vlastimil; Procházka, Vít; Smrčka, David; Miglierini, Marcel
2017-03-01
This study introduces a sequential fitting procedure as a specific approach to nuclear forward scattering (NFS) data evaluation. Principles and usage of this advanced evaluation method are described in details and its utilization is demonstrated on NFS in-situ investigations of fast processes. Such experiments frequently consist of hundreds of time spectra which need to be evaluated. The introduced procedure allows the analysis of these experiments and significantly decreases the time needed for the data evaluation. The key contributions of the study are the sequential use of the output fitting parameters of a previous data set as the input parameters for the next data set and the model suitability crosscheck option of applying the procedure in ascending and descending directions of the data sets. Described fitting methodology is beneficial for checking of model validity and reliability of obtained results.
Complexities in Ferret Influenza Virus Pathogenesis and Transmission Models
Eckert, Alissa M.; Tumpey, Terrence M.; Maines, Taronna R.
2016-01-01
SUMMARY Ferrets are widely employed to study the pathogenicity, transmissibility, and tropism of influenza viruses. However, inherent variations in inoculation methods, sampling schemes, and experimental designs are often overlooked when contextualizing or aggregating data between laboratories, leading to potential confusion or misinterpretation of results. Here, we provide a comprehensive overview of parameters to consider when planning an experiment using ferrets, collecting data from the experiment, and placing results in context with previously performed studies. This review offers information that is of particular importance for researchers in the field who rely on ferret data but do not perform the experiments themselves. Furthermore, this review highlights the breadth of experimental designs and techniques currently available to study influenza viruses in this model, underscoring the wide heterogeneity of protocols currently used for ferret studies while demonstrating the wealth of information which can benefit risk assessments of emerging influenza viruses. PMID:27412880
Complexities in Ferret Influenza Virus Pathogenesis and Transmission Models.
Belser, Jessica A; Eckert, Alissa M; Tumpey, Terrence M; Maines, Taronna R
2016-09-01
Ferrets are widely employed to study the pathogenicity, transmissibility, and tropism of influenza viruses. However, inherent variations in inoculation methods, sampling schemes, and experimental designs are often overlooked when contextualizing or aggregating data between laboratories, leading to potential confusion or misinterpretation of results. Here, we provide a comprehensive overview of parameters to consider when planning an experiment using ferrets, collecting data from the experiment, and placing results in context with previously performed studies. This review offers information that is of particular importance for researchers in the field who rely on ferret data but do not perform the experiments themselves. Furthermore, this review highlights the breadth of experimental designs and techniques currently available to study influenza viruses in this model, underscoring the wide heterogeneity of protocols currently used for ferret studies while demonstrating the wealth of information which can benefit risk assessments of emerging influenza viruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Tritium saturation in plasma-facing materials surfaces1
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Anderl, Robert A.; Causey, Rion A.; Federici, Gianfranco; Haasz, Anthony A.; Pawelko, Robert J.
1998-10-01
Plasma-facing components in the International Thermonuclear Experimental Reactor (ITER) will experience high heat loads and intense plasma fluxes of order 10 20-10 23 particles/m 2s. Experiments on Be and W, two of the materials considered for use in ITER, have revealed that a tritium saturation phenomenon can take place under these conditions in which damage to the surface results that enhances the return of implanted tritium to the plasma and inhibits uptake of tritium. This phenomenon is important because it implies that tritium inventories due to implantation in these plasma-facing materials will probably be lower than was previously estimated using classical recombination-limited release at the plasma surface. Similarly, permeation through these components to the coolant streams should be reduced. In this paper we discuss evidences for the existence of this phenomenon, describe techniques for modeling it, and present results of the application of such modeling to prior experiments.
Inhalation exposure to cleaning products: application of a two-zone model.
Earnest, C Matt; Corsi, Richard L
2013-01-01
In this study, modifications were made to previously applied two-zone models to address important factors that can affect exposures during cleaning tasks. Specifically, we expand on previous applications of the two-zone model by (1) introducing the source in discrete elements (source-cells) as opposed to a complete instantaneous release, (2) placing source cells in both the inner (near person) and outer zones concurrently, (3) treating each source cell as an independent mixture of multiple constituents, and (4) tracking the time-varying liquid concentration and emission rate of each constituent in each source cell. Three experiments were performed in an environmentally controlled chamber with a thermal mannequin and a simplified pure chemical source to simulate emissions from a cleaning product. Gas phase concentration measurements were taken in the bulk air and in the breathing zone of the mannequin to evaluate the model. The mean ratio of the integrated concentration in the mannequin's breathing zone to the concentration in the outer zone was 4.3 (standard deviation, σ = 1.6). The mean ratio of measured concentration in the breathing zone to predicted concentrations in the inner zone was 0.81 (σ = 0.16). Intake fractions ranged from 1.9 × 10(-3) to 2.7 × 10(-3). Model results reasonably predict those of previous exposure monitoring studies and indicate the inadequacy of well-mixed single-zone model applications for some but not all cleaning events.
Clinopyroxene dissolution in basaltic melt
NASA Astrophysics Data System (ADS)
Chen, Yang; Zhang, Youxue
2009-10-01
The history of magmatic systems may be inferred from reactions between mantle xenoliths and host basalt if the thermodynamics and kinetics of the reactions are quantified. To study diffusive and convective clinopyroxene dissolution in silicate melts, diffusive clinopyroxene dissolution experiments were conducted at 0.47-1.90 GPa and 1509-1790 K in a piston-cylinder apparatus. Clinopyroxene saturation is found to be roughly determined by MgO and CaO content. The effective binary diffusivities, DMgO and DCaO, and the interface melt saturation condition, C0MgO×C0CaO, are extracted from the experiments. DMgO and DCaO show Arrhenian dependence on temperature. The pressure dependence is small and not resolved within 0.47-1.90 GPa. C0MgO×C0CaO in the interface melt increases with increasing temperature, but decreases with increasing pressure. Convective clinopyroxene dissolution, where the convection is driven by the density difference between the crystal and melt, is modeled using the diffusivities and interface melt saturation condition. Previous studies showed that the convective dissolution rate depends on the thermodynamics, kinetics and fluid dynamics of the system. Comparing our results for clinopyroxene dissolution to results from a previous study on convective olivine dissolution shows that the kinetic and fluid dynamic aspects of the two minerals are quite similar. However, the thermodynamics of clinopyroxene dissolution depends more strongly on the degree of superheating and composition of the host melt than that of olivine dissolution. The models for clinopyroxene and olivine dissolution are tested against literature experiments on mineral-melt interaction. They are then applied to previously proposed reactions between Hawaii basalts and mantle minerals, mid-ocean ridge basalts and mantle minerals, and xenoliths digestion in a basalt at Kuandian, Northeast China.
Parker, Stephen; Meurk, Carla; Newman, Ellie; Fletcher, Clayton; Swinson, Isabella; Dark, Frances
2018-04-16
This study explores how consumers expect community-based residential mental health rehabilitation to compare with previous experiences of care. Understanding what consumers hope to receive from mental health services, and listening to their perspectives about what has and has not worked in previous care settings, may illuminate pathways to improved service engagement and outcomes. A mixed-methods research design taking a pragmatic approach to grounded theory guided the analysis of 24 semi-structured interviews with consumers on commencement at three Community Care Units (CCUs) in Australia. Two of these CCUs were trialling a staffing model integrating peer support work with clinical care. All interviews were conducted by an independent interviewer within the first 6 weeks of the consumer's stay. All participants expected the CCU to offer an improvement on previous experiences of care. Comparisons were made to acute and subacute inpatient settings, supported accommodation, and outpatient care. Consumers expected differences in the people (staff and co-residents), the focus of care, physical environ, and rules and regulations. Participants from the integrated staffing model sites articulated the expected value of a less clinical approach to care. Overall, consumers' expectations aligned with the principles articulated in policy frameworks for recovery-oriented practice. However, their reflections on past care suggest that these services continue to face significant challenges realizing these principles in practice. Paying attention to the kind of working relationship consumers want to have with mental health services, such as the provision of choice and maintaining a practical and therapeutic supportive focus, could improve their engagement and outcomes. © 2018 Australian College of Mental Health Nurses Inc.
Hydrodynamic and Chemical Factors in Clogging by Montmorillonite in Porous Media
Mays, David C.; Hunt, James R.
2008-01-01
Clogging by colloid deposits is important in water treatment filters, groundwater aquifers, and petroleum reservoirs. The complexity of colloid deposition and deposit morphology preclude models based on first principles, so this study extends an empirical approach to quantify clogging using a simple, one-parameter model. Experiments were conducted with destabilized suspensions of sodium- and calcium-montmorillonite to quantify the hydrodynamic and chemical factors important in clogging. Greater clogging is observed at slower fluid velocity, consistent with previous investigations. However, calcium-montmorillonite causes one order of magnitude less clogging per mass of deposited particles compared to sodium-montmorillonite or a previously published summary of clogging in model granular media. Steady state conditions, in which the permeability and the quantity of deposited material are both constant, were not observed, even though the experimental conditions were optimized for that purpose. These results indicate that hydrodynamic aspects of clogging by these natural materials are consistent with those of simplified model systems, and they demonstrate significant chemical effects on clogging for fully destabilized montmorillonite clay. PMID:17874771
Hydrodynamic and chemical factors in clogging by montmorillonite in porous media.
Mays, David C; Hunt, James R
2007-08-15
Clogging by colloid deposits is important in water treatment filters, groundwater aquifers, and petroleum reservoirs. The complexity of colloid deposition and deposit morphology preclude models based on first principles, so this study extends an empirical approach to quantify clogging using a simple, one-parameter model. Experiments were conducted with destabilized suspensions of sodium- and calcium-montmorillonite to quantify the hydrodynamic and chemical factors important in clogging. Greater clogging is observed at slower fluid velocity, consistent with previous investigations. However, calcium-montmorillonite causes 1 order of magnitude less clogging per mass of deposited particles compared to sodium-montmorillonite or a previously published summary of clogging in model granular media. Steady-state conditions, in which the permeability and the quantity of deposited material are both constant, were not observed, even though the experimental conditions were optimized for that purpose. These results indicate that hydrodynamic aspects of clogging by these natural materials are consistent with those of simplified model systems, and they demonstrate significant chemical effects on clogging for fully destabilized montmorillonite clay.
Conceptual Model of Military Women's Life Events and Well-Being.
Segal, Mady W; Lane, Michelle D
2016-01-01
This article presents a life course conceptual model and applies it to the study of military women's experiences and the effect of those life events on their well-being. Of special concern are the effects on women serving in direct combat jobs, as well as in any specialties operating in a hostile environment. Drawing on previous research, the model considers and gives examples of how a woman's well-being is affected by events in her military career, her family life, and other areas of life. The article emphasizes the effects of intersections of multiple events, as well as how the effects on well-being are mediated or moderated by other factors, including individual characteristics, military contextual variables, and resources. The analysis also includes the impacts of preventative and treatment interventions, as well as of policies, programs, and practices. Based on the model and on previous research, questions for future research are posed. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
NASA Astrophysics Data System (ADS)
Prime, Michael; Vaughan, Diane; Preston, Dean; Oro, David; Buttler, William
2013-06-01
Rayleigh-Taylor instabilities have been widely used to study the deviatoric (flow) strength of solids at high strain rates. More recently, experiments applying a supported shock through mating surfaces (Atwood number = 1) with geometrical perturbations have been proposed for studying strength at strain rates up to 107/sec using Richtmyer-Meshkov (RM) instabilities. Buttler et al. [J. Fluid Mech., 2012] recently reported experimental results for RM instability growth but with an unsupported shock applied by high explosives and the geometrical perturbations on the opposite free surface (Atwood number = -1). This novel configuration allowed detailed experimental observation of the instability growth and arrest. We present results and detailed interpretation from numerical simulations of the Buttler experiments on copper. Highly-resolved, two-dimensional simulations were performed using a Lagrangian hydrocode and the Preston-Tonks-Wallace (PTW) strength model. The model predictions show good agreement with the data in spite of the PTW model being calibrated on lower strain rate data. The numerical simulations are used to 1) examine various assumptions previously made in an analytical model, 2) to estimate the sensitivity of such experiments to material strength and 3) to explore the possibility of extracting meaningful strength information in the face of complicated spatial and temporal variations of stress, pressure, and temperature during the experiments.
Bosone, Lucia; Martinez, Frédéric; Kalampalikis, Nikos
2015-04-01
In health-promotional campaigns, positive and negative role models can be deployed to illustrate the benefits or costs of certain behaviors. The main purpose of this article is to investigate why, how, and when exposure to role models strengthens the persuasiveness of a message, according to regulatory fit theory. We argue that exposure to a positive versus a negative model activates individuals' goals toward promotion rather than prevention. By means of two experiments, we demonstrate that high levels of persuasion occur when a message advertising healthy dietary habits offers a regulatory fit between its framing and the described role model. Our data also establish that the effects of such internal regulatory fit by vicarious experience depend on individuals' perceptions of response-efficacy and self-efficacy. Our findings constitute a significant theoretical complement to previous research on regulatory fit and contain valuable practical implications for health-promotional campaigns. © 2015 by the Society for Personality and Social Psychology, Inc.
A Computational Model of Spatial Development
NASA Astrophysics Data System (ADS)
Hiraki, Kazuo; Sashima, Akio; Phillips, Steven
Psychological experiments on children's development of spatial knowledge suggest experience at self-locomotion with visual tracking as important factors. Yet, the mechanism underlying development is unknown. We propose a robot that learns to mentally track a target object (i.e., maintaining a representation of an object's position when outside the field-of-view) as a model for spatial development. Mental tracking is considered as prediction of an object's position given the previous environmental state and motor commands, and the current environment state resulting from movement. Following Jordan & Rumelhart's (1992) forward modeling architecture the system consists of two components: an inverse model of sensory input to desired motor commands; and a forward model of motor commands to desired sensory input (goals). The robot was tested on the `three cups' paradigm (where children are required to select the cup containing the hidden object under various movement conditions). Consistent with child development, without the capacity for self-locomotion the robot's errors are self-center based. When given the ability of self-locomotion the robot responds allocentrically.
Data-driven modelling of social forces and collective behaviour in zebrafish.
Zienkiewicz, Adam K; Ladu, Fabrizio; Barton, David A W; Porfiri, Maurizio; Bernardo, Mario Di
2018-04-14
Zebrafish are rapidly emerging as a powerful model organism in hypothesis-driven studies targeting a number of functional and dysfunctional processes. Mathematical models of zebrafish behaviour can inform the design of experiments, through the unprecedented ability to perform pilot trials on a computer. At the same time, in-silico experiments could help refining the analysis of real data, by enabling the systematic investigation of key neurobehavioural factors. Here, we establish a data-driven model of zebrafish social interaction. Specifically, we derive a set of interaction rules to capture the primary response mechanisms which have been observed experimentally. Contrary to previous studies, we include dynamic speed regulation in addition to turning responses, which together provide attractive, repulsive and alignment interactions between individuals. The resulting multi-agent model provides a novel, bottom-up framework to describe both the spontaneous motion and individual-level interaction dynamics of zebrafish, inferred directly from experimental observations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Direct detection of exothermic dark matter with light mediator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Chao-Qiang; Department of Physics, National Tsing Hua University,Hsinchu, Taiwan; Physics Division, National Center for Theoretical Sciences,Hsinchu, Taiwan
2016-08-05
We study the dark matter (DM) direct detection for the models with the effects of the isospin-violating couplings, exothermic scatterings, and/or the lightness of the mediator, proposed to relax the tension between the CDMS-Si signals and null experiments. In the light of the new updates of the LUX and CDMSlite data, we find that many of the previous proposals are now ruled out, including the Ge-phobic exothermic DM model and the Xe-phobic DM one with a light mediator. We also examine the exothermic DM models with a light mediator but without the isospin violation, and we are unable to identifymore » any available parameter space that could simultaneously satisfy all the experiments. The only models that can partially relax the inconsistencies are the Xe-phobic exothermic DM models with or without a light mediator. But even in this case, a large portion of the CDMS-Si regions of interest has been constrained by the LUX and SuperCDMS data.« less
NASA Technical Reports Server (NTRS)
Oswatitsch, K.
1947-01-01
The problem of the intake of air is treated for a missile flying at supersonic speeds and of changing the kinetic energy of the air into pressure with the least possible losses. Calculations are carried out concerning the results which can be attained. After a discussion of several preliminary experiments, the practical solution of the problem at hand is indicated by model experiments. The results proved very satisfactory in view of the results which had been attained previously and the values which were anticipated theoretically.
Establishing and maintaining a satellite campus connected by synchronous video conferencing.
Fox, Brent I; McDonough, Sharon L; McConatha, Barry J; Marlowe, Karen F
2011-06-10
Pharmacy education has experienced substantial growth in the number of new schools and existing schools establishing satellite campuses. Several models have previously been used to connect primary and satellite campuses. We describe the Auburn University Harrison School of Pharmacy's (AUHSOP's) experiences using synchronous video conferencing between the Auburn University campus in Auburn and a satellite campus in Mobile, Alabama. We focus on the technology considerations related to planning, construction, implementation, and continued use of the various resources that support our program. Students' perceptions of their experiences related to technology also are described.
ERIC Educational Resources Information Center
Di Tommaso, Kathrynn
2011-01-01
This paper presents a follow-up to a previously published paper "The Connection between Role Model Relationships and Self-Direction in Developmental Students" and is based on findings from the same study. The study used observations and interviews to explore the ways in which a cohort of developmental writing students described their…
ERIC Educational Resources Information Center
Meibauer, Gustav; Aagaard Nøhr, Andreas
2018-01-01
This article is about designing and implementing PowerPoint-based interactive simulations for use in International Relations (IR) introductory undergraduate classes based on core pedagogical literature, models of human skill acquisition, and previous research on simulations in IR teaching. We argue that simulations can be usefully employed at the…
Schematic interactions with many degeneracies
NASA Astrophysics Data System (ADS)
Kingan, Arun; Quinonez, Michael; Zamick, Larry
In previous works, we examined the spectra for systems of two protons and two neutrons, in a single j shell calculation, by obtaining matrix elements from experiment. More recently, we considered the schematic interactions in the same model space. We continue in this vein here. The present work and the former can be regarded as two bookends on a bookshelf.
Strategies for Designing Engaging Online Kinesiology Courses Based on the Community of Inquiry Model
ERIC Educational Resources Information Center
Hersman, Bethany; Schroeder, Noah
2017-01-01
Technology integration has become an ever-present phenomenon in institutions of higher education. This has led to an increase in online learning experiences that make higher education accessible to those who previously experienced barriers, such as having full-time jobs. One issue that affects online education is the challenge of engaging the…
Mechanisms of Reference Frame Selection in Spatial Term Use: Computational and Empirical Studies
ERIC Educational Resources Information Center
Schultheis, Holger; Carlson, Laura A.
2017-01-01
Previous studies have shown that multiple reference frames are available and compete for selection during the use of spatial terms such as "above." However, the mechanisms that underlie the selection process are poorly understood. In the current paper we present two experiments and a comparison of three computational models of selection…
ERIC Educational Resources Information Center
Lambert, Richard G.; McCarthy, Christopher J.; Fitchett, Paul G.; Lineback, Sally; Reiser, Jenson
2015-01-01
Transactional models of stress suggest that elementary teachers who appraise classroom demands as higher than classroom resources are more vulnerable to stress and likely to experience vocational concerns. Previous research using the Classroom Appraisal of Resources and Demands (CARD), a measure designed to assess teacher perceptions of classroom…
Parental Sleep Quality and Behavior Problems of Children with Autism
ERIC Educational Resources Information Center
Mihaila, Iulia; Hartley, Sigan L.
2018-01-01
This study explored the impact of parental sleep quality on the experience of behavior problems by children with autism spectrum disorder. A 14-day daily diary was used in a sample of 176 mother-father couples. Dyadic multilevel models were conducted to examine the between-person and within-person effects of previous-night sleep quality on…
1980-06-01
problems, a parametric model was built which uses the TI - 59 programmable calculator as its ve- hicle. Although the calculator has many disadvantages for...previous experience using the TI 59 programmable calculator . For example, explicit instructions for reading cards into the memory set will not be given
A permeation theory for single-file ion channels: one- and two-step models.
