Sample records for previous set jump

  1. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  2. Acceleration and Orientation Jumping Performance Differences Among Elite Professional Male Handball Players With or Without Previous ACL Reconstruction: An Inertial Sensor Unit-Based Study.

    PubMed

    Setuain, Igor; González-Izal, Miriam; Alfaro, Jesús; Gorostiaga, Esteban; Izquierdo, Mikel

    2015-12-01

    Handball is one of the most challenging sports for the knee joint. Persistent biomechanical and jumping capacity alterations can be observed in athletes with an anterior cruciate ligament (ACL) injury. Commonly identified jumping biomechanical alterations have been described by the use of laboratory technologies. However, portable and easy-to-handle technologies that enable an evaluation of jumping biomechanics at the training field are lacking. To analyze unilateral/bilateral acceleration and orientation jumping performance differences among elite male handball athletes with or without previous ACL reconstruction via a single inertial sensor unit device. Case control descriptive study. At the athletes' usual training court. Twenty-two elite male (6 ACL-reconstructed and 16 uninjured control players) handball players were evaluated. The participants performed a vertical jump test battery that included a 50-cm vertical bilateral drop jump, a 20-cm vertical unilateral drop jump, and vertical unilateral countermovement jump maneuvers. Peak 3-dimensional (X, Y, Z) acceleration (m·s(-2)), jump phase duration and 3-dimensional orientation values (°) were obtained from the inertial sensor unit device. Two-tailed t-tests and a one-way analysis of variance were performed to compare means. The P value cut-off for significance was set at P < .05. The ACL-reconstructed male athletes did not show any significant (P < .05) residual jumping biomechanical deficits regarding the measured variables compared with players who had not suffered this knee injury. A dominance effect was observed among non-ACL reconstructed controls but not among their ACL-reconstructed counterparts (P < .05). Elite male handball athletes with previous ACL reconstruction demonstrated a jumping biomechanical profile similar to control players, including similar jumping performance values in both bilateral and unilateral jumping maneuvers, several years after ACL reconstruction. These findings are in agreement with previous research showing full functional restoration of abilities in top-level male athletes after ACL reconstruction, rehabilitation and subsequent return to sports at the previous level. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  3. Jumping performance differences among elite professional handball players with or without previous ACL reconstruction.

    PubMed

    Setuain, I; Millor, N; Alfaro, J; Gorostiaga, E; Izquierdo, M

    2015-10-01

    Handball is one of the most challenging sports for the knee joint. Persistent strength and jumping capacity alterations may be observed among athletes who have suffered anterior cruciate ligament (ACL) injury. The aim of this study was to examine unilateral and bilateral jumping ability differences between previously ACL-reconstructed rehabilitated elite handball athletes and sex, age and uninjured sport activity level-pairs of control players. It was a Cross-sectional study with one factor: previous ACL injury. We recruited 22 male (6 ACL-reconstructed and 16 uninjured control players) and 21 female (6 ACL-reconstructed and 15 uninjured control players) elite handball players who were evaluated 6.2±3.4 years after surgical ACL reconstruction. A battery of jump tests, including both bilateral and unilateral maneuvers, was performed. Two-tailed unpaired (intergroup comparison) and paired (intragroup comparison) t-tests were performed for mean comparisons. The P-value cut-off for significance was set at <0.05. The previously ACL-reconstructed female athletes showed a lower bilateral drop jump contact time (0.429±179.9 vs. 0.349±151 s, P<0.05) and less distance reached (3.820±0.54 vs. 4.428±0.44 m, P<0.05) in the unilateral triple hop for distance (UTHD) on their reconstructed leg compared with the dominant legs of the uninjured control athletes. No significant differences were observed for any other recorded variable. Among the male athletes, no significant differences between groups were found for the studied jumping variables. Previously ACL-reconstructed elite female handball athletes demonstrated both lower vertical bilateral drop jump (VBDJ) contact times and lower UTHD scores for the injured leg several years after injury. These deficits could contribute to an increase in ACL re-injury risk.

  4. Peak power in the hexagonal barbell jump squat and its relationship to jump performance and acceleration in elite rugby union players.

    PubMed

    Turner, Thomas S; Tobin, Daniel P; Delahunt, Eamonn

    2015-05-01

    Recent research suggests that jump squats with a loaded hexagonal barbell are superior for peak power production to comparable loads in a traditional barbell loaded jump squat. The aim of this study was to investigate the relationship between relative peak power output during performance of the hexagonal barbell jump squat (HBJS), countermovement jump (CMJ) height, and linear acceleration speed in rugby union players. Seventeen professional rugby union players performed 10- and 20-m sprints, followed by a set of 3 unloaded CMJs and a set of 3 HBJS at a previously determined optimal load corresponding with peak power output. The relationship between HBJS relative peak power output, 10- and 20-m sprint time, and CMJ height was investigated using correlation analysis. The contribution of HBJS relative peak power output and CMJ height to 10- and 20-m sprint time was investigated using standard multiple regression. Strong, significant, inverse correlations were observed between HBJS relative peak power output, 10-m sprint time (r = -0.70, p < 0.01), and 20-m sprint time (r = -0.75, p < 0.01). A strong, significant, positive correlation was observed between HBJS relative peak power output and CMJ height (r = 0.80, p < 0.01). Together, HBJS relative peak power output and CMJ height explained 46% of the variance in 10-m sprint time while explaining 59% of the variance in 20-m sprint time. The findings of the current study demonstrate a significant relationship between relative peak power in the HBJS and athletic performance as quantified by CMJ height and 10- and 20-m sprint time.

  5. Jump as Far as You Can [Problem Solvers: Problem

    ERIC Educational Resources Information Center

    Bofferding, Laura; Yigit, Melike

    2013-01-01

    The standing long jump was an Olympic event until 1912. In 1904, Ray Ewry set the world record for the longest standing long jump, which was about 11.5 feet, or 138 inches. Although the standing long jump is no longer an Olympic event, the Norwegians still include it in their National Competition, and Arne Tvervaag set a new world record at about…

  6. Validation of an inertial measurement unit for the measurement of jump count and height.

    PubMed

    MacDonald, Kerry; Bahr, Roald; Baltich, Jennifer; Whittaker, Jackie L; Meeuwisse, Willem H

    2017-05-01

    To validate the use of an inertial measurement unit (IMU) for the collection of total jump count and assess the validity of an IMU for the measurement of jump height against 3-D motion analysis. Cross sectional validation study. 3D motion-capture laboratory and field based settings. Thirteen elite adolescent volleyball players. Participants performed structured drills, played a 4 set volleyball match and performed twelve counter movement jumps. Jump counts from structured drills and match play were validated against visual count from recorded video. Jump height during the counter movement jumps was validated against concurrent 3-D motion-capture data. The IMU device captured more total jumps (1032) than visual inspection (977) during match play. During structured practice, device jump count sensitivity was strong (96.8%) while specificity was perfect (100%). The IMU underestimated jump height compared to 3D motion-capture with mean differences for maximal and submaximal jumps of 2.5 cm (95%CI: 1.3 to 3.8) and 4.1 cm (3.1-5.1), respectively. The IMU offers a valid measuring tool for jump count. Although the IMU underestimates maximal and submaximal jump height, our findings demonstrate its practical utility for field-based measurement of jump load. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Do Bilateral Vertical Jumps With Reactive Jump Landings Achieve Osteogenic Thresholds With and Without Instruction in Premenopausal Women?

    PubMed

    Clissold, Tracey L; Winwood, Paul W; Cronin, John B; De Souza, Mary Jane

    2018-04-01

    Jumps have been investigated as a stimulus for bone development; however, effects of instruction, jump type, and jump-landing techniques need investigation. This study sought to identify whether ground reaction forces (GRFs) for bilateral vertical jumps (countermovement jumps and drop jumps) with reactive jump-landings (ie, jumping immediately after initial jump-landing), with instruction and with instruction withdrawn, achieve magnitudes and rates of strain previously shown to improve bone mass among premenopausal women. Twenty-one women (Mean ± SD: 43.3 ± 5.9 y; 69.4 ± 9.6 kg; 167 ± 5.5 cm; 27.5 ± 8.7% body fat) performed a testing session 'with instruction' followed by a testing session performed 1 week later with 'instruction withdrawn.' The magnitudes (4.59 to 5.49 body weight [BW]) and rates of strain (263 to 359 BW·s -1 ) for the jump-landings, performed on an AMTI force plate, exceeded previously determined thresholds (>3 BWs and >43 BW·s -1 ). Interestingly, significantly larger peak resultant forces, (↑10%; P = .002) and peak rates of force development (↑20%; P < .001) values (in relation to BW and BW·s -1 , respectively) were observed for the second jump-landing (postreactive jump). Small increases (ES = 0.22-0.42) in all landing forces were observed in the second jump-landing with 'instruction withdrawn.' These jumps represent a unique training stimulus for premenopausal women and achieve osteogenic thresholds thought prerequisite for bone growth.

  8. Time to stabilization in single leg drop jump landings: an examination of calculation methods and assessment of differences in sample rate, filter settings and trial length on outcome values.

    PubMed

    Fransz, Duncan P; Huurnink, Arnold; de Boode, Vosse A; Kingma, Idsart; van Dieën, Jaap H

    2015-01-01

    Time to stabilization (TTS) is the time it takes for an individual to return to a baseline or stable state following a jump or hop landing. A large variety exists in methods to calculate the TTS. These methods can be described based on four aspects: (1) the input signal used (vertical, anteroposterior, or mediolateral ground reaction force) (2) signal processing (smoothed by sequential averaging, a moving root-mean-square window, or fitting an unbounded third order polynomial), (3) the stable state (threshold), and (4) the definition of when the (processed) signal is considered stable. Furthermore, differences exist with regard to the sample rate, filter settings and trial length. Twenty-five healthy volunteers performed ten 'single leg drop jump landing' trials. For each trial, TTS was calculated according to 18 previously reported methods. Additionally, the effects of sample rate (1000, 500, 200 and 100 samples/s), filter settings (no filter, 40, 15 and 10 Hz), and trial length (20, 14, 10, 7, 5 and 3s) were assessed. The TTS values varied considerably across the calculation methods. The maximum effect of alterations in the processing settings, averaged over calculation methods, were 2.8% (SD 3.3%) for sample rate, 8.8% (SD 7.7%) for filter settings, and 100.5% (SD 100.9%) for trial length. Differences in TTS calculation methods are affected differently by sample rate, filter settings and trial length. The effects of differences in sample rate and filter settings are generally small, while trial length has a large effect on TTS values. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Jump frequency may contribute to risk of jumper's knee: a study of interindividual and sex differences in a total of 11,943 jumps video recorded during training and matches in young elite volleyball players.

    PubMed

    Bahr, Martin A; Bahr, Roald

    2014-09-01

    Male sex, total training volume (number of hours per week) and match exposure (number of sets played per week) are risk factors for jumper's knee among young elite volleyball players. However, it is not known whether jump frequency differs among players on the same squad. To examine interindividual and sex differences in jump frequency during training and matches in young elite volleyball players. Observational study. Norwegian elite volleyball boarding school training programme. Student-athletes (26 boys and 18 girls, 16-18 years). Individual jump counts were recorded based on visual analysis of video recordings obtained from 1 week of volleyball training (9 training sessions for boys and 10 for girls, 14.1 h and 17.8 h of training, respectively) and 10 matches (5.9 h for boys (16 sets) and 7.7 h for girls (21 sets). A total of 11,943 jumps were recorded, 4138 during matches and 7805 during training. As training attendance and jump frequency varied substantially between players, the total exposure in training ranged from 50 to 666 jumps/week among boys and from 11 to 251 jumps/week among girls. On average, this corresponded to 35.7 jumps/h for boys and 13.7 jumps/h for girls (Student t test, p=0.002). Total jump exposure during matches ranged between 1 and 339 jumps among boys and between 0 and 379 jumps among girls, corresponding to an average jump frequency of 62.2 jumps/h for boys and 41.9 jumps/h for girls (Student t test, p<0.039). The interindividual differences in jump frequency were substantially greater than any differences observed among player functions. Jump frequency has substantial interindividual and sex differences during training and matches in young elite volleyball players. Total jump volume may represent a more important risk factor for jumper's knee than total training volume, warranting further research attention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Optimal compliant-surface jumping: a multi-segment model of springboard standing jumps.

    PubMed

    Cheng, Kuangyou B; Hubbard, Mont

    2005-09-01

    A multi-segment model is used to investigate optimal compliant-surface jumping strategies and is applied to springboard standing jumps. The human model has four segments representing the feet, shanks, thighs, and trunk-head-arms. A rigid bar with a rotational spring on one end and a point mass on the other end (the tip) models the springboard. Board tip mass, length, and stiffness are functions of the fulcrum setting. Body segments and board tip are connected by frictionless hinge joints and are driven by joint torque actuators at the ankle, knee, and hip. One constant (maximum isometric torque) and three variable functions (of instantaneous joint angle, angular velocity, and activation level) determine each joint torque. Movement from a nearly straight motionless initial posture to jump takeoff is simulated. The objective is to find joint torque activation patterns during board contact so that jump height can be maximized. Minimum and maximum joint angles, rates of change of normalized activation levels, and contact duration are constrained. Optimal springboard jumping simulations can reasonably predict jumper vertical velocity and jump height. Qualitatively similar joint torque activation patterns are found over different fulcrum settings. Different from rigid-surface jumping where maximal activation is maintained until takeoff, joint activation decreases near takeoff in compliant-surface jumping. The fulcrum-height relations in experimental data were predicted by the models. However, lack of practice at non-preferred fulcrum settings might have caused less jump height than the models' prediction. Larger fulcrum numbers are beneficial for taller/heavier jumpers because they need more time to extend joints.

  11. Variability of Plyometric and Ballistic Exercise Technique Maintains Jump Performance.

    PubMed

    Chandler, Phillip T; Greig, Matthew; Comfort, Paul; McMahon, John J

    2018-06-01

    Chandler, PT, Greig, M, Comfort, P, and McMahon, JJ. Variability of plyometric and ballistic exercise technique maintains jump performance. J Strength Cond Res 32(6): 1571-1582, 2018-The aim of this study was to investigate changes in vertical jump technique over the course of a training session. Twelve plyometric and ballistic exercise-trained male athletes (age = 23.4 ± 4.6 years, body mass = 78.7 ± 18.8 kg, height = 177.1 ± 9.0 cm) performed 3 sets of 10 repetitions of drop jump (DJ), rebound jump (RJ) and squat jump (SJ). Each exercise was analyzed from touchdown to peak joint flexion and peak joint flexion to take-off. Squat jump was analyzed from peak joint flexion to take-off only. Jump height, flexion and extension time and range of motion, and instantaneous angles of the ankle, knee, and hip joints were measured. Separate 1-way repeated analyses of variance compared vertical jump technique across exercise sets and repetitions. Exercise set analysis found that SJ had lower results than DJ and RJ for the angle at peak joint flexion for the hip, knee, and ankle joints and take-off angle of the hip joint. Exercise repetition analysis found that the ankle joint had variable differences for the angle at take-off, flexion, and extension time for RJ. The knee joint had variable differences for flexion time for DJ and angle at take-off and touchdown for RJ. There was no difference in jump height. Variation in measured parameters across repetitions highlights variable technique across plyometric and ballistic exercises. This did not affect jump performance, but likely maintained jump performance by overcoming constraints (e.g., level of rate coding).

  12. Effect of a submaximal half-squats warm-up program on vertical jumping ability.

    PubMed

    Gourgoulis, Vassilios; Aggeloussis, Nickos; Kasimatis, Panagiotis; Mavromatis, Giorgos; Garas, Athanasios

    2003-05-01

    The purpose of the current research was to study the effect of a warm-up program including submaximal half-squats on vertical jumping ability. Twenty physically active men participated in the study. Each subject performed 5 sets of half-squats with 2 repetitions at each of the following intensities: 20, 40, 60, 80, and 90% of the 1 repetition maximum (1RM) load. Prior to the first set and immediately after the end of the last set, the subjects performed 2 countermovement jumps on a Kistler force platform; the primary goal was to jump as high as possible. The results showed that mean vertical jumping ability improved by 2.39% after the warm-up period. Subjects were then divided into 2 groups according to their 1RM values for the half-squat. Subjects with greater maximal strength ability improved their vertical jumping ability (4.01%) more than did subjects with lower maximal strength (0.42%). A warm-up protocol including half-squats with submaximal loads and explosive execution can be used for short-term improvements of vertical jumping performance, and this effect is greater in athletes with a relatively high strength ability.

  13. Isokinetic knee strength qualities as predictors of jumping performance in high-level volleyball athletes: multiple regression approach.

    PubMed

    Sattler, Tine; Sekulic, Damir; Spasic, Miodrag; Osmankac, Nedzad; Vicente João, Paulo; Dervisevic, Edvin; Hadzic, Vedran

    2016-01-01

    Previous investigations noted potential importance of isokinetic strength in rapid muscular performances, such as jumping. This study aimed to identify the influence of isokinetic-knee-strength on specific jumping performance in volleyball. The secondary aim of the study was to evaluate reliability and validity of the two volleyball-specific jumping tests. The sample comprised 67 female (21.96±3.79 years; 68.26±8.52 kg; 174.43±6.85 cm) and 99 male (23.62±5.27 years; 84.83±10.37 kg; 189.01±7.21 cm) high- volleyball players who competed in 1st and 2nd National Division. Subjects were randomly divided into validation (N.=55 and 33 for males and females, respectively) and cross-validation subsamples (N.=54 and 34 for males and females, respectively). Set of predictors included isokinetic tests, to evaluate the eccentric and concentric strength capacities of the knee extensors, and flexors for dominant and non-dominant leg. The main outcome measure for the isokinetic testing was peak torque (PT) which was later normalized for body mass and expressed as PT/Kg. Block-jump and spike-jump performances were measured over three trials, and observed as criteria. Forward stepwise multiple regressions were calculated for validation subsamples and then cross-validated. Cross validation included correlations between and t-test differences between observed and predicted scores; and Bland Altman graphics. Jumping tests were found to be reliable (spike jump: ICC of 0.79 and 0.86; block-jump: ICC of 0.86 and 0.90; for males and females, respectively), and their validity was confirmed by significant t-test differences between 1st vs. 2nd division players. Isokinetic variables were found to be significant predictors of jumping performance in females, but not among males. In females, the isokinetic-knee measures were shown to be stronger and more valid predictors of the block-jump (42% and 64% of the explained variance for validation and cross-validation subsample, respectively) than that of the spike-jump (39% and 34% of the explained variance for validation and cross-validation subsample, respectively). Differences between prediction models calculated for males and females are mostly explained by gender-specific biomechanics of jumping. Study defined importance of knee-isokinetic-strength in volleyball jumping performance in female athletes. Further studies should evaluate association between ankle-isokinetic-strength and volleyball-specific jumping performances. Results reinforce the need for the cross-validation of the prediction-models in sport and exercise sciences.

  14. Acute effects of heavy-load squats on consecutive squat jump performance.

    PubMed

    Weber, Kurt R; Brown, Lee E; Coburn, Jared W; Zinder, Steven M

    2008-05-01

    Postactivation potentiation (PAP) and complex training have generated interest within the strength and conditioning community in recent years, but much of the research to date has produced confounding results. The purpose of this study was to observe the acute effects of a heavy-load back squat [85% 1 repetition maximum (1RM)] condition on consecutive squat jump performance. Twelve in-season Division I male track-and-field athletes participated in two randomized testing conditions: a five-repetition back squat at 85% 1RM (BS) and a five-repetition squat jump (SJ). The BS condition consisted of seven consecutive squat jumps (BS-PRE), followed by five repetitions of the BS at 85% 1RM, followed by another set of seven consecutive squat jumps (BS-POST). The SJ condition was exactly the same as the BS condition except that five consecutive SJs replaced the five BSs, with 3 minutes' rest between each set. BS-PRE, BS-POST, SJ-PRE, and SJ-POST were analyzed and compared for mean and peak jump height, as well as mean and peak ground reaction force (GRF). The BS condition's mean and peak jump height and peak GRF increased 5.8% +/- 4.8%, 4.7% +/- 4.8%, and 4.6% +/- 7.4%, respectively, whereas the SJ condition's mean and peak jump height and peak GRF decreased 2.7% +/- 5.0%, 4.0% +/- 4.9%, and 1.3% +/- 7.5%, respectively. The results indicate that performing a heavy-load back squat before a set of consecutive SJs may enhance acute performance in average and peak jump height, as well as peak GRF.

  15. Eccentric-Overload Training in Team-Sport Functional Performance: Constant Bilateral Vertical Versus Variable Unilateral Multidirectional Movements.

    PubMed

    Gonzalo-Skok, Oliver; Tous-Fajardo, Julio; Valero-Campo, Carlos; Berzosa, César; Bataller, Ana Vanessa; Arjol-Serrano, José Luis; Moras, Gerard; Mendez-Villanueva, Alberto

    2017-08-01

    To analyze the effects of 2 different eccentric-overload training (EOT) programs, using a rotational conical pulley, on functional performance in team-sport players. A traditional movement paradigm (ie, squat) including several sets of 1 bilateral and vertical movement was compared with a novel paradigm including a different exercise in each set of unilateral and multi-directional movements. Forty-eight amateur or semiprofessional team-sport players were randomly assigned to an EOT program including either the same bilateral vertical (CBV, n = 24) movement (squat) or different unilateral multidirectional (VUMD, n = 24) movements. Training programs consisted of 6 sets of 1 exercise (CBV) or 1 set of 6 exercises (VUMD) × 6-10 repetitions with 3 min of passive recovery between sets and exercises, biweekly for 8 wk. Functional-performance assessment included several change-of-direction (COD) tests, a 25-m linear-sprint test, unilateral multidirectional jumping tests (ie, lateral, horizontal, and vertical), and a bilateral vertical-jump test. Within-group analysis showed substantial improvements in all tests in both groups, with VUMD showing more robust adaptations in pooled COD tests and lateral/horizontal jumping, whereas the opposite occurred in CBV respecting linear sprinting and vertical jumping. Between-groups analyses showed substantially better results in lateral jumps (ES = 0.21), left-leg horizontal jump (ES = 0.35), and 10-m COD with right leg (ES = 0.42) in VUMD than in CBV. In contrast, left-leg countermovement jump (ES = 0.26) was possibly better in CBV than in VUMD. Eight weeks of EOT induced substantial improvements in functional-performance tests, although the force-vector application may play a key role to develop different and specific functional adaptations.

  16. Aerial Rotation Effects on Vertical Jump Performance Among Highly Skilled Collegiate Soccer Players.

    PubMed

    Barker, Leland A; Harry, John R; Dufek, Janet S; Mercer, John A

    2017-04-01

    Barker, LA, Harry, JR, Dufek, JS, and Mercer, JA. Aerial rotation effects on vertical jump performance among highly skilled collegiate soccer players. J Strength Cond Res 31(4): 932-938, 2017-In soccer matches, jumps involving rotations occur when attempting to head the ball for a shot or pass from set pieces, such as corner kicks, goal kicks, and lob passes. However, the 3-dimensional ground reaction forces used to perform rotational jumping tasks are currently unknown. Therefore, the purpose of this study was to compare bilateral, 3-dimensional, and ground reaction forces of a standard countermovement jump (CMJ0) with those of a countermovement jump with a 180° rotation (CMJ180) among Division-1 soccer players. Twenty-four participants from the soccer team of the University of Nevada performed 3 trials of CMJ0 and CMJ180. Dependent variables included jump height, downward and upward phase times, vertical (Fz) peak force and net impulse relative to mass, and medial-lateral and anterior-posterior force couple values. Statistical significance was set a priori at α = 0.05. CMJ180 reduced jump height, increased the anterior-posterior force couple in the downward and upward phases, and increased upward peak Fz (p ≤ 0.05). All other variables were not significantly different between groups (p > 0.05). However, we did recognize that downward peak Fz trended lower in the CMJ0 condition (p = 0.059), and upward net impulse trended higher in the CMJ0 condition (p = 0.071). It was concluded that jump height was reduced during the rotational jumping task, and rotation occurred primarily via AP ground reaction forces through the entire countermovement jump. Coaches and athletes may consider additional rotational jumping in their training programs to mediate performance decrements during rotational jump tasks.

  17. Determination of Vertical Jump as a Measure of Neuromuscular Readiness and Fatigue.

    PubMed

    Watkins, Casey M; Barillas, Saldiam R; Wong, Megan A; Archer, David C; Dobbs, Ian J; Lockie, Robert G; Coburn, Jared W; Tran, Tai T; Brown, Lee E

    2017-12-01

    Watkins, CM, Barillas, SR, Wong, MA, Archer, DC, Dobbs, IJ, Lockie, RG, Coburn, JW, Tran, TT, and Brown, LE. Determination of vertical jump as a measure of neuromuscular readiness and fatigue. J Strength Cond Res 31(12): 3305-3310, 2017-Coaches closely monitor training loads and periodize sessions throughout the season to create optimal adaptations at the proper time. However, only monitoring training loads ignores the innate physiological stress each athlete feels individually. Vertical jump (VJ) is widely used as a measure of lower-body power, and has been used in postmatch studies to demonstrate fatigue levels. However, no pretraining monitoring by VJ performance has been previously studied. Therefore, the purpose of this study was to determine the sensitivity of VJ as a measure of readiness and fatigue on a daily sessional basis. Ten healthy resistance-trained males (mass = 91.60 ± 13.24 kg; height = 179.70 ± 9.23 cm; age = 25.40 ± 1.51 years) and 7 females (mass = 65.36 ± 12.29 kg; height = 162.36 ± 5.75 cm; age = 25.00 ± 2.71 years) volunteered to participate. Vertical jump and BRUNEL Mood Assessment (BAM) were measured 4 times: pre-workout 1, post-workout 1, pre-workout 2, and post-workout 2. Workout intensity was identical for both workouts, consisting of 4 sets of 5 repetitions for hang cleans, and 4 sets of 6 repetitions for push presses at 85% 1 repetition maximum (1RM), followed by 4 sets to failure of back squats (BSs), Romanian deadlift, and leg press at 80% 1RM. The major finding was that VJ height decrement (-8.05 ± 9.65 cm) at pre-workout 2 was correlated (r = 0.648) with BS volume decrement (-27.56 ± 24.56%) between workouts. This is important for coaches to proactively understand the current fatigue levels of their athletes and their readiness to resistance training.

  18. The Effects of Multiple Sets of Squats and Jump Squats on Mechanical Variables.

    PubMed

    Rossetti, Michael L; Munford, Shawn N; Snyder, Brandon W; Davis, Shala E; Moir, Gavin L

    2017-07-28

    The mechanical responses to two non-ballistic squat and two ballistic jump squat protocols performed over multiple sets were investigated. One protocol from each of the two non-ballistic and ballistic conditions incorporated a pause between the eccentric and concentric phases of the movements in order to determine the influence of the coupling time on the mechanical variables and post-activation potentiation (PAP). Eleven men (age: 21.9 ± 1.8 years; height: 1.79 ± 0.05 m; mass: 87.0 ± 7.4 kg) attended four sessions where they performed multiple sets of squats and jump squats with a load equivalent to 30% 1-repeititon maximum under one of the following conditions: 1) 3 × 4 repetitions of non-ballistic squats (30N-B); 2) 3 × 4 repetitions of non-ballistic squats with a 3-second pause between the eccentric and concentric phases of each repetition (30PN-B); 3) 3 × 4 repetitions of ballistic jump squats (30B); 4) 3 × 4 repetitions of ballistic jump squats with a 3-second pause between the eccentric and concentric phases of each repetition (30PB). Force plates were used to calculate variables including average vertical velocity, average vertical force (GRF), and average power output (PO). Vertical velocities during the ballistic conditions were significantly greater than those attained during the non-ballistic conditions (mean differences: 0.21 - 0.25 m/s, p<0.001, effect sizes [ES]: 1.70 - 1.89) as were GRFs (mean differences: 478 - 526 N, p<0.001, ES: 1.61 - 1.63), and PO (mean differences: 711 - 869 W, p<0.001, ES: 1.66 - 1.73). Moreover, the increase in PO across the three sets in 30B was significantly greater than the changes observed during 30N-B, 30PN-B, and 30PB (p≤0.015). The pause reduced the mechanical variables during both the non-ballistic and ballistic conditions, although the differences were not statistically significant (p>0.05). Ballistic jump squats may be an effective exercise for developing PO given the high velocities and forces generated in these exercises. Furthermore, the completion of multiple sets of jump squats may induce PAP to enhance PO. The coupling times between the eccentric and concentric phases of the jump squats should be short in order to maximize the GRF and PO across the sets.

  19. The Locust Jump: An Integrated Laboratory Investigation

    ERIC Educational Resources Information Center

    Scott, Jon

    2005-01-01

    The locust is well known for its ability to jump large distances to avoid predation. This class sets out a series of investigations into the mechanisms underlying the jump enabling students to bring together information from biomechanics, muscle physiology, and anatomy. The nature of the investigation allows it to be undertaken at a number of…

  20. A case study for integrated STEM outreach in an urban setting using a do-it-yourself vertical jump measurement platform.

    PubMed

    Drazan, John F; Danielsen, Heather; Vercelletto, Matthew; Loya, Amy; Davis, James; Eglash, Ron

    2016-08-01

    The purpose of this study was to develop and deploy a low cost vertical jump platform using readily available materials for Science, Technology, Engineering, and Mathematics (STEM) education and outreach in the inner city. The platform was used to measure the jumping ability of participants to introduce students to the collection and analysis of scientific data in an engaging, accessible manner. This system was designed and fabricated by a student team of engineers as part of a socially informed engineering and design class. The vertical jump platform has been utilized in 10 classroom lectures in physics and biology. The system was also used in an after school program in which high school volunteers prepared a basketball based STEM outreach program, and at a community outreach events with over 100 participants. At present, the same group of high school students are now building their own set of vertical jump platform under the mentorship of engineering undergraduates. The construction and usage of the vertical jump platform provides an accessible introduction to the STEM fields within the urban community.

  1. Detection of multiple airborne targets from multisensor data

    NASA Astrophysics Data System (ADS)

    Foltz, Mark A.; Srivastava, Anuj; Miller, Michael I.; Grenander, Ulf

    1995-08-01

    Previously we presented a jump-diffusion based random sampling algorithm for generating conditional mean estimates of scene representations for the tracking and recongition of maneuvering airborne targets. These representations include target positions and orientations along their trajectories and the target type associated with each trajectory. Taking a Bayesian approach, a posterior measure is defined on the parameter space by combining sensor models with a sophisticated prior based on nonlinear airplane dynamics. The jump-diffusion algorithm constructs a Markov process which visits the elements of the parameter space with frequencies proportional to the posterior probability. It consititutes both the infinitesimal, local search via a sample path continuous diffusion transform and the larger, global steps through discrete jump moves. The jump moves involve the addition and deletion of elements from the scene configuration or changes in the target type assoviated with each target trajectory. One such move results in target detection by the addition of a track seed to the inference set. This provides initial track data for the tracking/recognition algorithm to estimate linear graph structures representing tracks using the other jump moves and the diffusion process, as described in our earlier work. Target detection ideally involves a continuous research over a continuum of the observation space. In this work we conclude that for practical implemenations the search space must be discretized with lattice granularity comparable to sensor resolution, and discuss how fast Fourier transforms are utilized for efficient calcuation of sufficient statistics given our array models. Some results are also presented from our implementation on a networked system including a massively parallel machine architecture and a silicon graphics onyx workstation.

  2. Biomechanical Analysis of Locust Jumping in a Physically Realistic Virtual Environment

    NASA Astrophysics Data System (ADS)

    Cofer, David; Cymbalyuk, Gennady; Heitler, William; Edwards, Donald

    2008-03-01

    The biomechanical and neural components that underlie locust jumping have been extensively studied. Previous research suggested that jump energy is stored primarily in the extensor apodeme, and in a band of cuticle called the semi-lunar process (SLP). As it has thus far proven impossible to experimentally alter the SLP without rendering a locust unable to jump, it has not been possible to test whether the energy stored in the SLP has a significant impact on the jump. To address problems such as this we have developed a software toolkit, AnimatLab, which allows researchers to build and test virtual organisms. We used this software to build a virtual locust, and then asked how the SLP is utilized during jumping. The results show that without the SLP the jump distance was reduced by almost half. Further, the simulations were also able to show that loss of the SLP had a significant impact on the final phase of the jump. We are currently working on postural control mechanisms for targeted jumping in locust.

  3. General Metropolis-Hastings jump diffusions for automatic target recognition in infrared scenes

    NASA Astrophysics Data System (ADS)

    Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.

    1997-04-01

    To locate and recognize ground-based targets in forward- looking IR (FLIR) images, 3D faceted models with associated pose parameters are formulated to accommodate the variability found in FLIR imagery. Taking a Bayesian approach, scenes are simulated from the emissive characteristics of the CAD models and compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. To accommodate scenes with variable numbers of targets, the posterior distribution is defined over parameter vectors of varying dimension. An inference algorithm based on Metropolis-Hastings jump- diffusion processes empirically samples from the posterior distribution, generating configurations of templates and transformations that match the collected sensor data with high probability. The jumps accommodate the addition and deletion of targets and the estimation of target identities; diffusions refine the hypotheses by drifting along the gradient of the posterior distribution with respect to the orientation and position parameters. Previous results on jumps strategies analogous to the Metropolis acceptance/rejection algorithm, with proposals drawn from the prior and accepted based on the likelihood, are extended to encompass general Metropolis-Hastings proposal densities. In particular, the algorithm proposes moves by drawing from the posterior distribution over computationally tractible subsets of the parameter space. The algorithm is illustrated by an implementation on a Silicon Graphics Onyx/Reality Engine.

  4. The effect of sprinting after each set of heavy resistance training on the running speed and jumping performance of young basketball players.

    PubMed

    Tsimahidis, Konstantinos; Galazoulas, Christos; Skoufas, Dimitrios; Papaiakovou, Georgios; Bassa, Eleni; Patikas, Dimitrios; Kotzamanidis, Christos

    2010-08-01

    The purpose of this study was to investigate the effect of a 10-week heavy resistance combined with a running training program on the strength, running speed (RS), and vertical jump performance of young basketball players. Twenty-six junior basketball players were equally divided in 2 groups. The control (CON) group performed only technical preparation and the group that followed the combined training program (CTP) performed additionally 5 sets of 8-5 repetition maximum (RM) half squat with 1 30-m sprint after each set. The evaluation took place before training and after the 5th and 10th weeks of training. Apart from the 1RM half squat test, the 10- and 30-m running time was measured using photocells and the jump height (squat, countermovement jump, and drop jump) was estimated taking into account the flight time. The 1RM increased by 30.3 +/- 1.5% at the 10th week of training for the CTP group (p < 0.05), whereas the CON group showed no significant increase (1.1 +/- 1.6%, p > 0.05). In general, all measured parameters showed a statistically significant increase after the 5th and 10th weeks (p < 0.05), in contrast to the CON group (p > 0.05). This suggests that the applied CTP is beneficial for the strength, RS, and jump height of young basketball players. The observed adaptations in the CTP group could be attributed to learning factors and to a more optimal transfer of the strength gain to running and jumping performance.

  5. Nonlinear regimes on polygonal hydraulic jumps

    NASA Astrophysics Data System (ADS)

    Rojas, Nicolas

    2016-11-01

    This work extends previous leading and higher order results on the polygonal hydraulic jump in the framework of inertial lubrication theory. The rotation of steady polygonal jumps is observed in the transition from one wavenumber to the next one, induced by a change in height of an external obstacle near the outer edge. In a previous publication, the study of stationary polygons is considered under the assumption that the reference frame rotates with the polygons when the number of corners change, in order to preserve their orientation. In this research work I provide a Hamiltonian approach and the stability analysis of the nonlinear oscillator that describe the polygonal structures at the jump interface, in addition to a perturbation method that enables to explain, for instance, the diversity of patterns found in experiments. GRASP, Institute of Physics, University of Liege, Belgium.

  6. Application of the Methods of Gas Dynamics to Water Flows with Free Surface II : Flows with Momentum Discontinuities (hydraulic Jumps)

    NASA Technical Reports Server (NTRS)

    Preiswerk, Ernst

    1940-01-01

    In this paper an introduction to shock polar diagrams is given which then leads into an examination of water depths in hydraulic jumps. Energy loss during these jumps is considered along with an extended look at elementary solutions of flow. An experimental test set-up is described and the results presented.

  7. The reliability of vertical jump tests between the Vertec and My Jump phone application.

    PubMed

    Yingling, Vanessa R; Castro, Dimitri A; Duong, Justin T; Malpartida, Fiorella J; Usher, Justin R; O, Jenny

    2018-01-01

    The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. One hundred and thirty-five healthy participants aged 18-39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump . Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747-0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897-0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050-0.859]) and poor to excellent reliability relative to absolute agreement for peak power (ICC = 0.851; 95% CI [0.272-0.946]) between the Vertec and My Jump values were found; Vertec VJ height, and thus, Vertec calculated peak power values, were significantly higher than those calculated from My Jump values ( p < 0.0001). The My Jump app may provide a reliable measure of vertical jump height and calculated peak power in multiple field and laboratory settings without the need of costly equipment such as force plates or Vertec. The reliability relative to degree of consistency between the Vertec and My Jump app was moderate to excellent. However, the reliability relative to absolute agreement between Vertec and My Jump values contained significant variation (based on CI values), thus, it is recommended that either the My Jump or the Vertec be used to assess VJ height in repeated measures within subjects' designs; these measurement tools should not be considered interchangeable within subjects or in group measurement designs.

  8. The reliability of vertical jump tests between the Vertec and My Jump phone application

    PubMed Central

    Castro, Dimitri A.; Duong, Justin T.; Malpartida, Fiorella J.; Usher, Justin R.; O, Jenny

    2018-01-01

    Background The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. Methods One hundred and thirty-five healthy participants aged 18–39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump. Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Results Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747–0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897–0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050–0.859]) and poor to excellent reliability relative to absolute agreement for peak power (ICC = 0.851; 95% CI [0.272–0.946]) between the Vertec and My Jump values were found; Vertec VJ height, and thus, Vertec calculated peak power values, were significantly higher than those calculated from My Jump values (p < 0.0001). Discussion The My Jump app may provide a reliable measure of vertical jump height and calculated peak power in multiple field and laboratory settings without the need of costly equipment such as force plates or Vertec. The reliability relative to degree of consistency between the Vertec and My Jump app was moderate to excellent. However, the reliability relative to absolute agreement between Vertec and My Jump values contained significant variation (based on CI values), thus, it is recommended that either the My Jump or the Vertec be used to assess VJ height in repeated measures within subjects’ designs; these measurement tools should not be considered interchangeable within subjects or in group measurement designs. PMID:29692955

  9. Neuromuscular Taping Application in Counter Movement Jump: Biomechanical Insight in a Group of Healthy Basketball Players.

    PubMed

    Marcolin, Giuseppe; Buriani, Alessandro; Giacomelli, Andrea; Blow, David; Grigoletto, Davide; Gesi, Marco

    2017-06-24

    Kinesiologic elastic tape is widely used for both clinical and sport applications although its efficacy in enhancing agonistic performance is still controversial. Aim of the study was to verify in a group of healthy basketball players whether a neuromuscular taping application (NMT) on ankle and knee joints could affect the kinematic and the kinetic parameters of the jump, either by enhancing or inhibiting the functional performance. Fourteen healthy male basketball players without any ongoing pathologies at upper limbs, lower limbs and trunk volunteered in the study. They randomly performed 2 sets of 5 counter movement jumps (CMJ) with and without application of Kinesiologic tape. The best 3 jumps of each set were considered for the analysis. The Kinematics parameters analyzed were: knees maximal flexion and ankles maximal dorsiflexion during the push off phase, jump height and take off velocity. Vertical ground reaction force and maximal power expressed in the push off phase of the jump were also investigated. The NMT application in both knees and ankles showed no statistically significant differences in the kinematic and kinetic parameters and did not interfere with the CMJ performance. Bilateral NMT application in the group of healthy male basketball players did not change kinematics and kinetics jump parameters, thus suggesting that its routine use should have no negative effect on functional performance. Similarly, the combined application of the tape on both knees and ankles did not affect in either way jump performance.

  10. Neuromuscular Taping Application in Counter Movement Jump: Biomechanical Insight in a Group of Healthy Basketball Players

    PubMed Central

    Marcolin, Giuseppe; Buriani, Alessandro; Giacomelli, Andrea; Blow, David; Grigoletto, Davide; Gesi, Marco

    2017-01-01

    Kinesiologic elastic tape is widely used for both clinical and sport applications although its efficacy in enhancing agonistic performance is still controversial. Aim of the study was to verify in a group of healthy basketball players whether a neuromuscular taping application (NMT) on ankle and knee joints could affect the kinematic and the kinetic parameters of the jump, either by enhancing or inhibiting the functional performance. Fourteen healthy male basketball players without any ongoing pathologies at upper limbs, lower limbs and trunk volunteered in the study. They randomly performed 2 sets of 5 counter movement jumps (CMJ) with and without application of Kinesiologic tape. The best 3 jumps of each set were considered for the analysis. The Kinematics parameters analyzed were: knees maximal flexion and ankles maximal dorsiflexion during the push off phase, jump height and take off velocity. Vertical ground reaction force and maximal power expressed in the push off phase of the jump were also investigated. The NMT application in both knees and ankles showed no statistically significant differences in the kinematic and kinetic parameters and did not interfere with the CMJ performance. Bilateral NMT application in the group of healthy male basketball players did not change kinematics and kinetics jump parameters, thus suggesting that its routine use should have no negative effect on functional performance. Similarly, the combined application of the tape on both knees and ankles did not affect in either way jump performance. PMID:28713536

  11. Playing with inclined circular hydraulic jumps

    NASA Astrophysics Data System (ADS)

    Lebon, Luc; Saget, Beryl; Durand, Marc; Limat, Laurent; Couder, Yves; Receveur, Mathieu

    2008-11-01

    We have investigated the structure of the circular hydraulic jump, when the jet impacts an inclined plate. At low plate slope, quasi-circular shapes, evolving towards elliptic shapes are observed. At moderate inclinations, the upper and lower jumps become markedly different, and the lower jump is even rejected to infinity when a critical inclination is reached. Above this critical inclination, the jump is coupled to an outer dewetting contact line to give a specific object (expanding impact sheet feeding a curved rim in which the liquid is flowing tangentially). In this regime, both the position and curvature of the upper jump follows unusual scalings with the flow rate that completely differ from those observed on horizontal plates. Finally we have looked to metastable drops trapped in the circular jump at very small inclinations. As reported in a previous APS, the lowest position in the jump can become unstable and the drops oscillate around the jump perimeter. We show that this behavior requires very specific conditions of surface tension and viscosity and propose simple interpretations for the instability mechanism.

  12. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics.

    PubMed

    Kubelka, Jan

    2009-04-01

    Many important biochemical processes occur on the time-scales of nanoseconds and microseconds. The introduction of the laser temperature-jump (T-jump) to biophysics more than a decade ago opened these previously inaccessible time regimes up to direct experimental observation. Since then, laser T-jump methodology has evolved into one of the most versatile and generally applicable methods for studying fast biomolecular kinetics. This perspective is a review of the principles and applications of the laser T-jump technique in biophysics. A brief overview of the T-jump relaxation kinetics and the historical development of laser T-jump methodology is presented. The physical principles and practical experimental considerations that are important for the design of the laser T-jump experiments are summarized. These include the Raman conversion for generating heating pulses, considerations of size, duration and uniformity of the temperature jump, as well as potential adverse effects due to photo-acoustic waves, cavitation and thermal lensing, and their elimination. The laser T-jump apparatus developed at the NIH Laboratory of Chemical Physics is described in detail along with a brief survey of other laser T-jump designs in use today. Finally, applications of the laser T-jump in biophysics are reviewed, with an emphasis on the broad range of problems where the laser T-jump methodology has provided important new results and insights into the dynamics of the biomolecular processes.

  13. Kinematic and Microphysical Significance of Lightning Jumps versus Non-Jump Increases in Total Flash Rate

    PubMed Central

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.

    2017-01-01

    Thirty-nine thunderstorms are examined using multiple-Doppler, polarimetric and total lightning observations to understand the role of mixed phase kinematics and microphysics in the development of lightning jumps. This sample size is larger than those of previous studies on this topic. The principal result of this study is that lightning jumps are a result of mixed phase updraft intensification. Larger increases in intense updraft volume (≥ 10 m s−1) and larger changes in peak updraft speed are observed prior to lightning jump occurrence when compared to other non-jump increases in total flash rate. Wilcoxon-Mann-Whitney Rank Sum testing yields p-values ≤0.05, indicating statistical independence between lightning jump and non-jump distributions for these two parameters. Similar changes in mixed phase graupel mass magnitude are observed prior to lightning jumps and non-jump increases in total flash rate. The p-value for graupel mass change is p=0.096, so jump and non-jump distributions for graupel mass change are not found statistically independent using the p=0.05 significance level. Timing of updraft volume, speed and graupel mass increases are found to be 4 to 13 minutes in advance of lightning jump occurrence. Also, severe storms without lightning jumps lack robust mixed phase updrafts, demonstrating that mixed phase updrafts are not always a requirement for severe weather occurrence. Therefore, the results of this study show that lightning jump occurrences are coincident with larger increases in intense mixed phase updraft volume and peak updraft speed than smaller non-jump increases in total flash rate. PMID:29158622

  14. Kinematic and Microphysical Significance of Lightning Jumps versus Non-Jump Increases in Total Flash Rate.

    PubMed

    Schultz, Christopher J; Carey, Lawrence D; Schultz, Elise V; Blakeslee, Richard J

    2017-02-01

    Thirty-nine thunderstorms are examined using multiple-Doppler, polarimetric and total lightning observations to understand the role of mixed phase kinematics and microphysics in the development of lightning jumps. This sample size is larger than those of previous studies on this topic. The principal result of this study is that lightning jumps are a result of mixed phase updraft intensification. Larger increases in intense updraft volume (≥ 10 m s -1 ) and larger changes in peak updraft speed are observed prior to lightning jump occurrence when compared to other non-jump increases in total flash rate. Wilcoxon-Mann-Whitney Rank Sum testing yields p-values ≤0.05, indicating statistical independence between lightning jump and non-jump distributions for these two parameters. Similar changes in mixed phase graupel mass magnitude are observed prior to lightning jumps and non-jump increases in total flash rate. The p-value for graupel mass change is p=0.096, so jump and non-jump distributions for graupel mass change are not found statistically independent using the p=0.05 significance level. Timing of updraft volume, speed and graupel mass increases are found to be 4 to 13 minutes in advance of lightning jump occurrence. Also, severe storms without lightning jumps lack robust mixed phase updrafts, demonstrating that mixed phase updrafts are not always a requirement for severe weather occurrence. Therefore, the results of this study show that lightning jump occurrences are coincident with larger increases in intense mixed phase updraft volume and peak updraft speed than smaller non-jump increases in total flash rate.

  15. Kinematic and Microphysical Significance of Lightning Jumps Versus Non-Jump Increases in Total Flash Rate

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.

    2017-01-01

    Thirty-nine thunderstorms are examined using multiple-Doppler, polarimetric and total lightning observations to understand the role of mixed phase kinematics and microphysics in the development of lightning jumps. This sample size is larger than those of previous studies on this topic. The principal result of this study is that lightning jumps are a result of mixed phase updraft intensification. Larger increases in intense updraft volume greater than or equal to 10 m(sup -1) and larger changes in peak updraft speed are observed prior to lightning jump occurrence when compared to other non-jump increases in total ash rate. Wilcoxon-Mann-Whitney Rank Sum testing yields p-values 0.05, indicating statistical independence between lightning jump and non-jump distributions for these two parameters. Similar changes in mixed phase graupel mass magnitude are observed prior to lightning jumps and non-jump increases in total ash rate. The p-value for graupel mass change is p=0.096, so jump and non-jump distributions for graupel mass change are not found statistically independent using the p=0.05 significance level. Timing of updraft volume, speed and graupel mass increases are found to be 4 to 13 minutes in advance of lightning jump occurrence. Also, severe storms without lightning jumps lack robust mixed phase updrafts, demonstrating that mixed phase updrafts are not always a requirement for severe weather occurrence. Therefore, the results of this study show that lightning jump occurrences are coincident with larger increases in intense mixed phase updraft volume and peak updraft speed than smaller non-jump increases in total ash rate.

  16. Lower Extremity Kinematics Differed Between a Controlled Drop-Jump and Volleyball-Takeoffs.

    PubMed

    Beardt, Bradley S; McCollum, Myranda R; Hinshaw, Taylour J; Layer, Jacob S; Wilson, Margaret A; Zhu, Qin; Dai, Boyi

    2018-04-03

    Previous studies utilizing jump-landing biomechanics to predict anterior cruciate ligament injuries have shown inconsistent findings. The purpose of this study was to quantify the differences and correlations in jump-landing kinematics between a drop-jump, a controlled volleyball-takeoff, and a simulated-game volleyball-takeoff. Seventeen female volleyball players performed these three tasks on a volleyball court while three-dimensional kinematic data were collected by three calibrated camcorders. Participants demonstrated significantly increased jump height, shorter stance time, increased time differences in initial contact between two feet, increased knee and hip flexion at initial contact and decreased peak knee and hip flexion for both left and right legs, and decreased knee-ankle distance ratio at the lowest height of mid-hip for the two volleyball-takeoffs compared with the drop-jump (p < 0.05, Cohen's dz ≥ 0.8). Significant correlations were observed for all variables between the two volleyball-takeoffs (p < 0.05, ρ ≥ 0.6), but were not for most variables between the drop-jump and two volleyball-takeoffs. Controlled drop-jump kinematics may not represent jump-landing kinematics exhibited during volleyball competition. Jump-landing mechanics during sports-specific tasks may better represent those exhibited during sports competition and their associated risk of ACL injury compared with the drop-jump.