Nelson, Peter Hugo
2011-04-28
How many steps are required to model permeation through ion channels? This question is investigated by comparing one- and two-step models of permeation with experiment and MD simulation for the first time. In recent MD simulations, the observed permeation mechanism was identified as resembling a Hodgkin and Keynes knock-on mechanism with one voltage-dependent rate-determining step [Jensen et al., PNAS 107, 5833 (2010)]. These previously published simulation data are fitted to a one-step knock-on model that successfully explains the highly non-Ohmic current-voltage curve observed in the simulation. However, these predictions (and the simulations upon which they are based) are not representative of real channel behavior, which is typically Ohmic at low voltages. A two-step association/dissociation (A/D) model is then compared with experiment for the first time. This two-parameter model is shown to be remarkably consistent with previously published permeation experiments through the MaxiK potassium channel over a wide range of concentrations and positive voltages. The A/D model also provides a first-order explanation of permeation through the Shaker potassium channel, but it does not explain the asymmetry observed experimentally. To address this, a new asymmetric variant of the A/D model is developed using the present theoretical framework. It includes a third parameter that represents the value of the "permeation coordinate" (fractional electric potential energy) corresponding to the triply occupied state n of the channel. This asymmetric A/D model is fitted to published permeation data through the Shaker potassium channel at physiological concentrations, and it successfully predicts qualitative changes in the negative current-voltage data (including a transition to super-Ohmic behavior) based solely on a fit to positive-voltage data (that appear linear). The A/D model appears to be qualitatively consistent with a large group of published MD simulations, but no quantitative comparison has yet been made. The A/D model makes a network of predictions for how the elementary steps and the channel occupancy vary with both concentration and voltage. In addition, the proposed theoretical framework suggests a new way of plotting the energetics of the simulated system using a one-dimensional permeation coordinate that uses electric potential energy as a metric for the net fractional progress through the permeation mechanism. This approach has the potential to provide a quantitative connection between atomistic simulations and permeation experiments for the first time.
A search for Ganymede stereo images and 3D mapping opportunities
NASA Astrophysics Data System (ADS)
Zubarev, A.; Nadezhdina, I.; Brusnikin, E.; Giese, B.; Oberst, J.
2017-10-01
We used 126 Voyager-1 and -2 as well as 87 Galileo images of Ganymede and searched for stereo images suitable for digital 3D stereo analysis. Specifically, we consider image resolutions, stereo angles, as well as matching illumination conditions of respective stereo pairs. Lists of regions and local areas with stereo coverage are compiled. We present anaglyphs and we selected areas, not previously discussed, for which we constructed Digital Elevation Models and associated visualizations. The terrain characteristics in the models are in agreement with our previous notion of Ganymede morphology, represented by families of lineaments and craters of various sizes and degradation stages. The identified areas of stereo coverage may serve as important reference targets for the Ganymede Laser Altimeter (GALA) experiment on the future JUICE (Jupiter Icy Moons Explorer) mission.
Display size effects in visual search: analyses of reaction time distributions as mixtures.
Reynolds, Ann; Miller, Jeff
2009-05-01
In a reanalysis of data from Cousineau and Shiffrin (2004) and two new visual search experiments, we used a likelihood ratio test to examine the full distributions of reaction time (RT) for evidence that the display size effect is a mixture-type effect that occurs on only a proportion of trials, leaving RT in the remaining trials unaffected, as is predicted by serial self-terminating search models. Experiment 1 was a reanalysis of Cousineau and Shiffrin's data, for which a mixture effect had previously been established by a bimodal distribution of RTs, and the results confirmed that the likelihood ratio test could also detect this mixture. Experiment 2 applied the likelihood ratio test within a more standard visual search task with a relatively easy target/distractor discrimination, and Experiment 3 applied it within a target identification search task within the same types of stimuli. Neither of these experiments provided any evidence for the mixture-type display size effect predicted by serial self-terminating search models. Overall, these results suggest that serial self-terminating search models may generally be applicable only with relatively difficult target/distractor discriminations, and then only for some participants. In addition, they further illustrate the utility of analysing full RT distributions in addition to mean RT.
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Hegde, U.; Bhattacharjee, S.; Deering, J. L.; Tang, L.; Altenkirch, R. A.
2003-01-01
A series of 6-minute microgravity combustion experiments of opposed flow flame spread over thermally-thick PMMA has been conducted to extend data previously reported at high opposed flows to almost two decades lower in flow. The effect of flow velocity on flame spread shows a square root power law dependence rather than the linear dependence predicted by thermal theory. The experiments demonstrate that opposed flow flame spread is viable to very low velocities and more robust than expected from the numerical model, which predicts that at very low velocities (less than 5 centimeters per second), flame spread rates fall off more rapidly as flow is reduced. It is hypothesized that the enhanced flame spread observed in the experiments may be due to three- dimensional hydrodynamic effects, which are not included in the zero-gravity, two-dimensional hydrodynamic model. The effect of external irradiation was found to be more complex that the model predicted over the 0-2 Watts per square centimeter range. In the experiments, the flame compensated for the increased irradiation by stabilizing farther from the surface. A surface energy balance reveals that the imposed flux was at least partially offset by a reduced conductive flux from the increased standoff distance, so that the effect on flame spread was weaker than anticipated.
Sensitivity of southern hemisphere westerly wind to boundary conditions for the last glacial maximum
NASA Astrophysics Data System (ADS)
Jun, S. Y.; Kim, S. J.; Kim, B. M.
2017-12-01
To examine the change in SH westerly wind in the LGM, we performed LGM simulation with sensitivity experiments by specifying the LGM sea ice in the Southern Ocean (SO), ice sheet over Antarctica, and tropical pacific sea surface temperature to CAM5 atmosphere general circulation model (GCM). The SH westerly response to LGM boundary conditions in the CAM5 was compared with those from CMIP5 LGM simulations. In the CAM5 LGM simulation, the SH westerly wind substantially increases between 40°S and 65°S, while the zonal-mean zonal wind decreases at latitudes higher than 65°S. The position of the SH maximum westerly wind moves poleward by about 8° in the LGM simulation. Sensitivity experiments suggest that the increase in SH westerly winds is mainly due to the increase in sea ice in the SO that accounts for 60% of total wind change. In the CMIP5-PMIP3 LGM experiments, most of the models show the slight increase and poleward shift of the SH westerly wind as in the CAM5 experiment. The increased and poleward shifted westerly wind in the LGM obtained in the current model result is consistent with previous model results and some lines of proxy evidence, though opposite model responses and proxy evidence exist for the SH westerly wind change.
A six-parameter Iwan model and its application
NASA Astrophysics Data System (ADS)
Li, Yikun; Hao, Zhiming
2016-02-01
Iwan model is a practical tool to describe the constitutive behaviors of joints. In this paper, a six-parameter Iwan model based on a truncated power-law distribution with two Dirac delta functions is proposed, which gives a more comprehensive description of joints than the previous Iwan models. Its analytical expressions including backbone curve, unloading curves and energy dissipation are deduced. Parameter identification procedures and the discretization method are also provided. A model application based on Segalman et al.'s experiment works with bolted joints is carried out. Simulation effects of different numbers of Jenkins elements are discussed. The results indicate that the six-parameter Iwan model can be used to accurately reproduce the experimental phenomena of joints.
Orientation influence on grain size-effects in ultrafine-grained magnesium
Fan, Haidong; Aubry, Sylvie; Arsenlis, A.; ...
2014-11-08
The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size-strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments is observed. These results reveal that the grain size effect depends on 3 factors: Peierls stress, dislocation source strength and grain boundary strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cembranos, Jose A. R.; Diaz-Cruz, J. Lorenzo; Prado, Lilian
Dark Matter direct detection experiments are able to exclude interesting parameter space regions of particle models which predict an important amount of thermal relics. We use recent data to constrain the branon model and to compute the region that is favored by CDMS measurements. Within this work, we also update present colliders constraints with new studies coming from the LHC. Despite the present low luminosity, it is remarkable that for heavy branons, CMS and ATLAS measurements are already more constraining than previous analyses performed with TEVATRON and LEP data.
Learning from project experiences using a legacy-based approach
NASA Technical Reports Server (NTRS)
Cooper, Lynne P.; Majchrzak, Ann; Faraj, Samer
2005-01-01
As project teams become used more widely, the question of how to capitalize on the knowledge learned in project teams remains an open issue. Using previous research on shared cognition in groups, an approach to promoting post-project learning was developed. This Legacy Review concept was tested on four in tact project teams. The results from those test sessions were used to develop a model of team learning via group cognitive processes. The model and supporting propositions are presented.
NASA Astrophysics Data System (ADS)
Abendroth, Sven; Thaler, Jan; Klump, Jens; Schicks, Judith; Uddin, Mafiz
2014-05-01
In the context of the German joint project SUGAR (Submarine Gas Hydrate Reservoirs: exploration, extraction and transport) we conducted a series of experiments in the LArge Reservoir Simulator (LARS) at the German Research Centre of Geosciences Potsdam. These experiments allow us to investigate the formation and dissociation of hydrates at large scale laboratory conditions. We performed an experiment similar to the field-test conditions of the production test in the Mallik gas hydrate field (Mallik 2L-38) in the Beaufort Mackenzie Delta of the Canadian Arctic. The aim of this experiment was to study the transport behavior of fluids in gas hydrate reservoirs during depressurization (see also Heeschen et al. and Priegnitz et al., this volume). The experimental results from LARS are used to provide details about processes inside the pressure vessel, to validate the models through history matching, and to feed back into the design of future experiments. In experiments in LARS the amount of methane produced from gas hydrates was much lower than expected. Previously published models predict a methane production rate higher than the one observed in experiments and field studies (Uddin et al. 2010; Wright et al. 2011). The authors of the aforementioned studies point out that the current modeling approach overestimates the gas production rate when modeling gas production by depressurization. They suggest that trapping of gas bubbles inside the porous medium is responsible for the reduced gas production rate. They point out that this behavior of multi-phase flow is not well explained by a "residual oil" model, but rather resembles a "foamy oil" model. Our study applies Uddin's (2010) "foamy oil" model and combines it with history matches of our experiments in LARS. Our results indicate a better agreement between experimental and model results when using the "foamy oil" model instead of conventional models of gas flow in water. References Uddin M., Wright J.F. and Coombe D. (2010) - Numerical Study of gas evolution and transport behaviors in natural gas hydrate reservoirs; CSUG/SPE 137439. Wright J.F., Uddin M., Dallimore S.R. and Coombe D. (2011) - Mechanisms of gas evolution and transport in a producing gas hydrate reservoir: an unconventional basis for successful history matching of observed production flow data; International Conference on Gas Hydrates (ICGH 2011).
Characterization of beryllium deformation using in-situ x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnuson, Eric Alan; Brown, Donald William; Clausen, Bjorn
2015-08-24
Beryllium’s unique mechanical properties are extremely important in a number of high performance applications. Consequently, accurate models for the mechanical behavior of beryllium are required. However, current models are not sufficiently microstructure aware to accurately predict the performance of beryllium under a range of processing and loading conditions. Previous experiments conducted using the SMARTS and HIPPO instruments at the Lujan Center(LANL), have studied the relationship between strain rate and texture development, but due to the limitations of neutron diffraction studies, it was not possible to measure the response of the material in real-time. In-situ diffraction experiments conducted at the Advancedmore » Photon Source have allowed the real time measurement of the mechanical response of compressed beryllium. Samples of pre-strained beryllium were reloaded orthogonal to their original load path to show the reorientation of already twinned grains. Additionally, the in-situ experiments allowed the real time tracking of twin evolution in beryllium strained at high rates. The data gathered during these experiments will be used in the development and validation of a new, microstructure aware model of the constitutive behavior of beryllium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myint, Philip C.; Benedict, Lorin X.; Belof, Jonathan L.
Here, we present equations of state relevant to conditions encountered in ramp and multiple-shock compression experiments of water. These experiments compress water from ambient conditions to pressures as high as about 14 GPa and temperatures of up to several hundreds of Kelvin. Water may freeze into ice VII during this process. Although there are several studies on the thermodynamic properties of ice VII, an accurate and analytic free energy model from which all other properties may be derived in a thermodynamically consistent manner has not been previously determined. We have developed such a free energy model for ice VII thatmore » is calibrated with pressure-volume-temperature measurements and melt curve data. Furthermore, we show that liquid water in the pressure and temperature range of interest is well-represented by a simple Mie-Grüneisen equation of state. Our liquid water and ice VII equations of state are validated by comparing to sound speed and Hugoniot data. Although they are targeted towards ramp and multiple-shock compression experiments, we demonstrate that our equations of state also behave reasonably well at pressures and temperatures that lie somewhat beyond those found in the experiments.« less
Myint, Philip C.; Benedict, Lorin X.; Belof, Jonathan L.
2017-08-28
Here, we present equations of state relevant to conditions encountered in ramp and multiple-shock compression experiments of water. These experiments compress water from ambient conditions to pressures as high as about 14 GPa and temperatures of up to several hundreds of Kelvin. Water may freeze into ice VII during this process. Although there are several studies on the thermodynamic properties of ice VII, an accurate and analytic free energy model from which all other properties may be derived in a thermodynamically consistent manner has not been previously determined. We have developed such a free energy model for ice VII thatmore » is calibrated with pressure-volume-temperature measurements and melt curve data. Furthermore, we show that liquid water in the pressure and temperature range of interest is well-represented by a simple Mie-Grüneisen equation of state. Our liquid water and ice VII equations of state are validated by comparing to sound speed and Hugoniot data. Although they are targeted towards ramp and multiple-shock compression experiments, we demonstrate that our equations of state also behave reasonably well at pressures and temperatures that lie somewhat beyond those found in the experiments.« less
Argonne Bubble Experiment Thermal Model Development III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Cynthia Eileen
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vesselmore » geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.« less
NASA Astrophysics Data System (ADS)
Nir, A.; Doughty, C.; Tsang, C. F.
Validation methods which developed in the context of deterministic concepts of past generations often cannot be directly applied to environmental problems, which may be characterized by limited reproducibility of results and highly complex models. Instead, validation is interpreted here as a series of activities, including both theoretical and experimental tests, designed to enhance our confidence in the capability of a proposed model to describe some aspect of reality. We examine the validation process applied to a project concerned with heat and fluid transport in porous media, in which mathematical modeling, simulation, and results of field experiments are evaluated in order to determine the feasibility of a system for seasonal thermal energy storage in shallow unsaturated soils. Technical details of the field experiments are not included, but appear in previous publications. Validation activities are divided into three stages. The first stage, carried out prior to the field experiments, is concerned with modeling the relevant physical processes, optimization of the heat-exchanger configuration and the shape of the storage volume, and multi-year simulation. Subjects requiring further theoretical and experimental study are identified at this stage. The second stage encompasses the planning and evaluation of the initial field experiment. Simulations are made to determine the experimental time scale and optimal sensor locations. Soil thermal parameters and temperature boundary conditions are estimated using an inverse method. Then results of the experiment are compared with model predictions using different parameter values and modeling approximations. In the third stage, results of an experiment performed under different boundary conditions are compared to predictions made by the models developed in the second stage. Various aspects of this theoretical and experimental field study are described as examples of the verification and validation procedure. There is no attempt to validate a specific model, but several models of increasing complexity are compared with experimental results. The outcome is interpreted as a demonstration of the paradigm proposed by van der Heijde, 26 that different constituencies have different objectives for the validation process and therefore their acceptance criteria differ also.
Sediment and Vegetation Controls on Delta Channel Networks
NASA Astrophysics Data System (ADS)
Lauzon, R.; Murray, A. B.; Piliouras, A.; Kim, W.
2016-12-01
Numerous factors control the patterns of distributary channels formed on a delta, including water and sediment discharge, grain size, sea level rise rates, and vegetation type. In turn, these channel networks influence the shape and evolution of a delta, including what types of plant and animal life - such as humans - it can support. Previous fluvial modeling and flume experiments, outside of the delta context, have addressed how interactions between sediment and vegetation, through their influence on lateral transport of sediment, determine what type of channel networks develops. Similar interactions likely also shape delta flow patterns. Vegetation introduces cohesion, tending to reduce channel migration rates and strengthen existing channel banks, reinforcing existing channels and resulting in localized, relatively stable flow patterns. On the other hand, sediment transport processes can result in lateral migration and frequent switching of active channels, resulting in flow resembling that of a braided stream. While previous studies of deltas have indirectly explored the effects of vegetation through the introduction of cohesive sediment, we directly incorporate key effects of vegetation on flow and sediment transport into the delta-building model DeltaRCM to explore how these effects influence delta channel network formation. Model development is informed by laboratory flume experiments at UT Austin. Here we present initial results of experiments exploring the effects of sea level rise rate, sediment grain size, vegetation type, and vegetation growth rate on delta channel network morphology. These results support the hypothesis that the ability for lateral transport of sediment to occur plays a key role in determining the evolution of delta channel networks and delta morphology.
Tripathy, Shreepada; Miller, Karen H; Berkenbosch, John W; McKinley, Tara F; Boland, Kimberly A; Brown, Seth A; Calhoun, Aaron W
2016-06-01
Controversy exists in the simulation community as to the emotional and educational ramifications of mannequin death due to learner action or inaction. No theoretical framework to guide future investigations of learner actions currently exists. The purpose of our study was to generate a model of the learner experience of mannequin death using a mixed methods approach. The study consisted of an initial focus group phase composed of 11 learners who had previously experienced mannequin death due to action or inaction on the part of learners as defined by Leighton (Clin Simul Nurs. 2009;5(2):e59-e62). Transcripts were analyzed using grounded theory to generate a list of relevant themes that were further organized into a theoretical framework. With the use of this framework, a survey was generated and distributed to additional learners who had experienced mannequin death due to action or inaction. Results were analyzed using a mixed methods approach. Forty-one clinicians completed the survey. A correlation was found between the emotional experience of mannequin death and degree of presession anxiety (P < 0.001). Debriefing was found to significantly reduce negative emotion and enhance satisfaction. Sixty-nine percent of respondents indicated that mannequin death enhanced learning. These results were used to modify our framework. Using the previous approach, we created a model of the effect of mannequin death on the educational and psychological state of learners. We offer the final model as a guide to future research regarding the learner experience of mannequin death.
Event models and the fan effect.
Radvansky, G A; O'Rear, Andrea E; Fisher, Jerry S
2017-08-01
The current study explored the persistence of event model organizations and how this influences the experience of interference during retrieval. People in this study memorized lists of sentences about objects in locations, such as "The potted palm is in the hotel." Previous work has shown that such information can either be stored in separate event models, thereby producing retrieval interference, or integrated into common event models, thereby eliminating retrieval interference. Unlike prior studies, the current work explored the impact of forgetting up to 2 weeks later on this pattern of performance. We explored three possible outcomes across the various retention intervals. First, consistent with research showing that longer delays reduce proactive and retroactive interference, any retrieval interference effects of competing event models could be reduced over time. Second, the binding of information into events models may weaken over time, causing interference effects to emerge when they had previously been absent. Third, and finally, the organization of information into event models could remain stable over long periods of time. The results reported here are most consistent with the last outcome. While there were some minor variations across the various retention intervals, the basic pattern of event model organization remained preserved over the two-week retention period.