  17. Strength and Jump Biomechanics of Elite and Recreational Female Youth Soccer Players

    PubMed Central

    Chrisman, Sara P.; O'Kane, John W.; Polissar, Nayak L.; Tencer, Allan F.; Mack, Christopher D.; Levy, Marni R.; Schiff, Melissa A.

    2012-01-01

    Context Most researchers investigating soccer injuries have studied elite athletes because they have greater athletic-exposure hours than other athletes, but most youth participate at the recreational level. If risk factors for injury vary by soccer level, then recommendations generated using research with elite youth soccer players might not generalize to recreational players. Objective To examine injury risk factors of strength and jump biomechanics by soccer level in female youth athletes and to determine whether research recommendations based on elite youth athletes could be generalized to recreational players. Design Cross-sectional study. Setting Seattle Youth Soccer Association. Patients or Other Participants Female soccer players (N = 92) aged 11 to 14 years were recruited from 4 randomly selected elite (n = 50; age = 12.5 years, 95% confidence interval [95% CI]) = 12.3, 12.8 years; height = 157.8 cm, 95% CI = 155.2, 160.3 cm; mass = 49.9 kg, 95% CI = 47.3, 52.6 kg) and 4 randomly selected recreational (n = 42; age = 13.2 years, 95% CI = 13.0, 13.5 years; height = 161.1 cm, 95% CI = 159.2, 163.1 cm; mass = 50.6 kg, 95% CI = 48.3, 53.0 kg) soccer teams. Main Outcome Measure(s) Players completed a questionnaire about demographics, history of previous injury, and soccer experience. Physical therapists used dynamometry to measure hip strength (abduction, adduction, extension, flexion) and knee strength (flexion, extension) and Sportsmetrics to measure vertical jump height and jump biomechanics. We compared all measurements by soccer level using linear regression to adjust for age and mass. Results Elite players were similar to recreational players in all measures of hip and knee strength, vertical jump height, and normalized knee separation (a valgus estimate generated using Sportsmetrics). Conclusions Female elite youth players and recreational players had similar lower extremity strength and jump biomechanics. This suggests that recommendations generated from research with elite youth soccer players could be generalized to recreational players. PMID:23182007

  18. Effects of a physical activity programme in the school setting on physical fitness in preschool children.

    PubMed

    Latorre-Román, P A; Mora-López, D; García-Pinillos, F

    2018-05-01

    The purpose of this study was to examine the effects of a 10-week aerobic games programme on physical fitness. One hundred eleven children, aged 3 to 6 years, participated in this study; 60 children were male (age: 4.28 ± 0.61 years old), and 51 were female (age 4.59 ± 0.49 years old). Participants were randomly assigned to an experimental group (EG; n = 56) and a control group (CG; n = 55). A fitness test battery previously validated for preschoolers was used. The children in the EG performed 3 weekly training sessions of physical activity in a classroom during a 10-week period. Every EG session lasted about 30 min. There were no significant differences in any variable in the pretest between groups. In the posttest, the EG achieved better results in horizontal jump and sprint. In relation to posttest-pretest differences, the EG showed a greater increase in horizontal jump, sprint, and endurance. An aerobic games programme in the school setting improved physical fitness in preschool children. © 2018 John Wiley & Sons Ltd.

  19. Inter-segmental moment analysis characterises the partial correspondence of jumping and jerking

    PubMed Central

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony MJ

    2014-01-01

    The aim of this study was to quantify internal joint moments of the lower limb during vertical jumping and the weightlifting jerk in order to improve awareness of the control strategies and correspondence between these activities, and to facilitate understanding of the likely transfer of training effects. Athletic males completed maximal unloaded vertical jumps (n=12) and explosive push jerks at 40 kg (n=9). Kinematic data were collected using optical motion tracking and kinetic data via a force plate, both at 200 Hz. Joint moments were calculated using a previously described biomechanical model of the right lower limb. Peak moment results highlighted that sagittal plane control strategies differed between jumping and jerking (p<0.05) with jerking being a knee dominant task in terms of peak moments as opposed to a more balanced knee and hip strategy in jumping and landing. Jumping and jerking exhibited proximal to distal joint involvement and landing was typically reversed. High variability was seen in non-sagittal moments at the hip and knee. Significant correlations were seen between jump height and hip and knee moments in jumping (p<0.05). Whilst hip and knee moments were correlated between jumping and jerking (p<0.05), joint moments in the jerk were not significantly correlated to jump height (p>0.05) possibly indicating a limit to the direct transferability of jerk performance to jumping. Ankle joint moments were poorly related to jump performance (p>0.05). Peak knee and hip moment generating capacity are important to vertical jump performance. The jerk appears to offer an effective strategy to overload joint moment generation in the knee relative to jumping. However, an absence of hip involvement would appear to make it a general, rather than specific, training modality in relation to jumping. PMID:22362089

  20. Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise.

    PubMed

    Toumi, Hechmi; Poumarat, Georges; Best, Thomas M; Martin, Alain; Fairclough, John; Benjamin, Mike

    2006-10-01

    The purpose of the present study was to compare vertical jump performance after 2 different fatigue protocols. In the first protocol, subjects performed consecutive sets of 10 repetitions of stretch-shortening cycle (SSC) contractions. In the second protocol, successive sets of 10 repetitions of isometric contractions were performed for 10 s with the knee at 90 degrees of flexion. The exercises were stopped when the subjects failed to reach 50% of their maximum voluntary isometric contractions. Maximal isometric force and maximal concentric power were assessed by performing supine leg presses, squat jumps, and drop jumps. Surface EMG was used to determine changes in muscle activation before and after fatigue. In both groups, the fatigue exercises reduced voluntary isometric force, maximal concentric power, and drop jump performance. Kinematic data showed a decrease in knee muscle-tendon stiffness accompanied by a lengthened ground contact time. EMG analysis showed that the squat and drop jumps were performed similarly before and after the fatigue exercise for both groups. Although it was expected that the stiffness would decrease more after SSC than after isometric fatigue (as a result of a greater alteration of the reflex sensitivity SSC), our results showed that both protocols had a similar effect on knee muscle stiffness during jumping exercises. Both fatigue protocols induced muscle fatigue, and the decrease in jump performance was linked to a decrease in the strength and stiffness of the knee extensor muscles.

  1. Effects of cluster vs. traditional plyometric training sets on maximal-intensity exercise performance.

    PubMed

    Asadi, Abbas; Ramírez-Campillo, Rodrigo

    2016-01-01

    The aim of this study was to compare the effects of 6-week cluster versus traditional plyometric training sets on jumping ability, sprint and agility performance. Thirteen college students were assigned to a cluster sets group (N=6) or traditional sets group (N=7). Both training groups completed the same training program. The traditional group completed five sets of 20 repetitions with 2min of rest between sets each session, while the cluster group completed five sets of 20 [2×10] repetitions with 30/90-s rest each session. Subjects were evaluated for countermovement jump (CMJ), standing long jump (SLJ), t test, 20-m and 40-m sprint test performance before and after the intervention. Both groups had similar improvements (P<0.05) in CMJ, SLJ, t test, 20-m, and 40-m sprint. However, the magnitude of improvement in CMJ, SLJ and t test was greater for the cluster group (effect size [ES]=1.24, 0.81 and 1.38, respectively) compared to the traditional group (ES=0.84, 0.60 and 0.55). Conversely, the magnitude of improvement in 20-m and 40-m sprint test was greater for the traditional group (ES=1.59 and 0.96, respectively) compared to the cluster group (ES=0.94 and 0.75, respectively). Although both plyometric training methods improved lower body maximal-intensity exercise performance, the traditional sets methods resulted in greater adaptations in sprint performance, while the cluster sets method resulted in greater jump and agility adaptations. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Local uncontrollability for affine control systems with jumps

    NASA Astrophysics Data System (ADS)

    Treanţă, Savin

    2017-09-01

    This paper investigates affine control systems with jumps for which the ideal If(g1, …, gm) generated by the drift vector field f in the Lie algebra L(f, g1, …, gm) can be imbedded as a kernel of a linear first-order partial differential equation. It will lead us to uncontrollable affine control systems with jumps for which the corresponding reachable sets are included in explicitly described differentiable manifolds.

  3. Mid-ocean ridge jumps associated with hotspot magmatism

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Ito, Garrett; Behn, Mark D.

    2008-02-01

    Hotspot-ridge interaction produces a wide range of phenomena including excess crustal thickness, geochemical anomalies, off-axis volcanic ridges and ridge relocations or jumps. Ridges are recorded to have jumped toward many hotspots including, Iceland, Discovery, Galápagos, Kerguelen and Tristan de Cuhna. The causes of ridge jumps likely involve a number of interacting processes related to hotspots. One such process is reheating of the lithosphere as magma penetrates it to feed near-axis volcanism. We study this effect by using the hybrid, finite-element code, FLAC, to simulate two-dimensional (2-D, cross-section) viscous mantle flow, elasto-plastic deformation of the lithosphere and heat transport in a ridge setting near an off-axis hotspot. Heating due to magma transport through the lithosphere is implemented within a hotspot region of fixed width. To determine the conditions necessary to initiate a ridge jump, we vary four parameters: hotspot magmatic heating rate, spreading rate, seafloor age at the location of the hotspot and ridge migration rate. Our results indicate that the hotspot magmatic heating rate required to initiate a ridge jump increases non-linearly with increasing spreading rate and seafloor age. Models predict that magmatic heating, itself, is most likely to cause jumps at slow spreading rates such as at the Mid-Atlantic Ridge on Iceland. In contrast, despite the higher magma flux at the Galápagos hotspot, magmatic heating alone is probably insufficient to induce a ridge jump at the present-day due to the intermediate ridge spreading rate of the Galápagos Spreading Center. The time required to achieve a ridge jump, for fixed or migrating ridges, is found to be on the order of 10 5-10 6 years. Simulations that incorporate ridge migration predict that after a ridge jump occurs the hotspot and ridge migrate together for time periods that increase with magma flux. Model results also suggest a mechanism for ridge reorganizations not related to hotspots such as ridge jumps in back-arc settings and ridge segment propagation along the Mid-Atlantic Ridge.

  4. Implementation of jump-diffusion algorithms for understanding FLIR scenes

    NASA Astrophysics Data System (ADS)

    Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.

    1995-07-01

    Our pattern theoretic approach to the automated understanding of forward-looking infrared (FLIR) images brings the traditionally separate endeavors of detection, tracking, and recognition together into a unified jump-diffusion process. New objects are detected and object types are recognized through discrete jump moves. Between jumps, the location and orientation of objects are estimated via continuous diffusions. An hypothesized scene, simulated from the emissive characteristics of the hypothesized scene elements, is compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. The jump-diffusion process empirically generates the posterior distribution. Both the diffusion and jump operations involve the simulation of a scene produced by a hypothesized configuration. Scene simulation is most effectively accomplished by pipelined rendering engines such as silicon graphics. We demonstrate the execution of our algorithm on a silicon graphics onyx/reality engine.

  5. Analysis of the association between isokinetic knee strength with offensive and defensive jumping capacity in high-level female volleyball athletes.

    PubMed

    Sattler, Tine; Sekulic, Damir; Esco, Michael R; Mahmutovic, Ifet; Hadzic, Vedran

    2015-09-01

    Isokinetic-knee-strength was hypothesized to be an important factor related to jumping performance. However, studies examining this relation among elite female athletes and sport-specific jumps are lacking. This investigation determined the influence of isokinetic-knee flexor/extensor strength measures on spike-jump (offensive) and block-jump (defensive) performance among high-level female volleyball players. Cross-sectional laboratory study. Eighty-two female volleyball athletes (age = 21.3 ± 3.8 years, height = 175.4 ± 6.76 cm, and weight = 68.29 ± 8.53 kg) volunteered to participate in this study. The studied variables included spike-jump and block-jump performance and a set of isokinetic tests to evaluate the eccentric and concentric strength capacities of the knee extensors (quadriceps - Q), and flexors (hamstring - H) for both legs. Both jumping tests showed high intra-session reliability (ICC of 0.87 and 0.95 for spike-jump and block-jump, respectively). The athletes were clustered into three achievement-groups based on their spike-jump and block-jump performances. For the block-jump, ANOVA identified significant differences between achievement-groups for all isokinetic variables except the Right-Q-Eccentric-Strength. When observed for spike-jump, achievement-groups differed significantly in all tests but Right-H-Concentric-Strength. Discriminant canonical analysis showed that the isokinetic-strength variables were more associated with block-jump then spike-jump-performance. The eccentric isokinetic measures were relatively less important determinants of block-jump than for the spike-jump performance. Data support the hypothesis of the importance of isokinetic strength measures for the expression of rapid muscular performance in volleyball. The results point to the necessity of the differential approach in sport training for defensive and offensive duties. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Differences in Lateral Drop Jumps From an Unknown Height Among Individuals With Functional Ankle Instability

    PubMed Central

    Rosen, Adam; Swanik, Charles; Thomas, Stephen; Glutting, Joseph; Knight, Christopher; Kaminski, Thomas W.

    2013-01-01

    Context: Functional ankle instability (FAI) is a debilitating condition that has been reported to occur after 20% to 50% of all ankle sprains. Landing from a jump is one common mechanism of ankle injury, yet few researchers have explored the role of visual cues and anticipatory muscle contractions, which may influence ankle stability, in lateral jumping maneuvers. Objective: To examine muscle-activation strategies between FAI and stable ankles under a lateral load and to evaluate the differences in muscle activation in participants with FAI and participants with stable ankles when they were unable to anticipate the onset of lateral loads during eyes-open versus eyes-closed conditions. Design: Case-control study. Setting: Controlled laboratory setting. Patients or Other Participants: A total of 40 people participated: 20 with FAI and 20 healthy, uninjured, sex- and age-matched persons (control group). Intervention(s): Participants performed a 2-legged lateral jump off a platform onto a force plate set to heights of 35 cm or 50 cm and then immediately jumped for maximal height. They performed jumps in 2 conditions (eyes open, eyes closed) and were unaware of the jump height when their eyes were closed. Main Outcome Measure(s): Amplitude normalized electromyographic (EMG) area (%), peak (%), and time to peak in the tibialis anterior (TA), peroneus longus (PL), and lateral gastrocnemius (LG) muscles were measured. Results: Regardless of the eyes-open or eyes-closed condition, participants with FAI had less preparatory TA (t158 = 2.22, P = .03) and PL (t158 = 2.09, P = .04) EMG area and TA (t158 = 2.45, P = .02) and PL (t158 = 2.17, P = .03) peak EMG than control-group participants. Conclusions: By removing visual cues, unanticipated lateral joint loads occurred simultaneously with decreased muscle activity, which may reduce dynamic restraint capabilities in persons with FAI. Regardless of visual impairment and jump height, participants with FAI exhibited PL and TA inhibition, which may limit talonavicular stability and intensify lateral joint surface compression and pain. PMID:23952040

  7. Some practical observations on the predictor jump method for solving the Laplace equation

    NASA Astrophysics Data System (ADS)

    Duque-Carrillo, J. F.; Vega-Fernández, J. M.; Peña-Bernal, J. J.; Rossell-Bueno, M. A.

    1986-01-01

    The best conditions for the application of the predictor jump (PJ) method in the solution of the Laplace equation are discussed and some practical considerations for applying this new iterative technique are presented. The PJ method was remarked on in a previous article entitled ``A new way for solving Laplace's problem (the predictor jump method)'' [J. M. Vega-Fernández, J. F. Duque-Carrillo, and J. J. Peña-Bernal, J. Math. Phys. 26, 416 (1985)].

  8. The Effects of Interset Rest on Adaptation to 7 Weeks of Explosive Training in Young Soccer Players

    PubMed Central

    Ramirez-Campillo, Rodrigo; Andrade, David C.; Álvarez, Cristian; Henríquez-Olguín, Carlos; Martínez, Cristian; Báez-SanMartín, Eduardo; Silva-Urra, Juan; Burgos, Carlos; Izquierdo, Mikel

    2014-01-01

    The aim of the study was to compare the effects of plyometric training using 30, 60, or 120 s of rest between sets on explosive adaptations in young soccer players. Four groups of athletes (age 10.4 ± 2.3 y; soccer experience 3.3 ± 1.5 y) were randomly formed: control (CG; n = 15), plyometric training with 30 s (G30; n = 13), 60 s (G60; n = 14), and 120 s (G120; n = 12) of rest between training sets. Before and after intervention players were measured in jump ability, 20-m sprint time, change of direction speed (CODS), and kicking performance. The training program was applied during 7 weeks, 2 sessions per week, for a total of 840 jumps. After intervention the G30, G60 and G120 groups showed a significant (p = 0.0001 – 0.04) and small to moderate effect size (ES) improvement in the countermovement jump (ES = 0.49; 0.58; 0.55), 20 cm drop jump reactive strength index (ES = 0.81; 0.89; 0.86), CODS (ES = -1.03; -0.87; -1.04), and kicking performance (ES = 0.39; 0.49; 0.43), with no differences between treatments. The study shows that 30, 60, and 120 s of rest between sets ensure similar significant and small to moderate ES improvement in jump, CODS, and kicking performance during high-intensity short-term explosive training in young male soccer players. Key points Replacing some soccer drills by low volume high-intensity plyometric training would be beneficial in jumping, change of direction speed, and kicking ability in young soccer players. A rest period of 30, 60 or 120 seconds between low-volume high-intensity plyometric sets would induce significant and similar explosive adaptations during a short-term training period in young soccer players. Data from this research can be helpful for soccer trainers in choosing efficient drills and characteristics of between sets recovery programs to enhance performances in young male soccer players. PMID:24790481

  9. Inference of Evolutionary Jumps in Large Phylogenies using Lévy Processes

    PubMed Central

    Duchen, Pablo; Leuenberger, Christoph; Szilágyi, Sándor M.; Harmon, Luke; Eastman, Jonathan; Schweizer, Manuel

    2017-01-01

    Abstract Although it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms transition into so-called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer evolutionary jumps in Anolis lizards and Loriinii parrots where we find strong signal for such jumps at the basis of clades that transitioned into new adaptive zones, just as postulated by Simpson’s hypothesis. [evolutionary jump; Lévy process; phenotypic evolution; punctuated equilibrium; quantitative traits. PMID:28204787

  10. The Advanced Tactical Parachute System (T-11): injuries during basic military parachute training.

    PubMed

    Knapik, Joseph J; Graham, Bria; Steelman, Ryan; Colliver, Keith; Jones, Bruce H

    2011-10-01

    Since the 1950s, the standard U.S. military troop parachute system has been the T-10. TheT-10 is currently being replaced by the newer T-11 system. This investigation compared injury incidence between the T-10 and T-11 military parachute systems. Participants were students in basic parachute training at the U.S. Army Airborne School (USAAS). Students performed their first parachute jumps with the T-11 and subsequent jumps with the T-10. Injury data were collected from routine reports produced by the USAAS. Combat loaded jumps and night jumps were excluded from the analysis since these were only conducted with the T-10. There were a total of 76 injuries in 30,755 jumps for an overall cumulative injury incidence of 2.5/1000 jumps. With the T-10 parachute, there were 61 injuries in 21,404 jumps for a cumulative injury incidence of 2.9/1000 jumps; with the T-11 parachute there were 15 injuries in 9351 jumps for a cumulative injury incidence of 1.6/1000 jumps [risk ratio (T10/T11) = 1.78, 95% confidence interval = 1.01-3.12, P = 0.04]. Limitations to this analysis included the fact that the T-11 was only used on the first jumps among students who had likely never previously performed a parachute jump and that aircraft exit procedures differed very slightly for the two parachutes. Nonetheless, the data suggest that injury incidence is lower with the T-11 parachute than with the T-10 parachute when airborne training operations are conducted during the day without combat loads.

  11. Effects of fatigue and surface instability on neuromuscular performance during jumping.

    PubMed

    Lesinski, M; Prieske, O; Demps, M; Granacher, U

    2016-10-01

    It has previously been shown that fatigue and unstable surfaces affect jump performance. However, the combination thereof is unresolved. Thus, the purpose of this study was to examine the effects of fatigue and surface instability on jump performance and leg muscle activity. Twenty elite volleyball players (18 ± 2 years) performed repetitive vertical double-leg box jumps until failure. Before and after a fatigue protocol, jump performance (i.e., jump height) and electromyographic activity of selected lower limb muscles were recorded during drop jumps (DJs) and countermovement jumps (CMJs) on a force plate on stable and unstable surfaces (i.e., balance pad on top of force plate). Jump performance (3-7%; P < 0.05; 1.14 ≤ d ≤ 2.82), and muscle activity (2-27%; P < 0.05; 0.59 ≤ d ≤ 3.13) were lower following fatigue during DJs and CMJs, and on unstable compared with stable surfaces during DJs only (jump performance: 8%; P < 0.01; d = 1.90; muscle activity: 9-25%; P < 0.05; 1.08 ≤ d ≤ 2.54). No statistically significant interactions of fatigue by surface condition were observed. Our findings revealed that fatigue impairs neuromuscular performance during DJs and CMJs in elite volleyball players, whereas surface instability affects neuromuscular DJ performance only. Absent fatigue × surface interactions indicate that fatigue-induced changes in jump performance are similar on stable and unstable surfaces in jump-trained athletes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The variance needed to accurately describe jump height from vertical ground reaction force data.

    PubMed

    Richter, Chris; McGuinness, Kevin; O'Connor, Noel E; Moran, Kieran

    2014-12-01

    In functional principal component analysis (fPCA) a threshold is chosen to define the number of retained principal components, which corresponds to the amount of preserved information. A variety of thresholds have been used in previous studies and the chosen threshold is often not evaluated. The aim of this study is to identify the optimal threshold that preserves the information needed to describe a jump height accurately utilizing vertical ground reaction force (vGRF) curves. To find an optimal threshold, a neural network was used to predict jump height from vGRF curve measures generated using different fPCA thresholds. The findings indicate that a threshold from 99% to 99.9% (6-11 principal components) is optimal for describing jump height, as these thresholds generated significantly lower jump height prediction errors than other thresholds.

  13. Anthropic prediction for a large multi-jump landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz-Perlov, Delia, E-mail: delia@perlov.com

    2008-10-15

    The assumption of a flat prior distribution plays a critical role in the anthropic prediction of the cosmological constant. In a previous paper we analytically calculated the distribution for the cosmological constant, including the prior and anthropic selection effects, in a large toy 'single-jump' landscape model. We showed that it is possible for the fractal prior distribution that we found to behave as an effectively flat distribution in a wide class of landscapes, but only if the single-jump size is large enough. We extend this work here by investigating a large (N{approx}10{sup 500}) toy 'multi-jump' landscape model. The jump sizesmore » range over three orders of magnitude and an overall free parameter c determines the absolute size of the jumps. We will show that for 'large' c the distribution of probabilities of vacua in the anthropic range is effectively flat, and thus the successful anthropic prediction is validated. However, we argue that for small c, the distribution may not be smooth.« less

  14. Acute effects of a loaded warm-up protocol on change of direction speed in professional badminton players.

    PubMed

    Maloney, Sean J; Turner, Anthony N; Miller, Stuart

    2014-10-01

    It has previously been shown that a loaded warm-up may improve power performances. We examined the acute effects of loaded dynamic warm-up on change of direction speed (CODS), which had not been previously investigated. Eight elite badminton players participated in three sessions during which they performed vertical countermovement jump and CODS tests before and after undertaking the dynamic warm-up. The three warm-up conditions involved wearing a weighted vest (a) equivalent to 5% body mass, (b) equivalent to 10% body mass, and (c) a control where a weighted vest was not worn. Vertical jump and CODS performances were then tested at 15 seconds and 2, 4, and 6 minutes post warm-up. Vertical jump and CODS significantly improved following all warm-up conditions (P < .05). Post warm-up vertical jump performance was not different between conditions (P = .430). Post warm-up CODS was significantly faster following the 5% (P = .02) and 10% (P < .001) loaded conditions compared with the control condition. In addition, peak CODS test performances, independent of recovery time, were faster than the control condition following the 10% loaded condition (P = .012). In conclusion, the current study demonstrates that a loaded warm-up augmented CODS, but not vertical jump performance, in elite badminton players.

  15. Neuromechanical simulation of the locust jump

    PubMed Central

    Cofer, D.; Cymbalyuk, G.; Heitler, W. J.; Edwards, D. H.

    2010-01-01

    The neural circuitry and biomechanics of kicking in locusts have been studied to understand their roles in the control of both kicking and jumping. It has been hypothesized that the same neural circuit and biomechanics governed both behaviors but this hypothesis was not testable with current technology. We built a neuromechanical model to test this and to gain a better understanding of the role of the semi-lunar process (SLP) in jump dynamics. The jumping and kicking behaviors of the model were tested by comparing them with a variety of published data, and were found to reproduce the results from live animals. This confirmed that the kick neural circuitry can produce the jump behavior. The SLP is a set of highly sclerotized bands of cuticle that can be bent to store energy for use during kicking and jumping. It has not been possible to directly test the effects of the SLP on jump performance because it is an integral part of the joint, and attempts to remove its influence prevent the locust from being able to jump. Simulations demonstrated that the SLP can significantly increase jump distance, power, total energy and duration of the jump impulse. In addition, the geometry of the joint enables the SLP force to assist leg flexion when the leg is flexed, and to assist extension once the leg has begun to extend. PMID:20228342

  16. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability.

    PubMed

    Tsoukos, Athanasios; Bogdanis, Gregory C; Terzis, Gerasimos; Veligekas, Panagiotis

    2016-08-01

    Tsoukos, A, Bogdanis, GC, Terzis, G, and Veligekas, P. Acute improvement of vertical jump performance after isometric squats depends on knee angle and vertical jumping ability. J Strength Cond Res 30(8): 2250-2257, 2016-This study examined the acute effects of maximum isometric squats at 2 different knee angles (90 or 140°) on countermovement jump (CMJ) performance in power athletes. Fourteen national-level male track and field power athletes completed 3 main trials (2 experimental and 1 control) in a randomized and counterbalanced order 1 week apart. Countermovement jump performance was evaluated using a force-plate before and 15 seconds, 3, 6, 9, and 12 minutes after 3 sets of 3 seconds maximum isometric contractions with 1-minute rest in between, from a squat position with knee angle set at 90 or 140°. Countermovement jump performance was improved compared with baseline only in the 140° condition by 3.8 ± 1.2% on the 12th minute of recovery (p = 0.027), whereas there was no change in CMJ height in the 90° condition. In the control condition, there was a decrease in CMJ performance over time, reaching -3.6 ± 1.2% (p = 0.049) after 12 minutes of recovery. To determine the possible effects of baseline jump performance on subsequent CMJ performance, subjects were divided into 2 groups ("high jumpers" and "low jumpers"). The baseline CMJ values of "high jumpers" and "low jumpers" differed significantly (CMJ: 45.1 ± 2.2 vs. 37.1 ± 3.9 cm, respectively, p = 0.001). Countermovement jump was increased only in the "high jumpers" group by 5.4 ± 1.4% (p = 0.001) and 7.4 ± 1.2% (p = 0.001) at the knee angles of 90 and 140°, respectively. This improvement was larger at the 140° angle (p = 0.049). Knee angle during isometric squats and vertical jumping ability are important determinants of the acute CMJ performance increase observed after a conditioning activity.

  17. Jump into Action

    ERIC Educational Resources Information Center

    Ball, Stephen; Cohen, Ann; Meyer, Margaret

    2012-01-01

    Jump Into Action (JIA) is a school-based team-taught program to help fifth-grade students make healthy food choices and be more active. The JIA team (physical education teacher, classroom teacher, school nurse, and parent) work together to provide a supportive environment as students set goals to improve food choices and increase activity.…

  18. Inference of Evolutionary Jumps in Large Phylogenies using Lévy Processes.

    PubMed

    Duchen, Pablo; Leuenberger, Christoph; Szilágyi, Sándor M; Harmon, Luke; Eastman, Jonathan; Schweizer, Manuel; Wegmann, Daniel

    2017-11-01

    Although it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms transition into so-called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer evolutionary jumps in Anolis lizards and Loriinii parrots where we find strong signal for such jumps at the basis of clades that transitioned into new adaptive zones, just as postulated by Simpson's hypothesis. [evolutionary jump; Lévy process; phenotypic evolution; punctuated equilibrium; quantitative traits. The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  19. Effects of Baseline Levels of Flexibility and Vertical Jump Ability on Performance Following Different Volumes of Static Stretching and Potentiating Exercises in Elite Gymnasts

    PubMed Central

    Donti, Olyvia; Tsolakis, Charilaos; Bogdanis, Gregory C.

    2014-01-01

    This study examined the effects of baseline flexibility and vertical jump ability on straight leg raise range of motion (ROM) and counter-movement jump performance (CMJ) following different volumes of stretching and potentiating exercises. ROM and CMJ were measured after two different warm-up protocols involving static stretching and potentiating exercises. Three groups of elite athletes (10 male, 14 female artistic gymnasts and 10 female rhythmic gymnasts) varying greatly in ROM and CMJ, performed two warm-up routines. One warm-up included short (15 s) static stretching followed by 5 tuck jumps, while the other included long static stretching (30 s) followed by 3x5 tuck jumps. ROM and CMJ were measured before, during and for 12 min after the two warm-up routines. Three-way ANOVA showed large differences between the three groups in baseline ROM and CMJ performance. A type of warm-up x time interaction was found for both ROM (p = 0.031) and CMJ (p = 0.016). However, all athletes, irrespective of group, responded in a similar fashion to the different warm-up protocols for both ROM and CMJ, as indicated from the lack of significant interactions for group (condition x group, time x group or condition x time x group). In the short warm-up protocol, ROM was not affected by stretching, while in the long warm-up protocol ROM increased by 5.9% ± 0.7% (p = 0.001) after stretching. Similarly, CMJ remained unchanged after the short warm-up protocol, but increased by 4.6 ± 0.9% (p = 0.012) 4 min after the long warm- up protocol, despite the increased ROM. It is concluded that the initial levels of flexibility and CMJ performance do not alter the responses of elite gymnasts to warm-up protocols differing in stretching and potentiating exercise volumes. Furthermore, 3 sets of 5 tuck jumps result in a relatively large increase in CMJ performance despite an increase in flexibility in these highly-trained athletes. Key Points The initial levels of flexibility and vertical jump ability have no effect on straight leg raise range of motion (ROM) and counter-movement jump performance (CMJ) of elite gymnasts following warm-up protocols differing in stretching and potentiating exercise volumes Stretching of the main leg muscle groups for only 15 s has no effect on ROM of elite gymnasts In these highly-trained athletes, one set of 5 tuck jumps during warm-up is not adequate to increase CMJ performance, while 3 sets of 5 tuck jumps result in a relatively large increase in CMJ performance (by 4.6% above baseline), despite a 5.9% increase in flexibility due to the 30 s stretching exercises PMID:24570613

  20. Epidemiology of Injury Due to Race-Day Jockey Falls in Professional Flat and Jump Horse Racing in Ireland, 2011-2015.

    PubMed

    O'Connor, Siobhan; Warrington, Giles; McGoldrick, Adrian; Cullen, SarahJane

    2017-12-01

      Professional horse racing is considered a high-risk sport, yet the last analysis of fall and injury incidence in this sport in Ireland was completed between 1999 and 2006.   To provide an updated analysis of the fall and injury incidence in professional flat and jump horse racing in Ireland from 2011 through 2015, compare it with the previous analysis, and detail the specific types and locations of injuries.   Descriptive epidemiology study.   A medical doctor recorded all injuries that occurred at every official flat and jump race meeting for the 2011 through 2015 seasons using standardized injury-report forms.   Injury and fall rates and their 95% confidence intervals (CIs) were reported for flat and jump racing. Incidence rate ratios and 95% CIs were calculated between flat and jump racing, between the 1999-2006 analysis and the current results, and between 2011 and 2015. The distribution of injuries for type and location of injury was reported.   Compared with flat racing, jump racing had significantly more falls per 1000 rides (49.5 versus 3.8), injuries per 1000 rides (10.1 versus 1.4), and injuries per 1000 meetings (776.0 versus 94.1). However, the rate of injuries per 1000 falls was significantly higher in flat racing (352.8 versus 203.8). An increase in injuries per 1000 falls between 2011 and 2015 was found in flat racing ( P = .005). Since the previous analysis, a significant increase in injuries per 1000 rides and falls was noted in jump racing. Soft tissue injuries were predominant in flat and jump racing (61.54% and 68.80%, respectively), with fractures the second most common injury (15.38% and 18.06%, respectively). Concussions were more prevalent from flat-racing falls (incidence rate ratio = 0.30; 95% CI = 0.15, 0.61). The lower limb was the most frequent location of injury (32.89%) in flat racing; however, in jump racing, upper limb injuries (34.97%) were predominant.   An update on professional flat- and jump-racing fall and injury epidemiology is provided. Further research to identify risk factors for injury, design and investigate the feasibility of injury-prevention strategies, and document their effects on fall and injury incidence is required.

  1. Short-Term Effects of Kinesio Taping on Muscle Recruitment Order During a Vertical Jump: A Pilot Study.

    PubMed

    Mendez-Rebolledo, Guillermo; Ramirez-Campillo, Rodrigo; Guzman-Muñoz, Eduardo; Gatica-Rojas, Valeska; Dabanch-Santis, Alexis; Diaz-Valenzuela, Francisco

    2018-06-22

    Kinesio taping is commonly used in sports and rehabilitation settings with the aim of prevention and treatment of musculoskeletal injuries. However, limited evidence exists regarding the effects of 24 and 72 hours of kinesio taping on trunk and lower limb neuromuscular and kinetic performance during a vertical jump. The purpose of this study was to analyze the short-term effects of kinesio taping on height and ground reaction force during a vertical jump, in addition to trunk and lower limb muscle latency and recruitment order. Single-group pretest-posttest. University laboratory. Twelve male athletes from different sports (track and field, basketball, and soccer). They completed a single squat and countermovement jump at basal time (no kinesio taping), 24, and 72 hours of kinesio taping application on the gluteus maximus, biceps femoris, rectus femoris, gastrocnemius medialis, and longissimus. Muscle onset latencies were assessed by electromyography during a squat and countermovement jump, in addition to measurements of the jump height and normalized ground reaction force. The kinesio taping had no effect after 24 hours on either the countermovement or squat jump. However, at 72 hours, the kinesio taping increased the jump height (P = .02; d = 0.36) and normalized ground reaction force (P = .001; d = 0.45) during the countermovement jump. In addition, 72-hour kinesio taping reduced longissimus onset latency (P = .03; d = 1.34) and improved muscle recruitment order during a countermovement jump. These findings suggest that kinesio taping may improve neuromuscular and kinetic performance during a countermovement jump only after 72 hours of application on healthy and uninjured male athletes. However, no changes were observed on a squat jump. Future studies should incorporate a control group to verify kinesio taping's effects and its influence on injured athletes.

  2. Variability of Jump Kinetics Related to Training Load in Elite Female Basketball.

    PubMed

    Legg, Jan; Pyne, David B; Semple, Stuart; Ball, Nick

    2017-11-04

    The purpose of this study was to quantify changes in jump performance and variability in elite female basketballers. Junior and senior female representative basketball players ( n = 10) aged 18 ± 2 years participated in this study. Countermovement jump (CMJ) data was collected with a Gymaware™ optical encoder at pre-, mid-, and post-season time points across 10 weeks. Jump performance was maintained across the course of the full season (from pre to post). Concentric peak velocity, jump height, and dip showed the most stability from pre- to post-season, with the %CV ranging from 5.6⁻8.9%. In the period of the highest training load (mid-season), the variability of within-subject performance was reduced by approximately 2⁻4% in all measures except for jump height. Altered jump mechanics through a small (0.26 effect size) increase in dip were evident at mid-season, suggesting that CMJ analysis is useful for coaches to use as an in-season monitoring tool. The highest coefficient of variation (8⁻22%CV) in inter-set scores in all measures except eccentric peak velocity also occurred mid-season. It appears that in-season load not only impairs jump performance, but also movement variability in basketball players.

  3. Using Video Feedback to Improve Horseback-Riding Skills

    ERIC Educational Resources Information Center

    Kelley, Heather; Miltenberger, Raymond G.

    2016-01-01

    This study used video feedback to improve the horseback-riding skills of advanced beginning riders. We focused on 3 skill sets: those used in jumping over obstacles, dressage riding on the flat, and jumping position riding on the flat. Baseline consisted of standard lesson procedures. Intervention consisted of video feedback in which a recorded…

  4. Four weeks of training in a sledge jump system improved the jump pattern to almost natural reactive jumps.

    PubMed

    Kramer, Andreas; Ritzmann, Ramona; Gruber, Markus; Gollhofer, Albert

    2012-01-01

    In spite of extensive training regimens during long-term space missions with existing training devices, astronauts suffer from muscle and bone loss. It has been suggested that reactive jumps inducing high forces in the muscles-consequently exposing the bones to high strains-help to counteract these degradations. In a previous study, a new sledge jump system (SJS) was found to allow fairly natural reactive jumps. The aim of the present study was to evaluate if training in the SJS would further reduce the differences between jumps in the SJS and normal jumps, particularly with respect to ground reaction forces (GRF) and rate of force development (RFD). Sixteen participants in a training group (TG) and 16 in a control group (CON) were tested before and after the TGs four-week hopping training in the SJS. During the tests, kinetic, kinematic and electromyographic data were compared between hops on the ground and in the SJS. After the training period, the GRF, the RFD and the leg stiffness in the SJS significantly increased for the TG (but not for CON) by 10, 35 and 38%, respectively. The kinematic and electromyographic data showed no significant changes. A short training regimen in the SJS reduced the differences between jumps in the SJS and normal jumps. Considering that a natural movement that exposes the muscles and thus also the bones to high loads is regarded as important for the preservation of muscle and bone, the SJS seems to be a promising countermeasure.

  5. Effect of various practical warm-up protocols on acute lower-body power.

    PubMed

    Buttifant, David; Hrysomallis, Con

    2015-03-01

    The purpose of this study was to compare the acute effect of box squats with barbell (BBSquat), box squats with elastic resistance bands (BandSquat), and static stretches (SStretch) on external power during a 20-kg weighted jump squat. Twelve male athletes performed each of the 3 warm-up protocols on separate occasions in a randomized order. Weighted jump squat power was assessed using a linear position transducer attached to the bar of a Smith machine. Jump power was measured pre-warm-up and 5 and 10 minutes post-warm-up protocol. The BBSquat protocol involved 3 sets of 3RM, BandSquat involved 3 sets of 3 repetitions using highest resistance elastic bands, and the SStretch protocol comprises two 30-second stretches for muscles of the lower limbs. Jump power significantly increased from pre-warm-up to 5 and 10 minutes post-warm-up for both the BandSquat and BBSquat protocols. There was no statistical difference in power values between BandSquat and BBSquat. Power output significantly decreased from pre-warm-up to 5 and 10 minutes post-warm-up for the SStretch protocol. The BandSquat was just as effective as BBSquat in augmenting acute jump power. The SStretch was detrimental to jump performance. A practical warm-up using relatively inexpensive and portable equipment such as elastic resistance bands was just as effective as a warm-up protocol that requires more substantial and less transportable equipment such as a squat rack and associated free weights. The BandSquat warm-up may be considered more accessible for athletes at various competition levels.

  6. Selection Devices for User of an Electronic Encyclopedia: An Empirical Comparison of Four Possibilities.

    ERIC Educational Resources Information Center

    Ostroff, Daniel; Shneiderman, Ben

    1988-01-01

    Describes a study that measured the speed, error rates, and subjective evaluation of arrow jump keys, a jump mouse, number keys, and a touch screen in an interactive encyclopedia. The results of previous studies are discussed as well as the findings of this study. Improvements in selection devices are suggested. (41 references) (Author/CLB)

  7. Rene Saldana's "The Jumping Tree": Exploring Childhood Universals through a Hispanic Novel

    ERIC Educational Resources Information Center

    Newman, Beatrice Mendez

    2006-01-01

    In "The Jumping Tree", set in Nuevo Penitas, an actual South Texas town, 12-year-old Rey Castaneda recounts landmark events in his journey toward becoming a man. Rey's stories of his childhood escapades, adventures, and everyday experiences could be anyone's childhood stories. When readers have finished the last page, they have relived the…

  8. Motor Performance of Primary Age Handicapped and Nonhandicapped Children in the Mainstream: A Comparison.

    ERIC Educational Resources Information Center

    Sherrill, Claudine; Kelly, Luke

    A comparative study was made of mentally retarded and nonhandicapped children in the first through third grades on motor performance as measured by running (50-yard dash), jumping (standing broad jump), and throwing (softball throw for distance). The subjects had received all of their physical education instruction in a mainstream setting since…

  9. Supersonic Jump

    ERIC Educational Resources Information Center

    Muller, Andreas

    2013-01-01

    On October 14,2012, Felix Baumgartner, an Austrian sky-diver, set some new world records for his discipline. Jumping from a height of about 39 km, he reached a top speed of 1342 km/h, becoming the first human being to break the sound barrier in free fall. In order to understand some essential physics aspects of this remarkable feat, we wonder why…

  10. Muscular fatigue in response to different modalities of CrossFit sessions

    PubMed Central

    Maté-Muñoz, José Luis; Lougedo, Juan H.; Barba, Manuel; García-Fernández, Pablo

    2017-01-01

    Background CrossFit is a new strength and conditioning regimen involving short intense daily workouts called workouts of the day (WOD). This study assesses muscular fatigue levels induced by the three modalities of CrossFit WOD; gymnastics (G), metabolic conditioning (M) and weightlifting (W). Material and methods 34 healthy subjects undertook three WOD (one per week): a G WOD consisting of completing the highest number of sets of 5 pull-ups, 10 push-ups and 15 air squats in 20 min; an M WOD, in which the maximum number of double skipping rope jumps was executed in 8 sets (20 s), resting (10 s) between sets; and finally, a W WOD in which the maximum number of power cleans was executed in 5 min, lifting a load equivalent to 40% of the individual's 1RM. Before and after each WOD, blood lactate concentrations were measured. Also, before, during, and after each WOD, muscular fatigue was assessed in a countermovement jump test (CMJ). Results Significant reductions were produced in the mechanical variables jump height, average power and maximum velocity in response to G; and in jump height, mean and peak power, maximum velocity and maximum force in response to W (P<0.01). However, in M, significant reductions in mechanical variables were observed between pre- and mid session (after sets 2, 4, 6 and 8), but not between pre- and post session. Conclusions Muscular fatigue, reflected by reduced CMJ variables, was produced following the G and W sessions, while recovery of this fatigue was observed at the end of M, likely attributable to rest intervals allowing for the recovery of phosphocreatine stores. Our findings also suggest that the high intensity and volume of exercise in G and W WODs could lead to reduced muscular-tendon stiffness causing a loss of jump ability, related here to a longer isometric phase during the CMJ. PMID:28753624

  11. Muscular fatigue in response to different modalities of CrossFit sessions.

    PubMed

    Maté-Muñoz, José Luis; Lougedo, Juan H; Barba, Manuel; García-Fernández, Pablo; Garnacho-Castaño, Manuel V; Domínguez, Raúl

    2017-01-01

    CrossFit is a new strength and conditioning regimen involving short intense daily workouts called workouts of the day (WOD). This study assesses muscular fatigue levels induced by the three modalities of CrossFit WOD; gymnastics (G), metabolic conditioning (M) and weightlifting (W). 34 healthy subjects undertook three WOD (one per week): a G WOD consisting of completing the highest number of sets of 5 pull-ups, 10 push-ups and 15 air squats in 20 min; an M WOD, in which the maximum number of double skipping rope jumps was executed in 8 sets (20 s), resting (10 s) between sets; and finally, a W WOD in which the maximum number of power cleans was executed in 5 min, lifting a load equivalent to 40% of the individual's 1RM. Before and after each WOD, blood lactate concentrations were measured. Also, before, during, and after each WOD, muscular fatigue was assessed in a countermovement jump test (CMJ). Significant reductions were produced in the mechanical variables jump height, average power and maximum velocity in response to G; and in jump height, mean and peak power, maximum velocity and maximum force in response to W (P<0.01). However, in M, significant reductions in mechanical variables were observed between pre- and mid session (after sets 2, 4, 6 and 8), but not between pre- and post session. Muscular fatigue, reflected by reduced CMJ variables, was produced following the G and W sessions, while recovery of this fatigue was observed at the end of M, likely attributable to rest intervals allowing for the recovery of phosphocreatine stores. Our findings also suggest that the high intensity and volume of exercise in G and W WODs could lead to reduced muscular-tendon stiffness causing a loss of jump ability, related here to a longer isometric phase during the CMJ.

  12. Validity of a jump training apparatus using Wii Balance Board.

    PubMed

    Yamamoto, Keizo; Matsuzawa, Mamoru

    2013-05-01

    The dynamic quantification of jump ability is useful for sports performance evaluation. We developed a force measurement system using the Wii Balance Board (WBB). This study was conducted to validate the system in comparison with a laboratory-grade force plate (FP). For a static validation, weights of 10-180kg were put progressively on the WBB put on the FP. The vertical component of the ground reaction force (vGRF) was measured using both devices and compared. For the dynamic validation, 10 subjects without lower limb pathology participated in the study and performed vertical jumping twice on the WBB on the FP. The range of analysis was set from the landing after the first jump to taking off of the second jump. The peak values during the landing phase and jumping phase were obtained and the force-time integral (force impulse) was measured. The relations of the values measured using each device were compared using Pearson's correlation coefficient test and Bland-Altman plots (BAP). Significant correlation (P<.01, r=.99) was found between the values of both devices in the static and the dynamic test. Examination of the BAP revealed a proportion error in the landing phase and showed no relation in the jumping phase between the difference and the mean in the dynamic test. The WBB detects the vGRF in the jumping phase with high precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The Effects of Aquatic Plyometric Training on Repeated Jumps, Drop Jumps and Muscle Damage.

    PubMed

    Jurado-Lavanant, A; Alvero-Cruz, J R; Pareja-Blanco, F; Melero-Romero, C; Rodríguez-Rosell, D; Fernandez-Garcia, J C

    2015-09-22

    The purpose of this study was to compare the effects of land- vs. aquatic based plyometric training programs on the drop jump, repeated jump performance and muscle damage. Sixty-five male students were randomly assigned to one of 3 groups: aquatic plyometric training group (APT), plyometric training group (PT) and control group (CG). Both experimental groups trained twice a week for 10 weeks performing the same number of sets and total jumps. The following variables were measured prior to, halfway through and after the training programs: creatine kinase (CK) concentration, maximal height during a drop jump from the height of 30 (DJ30) and 50 cm (DJ50), and mean height during a repeated vertical jump test (RJ). The training program resulted in a significant increase (P<0.01-0.001) in RJ, DJ30, and DJ50 for PT, whereas neither APT nor CG reached any significant improvement APT showed likely/possibly improvements on DJ30 and DJ50, respectively. Greater intra-group Effect Size in CK was found for PT when compared to APT. In conclusion, although APT seems to be a safe alternative method for reducing the stress produced on the musculoskeletal system by plyometric training, PT produced greater gains on reactive jumps performance than APT. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Biomechanical Factors Associated With Jump Height: A Comparison of Cross-Sectional and Pre-to-Posttraining Change Findings.

    PubMed

    Marshall, Brendan M; Moran, Kieran A

    2015-12-01

    Previous studies investigating the biomechanical factors associated with maximal countermovement jump height have typically used cross-sectional data. An alternative but less common approach is to use pre-to-posttraining change data, where the relationship between an improvement in jump height and a change in a factor is examined more directly. Our study compared the findings of these approaches. Such an evaluation is necessary because cross-sectional studies are currently a primary source of information for coaches when examining what factors to train to enhance performance. The countermovement jump of 44 males was analyzed before and after an 8-week training intervention. Correlations with jump height were calculated using both cross-sectional (pretraining data only) and pre-to-posttraining change data. Eight factors identified in the cross-sectional analysis were not significantly correlated with a change in jump height in the pre-to-post analysis. Additionally, only 6 of 11 factors identified in the pre-to-post analysis were identified in the cross-sectional analysis. These findings imply that (a) not all factors identified in a cross-sectional analysis may be critical to jump height improvement and (b) cross-sectional analyses alone may not provide an insight into all of the potential factors to train to enhance jump height. Coaches must be aware of these limitations when examining cross-sectional studies to identify factors to train to enhance jump ability. Additional findings highlight that although exercises prescribed to improve jump height should aim to enhance concentric power production at all joints, a particular emphasis on enhancing hip joint peak power may be warranted.

  15. The Effects of Eccentric Contraction Duration on Muscle Strength, Power Production, Vertical Jump, and Soreness.

    PubMed

    Mike, Jonathan N; Cole, Nathan; Herrera, Chris; VanDusseldorp, Trisha; Kravitz, Len; Kerksick, Chad M

    2017-03-01

    Mike, JN, Cole, N, Herrera, C, VanDusseldorp, T, Kravitz, L, and Kerksick, CM. The effects of eccentric contraction duration on muscle strength, power production, vertical jump, and soreness. J Strength Cond Res 31(3): 773-786, 2017-Previous research has investigated the effects of either eccentric-only training or comparing eccentric and concentric exercise on changes related to strength and power expression, but no research to date has investigated the impact of altering the duration of either the concentric or the eccentric component on these parameters. Therefore, the purpose of this study was to assess the duration of eccentric (i.e., 2-second, 4-second vs. 6-second) muscle contractions and their effect on muscle strength, power production, vertical jump, and soreness using a plate-loaded barbell Smith squat exercise. Thirty college-aged men (23 ± 3.5 years, 178 ± 6.8 cm, 82 ± 12 kg, and 11.6 ± 5.1% fat) with 3.0 ± 1.0 years of resistance training experience and training frequency of 4.3 ± 0.9 days per week were randomized and assigned to 1 of 3 eccentric training groups that incorporated different patterns of contraction. For every repetition, all 3 groups used 2-second concentric contractions and paused for 1 second between the concentric and eccentric phases. The control group (2S) used 2-second eccentric contractions, whereas the 4S group performed 4-second eccentric contractions and the 6S group performed 6-second eccentric contractions. All repetitions were completed using the barbell Smith squat exercise. All participants completed a 4-week training protocol that required them to complete 2 workouts per week using their prescribed contraction routine for 4 sets of 6 repetitions at an intensity of 80-85% one repetition maximum (1RM). For all performance data, significant group × time (G × T) interaction effects were found for average power production across all 3 sets of a squat jump protocol (p = 0.04) while vertical jump did not reach significance but there was a trend toward a difference (G × T, p = 0.07). No other significant (p > 0.05) G × T interaction effects were found for the performance variables. All groups showed significant main effects for time in 1RM (p < 0.001), vertical jump (p = 0.004), peak power (p < 0.001), and average power (p < 0.001). Peak velocity data indicated that the 6S group experienced a significant reduction in peak velocity during the squat jump protocol as a result of the 4-week training program (p = 0.03). Soreness data revealed significant increases across time in all groups at both week 0 and week 4. Paired sample t-tests revealed greater differences in soreness values across time in the 2S group. The results provide further evidence that resistance training with eccentrically dominated movement patterns can be an effective method to acutely increase maximal strength and power expression in trained college age men. Furthermore, longer eccentric contractions may negatively impact explosive movements such as the vertical jump, whereas shorter eccentric contractions may instigate greater amounts of soreness. These are important considerations for the strength and conditioning professional to more fully understand that expressions of strength and power through eccentric training and varying durations of eccentric activity can have a significant impact for populations ranging from athletes desiring peak performance.

  16. Lower Jump Power Rather Than Muscle Mass Itself is Associated with Vertebral Fracture in Community-Dwelling Elderly Korean Women.

    PubMed

    Lee, Eun Young; Lee, Su Jin; Kim, Kyoung Min; Seo, Da Hea; Lee, Seung Won; Choi, Han Sol; Kim, Hyeon Chang; Youm, Yoosik; Kim, Chang Oh; Rhee, Yumie

    2017-06-01

    Sarcopenia is considered to be a risk factor for osteoporotic fracture, which is a major health problem in elderly women. In this study, we aimed to investigate the association of sarcopenia, with regard to muscle mass and function, with prevalent vertebral fracture in community-dwelling elderly women. We recruited 1281 women aged 64 to 87 years from the Korean Urban Rural Elderly cohort study. Muscle mass and function were measured using bioimpedance analysis and jumping mechanography. Skeletal muscle index (SMI) and jump power were used as an indicator of muscle mass and function, respectively. Among the participants, we observed 282 (18.9%) vertebral fractures and 564 (44.0%) osteoporosis. Although age, body mass index, and prevalence of osteoporosis increased as both SMI and jump power decreased, prevalence of vertebral fracture increased only when jump power decreased. In univariate analysis, compared with the highest quartile of jump power, the lowest quartile had a significant odds ratio of 2.80 (95% CI 1.79-4.36) for vertebral fracture. This association between jump power and vertebral fracture remained significant, with an odds ratio of 3.04 (95% CI 1.77-5.23), even after adjusting for other risk factors including age, bone mineral density, previous fracture, and cognitive function. In contrast, there was no association between SMI and vertebral fracture. Based on our results, low jump power, but not SMI, is associated with vertebral fracture in community-dwelling elderly Korean women. This finding suggests that jump power may have a more important role than muscle mass itself for osteoporotic fracture.

  17. Ankle taping does not impair performance in jump or balance tests.

    PubMed

    Abián-Vicén, Javier; Alegre, Luis M; Fernández-Rodríguez, J Manuel; Lara, Amador J; Meana, Marta; Aguado, Xavier

    2008-01-01

    This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance) and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years) without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and conditions were randomly performed. The path of the center of pressures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96). The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed. Key pointsAnkle taping has no influence on balance performance.Ankle taping does not impair performance during the push-off phase of the jump.Ankle taping could increase the risk of injury during landings by increasing peak forces.

  18. Ankle Taping Does Not Impair Performance in Jump or Balance Tests

    PubMed Central

    Abián-Vicén, Javier; Alegre, Luis M.; Fernández-Rodríguez, J. Manuel; Lara, Amador J.; Meana, Marta; Aguado, Xavier

    2008-01-01

    This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance) and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years) without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and conditions were randomly performed. The path of the center of pressures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96). The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed. Key pointsAnkle taping has no influence on balance performance.Ankle taping does not impair performance during the push-off phase of the jump.Ankle taping could increase the risk of injury during landings by increasing peak forces. PMID:24149902

  19. Monte Carlo simulation of the mixed alkali effect with cooperative jumps

    NASA Astrophysics Data System (ADS)

    Habasaki, Junko; Hiwatari, Yasuaki

    2000-12-01

    In our previous works on molecular dynamics (MD) simulations of lithium metasilicate (Li2SiO3), it has been shown that the long time behavior of the lithium ions in Li2SiO3 has been characterized by the component showing the enhanced diffusion (Lévy flight) due to cooperative jumps. It has also been confirmed that the contribution of such component decreases by interception of the paths in the mixed alkali silicate (LiKSiO3). Namely, cooperative jumps of like ions are much decreased in number owing to the interception of the path for unlike alkali-metal ions. In the present work, we have performed a Monte Carlo simulation using a cubic lattice in order to establish the role of the cooperative jumps in the transport properties in a mixed alkali glass. Fixed particles (blockage) were introduced instead of the interception of the jump paths for unlike alkali-metal ions. Two types of cooperative motions (a pull type and a push type) were taken into account. Low-dimensionality of the jump path caused by blockage resulted in a decrease of a diffusion coefficient of the particles. The effect of blockage is enhanced when the cooperative motions were introduced.

  20. Mean-Variance Hedging on Uncertain Time Horizon in a Market with a Jump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharroubi, Idris, E-mail: kharroubi@ceremade.dauphine.fr; Lim, Thomas, E-mail: lim@ensiie.fr; Ngoupeyou, Armand, E-mail: armand.ngoupeyou@univ-paris-diderot.fr

    2013-12-15

    In this work, we study the problem of mean-variance hedging with a random horizon T∧τ, where T is a deterministic constant and τ is a jump time of the underlying asset price process. We first formulate this problem as a stochastic control problem and relate it to a system of BSDEs with a jump. We then provide a verification theorem which gives the optimal strategy for the mean-variance hedging using the solution of the previous system of BSDEs. Finally, we prove that this system of BSDEs admits a solution via a decomposition approach coming from filtration enlargement theory.

  1. Serum sclerostin decreases following 12months of resistance- or jump-training in men with low bone mass.

    PubMed

    Hinton, Pamela S; Nigh, Peggy; Thyfault, John

    2017-03-01

    We previously reported that 12months of resistance training (RT, 2×/wk, N=19) or jump training (JUMP, 3×/wk, N=19) increased whole body and lumbar spine BMD and increased serum bone formation markers relative to resorption in physically active (≥4h/wk) men (mean age: 44±2y; median: 44y) with osteopenia of the hip or spine. The purpose of this secondary analysis was to examine the effects of the RT or JUMP intervention on potential endocrine mediators of the exercise effects on bone, specifically IGF-I, PTH and sclerostin. Fasting blood samples were collected after a 24-h period of no exercise at baseline and after 12months of RT or JUMP. IGF-I, PTH and sclerostin were measured in serum by ELISA. The effects of RT or JUMP on IGF-I, PTH and sclerostin were evaluated using 2×2 repeated measures ANOVA (time, group). This study was conducted in accordance with the Declaration of Helsinki and was approved by the University of Missouri IRB. Sclerostin concentrations in serum significantly decreased and IGF-I significantly increased after 12months of RT or JUMP; while PTH remained unchanged. The beneficial effects of long-term, progressive-intensity RT or JUMP on BMD in moderately active men with low bone mass are associated with decreased sclerostin and increased IGF-I. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Vertical Jump Height Estimation Algorithm Based on Takeoff and Landing Identification Via Foot-Worn Inertial Sensing.

    PubMed

    Wang, Jianren; Xu, Junkai; Shull, Peter B

    2018-03-01

    Vertical jump height is widely used for assessing motor development, functional ability, and motor capacity. Traditional methods for estimating vertical jump height rely on force plates or optical marker-based motion capture systems limiting assessment to people with access to specialized laboratories. Current wearable designs need to be attached to the skin or strapped to an appendage which can potentially be uncomfortable and inconvenient to use. This paper presents a novel algorithm for estimating vertical jump height based on foot-worn inertial sensors. Twenty healthy subjects performed countermovement jumping trials and maximum jump height was determined via inertial sensors located above the toe and under the heel and was compared with the gold standard maximum jump height estimation via optical marker-based motion capture. Average vertical jump height estimation errors from inertial sensing at the toe and heel were -2.2±2.1 cm and -0.4±3.8 cm, respectively. Vertical jump height estimation with the presented algorithm via inertial sensing showed excellent reliability at the toe (ICC(2,1)=0.98) and heel (ICC(2,1)=0.97). There was no significant bias in the inertial sensing at the toe, but proportional bias (b=1.22) and fixed bias (a=-10.23cm) were detected in inertial sensing at the heel. These results indicate that the presented algorithm could be applied to foot-worn inertial sensors to estimate maximum jump height enabling assessment outside of traditional laboratory settings, and to avoid bias errors, the toe may be a more suitable location for inertial sensor placement than the heel.

  3. Performance Development in Adolescent Track and Field Athletes According to Age, Sex and Sport Discipline

    PubMed Central

    Tønnessen, Espen; Svendsen, Ida Siobhan; Olsen, Inge Christoffer; Guttormsen, Atle; Haugen, Thomas

    2015-01-01

    Introduction Sex-specific differences that arise during puberty have a pronounced effect on the training process. However, the consequences this should have for goal-setting, planning and implementation of training for boys and girls of different ages remains poorly understood. The aim of this study was to quantify performance developments in athletic running and jumping disciplines in the age range 11-18 and identify progression differences as a function of age, discipline and sex. Methods The 100 all-time best Norwegian male and female 60-m, 800-m, long jump and high jump athletes in each age category from 11 to 18 years were analysed using mixed models with random intercept according to athlete. Results Male and female athletes perform almost equally in running and jumping events up to the age of 12. Beyond this age, males outperform females. Relative annual performance development in females gradually decreases throughout the analyzed age period. In males, annual relative performance development accelerates up to the age of 13 (for running events) or 14 (for jumping events) and then gradually declines when approaching 18 years of age. The relative improvement from age 11 to 18 was twice as high in jumping events compared to running events. For all of the analyzed disciplines, overall improvement rates were >50% higher for males than for females. The performance sex difference evolves from < 5% to 10-18% in all the analyzed disciplines from age 11 to 18 yr. Conclusion To the authors’ knowledge, this is the first study to present absolute and relative annual performance developments in running and jumping events for competitive athletes from early to late adolescence. These results allow coaches and athletes to set realistic goals and prescribe conditioning programs that take into account sex-specific differences in the rate of performance development at different stages of maturation. PMID:26043192

  4. On a problem of reconstruction of a discontinuous function by its Radon transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derevtsov, Evgeny Yu.; Maltseva, Svetlana V.; Svetov, Ivan E.

    A problem of reconstruction of a discontinuous function by its Radon transform is considered. One of the approaches to the numerical solution for the problem consists in the next sequential steps: a visualization of a set of breaking points; an identification of this set; a determination of jump values; an elimination of discontinuities. We consider three of listed problems except the problem of jump values. The problems are investigated by mathematical modeling using numerical experiments. The results of simulation are satisfactory and allow to hope for the further development of the approach.

  5. The Nutritional Characteristics of the Hypotensive WASHOKU-modified DASH Diet: A Sub-analysis of the DASH-JUMP Study.

    PubMed

    Kawamura, Atsuko; Kajiya, Katsuko; Kishi, Hiroko; Inagaki, Junko; Mitarai, Makoto; Oda, Hiroshi; Umemoto, Seiji; Kobayashi, Sei

    2018-01-01

    We developed a WASHOKU-modified DASH diet named DASH-JUMP. We previously reported the hypotensive effect of the DASH-JUMP diet in Japanese participants with untreated high-normal Blood Pressure (BP) or stage 1 hypertension. We aim to introduce the DASH-JUMP diet worldwide as a new lifestyle medicine. Accordingly, we prospectively assessed the nutritional characteristics of the DASH-JUMP diet. Participants were treated with the DASH-JUMP diet for 2 months. Then, for 4 months after the intervention, they consumed their usual diets. We conducted a nutritional survey using the FFQg nutrient questionnaire at baseline and after 1, 2, 3, and 6 months. We received completed questionnaires from 55 participants (28 men and 27 women; mean age 54.2 ± 8.0 years) and analyzed them. The DASH-JUMP diet is rich in green-yellow vegetables, seaweed, milk, and mushrooms, while it has low contents of meat, eggs, confectionery, oils and fats, pickles, shellfish boiled in sweetened soy sauce, and fruits. Nutrients significantly associated with the observed change in systolic BP were niacin (P = 0.005) and carbohydrate (P = 0.033). The results of the FFQg questionnaire revealed that participants who had an increased BP at 1 month after ceasing the intervention had eating habits that broadly imitated the DASH-JUMP diet at 4 months after ceasing the intervention. Therefore, the systolic and diastolic BP values at 4 months after ceasing the intervention decreased significantly compared to those at baseline. The DASH-JUMP diet may represent a new lifestyle medicine for reducing hypertension. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. The concurrent validity and reliability of a low-cost, high-speed camera-based method for measuring the flight time of vertical jumps.

    PubMed

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos M; del Campo-Vecino, Juan; Bavaresco, Nicolás

    2014-02-01

    Flight time is the most accurate and frequently used variable when assessing the height of vertical jumps. The purpose of this study was to analyze the validity and reliability of an alternative method (i.e., the HSC-Kinovea method) for measuring the flight time and height of vertical jumping using a low-cost high-speed Casio Exilim FH-25 camera (HSC). To this end, 25 subjects performed a total of 125 vertical jumps on an infrared (IR) platform while simultaneously being recorded with a HSC at 240 fps. Subsequently, 2 observers with no experience in video analysis analyzed the 125 videos independently using the open-license Kinovea 0.8.15 software. The flight times obtained were then converted into vertical jump heights, and the intraclass correlation coefficient (ICC), Bland-Altman plot, and Pearson correlation coefficient were calculated for those variables. The results showed a perfect correlation agreement (ICC = 1, p < 0.0001) between both observers' measurements of flight time and jump height and a highly reliable agreement (ICC = 0.997, p < 0.0001) between the observers' measurements of flight time and jump height using the HSC-Kinovea method and those obtained using the IR system, thus explaining 99.5% (p < 0.0001) of the differences (shared variance) obtained using the IR platform. As a result, besides requiring no previous experience in the use of this technology, the HSC-Kinovea method can be considered to provide similarly valid and reliable measurements of flight time and vertical jump height as more expensive equipment (i.e., IR). As such, coaches from many sports could use the HSC-Kinovea method to measure the flight time and height of their athlete's vertical jumps.

  7. The Drosophila indirect flight muscle myosin heavy chain isoform is insufficient to transform the jump muscle into a highly stretch-activated muscle type

    PubMed Central

    Zhao, Cuiping

    2017-01-01

    Stretch activation (SA) is a delayed increase in force that enables high power and efficiency from a cyclically contracting muscle. SA exists in various degrees in almost all muscle types. In Drosophila, the indirect flight muscle (IFM) displays exceptionally high SA force production (FSA), whereas the jump muscle produces only minimal FSA. We previously found that expressing an embryonic (EMB) myosin heavy chain (MHC) isoform in the jump muscle transforms it into a moderately SA muscle type and enables positive cyclical power generation. To investigate whether variation in MHC isoforms is sufficient to produce even higher FSA, we substituted the IFM MHC isoform (IFI) into the jump muscle. Surprisingly, we found that IFI only caused a 1.7-fold increase in FSA, less than half the increase previously observed with EMB, and only at a high Pi concentration, 16 mM. This IFI-induced FSA is much less than what occurs in IFM, relative to isometric tension, and did not enable positive cyclical power generation by the jump muscle. Both isometric tension and FSA of control fibers decreased with increasing Pi concentration. However, for IFI-expressing fibers, only isometric tension decreased. The rate of FSA generation was ~1.5-fold faster for IFI fibers than control fibers, and both rates were Pi dependent. We conclude that MHC isoforms can alter FSA and hence cyclical power generation but that isoforms can only endow a muscle type with moderate FSA. Highly SA muscle types, such as IFM, likely use a different or additional mechanism. PMID:27881413

  8. Delusion proneness and 'jumping to conclusions': relative and absolute effects.

    PubMed

    van der Leer, L; Hartig, B; Goldmanis, M; McKay, R

    2015-04-01

    That delusional and delusion-prone individuals 'jump to conclusions' is one of the most robust and important findings in the literature on delusions. However, although the notion of 'jumping to conclusions' (JTC) implies gathering insufficient evidence and reaching premature decisions, previous studies have not investigated whether the evidence gathering of delusion-prone individuals is, in fact, suboptimal. The standard JTC effect is a relative effect but using relative comparisons to substantiate absolute claims is problematic. In this study we investigated whether delusion-prone participants jump to conclusions in both a relative and an absolute sense. Healthy participants (n = 112) completed an incentivized probabilistic reasoning task in which correct decisions were rewarded and additional information could be requested for a small price. This combination of rewards and costs generated optimal decision points. Participants also completed measures of delusion proneness, intelligence and risk aversion. Replicating the standard relative finding, we found that delusion proneness significantly predicted task decisions, such that the more delusion prone the participants were, the earlier they decided. This finding was robust when accounting for the effects of risk aversion and intelligence. Importantly, high-delusion-prone participants also decided in advance of an objective rational optimum, gathering fewer data than would have maximized their expected payoff. Surprisingly, we found that even low-delusion-prone participants jumped to conclusions in this absolute sense. Our findings support and clarify the claim that delusion formation is associated with a tendency to 'jump to conclusions'. In short, most people jump to conclusions, but more delusion-prone individuals 'jump further'.

  9. Multi-jump magnetic switching in ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-08-07

    Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20}(5–75 nm) thin films grown on Si/amorphous SiO{sub 2} are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the filmsmore » are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices.« less

  10. Revisiting the emission from relativistic blast waves in a density-jump medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, J. J.; Huang, Y. F.; Dai, Z. G.

    2014-09-01

    Re-brightening bumps are frequently observed in gamma-ray burst afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps cannot be produced under common conditions, rather only a short plateau may emerge even when the encounter occurs at an earlymore » time (<10{sup 4} s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be caused by other scenarios.« less

  11. Dynamical jumping real-time fault-tolerant routing protocol for wireless sensor networks.

    PubMed

    Wu, Guowei; Lin, Chi; Xia, Feng; Yao, Lin; Zhang, He; Liu, Bing

    2010-01-01

    In time-critical wireless sensor network (WSN) applications, a high degree of reliability is commonly required. A dynamical jumping real-time fault-tolerant routing protocol (DMRF) is proposed in this paper. Each node utilizes the remaining transmission time of the data packets and the state of the forwarding candidate node set to dynamically choose the next hop. Once node failure, network congestion or void region occurs, the transmission mode will switch to jumping transmission mode, which can reduce the transmission time delay, guaranteeing the data packets to be sent to the destination node within the specified time limit. By using feedback mechanism, each node dynamically adjusts the jumping probabilities to increase the ratio of successful transmission. Simulation results show that DMRF can not only efficiently reduce the effects of failure nodes, congestion and void region, but also yield higher ratio of successful transmission, smaller transmission delay and reduced number of control packets.

  12. Electron heating and the potential jump across fast mode shocks. [in interplanetary space

    NASA Technical Reports Server (NTRS)

    Schwartz, Steven J.; Thomsen, Michelle F.; Bame, S. J.; Stansberry, John

    1988-01-01

    Two different methods were applied to determine the cross-shock potential jump in the de Hoffmann-Teller reference frame, using a data set that represented 66 crossings of the terrestrial bow shock and 14 interplanetary shocks observed by various ISEE spacecraft, and one crossing each of the Jovian bow shock and the Uranian bow shock made by the Voyager spacecraft. Results for estimates of the electrostatic potential based on an estimate of the jump in electron enthalpy correlated well with estimates based on Liouville's theorem, although the Liouville-determined values were systematically the higher of the two, suggesting that significant irreversible processes contribute to the shape of the downstream distribution. The potential jump corresponds to approximately 12-15 percent of the incident ion ram kinetic energy, and was found not to be controlled by the Mach number, plasma beta, shock geometry, or electron to ion temperature ratios.

  13. Pre-Activity Modulation of Lower Extremity Muscles Within Different Types and Heights of Deep Jump

    PubMed Central

    Mrdakovic, Vladimir; Ilic, Dusko B.; Jankovic, Nenad; Rajkovic, Zeljko; Stefanovic, Djordje

    2008-01-01

    The purpose of this study was to determine modulation of pre- activity related to different types and heights of deep jump. Sixteen male soccer players without experience in deep jumps training (the national competition; 15.0 ± 0.5yrs; weight 61.9 ± 6.1kg; height 1.77 ± 0.07m), who participated in the study, performed three types of deep jump (bounce landing, counter landing, and bounce drop jump) from three different heights (40cm, 60cm, and 80cm). Surface EMG device (1000Hz) was used to estimate muscle activity (maximal amplitude of EMG - AmaxEMG; integral EMG signal - iEMG) of five muscles (mm.gastrocnemii, m.soleus, m.tibialis anterior, m.vastus lateralis) within 150ms before touchdown. All the muscles, except m. gastrocnemius medialis, showed systematic increase in pre-activity when platform height was raised. For most of the lower extremity muscles, the most significant differences were between values of pre-activity obtained for 40 cm and 80 cm platforms. While the amount of muscle pre-activity in deep jumps from the heights above and beneath the optimal one did not differ significantly from that generated in deep jumps from the optimal drop height of 60 cm, the patterns of muscle pre-activity obtained for the heights above the optimal one did differ from those obtained for the optimal drop height. That suggests that deep jumps from the heights above the optimal one do not seem to be an adequate exercise for adjusting muscle activity for the impact. Muscle pre-activity in bounce drop jumps differed significantly from that in counter landing and bounce landing respectively, which should indicate that a higher amount of pre-activity generated during bounce drop jumps was used for performing take-offs. As this study included the subjects who were not familiar with deep jumps training, the prospective studies should reveal the results of athletes with previous experience. Key pointsHeight factor proved to be more relevant for the change in pre-activation level compared to the drop jump type factor.There is evident qualitative difference in pattern of pre-activation from lower and higher drop heights, compared to pattern of pre-activation obtained from optimal drop height.Drop jumps from the heights above the optimal one are not adequate for nicely preparing muscle activity for the impact. PMID:24149460

  14. The effects of carbohydrate loading on repetitive jump squat power performance.

    PubMed

    Hatfield, Disa L; Kraemer, William J; Volek, Jeff S; Rubin, Martyn R; Grebien, Bianca; Gómez, Ana L; French, Duncan N; Scheett, Timothy P; Ratamess, Nicholas A; Sharman, Matthew J; McGuigan, Michael R; Newton, Robert U; Häkkinen, Keijo

    2006-02-01

    The beneficial role of carbohydrate (CHO) supplementation in endurance exercise is well documented. However, only few data are available on the effects of CHO loading on resistance exercise performance. Because of the repetitive use of high-threshold motor units, it was hypothesized that the power output (power-endurance) of multiple sets of jump squats would be enhanced following a high-CHO (6.5 g CHO kg body mass(-1)) diet compared to a moderate-CHO (4.4 g CHO kg body mass(-1)) diet. Eight healthy men (mean +/- SD: age 26.3 +/- 2.6 years; weight 73.0 +/- 6.3 kg; body fat 13.4 +/- 5.0%; height 178.2 +/- 6.1 cm) participated in 2 randomly assigned counterbalanced supplementation periods of 4 days after having their free-living habitual diet monitored. The resistance exercise test consisted of 4 sets of 12 repetitions of maximal-effort jump squats using a Plyometric Power System unit and a load of 30% of 1 repetition maximum (1RM). A 2-minute rest period was used between sets. Immediately before and after the exercise test, a blood sample was obtained to determine the serum glucose and blood lactate concentrations. No significant difference in power performance existed between the 2 diets. As expected, there was a significant (p

  15. Effects of Different Combinations of Strength, Power, and Plyometric Training on the Physical Performance of Elite Young Soccer Players.

    PubMed

    Kobal, Ronaldo; Loturco, Irineu; Barroso, Renato; Gil, Saulo; Cuniyochi, Rogério; Ugrinowitsch, Carlos; Roschel, Hamilton; Tricoli, Valmor

    2017-06-01

    The combination of strength (ST) and plyometric training (PT) has been shown to be effective for improving sport-specific performance. However, there is no consensus about the most effective way to combine these methods in the same training session to produce greater improvements in neuromuscular performance of soccer players. Thus, the purpose of this study was to compare the effects of different combinations of ST and PT sequences on strength, jump, speed, and agility capacities of elite young soccer players. Twenty-seven soccer players (age: 18.9 ± 0.6 years) participated in an 8-week resistance training program and were divided into 3 groups: complex training (CP) (ST before PT), traditional training (TD) (PT before ST), and contrast training (CT) (ST and PT performed alternately, set by set). The experimental design took place during the competitive period of the season. The ST composed of half-squat exercises performed at 60-80% of 1 repetition maximum (1RM); the PT composed of drop jump exercises executed in a range from 30 to 45 cm. After the experimental period, the maximum dynamic strength (half-squat 1RM) and vertical jump ability (countermovement jump height) increased similarly and significantly in the CP, TD, and CT (48.6, 46.3, and 53% and 13, 14.2, and 14.7%, respectively). Importantly, whereas the TD group presented a significant decrease in sprinting speed in 10 (7%) and 20 m (6%), the other groups did not show this response. Furthermore, no significant alterations were observed in agility performance in any experimental group. In conclusion, in young soccer players, different combinations and sequences of ST and PT sets result in similar performance improvements in muscle strength and jump ability. However, it is suggested that the use of the CP and CT methods is more indicated to maintain/maximize the sprint performance of these athletes.

  16. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    PubMed Central

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal segments. PMID:26919645

  17. Peak knee biomechanics and limb symmetry following unilateral anterior cruciate ligament reconstruction: Associations of walking gait and jump-landing outcomes.

    PubMed

    Pfeiffer, Steven J; Blackburn, J Troy; Luc-Harkey, Brittney; Harkey, Matthew S; Stanley, Laura E; Frank, Barnett; Padua, Darin; Marshall, Stephen W; Spang, Jeffrey T; Pietrosimone, Brian

    2018-03-01

    Aberrant walking-gait and jump-landing biomechanics may influence the development of post-traumatic osteoarthritis and increase the risk of a second anterior cruciate ligament injury, respectively. It remains unknown if individuals who demonstrate altered walking-gait biomechanics demonstrate similar altered biomechanics during jump-landing. Our aim was to determine associations in peak knee biomechanics and limb-symmetry indices between walking-gait and jump-landing tasks in individuals with a unilateral anterior cruciate ligament reconstruction. Thirty-five individuals (74% women, 22.1 [3.4] years old, 25 [3.89] kg/m 2 ) with an anterior cruciate ligament reconstruction performed 5-trials of self-selected walking-gait and jump-landing. Peak kinetics and kinematics were extracted from the first 50% of stance phase during walking-gait and first 100 ms following ground contact for jump-landing. Pearson product-moment (r) and Spearman's Rho (ρ) analyses were used to evaluate relationships between outcome measures. Significance was set a priori (P ≤ 0.05). All associations between walking-gait and jump-landing for the involved limb, along with the majority of associations for limb-symmetry indices and the uninvolved limb, were negligible and non-statistically significant. There were weak significant associations for instantaneous loading rate (ρ = 0.39, P = 0.02) and peak knee abduction angle (ρ = 0.36, p = 0.03) uninvolved limb, as well as peak abduction displacement limb-symmetry indices (ρ= - 0.39, p = 0.02) between walking-gait and jump-landing. No systematic associations were found between walking-gait and jump-landing biomechanics for either limb or limb-symmetry indices in people with unilateral anterior cruciate ligament reconstruction. Individuals with an anterior cruciate ligament reconstruction who demonstrate high-involved limb loading or asymmetries during jump-landing may not demonstrate similar biomechanics during walking-gait. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Determining the Optimum Power Load in Jump Squat Using the Mean Propulsive Velocity

    PubMed Central

    Loturco, Irineu; Nakamura, Fabio Yuzo; Tricoli, Valmor; Kobal, Ronaldo; Cal Abad, Cesar Cavinato; Kitamura, Katia; Ugrinowitsch, Carlos; Gil, Saulo; Pereira, Lucas Adriano; González-Badillo, Juan José

    2015-01-01

    The jump squat is one of the exercises most frequently used to improve lower body power production, which influences sports performance. However, the traditional determination of the specific workload at which power production is maximized (i.e., optimum power load) is time-consuming and requires one-repetition maximum tests. Therefore, the aim of this study was to verify whether elite athletes from different sports would produce maximum mean propulsive power values at a narrow range of mean propulsive velocities, resulting in similar jump heights. One hundred and nine elite athletes from several individual/team sport disciplines underwent repetitions at maximal velocity with progressive loads, starting at 40% of their body mass with increments of 10% to determine the individual optimum power zone. Results indicated that regardless of sport discipline, the athletes’ optimum mean propulsive power was achieved at a mean propulsive velocity close to 1.0 m.s−1 (1.01 ± 0.07 m.s−1) and at a jump height close to 20 cm (20.47 ± 1.42 cm). Data were narrowly scattered around these values. Therefore, jump squat optimum power load can be determined simply by means of mean propulsive velocity or jump height determination in training/testing settings, allowing it to be implemented quickly in strength/power training. PMID:26444293

  19. One-Dimensional Hydraulic Theory Applied to Experimental Subaqueous Fans with Supercritical Distributaries

    NASA Astrophysics Data System (ADS)

    Hamilton, P.; Strom, K.; Hoyal, D. C. J. D.

    2015-12-01

    Subaqueous fans are distributive channel systems that form in a variety of settings including offshore marine, sub-lacustrine, and reservoirs. These distributive systems create complex sedimentation patterns through repeated avulsion to fill in a basin. Here we ran a series of experiments to explore the intrinsic controls on avulsion cycles on subaqueous fans. Experiments are a convenient way to study these systems since the time-scale of fan development is dramatically shortened compared to natural settings, all boundary conditions can be controlled, and the experimental domain can be instrumented to monitor the pertinent hydraulic and morphologic variables. Experiments in this study used saline underflows and crushed plastic sediment fed down an imposed slope covered in the sediment. Avulsion cycles are a central feature in these experiments which are characterized by: (1) channel extension and stagnation; (2) bar aggradation and hydraulic jump initiation; (3) upstream retreat; and (4) flow avulsion. Looking at and analyzing these cycles yield the following conclusions: (1) distributive channels cease progradation due to a drop in sediment transport capacity in an expanded region ahead of the channel; (2) mouth bar aggradation leads to a large flow obstacle to cause the hydraulic jump feedback; (3) hydraulic jump regions are a significant locus of deposition; and (4) the upstream retreat rate is a function of sediment supply and the strength of the jump. We found that simple one-dimensional hydraulic principles such as the choked flow condition and the sequent depth ratio help to explain hydraulic jump initiation and emplaced lobe thickness respectively.

  20. Using Microsensor Technology to Quantify Match Demands in Collegiate Women's Volleyball.

    PubMed

    Vlantes, Travis G; Readdy, Tucker

    2017-12-01

    Vlantes, TG and Readdy, T. Using microsensor technology to quantify match demands in collegiate women's volleyball. J Strength Cond Res 31(12): 3266-3278, 2017-The purpose of this study was to quantify internal and external load demands of women's NCAA Division I collegiate volleyball competitions using microsensor technology and session rating of perceived exertion (S-RPE). Eleven collegiate volleyball players wore microsensor technology (Optimeye S5; Catapult Sports, Chicago, IL, USA) during 15 matches played throughout the 2016 season. Parameters examined include player load (PL), high impact PL, percentage of HI PL, explosive efforts (EEs), and jumps. Session rating of perceived exertion was collected 20 minutes postmatch using a modified Borg scale. The relationship between internal and external load was explored, comparing S-RPE data with the microsensor metrics (PL, HI PL, % HI PL, EEs, and jumps). The setter had the greatest mean PL and highest number of jumps of all positions in a 5-1 system, playing all 6 rotations. Playing 4 sets yielded a mean PL increase of 25.1% over 3 sets, whereas playing 5 sets showed a 31.0% increase in PL. A multivariate analysis of variance revealed significant differences (p < 0.01) across all position groups when examining % HI PL and jumps. Cohen's d analysis revealed large (≥0.8) effect sizes for these differences. Defensive specialists recorded the greatest mean S-RPE values over all 15 matches (886 ± 384.6). Establishing positional load demands allows coaches, trainers, and strength and conditioning professionals to implement training programs for position-specific demands, creating consistent peak performance, and reducing injury risk.

  1. Performance changes and relationship between vertical jump measures and actual sprint performance in elite sprinters with visual impairment throughout a Parapan American games training season

    PubMed Central

    Loturco, Irineu; Winckler, Ciro; Kobal, Ronaldo; Cal Abad, Cesar C.; Kitamura, Katia; Veríssimo, Amaury W.; Pereira, Lucas A.; Nakamura, Fábio Y.

    2015-01-01

    The aims of this study were to estimate the magnitude of variability and progression in actual competitive and field vertical jump test performances in elite Paralympic sprinters with visual impairment in the year leading up to the 2015 Parapan American Games, and to investigate the relationships between loaded and unloaded vertical jumping test results and actual competitive sprinting performance. Fifteen Brazilian Paralympic sprinters with visual impairment attended seven official competitions (four national, two international and the Parapan American Games 2015) between April 2014 and August 2015, in the 100- and 200-m dash. In addition, they were tested in five different periods using loaded (mean propulsive power [MPP] in jump squat [JS] exercise) and unloaded (squat jump [SJ] height) vertical jumps within the 3 weeks immediately prior to the main competitions. The smallest important effect on performances was calculated as half of the within-athlete race-to-race (or test-to-test) variability and a multiple regression analysis was performed to predict the 100- and 200-m dash performances using the vertical jump test results. Competitive performance was enhanced during the Parapan American Games in comparison to the previous competition averages, overcoming the smallest worthwhile enhancement in both the 100- (0.9%) and 200-m dash (1.43%). In addition, The SJ and JS explained 66% of the performance variance in the competitive results. This study showed that vertical jump tests, in loaded and unloaded conditions, could be good predictors of the athletes' sprinting performance, and that during the Parapan American Games the Brazilian team reached its peak competitive performance. PMID:26594181

  2. Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; hide

    2014-01-01

    Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).

  3. The Drosophila indirect flight muscle myosin heavy chain isoform is insufficient to transform the jump muscle into a highly stretch-activated muscle type.

    PubMed

    Zhao, Cuiping; Swank, Douglas M

    2017-02-01

    Stretch activation (SA) is a delayed increase in force that enables high power and efficiency from a cyclically contracting muscle. SA exists in various degrees in almost all muscle types. In Drosophila, the indirect flight muscle (IFM) displays exceptionally high SA force production (F SA ), whereas the jump muscle produces only minimal F SA We previously found that expressing an embryonic (EMB) myosin heavy chain (MHC) isoform in the jump muscle transforms it into a moderately SA muscle type and enables positive cyclical power generation. To investigate whether variation in MHC isoforms is sufficient to produce even higher F SA , we substituted the IFM MHC isoform (IFI) into the jump muscle. Surprisingly, we found that IFI only caused a 1.7-fold increase in F SA , less than half the increase previously observed with EMB, and only at a high Pi concentration, 16 mM. This IFI-induced F SA is much less than what occurs in IFM, relative to isometric tension, and did not enable positive cyclical power generation by the jump muscle. Both isometric tension and F SA of control fibers decreased with increasing Pi concentration. However, for IFI-expressing fibers, only isometric tension decreased. The rate of F SA generation was ~1.5-fold faster for IFI fibers than control fibers, and both rates were Pi dependent. We conclude that MHC isoforms can alter F SA and hence cyclical power generation but that isoforms can only endow a muscle type with moderate F SA Highly SA muscle types, such as IFM, likely use a different or additional mechanism. Copyright © 2017 the American Physiological Society.

  4. Record statistics for biased random walks, with an application to financial data

    NASA Astrophysics Data System (ADS)

    Wergen, Gregor; Bogner, Miro; Krug, Joachim

    2011-05-01

    We consider the occurrence of record-breaking events in random walks with asymmetric jump distributions. The statistics of records in symmetric random walks was previously analyzed by Majumdar and Ziff [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.050601 101, 050601 (2008)] and is well understood. Unlike the case of symmetric jump distributions, in the asymmetric case the statistics of records depends on the choice of the jump distribution. We compute the record rate Pn(c), defined as the probability for the nth value to be larger than all previous values, for a Gaussian jump distribution with standard deviation σ that is shifted by a constant drift c. For small drift, in the sense of c/σ≪n-1/2, the correction to Pn(c) grows proportional to arctan(n) and saturates at the value (c)/(2σ). For large n the record rate approaches a constant, which is approximately given by 1-(σ/2πc)exp(-c2/2σ2) for c/σ≫1. These asymptotic results carry over to other continuous jump distributions with finite variance. As an application, we compare our analytical results to the record statistics of 366 daily stock prices from the Standard & Poor's 500 index. The biased random walk accounts quantitatively for the increase in the number of upper records due to the overall trend in the stock prices, and after detrending the number of upper records is in good agreement with the symmetric random walk. However the number of lower records in the detrended data is significantly reduced by a mechanism that remains to be identified.

  5. A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces with randomly distributed structures

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Zhi; Yuan, Wu-Zhi

    2018-04-01

    The motion of coalescence-induced condensate droplets on superhydrophobic surface (SHS) has attracted increasing attention in energy-related applications. Previous researches were focused on regularly rough surfaces. Here a new approach, a mesoscale lattice Boltzmann method (LBM), is proposed and used to model the dynamic behavior of coalescence-induced droplet jumping on SHS with randomly distributed rough structures. A Fast Fourier Transformation (FFT) method is used to generate non-Gaussian randomly distributed rough surfaces with the skewness (Sk), kurtosis (K) and root mean square (Rq) obtained from real surfaces. Three typical spreading states of coalesced droplets are observed through LBM modeling on various rough surfaces, which are found to significantly influence the jumping ability of coalesced droplet. The coalesced droplets spreading in Cassie state or in composite state will jump off the rough surfaces, while the ones spreading in Wenzel state would eventually remain on the rough surfaces. It is demonstrated that the rough surfaces with smaller Sks, larger Rqs and a K at 3.0 are beneficial to coalescence-induced droplet jumping. The new approach gives more detailed insights into the design of SHS.

  6. cfDNA as an Earlier Predictor of Exercise-Induced Performance Decrement Related to Muscle Damage.

    PubMed

    Andreatta, Michely V; Curty, Victor M; Coutinho, João Victor S; Santos, Miguel Ângelo A; Vassallo, Paula F; de Sousa, Nuno F; Barauna, Valério G

    2017-11-28

    The aims of this study were: a) to evaluate whether cell-free DNA (cfDNA) levels increase immediately after an acute light and heavy resistance exercise (RE) bout, and b) to whether cfDNA levels are associated with functional muscle capacity until 48hrs after exercise session. Twenty healthy volunteers performed 3 sets of the leg press resistance exercise with 80% of 1RM (RE80) or 40% of 1RM (RE40) with similar exercise volume. Blood lactate was measured after completion of the 3 sets. Creatine kinase (CK), cfDNA and jump performance were evaluated before (pre) exercise, immediately post-exercise (Post-0) and every 24hrs until 48hrs. Lactate concentration increased similarly in both groups (RE40, 4.0±1.3mmol/L; RE80, 4.8±1.3mmol/L). No changes were observed in squat jump and countermovement jump performance after RE40, however both jumps remained reduced until 48h in RE80 group. CK concentration increased post-24h only in the RE80 group (Pre: 128.8±73.7U/L to Post-24h: 313.8±116.4U/L). cfDNA concentration increased post-0h only in the RE80 group (Pre, 249.8±82.3ng/mL; Post-0h, 406.3±67.2ng/mL). There was a negative correlation between post-0h cfDNA concentration and post-24h squat jump (r=-0.521; p=0.01) and post-0h cfDNA concentration and post-24h countermovement jump (r=-0.539; p=0.01). cfDNA increases in responsive to RE intensity even when not performed until exhaustion. cfDNA measured immediately after RE is a promising biomarker for muscle performance decrement until 48hrs of a RE bout.

  7. Exact-Output Tracking Theory for Systems with Parameter Jumps

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh; Paden, Brad; Rossi, Carlo

    1996-01-01

    In this paper we consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to nonminimum-phase systems and obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exo-system, then we develop an exact-tracking controller in a feedback form. As in standard regulator theory, we obtain a linear map from the states of the exo-system to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.

  8. Exact-Output Tracking Theory for Systems with Parameter Jumps

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh; Paden, Brad; Rossi, Carlo

    1997-01-01

    We consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to non-minimum-phase systems and it obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exosystem, then we develop an exact-tracking controller in a feed-back form. As in standard regulator theory, we obtain a linear map from the states of the exosystem to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.

  9. The Effects of the Swede-O, New Cross, and McDavid Ankle Braces and Adhesive Ankle Taping on Speed, Balance, Agility, and Vertical Jump

    PubMed Central

    Paris, David L.

    1992-01-01

    Scores from motor performance tests were compared using subjects with taped and untaped ankles. Previous studies have shown that taped ankle support may be detrimental in vertical and standing broad jumping performance. Conflicting data have been published on the effects of commercial ankle braces on various motor tasks. The performances of 18 elite soccer players in selected tests of speed, balance, agility, and vertical jumping were compared under conditions of untaped, nonelastic adhesive taped, Swede-O-braced, New Cross-braced, and McDavid-braced ankles. Vertical jump performance was significantly reduced when subjects wore New Cross braces. There were no significant differences in tests of speed, balance, and agility among any of the support conditions. Until now, nonelastic adhesive tape has been the preferred method of prophylactic ankle support. I conclude that certain commercial ankle braces may be used as a support alternative during selected activities. ImagesFig 1. PMID:16558170

  10. The acute effects of stretching with vibration on dynamic flexibility in young female gymnasts.

    PubMed

    Johnson, Aaron W; Warcup, Caisa N; Seeley, Matthew K; Eggett, Dennis; Feland, Jeffery B

    2018-01-10

    While stretching with vibration has been shown to improve static flexibility; the effect of stretching with vibration on dynamic flexibility is not well known. The purpose of this study was to examine the effectiveness of stretching with vibration on acute dynamic flexibility and jump height in novice and advanced competitive female gymnasts during a split jump. Female gymnast (n=27, age: 11.5 ± 1.7 years, Junior Olympic levels 5-10) participated in this cross-over study. Dynamic flexibility during gymnastic split jumps were video recorded and analyzed with Dartfish software. All participants completed both randomized stretching protocols with either the vibration platform turned on (VIB) (frequency of 30 Hz and 2 mm amplitude) or off (NoVIB) separated by 48 h. Participants performed 4 sets of three stretches on the vibration platform. Each stretch was held for 30 s with 5 s rest for a total of 7 min of stretch. Split jump flexibility decreased significantly from pre to post measurement in both VIB (-5.8°±5.9°) (p<0.001) and NoVIB (-2.6°±6.1°) (p=0.041) conditions (adjusted for gymnast level). This effect was greatest in lower skill level gymnasts (p=0.003), while the highest skill level gymnasts showed no significant decrease in the split jump (p=0.105). Jump height was not significantly different between conditions (p=0.892) or within groups (p=0.880). An acute session of static stretching with or without vibration immediately before performance does not alter jump height. Stretching with vibration immediately prior to gymnastics competition decreases split jump flexibility in lower level gymnasts more than upper level gymnasts.

  11. Cause-specific mortality time series analysis: a general method to detect and correct for abrupt data production changes

    PubMed Central

    2011-01-01

    Background Monitoring the time course of mortality by cause is a key public health issue. However, several mortality data production changes may affect cause-specific time trends, thus altering the interpretation. This paper proposes a statistical method that detects abrupt changes ("jumps") and estimates correction factors that may be used for further analysis. Methods The method was applied to a subset of the AMIEHS (Avoidable Mortality in the European Union, toward better Indicators for the Effectiveness of Health Systems) project mortality database and considered for six European countries and 13 selected causes of deaths. For each country and cause of death, an automated jump detection method called Polydect was applied to the log mortality rate time series. The plausibility of a data production change associated with each detected jump was evaluated through literature search or feedback obtained from the national data producers. For each plausible jump position, the statistical significance of the between-age and between-gender jump amplitude heterogeneity was evaluated by means of a generalized additive regression model, and correction factors were deduced from the results. Results Forty-nine jumps were detected by the Polydect method from 1970 to 2005. Most of the detected jumps were found to be plausible. The age- and gender-specific amplitudes of the jumps were estimated when they were statistically heterogeneous, and they showed greater by-age heterogeneity than by-gender heterogeneity. Conclusion The method presented in this paper was successfully applied to a large set of causes of death and countries. The method appears to be an alternative to bridge coding methods when the latter are not systematically implemented because they are time- and resource-consuming. PMID:21929756

  12. Contributing factors to performance of a medicine ball explosive power test: a comparison between jump and nonjump athletes.

    PubMed

    Stockbrugger, Barry A; Haennel, Robert G

    2003-11-01

    The present study examined the factors contributing to performance of a backward overhead medicine ball throw (B-MBT) across 2 types of athletes. Twenty male volleyball players (jump athletes) and 20 wrestlers (nonjump athletes) were evaluated on 4 measures of power, including B-MBT, chest medicine ball throw (C-MBT), countermovement vertical jump (CMJ), and power index (PI). The athletes also completed 3 measures of strength: a 1-repetition-maximum (1RM) bench press (BP), a 1RM leg press (LP), and combined BP + LP strength. Jump athletes demonstrated greater absolute scores for CMJ, C-MBT, and B-MBT (p < 0.05), whereas nonjump athletes demonstrated greater strength scores for BP and for BP + LP (p < 0.05). When performances were examined on a relative basis, jump athletes achieved superior scores for C-MBT (p < 0.05), whereas nonjump athletes had greater scores for BP, LP, and BP + LP (p < 0.05). For both groups, B-MBT had strong correlations with PI (r = 0.817 [jump] and 0.917 [nonjump]), whereas for C-MBT, only nonjump athletes demonstrated a strong correlation (r = 0.842). When expressed in relative terms, B-MBT was strongly correlated with C-MBT (r = 0.762 [jump] and 0.835 [nonjump]) and CMJ (r = 0.899 [jump] and 0.945 [nonjump]). Only nonjump athletes demonstrated strong correlations with strength for absolute LP (r = 0.801) and BP + LP (r = 0.810) strength. The interaction of upper- and lower-body strength and power in the performance of a B-MBT appears complex, with the contributing factors differing for athletes with divergent skill sets and performance demands.

  13. Stress reactivity and personality in extreme sport athletes: The psychobiology of BASE jumpers.

    PubMed

    Monasterio, Erik; Mei-Dan, Omer; Hackney, Anthony C; Lane, Amy R; Zwir, Igor; Rozsa, Sandor; Cloninger, C Robert

    2016-12-01

    This is the first report of the psychobiology of stress in BASE jumpers, one of the most dangerous forms of extreme sport. We tested the hypotheses that indicators of emotional style (temperament) predict salivary cortisol reactivity, whereas indicators of intentional goal-setting (persistence and character) predict salivary alpha-amylase reactivity during BASE jumping. Ninety-eight subjects completed the Temperament and Character Inventory (TCI) the day before the jump, and 77 also gave salivary samples at baseline, pre-jump on the bridge over the New River Gorge, and post-jump upon landing. Overall BASE jumpers are highly resilient individuals who are highly self-directed, persistent, and risk-taking, but they are heterogeneous in their motives and stress reactivity in the Hypothalamic-Pituitary-Adrenal (HPA) stress system (cortisol reactivity) and the sympathetic arousal system (alpha-amylase reactivity). Three classes of jumpers were identified using latent class analysis based on their personality profiles, prior jumping experience, and levels of cortisol and alpha-amylase at all three time points. "Masterful" jumpers (class 1) had a strong sense of self-directedness and mastery, extensive prior experience, and had little alpha-amylase reactivity and average cortisol reactivity. "Trustful" jumpers (class 2) were highly cooperative and trustful individuals who had little cortisol reactivity coincident with the social support they experienced prior to jumping. "Courageous" jumpers (class 3) were determined despite anxiety and inexperience, and they had high sympathetic reactivity but average cortisol activation. We conclude that trusting social attachment (Reward Dependence) and not jumping experience predicted low cortisol reactivity, whereas persistence (determination) and not jumping experience predicted high alpha-amylase reactivity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Physical and temporal characteristics of under 19, under 21 and senior male beach volleyball players.