Namba, Shushi; Kabir, Russell S.; Miyatani, Makoto; Nakao, Takashi
2017-01-01
While numerous studies have examined the relationships between facial actions and emotions, they have yet to account for the ways that specific spontaneous facial expressions map onto emotional experiences induced without expressive intent. Moreover, previous studies emphasized that a fine-grained investigation of facial components could establish the coherence of facial actions with actual internal states. Therefore, this study aimed to accumulate evidence for the correspondence between spontaneous facial components and emotional experiences. We reinvestigated data from previous research which secretly recorded spontaneous facial expressions of Japanese participants as they watched film clips designed to evoke four different target emotions: surprise, amusement, disgust, and sadness. The participants rated their emotional experiences via a self-reported questionnaire of 16 emotions. These spontaneous facial expressions were coded using the Facial Action Coding System, the gold standard for classifying visible facial movements. We corroborated each facial action that was present in the emotional experiences by applying stepwise regression models. The results found that spontaneous facial components occurred in ways that cohere to their evolutionary functions based on the rating values of emotional experiences (e.g., the inner brow raiser might be involved in the evaluation of novelty). This study provided new empirical evidence for the correspondence between each spontaneous facial component and first-person internal states of emotion as reported by the expresser. PMID:28522979
Ejlertsson, Lina; Heijbel, Bodil; Ejlertsson, Göran; Andersson, Ingemar
2018-01-01
BACKGROUND: There is a lack of information on positive work factors among health care workers. OBJECTIVE: To explore salutogenic work-related factors among primary health care employees. METHOD: Questionnaire to all employees (n = 599) from different professions in public and private primary health care centers in one health care district in Sweden. The questionnaire, which had a salutogenic perspective, included information on self-rated health from the previously validated SHIS (Salutogenic Health Indicator Scale), psychosocial work environment and experiences, recovery, leadership, social climate, reflection and work-life balance. RESULTS: The response rate was 84%. A multivariable linear regression model, with SHIS as the dependent variable, showed three significant predictors. Recovery had the highest relationship to SHIS (β= 0.34), followed by experience of work-life balance (β= 0.25) and work experiences (β= 0.20). Increased experience of recovery during working hours related to higher self-rated health independent of recovery outside work. CONCLUSION: Individual experiences of work, work-life balance and, most importantly, recovery seem to be essential areas for health promotion. Recovery outside the workplace has been studied previously, but since recovery during work was shown to be of great importance in relation to higher self-rated health, more research is needed to explore different recovery strategies in the workplace. PMID:29439377
Ejlertsson, Lina; Heijbel, Bodil; Ejlertsson, Göran; Andersson, Ingemar
2018-01-01
There is a lack of information on positive work factors among health care workers. To explore salutogenic work-related factors among primary health care employees. Questionnaire to all employees (n = 599) from different professions in public and private primary health care centers in one health care district in Sweden. The questionnaire, which had a salutogenic perspective, included information on self-rated health from the previously validated SHIS (Salutogenic Health Indicator Scale), psychosocial work environment and experiences, recovery, leadership, social climate, reflection and work-life balance. The response rate was 84%. A multivariable linear regression model, with SHIS as the dependent variable, showed three significant predictors. Recovery had the highest relationship to SHIS (β= 0.34), followed by experience of work-life balance (β= 0.25) and work experiences (β= 0.20). Increased experience of recovery during working hours related to higher self-rated health independent of recovery outside work. Individual experiences of work, work-life balance and, most importantly, recovery seem to be essential areas for health promotion. Recovery outside the workplace has been studied previously, but since recovery during work was shown to be of great importance in relation to higher self-rated health, more research is needed to explore different recovery strategies in the workplace.
Near-optimal experimental design for model selection in systems biology.
Busetto, Alberto Giovanni; Hauser, Alain; Krummenacher, Gabriel; Sunnåker, Mikael; Dimopoulos, Sotiris; Ong, Cheng Soon; Stelling, Jörg; Buhmann, Joachim M
2013-10-15
Biological systems are understood through iterations of modeling and experimentation. Not all experiments, however, are equally valuable for predictive modeling. This study introduces an efficient method for experimental design aimed at selecting dynamical models from data. Motivated by biological applications, the method enables the design of crucial experiments: it determines a highly informative selection of measurement readouts and time points. We demonstrate formal guarantees of design efficiency on the basis of previous results. By reducing our task to the setting of graphical models, we prove that the method finds a near-optimal design selection with a polynomial number of evaluations. Moreover, the method exhibits the best polynomial-complexity constant approximation factor, unless P = NP. We measure the performance of the method in comparison with established alternatives, such as ensemble non-centrality, on example models of different complexity. Efficient design accelerates the loop between modeling and experimentation: it enables the inference of complex mechanisms, such as those controlling central metabolic operation. Toolbox 'NearOED' available with source code under GPL on the Machine Learning Open Source Software Web site (mloss.org).
PubMed related articles: a probabilistic topic-based model for content similarity
Lin, Jimmy; Wilbur, W John
2007-01-01
Background We present a probabilistic topic-based model for content similarity called pmra that underlies the related article search feature in PubMed. Whether or not a document is about a particular topic is computed from term frequencies, modeled as Poisson distributions. Unlike previous probabilistic retrieval models, we do not attempt to estimate relevance–but rather our focus is "relatedness", the probability that a user would want to examine a particular document given known interest in another. We also describe a novel technique for estimating parameters that does not require human relevance judgments; instead, the process is based on the existence of MeSH ® in MEDLINE ®. Results The pmra retrieval model was compared against bm25, a competitive probabilistic model that shares theoretical similarities. Experiments using the test collection from the TREC 2005 genomics track shows a small but statistically significant improvement of pmra over bm25 in terms of precision. Conclusion Our experiments suggest that the pmra model provides an effective ranking algorithm for related article search. PMID:17971238
Spatial frequency dependence of target signature for infrared performance modeling
NASA Astrophysics Data System (ADS)
Du Bosq, Todd; Olson, Jeffrey
2011-05-01
The standard model used to describe the performance of infrared imagers is the U.S. Army imaging system target acquisition model, based on the targeting task performance metric. The model is characterized by the resolution and sensitivity of the sensor as well as the contrast and task difficulty of the target set. The contrast of the target is defined as a spatial average contrast. The model treats the contrast of the target set as spatially white, or constant, over the bandlimit of the sensor. Previous experiments have shown that this assumption is valid under normal conditions and typical target sets. However, outside of these conditions, the treatment of target signature can become the limiting factor affecting model performance accuracy. This paper examines target signature more carefully. The spatial frequency dependence of the standard U.S. Army RDECOM CERDEC Night Vision 12 and 8 tracked vehicle target sets is described. The results of human perception experiments are modeled and evaluated using both frequency dependent and independent target signature definitions. Finally the function of task difficulty and its relationship to a target set is discussed.
NASA Astrophysics Data System (ADS)
Miyaguchi, Tomoshige
2017-10-01
There have been increasing reports that the diffusion coefficient of macromolecules depends on time and fluctuates randomly. Here a method is developed to elucidate this fluctuating diffusivity from trajectory data. Time-averaged mean-square displacement (MSD), a common tool in single-particle-tracking (SPT) experiments, is generalized to a second-order tensor with which both magnitude and orientation fluctuations of the diffusivity can be clearly detected. This method is used to analyze the center-of-mass motion of four fundamental polymer models: the Rouse model, the Zimm model, a reptation model, and a rigid rodlike polymer. It is found that these models exhibit distinctly different types of magnitude and orientation fluctuations of diffusivity. This is an advantage of the present method over previous ones, such as the ergodicity-breaking parameter and a non-Gaussian parameter, because with either of these parameters it is difficult to distinguish the dynamics of the four polymer models. Also, the present method of a time-averaged MSD tensor could be used to analyze trajectory data obtained in SPT experiments.
A Sensitivity Analysis of fMRI Balloon Model.
Zayane, Chadia; Laleg-Kirati, Taous Meriem
2015-01-01
Functional magnetic resonance imaging (fMRI) allows the mapping of the brain activation through measurements of the Blood Oxygenation Level Dependent (BOLD) contrast. The characterization of the pathway from the input stimulus to the output BOLD signal requires the selection of an adequate hemodynamic model and the satisfaction of some specific conditions while conducting the experiment and calibrating the model. This paper, focuses on the identifiability of the Balloon hemodynamic model. By identifiability, we mean the ability to estimate accurately the model parameters given the input and the output measurement. Previous studies of the Balloon model have somehow added knowledge either by choosing prior distributions for the parameters, freezing some of them, or looking for the solution as a projection on a natural basis of some vector space. In these studies, the identification was generally assessed using event-related paradigms. This paper justifies the reasons behind the need of adding knowledge, choosing certain paradigms, and completing the few existing identifiability studies through a global sensitivity analysis of the Balloon model in the case of blocked design experiment.
Combinatorial semantics strengthens angular-anterior temporal coupling.
Molinaro, Nicola; Paz-Alonso, Pedro M; Duñabeitia, Jon Andoni; Carreiras, Manuel
2015-04-01
The human semantic combinatorial system allows us to create a wide number of new meanings from a finite number of existing representations. The present study investigates the neural dynamics underlying the semantic processing of different conceptual constructions based on predictions from previous neuroanatomical models of the semantic processing network. In two experiments, participants read sentences for comprehension containing noun-adjective pairs in three different conditions: prototypical (Redundant), nonsense (Anomalous) and low-typical but composable (Contrastive). In Experiment 1 we examined the processing costs associated to reading these sentences and found a processing dissociation between Anomalous and Contrastive word pairs, compared to prototypical (Redundant) stimuli. In Experiment 2, functional connectivity results showed strong co-activation across conditions between inferior frontal gyrus (IFG) and posterior middle temporal gyrus (MTG), as well as between these two regions and middle frontal gyrus (MFG), anterior temporal cortex (ATC) and fusiform gyrus (FG), consistent with previous neuroanatomical models. Importantly, processing of low-typical (but composable) meanings relative to prototypical and anomalous constructions was associated with a stronger positive coupling between ATC and angular gyrus (AG). Our results underscore the critical role of IFG-MTG co-activation during semantic processing and how other relevant nodes within the semantic processing network come into play to handle visual-orthographic information, to maintain multiple lexical-semantic representations in working memory and to combine existing representations while creatively constructing meaning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Decisions about weight management: a synthesis of qualitative studies of obesity.
Brown, I; Gould, J
2011-04-01
There is a high non-attendance and dropout attrition from weight management interventions for adults with obesity. Patient dissatisfaction with consultations involving decisions about interventions may be a factor. A systematic review was undertaken of qualitative studies reporting perceptions, experiences, contexts and influences for adults facing, or reflecting on, weight management. The aim was to synthesize a generic model of influences on decision-making about weight management for adult patients. Electronic database and hand searches identified 29 qualitative studies involving 1387 participants (mean age 45.3 years; mean BMI 37.1 kg m(-2) ; 79.9% women). Seven overarching themes were inductively derived from extracted data spanning: cultural identity; social structures such as gender; responses to obesity stigma; previous weight loss experiences; personal motivators and barriers; social support; and practical resources. A model is presented in the paper. Improving decisions about weight management requires attention to how diffuse cultural and psycho-social factors, such as obesity stigma, influence patient choices. Reflection on experiences of previous attempts at weight loss is also essential, as are practical resource factors - particularly for less affluent groups. Considering these factors along with more established theories of individual psychological motivations and barriers may help to improve initial participation and retention within interventions. © 2011 The Authors. Clinical Obesity © 2011 International Association for the Study of Obesity.
Adult learners in a novel environment use prestige-biased social learning.
Atkisson, Curtis; O'Brien, Michael J; Mesoudi, Alex
2012-08-13
Social learning (learning from others) is evolutionarily adaptive under a wide range of conditions and is a long-standing area of interest across the social and biological sciences. One social-learning mechanism derived from cultural evolutionary theory is prestige bias, which allows a learner in a novel environment to quickly and inexpensively gather information as to the potentially best teachers, thus maximizing his or her chances of acquiring adaptive behavior. Learners provide deference to high-status individuals in order to ingratiate themselves with, and gain extended exposure to, that individual. We examined prestige-biased social transmission in a laboratory experiment in which participants designed arrowheads and attempted to maximize hunting success, measured in caloric return. Our main findings are that (1) participants preferentially learned from prestigious models (defined as those models at whom others spent longer times looking), and (2) prestige information and success-related information were used to the same degree, even though the former was less useful in this experiment than the latter. We also found that (3) participants were most likely to use social learning over individual (asocial) learning when they were performing poorly, in line with previous experiments, and (4) prestige information was not used more often following environmental shifts, contrary to predictions. These results support previous discussions of the key role that prestige-biased transmission plays in social learning.
Incorporating Experience Curves in Appliance Standards Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbesi, Karina; Chan, Peter; Greenblatt, Jeffery
2011-10-31
The technical analyses in support of U.S. energy conservation standards for residential appliances and commercial equipment have typically assumed that manufacturing costs and retail prices remain constant during the projected 30-year analysis period. There is, however, considerable evidence that this assumption does not reflect real market prices. Costs and prices generally fall in relation to cumulative production, a phenomenon known as experience and modeled by a fairly robust empirical experience curve. Using price data from the Bureau of Labor Statistics, and shipment data obtained as part of the standards analysis process, we present U.S. experience curves for room air conditioners,more » clothes dryers, central air conditioners, furnaces, and refrigerators and freezers. These allow us to develop more representative appliance price projections than the assumption-based approach of constant prices. These experience curves were incorporated into recent energy conservation standards for these products. The impact on the national modeling can be significant, often increasing the net present value of potential standard levels in the analysis. In some cases a previously cost-negative potential standard level demonstrates a benefit when incorporating experience. These results imply that past energy conservation standards analyses may have undervalued the economic benefits of potential standard levels.« less
NASA Astrophysics Data System (ADS)
Vondruska, Judy A.
Over the past decade, peer instruction and the introduction of student response systems has provided a means of improving student engagement and achievement in large-lecture settings. While the nature of the student discourse occurring during peer instruction is less understood, existing studies have shown student ideas about the subject, extraneous cues, and confidence level appear to matter in the student-student discourse. Using a mixed methods research design, this study examined the influence of previous subject experience on peer instruction in an introductory, one-semester Survey of Physics course. Quantitative results indicated students in discussion pairs where both had previous subject experience were more likely to answer clicker question correctly both before and after peer discussion compared to student groups where neither partner had previous subject experience. Students in mixed discussion pairs were not statistically different in correct response rates from the other pairings. There was no statistically significant difference between the experience pairs on unit exam scores or the Peer Instruction Partner Survey. Although there was a statistically significant difference between the pre-MPEX and post-MPEX scores, there was no difference between the members of the various subject experience peer discussion pairs. The qualitative study, conducted after the quantitative study, helped to inform the quantitative results by exploring the nature of the peer interactions through survey questions and a series of focus groups discussions. While the majority of participants described a benefit to the use of clickers in the lecture, their experience with their discussion partners varied. Students with previous subject experience tended to describe peer instruction more positively than students who did not have previous subject experience, regardless of the experience level of their partner. They were also more likely to report favorable levels of comfort with the peer instruction experience. Students with no previous subject experience were more likely to describe a level of discomfort being assigned a stranger for a discussion partner and were more likely to report communication issues with their partner. Most group members, regardless of previous subject experience, related deeper discussions occurring when partners did not initially have the same answer to the clicker questions.
Parameterizing sorption isotherms using a hybrid global-local fitting procedure.
Matott, L Shawn; Singh, Anshuman; Rabideau, Alan J
2017-05-01
Predictive modeling of the transport and remediation of groundwater contaminants requires an accurate description of the sorption process, which is usually provided by fitting an isotherm model to site-specific laboratory data. Commonly used calibration procedures, listed in order of increasing sophistication, include: trial-and-error, linearization, non-linear regression, global search, and hybrid global-local search. Given the considerable variability in fitting procedures applied in published isotherm studies, we investigated the importance of algorithm selection through a series of numerical experiments involving 13 previously published sorption datasets. These datasets, considered representative of state-of-the-art for isotherm experiments, had been previously analyzed using trial-and-error, linearization, or non-linear regression methods. The isotherm expressions were re-fit using a 3-stage hybrid global-local search procedure (i.e. global search using particle swarm optimization followed by Powell's derivative free local search method and Gauss-Marquardt-Levenberg non-linear regression). The re-fitted expressions were then compared to previously published fits in terms of the optimized weighted sum of squared residuals (WSSR) fitness function, the final estimated parameters, and the influence on contaminant transport predictions - where easily computed concentration-dependent contaminant retardation factors served as a surrogate measure of likely transport behavior. Results suggest that many of the previously published calibrated isotherm parameter sets were local minima. In some cases, the updated hybrid global-local search yielded order-of-magnitude reductions in the fitness function. In particular, of the candidate isotherms, the Polanyi-type models were most likely to benefit from the use of the hybrid fitting procedure. In some cases, improvements in fitness function were associated with slight (<10%) changes in parameter values, but in other cases significant (>50%) changes in parameter values were noted. Despite these differences, the influence of isotherm misspecification on contaminant transport predictions was quite variable and difficult to predict from inspection of the isotherms. Copyright © 2017 Elsevier B.V. All rights reserved.
The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture
NASA Technical Reports Server (NTRS)
Reeder, James R.
2014-01-01
Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.
Mechanism of chemical sputtering of graphite under high flux deuterium bombardment
NASA Astrophysics Data System (ADS)
Ueda, Y.; Sugai, T.; Ohtsuka, Y.; Nishikawa, M.
2000-12-01
Chemical sputtering of graphite materials (isotropic graphite and carbon fiber composite) was studied by irradiation of 5 keV D 3+ beam with a flux up to 4×10 21 m-2 s-1, which is more than one order magnitude higher than previous low flux beam experiments (< 10 20 m-2 s-1) . The chemical sputtering yield was obtained from measurements of the released methane signal with a quadrupole mass analyser. It was found that the methane yield at peak temperatures is almost independent of flux from 5×10 20 to 4×10 21 m-2 s-1. Peak temperatures range between 900 and 1000 K, which is higher than those of the previous low flux experiments (<900 K, <10 20 m-2 s-1) . By comparing our experimental results with calculation results based on Roth's model, the annealing effect of radiation damage to prevent methyl group formation appears to be unimportant.
Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel.
Hedenström, A; Rosén, M; Spedding, G R
2006-04-22
The wakes of two individual robins were measured in digital particle image velocimetry (DPIV) experiments conducted in the Lund wind tunnel. Wake measurements were compared with each other, and with previous studies in the same facility. There was no significant individual variation in any of the measured quantities. Qualitatively, the wake structure and its gradual variation with flight speed were exactly as previously measured for the thrush nightingale. A procedure that accounts for the disparate sources of circulation spread over the complex wake structure nevertheless can account for the vertical momentum flux required to support the weight, and an example calculation is given for estimating drag from the components of horizontal momentum flux (whose net value is zero). The measured circulations of the largest structures in the wake can be predicted quite well by simple models, and expressions are given to predict these and other measurable quantities in future bird flight experiments.
Numerical Investigation of Plasma Detachment in Magnetic Nozzle Experiments
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2008-01-01
At present there exists no generally accepted theoretical model that provides a consistent physical explanation of plasma detachment from an externally-imposed magnetic nozzle. To make progress towards that end, simulation of plasma flow in the magnetic nozzle of an arcjet experiment is performed using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The aim is to compare the computational results with various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver (see Fig. I), and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. This geometry is modeled because there is a substantial amount of experimental data that can be compared to the computational results, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input parameters. Further studies will focus on modeling literature experiments both for the purpose of additional code validation and to extract physical insight regarding the mechanisms driving detachment.
The source of the truth bias: Heuristic processing?
Street, Chris N H; Masip, Jaume
2015-06-01
People believe others are telling the truth more often than they actually are; this is called the truth bias. Surprisingly, when a speaker is judged at multiple points across their statement the truth bias declines. Previous claims argue this is evidence of a shift from (biased) heuristic processing to (reasoned) analytical processing. In four experiments we contrast the heuristic-analytic model (HAM) with alternative accounts. In Experiment 1, the decrease in truth responding was not the result of speakers appearing more deceptive, but was instead attributable to the rater's processing style. Yet contrary to HAMs, across three experiments we found the decline in bias was not related to the amount of processing time available (Experiments 1-3) or the communication channel (Experiment 2). In Experiment 4 we found support for a new account: that the bias reflects whether raters perceive the statement to be internally consistent. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Electrohydrodynamic Stability of a Liquid Bridge: The "ALEX" Experiment
NASA Technical Reports Server (NTRS)
Burcham, C. L.; Sanakaran, S.; Saville, D. A.
1999-01-01
To provide insight into the roles of electrical forces, experiments on the stability of a liquid bridge were carried out during the 1996 Life And Microgravity Science Mission on the space shuttle Columbia. In terrestrial laboratories a Plateau configuration (where the bridge is surrounded by a matched density liquid) is necessary to avoid deformation due to buoyancy. This complicates the electrical boundary conditions, since charge is transported across the liquid-liquid interface. In the microgravity environment, a cylindrical bridge can be deployed in a gas which considerably simplifies the boundary condition. Nevertheless, to provide a tie-in to terrestrial experiments, two-phase experiments were carried out. The agreement with previous work was excellent. Then several experiments were conducted with a bridge deployed in a dielectric gas, SF6. In experiments with steady fields, it was found that the bridge was less stable than predicted by a linearized stability analysis using the Taylor-Melcher leaky dielectric model.
Predictors of nurses' experience of verbal abuse by nurse colleagues.