    PubMed

    Medeiros, Alexandre; Marcelino, Rui; Mesquita, Isabel; Palao, José Manuel

    2014-09-01

    This study aimed to assess the effects of age groups and players' role (blocker vs. defender specialist) in beach volleyball in relation to physical and temporal variables, considering quality of opposition. 1101 rallies from Under 19 (U19), 933 rallies from Under 21 (U21), and 1480 rallies from senior (senior) (Men's Swatch World Championships, 2010-2011) were observed using video match analysis. Cluster analysis was used to set teams' competitive levels and establish quality of opposition as "balanced", "moderate balanced" and "unbalanced" games. The analyzed variables were: temporal (duration of set, total rest time, total work time, duration of rallies, rest time between rallies) and physical (number of jumps and number of hits done by defenders and blockers) characteristics. A one-way ANOVA, independent samples t-test and multinomial logistic regression were performed to analyze the variables studied. The analysis of temporal and physical characteristics showed differences considering age group, player's role and quality of opposition. The duration of set, total rest time, and number of jumps done by defenders significantly increased from the U19 to senior category. Multinomial logistic regression showed that in: a) balanced games, rest time between rallies was higher in seniors than in U19 or U21; number of jumps done by defenders was higher in seniors than in U19) and U21; b) moderate balanced games, number of jumps done by defenders was higher in seniors than in U21 and number of jumps done by blockers was smaller in U19 than U21 or seniors; c) unbalanced games, no significant findings were shown. This study suggests differences in players' performances according to age group and players' role in different qualities of opposition. The article provides reference values that can be useful to guide training and create scenarios that resemble a competition, taking into account physical and temporal characteristics. Key PointsPlayer roles, quality of opposition, and competitive level of the teams influence physical and temporal characteristics, and they may be taken into consideration during the training by strength and conditioning coaches and coaches.More experienced players adopt strategies to better manage their effort and rest time between rallies.The game strategy affects the physical actions done by players (e.g. tendency to serve more to one player of the team affects the number of jumps performed by this player).

  15. The effects of repetitive drop jumps on impact phase joint kinematics and kinetics.

    PubMed

    Weinhandl, Joshua T; Smith, Jeremy D; Dugan, Eric L

    2011-05-01

    The purpose of the study was to investigate the effects of fatigue on lower extremity joint kinematics, and kinetics during repetitive drop jumps. Twelve recreationally active males (n = 6) and females (n = 6) (nine used for analysis) performed repetitive drop jumps until they could no longer reach 80% of their initial drop jump height. Kinematic and kinetic variables were assessed during the impact phase (100 ms) of all jumps. Fatigued landings were performed with increased knee extension, and ankle plantar flexion at initial contact, as well as increased ankle range of motion during the impact phase. Fatigue also resulted in increased peak ankle power absorption and increased energy absorption at the ankle. This was accompanied by an approximately equal reduction in energy absorption at the knee. While the knee extensors were the muscle group primarily responsible for absorbing the impact, individuals compensated for increased knee extension when fatigued by an increased use of the ankle plantar flexors to help absorb the forces during impact. Thus, as fatigue set in and individuals landed with more extended lower extremities, they adopted a landing strategy that shifted a greater burden to the ankle for absorbing the kinetic energy of the impact.

  16. Returners Exhibit Greater Jumping Performance Improvements During a Peaking Phase Compared With New Players on a Volleyball Team.

    PubMed

    Bazyler, Caleb D; Mizuguchi, Satoshi; Kavanaugh, Ashley A; McMahon, John J; Comfort, Paul; Stone, Michael H

    2018-06-21

    To determine if jumping-performance changes during a peaking phase differed among returners and new players on a female collegiate volleyball team and to determine which variables best explained the variation in performance changes. Fourteen volleyball players were divided into 2 groups-returners (n = 7) and new players (n = 7)-who completed a 5-wk peaking phase prior to conference championships. Players were tested at baseline before the preseason on measures of the vastus lateralis cross-sectional area using ultrasonography, estimated back-squat 1-repetition maximum, countermovement jump height (JH), and relative peak power on a force platform. Jumping performance, rating of perceived exertion training load, and sets played were recorded weekly during the peaking phase. There were moderate to very large (P < .01, Glass Δ = 1.74) and trivial to very large (P = .07, Δ = 1.09) differences in JH and relative peak power changes in favor of returners over new players, respectively, during the peaking phase. Irrespective of group, 7 of 14 players achieved peak JH 2 wk after the initial overreach. The number of sets played (r = .78, P < .01) and the athlete's preseason relative 1-repetition maximum (r = .54, P = .05) were the strongest correlates of JH changes during the peaking phase. Returners achieved greater improvements in jumping performance during the peaking phase compared with new players, which may be explained by the returners' greater relative maximal strength, time spent competing, and training experience. Thus, volleyball and strength coaches should consider these factors when prescribing training during a peaking phase to ensure their players are prepared for important competitions.

  17. Acute Effects of Two Different Warm-Up Protocols on Flexibility and Lower Limb Explosive Performance in Male and Female High Level Athletes

    PubMed Central

    Tsolakis, Charilaos; Bogdanis, Gregory C.

    2012-01-01

    This study examined the effects of two different warm-up protocols on lower limb power and flexibility in high level athletes. Twenty international level fencers (10 males and 10 females) performed two warm-up protocols that included 5-min light jogging and either short (15s) or long (45s) static stretching exercises for each of the main leg muscle groups (quadriceps, hamstrings and triceps surae), followed by either 3 sets of 3 (short stretching treatment), or 3 sets of 5 tuck jumps (long stretching treatment), in a randomized crossover design with one week between treatments. Hip joint flexion was measured with a Lafayette goniometer before and after the 5-min warm-up, after stretching and 8 min after the tuck jumps, while counter movement jump (CMJ) performance was evaluated by an Ergojump contact platform, before and after the stretching treatment, as well as immediately after and 8 minutes after the tuck jumps. Three way ANOVA (condition, time, gender) revealed significant time (p < 0.001) and gender (p < 0.001) main effects for hip joint flexion, with no interaction between factors. Flexibility increased by 6. 8 ± 1.1% (p < 0.01) after warm-up and by another 5.8 ± 1.6% (p < 0.01) after stretching, while it remained increased 8 min after the tuck jumps. Women had greater ROM compared with men at all time points (125 ± 8° vs. 94 ± 4° p<0.01 at baseline), but the pattern of change in hip flexibility was not different between genders. CMJ performance was greater in men compared with women at all time points (38.2 ± 1.9 cm vs. 29.8 ± 1.2 cm p < 0.01 at baseline), but the percentage of change CMJ performance was not different between genders. CMJ performance remained unchanged throughout the short stretching protocol, while it decreased by 5.5 ± 0.9% (p < 0.01) after stretching in the long stretching protocol However, 8 min after the tuck jumps, CMJ performance was not different from the baseline value (p = 0.075). In conclusion, lower limb power may be decreased after long periods of stretching, but performance of explosive exercises may reverse this phenomenon. Key points Stretching of the main leg muscle groups for 45 s results in a relatively large decrease (by 5.5%) in subsequent jumping performance Stretching of the main leg muscle groups for only 15 s results in an increase in flexibility similar to that of the longer duration stretching (by 12.6%), with no change in subsequent jumping performance Performance of a PAP exercise such as tuck jumps may reverse the negative effects of long duration stretching on leg muscle power. However, jumping performance is not increased above baseline Speed/power athletes should be advised against using long duration stretching. The number of repetitions of a PAP exercise such as the tuck jumps, should be further examined in order to induce an increase in explosive performance during competition PMID:24150077

  18. Cognitive factors in subjective stabilization of the visual world.

    PubMed

    Bridgeman, B

    1981-08-01

    If an eye movement signal is fed through a galvanic mirror, to move a projected image which a subject is inspecting, prominent objects in the image may seem to jiggle or jump with the the eye when the gain is just below the threshold for detecting a jump of the entire image (Brune and Lücking 1969). We have refined and extended this observation with both naive and practiced subjects, finding results which contradict all of the current theories about the mechanism of stabilization of the visual world and suggest that cognitive factors in perception important influences on the stabilization process. Using this method with a paired photocell system to detect horizontal eye movements, some subjects saw a prominent object in the display jump slightly while the rest of the scene remained stable. The task was done first with landscape slides, then repeated with Escher prints where two sets of alternating figures completely filled the image. Subjects could concentrate on one set of forms as the "figure" and the other as the "ground", and reverse the two at will. In a majority of practiced subjects and in smaller proportion of naive subjects, motion of part of the "figure" was seen regardless of which alternative set of forms constituted it. Reversibility of the effect controlled for influence of object size, brightness, etc. in inducing the selective jump. These and related observations show that cognitive or attentional variables are as important as image properties or gain alone in determining subjective stabilization of the visual world, though current theories (inflow, outflow, cancellation, etc.) consider image position to be simple variable. Another experiment showed that image movement on the retina during saccades cannot explain saccadic suppression of displacement.

  19. Experience, cortisol reactivity, and the coordination of emotional responses to skydiving

    PubMed Central

    Meyer, Vanessa J.; Lee, Yoojin; Böttger, Christian; Leonbacher, Uwe; Allison, Amber L.; Shirtcliff, Elizabeth A.

    2015-01-01

    Physiological habituation to laboratory stressors has previously been demonstrated, although the literature remains equivocal. Previous studies have found skydiving to be a salient naturalistic stressor that elicits a robust subjective and physiological stress response. However, it is uncertain whether (or how) stress reactivity habituates to this stressor given that skydiving remains a risky, life-threatening challenge with every jump despite experience. While multiple components of the stress response have been documented, it is unclear whether an individual’s subjective emotions are related to their physiological responses. Documenting coordinated responsivity would lend insight into shared underlying mechanisms for the nature of habituation of both subjective (emotion) and objective (cortisol) stress responses. Therefore, we examined subjective emotion and cortisol responses in first-time compared to experienced skydivers in a predominantly male sample (total n = 44; males = 32, females = 12). Hierarchical linear modeling (HLM) revealed that experienced skydivers showed less reactivity and faster recovery compared to first-time skydivers. Subjective emotions were coordinated with physiological responses primarily within first-time skydivers. Pre-jump anxiety predicted cortisol reactivity within first-time, but not experienced, skydivers. Higher post-jump happiness predicted faster cortisol recovery after jumping although this effect overlapped somewhat with the effect of experience. Results suggest that experience may modulate the coordination of emotional response with cortisol reactivity to skydiving. Prior experience does not appear to extinguish the stress response but rather alters the individual’s engagement of the HPA axis. PMID:25859199

  20. Discrete-time Markovian-jump linear quadratic optimal control

    NASA Technical Reports Server (NTRS)

    Chizeck, H. J.; Willsky, A. S.; Castanon, D.

    1986-01-01

    This paper is concerned with the optimal control of discrete-time linear systems that possess randomly jumping parameters described by finite-state Markov processes. For problems having quadratic costs and perfect observations, the optimal control laws and expected costs-to-go can be precomputed from a set of coupled Riccati-like matrix difference equations. Necessary and sufficient conditions are derived for the existence of optimal constant control laws which stabilize the controlled system as the time horizon becomes infinite, with finite optimal expected cost.

  1. Chromosome jumping from D4S10 (G8) toward the Huntington disease gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, J.E.; Gilliam, T.C.; Cole, J.L.

    1988-09-01

    The gene for Huntington disease (HD) has been localized to the distal portion of the short arm of human chromosome 4 by linkage analysis. Currently, the two closest DNA markers are D4S10 (G8), located /approx/3 centimorgans centromeric to HD, and D4S43 (C4H), positioned 0-1.5 centimorgans from HD. In an effort to move closer to the HD gene, with the eventual goal of identifying the gene itself, the authors have applied the technique of chromosome jumping to this region. A 200-kilobase jumping library has been constructed, and a jump from D4S10 has been obtained and its approximate distance verified by pulsedmore » field gel electrophoresis. Two restriction fragment length polymorphisms have been identified at the jump locus, which is denoted D4S81. Linkage analysis of previously identified recombinants between D4S10 and HD or D4S10 and D4S43 shows that in two of five events the jump has crossed the recombination points. This unequivocally orients D4S10 and D4S81 on the chromosome, provides additional markers for HD, and suggests that recombination frequency in this region of chromosome 4 may be increased, so that the physical distance from D4S10 to HD may not be as large as originally suspected.« less

  2. Understanding the etiology of the posteromedial tibial stress fracture.

    PubMed

    Milgrom, Charles; Burr, David B; Finestone, Aharon S; Voloshin, Arkady

    2015-09-01

    Previous human in vivo tibial strain measurements from surface strain gauges during vigorous activities were found to be below the threshold value of repetitive cyclical loading at 2500 microstrain in tension necessary to reduce the fatigue life of bone, based on ex vivo studies. Therefore it has been hypothesized that an intermediate bone remodeling response might play a role in the development of tibial stress fractures. In young adults tibial stress fractures are usually oblique, suggesting that they are the result of failure under shear strain. Strains were measured using surface mounted unstacked 45° rosette strain gauges on the posterior aspect of the flat medial cortex just below the tibial midshaft, in a 48year old male subject while performing vertical jumps, staircase jumps and running up and down stadium stairs. Shear strains approaching 5000 microstrain were recorded during stair jumping and vertical standing jumps. Shear strains above 1250 microstrain were recorded during runs up and down stadium steps. Based on predictions from ex vivo studies, stair and vertical jumping tibial shear strain in the test subject was high enough to potentially produce tibial stress fracture subsequent to repetitive cyclic loading without necessarily requiring an intermediate remodeling response to microdamage. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Retinal pulse wave velocity measurement using spectral-domain optical coherence tomography.

    PubMed

    Li, Qian; Li, Lin; Fan, Shanhui; Dai, Cuixia; Chai, Xinyu; Zhou, Chuanqing

    2018-02-01

    The human eyes provide a natural window for noninvasive measurement of the pulse wave velocity (PWV) of small arteries. By measuring the retinal PWV, the stiffness of small arteries can be assessed, which may better detect early vascular diseases. Therefore, retinal PWV measurement has attracted increasing attention. In this study, a jump-scanning method was proposed for noninvasive measurement of retinal PWV using spectral-domain optical coherence tomography (SD-OCT). The jump-scanning method uses the phase-resolved Doppler OCT to obtain the pulse shapes. To realize PWV measurement, the jump-scanning method extracts the transit time of the pulse wave from an original OCT scanning site to another through a transient jump. The measured retinal arterial PWV of a young human subject with normal blood pressure was in the order of 20 to 30 mm/s, which was consistent with previous studies. As a comparison, PWV of 50 mm/s was measured for a young human subject with prehypertension, which was in accordance with the finding of strong association between retinal PWV and blood pressure. In summary, it is believed the proposed jump-scanning method could benefit the research and diagnosis of vascular diseases through the window of human eyes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dynamic rupture modeling of thrust faults with parallel surface traces.

    NASA Astrophysics Data System (ADS)

    Peshette, P.; Lozos, J.; Yule, D.

    2017-12-01

    Fold and thrust belts (such as those found in the Himalaya or California Transverse Ranges) consist of many neighboring thrust faults in a variety of geometries. Active thrusts within these belts individually contribute to regional seismic hazard, but further investigation is needed regarding the possibility of multi-fault rupture in a single event. Past analyses of historic thrust surface traces suggest that rupture within a single event can jump up to 12 km. There is also observational precedent for long distance triggering between subparallel thrusts (e.g. the 1997 Harnai, Pakistan events, separated by 50 km). However, previous modeling studies find a maximum jumping rupture distance between thrust faults of merely 200 m. Here, we present a new dynamic rupture modeling parameter study that attempts to reconcile these differences and determine which geometrical and stress conditions promote jumping rupture. We use a community verified 3D finite element method to model rupture on pairs of thrust faults with parallel surface traces. We vary stress drop and fault strength to determine which conditions produce jumping rupture at different dip angles and different separations between surface traces. This parameter study may help to understand the likelihood of jumping rupture in real-world thrust systems, and may thereby improve earthquake hazard assessment.

  5. Mechanical efficiency and force–time curve variation during repetitive jumping in trained and untrained jumpers.

    PubMed

    McBride, Jeffrey M; Snyder, James G

    2012-10-01

    Mechanical efficiency (ME), the ratio between work performed and energy expenditure, is a useful criterion in determining the roles of stored elastic energy and chemically deduced energy contributing to concentric performance in stretch-shortening cycle movements. Increased force production during the eccentric phase has been shown to relate to optimal muscle-tendon unit (MTU) length change and thus optimization of usage of stored elastic energy. This phenomenon, as previously reported, is reflected by higher jump heights and ME. The purpose of this investigation was to determine if ME may be different between trained and untrained jumpers and thus be accounted for by variation in force production in the eccentric phase as a reflection of usage of stored elastic energy during various jump types. This investigation involved 9 trained (age 20.7 ± 3.2 years, height 178.6 ± 5.3 cm, body mass 79.0 ± 5.5 kg) and 7 untrained (age 21.43 ± 2.37 years, height 176.17 ± 10.89 cm, body mass 78.8 ± 12.5 kg) male jumpers. Trained subjects were Division I track and field athletes who compete in the horizontal or vertical jumping or running events. Force-time and displacement-time curves were obtained during jumping to determine jump height and to calculate work performed and to observe possible differences in force production in the eccentric phase. Respiratory gases with a metabolic cart were obtained during jumping to calculate energy expenditure. ME was calculated as the ratio between work performed and energy expenditure. The subjects completed four sessions involving 20 repetitions of countermovement jumps (CMJ) and drop jumps from 40 cm (DJ40), 60 cm (DJ60) and 80 cm (DJ80). The trained jumpers jumped significantly higher in the CMJ, DJ40, DJ60 and DJ80 conditions than their untrained counterparts (p ≤ 0.05). ME was significantly higher in the trained in comparison to the untrained jumpers during DJ40. The amount of negative work during all jump types was significantly greater in the trained jumpers. There was a significant correlation between negative work and ME in the trained jumpers (r = 0.82) but not in the untrained jumpers (r = 0.54). The present study indicates that trained jumpers jump higher and have greater ME, possibly as a result of increased for production in the eccentric phase as a reflection of optimal MTU length change and thus increased usage of storage of elastic energy.

  6. Wind and fairness in ski jumping: A computer modelling analysis.

    PubMed

    Jung, Alexander; Müller, Wolfram; Staat, Manfred

    2018-06-25

    Wind is closely associated with the discussion of fairness in ski jumping. To counter-act its influence on the jump length, the International Ski Federation (FIS) has introduced a wind compensation approach. We applied three differently accurate computer models of the flight phase with wind (M1, M2, and M3) to study the jump length effects of various wind scenarios. The previously used model M1 is accurate for wind blowing in direction of the flight path, but inaccuracies are to be expected for wind directions deviating from the tangent to the flight path. M2 considers the change of airflow direction, but it does not consider the associated change in the angle of attack of the skis which additionally modifies drag and lift area time functions. M3 predicts the length effect for all wind directions within the plane of the flight trajectory without any mathematical simplification. Prediction errors of M3 are determined only by the quality of the input data: wind velocity, drag and lift area functions, take-off velocity, and weight. For comparing the three models, drag and lift area functions of an optimized reference jump were used. Results obtained with M2, which is much easier to handle than M3, did not deviate noticeably when compared to predictions of the reference model M3. Therefore, we suggest to use M2 in future applications. A comparison of M2 predictions with the FIS wind compensation system showed substantial discrepancies, for instance: in the first flight phase, tailwind can increase jump length, and headwind can decrease it; this is opposite of what had been anticipated before and is not considered in the current wind compensation system in ski jumping. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Postactivation Potentiation of the Plantar Flexors Does Not Directly Translate to Jump Performance in Female Elite Young Soccer Players.

    PubMed

    Prieske, Olaf; Maffiuletti, Nicola A; Granacher, Urs

    2018-01-01

    High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players ( N = 12) aged 14-15 years conducted three experimental conditions in randomized order: S included 3 sets of 8-10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties ( p < 0.05, d = 1.1) and jump performance outputs ( p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend ( p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development ( p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height ( p < 0.01, d = 1.9, 3%) and DJ contact time were found ( p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced significant enhancements in jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties.

  8. Postactivation Potentiation of the Plantar Flexors Does Not Directly Translate to Jump Performance in Female Elite Young Soccer Players

    PubMed Central

    Prieske, Olaf; Maffiuletti, Nicola A.; Granacher, Urs

    2018-01-01

    High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players (N = 12) aged 14–15 years conducted three experimental conditions in randomized order: S included 3 sets of 8–10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties (p < 0.05, d = 1.1) and jump performance outputs (p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend (p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development (p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height (p < 0.01, d = 1.9, 3%) and DJ contact time were found (p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced significant enhancements in jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties. PMID:29628898

  9. Preliminary Development and Evaluation of Lightning Jump Algorithms for the Real-Time Detection of Severe Weather

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Previous studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed "lightning jumps." Herein, we document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms were examined in this study, with 69 of the 107 thunderstorms falling into the category of non-severe, and 38 into the category of severe. From the dataset of 69 isolated non-severe thunderstorms, an average peak 1 minute flash rate of 10 flashes/min was determined. A variety of severe thunderstorm types were examined for this study including an MCS, MCV, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 non-severe, 38 severe) from the Tennessee Valley and Washington D.C tested 6 lightning jump algorithm configurations (Gatlin, Gatlin 45, 2(sigma), 3(sigma), Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2(sigma) lightning jump algorithm had a high probability of detection (POD; 87%), a modest false alarm rate (FAR; 33%), and a solid Heidke Skill Score (HSS; 0.75). A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 minutes and 20 minutes, respectively. The overall goal of this study is to advance the development of an operationally-applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the GOES-R Geostationary Lightning Mapper.

  10. Effects of Jaw Clenching and Jaw Alignment Mouthpiece Use on Force Production During Vertical Jump and Isometric Clean Pull.

    PubMed

    Allen, Charles R; Fu, Yang-Chieh; Cazas-Moreno, Vanessa; Valliant, Melinda W; Gdovin, Jacob R; Williams, Charles C; Garner, John C

    2018-01-01

    Allen, CR, Fu, Y-C, Cazas-Moreno, V, Valliant, MW, Gdovin, JR, Williams, CC, and Garner, JC. Effects of jaw clenching and jaw alignment mouthpiece use on force production during vertical jump and isometric clean pull. J Strength Cond Res 32(1): 237-243, 2018-This study examined the effects of jaw clenching, a self-adapted, jaw-repositioning mouthpiece on force production during maximum countermovement vertical jump and maximum isometric midthigh clean pull assessments in an attempt to determine any ergogenic effect attributable to clenching, jaw-repositioning mouthpiece use, or the combination of both. Thirty-six male subjects performed vertical jump and isometric clean pull assessments from a force platform under various mouthpiece and clench conditions. A 3 × 2 (mouthpiece × clench) repeated-measures analysis of variance was conducted to analyze each of the following force production variables for both assessments: peak force, normalized peak force, and rate of force development. In addition, jump height was analyzed for the vertical jump. Results revealed improvements in peak force (F1,35 = 15.84, p ≤ 0.001, (Equation is included in full-text article.)= 0.31), normalized peak force (F1,35 = 16.28, p ≤ 0.001, (Equation is included in full-text article.)= 0.32), and rate of force development (F1,35 = 12.89, p = 0.001, (Equation is included in full-text article.)= 0.27) during the isometric clean pull assessment when participants maximally clenched their jaw, regardless of mouthpiece condition. There were no statistically significant differences in jump height, peak force, normalized peak force, or rate of force development during the vertical jump for any treatment condition. This study supports previous research demonstrating that the implementation of remote voluntary contractions such as jaw clenching can lead to concurrent activation potentiation and a resulting ergogenic effect during activities involving and requiring high-force production.

  11. Change in power output across a high-repetition set of bench throws and jump squats in highly trained athletes.

    PubMed

    Baker, Daniel G; Newton, Robert U

    2007-11-01

    Athletes experienced in maximal-power and power-endurance training performed 1 set of 2 common power training exercises in an effort to determine the effects of moderately high repetitions upon power output levels throughout the set. Twenty-four and 15 athletes, respectively, performed a set of 10 repetitions in both the bench throw (BT P60) and jump squat exercise (JS P60) with a resistance of 60 kg. For both exercises, power output was highest on either the second (JS P60) or the third repetition (BT P60) and was then maintained until the fifth repetition. Significant declines in power output occurred from the sixth repetition onwards until the 10th repetition (11.2% for BT P60 and 5% for JS P60 by the 10th repetition). These findings suggest that athletes attempting to increase maximal power limit their repetitions to 2 to 5 when using resistances of 35 to 45% 1RM in these exercises.

  12. Improving Vertical Jump Profiles Through Prescribed Movement Plans.

    PubMed

    Mayberry, John K; Patterson, Bryce; Wagner, Phil

    2018-06-01

    Mayberry, JK, Patterson, B, and Wagner, P. Improving vertical jump profiles through prescribed movement plans. J Strength Cond Res 32(6): 1619-1626, 2018-Developing practical, reliable, and valid methods for monitoring athlete wellness and injury risk is an important goal for trainers, athletes, and coaches. Previous studies have shown that the countermovement vertical jump (CMJ) test is both a reliable and valid metric for evaluating an athlete's condition. This study examines the effectiveness of prescribed workouts on improving the quality of movement during CMJ. The data set consists of 2,425 pairs of CMJ scans for high school, college, and professional athletes training at a privately owned facility. During each scan, a force plate recorded 3 ground reaction force (GRF) measurements known to impact CMJ performance: eccentric rate of force development (ERFD), average vertical concentric force (AVCF), and concentric vertical impulse (CVI). After an initial scan, coaches either assigned the athlete a specific 1- or 2-strength movement plan (treatment group) or instructed the athlete to choose their own workouts (control group) before returning for a follow-up scan. A multivariate analysis of covariance (MANCOVA) revealed significant differences in changes to GRF measurements between athletes in the 2 groups after adjusting for the covariates sex, sport, time between scans, and rounds of workout completed. A principal component analysis of GRF measurements further identified 4 primary groups of athlete needs and the results provide recommendations for effective workout plans targeting each group. In particular, split squats increase CVI and decrease ERFD/AVCF; deadlifts increase AVCF and decrease CVI; alternating squats/split squats increase ERFD/CVI and decrease AVCF; and alternating squats/deadlifts increase ERFD/AVCF and decrease CVI.

  13. Learned helplessness in the rat: effect of response topography in a within-subject design.

    PubMed

    dos Santos, Cristiano Valerio; Gehm, Tauane; Hunziker, Maria Helena Leite

    2011-02-01

    Three experiments investigated learned helplessness in rats manipulating response topography within-subject and different intervals between treatment and tests among groups. In Experiment 1, rats previously exposed to inescapable shocks were tested under an escape contingency where either jumping or nose poking was required to terminate shocks; tests were run either 1, 14 or 28 days after treatment. Most rats failed to jump, as expected, but learned to nose poke, regardless of the interval between treatment and tests and order of testing. The same results were observed in male and female rats from a different laboratory (Experiment 2) and despite increased exposure to the escape contingencies using a within-subject design (Experiment 3). Furthermore, no evidence of helplessness reversal was observed, since animals failed to jump even after having learned to nose-poke in a previous test session. These results are not consistent with a learned helplessness hypothesis, which claims that shock (un)controllability is the key variable responsible for the effect. They are nonetheless consistent with the view that inescapable shocks enhance control by irrelevant features of the relationship between the environment and behavior. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Host jumps shaped the diversity of extant rust fungi (Pucciniales).

    PubMed

    McTaggart, Alistair R; Shivas, Roger G; van der Nest, Magriet A; Roux, Jolanda; Wingfield, Brenda D; Wingfield, Michael J

    2016-02-01

    The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. [The role of the jumping to conclusion bias in delusions formation].

    PubMed

    Rózycka, Jagoda; Prochwicz, Katarzyna

    2013-01-01

    The results of many researches indicate that individuals with delusions reveal the reasoning bias. In probabilistic reasoning tasks they reveal hastiness in decision-making. The individuals with delusions request less information than non-deluded individuals, even if additional data is easily available. What is more, they also prove to be convinced to a greater extend of having made the right decision. This finding has been replicated by a number of studies. However, the previous researches have not confirmed the origins of 'jumping to conclusion' bias, and its role in the process of forming delusions has not been yet confirmed. The article in question contains the review of the results of the jumping to conclusion bias in people with delusions. It discusses the main hypotheses explaining the relations between the hasty decision making and the delusions formation. The article also deals with the specifics of 'jumping to conclusion' bias in case of individuals with delusions, as well as summarizes its relation to factors such as the level of intelligence or the intensity of delusion.

  16. Effects of β-alanine supplementation during a 5-week strength training program: a randomized, controlled study.

    PubMed

    Maté-Muñoz, José Luis; Lougedo, Juan H; Garnacho-Castaño, Manuel V; Veiga-Herreros, Pablo; Lozano-Estevan, María Del Carmen; García-Fernández, Pablo; de Jesús, Fernando; Guodemar-Pérez, Jesús; San Juan, Alejandro F; Domínguez, Raúl

    2018-01-01

    β-Alanine (BA) is a non-essential amino acid that has been shown to enhance exercise performance. The purpose of this investigation was to determine if BA supplementation improved the adaptive response to five weeks of a resistance training program. Thirty healthy, strength-trained individuals were randomly assigned to the experimental groups placebo (PLA) or BA. Over 5 weeks of strength training, subjects in BA took 6.4 g/day of BA as 8 × 800 mg doses each at least 1.5 h apart. The training program consisted of 3 sessions per week in which three different leg exercises were conducted as a circuit (back squat, barbell step ups and loaded jumping lunges). The program started with 3 sets of 40 s of work per exercise and rest periods between sets of 120 s in the first week. This training volume was then gradually built up to 5 sets of 20 s work/60 s rest in the fifth week. The work load during the program was set by one of the authors according to the individual's perceived effort the previous week. The variables measured were average velocity, peak velocity, average power, peak power, and load in kg in a back squat, incremental load, one-repetition maximum (1RM) test. In addition, during the rest period, jump ability (jump height and power) was assessed on a force platform. To compare data, a general linear model with repeated measures two-way analysis of variance was used. Significantly greater training improvements were observed in the BA group versus PLA group ( p  = 0.045) in the variables average power at 1RM (BA: 42.65%, 95% CI, 432.33, 522.52 VS. PLA: 21.07%, 95% CI, 384.77, 482.19) and average power at maximum power output ( p  = 0.037) (BA: 20.17%, 95% CI, 637.82, 751.90 VS. PLA; 10.74%, 95% CI, 628.31, 751.53). The pre- to post training average power gain produced at 1RM in BA could be explained by a greater maximal strength gain, or load lifted at 1RM ( p  = 0.014) (24 kg, 95% CI, 19.45, 28.41 VS. 16 kg, 95% CI, 10.58, 20.25) and in the number of sets executed ( p  = 0.025) in the incremental load test (BA: 2.79 sets, 95% CI, 2.08, 3.49 VS. PLA: 1.58 sets, 95% CI, 0.82, 2.34). β-Alanine supplementation was effective at increasing power output when lifting loads equivalent to the individual's maximal strength or when working at maximum power output. The improvement observed at 1RM was explained by a greater load lifted, or strength gain, in response to training in the participants who took this supplement.

  17. Effects of Strength Training Combined with Specific Plyometric exercises on body composition, vertical jump height and lower limb strength development in elite male handball players: a case study.

    PubMed

    Carvalho, Alberto; Mourão, Paulo; Abade, Eduardo

    2014-06-28

    The purpose of the present study was to identify the effects of a strength training program combined with specific plyometric exercises on body composition, vertical jump (VJ) height and strength development of lower limbs in elite male handball players. A 12-week program with combined strength and specific plyometric exercises was carried out for 7 weeks. Twelve elite male handball players (age: 21.6 ± 1.73) competing in the Portuguese Major League participated in the study. Besides the anthropometric measurements, several standardized jump tests were applied to assess VJ performance together with the strength development of the lower limbs in an isokinetic setting. No significant changes were found in body circumferences and diameters. Body fat content and fat mass decreased by 16.4 and 15.7% respectively, while lean body mass increased by 2.1%. Despite small significance, there was in fact an increase in squat jump (SJ), counter movement jump (CMJ) and 40 consecutive jumps after the training period (6.1, 3.8 and 6.8%, respectively). After the applied protocol, peak torque increased in lower limb extension and flexion in the majority of the movements assessed at 90ºs-1. Consequently, it is possible to conclude that combining general strength-training with plyometric exercises can not only increase lower limb strength and improve VJ performance but also reduce body fat content.

  18. Effects of Strength Training Combined with Specific Plyometric exercises on body composition, vertical jump height and lower limb strength development in elite male handball players: a case study

    PubMed Central

    Carvalho, Alberto; Mourão, Paulo; Abade, Eduardo

    2014-01-01

    The purpose of the present study was to identify the effects of a strength training program combined with specific plyometric exercises on body composition, vertical jump (VJ) height and strength development of lower limbs in elite male handball players. A 12-week program with combined strength and specific plyometric exercises was carried out for 7 weeks. Twelve elite male handball players (age: 21.6 ± 1.73) competing in the Portuguese Major League participated in the study. Besides the anthropometric measurements, several standardized jump tests were applied to assess VJ performance together with the strength development of the lower limbs in an isokinetic setting. No significant changes were found in body circumferences and diameters. Body fat content and fat mass decreased by 16.4 and 15.7% respectively, while lean body mass increased by 2.1%. Despite small significance, there was in fact an increase in squat jump (SJ), counter movement jump (CMJ) and 40 consecutive jumps after the training period (6.1, 3.8 and 6.8%, respectively). After the applied protocol, peak torque increased in lower limb extension and flexion in the majority of the movements assessed at 90ºs-1. Consequently, it is possible to conclude that combining general strength-training with plyometric exercises can not only increase lower limb strength and improve VJ performance but also reduce body fat content. PMID:25114739

  19. The Effects of a Maximal Power Training Cycle on the Strength, Maximum Power, Vertical Jump Height and Acceleration of High-Level 400-Meter Hurdlers

    PubMed Central

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos Mª; del Campo-Vecino, Juan; Alonso-Curiel, Dionisio

    2013-01-01

    The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=−2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=−1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=−1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=−1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers. PMID:23717361

  20. The effects of a maximal power training cycle on the strength, maximum power, vertical jump height and acceleration of high-level 400-meter hurdlers.

    PubMed

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos M; Del Campo-Vecino, Juan; Alonso-Curiel, Dionisio

    2013-03-01

    The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=-2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=-1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=-1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=-1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers.

  1. The effects of passive leg press training on jumping performance, speed, and muscle power.

    PubMed

    Liu, Chiang; Chen, Chuan-Shou; Ho, Wei-Hua; Füle, Róbert János; Chung, Pao-Hung; Shiang, Tzyy-Yuang

    2013-06-01

    Passive leg press (PLP) training was developed based on the concepts of the stretch-shortening cycle (SSC) and the benefits of high muscle contraction velocity. Passive leg press training enables lower limb muscle groups to apply a maximum downward force against a platform moved up and down at high frequency by an electric motor. Thus, these muscle groups accomplished both concentric and eccentric isokinetic contractions in a passive, rapid, and repetitive manner. This study investigates the effects of 10 weeks of PLP training at high and low movement frequencies have on jumping performance, speed, and muscle power. The authors selected 30 college students who had not performed systematic resistance training in the previous 6 months, including traditional resistance training at a squat frequency of 0.5 Hz, PLP training at a low frequency of 0.5 Hz, and PLP training at a high frequency of 2.5 Hz, and randomly divided them into 3 groups (n = 10). The participants' vertical jump, drop jump, 30-m sprint performance, explosive force, and SSC efficiency were tested under the same experimental procedures at pre- and post-training. Results reveal that high-frequency PLP training significantly increased participants' vertical jump, drop jump, 30-m sprint performance, instantaneous force, peak power, and SSC efficiency (p < 0.05). Additionally, their change rate abilities were substantially superior to those of the traditional resistance training (p < 0.05). The low-frequency PLP training significantly increased participants' vertical jump, 30-m sprint performance, instantaneous force, and peak power (p < 0.05). However, traditional resistance training only increased participants' 30-m sprint performance and peak power (p < 0.05). The findings suggest that jump performance, speed, and muscle power significantly improved after 10 weeks of PLP training at high movement frequency. A PLP training machine powered by an electrical motor enables muscles of the lower extremities to contract faster compared with voluntary contraction. Therefore, muscle training with high contraction velocity is one of the main methods of increasing muscle power. Passive leg press training is a unique method for enhancing jump performance, speed, and muscle power.

  2. The effect of a braking device in reducing the ground impact forces inherent in plyometric training.

    PubMed

    Humphries, B J; Newton, R U; Wilson, G J

    1995-02-01

    As a consequence of performing plyometric type exercises, such as depth jumps, impact forces placed on the musculoskeletal system during landing can lead to a potential for injury. A reduction of impact forces upon landing could therefore contribute to reduce the risk of injury. Twenty subjects performed a series of loaded jumps for maximal height, with and without a brake mechanism designed to reduce impact force during landing. The braked jumps were performed on the Plyometric Power System (PPS) with its braking mechanism set at 75% of body weight during the downward phase. The non-braked condition involved jumps with no braking. Vertical ground reaction force data, sampled for 5.5 s at 550 Hz from a Kistler forceplate, were collected for each jump condition. The following parameters were then calculated: peak vertical force, time to peak force, passive impact impulse and maximum concentric force. The brake served to significantly (p < 0.01) reduce peak impact force by 155% and passive impact impulse by 200%. No significant differences were found for peak concentric force production. The braking mechanism of the PPS significantly reduced ground impact forces without impeding concentric force production. The reduction in eccentric loading, using the braking mechanism, may reduce the incidence of injury associated with landings from high intensity plyometric exercises.

  3. RELIABILITY OF THE TUCK JUMP INJURY RISK SCREENING ASSESSMENT IN ELITE MALE YOUTH SOCCER PLAYERS

    PubMed Central

    READ, PAUL; OLIVER, JON L.; DE STE CROIX, MARK B.A.; MYER, GREGORY D.; LLOYD, RHODRI S.

    2015-01-01

    Altered neuromuscular control has been suggested as a mechanism for injury in soccer players. Ligamentous injuries most often occur during dynamic movements, such as decelerations from jump-landing maneuvers where high risk movement patterns are present. The assessment of kinematic variables during jump-landing tasks as part of a pre-participation screen is useful in the identification of injury risk. An example of a field-based screening tool is the repeated tuck jump assessment. The purpose of this study was to analyze the within-subject variation of the tuck jump screening assessment in elite male youth soccer players. 25 pre and 25 post-peak height velocity (PHV) elite male youth soccer players from the academy of a professional English soccer club completed the assessment. A test, re-test design was used to explore the within-subject inter-session reliability. Technique was graded retrospectively against the 10-point criteria set out in the screening protocol using two-dimensional video cameras. The typical error range reported for tuck jump total score (0.90 – 1.01 in pre and post-PHV players respectively) was considered acceptable. When each criteria was analyzed individually, Kappa coefficient determined that knee valgus was the only criterion to reach substantial agreement across the two test sessions for both groups. The results of this study suggest that although tuck jump total score may be reliably assessed in elite male youth soccer players, caution should be applied in solely interpreting the composite score due to the high within-subject variation in a number of the individual criteria. Knee valgus may be reliably used to screen elite youth male soccer players for this plyometric technique error and for test, re-test comparison. PMID:26562715

  4. Effects of Task-Specific Augmented Feedback on Deficit Modification During Performance of the Tuck-Jump Exercise

    PubMed Central

    Stroube, Benjamin W.; Myer, Gregory D.; Brent, Jensen L.; Ford, Kevin R.; Heidt, Robert S.; Hewett, Timothy E.

    2014-01-01

    Context Anterior cruciate ligament (ACL) injuries are prevalent in female athletes. Specific factors have possible links to increasing a female athlete’s chances of suffering an ACL injury. However, it is unclear if augmented feedback may be able to decrease possible risk factors. Objective To compare the effects of task-Specific feedback on a repeated tuck-jump maneuver. Design Double-blind randomized controlled trial. Setting Sports-medicine biodynamics center. Patients 37 female subjects (14.7 ± 1.5 y, 160.9 ± 6.8 cm, 54.5 ± 7.2 kg). Intervention All athletes received standard off-season training consisting of strength training, plyometrics, and conditioning. They were also videotaped during each session while running on a treadmill at a standardized speed (8 miles/h) and while performing a repeated tuck-jump maneuver for 10 s. The augmented feedback group (AF) received feedback on deficiencies present in a 10-s tuck jump, while the control group (CTRL) received feedback on 10-s treadmill running. Main Outcome Measures Outcome measurements of tuck-jump deficits were scored by a blinded rater to determine the effects of group (CTRL vs AF) and time (pre- vs posttesting) on changes in measured deficits. Results A significant interaction of time by group was noted with the task-Specific feedback training (P = .03). The AF group reduced deficits measured during the tuck-jump assessment by 23.6%, while the CTRL training reduced deficits by 10.6%. Conclusions The results of the current study indicate that task-Specific feedback is effective for reducing biomechanical risk factors associated with ACL injury. The data also indicate that Specific components of the tuck-jump assessment are potentially more modifiable than others. PMID:23238301

  5. Experimental Assessment of the Effects of Temperature and Food Availability on Particle Mixing by the Bivalve Abra alba Using New Image Analysis Techniques

    PubMed Central

    Bernard, Guillaume; Duchêne, Jean-Claude; Romero-Ramirez, Alicia; Lecroart, Pascal; Maire, Olivier; Ciutat, Aurélie; Deflandre, Bruno; Grémare, Antoine

    2016-01-01

    The effects of temperature and food addition on particle mixing in the deposit-feeding bivalve Abra alba were assessed using an experimental approach allowing for the tracking of individual fluorescent particle (luminophore) displacements. This allowed for the computations of vertical profiles of a set of parameters describing particle mixing. The frequency of luminophore displacements (jumps) was assessed through the measurement of both waiting times (i.e., the time lapses between two consecutive jumps of the same luminophore) and normalized numbers of jumps (i.e., the numbers of jumps detected in a given area divided by the number of luminophores in this area). Jump characteristics included the direction, duration and length of each jump. Particle tracking biodiffusion coefficients (Db) were also computed. Data originated from 32 experiments carried out under 4 combinations of 2 temperature (Te) and 2 food addition (Fo) levels. For each of these treatments, parameters were computed for 5 experimental durations (Ed). The effects of Se, Fo and Ed were assessed using PERmutational Multivariate ANalyses Of VAriance (PERMANOVAs) carried out on vertical depth profiles of each particle mixing parameter. Inversed waiting times significantly decreased with Ed whereas the normalized number of jumps did not, thereby suggesting that it constitutes a better proxy of jump frequency when assessing particle mixing based on the measure of individual particle displacements. Particle mixing was low during autumn temperature experiments and not affected by Fo, which was attributed to the dominant effect of low temperature. Conversely, particle mixing was high during summer temperature experiments and transitory inhibited by food addition. This last result is coherent with the functional responses (both in terms of activity and particle mixing) already measured for individual of the closely related clam A. ovata originating from temperate populations. It also partly resulted from a transitory switch between deposit- and suspension-feeding caused by the high concentration of suspended particulate organic matter immediately following food addition. PMID:27115148

  6. Experimental Assessment of the Effects of Temperature and Food Availability on Particle Mixing by the Bivalve Abra alba Using New Image Analysis Techniques.

    PubMed

    Bernard, Guillaume; Duchêne, Jean-Claude; Romero-Ramirez, Alicia; Lecroart, Pascal; Maire, Olivier; Ciutat, Aurélie; Deflandre, Bruno; Grémare, Antoine

    2016-01-01

    The effects of temperature and food addition on particle mixing in the deposit-feeding bivalve Abra alba were assessed using an experimental approach allowing for the tracking of individual fluorescent particle (luminophore) displacements. This allowed for the computations of vertical profiles of a set of parameters describing particle mixing. The frequency of luminophore displacements (jumps) was assessed through the measurement of both waiting times (i.e., the time lapses between two consecutive jumps of the same luminophore) and normalized numbers of jumps (i.e., the numbers of jumps detected in a given area divided by the number of luminophores in this area). Jump characteristics included the direction, duration and length of each jump. Particle tracking biodiffusion coefficients (Db) were also computed. Data originated from 32 experiments carried out under 4 combinations of 2 temperature (Te) and 2 food addition (Fo) levels. For each of these treatments, parameters were computed for 5 experimental durations (Ed). The effects of Se, Fo and Ed were assessed using PERmutational Multivariate ANalyses Of VAriance (PERMANOVAs) carried out on vertical depth profiles of each particle mixing parameter. Inversed waiting times significantly decreased with Ed whereas the normalized number of jumps did not, thereby suggesting that it constitutes a better proxy of jump frequency when assessing particle mixing based on the measure of individual particle displacements. Particle mixing was low during autumn temperature experiments and not affected by Fo, which was attributed to the dominant effect of low temperature. Conversely, particle mixing was high during summer temperature experiments and transitory inhibited by food addition. This last result is coherent with the functional responses (both in terms of activity and particle mixing) already measured for individual of the closely related clam A. ovata originating from temperate populations. It also partly resulted from a transitory switch between deposit- and suspension-feeding caused by the high concentration of suspended particulate organic matter immediately following food addition.

  7. Reliability of the Tuck Jump Injury Risk Screening Assessment in Elite Male Youth Soccer Players.

    PubMed

    Read, Paul J; Oliver, Jon L; de Ste Croix, Mark B A; Myer, Gregory D; Lloyd, Rhodri S

    2016-06-01

    Read, PJ, Oliver, JL, de Ste Croix, MBA, Myer, GD, and Lloyd, RS. Reliability of the tuck jump injury risk screening assessment in elite male youth soccer players. J Strength Cond Res 30(6): 1510-1516, 2016-Altered neuromuscular control has been suggested as a mechanism for injury in soccer players. Ligamentous injuries most often occur during dynamic movements, such as decelerations from jump-landing maneuvers where high-risk movement patterns are present. The assessment of kinematic variables during jump-landing tasks as part of a preparticipation screen is useful in the identification of injury risk. An example of a field-based screening tool is the repeated tuck jump assessment. The purpose of this study was to analyze the within-subject variation of the tuck jump screening assessment in elite male youth soccer players. Twenty-five pre-peak height velocity (PHV) and 25 post-PHV elite male youth soccer players from the academy of a professional English soccer club completed the assessment. A test-retest design was used to explore the within-subject intersession reliability. Technique was graded retrospectively against the 10-point criteria set out in the screening protocol using two-dimensional video cameras. The typical error range reported for tuck jump total score (0.90-1.01 in pre-PHV and post-PHV players respectively) was considered acceptable. When each criteria was analyzed individually, kappa coefficient determined that knee valgus was the only criterion to reach substantial agreement across the two test sessions for both groups. The results of this study suggest that although tuck jump total score may be reliably assessed in elite male youth soccer players, caution should be applied in solely interpreting the composite score due to the high within-subject variation in a number of the individual criteria. Knee valgus may be reliably used to screen elite youth male soccer players for this plyometric technique error and for test-retest comparison.

  8. Changes in Plantar Loading Based on Shoe Type and Sex During a Jump-Landing Task

    PubMed Central

    DeBiasio, Justin C.; Russell, Mary E.; Butler, Robert J.; Nunley, James A.; Queen, Robin M.

    2013-01-01

    Context: Metatarsal stress fractures are common in cleated-sport athletes. Previous authors have shown that plantar loading varies with footwear, sex, and the athletic task. Objective: To examine the effects of shoe type and sex on plantar loading in the medial midfoot (MMF), lateral midfoot (LMF), medial forefoot (MFF), middle forefoot (MidFF), and lateral forefoot (LFF) during a jump-landing task. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Twenty-seven recreational athletes (14 men, 13 women) with no history of lower extremity injury in the last 6 months and no history of foot or ankle surgery. Main Outcome Measure(s): The athletes completed 7 jumping trials while wearing bladed-cleat, turf-cleat, and running shoes. Maximum force, contact area, contact time, and the force-time integral were analyzed in each foot region. We calculated 2 × 3 analyses of variance (α = .05) to identify shoe-condition and sex differences. Results: We found no shoe × sex interactions, but the MMF, LMF, MFF, and LFF force-time integrals were greater in men (P < .03). The MMF maximum force was less with the bladed-cleat shoes (P = .02). Total foot and MidFF maximum force was less with the running shoes (P < .01). The MFF and LFF maximum forces were different among all shoe conditions (P < .01). Total foot contact area was less in the bladed-cleat shoes (P = .01). The MMF contact area was greatest in the running shoes (P < .01). The LFF contact area was less in the running shoes (P = .03). The MFF and LFF force-time integrals were greater with the bladed-cleat shoes (P < .01). The MidFF force-time integral was less in the running shoes (P < .01). Conclusions: Independent of shoe, men and women loaded the foot differently during a jump landing. The bladed cleat increased forefoot loading, which may increase the risk for forefoot injury. The type of shoe should be considered when choosing footwear for athletes returning to activity after metatarsal stress fractures. PMID:24067149

  9. Vertical- vs. Horizontal-Oriented Drop Jump Training: Chronic Effects on Explosive Performances of Elite Handball Players.

    PubMed

    Dello Iacono, Antonio; Martone, Domenico; Milic, Mirjana; Padulo, Johnny

    2017-04-01

    Dello Iacono, A, Martone, D, Milic, M, and Padulo, J. Vertical- vs. horizontal-oriented drop jump training: chronic effects on explosive performances of elite handball players. J Strength Cond Res 31(4): 921-931, 2017-This study aimed to assess the chronic effects of vertical drop jump (VDJ)- and horizontal drop jump (HDJ)-based protocols on neuromuscular explosive abilities, such as jumping, sprinting, and changes of direction (COD). Eighteen elite male handball players (age 23.4 ± 4.6 years, height 192.5 ± 3.7 cm, weight 87.8 ± 7.4 kg) were assigned to either VDJ or HDJ group training twice a week for 10 weeks. Participants performed 5-8 sets × 6-10 repetitions of vertical alternate (VDJ) or horizontal alternate (HDJ) 1-leg drop jumps, landing from the top of a platform 25 cm in height. Before and after training, several performance, kinetic, and kinematic variables were assessed. The HDJ led to greater improvement of the sprint time (-8.5% vs. -4%, p ≤ 0.05) and COD performance in comparison with the VDJ (-7.9% vs. -1.1%, p ≤ 0.05), whereas the VDJ caused greater improvement in the vertical jump compared with the HDJ (+8.6% vs. +4.1%, p ≤ 0.05). Moreover, the VDJ regimen compared with the HDJ induced greater changes in the kinetic variables associated with vertical jumping performance, such as peak ground reaction forces (+10.3% vs. +4.3%), relative impulse (+12.4% vs. +5.7%), leg spring stiffness (+17.6% vs. +4.6%), contact time (CT) (-10.1% vs. -1.5%), and reactive strength index (+7.2% vs. +2.1%); all comparisons with p ≤ 0.05. Conversely, the HDJ regimen was able to improve the short-distance and COD performances by increasing the step length (+3.5% vs. +1.5% with p ≤ 0.05) and reducing the CT on COD (-12.1% vs. -2.1% with p ≤ 0.05) more than the VDJ. This investigation showed the crucial role that specific plyometric regimens play in optimizing similar biomechanical featured functional performances, such as jumping, sprinting, and COD.

  10. Acute Effects of Back Squats on Countermovement Jump Performance Across Multiple Sets of A Contrast Training Protocol in Resistance-Trained Males.

    PubMed

    Bauer, Pascal; Sansone, Pierpaolo; Mitter, Benedikt; Makivic, Bojan; Seitz, Laurent B; Tschan, Harald

    2018-01-03

    The present study was designed to evaluate the voluntary post-activation potentiation (PAP) effects of moderate (MI) or high intensity (HI) back squat exercises on countermovement jump (CMJ) performance across multiple sets of a contrast training protocol. Sixty resistance-trained male subjects (age, 23.3 ± 3.3 y; body mass, 86.0 ± 13.9 kg; parallel back squat 1-repetition maximum [1-RM], 155.2 ± 30.0 kg) participated in a randomized, cross-over study. After familiarization, the subjects visited the laboratory on three separate occasions. They performed a contrast PAP protocol comprising three sets of either MI (6×60% of 1-RM) or HI back squats (4x90% of 1-RM) or 20 s of recovery (CTRL) alternated with seven CMJs that were performed at 15 s, and 1, 3, 5, 7, 9 and 11 min after the back squats or recovery. Jump height and relative peak power output recorded with a force platform during MI and HI conditions were compared to those recorded during control condition to calculate the voluntary PAP effect. CMJ performance was decreased immediately after the squats but increased across all three sets of MI and HI between 3 - 7 minutes post-recovery. However, voluntary PAP effects were small or trivial and no difference between the three sets could be found. These findings demonstrate that practitioners can use MI and HI back squats to potentiate CMJs across a contrast training protocol, but a minimum of 3 min of recovery after the squats is needed to benefit from voluntary PAP.

  11. Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.

    PubMed

    Rao, Prasada; Hromadka, Theodore V

    2016-01-01

    The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.

  12. Instruction and Jump-Landing Kinematics in College-Aged Female Athletes Over Time

    PubMed Central

    Etnoyer, Jena; Cortes, Nelson; Ringleb, Stacie I.; Van Lunen, Bonnie L.; Onate, James A.

    2013-01-01

    Context: Instruction can be used to alter the biomechanical movement patterns associated with anterior cruciate ligament (ACL) injuries. Objective: To determine the effects of instruction through combination (self and expert) feedback or self-feedback on lower extremity kinematics during the box–drop-jump task, running–stop-jump task, and sidestep-cutting maneuver over time in college-aged female athletes. Design: Randomized controlled clinical trial. Setting: Laboratory. Patients or Other Participants: Forty-three physically active women (age = 21.47 ± 1.55 years, height = 1.65 ± 0.08 m, mass = 63.78 ± 12.00 kg) with no history of ACL or lower extremity injuries or surgery in the 2 months before the study were assigned randomly to 3 groups: self-feedback (SE), combination feedback (CB), or control (CT). Intervention(s): Participants performed a box–drop-jump task for the pretest and then received feedback about their landing mechanics. After the intervention, they performed an immediate posttest of the box–drop-jump task and a running–stop-jump transfer test. Participants returned 1 month later for a retention test of each task and a sidestep-cutting maneuver. Kinematic data were collected with an 8-camera system sampled at 500 Hz. Main Outcome Measure(s): The independent variables were feedback group (3), test time (3), and task (3). The dependent variables were knee- and hip-flexion, knee-valgus, and hip- abduction kinematics at initial contact and at peak knee flexion. Results: For the box–drop-jump task, knee- and hip-flexion angles at initial contact were greater at the posttest than at the retention test (P < .001). At peak knee flexion, hip flexion was greater at the posttest than at the pretest (P = .003) and was greater at the retention test than at the pretest (P = .04); knee valgus was greater at the retention test than at the pretest (P = .03) and posttest (P = .02). Peak knee flexion was greater for the CB than the SE group (P = .03) during the box–drop-jump task at posttest. For the running–stop-jump task at the posttest, the CB group had greater peak knee flexion than the SE and CT (P ≤ .05). Conclusions: Our results suggest that feedback involving a combination of self-feedback and expert video feedback with oral instruction effectively improved lower extremity kinematics during jump-landing tasks. PMID:23672380

  13. Analysis of Setting Efficacy in Young Male and Female Volleyball Players.

    PubMed

    González-Silva, Jara; Domínguez, Alberto Moreno; Fernández-Echeverría, Carmen; Rabaz, Fernando Claver; Arroyo, M Perla Moreno

    2016-12-01

    The main objective of this study was to analyse the variables that predicted setting efficacy in complex I (KI) in volleyball, in formative categories and depending on gender. The study sample was comprised of 5842 game actions carried out by the 16 male category and the 18 female category teams that participated in the Under-16 Spanish Championship. The dependent variable was setting efficacy. The independent variables were grouped into: serve variables (a serve zone, the type of serve, striking technique, an in-game role of the server and serve direction), reception variables (a reception zone, a receiver player and reception efficacy) and setting variables (a setter's position, a setting zone, the type of a set, setting technique, a set's area and tempo of a set). Multinomial logistic regression showed that the best predictive variables of setting efficacy, both in female and male categories, were reception efficacy, setting technique and tempo of a set. In the male category, the jump serve was the greatest predictor of setting efficacy, while in the female category, it was the set's area. Therefore, in the male category, it was not only the preceding action that affected setting efficacy, but also the serve. On the contrary, in the female category, only variables of the action itself and of the previous action, reception, affected setting efficacy. The results obtained in the present study should be taken into account in the training process of both male and female volleyball players in formative stages.

  14. Improved Maximum Strength, Vertical Jump and Sprint Performance after 8 Weeks of Jump Squat Training with Individualized Loads

    PubMed Central

    Marián, Vanderka; Katarína, Longová; Dávid, Olasz; Matúš, Krčmár; Simon, Walker

    2016-01-01

    The purpose of the study was to determine the effects of 8 weeks of jump squat training on isometric half squat maximal force production (Fmax) and rate of force development over 100ms (RFD100), countermovement jump (CMJ) and squat jump (SJ) height, and 50 m sprint time in moderately trained men. Sixty eight subjects (~21 years, ~180 cm, ~75 kg) were divided into experimental (EXP; n = 36) and control (CON, n = 32) groups. Tests were completed pre-, mid- and post-training. EXP performed jump squat training 3 times per week using loads that allowed all repetitions to be performed with ≥90% of maximum average power output (13 sessions with 4 sets of 8 repetitions and 13 sessions with 8 sets of 4 repetitions). Subjects were given real-time feedback for every repetition during the training sessions. Significant improvements in Fmax from pre- to mid- (Δ ~14%, p<0.001), and from mid- to post-training (Δ ~4%, p < 0.001) in EXP were observed. In CON significantly enhanced Fmax from pre- to mid-training (Δ ~3.5%, p < 0.05) was recorded, but no other significant changes were observed in any other test. In RFD100 significant improvements from pre- to mid-training (Δ ~27%, p < 0.001), as well as from mid- to post-training (Δ ~17%, p < 0.01) were observed. CMJ and SJ height were significantly enhanced from pre- to mid-training (Δ ~10%, ~15%, respectively, p < 0.001) but no further changes occurred from mid- to post-training. Significant improvements in 50 m sprint time from pre- to mid-training (Δ -1%, p < 0.05), and from mid- to post-training (Δ -1.9%, p < 0.001) in EXP were observed. Furthermore, percent changes in EXP were greater than changes in CON during training. It appears that using jump squats with loads that allow repetitions to be performed ≥90% of maximum average power output can simultaneously improve several different athletic performance tasks in the short-term. Key points Jump squat exercise is one of many exercises to develop explosive strength that has been the focus of several researches, while the load used during the training seem to be an important factor that affects training outcomes. Experimental group improved performance in all assessed parameters, such as Fmax, RFD100, CMJ, SJ and 50 m sprint time. However, improvements in CMJ and SJ were recorded after the entire power training period and thereafter plateau occurred. The portable FitroDyne could serve as a valuable device to individualize the load that maximizes mean power output and visual feedback can be provided to athletes during the training. PMID:27803628

  15. Computation of turbulent flow in a thin liquid layer of fluid involving a hydraulic jump

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.

    1991-01-01

    Numerically computed flow fields and free surface height distributions are presented for the flow of a thin layer of liquid adjacent to a solid horizontal surface that encounters a hydraulic jump. Two kinds of flow configurations are considered: two-dimensional plane flow and axisymmetric radial flow. The computations used a boundary-fitted moving grid method with a k-epsilon model for the closure of turbulence. The free surface height was determined by an optimization procedure which minimized the error in the pressure distribution on the free surface. It was also checked against an approximate procedure involving integration of the governing equations and use of the MacCormack predictor-corrector method. The computed film height also compared reasonably well with previous experiments. A region of recirculating flow was found to be present adjacent to the solid boundary near the location of the jump, which was caused by a rapid deceleration of the flow.

  16. Supercritical-flow structures (backset-bedded sets and sediment waves) on high-gradient clinoform systems influenced by shallow-marine hydrodynamics

    NASA Astrophysics Data System (ADS)

    Massari, F.

    2017-10-01

    Inferred supercritical structures and bedforms, including sediment waves and backset-bedded sets, are identified as components of coarse-grained siliciclastic and bioclastic, high-gradient clinoform wedges (Plio-Pleistocene of southern Italy) and canyon head infills (Tortonian of Venetian pre-Alps), showing evidence of having been built out in a setting influenced by shallow-marine hydrodynamics. The facies identified are dominated by a range of traction carpets, formed after segregation of coarser particles in the lower part of bipartite density underflows. The generation of backset-bedded sets is thought to imply scouring due to impact of a submerged hydraulic jump on the bed, and upstream migration of the jump, concomitant with the deposition of backset beds on the stoss side of the developing bedform. Submerged hydraulic jumps apparently formed spontaneously and in any position on the foreset and toeset, without requiring any precursor bed defect. The mostly solitary, non-cyclical character of the bedforms prevents their attribution to cyclic steps. The sets of backset beds are locally underlain by chaotic infills of deep, steep-sided scours attributed to vigorous erosion at the hydraulic jump, accompanied by instantaneous loss in transport capacity which results in rapid plugging of the scour (hydraulic jump facies of Postma et al., 2014). Gravel waves have a distinct internal stratigraphy, and their length to amplitude ratios show lower mean values and higher variability when compared to sediment waves consisting of sand. The presence of supercritical bedforms on steep foreset slopes of the studied clinoform systems, even in proximity to the topset-foreset rollover, is believed to reflect high inefficiency of mud-poor and short run-out bipartite underflows episodically transporting relatively small volumes of coarse-grained sediment. This may also account for common solitary, non-cyclical bedforms. It is proposed that during intense oceanographic events, such as coastal storms, seaward sediment entrainment, assisted by gravity, was very effective on the gently sloping subaqueous topset, and that, beyond the topset-foreset rollover, the flows evolved to high-concentration turbidity underflows with supercritical Froude numbers. The flows are inferred to have been sustained, probably lasting for the duration of the meteorological events, and to have commonly been unsteady in discharge, fluctuating in concentration and size of transported sediments, and subject to peaks in velocity. The characteristics of the structures are regarded as typical of the systems fed by oceanographic processes, and may fall into the class of coarse-grained ;small sediment waves with mixed relief; of Symons et al. (2016), formed from a combination of erosion and deposition, and by the action of stratified flows depositing from denser basal layers, and typically restricted to small-scale shallow-marine slope systems.

  17. Relationships Among Two Repeated Activity Tests and Aerobic Fitness of Volleyball Players.

    PubMed

    Meckel, Yoav; May-Rom, Moran; Ekshtien, Aya; Eisenstein, Tamir; Nemet, Dan; Eliakim, Alon

    2015-08-01

    The purpose of the study was to determine performance indices of a repeated sprint test (RST) and to examine their relationships with performance indices of a repeated jump test (RJT) and with aerobic fitness among trained volleyball players. Sixteen male volleyball players performed RST (6 × 30 m sprints), RJT (6 sets of 6 consecutive jumps), and an aerobic power test (20-m Shuttle Run Test). Performance indices for the RST and the RJT were (a) the ideal 30-m run time (IS), the total run time (TS) of the 6 sprints, and the performance decrement (PD) during the test and (b) the ideal jump height (IJ), the total jump height (TJ) of all the jumps, and the PD during the test, respectively. No significant correlations were found between performance indices of the RST and RJT. Significant correlations were found between PD, IS, and TS in the RST protocol and predicted peak V[Combining Dot Above]O2 (r = -0.60, -0.75, -0.77, respectively). No significant correlations were found between performance indices of the RJT (IJ, TJ, and PD) and peak V[Combining Dot Above]O2. The findings suggest that a selection of repeated activity test protocols should acknowledge the specific technique used in the sport, and that a distinct RJT, rather than the classic RST, is more appropriate for assessing the anaerobic capabilities of volleyball players. The findings also suggest that aerobic fitness plays only a minor role in performance maintenance throughout characteristic repeated jumping activity of a volleyball game.

  18. Biomechanical and Performance Differences Between Female Soccer Athletes in National Collegiate Athletic Association Divisions I and III

    PubMed Central

    Smith, Rose; Ford, Kevin R; Myer, Gregory D; Holleran, Adam; Treadway, Erin; Hewett, Timothy E

    2007-01-01

    Context: The recent increase in women's varsity soccer participation has been accompanied by a lower extremity injury rate that is 2 to 6 times that of their male counterparts. Objective: To define the differences between lower extremity biomechanics (knee abduction and knee flexion measures) and performance (maximal vertical jump height) between National Collegiate Athletic Association Division I and III female soccer athletes during a drop vertical jump. Design: Mixed 2 × 2 design. Setting: Research laboratory. Patients or Other Participants: Thirty-four female collegiate soccer players (Division I: n = 19; Division III: n = 15) participated in the study. The groups were similar in height and mass. Intervention(s): Each subject performed a maximal vertical jump, followed by 3 drop vertical jumps. Main Outcome Measure(s): Kinematics (knee abduction and flexion angles) and kinetics (knee abduction and flexion moments) were measured with a motion analysis system and 2 force platforms during the drop vertical jumps. Results: Knee abduction angular range of motion and knee abduction external moments were not different between groups (P > .05). However, Division I athletes demonstrated decreased knee flexion range of motion (P = .038) and greater peak external knee flexion moment (P = .009) compared with Division III athletes. Division I athletes demonstrated increased vertical jump height compared with Division III (P = .008). Conclusions: Division I athletes demonstrated different sagittal-plane mechanics than Division III athletes, which may facilitate improved performance. The similarities in anterior cruciate ligament injury risk factors (knee abduction torques and angles) may correlate with the consistent incidence of anterior cruciate ligament injury across divisions. PMID:18174935

  19. Generic synopsis of the jumping plant-lice (Hemiptera: Sternorrhyncha: Psylloidea) from Colombia.

    PubMed

    Rendón-Mera, Diana Isabel; Serna, Francisco; Burckhardt, Daniel

    2017-11-20

    Jumping plant-lice (Hemiptera: Sternorrhyncha: Psylloidea) are a group of phloem-feeding insects with nearly 4000        described species. Previous records from Colombia comprise 19 genera of all eight known families. The revision of material deposited in six Colombian and three foreign museums yielded another nine genera that constitute new country records. Material from 16 departments was examined. Each genus is diagnosed and information is provided on biology, damage and host-plants. Local distribution maps and a generic key for the identification of adults are provided.

  20. Athletic Performance at the National Basketball Association Combine After Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Mehran, Nima; Williams, Phillip N.; Keller, Robert A.; Khalil, Lafi S.; Lombardo, Stephen J.; Kharrazi, F. Daniel

    2016-01-01

    Background: Anterior cruciate ligament (ACL) injuries are significant injuries in elite-level basketball players. In-game statistical performance after ACL reconstruction has been demonstrated; however, few studies have reviewed functional performance in National Basketball Association (NBA)–caliber athletes after ACL reconstruction. Purpose: To compare NBA Combine performance of athletes after ACL reconstruction with an age-, size-, and position-matched control group of players with no previous reported knee injury requiring surgery. We hypothesized that there is no difference between the 2 groups in functional performance. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 1092 NBA-caliber players who participated in the NBA Combine between 2000 and 2015 were reviewed. Twenty-one athletes were identified as having primary ACL reconstruction prior to participation in the combine. This study group was compared with an age-, size-, and position-matched control group in objective functional performance testing, including the shuttle run test, lane agility test, three-quarter court sprint, vertical jump (no step), and maximum vertical jump (running start). Results: With regard to quickness and agility, both ACL-reconstructed athletes and controls scored an average of 11.5 seconds in the lane agility test and 3.1 seconds in the shuttle run test (P = .745 and .346, respectively). Speed and acceleration was measured by the three-quarter court sprint, in which both the study group and the control group averaged 3.3 seconds (P = .516). In the maximum vertical jump, which demonstrates an athlete’s jumping ability with a running start, the ACL reconstruction group had an average height of 33.6 inches while the controls averaged 33.9 inches (P = .548). In the standing vertical jump, the ACL reconstruction group averaged 28.2 inches while the control group averaged 29.2 inches (P = .067). Conclusion: In athletes who are able to return to sport and compete at a high level such as the NBA Combine, there is no significant difference in any combine performance test between players who have had primary ACL reconstruction compared with an age-, size-, and position-matched control group. Clinical Relevance: Athletes with previous ACL reconstruction who are able to return to high-level professional basketball have equivalent performance measures with regard to speed, quickness, and jumping ability as those athletes who have not undergone knee surgery. PMID:27294169

  1. Athletic Performance at the National Basketball Association Combine After Anterior Cruciate Ligament Reconstruction.

    PubMed

    Mehran, Nima; Williams, Phillip N; Keller, Robert A; Khalil, Lafi S; Lombardo, Stephen J; Kharrazi, F Daniel

    2016-05-01

    Anterior cruciate ligament (ACL) injuries are significant injuries in elite-level basketball players. In-game statistical performance after ACL reconstruction has been demonstrated; however, few studies have reviewed functional performance in National Basketball Association (NBA)-caliber athletes after ACL reconstruction. To compare NBA Combine performance of athletes after ACL reconstruction with an age-, size-, and position-matched control group of players with no previous reported knee injury requiring surgery. We hypothesized that there is no difference between the 2 groups in functional performance. Cross-sectional study; Level of evidence, 3. A total of 1092 NBA-caliber players who participated in the NBA Combine between 2000 and 2015 were reviewed. Twenty-one athletes were identified as having primary ACL reconstruction prior to participation in the combine. This study group was compared with an age-, size-, and position-matched control group in objective functional performance testing, including the shuttle run test, lane agility test, three-quarter court sprint, vertical jump (no step), and maximum vertical jump (running start). With regard to quickness and agility, both ACL-reconstructed athletes and controls scored an average of 11.5 seconds in the lane agility test and 3.1 seconds in the shuttle run test (P = .745 and .346, respectively). Speed and acceleration was measured by the three-quarter court sprint, in which both the study group and the control group averaged 3.3 seconds (P = .516). In the maximum vertical jump, which demonstrates an athlete's jumping ability with a running start, the ACL reconstruction group had an average height of 33.6 inches while the controls averaged 33.9 inches (P = .548). In the standing vertical jump, the ACL reconstruction group averaged 28.2 inches while the control group averaged 29.2 inches (P = .067). In athletes who are able to return to sport and compete at a high level such as the NBA Combine, there is no significant difference in any combine performance test between players who have had primary ACL reconstruction compared with an age-, size-, and position-matched control group. Athletes with previous ACL reconstruction who are able to return to high-level professional basketball have equivalent performance measures with regard to speed, quickness, and jumping ability as those athletes who have not undergone knee surgery.

  2. Level-Set Methodology on Adaptive Octree Grids

    NASA Astrophysics Data System (ADS)

    Gibou, Frederic; Guittet, Arthur; Mirzadeh, Mohammad; Theillard, Maxime

    2017-11-01

    Numerical simulations of interfacial problems in fluids require a methodology capable of tracking surfaces that can undergo changes in topology and capable to imposing jump boundary conditions in a sharp manner. In this talk, we will discuss recent advances in the level-set framework, in particular one that is based on adaptive grids.

  3. Formulating the Fibonacci Sequence: Paths or Jumps in Mathematical Understanding.

    ERIC Educational Resources Information Center

    Kieren, Thomas; And Others

    In dynamical theory, mathematical understanding is considered to be that of a person (or group) of a topic (or problem) in a situation or setting. This paper compares the interactions between the situations and the mathematical understandings of two students by comparing the growth in understanding within a Fibonacci sequence setting in which…

  4. Efficacy of a 3 month training program on the jump-landing technique in jump-landing sports. Design of a cluster randomized controlled trial

    PubMed Central

    2010-01-01

    Background With the relatively high rate of injuries to the lower extremity due to jump-landing movement patterns and the accompanied high costs, there is need for determining potential preventive programs. A program on the intervention of jump-landing technique is possibly an important preventative measure since it appeared to reduce the incidence of lower extremity injuries. In real life situations, amateur sports lack the infrastructure and funds to have a sports physician or therapist permanently supervising such a program. Therefore the current prevention program is designed so that it could be implemented by coaches alone. Objective The objective of this randomized controlled trial is to evaluate the effect of a coach supervised intervention program targeting jump-landing technique on the incidence of lower extremity injuries. Methods Of the 110 Flemish teams of the elite division, 24 teams are included and equally randomized to two study groups. An equal selection of female and male teams with allocation to intervention and control group is obtained. The program is a modification of other prevention programs previously proven to be effective. All exercises in the current program are adjusted so that a more progressive development in the exercise is presented. Both the control and intervention group continue with their normal training routine, while the intervention group carries out the program on jump-landing technique. The full intervention program has a duration of three months and is performed 2 times a week during warm-up (5-10 min). Injuries are registered during the entire season. Discussion The results of this study can give valuable information on the effect of a coach supervised intervention program on jump-landing technique and injury occurrence. Results will become available in 2011. Trial registration Trial registration number: NTR2560 PMID:21144030

  5. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Kinetic quantification of plyometric exercise intensity.

    PubMed

    Ebben, William P; Fauth, McKenzie L; Garceau, Luke R; Petushek, Erich J

    2011-12-01

    Ebben, WP, Fauth, ML, Garceau, LR, and Petushek, EJ. Kinetic quantification of plyometric exercise intensity. J Strength Cond Res 25(12): 3288-3298, 2011-Quantification of plyometric exercise intensity is necessary to understand the characteristics of these exercises and the proper progression of this mode of exercise. The purpose of this study was to assess the kinetic characteristics of a variety of plyometric exercises. This study also sought to assess gender differences in these variables. Twenty-six men and 23 women with previous experience in performing plyometric training served as subjects. The subjects performed a variety of plyometric exercises including line hops, 15.24-cm cone hops, squat jumps, tuck jumps, countermovement jumps (CMJs), loaded CMJs equal to 30% of 1 repetition maximum squat, depth jumps normalized to the subject's jump height (JH), and single leg jumps. All plyometric exercises were assessed with a force platform. Outcome variables associated with the takeoff, airborne, and landing phase of each plyometric exercise were evaluated. These variables included the peak vertical ground reaction force (GRF) during takeoff, the time to takeoff, flight time, JH, peak power, landing rate of force development, and peak vertical GRF during landing. A 2-way mixed analysis of variance with repeated measures for plyometric exercise type demonstrated main effects for exercise type and all outcome variables (p ≤ 0.05) and for the interaction between gender and peak vertical GRF during takeoff (p ≤ 0.05). Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the outcome variables assessed (p ≤ 0.05). These findings can be used to guide the progression of plyometric training by incorporating exercises of increasing intensity over the course of a program.

  7. Neuromuscular Control Mechanisms During Single-Leg Jump Landing in Subacute Ankle Sprain Patients: A Case Control Study.

    PubMed

    Allet, Lara; Zumstein, Franziska; Eichelberger, Patric; Armand, Stéphane; Punt, Ilona M

    2017-03-01

    Optimal neuromuscular control mechanisms are essential for preparing, maintaining, and restoring functional joint stability during jump landing and to prevent ankle injuries. In subacute ankle sprain patients, neither muscle activity nor kinematics during jump landing has previously been assessed. To compare neuromuscular control mechanisms and kinematics between subacute ankle sprain patients and healthy persons before and during the initial contact phase of a 25-cm single-leg jump. Case-control study. University hospital. Fifteen patients with grade I or II acute ankle sprains were followed up after 4 weeks of conservative management not involving physical therapy. Subjects performed alternately 3 single-leg forward jumps of 25 cm (toe-to-heel distance) barefoot. Their results were compared with the data of 15 healthy subjects. Electromyographic (EMG) activity of the musculus (m.) gastrocnemius lateralis, m. tibialis anterior, and m. peroneus longus as well as kinematics for ankle, knee, and hip joint were recorded for pre-initial contact (IC) phase, post-initial contact phase, and reflex-induced phase. The results showed that EMG activity of the 3 muscles did not differ between ankle sprain patients (n = 15) and healthy persons (n = 15) for any of the analyzed time intervals (all P > .05). However, during the pre-IC phase, ankle sprain patients presented less plantar flexion, as well as during the post-IC phase after jump landing, compared to healthy persons (P < .05). Taken together, these kinematic alterations of the ankle joint can lead to neuromuscular control mechanism disturbances through which functional instability might arise. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  8. Risk factors for epistaxis in jump racing in Great Britain (2001-2009).

    PubMed

    Reardon, Richard J M; Boden, Lisa A; Mellor, Dominic J; Love, Sandy; Newton, Richard J; Stirk, Anthony J; Parkin, Timothy D

    2015-07-01

    The aim of this study was to evaluate risk factors associated with developing epistaxis in jump racing in Great Britain (GB). A retrospective analysis of records from horses running in all hurdle and steeplechase races in GB between 2001 and 2009 identified diagnoses of epistaxis whilst still at the racecourse. Data were used from 603 starts resulting in epistaxis (event) and 169,065 starts resulting in no epistaxis (non-event) in hurdle racing, and from 550 event starts and 102,344 non-event starts in steeplechase racing. Two multivariable logistic regression models to evaluate risk factors associated with epistaxis were produced. The potential effect of clustering of data (within horse, horse dam, horse sire, trainer, jockey, course, race and race meet) on the associations between risk factors and epistaxis was examined using mixed-effects models. Multiple factors associated with increased risk of epistaxis were identified. Those identified in both types of jump racing included running on firmer ground; horses with >75% of career starts in flat racing and a previous episode of epistaxis recorded during racing. Risk factors identified only in hurdle racing included racing in the spring and increased age at first race; and those identified only in steeplechase racing included running in a claiming race and more starts in the previous 3-6 months. The risk factors identified provide important information about the risk of developing epistaxis. Multiple avenues for further investigation are highlighted, including unmeasured variables at the level of the racecourse. The results of this study can be used to guide the development of interventions to minimise the risk of epistaxis in jump racing. Copyright © 2015. Published by Elsevier Ltd.

  9. Fringe-jump corrected far infrared tangential interferometer/polarimeter for a real-time density feedback control system of NSTX plasmasa)

    NASA Astrophysics Data System (ADS)

    Juhn, J.-W.; Lee, K. C.; Hwang, Y. S.; Domier, C. W.; Luhmann, N. C.; Leblanc, B. P.; Mueller, D.; Gates, D. A.; Kaita, R.

    2010-10-01

    The far infrared tangential interferometer/polarimeter (FIReTIP) of the National Spherical Torus Experiment (NSTX) has been set up to provide reliable electron density signals for a real-time density feedback control system. This work consists of two main parts: suppression of the fringe jumps that have been prohibiting the plasma density from use in the direct feedback to actuators and the conceptual design of a density feedback control system including the FIReTIP, control hardware, and software that takes advantage of the NSTX plasma control system (PCS). By investigating numerous shot data after July 2009 when the new electronics were installed, fringe jumps in the FIReTIP are well characterized, and consequently the suppressing algorithms are working properly as shown in comparisons with the Thomson scattering diagnostic. This approach is also applicable to signals taken at a 5 kHz sampling rate, which is a fundamental constraint imposed by the digitizers providing inputs to the PCS. The fringe jump correction algorithm, as well as safety and feedback modules, will be included as submodules either in the gas injection system category or a new category of density in the PCS.

  10. Unipedal Postural Balance and Countermovement Jumps After a Warm-up and Plyometric Training Session: A Randomized Controlled Trial.

    PubMed

    Romero-Franco, Natalia; Jiménez-Reyes, Pedro

    2015-11-01

    The purpose of this study was to analyze the immediate effects of a plyometric training protocol on unipedal postural balance and countermovement jumps. In addition, we analyzed the effects of a warm-up on these parameters. Thirty-two amateur male sprinters (24.9 ± 4.1 years; 72.3 ± 10.7 kg; 1.78 ± 0.05 m; 22.6 ± 3.3 kg·m) were randomly sorted into a control group (n = 16) (they did not perform any physical activity) and a plyometric training group (n = 16) (they performed a 15-minute warm-up and a high-intensity plyometric protocol consisting of 10 sets of 15 vertical jumps). Before and after the warm-up, and immediately after and 5 minutes after the plyometric protocol, all athletes indicated the perceived exertion on calf and quad regions on a scale from 0 (no exertion) to 10 (maximum exertion). They also carried out a maximum countermovement jump and a unipedal postural balance test (athletes would remain as still as possible for 15 seconds in a left leg and right leg support stance). Results showed that, in the plyometric group, length and velocity of center-of-pressure movement in right leg support stance increased compared with baseline (p = 0.001 and p = 0.004, respectively) and to the control group (p = 0.035 and p = 0.029, respectively) immediately after the plyometric protocol. In addition, the countermovement jump height decreased right after the plyometric protocol (p < 0.001). The perceived exertion on calf and quad regions increased after the plyometry (p < 0.001). Five minutes later, these parameters remained deteriorated despite a slight recovery (length: p = 0.044; velocity: p = 0.05; countermovement jump height: p < 0.001; local exertion: p < 0.001). Data also showed that countermovement jump height improved after the warm-up (p = 0.021), but unipedal postural balance remained unaltered. As a conclusion, high-intensity plyometric exercises blunt unipedal postural balance and countermovement jump performance. The deterioration lasts at least 5 minutes, which may influence future exercises in the training session. Coaches should plan the training routine according to the immediate effects of plyometry on postural balance and vertical jumps, which play a role in injury prevention and sports performance.

  11. Abdominal muscle activity during a standing long jump.

    PubMed

    Okubo, Yu; Kaneoka, Koji; Shiina, Itsuo; Tatsumura, Masaki; Miyakawa, Shumpei

    2013-08-01

    Experimental laboratory study. To measure the activation patterns (onset and magnitude) of the abdominal muscles during a standing long jump using wire and surface electromyography. Activation patterns of the abdominal muscles, especially the deep muscles such as the transversus abdominis (TrA), have yet to be examined during full-body movements such as jumping. Thirteen healthy men participated. Wire electrodes were inserted into the TrA with the guidance of ultrasonography, and surface electrodes were attached to the skin overlying the rectus abdominis (RA) and external oblique (EO). Electromyographic signals and video images were recorded while each subject performed a standing long jump. The jump task was divided into 3 phases: preparation, push-off, and float. For each muscle, activation onset relative to the onset of the RA and normalized muscle activation levels (percent maximum voluntary contraction) were analyzed during each phase. Comparisons between muscles and phases were assessed using 2-way analyses of variance. The onset times of the TrA and EO relative to the onset of the RA were -0.13 ? 0.17 seconds and -0.02 ? 0.07 seconds, respectively. Onset of TrA activation was earlier than that of the EO. The activation levels of all 3 muscles were significantly greater during the push-off phase than during the preparation and float phases. Consistent with previously published trunk-perturbation studies in healthy persons, the TrA was activated prior to the RA and EO. Additionally, the highest muscle activation levels were observed during the push-off phase.

  12. Physical fitness, injuries, and team performance in soccer.

    PubMed

    Arnason, Arni; Sigurdsson, Stefan B; Gudmundsson, Arni; Holme, Ingar; Engebretsen, Lars; Bahr, Roald

    2004-02-01

    To investigate the relationship between physical fitness and team success in soccer, and to test for differences in physical fitness between different player positions. Participants were 306 male soccer players from 17 teams in the two highest divisions in Iceland. Just before the start of the 1999 soccer season, the following variables were tested: height and weight, body composition, flexibility, leg extension power, jump height, and peak O2 uptake. Injuries and player participation in matches and training were recorded through the 4-month competitive season. Team average physical fitness was compared with team success (final league standing) using a linear regression model. Physical fitness was also compared between players in different playing positions. A significant relationship was found between team average jump height (countermovement jump and standing jump) and team success (P = 0.009 and P = 0.012, respectively). The same trend was also found for leg extension power (P = 0.097), body composition (% body fat, P = 0.07), and the total number of injury days per team (P = 0.09). Goalkeepers demonstrated different fitness characteristics from outfield players. They were taller and heavier, more flexible in hip extension and knee flexion, and had higher leg extension power and a lower peak O2 uptake. However, only minor differences were observed between defenders, midfield players, and attackers. Coaches and medical support teams should pay more attention to jump and power training, as well as preventive measures and adequate rehabilitation of previous injuries to increase team success.

  13. Seeking mathematics success for college students: a randomized field trial of an adapted approach

    NASA Astrophysics Data System (ADS)

    Gula, Taras; Hoessler, Carolyn; Maciejewski, Wes

    2015-11-01

    Many students enter the Canadian college system with insufficient mathematical ability and leave the system with little improvement. Those students who enter with poor mathematics ability typically take a developmental mathematics course as their first and possibly only mathematics course. The educational experiences that comprise a developmental mathematics course vary widely and are, too often, ineffective at improving students' ability. This trend is concerning, since low mathematics ability is known to be related to lower rates of success in subsequent courses. To date, little attention has been paid to the selection of an instructional approach to consistently apply across developmental mathematics courses. Prior research suggests that an appropriate instructional method would involve explicit instruction and practising mathematical procedures linked to a mathematical concept. This study reports on a randomized field trial of a developmental mathematics approach at a college in Ontario, Canada. The new approach is an adaptation of the JUMP Math program, an explicit instruction method designed for primary and secondary school curriculae, to the college learning environment. In this study, a subset of courses was assigned to JUMP Math and the remainder was taught in the same style as in the previous years. We found consistent, modest improvement in the JUMP Math sections compared to the non-JUMP sections, after accounting for potential covariates. The findings from this randomized field trial, along with prior research on effective education for developmental mathematics students, suggest that JUMP Math is a promising way to improve college student outcomes.

  14. Framework for non-coherent interface models at finite displacement jumps and finite strains

    NASA Astrophysics Data System (ADS)

    Ottosen, Niels Saabye; Ristinmaa, Matti; Mosler, Jörn

    2016-05-01

    This paper deals with a novel constitutive framework suitable for non-coherent interfaces, such as cracks, undergoing large deformations in a geometrically exact setting. For this type of interface, the displacement field shows a jump across the interface. Within the engineering community, so-called cohesive zone models are frequently applied in order to describe non-coherent interfaces. However, for existing models to comply with the restrictions imposed by (a) thermodynamical consistency (e.g., the second law of thermodynamics), (b) balance equations (in particular, balance of angular momentum) and (c) material frame indifference, these models are essentially fiber models, i.e. models where the traction vector is collinear with the displacement jump. This constraints the ability to model shear and, in addition, anisotropic effects are excluded. A novel, extended constitutive framework which is consistent with the above mentioned fundamental physical principles is elaborated in this paper. In addition to the classical tractions associated with a cohesive zone model, the main idea is to consider additional tractions related to membrane-like forces and out-of-plane shear forces acting within the interface. For zero displacement jump, i.e. coherent interfaces, this framework degenerates to existing formulations presented in the literature. For hyperelasticity, the Helmholtz energy of the proposed novel framework depends on the displacement jump as well as on the tangent vectors of the interface with respect to the current configuration - or equivalently - the Helmholtz energy depends on the displacement jump and the surface deformation gradient. It turns out that by defining the Helmholtz energy in terms of the invariants of these variables, all above-mentioned fundamental physical principles are automatically fulfilled. Extensions of the novel framework necessary for material degradation (damage) and plasticity are also covered.

  15. Flight style optimization in ski jumping on normal, large, and ski flying hills.

    PubMed

    Jung, Alexander; Staat, Manfred; Müller, Wolfram

    2014-02-07

    In V-style ski jumping, aerodynamic forces are predominant performance factors and athletes have to solve difficult optimization problems in parts of a second in order to obtain their jump length maximum and to keep the flight stable. Here, a comprehensive set of wind tunnel data was used for optimization studies based on Pontryagin's minimum principle with both the angle of attack α and the body-ski angle β as controls. Various combinations of the constraints αmax and βmin(t) were analyzed in order to compare different optimization strategies. For the computer simulation studies, the Olympic hill profiles in Esto-Sadok, Russia (HS 106m, HS 140m), and in Harrachov, Czech Republic, host of the Ski Flying World Championships 2014 (HS 205m) were used. It is of high importance for ski jumping practice that various aerodynamic strategies, i.e. combinations of α- and β-time courses, can lead to similar jump lengths which enables athletes to win competitions using individual aerodynamic strategies. Optimization results also show that aerodynamic behavior has to be different at different hill sizes (HS). Optimized time courses of α and β using reduced drag and lift areas in order to mimic recent equipment regulations differed only in a negligible way. This indicates that optimization results presented here are not very sensitive to minor changes of the aerodynamic equipment features when similar jump length are obtained by using adequately higher in-run velocities. However, wind tunnel measurements with athletes including take-off and transition to stabilized flight, flight, and landing behavior would enable a more detailed understanding of individual flight style optimization. © 2013 Published by Elsevier Ltd.

  16. 'Sportmotorische Bestandesaufnahme': criterion- vs. norm-based reference values of fitness tests for Swiss first grade children.

    PubMed

    Tomatis, Laura; Krebs, Andreas; Siegenthaler, Jessica; Murer, Kurt; de Bruin, Eling D

    2015-01-01

    Health is closely linked to physical activity and fitness. It is therefore important to monitor fitness in children. Although many reports on physical tests have been published, data comparison between studies is an issue. This study reports Swiss first grade norm values of fitness tests and compares these with criterion reference data. A total of 10,565 boys (7.18 ± 0.42 years) and 10,204 girls (7.14 ± 0.41 years) were tested for standing long jump, plate tapping, 20-m shuttle run, lateral jump and 20-m sprint. Average values for six-, seven- and eight-year-olds were analysed and reference curves for age were constructed. Z-values were generated for comparisons with criterion references reported in the literature. Results were better for all disciplines in seven-year-old first grade children compared to six-year-old children (p < 0.01). Eight-year-old children did not perform better compared to seven-year-old children in the sprint run (p = 0.11), standing long jump (p > 0.99) and shuttle run (p = 0.43), whereas they were better in all other disciplines compared to their younger peers. The average performance of boys was better than girls except for tapping at the age of 8 (p = 0.06). Differences in performance due to testing protocol and setting must be considered when test values from a first grade setting are compared to criterion-based benchmarks. In a classroom setting, younger children tended to have better results and older children tended to have worse outcomes when compared to their age group criterion reference values. Norm reference data are valid allowing comparison with other data generated by similar test protocols applied in a classroom setting.

  17. A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth

    PubMed Central

    Macklin, Paul

    2011-01-01

    In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth. PMID:21331304

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Markus, E-mail: appel@ill.eu; Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble; Frick, Bernhard

    We report on quasielastic neutron spectroscopy experiments on ferrocene (bis(η{sup 5}-cyclopentadienyl)iron) in its three different crystalline phases: the disordered monoclinic crystalline phase (T > 164 K), the metastable triclinic phase (T < 164 K), and the stable orthorhombic phase (T < 250 K). The cyclopentadienyl rings in ferrocene are known to undergo rotational reorientations for which the analysis of our large data set suggests partially a revision of the known picture of the dynamics and allows for an extension and completion of previous studies. In the monoclinic phase, guided by structural information, we propose a model for rotational jumps amongmore » non-equivalent sites in contrast to the established 5-fold jump rotation model. The new model takes the dynamical disorder into account and allows the cyclopentadienyl rings to reside in two different configurations which are found to be twisted by an angle of approximately 30°. In the triclinic phase, our analysis demands the use of a 2-ring model accounting for crystallographically independent sites with different barriers to rotation. For the orthorhombic phase of ferrocene, we confirm a significantly increased barrier of rotation using neutron backscattering spectroscopy. Our data analysis includes multiple scattering corrections and presents a novel approach of simultaneous analysis of different neutron scattering data by combining elastic and inelastic fixed window temperature scans with energy spectra, providing a very robust and reliable mean of extracting the individual activation energies of overlapping processes.« less

  19. Conditioning exercises in ski jumping: biomechanical relationship of squat jumps, imitation jumps, and hill jumps.

    PubMed

    Lorenzetti, Silvio; Ammann, Fabian; Windmüller, Sabrina; Häberle, Ramona; Müller, Sören; Gross, Micah; Plüss, Michael; Plüss, Stefan; Schödler, Berni; Hübner, Klaus

    2017-11-22

    As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force-time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.

  20. Phase retrieval in digital speckle pattern interferometry by application of two-dimensional active contours called snakes.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2006-03-20

    We propose a novel approach to retrieving the phase map coded by a single closed-fringe pattern in digital speckle pattern interferometry, which is based on the estimation of the local sign of the quadrature component. We obtain the estimate by calculating the local orientation of the fringes that have previously been denoised by a weighted smoothing spline method. We carry out the procedure of sign estimation by determining the local abrupt jumps of size pi in the orientation field of the fringes and by segmenting the regions defined by these jumps. The segmentation method is based on the application of two-dimensional active contours (snakes), with which one can also estimate absent jumps, i.e., those that cannot be detected from the local orientation of the fringes. The performance of the proposed phase-retrieval technique is evaluated for synthetic and experimental fringes and compared with the results obtained with the spiral-phase- and Fourier-transform methods.

  1. Learned helplessness: effects of response requirement and interval between treatment and testing.

    PubMed

    Hunziker, M H L; Dos Santos, C V

    2007-11-01

    Three experiments investigated learned helplessness in rats manipulating response requirements, shock duration, and intervals between treatment and testing. In Experiment 1, rats previously exposed to uncontrollable or no shocks were tested under one of four different contingencies of negative reinforcement: FR 1 or FR 2 escape contingency for running, and FR1 escape contingency for jumping (differing for the maximum shock duration of 10s or 30s). The results showed that the uncontrollable shocks produced a clear operant learning deficit (learned helplessness effect) only when the animals were tested under the jumping FR 1 escape contingency with 10-s max shock duration. Experiment 2 isolated of the effects of uncontrollability from shock exposure per se and showed that the escape deficit observed using the FR 1 escape jumping response (10-s shock duration) was produced by the uncontrollability of shock. Experiment 3 showed that using the FR 1 jumping escape contingency in the test, the learned helplessness effect was observed one, 14 or 28 days after treatment. These results suggest that running may not be an appropriate test for learned helplessness, and that many diverging results found in the literature might be accounted for by the confounding effects of respondent and operant contingencies present when running is required of rats.

  2. Frogs Jump Forward: Semantic Knowledge Influences the Perception of Element Motion in the Ternus Display.

    PubMed

    Hsu, Patty; Taylor, J Eric T; Pratt, Jay

    2015-01-01

    The Ternus effect is a robust illusion of motion that produces element motion at short interstimulus intervals (ISIs; < 50 ms) and group motion at longer ISIs (> 50 ms). Previous research has shown that the nature of the stimuli (e.g., similarity, grouping), not just ISI, can influence the likelihood of perceiving element or group motion. We examined if semantic knowledge can also influence what type of illusory motion is perceived. In Experiment I, we used a modified Ternus display with pictures of frogs in a jump-ready pose facing forwards or backwards to the direction of illusory motion. Participants perceived more element motion with the forward-facing frogs and more group motion with the backward-facing frogs. Experiment 2 tested whether this effect would still occur with line drawings of frogs, or if a more life-like image was necessary. Experiment 3 tested whether this effect was due to visual asymmetries inherent in the jumping pose. Experiment 4 tested whether frogs in a "non-jumping," sedentary pose would replicate the original effect. These experiments elucidate the role of semantic knowledge in the Ternus effect. Prior knowledge of the movement of certain animate objects, in this case, frogs can also bias the perception of element or group motion.

  3. Influence of lumbar spine extension on vertical jump height during maximal squat jumping.

    PubMed

    Blache, Yoann; Monteil, Karine

    2014-01-01

    The purpose of this study was to determine the influence of lumbar spine extension and erector spinae muscle activation on vertical jump height during maximal squat jumping. Eight male athletes performed maximal squat jumps. Electromyograms of the erector spinae were recorded during these jumps. A simulation model of the musculoskeletal system was used to simulate maximal squat jumping with and without spine extension. The effect on vertical jump height of changing erector spinae strength was also tested through the simulated jumps. Concerning the participant jumps, the kinematics indicated a spine extension and erector spinae activation. Concerning the simulated jumps, vertical jump height was about 5.4 cm lower during squat jump without trunk extension compared to squat jump. These results were explained by greater total muscle work during squat jump, more especially by the erector spinae work (+119.5 J). The erector spinae may contribute to spine extension during maximal squat jumping. The simulated jumps confirmed this hypothesis showing that vertical jumping was decreased if this muscle was not taken into consideration in the model. Therefore it is concluded that the erector spinae should be considered as a trunk extensor, which enables to enhance total muscle work and consequently vertical jump height.

  4. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping.

    PubMed

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    1987-08-01

    In the literature, drop jumping is advocated as an effective exercise for athletes who prepare themselves for explosive activities. When executing drop jumps, different jumping techniques can be used. In this study, the influence of jumping technique on the biomechanics of jumping is investigated. Ten subjects executed drop jumps from a height of 20 cm and counter-movement jumps. For the execution of the drop jumps, two different techniques were adopted. The first technique, referred to as bounce drop jump, required the subjects to reverse the downward velocity into an upward one as soon as possible after landing. The second technique, referred to as counter-movement drop jump, required them to do this more gradually by making a larger downward movement. During jumping, the subjects were filmed, ground reaction forces were registered, and electromyograms were recorded. The results of a biomechanical analysis show that moments and power output about knee and ankle joints reach larger values during the drop jumps than during counter-movement jumps. The largest values were attained during bounce drop jumps. Based on this finding, it was hypothesized that bounce drop jump is better suited than counter-movement drop jump for athletes who seek to improve the mechanical output of knee extensors and plantar flexors. Researchers are, therefore, advised to control jumping technique when investigating training effects of executing drop jumps.

  5. Effects of self-selected music on strength, explosiveness, and mood.

    PubMed

    Biagini, Matthew S; Brown, Lee E; Coburn, Jared W; Judelson, Daniel A; Statler, Traci A; Bottaro, Martim; Tran, Tai T; Longo, Nick A

    2012-07-01

    There has been much investigation into the use of music as an ergogenic aid to facilitate physical performance. However, previous studies have primarily focused on predetermined music and aerobic exercise. The purpose of this study was to investigate the effects of self-selected music (SSM) vs. those of no music (NM) on the mood and performance of the athletes performing bench press and squat jump. Twenty resistance trained collegiate men completed 2 experimental conditions, one while listening to SSM and the other with NM. The subjects reported their profile of mood states (POMS) and rating of perceived exertion (RPE) before and after performing 3 sets to failure of the bench press at 75% 1 repetition maximum (1RM) and 3 reps of the squat jump at 30% 1RM. Statistical analyses revealed no differences in squat jump height or relative ground reaction force, but the takeoff velocity (SSM-2.06 ± 0.17 m·s(-1); NM-1.99 ± 0.18 m·s(-1)), rate of velocity development (SSM-5.92 ± 1.46 m·s(-2); NM-5.63 ± 1.70 m·s(-2)), and rate of force development (SSM-3175.61 ± 1792.37 N·s(-1); NM-2519.12 ± 1470.32 N·s(-1)) were greater with SSM, whereas RPE (SSM-5.71 ± 1.37; NM-6.36 ± 1.61) was greater with NM. Bench press reps to failure and RPE were not different between conditions. The POMS scores of vigor (SSM-20.15 ± 5.58; NM-17.45 ± 5.84), tension (SSM-8.40 ± 3.99; NM-6.07 ± 3.26), and fatigue (SSM-8.65 ± 4.49; NM-7.40 ± 4.38) were greater with SSM. This study demonstrated increased performance during an explosive exercise and an altered mood state when listening to SSM. Therefore, listening to SSM might be beneficial for acute power performance.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meot, F.; Ahrens, L.; Glenn, J.