Keller, Ronald; Krainovich-Miller, Barbara; Budin, Wendy; Djukic, Maja
Between 45% and 94% of registered nurses (RNs) experience verbal abuse, which is associated with physical and psychological harm. Although several studies examined predictors of RNs' verbal abuse, none examined predictors of RNs' experiences of verbal abuse by RN colleagues. To examine individual, workplace, dispositional, contextual, and interpersonal predictors of RNs' reported experiences of verbal abuse from RN colleagues. In this secondary analysis, a cross-sectional design with multiple linear regression analysis was used to examine the effect of 23 predictors on verbal abuse by RN colleagues in a sample of 1,208 early career RNs. Selected variables in the empirical intragroup conflict model explained 23.8% of variance in RNs' experiences of verbal abuse by RN colleagues. A number of previously unstudied factors were identified that organizational leaders can monitor and develop or modify policies to prevent early career RNs' experiences of verbal abuse by RN colleagues. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Chuan; Zhang, Rong-Hua; Wu, Xinrong; Sun, Jichang
2018-04-01
Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Var) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer ( T e), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, α Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Var data assimilation system implemented in the ICM are also discussed.
Solutal Convection in Porous Media
NASA Astrophysics Data System (ADS)
Liang, Y.; Wen, B.; DiCarlo, D. A.; Hesse, M. A.
2017-12-01
Atmospheric CO2 is one important component of greenhouse gases, which can greatly affect the temperature of the Earth. There are four trapping mechanisms for CO2sequestration, including structural & stratigraphic trapping, residual trapping, dissolution trapping and mineral trapping. Leakage potential is a serious problem for its storage efficiency, and dissolution trapping is a method that can prevent such leakages effectively. Convective dissolution trapping process can be simplified to an interesting physical problem: in porous media, dissolution can initiate convection, and then its dynamics can be affected by the continuous convection conversely. However, it is difficult to detect whether the convective dissolution may take place, as well as how fast and in what pattern it may take place. Previous studies have established a model and related scaling (Rayleigh number and Sherwood number) to describe this physical problem. To testify this model with a large range of Rayleigh numbers, we conducted a series of convective dissolution experiments in porous media. In addition, this large experimental assembly can allow us to quantify relation between wavenumber of the convective motion and the controlling factors of the system for the first time. The result of our laboratory experiments are revolutionary: On one hand, it shows that previous scaling of the convective dissolution becomes invalid once the permeability is large enough; On the other hand, the relation between wavenumber and Rayleigh number demonstrates an opposite trend against the classic model. According to our experimental results, we propose a new model to describe the solutal convection in porous media, and our model can describe and explain our experimental observations. Also, simulation work has been conducted to confirm our model. In the future, our model and relevant knowledge can be unscaled to industrial applications which are relevant to convective dissolution process.
Boldness by habituation and social interactions: a model.
Oosten, Johanneke E; Magnhagen, Carin; Hemelrijk, Charlotte K
2010-04-01
Most studies of animal personality attribute personality to genetic traits. But a recent study by Magnhagen and Staffan (Behav Ecol Sociobiol 57:295-303, 2005) on young perch in small groups showed that boldness, a central personality trait, is also shaped by social interactions and by previous experience. The authors measured boldness by recording the duration that an individual spent near a predator and the speed with which it fed there. They found that duration near the predator increased over time and was higher the higher the average boldness of other group members. In addition, the feeding rate of shy individuals was reduced if other members of the same group were bold. The authors supposed that these behavioral dynamics were caused by genetic differences, social interactions, and habituation to the predator. However, they did not quantify exactly how this could happen. In the present study, we therefore use an agent-based model to investigate whether these three factors may explain the empirical findings. We choose an agent-based model because this type of model is especially suited to study the relation between behavior at an individual level and behavioral dynamics at a group level. In our model, individuals were either hiding in vegetation or feeding near a predator, whereby their behavior was affected by habituation and by two social mechanisms: social facilitation to approach the predator and competition over food. We show that even if we start the model with identical individuals, these three mechanisms were sufficient to reproduce the behavioral dynamics of the empirical study, including the consistent differences among individuals. Moreover, if we start the model with individuals that already differ in boldness, the behavioral dynamics produced remained the same. Our results indicate the importance of previous experience and social interactions when studying animal personality empirically.
Representing Plant Hydraulics in a Global Model: Updates to the Community Land Model
NASA Astrophysics Data System (ADS)
Kennedy, D.; Swenson, S. C.; Oleson, K. W.; Lawrence, D. M.; Fisher, R.; Gentine, P.
2017-12-01
In previous versions, the Community Land Model has used soil moisture to stand in for plant water status, with transpiration and photosynthesis driven directly by soil water potential. This eschews significant literature demonstrating the importance of plant hydraulic traits in the dynamics of water flow through the soil-plant-atmosphere continuum and in the regulation of stomatal aperture. In this study we install a simplified hydraulic framework to represent vegetation water potential and to regulate root water uptake and turbulent fluxes. Plant hydraulics allow for a more explicit representation of plant water status, which improves the physical basis for many processes represented in CLM. This includes root water uptake and the attenuation of photosynthesis and transpiration with drought. Model description is accompanied by results from a point simulation based at the Caxiuanã flux tower site in Eastern Amazonia, covering a throughfall exclusion experiment from 2001-2003. Including plant hydraulics improves the response to drought forcing compared to previous versions of CLM. Parameter sensitivity is examined at the same site and presented in the context of estimating hydraulic parameters in a global model.
Tracer Flux Balance at an Urban Canyon Intersection
NASA Astrophysics Data System (ADS)
Carpentieri, Matteo; Robins, Alan G.
2010-05-01
Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277-296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas.
Assessing mental health and violence on college campuses using the vulnerability model.
Ponsford, Lisa R
2016-04-01
Violence on college campuses has become increasingly more common than in previous years. Nearly 73% of students with a mental health condition living on campus experience a mental health crisis. College students arriving on campuses today come with different needs, expectations for services, and with different risk factors than in previous years. Advanced practice registered nurses (APRNs) in college health settings have the ability to recognize these changing trends and assist with improving the mental health of this population. A critical analysis of an exemplar college campus is explored using the vulnerability model to assess risks that can lead to unnecessary and preventable violence on college campuses. The vulnerability model is a comprehensive approach utilized to guide an assessment to identify both individual and community risk factors influencing health and healthcare environments. The use of the vulnerability model illustrated in this article reveals its usefulness in identifying the risk and needs for this population. APRNs and student health centers are positioned well to utilize the vulnerability model in assessing the needs of college campuses to improve outcomes of students. ©2016 American Association of Nurse Practitioners.
DSD-Consistent JWL Equations of State for EDC35
NASA Astrophysics Data System (ADS)
Hodgson, Alexander
2011-06-01
The Detonation Shock Dynamics model (DSD) allows the calculation of curvature-dependent detonation propagation. It is of particular use when applied to insensitive high explosives, such as EDC35, since they have a greater non-ideal behaviour. The DSD model has been used in conjunction with an experimental cylinder test to obtain the JWL Equation of State (EoS) for EDC35. Adjustment of parameters in the JWL equation changes the expansion profile of the simulated wall expansion. The parameters are iterated until the best match can be made between simulation and experiment. Previous DSD models used at AWE have no energy release mechanism to adjust the release of chemical energy to match the detonation conditions. Two JWL calibrations are performed using the DSD model, with and without Hetherington's energy release model (these proceedings). Also in use is a newly-calibrated detonation speed-curvature relation that is much closer, compared to previous calibrations, to Bdzil's equivalent for PBX9502. This paper discusses the possible improvements that this approach makes to the EDC35 JWL EoS.
Asymmetric latent semantic indexing for gene expression experiments visualization.
González, Javier; Muñoz, Alberto; Martos, Gabriel
2016-08-01
We propose a new method to visualize gene expression experiments inspired by the latent semantic indexing technique originally proposed in the textual analysis context. By using the correspondence word-gene document-experiment, we define an asymmetric similarity measure of association for genes that accounts for potential hierarchies in the data, the key to obtain meaningful gene mappings. We use the polar decomposition to obtain the sources of asymmetry of the similarity matrix, which are later combined with previous knowledge. Genetic classes of genes are identified by means of a mixture model applied in the genes latent space. We describe the steps of the procedure and we show its utility in the Human Cancer dataset.
Symmetron dark energy in laboratory experiments.
Upadhye, Amol
2013-01-18
The symmetron scalar field is a matter-coupled dark energy candidate which effectively decouples from matter in high-density regions through a symmetry restoration. We consider a previously unexplored regime, in which the vacuum mass μ~2.4×10(-3) eV of the symmetron is near the dark energy scale, and the matter coupling parameter M~1 TeV is just beyond standard model energies. Such a field will give rise to a fifth force at submillimeter distances which can be probed by short-range gravity experiments. We show that a torsion pendulum experiment such as Eöt-Wash can exclude symmetrons in this regime for all self-couplings λ is < or approximately equal to 7.5.
Simulating Small-Scale Experiments of In-Tunnel Airblast Using STUN and ALE3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuscamman, Stephanie; Glenn, Lewis; Schebler, Gregory
2011-09-12
This report details continuing validation efforts for the Sphere and Tunnel (STUN) and ALE3D codes. STUN has been validated previously for blast propagation through tunnels using several sets of experimental data with varying charge sizes and tunnel configurations, including the MARVEL nuclear driven shock tube experiment (Glenn, 2001). The DHS-funded STUNTool version is compared to experimental data and the LLNL ALE3D hydrocode. In this particular study, we compare the performance of the STUN and ALE3D codes in modeling an in-tunnel airblast to experimental results obtained by Lunderman and Ohrt in a series of small-scale high explosive experiments (1997).
An experimental study of geyser-like flows induced by a pressurized air pocket
NASA Astrophysics Data System (ADS)
Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.
2015-12-01
Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.
Experience-induced interocular plasticity of vision in infancy.
Tschetter, Wayne W; Douglas, Robert M; Prusky, Glen T
2011-01-01
Animal model studies of amblyopia have generally concluded that enduring effects of monocular deprivation (MD) on visual behavior (i.e., loss of visual acuity) are limited to the deprived eye, and are restricted to juvenile life. We have previously reported, however, that lasting effects of MD on visual function can be elicited in adulthood by stimulating visuomotor experience through the non-deprived eye. To test whether stimulating experience would also induce interocular plasticity of vision in infancy, we assessed in rats from eye-opening on postnatal day (P) 15, the effect of pairing MD with the daily experience of measuring thresholds for optokinetic tracking (OKT). MD with visuomotor experience from P15 to P25 led to a ~60% enhancement of the spatial frequency threshold for OKT through the non-deprived eye during the deprivation, which was followed by loss-of-function (~60% below normal) through both eyes when the deprived eye was opened. Reduced thresholds were maintained into adulthood with binocular OKT experience from P25 to P30. The ability to generate the plasticity and maintain lost function was dependent on visual cortex. Strictly limiting the period of deprivation to infancy by opening the deprived eye at P19 resulted in a comparable loss-of-function. Animals with reduced OKT responses also had significantly reduced visual acuity, measured independently in a discrimination task. Thus, experience-dependent cortical plasticity that can lead to amblyopia is present earlier in life than previously recognized.
Phenomenology and neurobiology of self disorder in schizophrenia: Secondary factors.
Sass, Louis A; Borda, Juan P
2015-12-01
Schizophrenia is a diverse and varying syndrome that defies most attempts at classification and pathogenetic explanation. This is the second of two articles offering a comprehensive model meant to integrate an understanding of schizophrenia-related forms of subjectivity, especially anomalous core-self experience (disturbed ipseity), with neurocognitive and neurodevelopmental findings. Previously we discussed the primary or foundational role of disturbed intermodal perceptional integration ("perceptual dys-integration"). Here we discuss phenomenological alterations that can be considered secondary in a pathogenetic sense--whether as consequential products downstream from a more originary disruption, or as defensive reactions involving quasi-intentional or even volitional compensations to the more primary disruptions. These include secondary forms of: 1, hyperreflexivity, 2, diminished self-presence (self-affection), and 3. disturbed "rip" or "hold" on the cognitive/perceptual field of awareness. We consider complementary relations between these secondary abnormal experiences while also considering their temporal relationships and pathogenetic intertwining with the more primary phenomenological alterations discussed previously, all in relation to the neurodevelopmental model. The secondary phenomena can be understood as highly variable factors involving overall orientations or attitudes toward experience; they have some affinities with experiences of meditation, introspectionism, and depersonalization defense. Also, they seem likely to become more pronounced during adolescence as a result of new cognitive capacities related to development of the prefrontal lobes, especially attention allocation, executive functions, abstraction, and meta-awareness. Heterogeneity in these secondary alterations might help explain much of the clinical diversity in schizophrenia, both between patients and within individual patients over time--without however losing sight of key underlying commonalities. Copyright © 2015 Elsevier B.V. All rights reserved.
Heat Transfer Experiments in the Internal Cooling Passages of a Cooled Radial Turbine Rotor
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Wagner, J. H.
1996-01-01
An experimental study was conducted (1) to experimentally measure, assess and analyze the heat transfer within the internal cooling configuration of a radial turbine rotor blade and (2) to obtain heat transfer data to evaluate and improve computational fluid dynamics (CFD) procedures and turbulent transport models of internal coolant flows. A 1.15 times scale model of the coolant passages within the NASA LERC High Temperature Radial Turbine was designed, fabricated of Lucite and instrumented for transient beat transfer tests using thin film surface thermocouples and liquid crystals to indicate temperatures. Transient heat transfer tests were conducted for Reynolds numbers of one-fourth, one-half, and equal to the operating Reynolds number for the NASA Turbine. Tests were conducted for stationary and rotating conditions with rotation numbers in the range occurring in the NASA Turbine. Results from the experiments showed the heat transfer characteristics within the coolant passage were affected by rotation. In general, the heat transfer increased and decreased on the sides of the straight radial passages with rotation as previously reported from NASA-HOST-sponsored experiments. The heat transfer in the tri-passage axial flow region adjacent to the blade exit was relatively unaffected by rotation. However, the heat transfer on one surface, in the transitional region between the radial inflow passage and axial, constant radius passages, decreased to approximately 20 percent of the values without rotation. Comparisons with previous 3-D numerical studies indicated regions where the heat transfer characteristics agreed and disagreed with the present experiment.
Use of artificial intelligence in supervisory control
NASA Technical Reports Server (NTRS)
Cohen, Aaron; Erickson, Jon D.
1989-01-01
Viewgraphs describing the design and testing of an intelligent decision support system called OFMspert are presented. In this expert system, knowledge about the human operator is represented through an operator/system model referred to as the OFM (Operator Function Model). OFMspert uses the blackboard model of problem solving to maintain a dynamic representation of operator goals, plans, tasks, and actions given previous operator actions and current system state. Results of an experiment to assess OFMspert's intent inferencing capability are outlined. Finally, the overall design philosophy for an intelligent tutoring system (OFMTutor) for operators of complex dynamic systems is summarized.
Powell, B J; Kenny, E P; Merino, J
2017-08-25
We show that the anisotropy of the effective spin model for the dimer Mott insulator phase of κ-(BEDT-TTF)_{2}X salts is dramatically different from that of the underlying tight-binding model. Intradimer quantum interference results in a model of coupled spin chains, where frustrated interchain interactions suppress long-range magnetic order. Thus, we argue, the "spin liquid" phase observed in some of these materials is a remnant of the Tomonaga-Luttinger physics of a single chain. This is consistent with previous experiments and resolves some outstanding puzzles.
Trone, Daniel W.; Peterson, Arthur V.; Jacobson, Isabel G.; Littman, Alyson J.; Maynard, Charles; Seelig, Amber D.; Crum-Cianflone, Nancy F.; Bricker, Jonathan B.
2015-01-01
Objectives. We examined whether military service, including deployment and combat experience, were related to smoking initiation and relapse. Methods. We included older (panel 1) and younger (panel 2) participants in the Millennium Cohort Study. Never smokers were followed for 3 to 6 years for smoking initiation, and former smokers were followed for relapse. Complementary log-log regression models estimated the relative risk (RR) of initiation and relapse by military exposure while adjusting for demographic, health, and lifestyle factors. Results. Deployment with combat experience predicted higher initiation rate (panel 1: RR = 1.44; 95% confidence interval [CI] = 1.28, 1.62; panel 2: RR = 1.26; 95% CI = 1.04, 1.54) and relapse rate (panel 1 only: RR = 1.48; 95% CI = 1.36, 1.62). Depending on the panel, previous mental health disorders, life stressors, and other military and nonmilitary characteristics independently predicted initiation and relapse. Conclusions. Deployment with combat experience and previous mental disorder may identify military service members in need of intervention to prevent smoking initiation and relapse. PMID:25880953
Einav, Sharon; Alon, Gady; Kaufman, Nechama; Braunstein, Rony; Carmel, Sara; Varon, Joseph; Hersch, Moshe
2012-09-01
To determine whether variables in physicians' backgrounds influenced their decision to forego resuscitating a patient they did not previously know. Questionnaire survey of a convenience sample of 204 physicians working in the departments of internal medicine, anaesthesiology and cardiology in 11 hospitals in Israel. Twenty per cent of the participants had elected to forego resuscitating a patient they did not previously know without additional consultation. Physicians who had more frequently elected to forego resuscitation had practised medicine for more than 5 years (p=0.013), estimated the number of resuscitations they had performed as being higher (p=0.009), and perceived their experience in resuscitation as sufficient (p=0.001). The variable that predicted the outcome of always performing resuscitation in the logistic regression model was less than 5 years of experience in medicine (OR 0.227, 95% CI 0.065 to 0.793; p=0.02). Physicians' level of experience may affect the probability of a patient's receiving resuscitation, whereas the physicians' personal beliefs and values did not seem to affect this outcome.
SU-F-P-20: Predicting Waiting Times in Radiation Oncology Using Machine Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, A; Herrera, D; Hijal, T
Purpose: Waiting times remain one of the most vexing patient satisfaction challenges facing healthcare. Waiting time uncertainty can cause patients, who are already sick or in pain, to worry about when they will receive the care they need. These waiting periods are often difficult for staff to predict and only rough estimates are typically provided based on personal experience. This level of uncertainty leaves most patients unable to plan their calendar, making the waiting experience uncomfortable, even painful. In the present era of electronic health records (EHRs), waiting times need not be so uncertain. Extensive EHRs provide unprecedented amounts ofmore » data that can statistically cluster towards representative values when appropriate patient cohorts are selected. Predictive modelling, such as machine learning, is a powerful approach that benefits from large, potentially complex, datasets. The essence of machine learning is to predict future outcomes by learning from previous experience. The application of a machine learning algorithm to waiting time data has the potential to produce personalized waiting time predictions such that the uncertainty may be removed from the patient’s waiting experience. Methods: In radiation oncology, patients typically experience several types of waiting (eg waiting at home for treatment planning, waiting in the waiting room for oncologist appointments and daily waiting in the waiting room for radiotherapy treatments). A daily treatment wait time model is discussed in this report. To develop a prediction model using our large dataset (with more than 100k sample points) a variety of machine learning algorithms from the Python package sklearn were tested. Results: We found that the Random Forest Regressor model provides the best predictions for daily radiotherapy treatment waiting times. Using this model, we achieved a median residual (actual value minus predicted value) of 0.25 minutes and a standard deviation residual of 6.5 minutes. This means that the majority of our estimates are within 6.5 minutes of the actual wait time. Conclusion: The goal of this project was to define an appropriate machine learning algorithm to estimate waiting times based on the collective knowledge and experience learned from previous patients. Our results offer an opportunity to improve the information that is provided to patients and family members regarding the amount of time they can expect to wait for radiotherapy treatment at our centre. AJ acknowledges support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290) and from the 2014 Q+ Initiative of the McGill University Health Centre.« less
Decay of Far-Flowfield in Trailing Vortices
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Chigier, N. A.; Sheaffer, Y. S.
1973-01-01
Methods for reduction of velocities in trailing vortices of large aircraft are of current interest for the purpose of shortening the waiting time between landings at central airports. We have made finite-difference calculations of the flow in turbulent wake vortices as an aid to interpretation of wind-tunnel and flight experiments directed toward that end. Finite-difference solutions are capable of adding flexibility to such investigations if they are based on an adequate model of turbulence. Interesting developments have been taking place in the knowledge of turbulence that may lead to a complete theory in the future. In the meantime, approximate methods that yield reasonable agreement with experiment are appropriate. The simplified turbulence model we have selected contains features that account for the major effects disclosed by more sophisticated models in which the parameters are not yet established. Several puzzles are thereby resolved that arose in previous theoretical investigations of wake vortices.
Effect of turbulence on the disintegration rate of flushable consumer products.
Karadagli, Fatih; Rittmann, Bruce E; McAvoy, Drew C; Richardson, John E
2012-05-01
A previously developed model for the physical disintegration of flushable consumer products is expanded by investigating the effects of turbulence on the rate of physical disintegration. Disintegration experiments were conducted with cardboard tampon applicators at 100, 150, and 200 rotations per minute, corresponding to Reynold's numbers of 25,900, 39,400, and 52,900, respectively, which were estimated by using computational fluid dynamics modeling. The experiments were simulated with the disintegration model to obtain best-fit values of the kinetic and distribution parameters. Computed rate coefficients (ki) for all solid sizes (i.e., greater than 8, 4 to 8, 2 to 4, and 1 to 2 mm) increased strongly with Reynold's number or rotational speed. Thus, turbulence strongly affected the disintegration rate of flushable products, and the relationship of the ki values to Reynold's number can be included in mathematical representations of physical disintegration.
An acceptance model for smart glasses based tourism augmented reality
NASA Astrophysics Data System (ADS)
Obeidy, Waqas Khalid; Arshad, Haslina; Huang, Jiung Yao
2017-10-01
Recent mobile technologies have revolutionized the way people experience their environment. Although, there is only limited research on users' acceptance of AR in the cultural tourism context, previous researchers have explored the opportunities of using augmented reality (AR) in order to enhance user experience. Recent AR research lack works that integrates dimensions which are specific to cultural tourism and smart glass specific context. Hence, this work proposes an AR acceptance model in the context of cultural heritage tourism and smart glasses capable of performing augmented reality. Therefore, in this paper we aim to present an AR acceptance model to understand the AR usage behavior and visiting intention for tourists who use Smart Glass based AR at UNESCO cultural heritage destinations in Malaysia. Furthermore, this paper identifies information quality, technology readiness, visual appeal, and facilitating conditions as external variables and key factors influencing visitors' beliefs, attitudes and usage intention.
Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models.
Dabrowska, Krystyna; Opolski, Adam; Wietrzyk, Joanna; Switala-Jelen, Kinga; Godlewska, Joanna; Boratynski, Janusz; Syper, Danuta; Weber-Dabrowska, Beata; Gorski, Andrzej
2004-01-01
Previously, we have shown the ability of the bacteriophage T4 and its substrain HAP1 (selected for a higher affinity to melanoma cells) to reveal antimetastatic activity in a mouse melanoma model. Here, we investigated the potential phage anticancer activity in primary tumour models. Mice were inoculated subcutaneously with B16 or LLC cells (collected from in vitro culture). Bacteriophages T4 and HAP1 were injected intraperitoneally daily (8 x 10(8)pfu/mouse, except the experiment concerning the dose-dependence). Treatment with purified preparations of bacteriophage T4 resulted in significant reduction of tumour size, the effect being dose-dependent. HAP1 was more effective than T4 and its activity was also dose-dependent. Parallel experiments with non-purified bacteriophage lysates resulted in significant stimulation of tumour growth. These data suggest that purified bacteriophages may inhibit tumour growth, a phenomenon with potentially important clinical implications in oncology.
Barnao, Mary; Ward, Tony; Casey, Sharon
2016-05-01
Previous literature has highlighted a number of concerns about forensic care and rehabilitation by those who use the services. The Good Lives Model (GLM) is a strength-based, humanistic approach to offender rehabilitation that has been largely overlooked by forensic mental health practitioners. This study explored the impact of a brief GLM program on forensic service users' perceptions of rehabilitation, both within and beyond therapeutic programs, using a thematically linked, multiple-case study research design. Pre-post comparisons of participants' perceptions of rehabilitation suggested three different outcomes: definite change, subtle change, and no change. Possible factors associated with participants' divergent experiences included level of exposure to the GLM, readiness to change, and practitioners' adherence to the GLM and experience with the model. The importance of attending to the wider system for successful implementation of this innovative approach is highlighted. © The Author(s) 2015.
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Bostian, C. W.; Stutzman, W. L.
1973-01-01
The influence of polarization on millimeter wave propagation is investigated from both an experimental and a theoretical viewpoint. First, previous theoretical and experimental work relating to the attenuation and depolarization of millimeter waves by rainfall is discussed. Considerable detail is included in the literature review. Next, a theoretical model is developed to predict the cross polarization level during rainfall from the path average rain rate and the scattered field from a single raindrop. Finally, data from the VPI and SU depolarization experiment are presented as verification of the new model, and a comparison is made with other theories and experiments. Aspects of the new model are: (1) spherical rather than plane waves are assumed, (2) the average drop diameter is used rather than a drop size distribution, and (3) it is simple enough so that the effect which changing one or more parameters has on the crosspolarization level is easily seen.
Impact of Aquifer Heterogeneities on Autotrophic Denitrification.
NASA Astrophysics Data System (ADS)
McCarthy, A.; Roques, C.; Selker, J. S.; Istok, J. D.; Pett-Ridge, J. C.
2015-12-01
Nitrate contamination in groundwater is a big challenge that will need to be addressed by hydrogeologists throughout the world. With a drinking water standard of 10mg/L of NO3-, innovative techniques will need to be pursued to ensure a decrease in drinking water nitrate concentration. At the pumping site scale, the influence and relationship between heterogeneous flow, mixing, and reactivity is not well understood. The purpose of this project is to incorporate both physical and chemical modeling techniques to better understand the effect of aquifer heterogeneities on autotrophic denitrification. We will investigate the link between heterogeneous hydraulic properties, transport, and the rate of autotrophic denitrification. Data collected in previous studies in laboratory experiments and pumping site scale experiments will be used to validate the models. The ultimate objective of this project is to develop a model in which such coupled processes are better understood resulting in best management practices of groundwater.
NASA Astrophysics Data System (ADS)
Bouttier, Pierre-Antoine; Brankart, Jean-Michel; Candille, Guillem; Vidard, Arthur; Blayo, Eric; Verron, Jacques; Brasseur, Pierre
2015-04-01
In this project, the response of a variational data assimilation system based on NEMO and its linear tangent and adjoint model is investigated using a 4DVAR algorithm into a North-Atlantic model at eddy-permitting resolution. The assimilated data consist of Jason-2 and SARAL/AltiKA dataset collected during the 2013-2014 period. The main objective is to explore the robustness of the 4DVAR algorithm in the context of a realistic turbulent oceanic circulation at mid-latitude constrained by multi-satellite altimetry missions. This work relies on two previous studies. First, a study with similar objectives was performed based on academic double-gyre turbulent model and synthetic SARAL/AltiKA data, using the same DA experimental framework. Its main goal was to investigate the impact of turbulence on variational DA methods performance. The comparison with this previous work will bring to light the methodological and physical issues encountered by variational DA algorithms in a realistic context at similar, eddy-permitting spatial resolution. We also have demonstrated how a dataset mimicking future SWOT observations improves 4DVAR incremental performances at eddy-permitting resolution. Then, in the context of the OSTST and FP7 SANGOMA projects, an ensemble DA experiment based on the same model and observational datasets has been realized (see poster by Brasseur et al.). This work offers the opportunity to compare efficiency, pros and cons of both DA methods in the context of KA-band altimetric data, at spatial resolution commonly used today for research and operational applications. In this poster we will present the validation plan proposed to evaluate the skill of variational experiment vs. ensemble assimilation experiments covering the same period using independent observations (e.g. from Cryosat-2 mission).
Flynn, Terry N; Louviere, Jordan J; Marley, Anthony AJ; Coast, Joanna; Peters, Tim J
2008-01-01
Background Researchers are increasingly investigating the potential for ordinal tasks such as ranking and discrete choice experiments to estimate QALY health state values. However, the assumptions of random utility theory, which underpin the statistical models used to provide these estimates, have received insufficient attention. In particular, the assumptions made about the decisions between living states and the death state are not satisfied, at least for some people. Estimated values are likely to be incorrectly anchored with respect to death (zero) in such circumstances. Methods Data from the Investigating Choice Experiments for the preferences of older people CAPability instrument (ICECAP) valuation exercise were analysed. The values (previously anchored to the worst possible state) were rescaled using an ordinal model proposed previously to estimate QALY-like values. Bootstrapping was conducted to vary artificially the proportion of people who conformed to the conventional random utility model underpinning the analyses. Results Only 26% of respondents conformed unequivocally to the assumptions of conventional random utility theory. At least 14% of respondents unequivocally violated the assumptions. Varying the relative proportions of conforming respondents in sensitivity analyses led to large changes in the estimated QALY values, particularly for lower-valued states. As a result these values could be either positive (considered to be better than death) or negative (considered to be worse than death). Conclusion Use of a statistical model such as conditional (multinomial) regression to anchor quality of life values from ordinal data to death is inappropriate in the presence of respondents who do not conform to the assumptions of conventional random utility theory. This is clearest when estimating values for that group of respondents observed in valuation samples who refuse to consider any living state to be worse than death: in such circumstances the model cannot be estimated. Only a valuation task requiring respondents to make choices in which both length and quality of life vary can produce estimates that properly reflect the preferences of all respondents. PMID:18945358
Wehner, Michael F.; Bala, G.; Duffy, Phillip; ...
2010-01-01
We present a set of high-resolution global atmospheric general circulation model (AGCM) simulations focusing on the model's ability to represent tropical storms and their statistics. We find that the model produces storms of hurricane strength with realistic dynamical features. We also find that tropical storm statistics are reasonable, both globally and in the north Atlantic, when compared to recent observations. The sensitivity of simulated tropical storm statistics to increases in sea surface temperature (SST) is also investigated, revealing that a credible late 21st century SST increase produced increases in simulated tropical storm numbers and intensities in all ocean basins. Whilemore » this paper supports previous high-resolution model and theoretical findings that the frequency of very intense storms will increase in a warmer climate, it differs notably from previous medium and high-resolution model studies that show a global reduction in total tropical storm frequency. However, we are quick to point out that this particular model finding remains speculative due to a lack of radiative forcing changes in our time-slice experiments as well as a focus on the Northern hemisphere tropical storm seasons.« less
Impact of doping on the density of states and the mobility in organic semiconductors
NASA Astrophysics Data System (ADS)
Zuo, Guangzheng; Abdalla, Hassan; Kemerink, Martijn
2016-06-01
We experimentally investigated conductivity and mobility of poly(3-hexylthiophene) (P3HT) doped with tetrafluorotetracyanoquinodimethane (F4TCNQ ) for various relative doping concentrations ranging from ultralow (10-5) to high (10-1) and various active layer thicknesses. Although the measured conductivity monotonously increases with increasing doping concentration, the mobilities decrease, in agreement with previously published work. Additionally, we developed a simple yet quantitative model to rationalize the results on basis of a modification of the density of states (DOS) by the Coulomb potentials of ionized dopants. The DOS was integrated in a three-dimensional (3D) hopping formalism in which parameters such as energetic disorder, intersite distance, energy level difference, and temperature were varied. We compared predictions of our model as well as those of a previously developed model to kinetic Monte Carlo (MC) modeling and found that only the former model accurately reproduces the mobility of MC modeling in a large part of the parameter space. Importantly, both our model and MC simulations are in good agreement with experiments; the crucial ingredient to both is the formation of a deep trap tail in the Gaussian DOS with increasing doping concentration.
Mavridou, Paraskevi; Manataki, Adamantia; Arnaoutoglou, Elena; Damigos, Dimitrios
2017-10-01
The aim of this study was to determine the kind of information patients need preoperatively about postoperative pain (POP) and whether this is affected by previous surgery experience. A descriptive study design using preoperative questionnaires. Questionnaires with fixed questions related to POP and its management were distributed preoperatively to consenting, consecutive surgical patients. Patients were divided into two groups: patients with previous surgery experience (group A) and patients without previous surgery experience (group B). Of the patients who participated in the study, 94.2% wanted information about POP and 77.8% of them believe that they will feel calmer if they get the information they need. The patients' biggest concern relates to pain management issues after discharge. Next, in order of preference is information about the analgesics that they need to take. The patients want to be informed primarily with a personal interview (59.4%). Previous surgery experience has no effect on patients' needs for information. Most of the patients want to be informed about the management of the POP after being discharged. It is remarkable that patients who had previous surgery experience need the same information with those who had no previous surgery. Copyright © 2016 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.
Kristjánsson, Tómas; Thorvaldsson, Tómas Páll; Kristjánsson, Arni
2014-01-01
Previous research involving both unimodal and multimodal studies suggests that single-response change detection is a capacity-free process while a discriminatory up or down identification is capacity-limited. The trace/context model assumes that this reflects different memory strategies rather than inherent differences between identification and detection. To perform such tasks, one of two strategies is used, a sensory trace or a context coding strategy, and if one is blocked, people will automatically use the other. A drawback to most preceding studies is that stimuli are presented at separate locations, creating the possibility of a spatial confound, which invites alternative interpretations of the results. We describe a series of experiments, investigating divided multimodal attention, without the spatial confound. The results challenge the trace/context model. Our critical experiment involved a gap before a change in volume and brightness, which according to the trace/context model blocks the sensory trace strategy, simultaneously with a roaming pedestal, which should block the context coding strategy. The results clearly show that people can use strategies other than sensory trace and context coding in the tasks and conditions of these experiments, necessitating changes to the trace/context model.
ERIC Educational Resources Information Center
Kahana, Michael J.; Sederberg, Per B.; Howard, Marc W.
2008-01-01
The temporal context model posits that search through episodic memory is driven by associations between the multiattribute representations of items and context. Context, in turn, is a recency weighted sum of previous experiences or memories. Because recently processed items are most similar to the current representation of context, M. Usher, E. J.…
Transition and turbulence measurements in hypersonic flows
NASA Technical Reports Server (NTRS)
Owen, F. K.
1990-01-01
This paper reviews techniques for transitional- and turbulent-flow measurements and describes current research in support of turbulence modeling. Special attention is given to the potential of applying hot wire and laser velocimeter to measuring turbulent fluctuations in hypersonic flow fields. The results of recent experiments conducted in two hypersonic wind tunnels are presented and compared with previous hot-wire turbulence measurements.
Presence+Experience: A Framework for the Purposeful Design of Presence in Online Courses
ERIC Educational Resources Information Center
Dunlap, Joanna C.; Verma, Geeta; Johnson, Heather Lynn
2016-01-01
In this article, we share a framework for the purposeful design of presence in online courses. Instead of developing something new, we looked at two models that have helped us with previous instructional design projects, providing us with some assurance that the design decisions we were making were fundamentally sound. As we began to work with the…
Time to Tenure: Does Tenure Reform Affect Teacher Absence Behavior and Mobility? Working Paper 172
ERIC Educational Resources Information Center
Goldhaber, Dan; Hansen, Michael; Walch, Joe
2016-01-01
We rely on natural experiments in North Carolina and Washington State, which previously extended time to tenure by one year, to estimate models that assess the relationship between the extended probationary period and absence and attrition outcomes for teachers affected by the new tenure laws. Across both states we find evidence of decreases in…
Yung-Ping Tseng; Gerard T. Kyle; C. Scott Shafer; Alan R. Graefe; Timothy A. Bradle
2009-01-01
As the boating population and number of boats in use have grown in the United States, boaters' perceptions of density at recreation sites and the associated impacts on their experience (e.g., satisfaction) are becoming increasingly important. This paper explores a recreational boating crowding-satisfaction model derived from previous work using safety and...
USDA-ARS?s Scientific Manuscript database
Exposure to HZE particles produces deficits in cognitive performance. While previous research has shown a progressive deterioration in cognitive performance in radiated rats as a function of age, the present experiment was designed to evaluate the effects of age of irradiation independently of the ...
The Design of Large-Scale Complex Engineered Systems: Present Challenges and Future Promise
NASA Technical Reports Server (NTRS)
Bloebaum, Christina L.; McGowan, Anna-Maria Rivas
2012-01-01
Model-Based Systems Engineering techniques are used in the SE community to address the need for managing the development of complex systems. A key feature of the MBSE approach is the use of a model to capture the requirements, architecture, behavior, operating environment and other key aspects of the system. The focus on the model differentiates MBSE from traditional SE techniques that may have a document centric approach. In an effort to assess the benefit of utilizing MBSE on its flight projects, NASA Langley has implemented a pilot program to apply MBSE techniques during the early phase of the Materials International Space Station Experiment-X (MISSE-X). MISSE-X is a Technology Demonstration Mission being developed by the NASA Office of the Chief Technologist i . Designed to be installed on the exterior of the International Space Station (ISS), MISSE-X will host experiments that advance the technology readiness of materials and devices needed for future space exploration. As a follow-on to the highly successful series of previous MISSE experiments on ISS, MISSE-X benefits from a significant interest by the
Automated support for experience-based software management
NASA Technical Reports Server (NTRS)
Valett, Jon D.
1992-01-01
To effectively manage a software development project, the software manager must have access to key information concerning a project's status. This information includes not only data relating to the project of interest, but also, the experience of past development efforts within the environment. This paper describes the concepts and functionality of a software management tool designed to provide this information. This tool, called the Software Management Environment (SME), enables the software manager to compare an ongoing development effort with previous efforts and with models of the 'typical' project within the environment, to predict future project status, to analyze a project's strengths and weaknesses, and to assess the project's quality. In order to provide these functions the tool utilizes a vast corporate memory that includes a data base of software metrics, a set of models and relationships that describe the software development environment, and a set of rules that capture other knowledge and experience of software managers within the environment. Integrating these major concepts into one software management tool, the SME is a model of the type of management tool needed for all software development organizations.
Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui
2015-02-01
During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.
NASA Technical Reports Server (NTRS)
Kartuzova, O.; Kassemi, M.
2016-01-01
A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.
NASA Astrophysics Data System (ADS)
An, Soyoung; Choi, Woochul; Paik, Se-Bum
2015-11-01
Understanding the mechanism of information processing in the human brain remains a unique challenge because the nonlinear interactions between the neurons in the network are extremely complex and because controlling every relevant parameter during an experiment is difficult. Therefore, a simulation using simplified computational models may be an effective approach. In the present study, we developed a general model of neural networks that can simulate nonlinear activity patterns in the hierarchical structure of a neural network system. To test our model, we first examined whether our simulation could match the previously-observed nonlinear features of neural activity patterns. Next, we performed a psychophysics experiment for a simple visual working memory task to evaluate whether the model could predict the performance of human subjects. Our studies show that the model is capable of reproducing the relationship between memory load and performance and may contribute, in part, to our understanding of how the structure of neural circuits can determine the nonlinear neural activity patterns in the human brain.
Lingering representations of stimuli influence recall organization
Chan, Stephanie C.Y.; Applegate, Marissa C.; Morton, Neal W; Polyn, Sean M.; Norman, Kenneth A.
2017-01-01
Several prominent theories posit that information about recent experiences lingers in the brain and organizes memories for current experiences, by forming a temporal context that is linked to those memories at encoding. According to these theories, if the thoughts preceding an experience X resemble the thoughts preceding an experience Y, then X and Y should show an elevated probability of being recalled together. We tested this prediction by using multi-voxel pattern analysis (MVPA) of fMRI data to measure neural evidence for lingering processing of preceding stimuli. As predicted, memories encoded with similar lingering thoughts about the category of preceding stimuli were more likely to be recalled together. Our results demonstrate that the “fading embers” of previous stimuli help to organize recall, confirming a key prediction of computational models of episodic memory. PMID:28132858
Ecology-centered experiences among children and adolescents: A qualitative and quantitative analysis
NASA Astrophysics Data System (ADS)
Orton, Judy
The present research involved two studies that considered ecology-centered experiences (i.e., experiences with living things) as a factor in children's environmental attitudes and behaviors and adolescents' ecological understanding. The first study (Study 1) examined how a community garden provides children in an urban setting the opportunity to learn about ecology through ecology-centered experiences. To do this, I carried out a yearlong ethnographic study at an urban community garden located in a large city in the Southeastern United States. Through participant observations and informal interviews of community garden staff and participants, I found children had opportunities to learn about ecology through ecology-centered experiences (e.g., interaction with animals) along with other experiences (e.g., playing games, reading books). In light of previous research that shows urban children have diminished ecological thought---a pattern of thought that privileges the relationship between living things---because of their lack of ecology-centered experiences (Coley, 2012), the present study may have implications for urban children to learn about ecology. As an extension of Study 1, I carried out a second study (Study 2) to investigate how ecology-centered experiences contribute to adolescents' environmental attitudes and behaviors in light of other contextual factors, namely environmental responsibility support, ecological thought, age and gender. Study 2 addressed three research questions. First, does ecological thought---a pattern of thought that privileges the relationship between living things---predict environmental attitudes and behaviors (EAB)? Results showed ecological thought did not predict EAB, an important finding considering the latent assumptions of previous research about the relationship between these two factors (e.g., Brugger, Kaiser, & Roczen, 2011). Second, do two types of contextual support, ecology-centered experiences (i.e., experiences with living things) and environmental responsibility support (i.e., support through the availability of environmentally responsible models) predict EAB? As predicted, results showed that ecology-centered experiences predicted EAB; yet, when environmental responsibility support was taken into consideration, ecology-centered experiences no longer predicted EAB. These findings suggested environmental responsibility support was a stronger predictor than ecology-centered experiences. Finally, do age and gender predict EAB? Consistent with previous research (e.g., Alp, Ertepiner, Tekkaya, & Yilmaz, 2006), age and gender significantly predicted EAB.