    This Note reports on the first, and successful, simulations of particle and spin dynamics in the AGS in presence of the two helical snakes and of the tune-jump quadrupoles, using the ray-tracing code Zgoubi. It includes DA tracking in the absence or in the presence of the two helical snakes, simulation of particle and spin motion in the snakes using their magnetic field maps, spin flipping at integer resonances in the 36+Qy depolarizing resonance region, with and without tune-jump quadrupole gymnastics. It also includes details on the setting-up of Zgoubi input data files and on the various numerical methods ofmore » concern in and available from Zgoubi.« less

  7. Skills on the Move: Rethinking the Relationship Between Human Capital and Immigrant Economic Mobility *

    PubMed Central

    Hagan, Jacqueline; Lowe, Nichola; Quingla, Christian

    2013-01-01

    Studies of immigrant labor market incorporation in the unregulated sector of the US economy either assume that immigrant workers are trapped in low-wage jobs because of low human capital, or paint a picture of blocked mobility because of exploitation and discrimination. In this paper we offer a third sociological alternative to understand processes of occupational mobility and skill learning. Drawing on work histories of 111 immigrant construction workers, we find that many immigrants are skilled, having come to their jobs with technical skill sets acquired in their home communities and their previous U.S. jobs. We further find that these less-educated immigrants, who rank low on traditional human capital attributes but high on work experience may circumvent exploitation and build mobility pathways through skill transference, on- the- job reskilling, and brincando (job jumping). PMID:23700356

  8. The High Jump: Transition Issues of Learning Disabled Students and Their Parents.

    ERIC Educational Resources Information Center

    Ness, Jean E.

    1989-01-01

    Issues that face learning-disabled students and their parents during the transition from a secondary to a postsecondary setting are explored, and recommendations are offered for consideration in resolving problems during this period. (JDD)

  9. The effects of resistance training interventions on vertical jump performance in basketball players: a meta-analysis.

    PubMed

    Sperlich, Paula F; Behringer, Michael; Mester, Joachim

    2016-01-01

    Vertical jump performance is one of the key factors in basketball. In order to determine the effectiveness of previously published interventions and their influencing factors we performed a meta-analysis. A computerized search was conducted using the databases PubMed (1966), Web of Science (1900), SPORTDiscus™ (1975),Medline (1966) and SportPilot (2008). Studies involving healthy male or female basketball players at any age and performance level were included. All trials had to investigate the benefits of resistance training programs on jumping performance in basketball players and provide a control group. The effect size (ES) was computed and the relationship between ESs and continuous variables was examined by meta-regressions, whereas subgroup meta-analyses and z-tests were used to assess the impact of categorical moderator variables. The meta-analysis included 14 studies with 20 subgroups and a total of 37 outcomes. A total of 399 participants were examined, N.=157 served as control and N.=242 took part in particular training interventions. The overall weighted ES of 0.78 (95% CI 0.41, 1.15) was significantly greater than zero (P<0.001). None of the categorical moderator variables affected the training effect. However, positive correlations were found for training duration (r=0.68; P=0.02). The present meta-analysis demonstrates that resistance training throughout the year, using bodyweight or external weight, significantly improves vertical jump performance in healthy basketball players. Since vertical jump improvements were independent of intervention period but dependent on the duration of each individual training session the total training amount should be based on longer training sessions.

  10. Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing

    PubMed Central

    Taylor, K.A.; Terry, M.E.; Utturkar, G.M.; Spritzer, C.E.; Queen, R.M.; Irribarra, L.A.; Garrett, W.E.; DeFrate, L.E.

    2011-01-01

    Despite recent attention in the literature, anterior cruciate ligament (ACL) injury mechanisms are controversial and incidence rates remain high. One explanation is limited data on in vivo ACL strain during high-risk, dynamic movements. The objective of this study was to quantify ACL strain during jump landing. Marker-based motion analysis techniques were integrated with fluoroscopic and magnetic resonance (MR) imaging techniques to measure dynamic ACL strain non-invasively. First, eight subjects’ knees were imaged using MR. From these images, the cortical bone and ACL attachment sites of the tibia and femur were outlined to create 3D models. Subjects underwent motion analysis while jump landing using reflective markers placed directly on the skin around the knee. Next, biplanar fluoroscopic images were taken with the markers in place so that the relative positions of each marker to the underlying bone could be quantified. Numerical optimization allowed jumping kinematics to be superimposed on the knee model, thus reproducing the dynamic in vivo joint motion. ACL length, knee flexion, and ground reaction force were measured. During jump landing, average ACL strain peaked 55 ± 14 ms (mean and 95% confidence interval) prior to ground impact, when knee flexion angles were lowest. The peak ACL strain, measured relative to its length during MR imaging, was 12 ± 7%. The observed trends were consistent with previously described neuromuscular patterns. Unrestricted by field of view or low sampling rate, this novel approach provides a means to measure kinematic patterns that elevate ACL strains and that provide new insights into ACL injury mechanisms. PMID:21092960

  11. Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: A case-control study

    PubMed Central

    Louw, Quinette; Grimmer, Karen; Vaughan, Christopher

    2006-01-01

    Background A common knee injury mechanism sustained during basketball is landing badly from a jump. Landing is a complex task and requires good coordination, dynamic muscle control and flexibility. For adolescents whose coordination and motor control has not fully matured, landing badly from a jump can present a significant risk for injury. There is currently limited biomechanical information regarding the lower limb kinetics of adolescents when jumping, specifically regarding jump kinematics comparing injured with uninjured adolescents. This study reports on an investigation of biomechanical differences in landing patterns of uninjured and injured adolescent basketball players. Methods A matched case-control study design was employed. Twenty-two basketball players aged 14–16 years participated in the study: eleven previously knee-injured and eleven uninjured players matched with cases for age, gender, weight, height and years of play, and playing for the same club. Six high-speed, three-dimensional Vicon 370 cameras (120 Hz), Vicon biomechanical software and SAS Version 8 software were employed to analyse landing patterns when subjects performed a "jump shot". Linear correlations determined functional relationships between the biomechanical performance of lower limb joints, and paired t-tests determined differences between the normalised peak biomechanical parameters. Results The average peak vertical ground reaction forces between the cases and controls were similar. The average peak ground reaction forces between the cases and controls were moderately correlated (r = -0.47). The control (uninjured) players had significantly greater hip and knee flexion angles and significantly greater eccentric activity on landing than the uninjured cases (p < 0.01). Conclusion The findings of the study indicate that players with a history of knee injuries had biomechanically compromised landing techniques when compared with uninjured players matched for gender, age and club. Descriptions (norms) of expected levels of knee control, proprioceptive acuity and eccentric strength relative to landing from a jump, at different ages and physical developmental stages, would assist clinicians and coaches to identify players with inappropriate knee performance comparable to their age or developmental stage. PMID:16522210

  12. The importance of being light: aerodynamic forces and weight in ski jumping.

    PubMed

    Schmölzer, B; Müller, W

    2002-08-01

    Many contemporary world class ski jumpers are alarmingly underweight and several cases of anorexia nervosa have come to light. Athletes strive for low body weight because it gives them a major competitive advantage. In order to stop this hazardous development, changes to the regulations are being discussed, and the International Ski Federation and the International Olympic Committee wish to be proactive in safe guarding the interest of the athletes and their health. This study of ski jumping uses field studies conducted during World Cup competitions, large-scale wind tunnel measurements with 1:1 models of ski jumpers in current equipment and highly accurate computer simulations of the flight phase that include the effects due to the athlete's position changes. Particular attention has been directed to the design of a reference jump that mirrors current flight style and equipment regulations (2001), and to the investigation of effects associated with variation in body mass, air density, and wind gusts during the simulated flight. The detailed analysis of the physics of ski jumping described here can be used for the investigation of all initial value and parameter variations that determine the flight path of a ski jumper and will form a reliable basis for setting regulations that will make it less attractive or even disadvantageous for the athlete to be extremely light.

  13. Chasing maximal performance: a cautionary tale from the celebrated jumping frogs of Calaveras County.

    PubMed

    Astley, H C; Abbott, E M; Azizi, E; Marsh, R L; Roberts, T J

    2013-11-01

    Maximal performance is an essential metric for understanding many aspects of an organism's biology, but it can be difficult to determine because a measured maximum may reflect only a peak level of effort, not a physiological limit. We used a unique opportunity provided by a frog jumping contest to evaluate the validity of existing laboratory estimates of maximum jumping performance in bullfrogs (Rana catesbeiana). We recorded video of 3124 bullfrog jumps over the course of the 4-day contest at the Calaveras County Jumping Frog Jubilee, and determined jump distance from these images and a calibration of the jump arena. Frogs were divided into two groups: 'rental' frogs collected by fair organizers and jumped by the general public, and frogs collected and jumped by experienced, 'professional' teams. A total of 58% of recorded jumps surpassed the maximum jump distance in the literature (1.295 m), and the longest jump was 2.2 m. Compared with rental frogs, professionally jumped frogs jumped farther, and the distribution of jump distances for this group was skewed towards long jumps. Calculated muscular work, historical records and the skewed distribution of jump distances all suggest that the longest jumps represent the true performance limit for this species. Using resampling, we estimated the probability of observing a given jump distance for various sample sizes, showing that large sample sizes are required to detect rare maximal jumps. These results show the importance of sample size, animal motivation and physiological conditions for accurate maximal performance estimates.

  14. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    PubMed

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  15. A valid and reliable method to measure jump-specific training and competition load in elite volleyball players.

    PubMed

    Skazalski, C; Whiteley, R; Hansen, C; Bahr, R

    2018-05-01

    Use of a commercially available wearable device to monitor jump load with elite volleyball players has become common practice. The purpose of this study was to evaluate the validity and reliability of this device, the Vert, to count jumps and measure jump height with professional volleyball players. Jump count accuracy was determined by comparing jumps recorded by the device to jumps observed through systematic video analysis of three practice sessions and two league matches performed by a men's professional volleyball team. Jumps performed by 14 players were each coded for time and jump type and individually matched to device recorded jumps. Jump height validity of the device was examined against reference standards as participants performed countermovement jumps on a force plate and volleyball-specific jumps with a Vertec. The Vert device accurately counted 99.3% of the 3637 jumps performed during practice and match play. The device showed excellent jump height interdevice reliability for two devices placed in the same pouch during volleyball jumps (r = .99, 95% CI 0.98-0.99). The device had a minimum detectable change (MDC) of 9.7 cm and overestimated jump height by an average of 5.5 cm (95% CI 4.5-6.5) across all volleyball jumps. The Vert device demonstrates excellent accuracy counting volleyball-specific jumps during training and competition. While the device is not recommended to measure maximal jumping ability when precision is needed, it provides an acceptable measure of on-court jump height that can be used to monitor athlete jump load. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Relative net vertical impulse determines jumping performance.

    PubMed

    Kirby, Tyler J; McBride, Jeffrey M; Haines, Tracie L; Dayne, Andrea M

    2011-08-01

    The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.

  17. Physics of volleyball: Spiking with a purpose

    NASA Astrophysics Data System (ADS)

    Behroozi, F.

    1998-05-01

    A few weeks ago our volleyball coach telephoned me with a problem: How high should a player jump to "spike" a "set" ball so it would clear the net and land at a known distance on the other side of the net?

  18. Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations.

    PubMed

    Qvist, Johan; Mattea, Carlos; Sunde, Erik P; Halle, Bertil

    2012-05-28

    Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ∼48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R) D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.

  19. Performance analysis of jump-gliding locomotion for miniature robotics.

    PubMed

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  20. Differences in Neuromuscular Strategies Between Landing and Cutting Tasks in Female Basketball and Soccer Athletes

    PubMed Central

    Cowley, Hanni R; Ford, Kevin R; Myer, Gregory D; Kernozek, Thomas W; Hewett, Timothy E

    2006-01-01

    Context: High school female athletes are most likely to sustain a serious knee injury during soccer or basketball, 2 sports that often involve a rapid deceleration before a change of direction or while landing from a jump. Objective: To determine if female high school basketball and soccer players show neuromuscular differences during landing and cutting tasks and to examine neuromuscular differences between tasks and between dominant and nondominant sides. Design: A 3-way mixed factorial design investigating the effects of sport (basketball, soccer), task (jumping, cutting), and side (dominant, nondominant). Setting: Laboratory. Patients or Other Participants: Thirty high school female athletes who listed either basketball or soccer as their only sport of participation (basketball: n = 15, age = 15.1 ± 1.7 years, experience = 6.9 ± 2.2 years, height = 165.3 ± 7.9 cm, mass = 61.8 ± 9.3 kg; soccer: n = 15, age = 14.8 ± 0.8 years, experience = 8.8 ± 2.5 years, height = 161.8 ± 4.1 cm, mass = 54.6 ± 7.6 kg). Main Outcome Measure(s): Ground reaction forces, stance time, valgus angles, and valgus moments were assessed during (1) a drop vertical jump with an immediate maximal vertical jump and (2) an immediate side-step cut at a 45° angle. Results: Basketball athletes had greater ground reaction forces (P < .001) and decreased stance time (P < .001) during the drop vertical jump, whereas soccer players had greater ground reaction forces (P <.001) and decreased stance time (P < .001) during the cut. Subjects in both sports had greater valgus angles (initial contact and maximum, P = .02 and P = .012, respectively) during cutting than during the drop vertical jump. Greater valgus moments (P = .006) were noted on the dominant side during cutting. Conclusions: Our subjects demonstrated differences in ground reaction forces and stance times during 2 movements associated with noncontact anterior cruciate ligament injuries. Knee valgus moment and angle were significantly influenced by the type of movement performed. Sport-specific neuromuscular training may be warranted, with basketball players focusing on jumping and landing and soccer players focusing on unanticipated cutting maneuvers. PMID:16619097

  1. Landing Technique and Performance in Youth Athletes After a Single Injury-Prevention Program Session

    PubMed Central

    Root, Hayley; Trojian, Thomas; Martinez, Jessica; Kraemer, William; DiStefano, Lindsay J.

    2015-01-01

    Context Injury-prevention programs (IPPs) performed as season-long warm-ups improve injury rates, performance outcomes, and jump-landing technique. However, concerns regarding program adoption exist. Identifying the acute benefits of using an IPP compared with other warm-ups may encourage IPP adoption. Objective To examine the immediate effects of 3 warm-up protocols (IPP, static warm-up [SWU], or dynamic warm-up [DWU]) on jump-landing technique and performance measures in youth athletes. Design Randomized controlled clinical trial. Setting Gymnasiums. Patients or Other Participants Sixty male and 29 female athletes (age = 13 ± 2 years, height = 162.8 ± 12.6 cm, mass = 37.1 ± 13.5 kg) volunteered to participate in a single session. Intervention(s) Participants were stratified by age, sex, and sport and then were randomized into 1 protocol: IPP, SWU, or DWU. The IPP consisted of dynamic flexibility, strengthening, plyometric, and balance exercises and emphasized proper technique. The SWU consisted of jogging and lower extremity static stretching. The DWU consisted of dynamic lower extremity flexibility exercises. Participants were assessed for landing technique and performance measures immediately before (PRE) and after (POST) completing their warm-ups. Main Outcome Measure(s) One rater graded each jump-landing trial using the Landing Error Scoring System. Participants performed a vertical jump, long jump, shuttle run, and jump-landing task in randomized order. The averages of all jump-landing trials and performance variables were used to calculate 1 composite score for each variable at PRE and POST. Change scores were calculated (POST − PRE) for all measures. Separate 1-way (group) analyses of variance were conducted for each dependent variable (α < .05). Results No differences were observed among groups for any performance measures (P > .05). The Landing Error Scoring System scores improved after the IPP (change = −0.40 ± 1.24 errors) compared with the DWU (0.27 ± 1.09 errors) and SWU (0.43 ± 1.35 errors; P = .04). Conclusions An IPP did not impair sport performance and may have reduced injury risk, which supports the use of these programs before sport activity. PMID:26523663

  2. Unilateral Plantar Flexors Static-Stretching Effects on Ipsilateral and Contralateral Jump Measures

    PubMed Central

    da Silva, Josinaldo Jarbas; Behm, David George; Gomes, Willy Andrade; Silva, Fernando Henrique Domingues de Oliveira; Soares, Enrico Gori; Serpa, Érica Paes; Vilela Junior, Guanis de Barros; Lopes, Charles Ricardo; Marchetti, Paulo Henrique

    2015-01-01

    The aim of this study was to evaluate the acute effects of unilateral ankle plantar flexors static-stretching (SS) on the passive range of movement (ROM) of the stretched limb, surface electromyography (sEMG) and single-leg bounce drop jump (SBDJ) performance measures of the ipsilateral stretched and contralateral non-stretched lower limbs. Seventeen young men (24 ± 5 years) performed SBDJ before and after (stretched limb: immediately post-stretch, 10 and 20 minutes and non-stretched limb: immediately post-stretch) unilateral ankle plantar flexor SS (6 sets of 45s/15s, 70-90% point of discomfort). SBDJ performance measures included jump height, impulse, time to reach peak force, contact time as well as the sEMG integral (IEMG) and pre-activation (IEMGpre-activation) of the gastrocnemius lateralis. Ankle dorsiflexion passive ROM increased in the stretched limb after the SS (pre-test: 21 ± 4° and post-test: 26.5 ± 5°, p < 0.001). Post-stretching decreases were observed with peak force (p = 0.029), IEMG (P<0.001), and IEMGpre-activation (p = 0.015) in the stretched limb; as well as impulse (p = 0.03), and jump height (p = 0.032) in the non-stretched limb. In conclusion, SS effectively increased passive ankle ROM of the stretched limb, and transiently (less than 10 minutes) decreased muscle peak force and pre-activation. The decrease of jump height and impulse for the non-stretched limb suggests a SS-induced central nervous system inhibitory effect. Key points When considering whether or not to SS prior to athletic activities, one must consider the potential positive effects of increased ankle dorsiflexion motion with the potential deleterious effects of power and muscle activity during a simple jumping task or as part of the rehabilitation process. Since decreased jump performance measures can persist for 10 minutes in the stretched leg, the timing of SS prior to performance must be taken into consideration. Athletes, fitness enthusiasts and therapists should also keep in mind that SS one limb has generalized effects upon contralateral limbs as well. PMID:25983580

  3. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.

    PubMed

    Qvist, Johan; Schober, Helmut; Halle, Bertil

    2011-04-14

    One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is gaussian and the rms jump length increases from 1.5 to 1.9 Å as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 Å over the same range. The waiting time distribution is exponential at all investigated temperatures, ruling out significant dynamical heterogeneity. However, a simulation at 238 K reveals a small but significant dynamical heterogeneity. The macroscopic diffusion coefficient deduced from the QENS data agrees quantitatively with NMR and tracer results. We compare our QENS analysis with existing approaches, arguing that the apparent dynamical heterogeneity implied by stretched exponential fitting functions results from the failure to distinguish intrabasin (L) from interbasin (J) structural dynamics. We propose that the apparent dynamical singularity at ∼220 K corresponds to freezing out of J dynamics, while the calorimetric glass transition corresponds to freezing out of L dynamics.

  4. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations

    NASA Astrophysics Data System (ADS)

    Qvist, Johan; Schober, Helmut; Halle, Bertil

    2011-04-01

    One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the Newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is Gaussian and the rms jump length increases from 1.5 to 1.9 Å as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 Å over the same range. The waiting time distribution is exponential at all investigated temperatures, ruling out significant dynamical heterogeneity. However, a simulation at 238 K reveals a small but significant dynamical heterogeneity. The macroscopic diffusion coefficient deduced from the QENS data agrees quantitatively with NMR and tracer results. We compare our QENS analysis with existing approaches, arguing that the apparent dynamical heterogeneity implied by stretched exponential fitting functions results from the failure to distinguish intrabasin (L) from interbasin (J) structural dynamics. We propose that the apparent dynamical singularity at ˜220 K corresponds to freezing out of J dynamics, while the calorimetric glass transition corresponds to freezing out of L dynamics.

  5. Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis.

    PubMed

    Seitz, Laurent B; Haff, G Gregory

    2016-02-01

    Although post-activation potentiation (PAP) has been extensively examined following the completion of a conditioning activity (CA), the precise effects on subsequent jump, sprint, throw, and upper-body ballistic performances and the factors modulating these effects have yet to be determined. Moreover, weaker and stronger individuals seem to exhibit different PAP responses; however, how they respond to the different components of a strength-power-potentiation complex remains to be elucidated. This meta-analysis determined (1) the effect of performing a CA on subsequent jump, sprint, throw, and upper-body ballistic performances; (2) the influence of different types of CA, squat depths during the CA, rest intervals, volumes of CA, and loads during the CA on PAP; and (3) how individuals of different strength levels respond to these various strength-power-potentiation complex components. A computerized search was conducted in ADONIS, ERIC, SPORTDiscus, EBSCOhost, Google Scholar, MEDLINE, and PubMed databases up to March 2015. The analysis comprised 47 studies and 135 groups of participants for a total of 1954 participants. The PAP effect is small for jump (effect size [ES] = 0.29), throw (ES = 0.26), and upper-body ballistic (ES = 0.23) performance activities, and moderate for sprint (ES = 0.51) performance activity. A larger PAP effect is observed among stronger individuals and those with more experience in resistance training. Plyometric (ES = 0.47) CAs induce a slightly larger PAP effect than traditional high-intensity (ES = 0.41), traditional moderate-intensity (ES = 0.19), and maximal isometric (ES = -0.09) CAs, and a greater effect after shallower (ES = 0.58) versus deeper (ES = 0.25) squat CAs, longer (ES = 0.44 and 0.49) versus shorter (ES = 0.17) recovery intervals, multiple- (ES = 0.69) versus single- (ES = 0.24) set CAs, and repetition maximum (RM) (ES = 0.51) versus sub-maximal (ES = 0.34) loads during the CA. It is noteworthy that a greater PAP effect can be realized earlier after a plyometric CA than with traditional high- and moderate-intensity CAs. Additionally, shorter recovery intervals, single-set CAs, and RM CAs are more effective at inducing PAP in stronger individuals, while weaker individuals respond better to longer recovery intervals, multiple-set CAs, and sub-maximal CAs. Finally, both weaker and stronger individuals express greater PAP after shallower squat CAs. Performing a CA elicits small PAP effects for jump, throw, and upper-body ballistic performance activities, and a moderate effect for sprint performance activity. The level of potentiation is dependent on the individual's level of strength and resistance training experience, the type of CA, the depth of the squat when this exercise is employed to elicit PAP, the rest period between the CA and subsequent performance, the number of set(s) of the CA, and the type of load used during the CA. Finally, some components of the strength-power-potentiation complex modulate the PAP response of weaker and stronger individuals in a different way.

  6. Learning stochastic reward distributions in a speeded pointing task.

    PubMed

    Seydell, Anna; McCann, Brian C; Trommershäuser, Julia; Knill, David C

    2008-04-23

    Recent studies have shown that humans effectively take into account task variance caused by intrinsic motor noise when planning fast hand movements. However, previous evidence suggests that humans have greater difficulty accounting for arbitrary forms of stochasticity in their environment, both in economic decision making and sensorimotor tasks. We hypothesized that humans can learn to optimize movement strategies when environmental randomness can be experienced and thus implicitly learned over several trials, especially if it mimics the kinds of randomness for which subjects might have generative models. We tested the hypothesis using a task in which subjects had to rapidly point at a target region partly covered by three stochastic penalty regions introduced as "defenders." At movement completion, each defender jumped to a new position drawn randomly from fixed probability distributions. Subjects earned points when they hit the target, unblocked by a defender, and lost points otherwise. Results indicate that after approximately 600 trials, subjects approached optimal behavior. We further tested whether subjects simply learned a set of stimulus-contingent motor plans or the statistics of defenders' movements by training subjects with one penalty distribution and then testing them on a new penalty distribution. Subjects immediately changed their strategy to achieve the same average reward as subjects who had trained with the second penalty distribution. These results indicate that subjects learned the parameters of the defenders' jump distributions and used this knowledge to optimally plan their hand movements under conditions involving stochastic rewards and penalties.

  7. Path-preference cellular-automaton model for traffic flow through transit points and its application to the transcription process in human cells.

    PubMed

    Ohta, Yoshihiro; Nishiyama, Akinobu; Wada, Yoichiro; Ruan, Yijun; Kodama, Tatsuhiko; Tsuboi, Takashi; Tokihiro, Tetsuji; Ihara, Sigeo

    2012-08-01

    We all use path routing everyday as we take shortcuts to avoid traffic jams, or by using faster traffic means. Previous models of traffic flow of RNA polymerase II (RNAPII) during transcription, however, were restricted to one dimension along the DNA template. Here we report the modeling and application of traffic flow in transcription that allows preferential paths of different dimensions only restricted to visit some transit points, as previously introduced between the 5' and 3' end of the gene. According to its position, an RNAPII protein molecule prefers paths obeying two types of time-evolution rules. One is an asymmetric simple exclusion process (ASEP) along DNA, and the other is a three-dimensional jump between transit points in DNA where RNAPIIs are staying. Simulations based on our model, and comparison experimental results, reveal how RNAPII molecules are distributed at the DNA-loop-formation-related protein binding sites as well as CTCF insulator proteins (or exons). As time passes after the stimulation, the RNAPII density at these sites becomes higher. Apparent far-distance jumps in one dimension are realized by short-range three-dimensional jumps between DNA loops. We confirm the above conjecture by applying our model calculation to the SAMD4A gene by comparing the experimental results. Our probabilistic model provides possible scenarios for assembling RNAPII molecules into transcription factories, where RNAPII and related proteins cooperatively transcribe DNA.

  8. "Jumping to conclusions" in delusion-prone participants: an experimental economics approach.

    PubMed

    van der Leer, Leslie; McKay, Ryan

    2014-01-01

    That delusional and delusion-prone individuals "jump to conclusions" on probabilistic reasoning tasks is a key finding in cognitive neuropsychiatry. Here we focused on a less frequently investigated aspect of "jumping to conclusions" (JTC): certainty judgments. We incorporated rigorous procedures from experimental economics to eliminate potential confounds of miscomprehension and motivation and systematically investigated the effect of incentives on task performance. Low- and high-delusion-prone participants (n = 109) completed a series of computerised trials; on each trial, they were shown a black or a white fish, caught from one of the two lakes containing fish of both colours in complementary ratios. In the betting condition, participants were given £4 to distribute over the two lakes as they wished; in the control condition, participants simply provided an estimate of how probable each lake was. Deviations from Bayesian probabilities were investigated. Whereas high-delusion-prone participants in both the control and betting conditions underestimated the Bayesian probabilities (i.e. were conservative), low-delusion-prone participants in the control condition underestimated but those in the betting condition provided accurate estimates. In the control condition, there was a trend for high-delusion-prone participants to give higher estimates than low-delusion-prone participants, which is consistent with previous reports of "jumping to conclusions" in delusion-prone participants. However, our findings in the betting condition, where high-delusion-prone participants provided lower estimates than low-delusion-prone participants (who were accurate), are inconsistent with the jumping-to-conclusions effect in both a relative and an absolute sense. Our findings highlight the key role of task incentives and underscore the importance of comparing the responses of delusion-prone participants to an objective rational standard as well as to the responses of non-delusion-prone participants.

  9. MUSCLE STRENGTH AND QUALITATIVE JUMP-LANDING DIFFERENCES IN MALE AND FEMALE MILITARY CADETS: THE JUMP-ACL STUDY.

    PubMed

    Beutler, Ai; de la Motte, Sj; Marshall, Sw; Padua, DA; Boden, Bp

    2009-01-01

    Recent studies have focused on gender differences in movement patterns as risk factors for ACL injury. Understanding intrinsic and extrinsic factors which contribute to movement patterns is critical to ACL injury prevention efforts. Isometric lower-extremity muscular strength, anthropometrics, and jump-landing technique were analyzed for 2,753 cadets (1,046 female, 1,707 male) from the U.S. Air Force, Military and Naval Academies. Jump-landings were evaluated using the Landing Error Scoring System (LESS), a valid qualitative movement screening tool. We hypothesized that distinct anthropometric factors (Q-angle, navicular drop, bodyweight) and muscle strength would predict poor jump-landing technique in males versus females, and that female cadets would have higher scores (more errors) on a qualitative movement screen (LESS) than males. Mean LESS scores were significantly higher in female (5.34 ± 1.51) versus male (4.65 ± 1.69) cadets (P<.001). Qualitative movement scores were analyzed using factor analyses, yielding five factors, or "patterns", contributing to poor landing technique. Females were significantly more likely to have poor technique due to landing with less hip and knee flexion at initial contact (P<.001), more knee valgus with wider landing stance (P<.001), and less flexion displacement over the entire landing (P<.001). Males were more likely to have poor technique due to landing toe-out (P<.001), with heels first, and with an asymmetric foot landing (P<.001). Many of the identified factor patterns have been previously proposed to contribute to ACL injury risk. However, univariate and multivariate analyses of muscular strength and anthropometric factors did not strongly predict LESS scores for either gender, suggesting that changing an athlete's alignment, BMI, or muscle strength may not directly improve his or her movement patterns.

  10. The effect of dropping height on jumping performance in trained and untrained prepubertal boys and girls.

    PubMed

    Bassa, Eleni I; Patikas, Dimitrios A; Panagiotidou, Aikaterini I; Papadopoulou, Sophia D; Pylianidis, Theofilos C; Kotzamanidis, Christos M

    2012-08-01

    Plyometric training in children, including different types of jumps, has become common practice during the last few years in different sports, although there is limited information about the adaptability of children with respect to different loads and the differences in performance between various jump types. The purpose of this study was to examine the effect of gender and training background on the optimal drop jump height of 9- to 11-year-old children. Sixty prepubertal (untrained and track and field athletes, boys and girls, equally distributed in each group [n = 15]), performed the following in random order: 3 squat jumps, 3 countermovement jumps (CMJs) and 3 drop jumps from heights of 10, 20, 30, 40, and 50 cm. The trial with the best performance in jump height of each test was used for further analysis. The jump type significantly affected the jump height. The jump height during the CMJ was the highest among all other jump types, resulting in advanced performance for both trained and untrained prepubertal boys and girls. However, increasing the dropping height did not change the jumping height or contact time during the drop jump. This possibly indicates an inability of prepubertal children to use their stored elastic energy to increase jumping height during drop jumps, irrespective of their gender or training status. This indicates that children, independent of gender and training status, have no performance gain during drop jumps from heights up to 50 cm, and therefore, it is recommended that only low drop jump heights be included in plyometric training to limit the probability of sustaining injuries.

  11. Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels

    PubMed Central

    Watson, Sue-Ann; Lefevre, Sjannie; McCormick, Mark I.; Domenici, Paolo; Nilsson, Göran E.; Munday, Philip L.

    2014-01-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the potential effects of rising carbon dioxide (CO2) on marine invertebrate behaviour are largely unknown. Marine gastropod conch snails have a modified foot and operculum allowing them to leap backwards rapidly when faced with a predator, such as a venomous cone shell. Here, we show that projected near-future seawater CO2 levels (961 µatm) impair this escape behaviour during a predator–prey interaction. Elevated-CO2 halved the number of snails that jumped from the predator, increased their latency to jump and altered their escape trajectory. Physical ability to jump was not affected by elevated-CO2 indicating instead that decision-making was impaired. Antipredator behaviour was fully restored by treatment with gabazine, a GABA antagonist of some invertebrate nervous systems, indicating potential interference of neurotransmitter receptor function by elevated-CO2, as previously observed in marine fishes. Altered behaviour of marine invertebrates at projected future CO2 levels could have potentially far-reaching implications for marine ecosystems. PMID:24225456

  12. Dynamic heterogeneity in an orientational glass

    NASA Astrophysics Data System (ADS)

    Caballero, Nirvana B.; Zuriaga, Mariano; Tamarit, Josep Lluís; Serra, Pablo

    2017-11-01

    The family of compounds CBrnCl4-n has been proven helpful in unraveling microscopic mechanisms responsible for glassy behavior. Some of the family members show translational ordered phases with minimal disorder which appears to reveal glassy features, thus deserving special attention in the search for universal glass anomalies. In this work, we studied CBrCl3 dynamics by performing extensive molecular dynamics simulations. Molecules of this compound perform reorientational discrete jumps, where the atoms exchange equivalent positions among each other revealing a cage-orientational jump motion fully comparable to the cage-rototranslational jump motion in supercooled liquids. Correlation times were calculated from rotational autocorrelation functions showing good agreement with previous reported dielectric results. From mean waiting and persistence times calculated directly from trajectory results, we are able to explain which microscopic mechanisms lead to characteristic times associated with α- and β-relaxation times measured experimentally. We found that two nonequivalent groups of molecules have a longer characteristic time than the other two nonequivalent groups, both of them belonging to the asymmetric unit of the monoclinic (C2/c) lattice.

  13. Probabilistic learning and inference in schizophrenia

    PubMed Central

    Averbeck, Bruno B.; Evans, Simon; Chouhan, Viraj; Bristow, Eleanor; Shergill, Sukhwinder S.

    2010-01-01

    Patients with schizophrenia make decisions on the basis of less evidence when required to collect information to make an inference, a behavior often called jumping to conclusions. The underlying basis for this behaviour remains controversial. We examined the cognitive processes underpinning this finding by testing subjects on the beads task, which has been used previously to elicit jumping to conclusions behaviour, and a stochastic sequence learning task, with a similar decision theoretic structure. During the sequence learning task, subjects had to learn a sequence of button presses, while receiving noisy feedback on their choices. We fit a Bayesian decision making model to the sequence task and compared model parameters to the choice behavior in the beads task in both patients and healthy subjects. We found that patients did show a jumping to conclusions style; and those who picked early in the beads task tended to learn less from positive feedback in the sequence task. This favours the likelihood of patients selecting early because they have a low threshold for making decisions, and that they make choices on the basis of relatively little evidence. PMID:20810252

  14. Kinematic perturbation in the flexion-extension axis for two lumbar rigs during a high impact jump task.

    PubMed

    Portus, Marc R; Lloyd, David G; Elliott, Bruce C; Trama, Neil L

    2011-05-01

    The measurement of lumbar spine motion is an important step for injury prevention research during complex and high impact activities, such as cricket fast bowling or javelin throwing. This study examined the performance of two designs of a lumbar rig, previously used in gait research, during a controlled high impact bench jump task. An 8-camera retro-reflective motion analysis system was used to track the lumbar rig. Eleven athletes completed the task wearing the two different lumbar rig designs. Flexion extension data were analyzed using a fast Fourier transformation to assess the signal power of these data during the impact phase of the jump. The lumbar rig featuring an increased and pliable base of support recorded moderately less signal power through the 0-60 Hz spectrum, with statistically less magnitudes at the 0-5 Hz (p = .039), 5-10 Hz (p = .005) and 10-20 Hz (p = .006) frequency bins. A lumbar rig of this design would seem likely to provide less noisy lumbar motion data during high impact tasks.

  15. Dynamic heterogeneity in an orientational glass.

    PubMed

    Caballero, Nirvana B; Zuriaga, Mariano; Tamarit, Josep Lluís; Serra, Pablo

    2017-11-14

    The family of compounds CBr n Cl 4-n has been proven helpful in unraveling microscopic mechanisms responsible for glassy behavior. Some of the family members show translational ordered phases with minimal disorder which appears to reveal glassy features, thus deserving special attention in the search for universal glass anomalies. In this work, we studied CBrCl 3 dynamics by performing extensive molecular dynamics simulations. Molecules of this compound perform reorientational discrete jumps, where the atoms exchange equivalent positions among each other revealing a cage-orientational jump motion fully comparable to the cage-rototranslational jump motion in supercooled liquids. Correlation times were calculated from rotational autocorrelation functions showing good agreement with previous reported dielectric results. From mean waiting and persistence times calculated directly from trajectory results, we are able to explain which microscopic mechanisms lead to characteristic times associated with α- and β-relaxation times measured experimentally. We found that two nonequivalent groups of molecules have a longer characteristic time than the other two nonequivalent groups, both of them belonging to the asymmetric unit of the monoclinic (C2/c) lattice.

  16. Probabilistic learning and inference in schizophrenia.

    PubMed

    Averbeck, Bruno B; Evans, Simon; Chouhan, Viraj; Bristow, Eleanor; Shergill, Sukhwinder S

    2011-04-01

    Patients with schizophrenia make decisions on the basis of less evidence when required to collect information to make an inference, a behavior often called jumping to conclusions. The underlying basis for this behavior remains controversial. We examined the cognitive processes underpinning this finding by testing subjects on the beads task, which has been used previously to elicit jumping to conclusions behavior, and a stochastic sequence learning task, with a similar decision theoretic structure. During the sequence learning task, subjects had to learn a sequence of button presses, while receiving a noisy feedback on their choices. We fit a Bayesian decision making model to the sequence task and compared model parameters to the choice behavior in the beads task in both patients and healthy subjects. We found that patients did show a jumping to conclusions style; and those who picked early in the beads task tended to learn less from positive feedback in the sequence task. This favours the likelihood of patients selecting early because they have a low threshold for making decisions, and that they make choices on the basis of relatively little evidence. Published by Elsevier B.V.

  17. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-12-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.

  18. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed Central

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-01-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations. PMID:29643592

  19. Long-Term X-Ray Variability of Circinus X-1

    NASA Technical Reports Server (NTRS)

    Saz Parkinson, P. M.; Tournear, D. M.; Bloom, E. D.; Focke, W. B.; Reilly, K. T.

    2003-01-01

    We present an analysis of long term X-ray monitoring observations of Circinus X-1 (Cir X-1) made with four different instruments: Vela 5B, Ariel V ASM, Ginga ASM, and RXTE ASM, over the course of more than 30 years. We use Lomb-Scargle periodograms to search for the approx. 16.5 day orbital period of Cir X-1 in each of these data sets and from this derive a new orbital ephemeris based solely on X-ray measurements, which we compare to the previous ephemerides obtained from radio observations. We also use the Phase Dispersion Minimization (PDM) technique, as well as FFT analysis, to verify the periods obtained from periodograms. We obtain dynamic periodograms (both Lomb-Scargle and PDM) of Cir X-1 during the RXTE era, showing the period evolution of Cir X-1, and also displaying some unexplained discrete jumps in the location of the peak power.

  20. South China Sea kinematics

    NASA Astrophysics Data System (ADS)

    Sibuet, J. C.; Gao, J.; Zhao, M.; Wu, J.; Ding, W.; Yeh, Y. C.; Lee, C. S.

    2016-12-01

    Magnetic modeling shows that the age of the youngest South China Sea (SCS) oceanic crust is controversial (e.g. 15.5 Ma (Briais et al., JGR 1993) and 20.5 Ma (Barckhausen et al., MPG 2014)). Recently, Sibuet et al. (Tectonophysics 2016) pointed out that post-spreading magmatic activity ( 8-13 Ma) largely masks the spreading fabric, in particular near the previously identified E-W portion of the extinct ridge axis of the East sub-basin. Their compilation of available swath bathymetric data shows that, if post-spreading volcanics hide the seafloor spreading magnetic fabric mostly along and near the extinct spreading axis, the whole SCS is globally characterized by rift directions following three directions: N055°in the youngest portion of the SCS, N065° and N085° in the oldest portions of the SCS, suggesting the extinct ridge axis is N055° trending instead of E-W. We present an updated version of the whole SCS structural sketch based on previously published swath bathymetric trends and new detailed magnetic lineations trends compiled from an extremely dense set of magnetic data. The new structural sketch shows: - The distribution of conjugate kinematic domains, - The early opening of the NW and East sub-basins, before a jump of the rift axis, - A second ridge jump in the East basin, - The different expressions of the post-spreading magmatism in the East and SW sub-basins. In the East sub-basin, crustal magmatic intrusions led to the formation of extrusive basalts associated with the presence of numerous volcanoes (Wang et al., Geological Journal 2016). In the SW sub-basin, crustal magmatic intrusions deformed and uplifted the already formed oceanic crust and oldest overlying sediments, resulting in the formation of a double post-spreading ridge belt previously identified as the shoulders of the extinct spreading rift axis. This preliminary work will be used to identify magnetic lineations not polluted by the post-spreading magmatism. The unfolded Manila trench and proto-SCS slabs from seismic tomography indicate that the Eurasian margin has been maximum 500 km east of the Manila trench since the proto-SCS era, and we incorporate these restored slabs to define a more complete SCS kinematic history.

  1. Approach for Text Classification Based on the Similarity Measurement between Normal Cloud Models

    PubMed Central

    Dai, Jin; Liu, Xin

    2014-01-01

    The similarity between objects is the core research area of data mining. In order to reduce the interference of the uncertainty of nature language, a similarity measurement between normal cloud models is adopted to text classification research. On this basis, a novel text classifier based on cloud concept jumping up (CCJU-TC) is proposed. It can efficiently accomplish conversion between qualitative concept and quantitative data. Through the conversion from text set to text information table based on VSM model, the text qualitative concept, which is extraction from the same category, is jumping up as a whole category concept. According to the cloud similarity between the test text and each category concept, the test text is assigned to the most similar category. By the comparison among different text classifiers in different feature selection set, it fully proves that not only does CCJU-TC have a strong ability to adapt to the different text features, but also the classification performance is also better than the traditional classifiers. PMID:24711737

  2. Bootstrapping Least Squares Estimates in Biochemical Reaction Networks

    PubMed Central

    Linder, Daniel F.

    2015-01-01

    The paper proposes new computational methods of computing confidence bounds for the least squares estimates (LSEs) of rate constants in mass-action biochemical reaction network and stochastic epidemic models. Such LSEs are obtained by fitting the set of deterministic ordinary differential equations (ODEs), corresponding to the large volume limit of a reaction network, to network’s partially observed trajectory treated as a continuous-time, pure jump Markov process. In the large volume limit the LSEs are asymptotically Gaussian, but their limiting covariance structure is complicated since it is described by a set of nonlinear ODEs which are often ill-conditioned and numerically unstable. The current paper considers two bootstrap Monte-Carlo procedures, based on the diffusion and linear noise approximations for pure jump processes, which allow one to avoid solving the limiting covariance ODEs. The results are illustrated with both in-silico and real data examples from the LINE 1 gene retrotranscription model and compared with those obtained using other methods. PMID:25898769

  3. Variability and mass loss in IA O-B-A supergiants

    NASA Technical Reports Server (NTRS)

    Schild, R. E.; Garrison, R. F.; Hiltner, W. A.

    1983-01-01

    Recently completed catalogs of MK spectral types and UBV photometry of 1227 OB stars in the southern Milky Way have been analyzed to investigate brightness and color variability among the Ia supergiants. It is found that brightness variability is common among the O9-B1 supergiants with typical amplitudes about 0.1 and time scales longer than a week and shorter than 1000 days. Among the A supergiants fluctuations in U-B color are found on similar time scales and with amplitude about 0.1. For many early Ia supergiants there is a poor correlation between Balmer jump and spectral type, as had been known previously. An attempt to correlate the Balmer jump deficiency with mass loss rate yielded uncertain results.

  4. Phase plate technology for laser marking of magnetic discs

    DOEpatents

    Neuman, Bill; Honig, John; Hackel, Lloyd; Dane, C. Brent; Dixit, Shamasundar

    1998-01-01

    An advanced design for a phase plate enables the distribution of spots in arbitrarily shaped patterns with very high uniformity and with a continuously or near-continuously varying phase pattern. A continuous phase pattern eliminates large phase jumps typically expected in a grating that provides arbitrary shapes. Large phase jumps increase scattered light outside of the desired pattern, reduce efficiency and can make the grating difficult to manufacture. When manufacturing capabilities preclude producing a fully continuous grating, the present design can be easily adapted to minimize manufacturing errors and maintain high efficiencies. This continuous grating is significantly more efficient than previously described Dammann gratings, offers much more flexibility in generating spot patterns and is easier to manufacture and replicate than a multi-level phase grating.

  5. Frontal plane comparison between drop jump and vertical jump: implications for the assessment of ACL risk of injury.

    PubMed

    Cesar, Guilherme M; Tomasevicz, Curtis L; Burnfield, Judith M

    2016-11-01

    The potential to use the vertical jump (VJ) to assess both athletic performance and risk of anterior cruciate ligament (ACL) injury could have widespread clinical implications since VJ is broadly used in high school, university, and professional sport settings. Although drop jump (DJ) and VJ observationally exhibit similar lower extremity mechanics, the extent to which VJ can also be used as screening tool for ACL injury risk has not been assessed. This study evaluated whether individuals exhibit similar knee joint frontal plane kinematic and kinetic patterns when performing VJs compared with DJs. Twenty-eight female collegiate athletes performed DJs and VJs. Paired t-tests indicated that peak knee valgus angles did not differ significantly between tasks (p = 0.419); however, peak knee internal adductor moments were significantly larger during the DJ vs. VJ (p < 0.001). Pearson correlations between the DJ and VJ revealed strong correlations for knee valgus angles (r = 0.93, p < 0.001) and for internal knee adductor moments (r = 0.82, p < 0.001). Our results provide grounds for investigating whether frontal plane knee mechanics during VJ can predict ACL injuries and thus can be used as an effective tool for the assessment of risk of ACL injury in female athletes.

  6. Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements

    PubMed Central

    Stöggl, Thomas; Martiner, Alex

    2017-01-01

    ABSTRACT The purpose of this study was the experimental validation of the OpenGo sensor insole system compared to PedarX sensor insole and AMTI force-plate systems. Sixteen healthy participants performed trials in walking, running, jumping (drop and counter movement jumps), imitation drills and balance, with simultaneous measures of all three systems. Detected ground contact and flight times with OpenGo during walking, running and jumping were similar to those of AMTI. Force–time curves revealed comparable shapes between all three systems. Force impulses were 13–34% lower with OpenGo when compared to AMTI. Despite differences in mean values in some exercise modes, correlations towards AMTI were between r = 0.8 and r = 1.0 in most situations. During fast motions, with high force and impact, OpenGo provided lower force and latency in force kinetics. During balance tasks, discrepancy in the centre of pressure was found medio-lateral, while anterio–posterior direction was closer to AMTI. With awareness of these limitations, OpenGo can be applied in both clinical and research settings to evaluate temporal, force and balance parameters during different types of motion. The fully mobile OpenGo system allows for the easy and quick system application, analysis and feedback under complex field conditions, as well. PMID:27010531

  7. Mobile Jump Assessment (mJump): A Descriptive and Inferential Study.

    PubMed

    Mateos-Angulo, Alvaro; Galán-Mercant, Alejandro; Cuesta-Vargas, Antonio

    2015-08-26

    Vertical jump tests are used in athletics and rehabilitation to measure physical performance in people of different age ranges and fitness. Jumping ability can be analyzed through different variables, and the most commonly used are fly time and jump height. They can be obtained by a variety of measuring devices, but most are limited to laboratory use only. The current generation of smartphones contains inertial sensors that are able to record kinematic variables for human motion analysis, since they are tools for easy access and portability for clinical use. The aim of this study was to describe and analyze the kinematics characteristics using the inertial sensor incorporated in the iPhone 4S, the lower limbs strength through a manual dynamometer, and the jump variables obtained with a contact mat in the squat jump and countermovement jump tests (fly time and jump height) from a cohort of healthy people. A cross sectional study was conducted on a population of healthy young adults. Twenty-seven participants performed three trials (n=81 jumps) of squat jump and countermovement jump tests. Acceleration variables were measured through a smartphone's inertial sensor. Additionally, jump variables from a contact mat and lower limbs dynamometry were collected. In the present study, the kinematic variables derived from acceleration through the inertial sensor of a smartphone iPhone 4S, dynamometry of lower limbs with a handheld dynamometer, and the height and flight time with a contact mat have been described in vertical jump tests from a cohort of young healthy subjects. The development of the execution has been described, examined and identified in a squat jump test and countermovement jump test under acceleration variables that were obtained with the smartphone. The built-in iPhone 4S inertial sensor is able to measure acceleration variables while performing vertical jump tests for the squat jump and countermovement jump in healthy young adults. The acceleration kinematics variables derived from the smartphone's inertial sensor are higher in the countermovement jump test than the squat jump test. ©Alvaro Mateos-Angulo, Alejandro Galán-Mercant, Antonio Cuesta-Vargas. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 26.08.2015.

  8. Vertical jumping tests in volleyball: reliability, validity, and playing-position specifics.

    PubMed

    Sattler, Tine; Sekulic, Damir; Hadzic, Vedran; Uljevic, Ognjen; Dervisevic, Edvin

    2012-06-01

    Vertical jumping is known to be important in volleyball, and jumping performance tests are frequently studied for their reliability and validity. However, most studies concerning jumping in volleyball have dealt with standard rather than sport-specific jumping procedures and tests. The aims of this study, therefore, were (a) to determine the reliability and factorial validity of 2 volleyball-specific jumping tests, the block jump (BJ) test and the attack jump (AJ) test, relative to 2 frequently used and systematically validated jumping tests, the countermovement jump test and the squat jump test and (b) to establish volleyball position-specific differences in the jumping tests and simple anthropometric indices (body height [BH], body weight, and body mass index [BMI]). The BJ was performed from a defensive volleyball position, with the hands positioned in front of the chest. During an AJ, the players used a 2- to 3-step approach and performed a drop jump with an arm swing followed by a quick vertical jump. A total of 95 high-level volleyball players (all men) participated in this study. The reliability of the jumping tests ranged from 0.97 to 0.99 for Cronbach's alpha coefficients, from 0.93 to 0.97 for interitem correlation coefficients and from 2.1 to 2.8 for coefficients of variation. The highest reliability was found for the specific jumping tests. The factor analysis extracted one significant component, and all of the tests were highly intercorrelated. The analysis of variance with post hoc analysis showed significant differences between 5 playing positions in some of the jumping tests. In general, receivers had a greater jumping capacity, followed by libero players. The differences in jumping capacities should be emphasized vis-a-vis differences in the anthropometric measures of players, where middle hitters had higher BH and body weight, followed by opposite hitters and receivers, with no differences in the BMI between positions.

  9. Effects of timing of signal indicating jump directions on knee biomechanics in jump-landing-jump tasks.

    PubMed

    Stephenson, Mitchell L; Hinshaw, Taylour J; Wadley, Haley A; Zhu, Qin; Wilson, Margaret A; Byra, Mark; Dai, Boyi

    2018-03-01

    A variety of the available time to react (ATR) has been utilised to study knee biomechanics during reactive jump-landing tasks. The purpose was to quantify knee kinematics and kinetics during a jump-land-jump task of three possible directions as the ATR was reduced. Thirty-four recreational athletes performed 45 trials of a jump-land-jump task, during which the direction of the second jump (lateral, medial or vertical) was indicated before they initiated the first jump, the instant they initiated the first jump, 300 ms before landing, 150 ms before landing or at the instant of landing. Knee joint angles and moments close to the instant of landing were significantly different when the ATR was equal to or more than 300 ms before landing, but became similar when the ATR was 150 ms or 0 ms before landing. As the ATR was decreased, knee moments decreased for the medial jump direction, but increased for the lateral jump direction. When the ATR is shorter than an individual's reaction time, the movement pattern cannot be pre-planned before landing. Knee biomechanics are dependent on the timing of the signal and the subsequent jump direction. Precise control of timing and screening athletes with low ATR are suggested.

  10. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.

    PubMed

    Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio

    2016-03-01

    Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.

  11. Viscous Corrections of the Time Incremental Minimization Scheme and Visco-Energetic Solutions to Rate-Independent Evolution Problems

    NASA Astrophysics Data System (ADS)

    Minotti, Luca; Savaré, Giuseppe

    2018-02-01

    We propose the new notion of Visco-Energetic solutions to rate-independent systems {(X, E,} d) driven by a time dependent energy E and a dissipation quasi-distance d in a general metric-topological space X. As for the classic Energetic approach, solutions can be obtained by solving a modified time Incremental Minimization Scheme, where at each step the dissipation quasi-distance d is incremented by a viscous correction {δ} (for example proportional to the square of the distance d), which penalizes far distance jumps by inducing a localized version of the stability condition. We prove a general convergence result and a typical characterization by Stability and Energy Balance in a setting comparable to the standard energetic one, thus capable of covering a wide range of applications. The new refined Energy Balance condition compensates for the localized stability and provides a careful description of the jump behavior: at every jump the solution follows an optimal transition, which resembles in a suitable variational sense the discrete scheme that has been implemented for the whole construction.

  12. Further evidence for a sub-year magnetic chromospheric activity cycle and activity phase jumps in the planet host τ Boötis

    NASA Astrophysics Data System (ADS)

    Schmitt, J. H. M. M.; Mittag, M.

    2017-04-01

    We examine the S-index data, obtained in the context of the Mount Wilson H&K project for the nearby F-type star τ Boo, for the presence of possible cyclic variations on timescales below one year and "phase jump" episodes in the observed S-index activity levels, to determine whether such features are persistent properties of the chromospheric activity of τ Boo and possibly other late-type stars. Within the Mount Wilson H&K project τ Boo was observed during 1278 individual nights, albeit with a very inhomogeneous coverage ranging from 2 to 137 observations per year. Our analysis shows that periodical variations with timescales on the order of 110-120 days are a persistent feature of the Mount Wilson data set. Furthermore we provide further examples of "phase jump" episodes, when the observed S-index activity drops from maximum to minimum levels on timescales of one to two weeks, hence such features also appear to occur on a more or less regular basis in τ Boo.

  13. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach.

    PubMed

    Chandrasekar, A; Rakkiyappan, R; Cao, Jinde

    2015-10-01

    This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Validity of Hip-worn Inertial Measurement Unit Compared to Jump Mat for Jump Height Measurement in Adolescents.

    PubMed

    Rantalainen, T; Hesketh, K D; Rodda, C; Duckham, R L

    2018-06-16

    Jump tests assess lower body power production capacity, and can be used to evaluate athletic ability and development during growth. Wearable inertial measurement units (IMU) seem to offer a feasible alternative to laboratory-based equipment for jump height assessments. Concurrent validity of these devices for jump height assessments has only been established in adults. Therefore, the purpose of this study was to evaluate the concurrent validity of IMU-based jump height estimate compared to contact mat-based jump height estimate in adolescents. Ninety-five adolescents (10-13 years-of-age; girls N=41, height = 154 (SD 9) cm, weight = 44 (11) kg; boys N=54, height=156 (10) cm, weight = 46 (13) kg) completed three counter-movement jumps for maximal jump height on a contact mat. Inertial recordings (accelerations, rotations) were concurrently recorded with a hip-worn IMU (sampling at 256 Hz). Jump height was evaluated based on flight time. The mean IMU-derived jump height was 27.1 (SD 3.8) cm, and the corresponding mean jump-mat-derived value was 21.5 (3.4) cm. While a significant 26% mean difference was observed between the methods (5.5 [95% limits of agreement 2.2 to 8.9] cm, p = 0.006), the correspondence between methods was excellent (ICC = 0.89). The difference between methods was weakly positively associated with jump height (r = 0.28, P = 0.007). Take-off velocity derived jump height was also explored but produced only fair congruence. In conclusion, IMU-derived jump height exhibited excellent congruence to contact mat-based jump height and therefore presents a feasible alternative for jump height assessments in adolescents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Potential for Non-Contact ACL Injury Between Step-Close-Jump and Hop-Jump Tasks.

    PubMed

    Wang, Li-I; Gu, Chin-Yi; Chen, Wei-Ling; Chang, Mu-San

    2010-01-01

    This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury. Key pointsThe different landing techniques required for these two stop-jump tasks do not necessarily affect the jump height.Hop-jump decreased the hip joint angular velocity at initial foot contact with ground, which could lead to an increasing peak posterior GRF during the landing phase.Hop-jump decreased hip and knee joint angular flexion displacement during the landing, which could increase the peak vertical loading rate during the landing phase.

  16. Effects of In-Season Explosive Strength Training on Maximal Leg Strength, Jumping, Sprinting, and Intermittent Aerobic Performance in Male Handball Athletes.

    PubMed

    Hermassi, Souhail; Chelly, Mohamed Souhaiel; Fieseler, Georg; Bartels, Thomas; Schulze, Stephan; Delank, Karl-Stefan; Shephard, Roy J; Schwesig, René

    2017-09-01

    Background  Team handball is an intense ball sport with specific requirements on technical skills, tactical understanding, and physical performance. The ability of handball players to develop explosive efforts (e. g. sprinting, jumping, changing direction) is crucial to success. Objective  The purpose of this pilot study was to examine the effects of an in-season high-intensity strength training program on the physical performance of elite handball players. Materials and methods  Twenty-two handball players (a single national-level Tunisian team) were randomly assigned to a control group (CG; n = 10) or a training group (TG; n = 12). At the beginning of the pilot study, all subjects performed a battery of motor tests: one repetition maximum (1-RM) half-squat test, a repeated sprint test [6 × (2 × 15 m) shuttle sprints], squat jumps, counter movement jumps (CMJ), and the Yo-Yo intermittent recovery test level 1. The TG additionally performed a maximal leg strength program twice a week for 10 weeks immediately before engaging in regular handball training. Each strength training session included half-squat exercises to strengthen the lower limbs (80 - 95 % of 1-RM, 1 - 3 repetitions, 3 - 6 sets, 3 - 4 min rest between sets). The control group underwent no additional strength training. The motor test battery was repeated at the end of the study interventions. Results  In the TG, 3 parameters (maximal strength of lower limb: η² = 0.74; CMJ: η² = 0.70, and RSA best time: η² = 0.25) showed significant improvements, with large effect sizes (e. g. CMJ: d = 3.77). A reduction in performance for these same 3 parameters was observed in the CG (d = -0.24). Conclusions  The results support our hypothesis that additional strength training twice a week enhances the maximal strength of the lower limbs and jumping or repeated sprinting performance. There was no evidence of shuttle sprints ahead of regular training compromising players' speed and endurance capacities. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers

    PubMed Central

    Pauli, Carole A.; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R.

    2016-01-01

    Abstract Pauli, CA, Keller, M, Ammann, F, Hübner, K, Lindorfer, J, Taylor, WR, and Lorenzetti, S. Kinematics and kinetics of squats, drop jumps and imitation jumps of ski jumpers. J Strength Cond Res 30(3): 643–652, 2016—Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance. PMID:26418370

  18. Recovery After High-Intensity Intermittent Exercise in Elite Soccer Players Using VEINOPLUS Sport Technology for Blood-Flow Stimulation

    PubMed Central

    Bieuzen, François; Pournot, Hervé; Roulland, Rémy; Hausswirth, Christophe

    2012-01-01

    Context Electric muscle stimulation has been suggested to enhance recovery after exhaustive exercise by inducing an increase in blood flow to the stimulated area. Previous studies have failed to support this hypothesis. We hypothesized that the lack of effect shown in previous studies could be attributed to the technique or device used. Objective To investigate the effectiveness of a recovery intervention using an electric blood-flow stimulator on anaerobic performance and muscle damage in professional soccer players after intermittent, exhaustive exercise. Design Randomized controlled clinical trial. Setting National Institute of Sport, Expertise, and Performance (INSEP). Patients or Other Participants Twenty-six healthy professional male soccer players. Intervention(s) The athletes performed an intermittent fatiguing exercise followed by a 1-hour recovery period, either passive or using an electric blood-flow stimulator (VEINOPLUS). Participants were randomly assigned to a group before the experiment started. Main Outcome Measures(s) Performances during a 30-second all-out exercise test, maximal vertical countermovement jump, and maximal voluntary contraction of the knee extensor muscles were measured at rest, immediately after the exercise, and 1 hour and 24 hours later. Muscle enzymes indicating muscle damage (creatine kinase, lactate dehydrogenase) and hematologic profiles were analyzed before and 1 hour and 24 hours after the intermittent fatigue exercise. Results The electric-stimulation group had better 30-second all-out performances at 1 hour after exercise (P = .03) in comparison with the passive-recovery group. However, no differences were observed in muscle damage markers, maximal vertical countermovement jump, or maximal voluntary contraction between groups (P > .05). Conclusions Compared with passive recovery, electric stimulation using this blood-flow stimulator improved anaerobic performance at 1 hour postintervention. No changes in muscle damage markers or maximal voluntary contraction were detected. These responses may be considered beneficial for athletes engaged in sports with successive rounds interspersed with short, passive recovery periods. PMID:23068586

  19. A data-driven wavelet-based approach for generating jumping loads

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Li, Guo; Racic, Vitomir

    2018-06-01

    This paper suggests an approach to generate human jumping loads using wavelet transform and a database of individual jumping force records. A total of 970 individual jumping force records of various frequencies were first collected by three experiments from 147 test subjects. For each record, every jumping pulse was extracted and decomposed into seven levels by wavelet transform. All the decomposition coefficients were stored in an information database. Probability distributions of jumping cycle period, contact ratio and energy of the jumping pulse were statistically analyzed. Inspired by the theory of DNA recombination, an approach was developed by interchanging the wavelet coefficients between different jumping pulses. To generate a jumping force time history with N pulses, wavelet coefficients were first selected randomly from the database at each level. They were then used to reconstruct N pulses by the inverse wavelet transform. Jumping cycle periods and contract ratios were then generated randomly based on their probabilistic functions. These parameters were assigned to each of the N pulses which were in turn scaled by the amplitude factors βi to account for energy relationship between successive pulses. The final jumping force time history was obtained by linking all the N cycles end to end. This simulation approach can preserve the non-stationary features of the jumping load force in time-frequency domain. Application indicates that this approach can be used to generate jumping force time history due to single people jumping and also can be extended further to stochastic jumping loads due to groups and crowds.

  20. Determination of K-shell absorption jump factors and jump ratios for La2O3, Ce and Gd using two different methods

    NASA Astrophysics Data System (ADS)

    Akman, Ferdi; Durak, Rıdvan; Kaçal, Mustafa Recep; Turhan, Mehmet Fatih; Akdemir, Fatma

    2015-02-01

    The K shell absorption jump factors and jump ratios for La2O3, Ce and Gd samples have been determined using the gamma or X-ray attenuation and EDXRF methods. It is the first time that the K shell absorption jump factor and jump ratio have been discussed for present elements using two different methods. To detect K X-rays, a high resolution Si(Li) detector was used. The experimental results of K shell absorption jump factors and jump ratios were compared with the theoretically calculated ones.

  1. Tactical Determinants of Setting Zone in Elite Men'S Volleyball

    PubMed Central

    Afonso, Jose; Esteves, Francisca; Araújo, Rui; Thomas, Luke; Mesquita, Isabel

    2012-01-01

    The interactions between two opposing teams lead to the emergence of unique game patterns. In volleyball, attack efficacy emerges as the strongest predictor of the final result and thus it becomes of foremost importance to understand which game patterns afford the attaining of higher attack efficacies. These rely on the quality of the setting action. In turn, the serve and the serve reception constrain the setter's actions and the attacker's efficacy. Therefore, the purpose of this study was to examine predictors of the setting zone in elite-level men's volleyball. Thirty-one matches of the 2007 World Cup were analyzed, in total 5117 rallies. The dependent variable was the setting zone, and the independent variables were the server player, serve type, serve direction, serve depth, reception zone, receiver player and reception type. Multinomial logistic regression was applied, in order to obtain the estimated likelihood of occurrence of the dependent variable, based on the values of the independent variables (p < 0.05). Only the serve direction showed not to be predictive of the setting zone. Concerning the remaining variables, the tennis jump serve, serves from the middle-player, deep serves, reception near the endline or sidelines, reception by the zone 4 attackers when in defensive zone, and low reception all proved to impair the quality of reception, demanding the setter to play more often in the not acceptable setting zone. Results suggest that, at this level, practice of serve-reception should preferably cover the deep tennis jump serve, and attempt to afford the libero more opportunities to receive. By focusing on the variables with the most predictive power, performers may better allocate their attention towards the most pertinent cues at each moment. Knowledge of these interactive models provides valuable insights into the dynamics of the action sequences, affording coaches important information and guidance. Key pointsA set of key variables interact and allow predicting the setting zone, an important variable in determining attack efficacy in high-level men's volleyball.The tennis jump serve, deep serves, receptions near the endline or sidelines, serves from the middle-players, receptions by the zone 4 attackers when in defensive zone, and low reception enhance the utilization of non-ideal setting zones.By focusing on the variables with the most predictive power, performers may better allocate their attention towards the most pertinent cues at each moment.Knowledge of these interactive models provides valuable insights into the dynamics of the action sequences, affording coaches important information and guidance. PMID:24149123

  2. Sensing fluid pressure during plucking events in a natural bedrock channel and experimental flume

    NASA Astrophysics Data System (ADS)

    Wilkinson, C.; Harbor, D. J.; Keel, D.; Levy, S.; Kuehner, J. P.

    2016-12-01

    River channel erosion by plucking is believed to be the dominant erosional process in channels with fractured or jointed bedrock. However, despite its significance as an erosional mechanism, plucking is poorly studied in both laboratory and natural channels. In previous flume studies, model bedrock was plucked by fluid forces alone in nonuniform flow near jumps and waves even where blocks do not protrude into the flow. Here we develop sensor systems to test the hypothesis that bed fluid pressure gradients lift "pluckable" bedrock blocks in a natural field setting and a hydraulic flume. The field setting closely mimics the previous flume setup; the instrumented block is downstream of a roughly 1m step and exhibits no protrusion into the flow. The presence of the step promotes nonuniform flow which changes pressure in the bedrock crack network; slabs of bedrock that have slid downstream and sediment that has been pushed upstream 3-4 m under the bed and in the cracks suggest the influence of pressure differences throughout the crack network and below the bed. In this initial deployment, we evaluate a sensor that monitors movement and simultaneous pressure above and below the block. Sensors are emplaced in a 26kg, 45-cm-long, 20-cm-wide block broken from a 4.5-m-long, 11-cm-thick sandstone bed with a dense network of cracks nearly parallel to flow direction and include a tri-axial accelerometer/gyroscope and two fluid pressure sensors. The electronics are housed in a custom-designed 3D-printed ABS waterproof capsule that is mounted in a vertical hole through the rock. A concurrent flume study develops the sensors necessary to investigate the longitudinal pressure difference below a step using multiple analog sensors (0-1 psi gauge pressure) mounted flush to a false floor under the center of a 30x14-cm test zone. The 15-mm-wide sensors are aligned along the flow centerline and are placed under 25 1-cm-thick "pluckable" bedrock blocks constructed with a proprietary plaster cement. Measured mean pressure and transmission of pressure pulses under the test bed are compared to the visual record of plucking. In addition, conducting runs with blocks removed permits simulation of the mean and varying pressure conditions above the modeled "pluckable" layer as a hydraulic jump is moved downstream through the step.

  3. Jump events in a 3D Edwards-Anderson spin glass

    NASA Astrophysics Data System (ADS)

    Mártin, Daniel A.; Iguain, José Luis

    2017-11-01

    The statistical properties of infrequent particle displacements, greater than a certain distance, are known as jump dynamics in the context of structural glass formers. We generalize the concept of a jump to the case of a spin glass, by dividing the system into small boxes, and considering the infrequent cooperative spin flips in each box. Jumps defined this way share similarities with jumps in structural glasses. We perform numerical simulations for the 3D Edwards-Anderson model, and study how the properties of these jumps depend on the waiting time after a quench. Similar to the results for structural glasses, we find that while jump frequency depends strongly on time, the jump duration and jump length are roughly stationary. At odds with some results reported on studies of structural glass formers, at long enough times, the rest time between jumps varies as the inverse of jump frequency. We give a possible explanation for this discrepancy. We also find that our results are qualitatively reproduced by a fully-connected trap model.

  4. Does gymnastics practice improve vertical jump reliability from the age of 8 to 10 years?

    PubMed

    Marina, Michel; Torrado, Priscila

    2013-01-01

    The objective of this study was to confirm whether gymnastics practice from a young age can induce greater vertical jump reliability. Fifty young female gymnasts (8.84 ± 0.62 years) and 42 females in the control group (8.58 ± 0.92 years) performed the following jump tests on a contact mat: squat jump, countermovement jump, countermovement jump with arm swing and drop jump from heights of 40 and 60 cm. The two testing sessions had three trials each and were separated by one week. A 2 (groups) × 2 (sessions) × 3 (trials) repeated measures analysis of variance (ANOVA) and a test-retest correlation analysis were used to study the reliability. There was no systematic source of error in either group for non-plyometric jumps such as squat jump, countermovement jump, and countermovement jump with arm swing. A significant group per trial interaction revealed a learning effect in gymnasts' drop jumps from 40 cm height. Additionally, the test-retest correlation analysis and the higher minimum detectable error suggest that the quick drop jump technique was not fully consolidated in either group. At an introductory level of gymnastics and between the ages of 8-10 years, the condition of being a gymnast did not lead to conclusively higher reliability, aside from better overall vertical jump performance.

  5. Organic molecule fluorescence as an experimental test-bed for quantum jumps in thermodynamics

    NASA Astrophysics Data System (ADS)

    Browne, Cormac; Farrow, Tristan; Dahlsten, Oscar C. O.; Taylor, Robert A.; Vlatko, Vedral

    2017-08-01

    We demonstrate with an experiment how molecules are a natural test bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. We demonstrate that the quantum Jarzynski equality for heat is satisfied in this set-up by considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states. This relates the heat dissipated into the environment to the free energy difference between the initial and final state. We demonstrate also how utilizing the quantum Jarzynski equality allows for the detection of energy shifts within a molecule, beyond the relative shift.

  6. Organic molecule fluorescence as an experimental test-bed for quantum jumps in thermodynamics.

    PubMed

    Browne, Cormac; Farrow, Tristan; Dahlsten, Oscar C O; Taylor, Robert A; Vlatko, Vedral

    2017-08-01

    We demonstrate with an experiment how molecules are a natural test bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. We demonstrate that the quantum Jarzynski equality for heat is satisfied in this set-up by considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states. This relates the heat dissipated into the environment to the free energy difference between the initial and final state. We demonstrate also how utilizing the quantum Jarzynski equality allows for the detection of energy shifts within a molecule, beyond the relative shift.

  7. Andreev bound states in a semiconducting nanowire Josephson junction, Part II: Quantum jumps and Fermion parity switching

    NASA Astrophysics Data System (ADS)

    Hays, M.; de Lange, G.; Serniak, K.; van Woerkom, D. J.; Väyrynen, J. I.; van Heck, B.; Vool, U.; Krogstrup, P.; Nygård, J.; Frunzio, L.; Geresdi, A.; Glazman, L. I.; Devoret, M. H.

    Proximitized semiconducting nanowires subject to magnetic field should display topological superconductivity and support Majorana zero modes which have non-Abelian braiding statistics. The conventional Andreev levels formed in such wires in the absence of field are a precursor to these exotic zero modes. The fermion-parity switching time of Andreev levels sets a lower bound on the bandwidth required for experiments aimed at harnessing non-Abelian braiding statistics. We demonstrate the observation of quantum jumps between even and odd-parity states of an individual Andreev bound state in a non-topological junction, providing a direct measurement of the state populations and the parity lifetime. Work supported by: ARO, ONR, AFOSR, EU Marie Curie and YINQE.

  8. Neuromuscular function during drop jumps in young and elderly males.

    PubMed

    Piirainen, Jarmo M; Linnamo, Vesa; Sippola, Niina; Avela, Janne

    2012-12-01

    The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task - and in resting conditions - age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p < 0.001), longer braking time (32.4%, p < 0.01), lower push-off force (18.0%, p < 0.05) and longer push-off time (31.0% p < 0.01). H jump/M jump correlated with the average push-off force (r = 0.833, p < 0.05) and with push-off time (r = -0.857, p < 0.01) in young but not in the elderly. Correlations between H-reflex response and jumping parameters in young may indicate different jumping and activation strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Accuracy of Jump-Mat Systems for Measuring Jump Height.

    PubMed

    Pueo, Basilio; Lipinska, Patrycja; Jiménez-Olmedo, José M; Zmijewski, Piotr; Hopkins, Will G

    2017-08-01

    Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose. To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height. Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference. The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm). The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.

  10. Sport skill level and gender with relation to age, physical development and special fitness of the participants of Olympic volleyball tournament Beijing 2008.

    PubMed

    Sterkowicz-Przybycien, Katarzyna; Sterkowicz, Stanislaw; Zak, Stanislaw

    2014-06-01

    The aim of this study was to provide an answer to the question whether and how age, body height, body mass, body mass index and results from fitness tests are related to sport skill level and gender of the participants of the Olympic volleyball tournament. Two-Way ANOVA was used to find the dependency of the variables on the factor of sport skill level (A--teams which took places 1 to 4, B--places from 5 to 8; C--places from 9 to 12) and gender (F--female; M--male). Statistical significance was set at p < 0.05. The Bonferroni's adjustment was carried out for three p = 0.017 and fifteen p = 0.003 pairs of comparisons). The M and F athletes included in A-C groups (N = 48 in each group) were than compared to the classification in the neural network of Probabilistic Neural Network (PNN). A combined effect of the factors of sports level and gender on the height of attack jump (F = 4.13; p = 0.02) and block jump (F = 9.22; p < 0.001) was identified. The level of achievement was modified by the differences between the men and women. A significant advantage over the groups B and C was found for attack height and block height. In the group A, the differences between the results obtained for women and men in the ranges of attack and block with respect to the net height were not significant. Mean range of block jump did not match up to attack jump, particularly in women. The application of PNN network showed that age, BMI, relative attack jump and block jump are good predictors of sport results. The percentage of properly classified players in the group of men was lower than in women (42.4 vs. 56.3%). In this regard, big differences were found at the lower level of sport results: A (77.1 vs. 79.2%), B (25.0 vs. 25.0%) and C (25.0 vs. 64.6%). In conclusion, selection for national teams should take into consideration the players with long competitive experience with adequate weight/height ratios, who exhibit good training adaptations to jumping exercise.

  11. Costs and benefits of larval jumping behaviour of Bathyplectes anurus.

    PubMed

    Saeki, Yoriko; Tani, Soichiro; Fukuda, Katsuto; Iwase, Shun-ichiro; Sugawara, Yuma; Tuda, Midori; Takagi, Masami

    2016-02-01

    Bathyplectes anurus, a parasitoid of the alfalfa weevils, forms a cocoon in the late larval stage and exhibits jumping behaviour. Adaptive significance and costs of the cocoon jumping have not been thoroughly studied. We hypothesised that jumping has the fitness benefits of enabling habitat selection by avoiding unfavourable environments. We conducted laboratory experiments, which demonstrated that jumping frequencies increased in the presence of light, with greater magnitudes of temperature increase and at lower relative humidity. In addition, when B. anurus individuals were allowed to freely jump in an arena with a light gradient, more cocoons were found in the shady area, suggesting microhabitat selection. In a field experiment, mortality of cocoons placed in the sun was significantly higher than for cocoons placed in the shade. B. anurus cocoons respond to environmental stress by jumping, resulting in habitat selection. In the presence of potential predators (ants), jumping frequencies were higher than in the control (no ant) arenas, though jumping frequencies decreased after direct contact with the predators. Body mass of B. anurus cocoons induced to jump significantly decreased over time than cocoons that did not jump, suggesting a cost to jumping. We discuss the benefits and costs of jumping behaviour and potential evolutionary advantages of this peculiar trait, which is present in a limited number of species.

  12. Egg load decreases mobility and increases predation risk in female black-horned tree crickets (Oecanthus nigricornis).

    PubMed

    Ercit, Kyla; Martinez-Novoa, Andrew; Gwynne, Darryl T

    2014-01-01

    Female-biased predation is an uncommon phenomenon in nature since males of many species take on riskier behaviours to gain more mates. Several species of sphecid wasps have been observed taking more female than male prey, and it is not fully understood why. The solitary sphecid Isodontia mexicana catches more adult female tree cricket (Oecanthus nigricornis) prey. Previous work has shown that, although female tree crickets are larger and thus likely to be more valuable as prey than males, body size alone cannot fully explain why wasps take more females. We tested the hypothesis that wasps catch adult female tree crickets more often because bearing eggs impedes a female's ability to escape predation. We compared female survivors to prey of I. mexicana, and found that females carrying more eggs were significantly more likely to be caught by wasps, regardless of their body size and jumping leg mass. We also conducted laboratory experiments where females' jumping responses to a simulated attack were measured and compared to her egg load and morphology. We found a significant negative relationship between egg load and jumping ability, and a positive relationship between body size and jumping ability. These findings support the hypothesis that ovarian eggs are a physical handicap that contributes to female-biased predation in this system. Predation on the most fecund females may have ecological-evolutionary consequences such as collapse of prey populations or selection for alternate life history strategies and behaviours.

  13. Is the technical performance of young soccer players influenced by hormonal status, sexual maturity, anthropometric profile, and physical performance?

    PubMed

    Moreira, Alexandre; Massa, Marcelo; Thiengo, Carlos R; Rodrigues Lopes, Rafael Alan; Lima, Marcelo R; Vaeyens, Roel; Barbosa, Wesley P; Aoki, Marcelo S

    2017-12-01

    The aim of this study was to examine the influence of hormonal status, anthropometric profile, sexual maturity level, and physical performance on the technical abilities of 40 young male soccer players during small-sided games (SSGs). Anthropometric profiling, saliva sampling, sexual maturity assessment (Tanner scale), and physical performance tests (Yo-Yo and vertical jumps) were conducted two weeks prior to the SSGs. Salivary testosterone was determined by the enzyme-linked immunosorbent assay method. Technical performance was determined by the frequency of actions during SSGs. Principal component analyses identified four technical actions of importance: total number of passes, effectiveness, goal attempts, and total tackles. A multivariate canonical correlation analysis was then employed to verify the prediction of a multiple dependent variables set (composed of four technical actions) from an independent set of variables, composed of testosterone concentration, stage of pubic hair and genitalia development, vertical jumps and Yo-Yo performance. A moderate-to-large relationship between the technical performance set and the independent set was observed. The canonical correlation was 0.75 with a canonical R 2 of 0.45. The highest structure coefficient in the technical performance set was observed for tackles (0.77), while testosterone presented the highest structure coefficient (0.75) for the variables of the independent set. The current data suggest that the selected independent set of variables might be useful in predicting SSG performance in young soccer players. Coaches should be aware that physical development plays a key role in technical performance to avoid decision-making mistakes during the selection of young players.

  14. Validity Study of a Jump Mat Compared to the Reference Standard Force Plate.

    PubMed

    Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger

    2015-12-01

    In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 × [value HE jump mat] and VJH = -1.73777 + 1.011156 × [value HE jump mat]. The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change).

  15. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  16. The Effects of Peer-Administered Token Reinforcement on Jump Rope Behaviors of Elementary Physical Education Students

    ERIC Educational Resources Information Center

    Alstot, Andrew E.

    2012-01-01

    Token economies have a long research and applied history within clinical settings and classroom education (Kazdin, 1982). However, despite reported successes in improving physical activity behaviors (Alstot, 2012), research examining token reinforcement implemented specifically in physical education is virtually nonexistent. Therefore, the purpose…

  17. Should Supervisors Intervene during Classroom Visits?

    ERIC Educational Resources Information Center

    Marshall, Kim

    2015-01-01

    Real-time coaching has become the go-to supervisory model in some schools (especially charters), with supervisors routinely jumping in during teacher observations and sometimes taking over the class to model a more effective approach. The author sets out goals and guidelines for impromptu classroom visits that include visiting each classroom at…

  18. Jump spillover between oil prices and exchange rates

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ping; Zhou, Chun-Yang; Wu, Chong-Feng

    2017-11-01

    In this paper, we investigate the jump spillover effects between oil prices and exchange rates. To identify the latent historical jumps for exchange rates and oil prices, we use a Bayesian MCMC approach to estimate the stochastic volatility model with correlated jumps in both returns and volatilities for each. We examine the simultaneous jump intensities and the conditional jump spillover probabilities between oil prices and exchange rates, finding strong evidence of jump spillover effects. Further analysis shows that the jump spillovers are mainly due to exogenous events such as financial crises and geopolitical events. Thus, the findings have important implications for financial risk management.

  19. RELATIONSHIP BETWEEN ISOKINETIC KNEE STRENGTH AND JUMP CHARACTERISTICS FOLLOWING ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION.

    PubMed

    Laudner, Kevin; Evans, Daniel; Wong, Regan; Allen, Aaron; Kirsch, Tom; Long, Brian; Meister, Keith

    2015-06-01

    Clinicians are often challenged when making return-to-play decisions following anterior cruciate ligament reconstruction (ACL-R). Isokinetic strength and jump performance testing are common tools used to make this decision. Unfortunately, vertical jump performance standards have not been clearly established and many clinicians do not have access to isokinetic testing equipment. To establish normative jump and strength characteristics in ACL-R patients cleared by an orthopedic physician to return-to-play and to determine if relationships exist between knee isokinetic strength measurements and jump characteristics described using an electronic jump map system. Descriptive laboratory study. Thirty-three ACL-R patients who had been cleared to return to athletic competition participated in this study. Twenty-six of these ACL-R participants were also matched to 26 asymptomatic athletes based on sex, limb, height, and mass to determine isokinetic strength and jump characteristic differences between groups. Jump tests consisted of single leg vertical, double leg vertical, and a 4-jump single leg vertical jump assessed using an electronic jump mat system. Independent t-tests were used to determine differences between groups and multiple regression analyses were used to identify any relationships between jump performance and knee strength (p<0.05). The ACL-R group had lower vertical jump capabilities and some bilateral knee strength deficiencies compared to the matched control group. The ACL-R group also showed several moderate-to-strong positive relationships for both knee extension and flexion strength with several jump performance characteristics, such as single and double leg vertical jump height. The current results indicate that ACL-R patients present with several knee strength and vertical jump differences compared to a matched control group at the time of return-to-play. Also, ACL-R patient's performance on an electronic jump mat system is strongly related to isokinetic knee strength measures. 2b.

  20. Economics of growth regulator treatment of alfalfa seed for interseeding into silage corn

    USDA-ARS?s Scientific Manuscript database

    Previous studies have focused on interseeding of alfalfa into corn for use as a temporary cover crop rather than as a means of jump-starting alfalfa production after corn. In ongoing field studies, we are evaluating whether plant growth regulators (PGR) may be used to aid the establishment of inters...

  1. Froghopper-inspired direction-changing concept for miniature jumping robots.

    PubMed

    Jung, Gwang-Pil; Cho, Kyu-Jin

    2016-09-14

    To improve the maneuverability and agility of jumping robots, several researchers have studied steerable jumping mechanisms. This steering ability enables robots to reach a particular target by controlling their jumping direction. To this end, we propose a novel direction-changing concept for miniature jumping robots. The proposed concept allows robots to be steerable while exerting minimal effects on jumping performance. The key design principles were adopted from the froghopper's power-producing hind legs and the moment cancellation accomplished by synchronized leg operation. These principles were applied via a pair of symmetrically positioned legs and conventional gears, which were modeled on the froghopper's anatomy. Each leg has its own thrusting energy, which improves jumping performance by allowing the mechanism to thrust itself with both power-producing legs. Conventional gears were utilized to simultaneously operate the legs and cancel out the moments that they induce, which minimizes body spin. A prototype to verify the concept was built and tested by varying the initial jumping posture. Three jumping postures (synchronous, asynchronous, and single-legged) were tested to investigate how synchronization and moment cancelling affect jumping performance. The results show that synchronous jumping allows the mechanism to change direction from -40° to 40°, with an improved take-off speed. The proposed concept can only be steered in a limited range of directions, but it has potential for use in miniature jumping robots that can change jumping direction with a minimal drop in jumping performance.

  2. A new species of jumping spider Neonella Gertsch, with notes on the genus and male identification key (Araneae, Salticidae)

    PubMed Central

    Rubio, Gonzalo D.; Argañaraz, Carina I.; Gleiser, Raquel M.

    2015-01-01

    Abstract The American genus Neonella Gertsch, 1936 consists of very small jumping spiders whose biology is not well known. The genus currently includes eleven valid species, of which eight are known from both sexes and two are only known from one sex. This paper describes and illustrates a new species Neonella acostae sp. n., demonstrates male palpal variation in Neonella montana Galiano, 1988, and provides some information on the ecology of three sympatric species. New records of Neonella montana and Neonella minuta Galiano, 1965 are reported. Because the previously described species of Neonella were well illustrated and diagnosed, a dichotomous key to males is given along with genital illustrations of both sexes for all known species. PMID:26692804

  3. Phase plate technology for laser marking of magnetic discs

    DOEpatents

    Neuman, B.; Honig, J.; Hackel, L.; Dane, C.B.; Dixit, S.

    1998-10-27

    An advanced design for a phase plate enables the distribution of spots in arbitrarily shaped patterns with very high uniformity and with a continuously or near-continuously varying phase pattern. A continuous phase pattern eliminates large phase jumps typically expected in a grating that provides arbitrary shapes. Large phase jumps increase scattered light outside of the desired pattern, reduce efficiency and can make the grating difficult to manufacture. When manufacturing capabilities preclude producing a fully continuous grating, the present design can be easily adapted to minimize manufacturing errors and maintain high efficiencies. This continuous grating is significantly more efficient than previously described Dammann gratings, offers much more flexibility in generating spot patterns and is easier to manufacture and replicate than a multi-level phase grating. 3 figs.

  4. A Comparison of Mechanical Parameters Between the Counter Movement Jump and Drop Jump in Biathletes

    PubMed Central

    Król, Henryk; Mynarski, Władysław

    2012-01-01

    The main objective of the study was to determine to what degree higher muscular activity, achieved by increased load in the extension phase (eccentric muscle action) of the vertical jump, affects the efficiency of the vertical jump. Sixteen elite biathletes participated in this investigation. The biathletes performed tests that consisted of five, single “maximal” vertical jumps (counter movement jump – CMJ) and five, single vertical jumps, in which the task was to touch a bar placed over the jumping biathletes (specific task counter movement jump – SCMJ). Then, they performed five, single drop jumps from an elevation of 0.4m (DJ). Ground reaction forces were registered using the KISTLER 9182C force platform. MVJ software was used for signal processing (Król, 1999) and enabling calculations for kinematic and kinetic parameters of the subject’s jump movements (on-line system). The results indicate that only height of the jump (h) and mean power (Pmean) during the takeoff are statistically significant. Both h and Pmean are higher in the DJ. The results of this study may indicate that elite biathletes are well adapted to eccentric work of the lower limbs, thus reaching greater values of power during the drop jump. These neuromuscular adaptive changes may allow for a more dynamic and efficient running technique. PMID:23487157

  5. Validity and intra-rater reliability of MyJump app on iPhone 6s in jump performance.

    PubMed

    Stanton, Robert; Wintour, Sally-Anne; Kean, Crystal O

    2017-05-01

    Smartphone applications are increasingly used by researchers, coaches, athletes and clinicians. The aim of this study was to examine the concurrent validity and intra-rater reliability of the smartphone-based application, MyJump, against laboratory-based force plate measurements. Cross sectional study. Participants completed counter-movement jumps (CMJ) (n=29) and 30cm drop jumps (DJ) (n=27) on a force plate which were simultaneously recorded using MyJump. To assess concurrent validity, jump height, derived from flight time acquired from each device, was compared for each jump type. Intra-rater reliability was determined by replicating data analysis of MyJump recordings on two occasions separated by seven days. CMJ and DJ heights derived from MyJump showed excellent agreement with the force plate (ICC values range from 0.991 for CMJ to 0.993) However mean DJ height from the force plate was significantly higher than MyJump (mean difference: 0.87cm, 95% CI: 0.69-1.04cm). Intra-rater reliability of MyJump for both CMJ and DJ was almost perfect (ICC values range from 0.997 for CMJ to 0.998 for DJ); however, mean CMJ and DJ jump height for Day 1 was significantly higher than Day 2 (CMJ: 0.43cm, 95% CI: 0.23-0.62cm); (DJ: 0.38cm, 95% CI: 0.23-0.53cm). The present study finds MyJump to be a valid and highly reliable tool for researchers, coaches, athletes and clinicians; however, systematic bias should be considered when comparing MyJump outputs to other testing devices. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. The theory of n-scales

    NASA Astrophysics Data System (ADS)

    Dündar, Furkan Semih

    2018-01-01

    We provide a theory of n-scales previously called as n dimensional time scales. In previous approaches to the theory of time scales, multi-dimensional scales were taken as product space of two time scales [1, 2]. n-scales make the mathematical structure more flexible and appropriate to real world applications in physics and related fields. Here we define an n-scale as an arbitrary closed subset of ℝn. Modified forward and backward jump operators, Δ-derivatives and Δ-integrals on n-scales are defined.

  7. Test-retest reliability of jump execution variables using mechanography: A comparison of jump protocols

    USDA-ARS?s Scientific Manuscript database

    Mechanography during the vertical jump test allows for evaluation of force-time variables reflecting jump execution, which may enhance screening for functional deficits that reduce physical performance and determining mechanistic causes underlying performance changes. However, utility of jump mechan...

  8. Psychophysiological response in parachute jumps, the effect of experience and type of jump.

    PubMed

    Clemente-Suárez, Vicente Javier; Robles-Pérez, José Juan; Fernández-Lucas, Jesús

    2017-10-01

    We aimed to analyse the effect of experience and type of parachute jump on the psychophysiological responses of jumpers. We analysed blood oxygen saturation, heart rate, blood glucose, lactate and creatinkinase, leg strength, isometric hand strength, cortical arousal, specific fine motor skills, self-confidence and cognition, and somatic and state anxiety, before and after four different parachute jumps: a sport parachute jump, a manual tactical parachute jump, tandem pilots, and tandem passengers. Independently of the parachute jump, the psychophysiological responses of experienced paratroopers were not affected by the jumps, except for an increase in anaerobic metabolism. Novice parachute jumpers presented a higher psychophysiological stress response than the experienced jumpers, together with a large anticipatory anxiety response before the jump; however, this decreased after the jump, although the high physiological activation was maintained. This information could be used by civil and military paratroopers' instructors to improve their training programmes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. 3D measurement using combined Gray code and dual-frequency phase-shifting approach

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Liu, Xin

    2018-04-01

    The combined Gray code and phase-shifting approach is a commonly used 3D measurement technique. In this technique, an error that equals integer multiples of the phase-shifted fringe period, i.e. period jump error, often exists in the absolute analog code, which can lead to gross measurement errors. To overcome this problem, the present paper proposes 3D measurement using a combined Gray code and dual-frequency phase-shifting approach. Based on 3D measurement using the combined Gray code and phase-shifting approach, one set of low-frequency phase-shifted fringe patterns with an odd-numbered multiple of the original phase-shifted fringe period is added. Thus, the absolute analog code measured value can be obtained by the combined Gray code and phase-shifting approach, and the low-frequency absolute analog code measured value can also be obtained by adding low-frequency phase-shifted fringe patterns. Then, the corrected absolute analog code measured value can be obtained by correcting the former by the latter, and the period jump errors can be eliminated, resulting in reliable analog code unwrapping. For the proposed approach, we established its measurement model, analyzed its measurement principle, expounded the mechanism of eliminating period jump errors by error analysis, and determined its applicable conditions. Theoretical analysis and experimental results show that the proposed approach can effectively eliminate period jump errors, reliably perform analog code unwrapping, and improve the measurement accuracy.

  10. Motor and Gaze Behaviors of Youth Basketball Players Taking Contested and Uncontested Jump Shots

    PubMed Central

    van Maarseveen, Mariëtte J. J.; Oudejans, Raôul R. D.

    2018-01-01

    In this study, we examined the effects of a defender contesting jump shots on performance and gaze behaviors of basketball players taking jump shots. Thirteen skilled youth basketball players performed 48 shots from about 5 m from the basket; 24 uncontested and 24 contested. The participants wore mobile eye tracking glasses to measure their gaze behavior. As expected, an approaching defender trying to contest the shot led to significant changes in movement execution and gaze behavior including shorter shot execution time, longer jump time, longer ball flight time, later final fixation onset, and longer fixation on the defender. Overall, no effects were found for shooting accuracy. However, the effects on shot accuracy were not similar for all participants: six participants showed worse performance and six participants showed better performance in the contested compared to the uncontested condition. These changes in performance were accompanied by differences in gaze behavior. The participants with worse performance showed shorter absolute and relative final fixation duration and a tendency for an earlier final fixation offset in the contested condition compared to the uncontested condition, whereas gaze behavior of the participants with better performance for contested shots was relatively unaffected. The results confirm that a defender contesting the shot is a relevant constraint for basketball shooting suggesting that representative training designs should also include contested shots, and more generally other constraints that are representative of the actual performance setting such as time or mental pressure. PMID:29867671

  11. Hip Kinematics During a Stop-Jump Task in Patients With Chronic Ankle Instability

    PubMed Central

    Brown, Cathleen N.; Padua, Darin A.; Marshall, Stephen W.; Guskiewicz, Kevin M.

    2011-01-01

    Context: Chronic ankle instability (CAI) commonly develops after lateral ankle sprain. Movement pattern differences at proximal joints may play a role in instability. Objective: To determine whether people with mechanical ankle instability (MAI) or functional ankle instability (FAI) exhibited different hip kinematics and kinetics during a stop-jump task compared with “copers.” Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Sixty-three recreational athletes, 21 (11 men, 10 women) per group, matched for sex, age, height, mass, and limb dominance. All participants reported a history of a moderate to severe ankle sprain. The participants with MAI and FAI reported 2 or more episodes of giving way at the ankle in the last year and decreased functional ability; copers did not. The MAI group demonstrated clinically positive anterior drawer and talar tilt tests, whereas the FAI group and copers did not. Intervention(s): Participants performed a maximum-speed approach run and a 2-legged stop jump followed by a maximum vertical jump. Main Outcome Measure(s): An electromagnetic tracking device synchronized with a force plate collected data during the stance phase of a 2-legged stop jump. Hip motion was measured from initial contact to takeoff into the vertical jump. Group differences in hip kinematics and kinetics were assessed. Results: The MAI group demonstrated greater hip flexion at initial contact and at maximum (P = .029 and P = .017, respectively) and greater hip external rotation at maximum (P = .035) than the coper group. The MAI group also demonstrated greater hip flexion displacement than both the FAI (P = .050) and coper groups (P = .006). No differences were noted between the FAI and coper groups in hip kinematic variables or among any of the groups in ground reaction force variables. Conclusions: The MAI group demonstrated different hip kinematics than the FAI and coper groups. Proximal joint motion may be affected by ankle joint function and laxity, and clinicians may need to assess proximal joints after repeated ankle sprains. PMID:22488131

  12. Altered Kinematics and Time to Stabilization During Drop-Jump Landings in Individuals With or Without Functional Ankle Instability

    PubMed Central

    Wright, Cynthia J.; Arnold, Brent L.; Ross, Scott E.

    2016-01-01

    Context It has been proposed that altered dynamic-control strategies during functional activity such as jump landings may partially explain recurrent instability in individuals with functional ankle instability (FAI). Objective To capture jump-landing time to stabilization (TTS) and ankle motion using a multisegment foot model among FAI, coper, and healthy control individuals. Design Cross-sectional study. Setting Laboratory. Patients or Other Participants Participants were 23 individuals with a history of at least 1 ankle sprain and at least 2 episodes of giving way in the past year (FAI), 23 individuals with a history of a single ankle sprain and no subsequent episodes of instability (copers), and 23 individuals with no history of ankle sprain or instability in their lifetime (controls). Participants were matched for age, height, and weight (age = 23.3 ± 3.8 years, height = 1.71 ± 0.09 m, weight = 69.0 ± 13.7 kg). Intervention(s) Ten single-legged drop jumps were recorded using a 12-camera Vicon MX motion-capture system and a strain-gauge force plate. Main Outcome Measures Mediolateral (ML) and anteroposterior (AP) TTS in seconds, as well as forefoot and hindfoot sagittal- and frontal-plane angles at jump-landing initial contact and at the point of maximum vertical ground reaction force were calculated. Results For the forefoot and hindfoot in the sagittal plane, group differences were present at initial contact (forefoot: P = .043, hindfoot: P = .004). At the hindfoot, individuals with FAI displayed more dorsiflexion than the control and coper groups. Time to stabilization differed among groups (AP TTS: P < .001; ML TTS: P = .040). Anteroposterior TTS was longer in the coper group than in the FAI or control groups, and ML TTS was longer in the FAI group than in the control group. Conclusions During jump landings, copers showed differences in sagittal-plane control, including less plantar flexion at initial contact and increased AP sway during stabilization, which may contribute to increased dynamic stability. PMID:26794631

  13. Comparison of the Hang High-Pull and Loaded Jump Squat for the Development of Vertical Jump and Isometric Force-Time Characteristics.

    PubMed

    Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J

    2017-04-15

    Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.

  14. Impact-induced soft-tissue vibrations associate with muscle activation in human landing movements: An accelerometry and EMG evaluation.

    PubMed

    Fu, Weijie; Wang, Xi; Liu, Yu

    2015-01-01

    Previous studies have not used neurophysiological methodology to explore the damping effects on induced soft-tissue vibrations and muscle responses. This study aimed to investigate the changes in activation of the musculoskeletal system in response to soft-tissue vibrations with different applied compression conditions in a drop-jump landing task. Twelve trained male participants were instructed to perform drop-jump landings in compression shorts (CS) and regular shorts without compression (control condition, CC). Soft-tissue vibrations and EMG amplitudes of the leg within 50 ms before and after touchdown were collected synchronously. Peak acceleration of the thigh muscles was significantly lower in CS than in CC during landings from 45 or 60 cm and 30 cm heights (p < 0.05), respectively. However, the damping coefficient was higher in CS than in CC at the thigh muscles during landings from 60 cm height (p < 0.05). Significant decrease in EMG amplitude of the rectus femoris and biceps femoris muscles was also observed in CS (p < 0.05). Externally induced soft-tissue vibration damping was associated with a decrease in muscular activity of the rectus femoris and biceps femoris muscles during drop-jump landings from different heights.

  15. Keeping Your Eye on the Rail: Gaze Behaviour of Horse Riders Approaching a Jump

    PubMed Central

    Hall, Carol; Varley, Ian; Kay, Rachel; Crundall, David

    2014-01-01

    The gaze behaviour of riders during their approach to a jump was investigated using a mobile eye tracking device (ASL Mobile Eye). The timing, frequency and duration of fixations on the jump and the percentage of time when their point of gaze (POG) was located elsewhere were assessed. Fixations were identified when the POG remained on the jump for 100 ms or longer. The jumping skill of experienced but non-elite riders (n = 10) was assessed by means of a questionnaire. Their gaze behaviour was recorded as they completed a course of three identical jumps five times. The speed and timing of the approach was calculated. Gaze behaviour throughout the overall approach and during the last five strides before take-off was assessed following frame-by-frame analyses. Differences in relation to both round and jump number were found. Significantly longer was spent fixated on the jump during round 2, both during the overall approach and during the last five strides (p<0.05). Jump 1 was fixated on significantly earlier and more frequently than jump 2 or 3 (p<0.05). Significantly more errors were made with jump 3 than with jump 1 (p = 0.01) but there was no difference in errors made between rounds. Although no significant correlations between gaze behaviour and skill scores were found, the riders who scored higher for jumping skill tended to fixate on the jump earlier (p = 0.07), when the horse was further from the jump (p = 0.09) and their first fixation on the jump was of a longer duration (p = 0.06). Trials with elite riders are now needed to further identify sport-specific visual skills and their relationship with performance. Visual training should be included in preparation for equestrian sports participation, the positive impact of which has been clearly demonstrated in other sports. PMID:24846055

  16. Validity of two alternative systems for measuring vertical jump height.

    PubMed

    Leard, John S; Cirillo, Melissa A; Katsnelson, Eugene; Kimiatek, Deena A; Miller, Tim W; Trebincevic, Kenan; Garbalosa, Juan C

    2007-11-01

    Vertical jump height is frequently used by coaches, health care professionals, and strength and conditioning professionals to objectively measure function. The purpose of this study is to determine the concurrent validity of the jump and reach method (Vertec) and the contact mat method (Just Jump) in assessing vertical jump height when compared with the criterion reference 3-camera motion analysis system. Thirty-nine college students, 25 females and 14 males between the ages of 18 and 25 (mean age 20.65 years), were instructed to perform the countermovement jump. Reflective markers were placed at the base of the individual's sacrum for the 3-camera motion analysis system to measure vertical jump height. The subject was then instructed to stand on the Just Jump mat beneath the Vertec and perform the jump. Measurements were recorded from each of the 3 systems simultaneously for each jump. The Pearson r statistic between the video and the jump and reach (Vertec) was 0.906. The Pearson r between the video and contact mat (Just Jump) was 0.967. Both correlations were significant at the 0.01 level. Analysis of variance showed a significant difference among the 3 means F(2,235) = 5.51, p < 0.05. The post hoc analysis showed a significant difference between the criterion reference (M = 0.4369 m) and the Vertec (M = 0.3937 m, p = 0.005) but not between the criterion reference and the Just Jump system (M = 0.4420 m, p = 0.972). The Just Jump method of measuring vertical jump height is a valid measure when compared with the 3-camera system. The Vertec was found to have a high correlation with the criterion reference, but the mean differed significantly. This study indicates that a higher degree of confidence is warranted when comparing Just Jump results with a 3-camera system study.