Aberrant Salience, Self-Concept Clarity, and Interview-Rated Psychotic-Like Experiences
Cicero, David C.; Docherty, Anna R.; Becker, Theresa M.; Martin, Elizabeth A.; Kerns, John G.
2014-01-01
Many social-cognitive models of psychotic-like symptoms posit a role for self-concept and aberrant salience. Previous work has shown that the interaction between aberrant salience and self-concept clarity is associated with self-reported psychotic-like experiences. In the current research with two structured interviews, the interaction between aberrant salience and self-concept clarity was found to be associated withinterview-rated psychotic-like experiences. The interaction was associated withpsychotic-like experiences composite scores, delusional ideation, grandiosity, and perceptual anomalies. In all cases, self-concept clarity was negatively associated with psychotic-like experiences at high levels of aberrant salience, but unassociated with psychotic-like experiences at low levels of aberrant salience. The interaction was specific to positive psychotic-like experiences and not present for negative or disorganized ratings. The interaction was not mediated by self-esteem levels. These results provide further evidence that aberrant salience and self-concept clarity play an important role in the generation of psychotic-like experiences. PMID:25102085
NASA Astrophysics Data System (ADS)
Oz, Imri; Shalev, Eyal; Yechieli, Yoseph; Gavrieli, Ittai; Gvirtzman, Haim
2014-04-01
This paper examines the transient development and the steady-state configuration of groundwater within a coastal aquifer adjacent to a stratified saltwater body. Such systems consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. The dynamics, location and the geometry of the interfaces and the density-driven circulation flows that develop in the aquifer are examined using laboratory experiments and numerical modeling at the same scale. The results show that the transient intrusion of the different water bodies into the aquifer takes place at different rates, and that the locations of the interfaces between them change with time, before reaching steady-state. Under steady-state conditions both the model and the experiments show the existence of three interfaces between the three water types. The numerical model, which is calibrated against the salinity distribution and groundwater discharge rate in the laboratory experiments, allows the quantification of the flow rates and flow patterns within the aquifer. These flow patterns, which cannot be derived from laboratory experiments, show the transient development of three circulation cells which are confined between the three interfaces. These results confirm the hypothesis that has been previously suggested based solely on a steady-state numerical modeling defined by a conceptual understanding. Parametric analysis shows that the creation of three circulation cells and three interfaces is limited to certain conditions and defines the ranges for the creation of this unique system.
Predicting RNA folding thermodynamics with a reduced chain representation model
CAO, SONG; CHEN, SHI-JIE
2005-01-01
Based on the virtual bond representation for the nucleotide backbone, we develop a reduced conformational model for RNA. We use the experimentally measured atomic coordinates to model the helices and use the self-avoiding walks in a diamond lattice to model the loop conformations. The atomic coordinates of the helices and the lattice representation for the loops are matched at the loop–helix junction, where steric viability is accounted for. Unlike the previous simplified lattice-based models, the present virtual bond model can account for the atomic details of realistic three-dimensional RNA structures. Based on the model, we develop a statistical mechanical theory for RNA folding energy landscapes and folding thermodynamics. Tests against experiments show that the theory can give much more improved predictions for the native structures, the thermal denaturation curves, and the equilibrium folding/unfolding pathways than the previous models. The application of the model to the P5abc region of Tetrahymena group I ribozyme reveals the misfolded intermediates as well as the native-like intermediates in the equilibrium folding process. Moreover, based on the free energy landscape analysis for each and every loop mutation, the model predicts five lethal mutations that can completely alter the free energy landscape and the folding stability of the molecule. PMID:16251382
Stochastic lattice model of synaptic membrane protein domains.
Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A
2017-05-01
Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.
Fernández-Antelo, Inmaculada; Cuadrado-Gordillo, Isabel
2018-04-01
The controversies that exist regarding the delimitation of the cyberbullying construct demonstrate the need for further research focused on determining the criteria that shape the structure of the perceptions that adolescents have of this phenomenon and on seeking explanations of this behavior. The objectives of this study were to (a) construct possible explanatory models of the perception of cyberbullying from identifying and relating the criteria that form this construct and (b) analyze the influence of previous cyber victimization and cyber aggression experiences in the construction of explanatory models of the perception of cyberbullying. The sample consisted of 2,148 adolescents (49.1% girls; SD = 0.5) aged from 12 to 16 years ( M = 13.9 years; SD = 1.2). The results have shown that previous cyber victimization and cyber aggression experiences lead to major differences in the explanatory models to interpret cyber-abusive behavior as cyberbullying episodes, or as social relationship mechanisms, or as a revenge reaction. We note that the aggressors' explanatory model is based primarily on a strong reciprocal relationship between the imbalance of power and intentionality, that it functions as a link promoting indirect causal relationships of the anonymity and repetition factors with the cyberbullying construct. The victims' perceptual structure is based on three criteria-imbalance of power, intentionality, and publicity-where the key factor in this structure is the intention to harm. These results allow to design more effective measures of prevention and intervention closely tailored to addressing directly the factors that are considered to be predictors of risk.
The memory state heuristic: A formal model based on repeated recognition judgments.
Castela, Marta; Erdfelder, Edgar
2017-02-01
The recognition heuristic (RH) theory predicts that, in comparative judgment tasks, if one object is recognized and the other is not, the recognized one is chosen. The memory-state heuristic (MSH) extends the RH by assuming that choices are not affected by recognition judgments per se, but by the memory states underlying these judgments (i.e., recognition certainty, uncertainty, or rejection certainty). Specifically, the larger the discrepancy between memory states, the larger the probability of choosing the object in the higher state. The typical RH paradigm does not allow estimation of the underlying memory states because it is unknown whether the objects were previously experienced or not. Therefore, we extended the paradigm by repeating the recognition task twice. In line with high threshold models of recognition, we assumed that inconsistent recognition judgments result from uncertainty whereas consistent judgments most likely result from memory certainty. In Experiment 1, we fitted 2 nested multinomial models to the data: an MSH model that formalizes the relation between memory states and binary choices explicitly and an approximate model that ignores the (unlikely) possibility of consistent guesses. Both models provided converging results. As predicted, reliance on recognition increased with the discrepancy in the underlying memory states. In Experiment 2, we replicated these results and found support for choice consistency predictions of the MSH. Additionally, recognition and choice latencies were in agreement with the MSH in both experiments. Finally, we validated critical parameters of our MSH model through a cross-validation method and a third experiment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Kumar, Ramya; Lahann, Joerg
2016-07-06
The performance of polymer interfaces in biology is governed by a wide spectrum of interfacial properties. With the ultimate goal of identifying design parameters for stem cell culture coatings, we developed a statistical model that describes the dependence of brush properties on surface-initiated polymerization (SIP) parameters. Employing a design of experiments (DOE) approach, we identified operating boundaries within which four gel architecture regimes can be realized, including a new regime of associated brushes in thin films. Our statistical model can accurately predict the brush thickness and the degree of intermolecular association of poly[{2-(methacryloyloxy) ethyl} dimethyl-(3-sulfopropyl) ammonium hydroxide] (PMEDSAH), a previously reported synthetic substrate for feeder-free and xeno-free culture of human embryonic stem cells. DOE-based multifunctional predictions offer a powerful quantitative framework for designing polymer interfaces. For example, model predictions can be used to decrease the critical thickness at which the wettability transition occurs by simply increasing the catalyst quantity from 1 to 3 mol %.
Perea, Manuel; Marcet, Ana; Vergara-Martínez, Marta; Gomez, Pablo
2016-01-01
A number of models of visual-word recognition assume that the repetition of an item in a lexical decision experiment increases that item's familiarity/wordness. This would produce not only a facilitative repetition effect for words, but also an inhibitory effect for nonwords (i.e., more familiarity/wordness makes the negative decision slower). We conducted a two-block lexical decision experiment to examine word/nonword repetition effects in the framework of a leading "familiarity/wordness" model of the lexical decision task, namely, the diffusion model (Ratcliff et al., 2004). Results showed that while repeated words were responded to faster than the unrepeated words, repeated nonwords were responded to more slowly than the nonrepeated nonwords. Fits from the diffusion model revealed that the repetition effect for words/nonwords was mainly due to differences in the familiarity/wordness (drift rate) parameter. This word/nonword dissociation favors those accounts that posit that the previous presentation of an item increases its degree of familiarity/wordness.
Perea, Manuel; Marcet, Ana; Vergara-Martínez, Marta; Gomez, Pablo
2016-01-01
A number of models of visual-word recognition assume that the repetition of an item in a lexical decision experiment increases that item's familiarity/wordness. This would produce not only a facilitative repetition effect for words, but also an inhibitory effect for nonwords (i.e., more familiarity/wordness makes the negative decision slower). We conducted a two-block lexical decision experiment to examine word/nonword repetition effects in the framework of a leading “familiarity/wordness” model of the lexical decision task, namely, the diffusion model (Ratcliff et al., 2004). Results showed that while repeated words were responded to faster than the unrepeated words, repeated nonwords were responded to more slowly than the nonrepeated nonwords. Fits from the diffusion model revealed that the repetition effect for words/nonwords was mainly due to differences in the familiarity/wordness (drift rate) parameter. This word/nonword dissociation favors those accounts that posit that the previous presentation of an item increases its degree of familiarity/wordness. PMID:26925021
Large-area sheet task: Advanced dendritic-web-growth development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Schruben, J.
1983-01-01
Thermally generated stresses in the growing web crystal were reduced. These stresses, which if too high cause the ribbon to degenerate, were reduced by a factor of three, resulting in the demonstrated growth of high-quality web crystals to widths of 5.4 cm. This progress was brought about chiefly by the application of thermal models to the development of low-stress growth configurations. A new temperature model was developed which can analyze the thermal effects of much more complex lid and top shield configurations than was possible with the old lumped shield model. Growth experiments which supplied input data such as actual shield temperature and melt levels were used to verify the modeling results. Desirable modifications in the melt level-sensing circuitry were made in the new experimental web growth furnace, and this furnace has been used to carry out growth experiments under steady-state conditions. New growth configurations were tested in long growth runs at Westinghouse AESD which produced wider, lower stress and higher quality web crystals than designs previously used.
Situation models and retrieval interference: pictures and words.
Radvansky, Gabriel A; Copeland, David E
2006-07-01
Previous studies have found that interference in long-term memory retrieval occurs when information cannot be integrated into a single situation model, but this interference is greatly reduced or absent when the information can be so integrated. The current study looked at the influence of presentation format-sentences or pictures-on this observed pattern. When sentences were used at memorisation and recognition, a spatial organisation was observed. In contrast, when pictures were used, a different pattern of results was observed. Specifically, there was an overall speed-up in response times, and consistent evidence of interference. Possible explanations for this difference were examined in a third experiment using pictures during learning, but sentences during recognition. The results from Experiment 3 were consistent with the organisation of information into situation models in long-term memory, even from pictures. This suggests that people do create situation models when learning pictures, but their recognition memory may be oriented around more "verbatim", surface-form memories of the pictures.
Precision analysis of the photomultiplier response to ultra low signals
NASA Astrophysics Data System (ADS)
Degtiarenko, Pavel
2017-11-01
A new computational model for the description of the photon detector response functions measured in conditions of low light is presented, together with examples of the observed photomultiplier signal amplitude distributions, successfully described using the parameterized model equation. In extension to the previously known approximations, the new model describes the underlying discrete statistical behavior of the photoelectron cascade multiplication processes in photon detectors with complex non-uniform gain structure of the first dynode. Important features of the model include the ability to represent the true single-photoelectron spectra from different photomultipliers with a variety of parameterized shapes, reflecting the variability in the design and in the individual parameters of the detectors. The new software tool is available for evaluation of the detectors' performance, response, and efficiency parameters that may be used in various applications including the ultra low background experiments such as the searches for Dark Matter and rare decays, underground neutrino studies, optimizing operations of the Cherenkov light detectors, help in the detector selection procedures, and in the experiment simulations.
Low order physical models of vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Craig, Anna; Dabiri, John; Koseff, Jeffrey
2016-11-01
In order to examine the ability of low-order physical models of vertical axis wind turbines to accurately reproduce key flow characteristics, experiments were conducted on rotating turbine models, rotating solid cylinders, and stationary porous flat plates (of both uniform and non-uniform porosities). From examination of the patterns of mean flow, the wake turbulence spectra, and several quantitative metrics, it was concluded that the rotating cylinders represent a reasonably accurate analog for the rotating turbines. In contrast, from examination of the patterns of mean flow, it was found that the porous flat plates represent only a limited analog for rotating turbines (for the parameters examined). These findings have implications for both laboratory experiments and numerical simulations, which have previously used analogous low order models in order to reduce experimental/computational costs. NSF GRF and SGF to A.C; ONR N000141211047 and the Gordon and Betty Moore Foundation Grant GBMF2645 to J.D.; and the Bob and Norma Street Environmental Fluid Mechanics Laboratory at Stanford University.
Experimental Simulations of Lunar Magma Ocean Crystallization: The Plot (But Not the Crust) Thickens
NASA Technical Reports Server (NTRS)
Draper, D. S.; Rapp, J. F.; Elardo, S. M.; Shearer, C. K., Jr.; Neal, C. R.
2016-01-01
Numerical models of differentiation of a global-scale lunar magma ocean (LMO) have raised as many questions as they have answered. Recent orbital missions and sample studies have provided new context for a large range of lithologies, from the comparatively magnesian "purest anorthosite" reported by to Si-rich domes and spinel-rich clasts with widespread areal distributions. In addition, the GRAIL mission provided strong constraints on lunar crustal density and average thickness. Can this increasingly complex geology be accounted for via the formation and evolution of the LMO? We have in recent years been conducting extensive sets of petrologic experiments designed to fully simulate LMO crystallization, which had not been attempted previously. Here we review the key results from these experiments, which show that LMO differentiation is more complex than initial models suggested. Several important features expected from LMO crystallization models have yet to be reproduced experimentally; combined modelling and experimental work by our group is ongoing.
NASA Astrophysics Data System (ADS)
Nomura, Takuji
2017-10-01
We study two-magnon excitations in resonant inelastic x-ray scattering (RIXS) at the transition-metal K edge. Instead of working with effective Heisenberg spin models, we work with a Hubbard-type model (d -p model) for a typical insulating cuprate La2CuO4 . For the antiferromagnetic ground state within the spin density wave (SDW) mean-field formalism, we calculate the dynamical correlation function within the random-phase approximation (RPA), and then obtain two-magnon excitation spectra by calculating the convolution of it. Coupling between the K -shell hole and the magnons in the intermediate state is calculated by means of diagrammatic perturbation expansion in the Coulomb interaction. The calculated momentum dependence of RIXS spectra agrees well with that of experiments. A notable difference from previous calculations based on the Heisenberg spin models is that RIXS spectra have a large two-magnon weight near the zone center, which may be confirmed by further careful high-resolution experiments.
Structural Basis for Modulation of Quality Control Fate in a Marginally Stable Protein.
Brock, Kelly P; Abraham, Ayelet-chen; Amen, Triana; Kaganovich, Daniel; England, Jeremy L
2015-07-07
The human von Hippel-Lindau (VHL) tumor suppressor is a marginally stable protein previously used as a model substrate of eukaryotic refolding and degradation pathways. When expressed in the absence of its cofactors, VHL cannot fold and is quickly degraded by the quality control machinery of the cell. We combined computational methods with in vivo experiments to examine the basis of the misfolding propensity of VHL. By expressing a set of randomly mutated VHL sequences in yeast, we discovered a more stable mutant form. Subsequent modeling suggested the mutation had caused a conformational change affecting cofactor and chaperone interaction, and this hypothesis was then confirmed by additional knockout and overexpression experiments targeting a yeast cofactor homolog. These findings offer a detailed structural basis for the modulation of quality control fate in a model misfolded protein and highlight burial mode modeling as a rapid means to detect functionally important conformational changes in marginally stable globular domains. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models.
Ligon, Thomas S; Fröhlich, Fabian; Chis, Oana T; Banga, Julio R; Balsa-Canto, Eva; Hasenauer, Jan
2018-04-15
Mathematical modeling using ordinary differential equations is used in systems biology to improve the understanding of dynamic biological processes. The parameters of ordinary differential equation models are usually estimated from experimental data. To analyze a priori the uniqueness of the solution of the estimation problem, structural identifiability analysis methods have been developed. We introduce GenSSI 2.0, an advancement of the software toolbox GenSSI (Generating Series for testing Structural Identifiability). GenSSI 2.0 is the first toolbox for structural identifiability analysis to implement Systems Biology Markup Language import, state/parameter transformations and multi-experiment structural identifiability analysis. In addition, GenSSI 2.0 supports a range of MATLAB versions and is computationally more efficient than its previous version, enabling the analysis of more complex models. GenSSI 2.0 is an open-source MATLAB toolbox and available at https://github.com/genssi-developer/GenSSI. thomas.ligon@physik.uni-muenchen.de or jan.hasenauer@helmholtz-muenchen.de. Supplementary data are available at Bioinformatics online.
Knowledge of Previous Tasks: Task Similarity Influences Bias in Task Duration Predictions
Thomas, Kevin E.; König, Cornelius J.
2018-01-01
Bias in predictions of task duration has been attributed to misremembering previous task duration and using previous task duration as a basis for predictions. This research sought to further examine how previous task information affects prediction bias by manipulating task similarity and assessing the role of previous task duration feedback. Task similarity was examined through participants performing two tasks 1 week apart that were the same or different. Duration feedback was provided to all participants (Experiment 1), its recall was manipulated (Experiment 2), and its provision was manipulated (Experiment 3). In all experiments, task similarity influenced bias on the second task, with predictions being less biased when the first task was the same task. However, duration feedback did not influence bias. The findings highlight the pivotal role of knowledge about previous tasks in task duration prediction and are discussed in relation to the theoretical accounts of task duration prediction bias. PMID:29881362
NASA Astrophysics Data System (ADS)
Hagita, Katsumi; Tominaga, Tetsuo; Hatazoe, Takumi; Sone, Takuo; Takano, Hiroshi
2018-01-01
We proposed a filler network toy (FN-toy) model in order to approximately forecast changes in two-dimensional scattering patterns (2DSPs) of nanoparticles (NPs) in crosslinked polymer networks in ultrasmall-angle X-ray scattering (USAXS) experiments under uniaxial elongation. It enables us to estimate the system size dependence of the 2DSP of the NPs. In the FN-toy model, we considered NPs connected by harmonic springs with excluded-volume interactions among the NPs. In this study, we used the NP configurations estimated by reverse Monte Carlo (RMC) analysis for USAXS data observed in SPring-8 experiments on filler-filled styrene butadiene rubber (SBR). In the FN-toy model, we set a bond between every pair of NPs whose distance is less than Cd, where d is the diameter of an NP and C is a parameter that characterizes network properties. We determined the optimal value of C by comparison with 2DSPs of the NPs at 200% elongation for end-modified and unmodified SBR. These 2DSPs are obtained from the results of a large-scale coarse-grained molecular dynamics (CGMD) simulation with 8,192 NPs and 160 million Lennard-Jones (LJ) particles in previous works. For the end-modified SBR, the fitted value is C = 1.367 and for the unmodified SBR, C = 1.258. The difference in C can be regarded as originating from the difference in polymer-NP interactions. We found that the harmonic potential used in the current FN-toy model is not sufficient to reproduce stress-strain curves and local structures of NPs obtained in the previous CGMD simulations, although the FN-toy model can reproduce the 2DSPs. Using the FN-toy model with the fitted value of C, we calculated the 2DSPs of 65,536 and 524,288 NPs, whose initial positions were estimated by RMC analysis for the same USAXS data. It was found that CGMD simulations with 10 billion LJ particles and 524,288 NPs can provide a high-resolution 2DSP that is comparable to the 2DSP observed in USAXS experiments.
A Comparison of Climate Feedback Strength between CO2 Doubling and LGM Experiments
NASA Astrophysics Data System (ADS)
Yoshimori, M.; Yokohata, T.; Abe-Ouchi, A.
2008-12-01
Studies of past climate potentially provide a constraint on the uncertainty of climate sensitivity, but previous studies warn against a simple scaling to the future. The climate sensitivity is determined by various feedback processes and they may vary with climate states and forcings. In this study, we investigate similarities and differences of feedbacks for a CO2 doubling, a last glacial maximum (LGM), and LGM greenhouse gas (GHG) forcing experiments, using an atmospheric general circulation model coupled to a slab ocean model. After computing the radiative forcing, the individual feedback strengths: water vapor, lapse rate, albedo, and cloud feedbacks, are evaluated explicitly. For this particular model, the difference in the climate sensitivity among experiments is attributed to the shortwave cloud feedback in which there is a tendency that it becomes weaker or even negative in the cooling experiments. No significant difference is found in the water vapor feedback between warming and cooling experiments by GHGs despite the nonlinear dependence of the Clausius-Clapeyron relation on temperature. The weaker water vapor feedback in the LGM experiment due to a relatively weaker tropical forcing is compensated by the stronger lapse rate feedback due to a relatively stronger extratropical forcing. A hypothesis is proposed which explains the asymmetric cloud response between warming and cooling experiments associated with a displacement of the region of mixed- phase clouds. The difference in the total feedback strength between experiments is, however, relatively small compared to the current intermodel spread, and does not necessarily preclude the use of LGM climate as a future constraint.
Fern, Lorna A; Taylor, Rachel M; Whelan, Jeremy; Pearce, Susie; Grew, Tom; Brooman, Katie; Starkey, Carol; Millington, Hannah; Ashton, James; Gibson, Faith
2013-01-01
There is recognition that teenagers and young adults with cancer merit age-appropriate specialist care. However, outcomes associated with such specialist care are not defined. Patient experience and patient-reported outcomes such as quality of life are gaining importance. Nevertheless, there is a lack of theoretical basis and patient involvement in experience surveys for young people. We previously proposed a conceptual model of the lived experience of cancer. We aimed to refine this model adding to areas that were lacking or underreported. The proposed conceptual framework will inform a bespoke patient experience survey for young people. Using participatory research, 11 young people aged 13 to 25 years at diagnosis, participated in a 1-day workshop consisting of semistructured peer-to-peer interviews. Eight core themes emerged: impact of cancer diagnosis, information provision, place of care, role of health professionals, coping, peers, psychological support, and life after cancer. The conceptual framework has informed survey development for a longitudinal cohort study examining patient experience and outcomes associated with specialist cancer care. Young people must be kept at the center of interactions in recognition of their stated needs of engagement, of individually tailored information and support unproxied by parents/family. Age-appropriate information and support services that help young people deal with the impact of cancer on daily life and life after cancer must be made available. If we are to develop services that meet need, patient experience surveys must be influenced by patient involvement. Young people can be successfully involved in planning research relevant to their experience.
Beauvais, Francis
2017-02-01
In previous articles, a description of 'unconventional' experiments (e.g. in vitro or clinical studies based on high dilutions, 'memory of water' or homeopathy) using quantum-like probability was proposed. Because the mathematical formulations of quantum logic are frequently an obstacle for physicians and biologists, a modified modeling that rests on classical probability is described in the present article. This modeling is inspired from a relational interpretation of quantum physics that applies not only to microscopic objects, but also to macroscopic structures, including experimental devices and observers. In this framework, any outcome of an experiment is not an absolute property of the observed system as usually considered but is expressed relatively to an observer. A team of interacting observers is thus described from an external view point based on two principles: the outcomes of experiments are expressed relatively to each observer and the observers agree on outcomes when they interact with each other. If probability fluctuations are also taken into account, correlations between 'expected' and observed outcomes emerge. Moreover, quantum-like correlations are predicted in experiments with local blind design but not with centralized blind design. No assumption on 'memory' or other physical modification of water is necessary in the present description although such hypotheses cannot be formally discarded. In conclusion, a simple modeling of 'unconventional' experiments based on classical probability is now available and its predictions can be tested. The underlying concepts are sufficiently intuitive to be spread into the homeopathy community and beyond. It is hoped that this modeling will encourage new studies with optimized designs for in vitro experiments and clinical trials. Copyright © 2017 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, D.; Rovere, M.; Gallo, P., E-mail: gallop@fis.uniroma3.it
2015-09-21
In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show howmore » different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.« less
Comparison of Three Model Concepts for Streaming Potential in Unsaturated Porous Media
NASA Astrophysics Data System (ADS)
Huisman, J. A.; Satenahalli, P.; Zimmermann, E.; Vereecken, H.
2017-12-01
Streaming potential is the electric potential generated by fluid flow in a charged porous medium. Although streaming potential in saturated conditions is well understood, there still is considerable debate about the adequate modelling of streaming potential signals in unsaturated soil because different concepts are available to estimate the effective excess charge in unsaturated conditions. In particular, some studies have relied on the volumetric excess charge, whereas others proposed to use the flux-averaged excess charge derived from the water retention or relative permeability function. The aim of this study is to compare measured and modelled streaming potential signals for two different flow experiments with sand. The first experiment is a primary gravity drainage of a long column equipped with non-polarizing electrodes and tensiometers, as presented in several previous studies. Expected differences between the three concepts for the effective excess charge are only moderate for this set-up. The second experiment is a primary drainage of a short soil column equipped with non-polarizing electrodes and tensiometers using applied pressure, where differences between the three concepts are expected to be larger. A comparison of the experimental results with a coupled model of streaming potential for 1D flow problems will provide insights in the ability of the three model concepts for effective excess charge to describe observed streaming potentials.
Children perseverate to a human's actions but not to a robot's actions.
Moriguchi, Yusuke; Kanda, Takayuki; Ishiguro, Hiroshi; Itakura, Shoji
2010-01-01
Previous research has shown that young children commit perseverative errors from their observation of another person's actions. The present study examined how social observation would lead children to perseverative tendencies, using a robot. In Experiment 1, preschoolers watched either a human model or a robot sorting cards according to one dimension (e.g. shape), after which they were asked to sort according to a different dimension (e.g. colour). The results showed that children's behaviours in the task were significantly influenced by the human model's actions but not by the robot's actions. Experiment 2 excluded the possibility that children's behaviours were not affected by the robot's actions because they did not observe its actions. We concluded that children's perseverative errors from social observation resulted, in part, from their socio-cognitive ability.
Testing the Model of Stigma Communication with a Factorial Experiment in an Interpersonal Context
Smith, Rachel A.
2014-01-01
Stigmas may regulate intergroup relationships; they may also influence interpersonal actions. This study extends the previous test of the model of stigma communication (Smith, 2012) with a factorial experiment in which the outcomes refer to a hypothetical acquaintance. New affective reactions, sympathy and frustration, and a new personality trait, disgust sensitivity, were explored. In addition, perceived severity and susceptibility of the infection were included as alternative mechanisms explaining the effects. The results (n = 318) showed that message content, message reactions (emotional and cognitive), and disgust sensitivity predicted intentions to regulate the infected acquaintance’s interactions and lifestyle (R2 = .79) and participants’ likelihood of telling others about the acquaintance’s infection (R2 = .35). The findings generally provided support for MSC and directions for improvement. PMID:25425853
Evaluation of free modeling targets in CASP11 and ROLL.
Kinch, Lisa N; Li, Wenlin; Monastyrskyy, Bohdan; Kryshtafovych, Andriy; Grishin, Nick V
2016-09-01
We present an assessment of 'template-free modeling' (FM) in CASP11and ROLL. Community-wide server performance suggested the use of automated scores similar to previous CASPs would provide a good system of evaluating performance, even in the absence of comprehensive manual assessment. The CASP11 FM category included several outstanding examples, including successful prediction by the Baker group of a 256-residue target (T0806-D1) that lacked sequence similarity to any existing template. The top server model prediction by Zhang's Quark, which was apparently selected and refined by several manual groups, encompassed the entire fold of target T0837-D1. Methods from the same two groups tended to dominate overall CASP11 FM and ROLL rankings. Comparison of top FM predictions with those from the previous CASP experiment revealed progress in the category, particularly reflected in high prediction accuracy for larger protein domains. FM prediction models for two cases were sufficient to provide functional insights that were otherwise not obtainable by traditional sequence analysis methods. Importantly, CASP11 abstracts revealed that alignment-based contact prediction methods brought about much of the CASP11 progress, producing both of the functionally relevant models as well as several of the other outstanding structure predictions. These methodological advances enabled de novo modeling of much larger domain structures than was previously possible and allowed prediction of functional sites. Proteins 2016; 84(Suppl 1):51-66. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
The Generalized Quantum Episodic Memory Model.
Trueblood, Jennifer S; Hemmer, Pernille
2017-11-01
Recent evidence suggests that experienced events are often mapped to too many episodic states, including those that are logically or experimentally incompatible with one another. For example, episodic over-distribution patterns show that the probability of accepting an item under different mutually exclusive conditions violates the disjunction rule. A related example, called subadditivity, occurs when the probability of accepting an item under mutually exclusive and exhaustive instruction conditions sums to a number >1. Both the over-distribution effect and subadditivity have been widely observed in item and source-memory paradigms. These phenomena are difficult to explain using standard memory frameworks, such as signal-detection theory. A dual-trace model called the over-distribution (OD) model (Brainerd & Reyna, 2008) can explain the episodic over-distribution effect, but not subadditivity. Our goal is to develop a model that can explain both effects. In this paper, we propose the Generalized Quantum Episodic Memory (GQEM) model, which extends the Quantum Episodic Memory (QEM) model developed by Brainerd, Wang, and Reyna (2013). We test GQEM by comparing it to the OD model using data from a novel item-memory experiment and a previously published source-memory experiment (Kellen, Singmann, & Klauer, 2014) examining the over-distribution effect. Using the best-fit parameters from the over-distribution experiments, we conclude by showing that the GQEM model can also account for subadditivity. Overall these results add to a growing body of evidence suggesting that quantum probability theory is a valuable tool in modeling recognition memory. Copyright © 2016 Cognitive Science Society, Inc.
A multi-step reaction model for ignition of fully-dense Al-CuO nanocomposite powders
NASA Astrophysics Data System (ADS)
Stamatis, D.; Ermoline, A.; Dreizin, E. L.
2012-12-01
A multi-step reaction model is developed to describe heterogeneous processes occurring upon heating of an Al-CuO nanocomposite material prepared by arrested reactive milling. The reaction model couples a previously derived Cabrera-Mott oxidation mechanism describing initial, low temperature processes and an aluminium oxidation model including formation of different alumina polymorphs at increased film thicknesses and higher temperatures. The reaction model is tuned using traces measured by differential scanning calorimetry. Ignition is studied for thin powder layers and individual particles using respectively the heated filament (heating rates of 103-104 K s-1) and laser ignition (heating rate ∼106 K s-1) experiments. The developed heterogeneous reaction model predicts a sharp temperature increase, which can be associated with ignition when the laser power approaches the experimental ignition threshold. In experiments, particles ignited by the laser beam are observed to explode, indicating a substantial gas release accompanying ignition. For the heated filament experiments, the model predicts exothermic reactions at the temperatures, at which ignition is observed experimentally; however, strong thermal contact between the metal filament and powder prevents the model from predicting the thermal runaway. It is suggested that oxygen gas release from decomposing CuO, as observed from particles exploding upon ignition in the laser beam, disrupts the thermal contact of the powder and filament; this phenomenon must be included in the filament ignition model to enable prediction of the temperature runaway.
Squirt flow due to interfacial water films in hydrate bearing sediments
NASA Astrophysics Data System (ADS)
Sell, Kathleen; Quintal, Beatriz; Kersten, Michael; Saenger, Erik H.
2018-05-01
Sediments containing gas hydrate dispersed in the pore space are known to show a characteristic seismic anomaly which is a high attenuation along with increasing seismic velocities. Currently, this observation cannot be fully explained albeit squirt-flow type mechanisms on the microscale have been speculated to be the cause. Recent major findings from in situ experiments, using the gas in excess
and water in excess
formation method, and coupled with high-resolution synchrotron-based X-ray micro-tomography, have revealed the systematic presence of thin water films between the quartz grains and the encrusting hydrate. The data obtained from these experiments underwent an image processing procedure to quantify the thicknesses and geometries of the aforementioned interfacial water films. Overall, the water films vary from sub-micrometer to a few micrometers in thickness. In addition, some of the water films interconnect through water bridges. This geometrical analysis is used to propose a new conceptual squirt flow model for hydrate bearing sediments. A series of numerical simulations is performed considering variations of the proposed model to study seismic attenuation caused by such thin water films. Our results support previous speculation that squirt flow can explain high attenuation at seismic frequencies in hydrate bearing sediments, but based on a conceptual squirt flow model which is geometrically different than those previously considered.
2015-01-01
Highly charged metal ions act as catalytic centers and structural elements in a broad range of chemical complexes. The nonbonded model for metal ions is extensively used in molecular simulations due to its simple form, computational speed, and transferability. We have proposed and parametrized a 12-6-4 LJ (Lennard-Jones)-type nonbonded model for divalent metal ions in previous work, which showed a marked improvement over the 12-6 LJ nonbonded model. In the present study, by treating the experimental hydration free energies and ion–oxygen distances of the first solvation shell as targets for our parametrization, we evaluated 12-6 LJ parameters for 18 M(III) and 6 M(IV) metal ions for three widely used water models (TIP3P, SPC/E, and TIP4PEW). As expected, the interaction energy underestimation of the 12-6 LJ nonbonded model increases dramatically for the highly charged metal ions. We then parametrized the 12-6-4 LJ-type nonbonded model for these metal ions with the three water models. The final parameters reproduced the target values with good accuracy, which is consistent with our previous experience using this potential. Finally, tests were performed on a protein system, and the obtained results validate the transferability of these nonbonded model parameters. PMID:25145273
Ghosh, Pranay; Vahedipour, Kaveh; Lin, Min; Vogel, Jens H; Haynes, Charles A; von Lieres, Eric
2013-01-01
The zonal rate model (ZRM) has previously been applied for analyzing the performance of axial flow membrane chromatography capsules by independently determining the impacts of flow and binding related non-idealities on measured breakthrough curves. In the present study, the ZRM is extended to radial flow configurations, which are commonly used at larger scales. The axial flow XT5 capsule and the radial flow XT140 capsule from Pall are rigorously analyzed under binding and non-binding conditions with bovine serum albumin (BSA) as test molecule. The binding data of this molecule is much better reproduced by the spreading model, which hypothesizes different binding orientations, than by the well-known Langmuir model. Moreover, a revised cleaning protocol with NaCl instead of NaOH and minimizing the storage time has been identified as most critical for quantitatively reproducing the measured breakthrough curves. The internal geometry of both capsules is visualized by magnetic resonance imaging (MRI). The flow in the external hold-up volumes of the XT140 capsule was found to be more homogeneous as in the previously studied XT5 capsule. An attempt for model-based scale-up was apparently impeded by irregular pleat structures in the used XT140 capsule, which might lead to local variations in the linear velocity through the membrane stack. However, the presented approach is universal and can be applied to different capsules. The ZRM is shown to potentially help save valuable material and time, as the experiments required for model calibration are much cheaper than the predicted large-scale experiment at binding conditions. Biotechnol. Bioeng. 2013; 110: 1129–1141. © 2012 Wiley Periodicals, Inc. PMID:23097218
Soccer Players Cultural Capital and Its Impact on Migration
Leskošek, Bojan; Vodičar, Janez; Topič, Mojca Doupona
2016-01-01
Abstract The purpose of this study was to identify factors that constituted the cultural capital among soccer players. We assumed that in the increasingly globalized world of professional soccer, a player’s success would often depend on migrating and adjusting to life in other countries. Willingness to migrate and successful adjustment are tied to player’s previous attitudes and/or behaviours (habitus), significant support from others, including family members, and previous experiences and success in sports and education. Our hypothesised model of the cultural capital was based on the Pierre Bourdieu’s theoretical framework. It consisted of 26 variables related to three sets of factors: soccer experiences, a family context and support, and educational achievements of the players and their parents. The model was tested using a sample of 79 current soccer coaches who also had been players at the elite level. A factor analysis was used to empirically verify the content of the hypothetical model of the soccer players’ cultural capital. Nine latent factors were extracted and together, they accounted for 55.01% of the total model variance. Individual factors obtained showed a sufficient level of substantial connection. The Cronbach’s alpha value of 0.77 confirmed the internal consistency of the operationalised variables in the hypothetical model. In addition, the impact of these aforementioned life dimensions on the migration of soccer players was studied. The results of the binary logistic regression analysis showed that the first factor of the hypothetical model (F1) had 2.2 times and the second factor (F8) had 3.9 times higher odds for migration abroad. Sociocultural findings using this new assessment approach could help create better “success conditions” in the talent development of young players. PMID:28031770
The Modulus of Rupture from a Mathematical Point of View
NASA Astrophysics Data System (ADS)
Quintela, P.; Sánchez, M. T.
2007-04-01
The goal of this work is to present a complete mathematical study about the three-point bending experiments and the modulus of rupture of brittle materials. We will present the mathematical model associated to three-point bending experiments and we will use the asymptotic expansion method to obtain a new formula to calculate the modulus of rupture. We will compare the modulus of rupture of porcelain obtained with the previous formula with that obtained by using the classic theoretical formula. Finally, we will also present one and three-dimensional numerical simulations to compute the modulus of rupture.
Establishing and Maintaining a Satellite Campus Connected by Synchronous Video Conferencing
Fox, Brent I.; McDonough, Sharon L.; McConatha, Barry J.; Marlowe, Karen F.
2011-01-01
Pharmacy education has experienced substantial growth in the number of new schools and existing schools establishing satellite campuses. Several models have previously been used to connect primary and satellite campuses. We describe the Auburn University Harrison School of Pharmacy's (AUHSOP's) experiences using synchronous video conferencing between the Auburn University campus in Auburn and a satellite campus in Mobile, Alabama. We focus on the technology considerations related to planning, construction, implementation, and continued use of the various resources that support our program. Students’ perceptions of their experiences related to technology also are described. PMID:21829265
Three-dimensional, thermo-mechanical and dynamical analogue experiments of subduction: first results
NASA Astrophysics Data System (ADS)
Boutelier, D.; Oncken, O.
2008-12-01
We present a new analogue modeling technique developed to investigate the mechanics of the subduction process and the build-up of subduction orogenies. The model consists of a tank filled with water representing the asthenosphere and two lithospheric plates made of temperature-sensitive hydrocarbon compositional systems. These materials possess elasto-plastic properties allowing the scaling of thermal and mechanical processes. A conductive thermal gradient is imposed in the lithosphere prior to deformation. The temperature of the asthenosphere and model surface are imposed and controlled with an electric heater, two infrared ceramic heat emitters, two thermocouples and a thermo-regulator. This system allows an unobstructed view of the model surface, which is monitored using a stereoscopic particle image technique. This monitoring technique provides a precise quantification of the horizontal deformation and variations of elevation in the three-dimensional model. Convergence is imposed with a piston moving at a constant rate or pushing at a constant stress. The velocity is scaled using the dimensionless ratio of thermal conduction over advection. The experiments are first produced at a constant rate and the stress in the horizontal direction of the convergence is recorded. Then the experiment is reproduced with a constant stress boundary condition where the stress value is set to the averaged value obtained in the previous experiment. Therefore, an initial velocity allowing proper scaling of heat exchanges is obtained, but deformation in the model and spatial variations of parameters such as density or friction coefficient can produce variations of plate convergence velocity. This in turn impacts the strength of the model lithosphere because it changes the model thermal structure. In the first presented experiments the model lithosphere is one layer and the plate boundary is linear. The effects of variations of the subducting plate thickness, density and the lubrication of the interface between the plates are investigated.
Origin of temperature plateaus in laser-heated diamond anvil cell experiments
NASA Astrophysics Data System (ADS)
Geballe, Zachary M.; Jeanloz, Raymond
2012-06-01
Many high-pressure high-temperature studies using laser-heated diamond cells have documented plateaus in the increase of temperature with increasing laser power or with time. By modeling heat transfer in typical laser-heated diamond anvil cell experiments, we demonstrate that latent heat due to melting or other phase transformation is unlikely to be the source of observed plateaus in any previously published studies, regardless of whether pulsed or continuous lasers were used. Rather, large increases (˜10-fold) in thermal conductivity can explain some of the plateaus, and modest increases in reflectivity (tens of percent) can explain any or all of them. Modeling also shows that the sub-microsecond timescale of heating employed in recent pulsed heating experiments is fast enough compared to heat transport into and through typical insulations, but too slow compared to heat transport into metallic laser absorbers themselves to allow the detection of a large plateau due to latent heat of fusion. Four new designs are suggested for future experiments that could use the simple observation of a latent heat-induced plateau to provide reliable high-pressure melting data.
A cascading failure model for analyzing railway accident causation
NASA Astrophysics Data System (ADS)
Liu, Jin-Tao; Li, Ke-Ping
2018-01-01
In this paper, a new cascading failure model is proposed for quantitatively analyzing the railway accident causation. In the model, the loads of nodes are redistributed according to the strength of the causal relationships between the nodes. By analyzing the actual situation of the existing prevention measures, a critical threshold of the load parameter in the model is obtained. To verify the effectiveness of the proposed cascading model, simulation experiments of a train collision accident are performed. The results show that the cascading failure model can describe the cascading process of the railway accident more accurately than the previous models, and can quantitatively analyze the sensitivities and the influence of the causes. In conclusion, this model can assist us to reveal the latent rules of accident causation to reduce the occurrence of railway accidents.
Schumann, Ronald L; Ash, Kevin D; Bowser, Gregg C
2018-02-01
Recent advancements in severe weather detection and warning dissemination technologies have reduced, but not eliminated, large-casualty tornado hazards in the United States. Research on warning cognition and behavioral response by the public has the potential to further reduce tornado-related deaths and injuries; however, less research has been conducted in this area compared to tornado research in the physical sciences. Extant research in this vein tends to bifurcate. One branch of studies derives from classic risk perception, which investigates cognitive, affective, and sociocultural factors in relation to concern and preparation for uncertain risks. Another branch focuses on psychological, social, and cultural factors implicated in warning response for rapid onset hazards, with attention paid to previous experience and message design. Few studies link risk perceptions with cognition and response as elicited by specific examples of warnings. The present study unites risk perception, cognition, and response approaches by testing the contributions of hypothesized warning response drivers in one set of path models. Warning response is approximated by perceived fear and intended protective action as reported by survey respondents when exposed to hypothetical tornado warning scenarios. This study considers the roles of hazard knowledge acquisition, information-seeking behaviors, previous experience, and sociodemographic factors while controlling for the effects of the visual warning graphic. Findings from the study indicate the primacy of a user's visual interpretation of a warning graphic in shaping tornado warning response. Results also suggest that information-seeking habits, previous tornado experience, and local disaster culture play strong influencing roles in warning response. © 2017 Society for Risk Analysis.
The propagation of sound in tunnels
NASA Astrophysics Data System (ADS)
Li, Kai Ming; Iu, King Kwong
2002-11-01
The sound propagation in tunnels is addressed theoretically and experimentally. In many previous studies, the image source method is frequently used. However, these early theoretical models are somewhat inadequate because the effect of multiple reflections in long enclosures is often modeled by the incoherent summation of contributions from all image sources. Ignoring the phase effect, these numerical models are unlikely to be satisfactory for predicting the intricate interference patterns due to contributions from each image source. In the present paper, the interference effect is incorporated by summing the contributions from the image sources coherently. To develop a simple numerical model, tunnels are represented by long rectangular enclosures with either geometrically reflecting or impedance boundaries. Scale model experiments are conducted for the validation of the numerical model. In some of the scale model experiments, the enclosure walls are lined with a carpet for simulating the impedance boundary condition. Large-scale outdoor measurements have also been conducted in two tunnels designed originally for road traffic use. It has been shown that the proposed numerical model agrees reasonably well with experimental data. [Work supported by the Research Grants Council, The Industry Department, NAP Acoustics (Far East) Ltd., and The Hong Kong Polytechnic University.
NASA Astrophysics Data System (ADS)
Pereira, A. S. N.; de Streel, G.; Planes, N.; Haond, M.; Giacomini, R.; Flandre, D.; Kilchytska, V.
2017-02-01
The Drain Induced Barrier Lowering (DIBL) behavior in Ultra-Thin Body and Buried oxide (UTBB) transistors is investigated in details in the temperature range up to 150 °C, for the first time to the best of our knowledge. The analysis is based on experimental data, physical device simulation, compact model (SPICE) simulation and previously published models. Contrary to MASTAR prediction, experiments reveal DIBL increase with temperature. Physical device simulations of different thin-film fully-depleted (FD) devices outline the generality of such behavior. SPICE simulations, with UTSOI DK2.4 model, only partially adhere to experimental trends. Several analytic models available in the literature are assessed for DIBL vs. temperature prediction. Although being the closest to experiments, Fasarakis' model overestimates DIBL(T) dependence for shortest devices and underestimates it for upsized gate lengths frequently used in ultra-low-voltage (ULV) applications. This model is improved in our work, by introducing a temperature-dependent inversion charge at threshold. The improved model shows very good agreement with experimental data, with high gain in precision for the gate lengths under test.
The effect of embodied emotive states on cognitive categorization.
Price, Tom F; Harmon-Jones, Eddie
2010-12-01
Research has uncovered that positive affect broadens cognitive categorization. The motivational dimensional model, however, posits that positive affect is not a unitary construct with only one cognitive consequence. Instead, this model puts forth that there are different positive affects varying in approach motivational intensity. According to this model, only positive affects lower in motivational intensity should broaden cognitive processes, whereas positive affects higher in motivational intensity should narrow cognitive processes. Consistent with these predictions, high approach positive affect has been shown to narrow attention, whereas low approach positive affect has been shown to broaden it (Gable & Harmon-Jones, 2008). High approach positive affect, therefore, might narrow categorization. Two experiments investigated this possibility by having participants respond to cognitive categorization tasks in 3 body postures designed to elicit different levels of approach motivation: reclining backward, which should evoke low approach motivation; sitting upright, which should evoke moderate approach motivation; and leaning forward, which should evoke high approach motivation. Participants smiled while in each posture in order to experience positive affect. Experiment 1 provided initial support for the idea that high approach positive affect narrows categorization and low approach positive affect broadens categorization. Experiment 2 replicated these findings with improved smiling instructions. These results extend previous work by showing that the motivational model's predictions hold for basic attentional processes as well as higher level cognitive processes such as categorization.
The heparin-Ca(2+) interaction: the influence of the O-sulfation pattern on binding.
Chevalier, Franck; Lucas, Ricardo; Angulo, Jesús; Martin-Lomas, Manuel; Nieto, Pedro M
2004-04-02
The specific binding of Ca(2+) to synthetic hexasaccharide models of modified heparin has been investigated by NMR and molecular modeling and compared with previous results on a model of regular heparin. These two models represent the regular region of heparin lacking one type of O-sulfate group, either at C-6 of glucosamine or at C-2 of iduronate. The NMR experiments show different responses to the presence of Ca(2+). In the case of the compound lacking O-sulfate groups at C-2, the results are indicative of specific binding similar to that observed for the regular heparin, while the model lacking sulfate groups in position 6 interacts more weakly with Ca(2+). In order to understand the basis of this difference, a molecular modeling study based on a rigid body docking approach of the interaction of these carbohydrates with Ca(2+) and Na(+) was performed. We have found that the results are strongly dependent on the starting orientation of the lateral side chains of the charged groups of the carbohydrate, and that the best agreement with the experimental results is obtained when the starting conformations are taken from previous simulations in the presence of Ca(2+).
Perceiving while producing: Modeling the dynamics of phonological planning
Roon, Kevin D.; Gafos, Adamantios I.
2016-01-01
We offer a dynamical model of phonological planning that provides a formal instantiation of how the speech production and perception systems interact during online processing. The model is developed on the basis of evidence from an experimental task that requires concurrent use of both systems, the so-called response-distractor task in which speakers hear distractor syllables while they are preparing to produce required responses. The model formalizes how ongoing response planning is affected by perception and accounts for a range of results reported across previous studies. It does so by explicitly addressing the setting of parameter values in representations. The key unit of the model is that of the dynamic field, a distribution of activation over the range of values associated with each representational parameter. The setting of parameter values takes place by the attainment of a stable distribution of activation over the entire field, stable in the sense that it persists even after the response cue in the above experiments has been removed. This and other properties of representations that have been taken as axiomatic in previous work are derived by the dynamics of the proposed model. PMID:27440947
A Biologically Inspired Computational Model of Basal Ganglia in Action Selection.
Baston, Chiara; Ursino, Mauro
2015-01-01
The basal ganglia (BG) are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go), indirect (NoGo), and hyperdirect pathways. The main original aspects, compared with previous models, are the use of a two-term Hebb rule to train synapses in the striatum, based exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected by dopamine themselves) during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges), synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments. Finally, some simulations show model working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine depletion in parkinsonian subjects or dopamine hypermedication). Due to its parsimonious approach, the model may represent a straightforward tool to analyze BG functionality in behavioral experiments.
Virtual reality simulators: valuable surgical skills trainers or video games?
Willis, Ross E; Gomez, Pedro Pablo; Ivatury, Srinivas J; Mitra, Hari S; Van Sickle, Kent R
2014-01-01
Virtual reality (VR) and physical model (PM) simulators differ in terms of whether the trainee is manipulating actual 3-dimensional objects (PM) or computer-generated 3-dimensional objects (VR). Much like video games (VG), VR simulators utilize computer-generated graphics. These differences may have profound effects on the utility of VR and PM training platforms. In this study, we aimed to determine whether a relationship exists between VR, PM, and VG platforms. VR and PM simulators for laparoscopic camera navigation ([LCN], experiment 1) and flexible endoscopy ([FE] experiment 2) were used in this study. In experiment 1, 20 laparoscopic novices played VG and performed 0° and 30° LCN exercises on VR and PM simulators. In experiment 2, 20 FE novices played VG and performed colonoscopy exercises on VR and PM simulators. In both experiments, VG performance was correlated with VR performance but not with PM performance. Performance on VR simulators did not correlate with performance on respective PM models. VR environments may be more like VG than previously thought. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.
Evolution of the Oxidation State of the Earth's Mantle
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, E.; Rahman, Z.
2015-01-01
The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3(+) at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. In our previous experiments on shergottite compositions, variable fO2, T, and P less than 4 GPa, Fe3(+)/sigma Fe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3(+)/sigma Fe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3(+). Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Preliminary multi-anvil experiments with Knippa basalt as the starting composition were conducted at 5-7 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal to Fe3(+)/2(+). Experiments are underway to produce glassy samples that can be measured by EELS and XANES, and are conducted at higher pressures.
Scribner, Kim T.; Avise, John C.
1994-01-01
The dynamics of mitochondrial and multilocus nuclear genotypic frequencies were monitored for 2 yr in experimental populations established with equal numbers of two poeciliid fishes (Gambusia affinis and Gambusia holbrooki) that hybridize naturally in the southeastern United States. In replicated "small-pool" populations (experiment I), 1018 sampled individuals at six time periods revealed an initial flush of hybridization, followed by a rapid decline in frequencies of G. affinis nuclear and mitochondrial alleles over 64 wk. Decay of gametic and cytonuclear disequilibria differed from expectations under random mating as well as under a model of assortative mating involving empirically estimated mating propensities. In two replicate "large-pond" populations (experiment II), 841 sampled individuals across four reproductive cohorts revealed lower initial frequencies of F1 hybrids than in experiment I, but again G. holbrooki alleles achieved high frequencies over four generations (72 wk). Thus, evolution within experimental Gambusia hybrid populations can be extremely rapid, resulting in consistent loss of G. affinis nuclear and cytoplasmic alleles. Concordance in results between experiments and across genetic markers suggests strong directional selection favoring G. holbrooki genotypes. Results are interpreted in light of previous reports of genotype-specific differences in life-history traits, reproductive ecology, patterns of recruitment, and size-specific mortality, and in the context of patterns of introgression previously studied indirectly from spatial observations on cytonuclear genotypes in natural Gambusia populations.
Ganusov, Vitaly V.; De Boer, Rob J.
2013-01-01
Bromodeoxyuridine (BrdU) is widely used in immunology to detect cell division, and several mathematical models have been proposed to estimate proliferation and death rates of lymphocytes from BrdU labelling and de-labelling curves. One problem in interpreting BrdU data is explaining the de-labelling curves. Because shortly after label withdrawal, BrdU+ cells are expected to divide into BrdU+ daughter cells, one would expect a flat down-slope. As for many cell types, the fraction of BrdU+ cells decreases during de-labelling, previous mathematical models had to make debatable assumptions to be able to account for the data. We develop a mechanistic model tracking the number of divisions that each cell has undergone in the presence and absence of BrdU, and allow cells to accumulate and dilute their BrdU content. From the same mechanistic model, one can naturally derive expressions for the mean BrdU content (MBC) of all cells, or the MBC of the BrdU+ subset, which is related to the mean fluorescence intensity of BrdU that can be measured in experiments. The model is extended to include subpopulations with different rates of division and death (i.e. kinetic heterogeneity). We fit the extended model to previously published BrdU data from memory T lymphocytes in simian immunodeficiency virus-infected and uninfected macaques, and find that the model describes the data with at least the same quality as previous models. Because the same model predicts a modest decline in the MBC of BrdU+ cells, which is consistent with experimental observations, BrdU dilution seems a natural explanation for the observed down-slopes in self-renewing populations. PMID:23034350
Xue, Qingwan; Markkula, Gustav; Yan, Xuedong; Merat, Natasha
2018-06-18
Previous studies have shown the effect of a lead vehicle's speed, deceleration rate and headway distance on drivers' brake response times. However, how drivers perceive this information and use it to determine when to apply braking is still not quite clear. To better understand the underlying mechanisms, a driving simulator experiment was performed where each participant experienced nine deceleration scenarios. Previously reported effects of the lead vehicle's speed, deceleration rate and headway distance on brake response time were firstly verified in this paper, using a multilevel model. Then, as an alternative to measures of speed, deceleration rate and distance, two visual looming-based metrics (angular expansion rate θ˙ of the lead vehicle on the driver's retina, and inverse tau τ -1 , the ratio between θ˙ and the optical size θ), considered to be more in line with typical human psycho-perceptual responses, were adopted to quantify situation urgency. These metrics were used in two previously proposed mechanistic models predicting brake onset: either when looming surpasses a threshold, or when the accumulated evidence (looming and other cues) reaches a threshold. Results showed that the looming threshold model did not capture the distribution of brake response time. However, regardless of looming metric, the accumulator models fitted the distribution of brake response times better than the pure threshold models. Accumulator models, including brake lights, provided a better model fit than looming-only versions. For all versions of the mechanistic models, models using τ -1 as the measure of looming fitted better than those using θ˙, indicating that the visual cues drivers used during rear-end collision avoidance may be more close to τ -1 . Copyright © 2018 Elsevier Ltd. All rights reserved.
Binocular combination of luminance profiles
Ding, Jian; Levi, Dennis M.
2017-01-01
We develop and test a new two-dimensional model for binocular combination of the two eyes' luminance profiles. For first-order stimuli, the model assumes that one eye's luminance profile first goes through a luminance compressor, receives gain-control and gain-enhancement from the other eye, and then linearly combines the other eye's output profile. For second-order stimuli, rectification is added in the signal path of the model before the binocular combination site. Both the total contrast and luminance energies, weighted sums over both the space and spatial-frequency domains, were used in the interocular gain-control, while only the total contrast energy was used in the interocular gain-enhancement. To challenge the model, we performed a binocular brightness matching experiment over a large range of background and target luminances. The target stimulus was a dichoptic disc with a sharp edge that has an increment or decrement luminance from its background. The disk's interocular luminance ratio varied from trial to trial. To refine the model we tested three luminance compressors, five nested binocular combination models (including the Ding–Sperling and the DSKL models), and examined the presence or absence of total luminance energy in the model. We found that (1) installing a luminance compressor, either a logarithmic luminance function or luminance gain-control, (2) including both contrast and luminance energies, and (3) adding interocular gain-enhancement (the DSKL model) to a combined model significantly improved its performance. The combined model provides a systematic account of binocular luminance summation over a large range of luminance input levels. It gives a unified explanation of Fechner's paradox observed on a dark background, and a winner-take-all phenomenon observed on a light background. To further test the model, we conducted two additional experiments: luminance summation of discs with asymmetric contour information (Experiment 2), similar to Levelt (1965) and binocular combination of second-order contrast-modulated gratings (Experiment 3). We used the model obtained in Experiment 1 to predict the results of Experiments 2 and 3 and the results of our previous studies. Model simulations further refined the contrast space weight and contrast sensitivity functions that are installed in the model, and provide a reasonable account for rebalancing of imbalanced binocular vision by reducing the mean luminance in the dominant eye. PMID:29098293
Mohammed, Yassene; Verhey, Janko F
2005-01-01
Background Laser Interstitial ThermoTherapy (LITT) is a well established surgical method. The use of LITT is so far limited to homogeneous tissues, e.g. the liver. One of the reasons is the limited capability of existing treatment planning models to calculate accurately the damage zone. The treatment planning in inhomogeneous tissues, especially of regions near main vessels, poses still a challenge. In order to extend the application of LITT to a wider range of anatomical regions new simulation methods are needed. The model described with this article enables efficient simulation for predicting damaged tissue as a basis for a future laser-surgical planning system. Previously we described the dependency of the model on geometry. With the presented paper including two video files we focus on the methodological, physical and mathematical background of the model. Methods In contrast to previous simulation attempts, our model is based on finite element method (FEM). We propose the use of LITT, in sensitive areas such as the neck region to treat tumours in lymph node with dimensions of 0.5 cm – 2 cm in diameter near the carotid artery. Our model is based on calculations describing the light distribution using the diffusion approximation of the transport theory; the temperature rise using the bioheat equation, including the effect of microperfusion in tissue to determine the extent of thermal damage; and the dependency of thermal and optical properties on the temperature and the injury. Injury is estimated using a damage integral. To check our model we performed a first in vitro experiment on porcine muscle tissue. Results We performed the derivation of the geometry from 3D ultrasound data and show for this proposed geometry the energy distribution, the heat elevation, and the damage zone. Further on, we perform a comparison with the in-vitro experiment. The calculation shows an error of 5% in the x-axis parallel to the blood vessel. Conclusions The FEM technique proposed can overcome limitations of other methods and enables an efficient simulation for predicting the damage zone induced using LITT. Our calculations show clearly that major vessels would not be damaged. The area/volume of the damaged zone calculated from both simulation and in-vitro experiment fits well and the deviation is small. One of the main reasons for the deviation is the lack of accurate values of the tissue optical properties. In further experiments this needs to be validated. PMID:15631630
Specific previous experience affects perception of harmony and meter.
Creel, Sarah C
2011-10-01
Prior knowledge shapes our experiences, but which prior knowledge shapes which experiences? This question is addressed in the domain of music perception. Three experiments were used to determine whether listeners activate specific musical memories during music listening. Each experiment provided listeners with one of two musical contexts that was presented simultaneously with a melody. After a listener was familiarized with melodies embedded in contexts, the listener heard melodies in isolation and judged the fit of a final harmonic or metrical probe event. The probe event matched either the familiar (but absent) context or an unfamiliar context. For both harmonic (Experiments 1 and 3) and metrical (Experiment 2) information, exposure to context shifted listeners' preferences toward a probe matching the context that they had been familiarized with. This suggests that listeners rapidly form specific musical memories without explicit instruction, which are then activated during music listening. These data pose an interesting challenge for models of music perception which implicitly assume that the listener's knowledge base is predominantly schematic or abstract.
Chang, Hsin-Li; Lai, Chi-Yen
2015-06-01
This study introduces self-determination theory (SDT) to refine previous models of vehicle usage motivation. We add travel socialization theory regarding parental influence on vehicle usage to enhance previous structural models describing motorcycle usage behavior. Our newly developed model was empirically verified in a sample of 721 motorcycle users in Taiwan. In addition to instrumental, symbolic, and affective motivations, perceived parental attitudes (PPAs) towards motorcycle riding were found to have a significant effect on individuals' motorcycle use habits. Additionally, participants who perceived their parents to have more positive attitudes toward motorcycles were found to have more experience being chauffeured on motorcycles by their parents. Based on these results, we suggest means to confront the challenges brought on by the rapid growth of motorcycle usage, especially serious motorcycle traffic accidents. These results improve our understanding motorcycle usage in Taiwan and can be used by transportation professionals who are seeking solutions to the rapid growth of motorcycle usage. Copyright © 2015 Elsevier Ltd. All rights reserved.