  17. Numerical study of laminar, standing hydraulic jumps in a planar geometry.

    PubMed

    Dasgupta, Ratul; Tomar, Gaurav; Govindarajan, Rama

    2015-05-01

    We solve the two-dimensional, planar Navier-Stokes equations to simulate a laminar, standing hydraulic jump using a Volume-of-Fluid method. The geometry downstream of the jump has been designed to be similar to experimental conditions by including a pit at the edge of the platform over which liquid film flows. We obtain jumps with and without separation. Increasing the inlet Froude number pushes the jump downstream and makes the slope of the jump weaker, consistent with experimental observations of circular jumps, and decreasing the Reynolds number brings the jump upstream while making it steeper. We study the effect of the length of the domain and that of a downstream obstacle on the structure and location of the jump. The transient flow which leads to a final steady jump is described for the first time to our knowledge. In the moderate Reynolds number regime, we obtain steady undular jumps with a separated bubble underneath the first few undulations. Interestingly, surface tension leads to shortening of wavelength of these undulations. We show that the undulations can be explained using the inviscid theory of Benjamin and Lighthill (Proc. R. Soc. London, Ser. A, 1954). We hope this new finding will motivate experimental verification.

  18. Dynamics and stability of directional jumps in the desert locust.

    PubMed

    Gvirsman, Omer; Kosa, Gabor; Ayali, Amir

    2016-01-01

    Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps' azimuth and elevation angles. We also report a strong linear correlation between the jumps' pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  19. Maximum height and minimum time vertical jumping.

    PubMed

    Domire, Zachary J; Challis, John H

    2015-08-20

    The performance criterion in maximum vertical jumping has typically been assumed to simply raise the center of mass as high as possible. In many sporting activities minimizing movement time during the jump is likely also critical to successful performance. The purpose of this study was to examine maximum height jumps performed while minimizing jump time. A direct dynamics model was used to examine squat jump performance, with dual performance criteria: maximize jump height and minimize jump time. The muscle model had activation dynamics, force-length, force-velocity properties, and a series of elastic component representing the tendon. The simulations were run in two modes. In Mode 1 the model was placed in a fixed initial position. In Mode 2 the simulation model selected the initial squat configuration as well as the sequence of muscle activations. The inclusion of time as a factor in Mode 1 simulations resulted in a small decrease in jump height and moderate time savings. The improvement in time was mostly accomplished by taking off from a less extended position. In Mode 2 simulations, more substantial time savings could be achieved by beginning the jump in a more upright posture. However, when time was weighted more heavily in these simulations, there was a more substantial reduction in jump height. Future work is needed to examine the implications for countermovement jumping and to examine the possibility of minimizing movement time as part of the control scheme even when the task is to jump maximally. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Evaluation of different jumping tests in defining position-specific and performance-level differences in high level basketball players

    PubMed Central

    Pehar, Miran; Sekulic, Damir; Sisic, Nedim; Spasic, Miodrag; Uljevic, Ognjen; Krolo, Ante; Sattler, Tine

    2017-01-01

    The importance of jumping ability in basketball is well known, but there is an evident lack of studies that have examined different jumping testing protocols in basketball players at advanced levels. The aim of this study was to assess the applicability of different tests of jumping capacity in identifying differences between (i) playing position and (ii) competitive levels of professional players. Participants were 110 male professional basketball players (height: 194.92±8.09 cm; body mass: 89.33±10.91 kg; 21.58±3.92 years of age; Guards, 49; Forwards, 22; Centres, 39) who competed in the first (n = 58) and second division (n = 52). The variables included anthropometrics and jumping test performance. Jumping performances were evaluated by the standing broad jump (SBJ), countermovement jump (CMJ), reactive strength index (RSI), repeated reactive strength ability (RRSA) and four running vertical jumps: maximal jump with (i) take-off from the dominant leg and (ii) non-dominant leg, lay-up shot jump with take-off from the (iii) dominant leg and (iv) non-dominant leg. First-division players were taller (ES: 0.76, 95%CI: 0.35-1.16, moderate differences), heavier (0.69, 0.29-1.10), had higher maximal reach height (0.67, 0.26-1.07, moderate differences), and had lower body fat % (-0.87, -1.27-0.45, moderate differences) than second-division players. The playing positions differed significantly in three of four running jump achievements, RSI and RRSA, with Centres being least successful. The first-division players were superior to second-division players in SBJ (0.63, 0.23-1.03; 0.87, 0.26-1.43; 0.76, 0.11-1.63, all moderate differences, for total sample, Guards, and Forwards, respectively). Running vertical jumps and repeated jumping capacity can be used as valid measures of position-specific jumping ability in basketball. The differences between playing levels in vertical jumping achievement can be observed by assessing vertical jump scores together with differences in anthropometric indices between levels. PMID:29158620

  1. The Effects of Temperature and Body Mass on Jump Performance of the Locust Locusta migratoria

    PubMed Central

    Snelling, Edward P.; Becker, Christie L.; Seymour, Roger S.

    2013-01-01

    Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35°C reveals that jump distance (D; m) scales with body mass (M; g) according to the power equation D = 0.35M 0.17±0.08 (95% CI), jump take-off angle (A; degrees) scales as A = 52.5M 0.00±0.06, and jump energy (E; mJ per jump) scales as E = 1.91M 1.14±0.09. Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (L f+t; mm) of the femur and tibia of the hind leg, L f+t = 34.9M 0.37±0.02. The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12%) legs and a relatively larger (11%) femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight. PMID:23967304

  2. A comparison of men's and women's strength to body mass ratio and varus/valgus knee angle during jump landings.

    PubMed

    Haines, Tracie L; McBride, Jeffrey M; Triplett, N Travis; Skinner, Jared W; Fairbrother, Kimberly R; Kirby, Tyler J

    2011-10-01

    The purpose of this investigation was to compare valgus/varus knee angles during various jumps and lower body strength between males and females relative to body mass. Seventeen recreationally active females (age: 21.94 ± 2.59 years; height: 1.67 ± 0.05 m; mass: 64.42 ± 8.39 kg; percent body fat: 26.89 ± 6.26%; squat one-repetition maximum: 66.18 ± 19.47 kg; squat to body mass ratio: 1.03 ± 0.28) and 13 recreationally active males (age: 21.69 ± 1.65 years; height: 1.77 ± 0.07 m; mass: 72.39 ± 9.23 kg; percent body fat: 13.15 ± 5.18%; squat one-repetition maximum: 115.77 ± 30.40 kg; squat to body mass ratio: 1.59 ± 0.31) performed a one-repetition maximum in the squat and three of each of the following jumps: countermovement jump, 30 cm drop jump, 45 cm drop jump, and 60 cm drop jump. Knee angles were analysed using videography and body composition was analysed by dual-energy X-ray absorptiometry to allow for squat to body mass ratio and squat to fat free mass ratio to be calculated. Significant differences (P ≤ 0.05) were found between male and female one-repetition maximum, male and female squat to body mass ratio, and male and female squat to fat free mass ratio. Significant differences were found between male and female varus/valgus knee positions during maximum flexion of the right and left leg in the countermovement jump, drop jump from 30 cm, drop jump from 45 cm, and drop jump from 60 cm. Correlations between varus/valgus knee angles and squat to body mass ratio for all jumps displayed moderate, non-significant relationships (countermovement jump: r = 0.445; drop jump from 30 cm: r = 0.448; drop jump from 45 cm: r = 0.449; drop jump from 60 cm: r = 0.439). In conclusion, males and females have significantly different lower body strength and varus/valgus knee position when landing from jumps.

  3. The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks

    PubMed Central

    2011-01-01

    The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground. Single-leg stop-jump exhibited greater peak knee extension and valgus moment during the landing phase than the double-leg stop-jump task. Single-leg stop-jump extended the hip joint at initial foot contact with the ground. PMID:24149308

  4. Crack-jump mechanism of microvein formation and its implications for stress cyclicity during extension fracturing

    NASA Astrophysics Data System (ADS)

    Caputo, Riccardo; Hancock, Paul L.

    1998-11-01

    It is well accepted and documented that faulting is produced by the cyclic behaviour of a stress field. Some extension fractures, such as veins characterised by the crack-seal mechanism, have also been presumed to result from repeated stress cycles. In the present note, some commonly observed field phenomena and relationships such as hackle marks and vein and joint spacing, are employed to argue that a stress field can also display cyclic behaviour during extensional fracturing. Indeed, the requirement of critical stress conditions for the occurrence of extensional failure events does not accord with the presence of contemporaneously open nearby parallel fractures. Therefore, because after each fracture event there is stress release within the surrounding volume of rock, high density sets of parallel extensional fractures also strongly support the idea that rocks undergo stress cyclicity during jointing and veining. A comparison with seismological data from earthquakes with dipole mechanical solutions, confirms that this process presently occurs at depth in the Earth crust. Furthermore, in order to explain dense sets of hair-like closely spaced microveins, a crack-jump mechanism is introduced here as an alternative to the crack-seal mechanism. We also propose that as a consequence of medium-scale stress cyclicity during brittle deformation, the re-fracturing of a rock mass occurs in either one or the other of these two possible ways depending on the ratio between the elastic parameters of the sealing material and those of the host rock. The crack-jump mechanism occurs when the former is stronger.

  5. Biomechanical analysis of the jump shot in basketball.

    PubMed

    Struzik, Artur; Pietraszewski, Bogdan; Zawadzki, Jerzy

    2014-09-29

    Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player's jumping ability.

  6. Effects of Experiential-Based Videos in Multi-Disciplinary Learning

    ERIC Educational Resources Information Center

    Jabbar, Khalid Bin Abdul; Ong, Alex; Choy, Jeanette; Lim, Lisa

    2013-01-01

    This study examined the use of authentic experiential-based videos in self-explanation activities on 32 polytechnic students' learning and motivation, using a mixed method quasi-experimental design. The control group analysed a set of six pre-recorded videos of a subject performing the standing broad jump (SBJ). The experimental group captured…

  7. Internationalizing Educational Leadership: How a University Department Jumps the Curve from Local to International

    ERIC Educational Resources Information Center

    Bogotch, Ira; Maslin-Ostrowski, Patricia

    2010-01-01

    Purpose: This study describes how an educational leadership department transformed its regional identity and localized practices over a ten-year period (1997-2007) to become internationalized in terms of research, teaching, and service. Research Methods/Approach (e.g., Setting, Participants, Research Design, Data Collection and Analysis): A basic…

  8. Verifying the equivalence of representations of the knee joint moment vector from a drop vertical jump task.

    PubMed

    Nichols, Julia K; O'Reilly, Oliver M

    2017-03-01

    Biomechanics software programs, such as Visual3D, Nexus, Cortex, and OpenSim, have the capability of generating several distinct component representations for joint moments and forces from motion capture data. These representations include those for orthonormal proximal and distal coordinate systems and a non-orthogonal joint coordinate system. In this article, a method is presented to address the challenging problem of evaluating and verifying the equivalence of these representations. The method accommodates the difficulty that there are two possible sets of non-orthogonal basis vectors that can be used to express a vector in the joint coordinate system and is illuminated using motion capture data from a drop vertical jump task. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Robust stochastic stability of discrete-time fuzzy Markovian jump neural networks.

    PubMed

    Arunkumar, A; Sakthivel, R; Mathiyalagan, K; Park, Ju H

    2014-07-01

    This paper focuses the issue of robust stochastic stability for a class of uncertain fuzzy Markovian jumping discrete-time neural networks (FMJDNNs) with various activation functions and mixed time delay. By employing the Lyapunov technique and linear matrix inequality (LMI) approach, a new set of delay-dependent sufficient conditions are established for the robust stochastic stability of uncertain FMJDNNs. More precisely, the parameter uncertainties are assumed to be time varying, unknown and norm bounded. The obtained stability conditions are established in terms of LMIs, which can be easily checked by using the efficient MATLAB-LMI toolbox. Finally, numerical examples with simulation result are provided to illustrate the effectiveness and less conservativeness of the obtained results. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Measurements of K shell absorption jump factors and jump ratios using EDXRF technique

    NASA Astrophysics Data System (ADS)

    Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-04-01

    In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.

  11. Gaze Behavior in Basketball Shooting: Further Evidence for Online Visual Control

    ERIC Educational Resources Information Center

    de Oliveira, Rita F.; Oudejans, Raoul R. D.; Beek, Peter J.

    2008-01-01

    The aim of the present study was to help resolve conflicting findings and interpretations regarding the visual control of basketball shooting by examining the looking behavior of 6 expert basketball players (3 with a low shooting style and 3 with a high shooting style) executing both free throws and jump shots. Based on previous findings, they…

  12. Strength Determinants of Jump Height in the Jump Throw Movement in Women Handball Players.

    PubMed

    McGhie, David; Østerås, Sindre; Ettema, Gertjan; Paulsen, Gøran; Sandbakk, Øyvind

    2018-06-08

    McGhie, D, Østerås, S, Ettema, G, Paulsen, G, and Sandbakk, Ø. Strength determinants of jump height in the jump throw movement in women handball players. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to improve the understanding of the strength demands of a handball-specific jump through examining the associations between jump height in a jump throw jump (JTJ) and measures of lower-body maximum strength and impulse in handball players. For comparison, whether the associations between jump height and strength differed between the JTJ and the customarily used countermovement jump (CMJ) was also examined. Twenty women handball players from a Norwegian top division club participated in the study. Jump height was measured in the JTJ and in unilateral and bilateral CMJ. Lower-body strength (maximum isometric force, one-repetition maximum [1RM], impulse at ∼60% and ∼35% 1RM) was measured in seated leg press. The associations between jump height and strength were assessed with correlation analyses and t-tests of dependent r's were performed to determine if correlations differed between jump tests. Only impulse at ∼35% 1RM correlated significantly with JTJ height (p < 0.05), whereas all strength measures correlated significantly with CMJ heights (p < 0.001). The associations between jump height and strength were significantly weaker in the JTJ than in both CMJ tests for all strength measures (p = 0.001-0.044) except one. Maximum strength and impulse at ∼60% 1RM did not seem to sufficiently capture the capabilities associated with JTJ height, highlighting the importance of employing tests targeting performance-relevant neuromuscular characteristics when assessing jump-related strength in handball players. Further, CMJ height seemed to represent a wider range of strength capabilities and care should be taken when using it as a proxy for handball-specific movements.

  13. Influence of sports flooring and shoes on impact forces and performance during jump tasks.

    PubMed

    Malisoux, Laurent; Gette, Paul; Urhausen, Axel; Bomfim, Joao; Theisen, Daniel

    2017-01-01

    We aim to determine the influence of sports floorings and sports shoes on impact mechanics and performance during standardised jump tasks. Twenty-one male volunteers performed ankle jumps (four consecutive maximal bounds with very dynamic ankle movements) and multi-jumps (two consecutive maximal counter-movement jumps) on force plates using minimalist and cushioned shoes under 5 sports flooring (SF) conditions. The shock absorption properties of the SF, defined as the proportion of peak impact force absorbed by the tested flooring when compared with a concrete hard surface, were: SF0 = 0% (no flooring), SF1 = 19%, SF2 = 26%, SF3 = 37% and SF4 = 45%. Shoe and flooring effects were compared using 2x5 repeated-measures ANOVA with post-hoc Bonferroni-corrected comparisons. A significant interaction between SF and shoe conditions was found for VILR only (p = 0.003). In minimalist shoes, SF influenced Vertical Instantaneous Loading Rate (VILR) during ankle jumps (p = 0.006) and multi-jumps (p<0.001), in accordance with shock absorption properties. However, in cushioned shoes, SF influenced VILR during ankle jumps only (p<0.001). Contact Time was the only additional variable affected by SF, but only during multi-jumps in minimalist shoes (p = 0.037). Cushioned shoes induced lower VILR (p<0.001) and lower Contact Time (p≤0.002) during ankle jumps and multi-jumps compared to minimalist shoes. During ankle jumps, cushioned shoes induced greater Peak Vertical Ground Reaction Force (PVGRF, p = 0.002), greater Vertical Average Loading Rate (p<0.001), and lower eccentric (p = 0.008) and concentric (p = 0.004) work. During multi-jumps, PVGRF was lower (p<0.001) and jump height was higher (p<0.001) in cushioned compared to minimalist shoes. In conclusion, cushioning influenced impact forces during standardised jump tasks, whether it was provided by the shoes or the sports flooring. VILR is the variable that was the most affected.

  14. Influence of sports flooring and shoes on impact forces and performance during jump tasks

    PubMed Central

    Urhausen, Axel; Bomfim, Joao

    2017-01-01

    We aim to determine the influence of sports floorings and sports shoes on impact mechanics and performance during standardised jump tasks. Twenty-one male volunteers performed ankle jumps (four consecutive maximal bounds with very dynamic ankle movements) and multi-jumps (two consecutive maximal counter-movement jumps) on force plates using minimalist and cushioned shoes under 5 sports flooring (SF) conditions. The shock absorption properties of the SF, defined as the proportion of peak impact force absorbed by the tested flooring when compared with a concrete hard surface, were: SF0 = 0% (no flooring), SF1 = 19%, SF2 = 26%, SF3 = 37% and SF4 = 45%. Shoe and flooring effects were compared using 2x5 repeated-measures ANOVA with post-hoc Bonferroni-corrected comparisons. A significant interaction between SF and shoe conditions was found for VILR only (p = 0.003). In minimalist shoes, SF influenced Vertical Instantaneous Loading Rate (VILR) during ankle jumps (p = 0.006) and multi-jumps (p<0.001), in accordance with shock absorption properties. However, in cushioned shoes, SF influenced VILR during ankle jumps only (p<0.001). Contact Time was the only additional variable affected by SF, but only during multi-jumps in minimalist shoes (p = 0.037). Cushioned shoes induced lower VILR (p<0.001) and lower Contact Time (p≤0.002) during ankle jumps and multi-jumps compared to minimalist shoes. During ankle jumps, cushioned shoes induced greater Peak Vertical Ground Reaction Force (PVGRF, p = 0.002), greater Vertical Average Loading Rate (p<0.001), and lower eccentric (p = 0.008) and concentric (p = 0.004) work. During multi-jumps, PVGRF was lower (p<0.001) and jump height was higher (p<0.001) in cushioned compared to minimalist shoes. In conclusion, cushioning influenced impact forces during standardised jump tasks, whether it was provided by the shoes or the sports flooring. VILR is the variable that was the most affected. PMID:29020108

  15. Countermovement depth - a variable which clarifies the relationship between the maximum power output and height of a vertical jump.

    PubMed

    Gajewski, Jan; Michalski, Radosław; Buśko, Krzysztof; Mazur-Różycka, Joanna; Staniak, Zbigniew

    2018-01-01

    The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.

  16. The validity and reliability of the my jump 2 app for measuring the reactive strength index and drop jump performance.

    PubMed

    Haynes, Tom; Bishop, Chris; Antrobus, Mark; Brazier, Jon

    2018-03-27

    This is the first study to independently assess the concurrent validity and reliability of the My Jump 2 app for measuring drop jump performance. It is also the first to evaluate the app's ability to measure the reactive strength index (RSI). Fourteen male sport science students (age: 29.5 ± 9.9 years) performed three drop jumps from 20 cm and 40 cm (totalling 84 jumps), assessed via a force platform and the My Jump 2 app. Reported metrics included reactive strength index, jump height, ground contact time, and mean power. Measurements from both devices were compared using the intraclass correlation coefficient (ICC), Pearson product moment correlation coefficient (r), Cronbach's alpha (α), coefficient of variation (CV) and BlandAltman plots. Near perfect agreement was seen between devices at 20 cm for RSI (ICC = 0.95) and contact time (ICC = 0.99) and at 40 cm for RSI (ICC = 0.98), jump height (ICC = 0.96) and contact time (ICC = 0.92); with very strong agreement seen at 20 cm for jump height (ICC = 0.80). In comparison with the force plate the app showed good validity for RSI (20 cm: r = 0.94; 40 cm; r = 0.97), jump height (20 cm: r = 0.80; 40 cm; r = 0.96) and contact time (20 cm = 0.96; 40 cm; r = 0.98). The results of the present study show that the My Jump 2 app is a valid and reliable tool for assessing drop jump performance.

  17. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height.

    PubMed

    Mandic, Radivoj; Knezevic, Olivera M; Mirkov, Dragan M; Jaric, Slobodan

    2016-09-01

    The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  18. Design and jump phenomenon analysis of an eccentric ring energy harvester

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Jen; Chen, Chung-De

    2013-10-01

    This paper presents the development of a wheel-mounted eccentric ring energy harvester that is driven by centripetal and gravitational forces during wheel rotation. The natural frequency of the eccentric ring matches the wheel rotation frequency at any car speed because its character length is designed equal to the wheel radius. Consequently, the eccentric ring oscillates with a relatively large swing angle at the wheel speed to generate high levels of power. The nonlinear dynamic behavior of the eccentric ring is investigated to ensure that the proposed design produces steady swing angles, especially at high wheel speeds. Herein, the jump phenomenon of the dynamic motion of the eccentric ring is analyzed by using the Duffing equation and the linearization process. The discriminant value obtained from the analysis confirms that no jump phenomenon occurs at all wheel speeds if the eccentric ring is properly designed. In the experiment, the eccentric ring is integrated with magnets and a coil set to generate 318-442 μW at constant wheel speeds between 300 and 500 rpm. This shows that the proposed device is a potential power source for low-power wheel-mounted electronics, such as pressure sensors, accelerometers, and thermometers.

  19. Jumping-Droplet Condensation Drives Pathogen Transport on Wheat Leaves

    NASA Astrophysics Data System (ADS)

    Nath, Saurabh; Gruszewski, Hope; Budhiraja, Stuti; Ahmadi, Farzad; Bisbano, Caitlin; Jung, Sunghwan; Schmale, David, III; Boreyko, Jonathan

    2017-11-01

    The classical viewpoint in phytopathology regarding how plant pathogens are liberated is based on active mechanisms such as shearing off spores via rain splash or wind. All of these mechanisms require some kind of impact on the surface. Here we show for the first time that there exists an entirely different mechanism in nature that drives pathogen transport on wheat leaves. Wheat leaves are inherently superhydrophobic, which enables microscopic dew droplets to spontaneously jump off the leaf surface during natural condensation cycles. We found that black rust (Puccinia graminis) spores often adhere to such coalescence-induced self-propelled dew droplets and subsequently get transported vertically as high as 5 mm. Once pathogens clear the quiescent boundary layer, typically of order 1 mm, they have the potential to be dispersed over large distances by the aid of atmospheric flows. A custom-made experimental set-up was devised to simulate multiple one hour long natural dew cycles and how they affect spore dispersal. Spore liberation rates via jumping-droplet condensation were found to be as high 100 spores/cm2-hr. These findings reveal that on a sufficiently non-wetting surface humidity alone can liberate fungal spores, adding it as a third mechanism besides wind and rain.

  20. Effect of hang cleans or squats paired with countermovement vertical jumps on vertical displacement.

    PubMed

    Andrews, Tedi R; Mackey, Theresa; Inkrott, Thomas A; Murray, Steven R; Clark, Ida E; Pettitt, Robert W

    2011-09-01

    Complex training is characterized by pairing resistance exercise with plyometric exercise to exploit the postactivation potentiation (PAP) phenomenon, thereby promising a better training effect. Studies on PAP as measured by human power performances are equivocal. One issue may be the lack of analyses across multiple sets of paired exercises, a common practice used by athletes. We evaluated countermovement vertical jump (CMJ) performance in 19 women, collegiate athletes in 3 of the following trials: (a) CMJs-only, where 1 set of CMJs served as a conditioning exercise, (b) heavy-load, back squats paired with CMJs, and (c) hang cleans paired with CMJs. The CMJ vertical displacement (3-attempt average), as measured with digital video, served as the dependent variable of CMJ performance. Across 3 sets of paired-exercise regimens, CMJ-only depreciated 1.6 cm and CMJ paired with back squats depreciated 2.0 cm (main effect, p < 0.05). Conversely, CMJ paired with hang cleans depreciated 0.30 cm (interaction, p < 0.05). Thus, the best complex training scheme was achieved by pairing CMJs with hang cleans in comparison to back squats or CMJs in and of themselves. Future research on exercise modes of complex training that best help athletes preserve and train with the highest power possible, in a given training session, is warranted.

  1. Intra-Personal and Inter-Personal Kinetic Synergies During Jumping.

    PubMed

    Slomka, Kajetan; Juras, Grzegorz; Sobota, Grzegorz; Furmanek, Mariusz; Rzepko, Marian; Latash, Mark L

    2015-12-22

    We explored synergies between two legs and two subjects during preparation for a long jump into a target. Synergies were expected during one-person jumping. No such synergies were expected between two persons jumping in parallel without additional contact, while synergies were expected to emerge with haptic contact and become stronger with strong mechanical contact. Subjects performed jumps either alone (each foot standing on a separate force platform) or in dyads (parallel to each other, each person standing on a separate force platform) without any contact, with haptic contact, and with strong coupling. Strong negative correlations between pairs of force variables (strong synergies) were seen in the vertical force in one-person jumps and weaker synergies in two-person jumps with the strong contact. For other force variables, only weak synergies were present in one-person jumps and no negative correlations between pairs of force variable for two-person jumps. Pairs of moment variables from the two force platforms at steady state showed positive correlations, which were strong in one-person jumps and weaker, but still significant, in two-person jumps with the haptic and strong contact. Anticipatory synergy adjustments prior to action initiation were observed in one-person trials only. We interpret the different results for the force and moment variables at steady state as reflections of postural sway.

  2. Intra-Personal and Inter-Personal Kinetic Synergies During Jumping

    PubMed Central

    Slomka, Kajetan; Juras, Grzegorz; Sobota, Grzegorz; Furmanek, Mariusz; Rzepko, Marian; Latash, Mark L.

    2015-01-01

    We explored synergies between two legs and two subjects during preparation for a long jump into a target. Synergies were expected during one-person jumping. No such synergies were expected between two persons jumping in parallel without additional contact, while synergies were expected to emerge with haptic contact and become stronger with strong mechanical contact. Subjects performed jumps either alone (each foot standing on a separate force platform) or in dyads (parallel to each other, each person standing on a separate force platform) without any contact, with haptic contact, and with strong coupling. Strong negative correlations between pairs of force variables (strong synergies) were seen in the vertical force in one-person jumps and weaker synergies in two-person jumps with the strong contact. For other force variables, only weak synergies were present in one-person jumps and no negative correlations between pairs of force variable for two-person jumps. Pairs of moment variables from the two force platforms at steady state showed positive correlations, which were strong in one-person jumps and weaker, but still significant, in two-person jumps with the haptic and strong contact. Anticipatory synergy adjustments prior to action initiation were observed in one-person trials only. We interpret the different results for the force and moment variables at steady state as reflections of postural sway. PMID:26839608

  3. Application of a tri-axial accelerometer to estimate jump frequency in volleyball.

    PubMed

    Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald

    2015-03-01

    Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p < 0.05). These findings suggest that neither PVA nor PRA measured by a tri-axial accelerometer is an applicable method for estimating jump frequency in volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed.

  4. Salticid predation as one potential driving force of ant mimicry in jumping spiders

    PubMed Central

    Huang, Jin-Nan; Cheng, Ren-Chung; Li, Daiqin; Tso, I-Min

    2011-01-01

    Many spiders possess myrmecomorphy, and species of the jumping spider genus Myrmarachne exhibit nearly perfect ant mimicry. Most salticids are diurnal predators with unusually high visual acuity that prey on various arthropods, including conspecifics. In this study, we tested whether predation pressure from large jumping spiders is one possible driving force of perfect ant mimicry in jumping spiders. The results showed that small non-ant-mimicking jumping spiders were readily treated as prey by large ones (no matter whether heterospecific or conspecific) and suffered high attack and mortality rates. The size difference between small and large jumping spiders significantly affected the outcomes of predatory interactions between them: the smaller the juvenile jumping spiders, the higher the predation risk from large ones. The attack and mortality rates of ant-mimicking jumping spiders were significantly lower than those of non-ant-mimicking jumping spiders, indicating that a resemblance to ants could provide protection against salticid predation. However, results of multivariate behavioural analyses showed that the responses of large jumping spiders to ants and ant-mimicking salticids differed significantly. Results of this study indicate that predation pressure from large jumping spiders might be one selection force driving the evolution of nearly perfect myrmecomorphy in spiders and other arthropods. PMID:20961898

  5. The validity and reliability of an iPhone app for measuring vertical jump performance.

    PubMed

    Balsalobre-Fernández, Carlos; Glaister, Mark; Lockey, Richard Anthony

    2015-01-01

    The purpose of this investigation was to analyse the concurrent validity and reliability of an iPhone app (called: My Jump) for measuring vertical jump performance. Twenty recreationally active healthy men (age: 22.1 ± 3.6 years) completed five maximal countermovement jumps, which were evaluated using a force platform (time in the air method) and a specially designed iPhone app. My jump was developed to calculate the jump height from flight time using the high-speed video recording facility on the iPhone 5 s. Jump heights of the 100 jumps measured, for both devices, were compared using the intraclass correlation coefficient, Pearson product moment correlation coefficient (r), Cronbach's alpha (α), coefficient of variation and Bland-Altman plots. There was almost perfect agreement between the force platform and My Jump for the countermovement jump height (intraclass correlation coefficient = 0.997, P < 0.001; Bland-Altman bias = 1.1 ± 0.5 cm, P < 0.001). In comparison with the force platform, My Jump showed good validity for the CMJ height (r = 0.995, P < 0.001). The results of the present study showed that CMJ height can be easily, accurately and reliably evaluated using a specially developed iPhone 5 s app.

  6. Intersession and Intrasession Reliability and Validity of the My Jump App for Measuring Different Jump Actions in Trained Male and Female Athletes.

    PubMed

    Gallardo-Fuentes, Francisco; Gallardo-Fuentes, Jorge; Ramírez-Campillo, Rodrigo; Balsalobre-Fernández, Carlos; Martínez, Cristian; Caniuqueo, Alexis; Cañas, Rodrigo; Banzer, Winfried; Loturco, Irineu; Nakamura, Fabio Y; Izquierdo, Mikel

    2016-07-01

    Gallardo-Fuentes, F, Gallardo-Fuentes, J, Ramírez-Campillo, R, Balsalobre-Fernández, C, Martínez, C, Caniuqueo, A, Cañas, R, Banzer, W, Loturco, I, Nakamura, FY, and Izquierdo, M. Intersession and intrasession reliability and validity of the My Jump app for measuring different jump actions in trained male and female athletes. J Strength Cond Res 30(7): 2049-2056, 2016-The purpose of this study was to analyze the concurrent validity and reliability of the iPhone app named My Jump for measuring jump height in 40-cm drop jumps (DJs), countermovement jumps (CMJs), and squat jumps (SJs). To do this, 21 male and female athletes (age, 22.1 ± 3.6 years) completed 5 maximal DJs, CMJs, and SJs on 2 separate days, which were evaluated using a contact platform and the app My Jump, developed to calculate jump height from flight time using the high-speed video recording facility on the iPhone. A total of 630 jumps were compared using the intraclass correlation coefficient (ICC), Bland-Altman plots, Pearson's product moment correlation coefficient (r), Cronbach's alpha (α), and coefficient of variation (CV). There was almost perfect agreement between the measurement instruments for all jump height values (ICC = 0.97-0.99), with no differences between the instruments (p > 0.05; mean difference of 0.2 cm). Almost perfect correlation was observed between the measurement instruments for SJs, CMJs, and DJs (r = 0.96-0.99). My Jump showed very good within-subject reliability (α = 0.94-0.99; CV = 3.8-7.6) and interday reliability (r = 0.86-0.95) for SJs, CMJs, and DJs in all subjects. Therefore, the iPhone app named My Jump provides reliable intersession and intrasession data, as well as valid measurements for maximal jump height during fast (i.e., DJs) and slow (i.e., CMJs) stretch-shortening cycle muscle actions, and during concentric-only explosive muscle actions (i.e., SJs), in both male and female athletes in comparison with a professional contact platform.

  7. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    PubMed

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Concurrent validity and reliability of torso-worn inertial measurement unit for jump power and height estimation.

    PubMed

    Rantalainen, Timo; Gastin, Paul B; Spangler, Rhys; Wundersitz, Daniel

    2018-09-01

    The purpose of the present study was to evaluate the concurrent validity and test-retest repeatability of torso-worn IMU-derived power and jump height in a counter-movement jump test. Twenty-seven healthy recreationally active males (age, 21.9 [SD 2.0] y, height, 1.76 [0.7] m, mass, 73.7 [10.3] kg) wore an IMU and completed three counter-movement jumps a week apart. A force platform and a 3D motion analysis system were used to concurrently measure the jumps and subsequently derive power and jump height (based on take-off velocity and flight time). The IMU significantly overestimated power (mean difference = 7.3 W/kg; P < 0.001) compared to force-platform-derived power but good correspondence between methods was observed (Intra-class correlation coefficient [ICC] = 0.69). IMU-derived power exhibited good reliability (ICC = 0.67). Velocity-derived jump heights exhibited poorer concurrent validity (ICC = 0.72 to 0.78) and repeatability (ICC = 0.68) than flight-time-derived jump heights, which exhibited excellent validity (ICC = 0.93 to 0.96) and reliability (ICC = 0.91). Since jump height and power are closely related, and flight-time-derived jump height exhibits excellent concurrent validity and reliability, flight-time-derived jump height could provide a more desirable measure compared to power when assessing athletic performance in a counter-movement jump with IMUs.

  9. The relationship between vertical jump power estimates and weightlifting ability: a field-test approach.

    PubMed

    Carlock, Jon M; Smith, Sarah L; Hartman, Michael J; Morris, Robert T; Ciroslan, Dragomir A; Pierce, Kyle C; Newton, Robert U; Harman, Everett A; Sands, William A; Stone, Michael H

    2004-08-01

    The purpose of this study was to assess the usefulness of the vertical jump and estimated vertical-jump power as a field test for weightlifting. Estimated PP output from the vertical jump was correlated with lifting ability among 64 USA national-level weightlifters (junior and senior men and women). Vertical jump was measured using the Kinematic Measurement System, consisting of a switch mat interfaced with a laptop computer. Vertical jumps were measured using a hands-on-hips method. A counter-movement vertical jump (CMJ) and a static vertical jump (SJ, 90 degrees knee angle) were measured. Two trials were given for each condition. Test-retest reliability for jump height was intra-class correlation (ICC) = 0.98 (CMJ) and ICC = 0.96 (SJ). Athletes warmed up on their own for 2-3 minutes, followed by 2 practice jumps at each condition. Peak power (PP) was estimated using the equations developed by Sayers et al. (24). The athletes' current lifting capabilities were assessed by a questionnaire, and USA national coaches checked the listed values. Differences between groups (i.e., men versus women, juniors versus resident lifters) were determined using t-tests (p < or = 0.05). Correlations were determined using Pearson's r. Results indicate that vertical jumping PP is strongly associated with weightlifting ability. Thus, these results indicate that PP derived from the vertical jump (CMJ or SJ) can be a valuable tool in assessing weightlifting performance.

  10. Comparison of stretch reflex responses evoked during drop jumping in highly skilled atheles versus untrained subjects.

    PubMed

    Judge, L W; Burke, J R

    2015-06-01

    The purpose of the study was to describe changes in the excitability of the stretch reflex response (SRR) during different drop jumps as a function of training background and as an adaptation to a preseason sport-specific resistance training program. Twelve collegiate field event athletes (discus, hammer, javelin, shot put, and weight; 9 males and 3 females) and 12 college-aged control subjects performed the following three jumps: (1) countermovement jump (CMJ); (2) countermovement drop jump; and (3) bounce-drop jump (BDJ). Neuromechanical changes in the performance of drop jumps by athletes were measured during the sport-specific resistance training program. Pre-post testing of drop jump performance by control subjects was included for comparison. For each jump trial, ground reaction forces (GRF), electromyograms (EMG) and cinematographic data were collected. There were no training adaptations. However, jump heights were greater for the athletes than the controls among the different jumps with the jump heights for all subjects being less during the BDJ than CMJ and CDJ. In athletes only, there was a differential modulation of the SRR from the gastrocnemius muscle with different levels of background muscle activity for the CDJ and BDJ. There were changes in excitability of SRR from the gastrocnemius muscle as a function of training background. Interrelated neuromechanical mechanisms to include landing biomechanics, intrinsic musculotendinous tissue properties of the ankle, and centrally regulated motor commands may underlie the facilitation of the SRR from the gastrocnemius muscle in athletes as compared to controls.

  11. Combined Effects of Fatigue and Surface Instability on Jump Biomechanics in Elite Athletes.

    PubMed

    Prieske, Olaf; Demps, Marie; Lesinski, Melanie; Granacher, Urs

    2017-09-01

    The present study aimed to examine the effects of fatigue and surface instability on kinetic and kinematic jump performance measures. Ten female and 10 male elite volleyball players (18±2 years) performed repetitive vertical double-leg box jumps until failure. Pre and post fatigue, jump height/performance index, ground reaction force and knee flexion/valgus angles were assessed during drop and countermovement jumps on stable and unstable surfaces. Fatigue, surface condition, and sex resulted in significantly lower drop jump performance and ground reaction force (p≤0.031, 1.1≤d≤3.5). Additionally, drop jump knee flexion angles were significantly lower following fatigue (p=0.006, d=1.5). A significant fatigue×surface×sex interaction (p=0.020, d=1.2) revealed fatigue-related decrements in drop jump peak knee flexion angles under unstable conditions and in men only. Knee valgus angles were higher on unstable compared to stable surfaces during drop jumps and in females compared to males during drop and countermovement jumps (p≤0.054, 1.0≤d≤1.1). Significant surface×sex interactions during countermovement jumps (p=0.002, d=1.9) indicated that knee valgus angles at onset of ground contact were significantly lower on unstable compared to stable surfaces in males but higher in females. Our findings revealed that fatigue and surface instability resulted in sex-specific knee motion strategies during jumping in elite volleyball players. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Mediators of the effect of the JUMP-in intervention on physical activity and sedentary behavior in Dutch primary schoolchildren from disadvantaged neighborhoods

    PubMed Central

    2012-01-01

    Background Important health benefits can be achieved when physical activity in children from low socio-economic status is promoted and sedentariness is limited. By specifying the mediating mechanisms of existing interventions one can improve future physical activity interventions. This study explored potential mediators of the long-term effect of the school-based multicomponent JUMP-in intervention on sport participation, outdoor play and screen time in Dutch primary schoolchildren from disadvantaged neighborhoods. Methods In total, 600 primary schoolchildren (aged 9.8 ± 0.7, 51% girls, 13% Dutch ethnicity, 35% overweight) from 9 intervention and 10 control schools were included in the analyses. JUMP-in was developed using Intervention Mapping, and targeted psychological and environmental determinants of physical activity. Outcome behaviors were self-reported sport participation, outdoor play, TV-viewing behavior and computer use. Potential mediators were self-reported psychological, social and physical environmental factors. Results JUMP-in was effective in improving sport participation after 20 months, but not in improving outdoor play, or reducing TV-viewing or computer time. JUMP-in was not effective in changing hypothesized mediators so no significant mediated effects could be identified. However, changes in self-efficacy, social support and habit strength were positively associated with changes in sport participation, and changes in social support, self-efficacy, perceived planning skills, enjoyment and habit strength were positively associated with changes in outdoor play. Changes in enjoyment was positively associated with changes in TV-viewing while parental rules were negatively associated. Having a computer in the bedroom and enjoyment were positively associated with changes in computer use, while changes in parental rules were negatively associated. Conclusions Besides a significant positive effect on sports participation, no significant intervention effect on outdoor play, screen time or any of the potential mediators was found. This suggest that other (unmeasured) factors operated as mediating mechanisms of the intervention, that we used unsuccessful intervention strategies, that the strategies were inappropriately implemented, or that children are unable to accurately recall past activities and cognitions. Additionally, the school setting might not be the sole channel to influence leisure time activities. Still, several personal and environmental constructs were found to be relevant in predicting change in sport participation, outdoor play and screen behavior and seem to be potential mediators. Future interventions are recommended including more effective strategies targeting these relevant constructs, addressing different constructs (e.g. pedagogic skills of parents), and focusing on different implementation settings. Trail registration ISRCTN17489378 PMID:23130806

  13. Sign realized jump risk and the cross-section of stock returns: Evidence from China's stock market.

    PubMed

    Chao, Youcong; Liu, Xiaoqun; Guo, Shijun

    2017-01-01

    Using 5-minute high frequency data from the Chinese stock market, we employ a non-parametric method to estimate Fama-French portfolio realized jumps and investigate whether the estimated positive, negative and sign realized jumps could forecast or explain the cross-sectional stock returns. The Fama-MacBeth regression results show that not only have the realized jump components and the continuous volatility been compensated with risk premium, but also that the negative jump risk, the positive jump risk and the sign jump risk, to some extent, could explain the return of the stock portfolios. Therefore, we should pay high attention to the downside tail risk and the upside tail risk.

  14. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies

    NASA Astrophysics Data System (ADS)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter

    2018-01-01

    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.

  15. Discontinuities in effective permeability due to fracture percolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey De'Haven; Karra, Satish; Carey, James William

    Motivated by a triaxial coreflood experiment with a sample of Utica shale where an abrupt jump in permeability was observed, possibly due to the creation of a percolating fracture network through the sample, we perform numerical simulations based on the experiment to characterize how the effective permeability of otherwise low-permeability porous media depends on fracture formation, connectivity, and the contrast between the fracture and matrix permeabilities. While a change in effective permeability due to fracture formation is expected, the dependence of its magnitude upon the contrast between the matrix permeability and fracture permeability and the fracture network structure is poorlymore » characterized. We use two different high-fidelity fracture network models to characterize how effective permeability changes as percolation occurs. The first is a dynamic two-dimensional fracture propagation model designed to mimic the laboratory settings of the experiment. The second is a static three-dimensional discrete fracture network (DFN) model, whose fracture and network statistics are based on the fractured sample of Utica shale. Once the network connects the inflow and outflow boundaries, the effective permeability increases non-linearly with network density. In most networks considered, a jump in the effective permeability was observed when the embedded fracture network percolated. We characterize how the magnitude of the jump, should it occur, depends on the contrast between the fracture and matrix permeabilities. For small contrasts between the matrix and fracture permeabilities the change is insignificant. However, for larger contrasts, there is a substantial jump whose magnitude depends non-linearly on the difference between matrix and fracture permeabilities. A power-law relationship between the size of the jump and the difference between the matrix and fracture permeabilities is observed. In conclusion, the presented results underscore the importance of fracture network topology on the upscaled properties of the porous medium in which it is embedded.« less

  16. A Comparison of the Effects of Short-Term Plyometric and Resistance Training on Lower Body Muscular Performance.

    PubMed

    Whitehead, Malcolm T; Scheett, Timothy P; McGuigan, Michael R; Auckland, N Z; Martin, Angel V

    2017-11-01

    The purpose of this study was to compare effects of short-term plyometric and resistance training on lower body muscular performance. A convenience sample of thirty males aged 21.3 ± 1.8 years, height 177.3 ± 9.4 cm, mass 80.0 ± 2.6 kg, body fat 16.1 ± 1.2 % participated in this investigation. Participants were grouped and participated in progressive plyometric (PLT) or resistance training (SRT) twice per week for eight consecutive weeks or a control (CNT) group that did not participate in any training. Performance tests were administered prior to and following the training period and included measures of high-speed muscular strength (standing long jump, vertical jump), low-speed muscular strength (one-repetition maximal back squat), running speed (20-meter sprint) and running agility (505 agility test agility test-Test). Analysis of variance followed by post hoc analyses was performed to determine significant differences between the groups. Significance set at p ≤ 0.05 for all analyses. Significant improvements were observed in the PLT group for standing long jump, vertical jump, and one-repetition maximal back squat compared to the CNT group, and for vertical jump as compared to the SRT group. Significant improvements were observed in the SRT group one-repetition maximal back squat compared to the CNT group. There were no differences observed between any of the groups for the 20-meter sprint or the 505 agility test following the training. These data indicate eight weeks of progressive plyometric training results in improvements in parameters of high and low-speed muscular strength with no appreciable change in speed or agility. Additionally, the improvement in low-speed muscular strength observed from 8-weeks of progressive plyometric training was comparable to the results observed from 8-weeks of progressive strength training.

  17. Reliability of Fitness Tests Using Methods and Time Periods Common in Sport and Occupational Management

    PubMed Central

    Burnstein, Bryan D.; Steele, Russell J.; Shrier, Ian

    2011-01-01

    Context: Fitness testing is used frequently in many areas of physical activity, but the reliability of these measurements under real-world, practical conditions is unknown. Objective: To evaluate the reliability of specific fitness tests using the methods and time periods used in the context of real-world sport and occupational management. Design: Cohort study. Setting: Eighteen different Cirque du Soleil shows. Patients or Other Participants: Cirque du Soleil physical performers who completed 4 consecutive tests (6-month intervals) and were free of injury or illness at each session (n = 238 of 701 physical performers). Intervention(s): Performers completed 6 fitness tests on each assessment date: dynamic balance, Harvard step test, handgrip, vertical jump, pull-ups, and 60-second jump test. Main Outcome Measure(s): We calculated the intraclass coefficient (ICC) and limits of agreement between baseline and each time point and the ICC over all 4 time points combined. Results: Reliability was acceptable (ICC > 0.6) over an 18-month time period for all pairwise comparisons and all time points together for the handgrip, vertical jump, and pull-up assessments. The Harvard step test and 60-second jump test had poor reliability (ICC < 0.6) between baseline and other time points. When we excluded the baseline data and calculated the ICC for 6-month, 12-month, and 18-month time points, both the Harvard step test and 60-second jump test demonstrated acceptable reliability. Dynamic balance was unreliable in all contexts. Limit-of-agreement analysis demonstrated considerable intraindividual variability for some tests and a learning effect by administrators on others. Conclusions: Five of the 6 tests in this battery had acceptable reliability over an 18-month time frame, but the values for certain individuals may vary considerably from time to time for some tests. Specific tests may require a learning period for administrators. PMID:22488138

  18. Discontinuities in effective permeability due to fracture percolation

    DOE PAGES

    Hyman, Jeffrey De'Haven; Karra, Satish; Carey, James William; ...

    2018-01-31

    Motivated by a triaxial coreflood experiment with a sample of Utica shale where an abrupt jump in permeability was observed, possibly due to the creation of a percolating fracture network through the sample, we perform numerical simulations based on the experiment to characterize how the effective permeability of otherwise low-permeability porous media depends on fracture formation, connectivity, and the contrast between the fracture and matrix permeabilities. While a change in effective permeability due to fracture formation is expected, the dependence of its magnitude upon the contrast between the matrix permeability and fracture permeability and the fracture network structure is poorlymore » characterized. We use two different high-fidelity fracture network models to characterize how effective permeability changes as percolation occurs. The first is a dynamic two-dimensional fracture propagation model designed to mimic the laboratory settings of the experiment. The second is a static three-dimensional discrete fracture network (DFN) model, whose fracture and network statistics are based on the fractured sample of Utica shale. Once the network connects the inflow and outflow boundaries, the effective permeability increases non-linearly with network density. In most networks considered, a jump in the effective permeability was observed when the embedded fracture network percolated. We characterize how the magnitude of the jump, should it occur, depends on the contrast between the fracture and matrix permeabilities. For small contrasts between the matrix and fracture permeabilities the change is insignificant. However, for larger contrasts, there is a substantial jump whose magnitude depends non-linearly on the difference between matrix and fracture permeabilities. A power-law relationship between the size of the jump and the difference between the matrix and fracture permeabilities is observed. In conclusion, the presented results underscore the importance of fracture network topology on the upscaled properties of the porous medium in which it is embedded.« less

  19. Biomechanics research in ski jumping, 1991-2006.

    PubMed

    Schwameder, Hermann

    2008-01-01

    In this paper, I review biomechanics research in ski jumping with a specific focus on publications presented between 1991 and 2006 on performance enhancement, limiting factors of the take-off, specific training and conditioning, aerodynamics, and safety. The first section presents a brief description of ski jumping phases (in-run, take-off, early flight, stable flight, and landing) regarding the biomechanical and functional fundamentals. The most important and frequently used biomechanical methods in ski jumping (kinematics, ground reaction force analyses, muscle activation patterns, aerodynamics) are summarized in the second section. The third section focuses on ski jumping articles and research findings published after the establishment of the V-technique in 1991, as the introduction of this technique has had a major influence on performance enhancement, ski jumping regulations, and the construction of hill profiles. The final section proposes topics for future research in the biomechanics of ski jumping, including: take-off and early flight and the relative roles of vertical velocity and forward somersaulting angular momentum; optimal jumping patterns utilizing the capabilities of individual athletes; development of kinematic and kinetic feedback systems for hill jumps; comparisons of simulated and hill jumps; effect of equipment modifications on performance and safety enhancement.

  20. Determination of the best pre-jump height for improvement of two-legged vertical jump.

    PubMed

    Jafari, Mahsa; Zolaktaf, Vahid; Marandi, Sayyed M

    2013-04-01

    Athletic performance in many sports depends on two-legged vertical jump. The objective of this study was to examine the effect of different pre-jump height exercises on two-legged vertical jump and to determine the best pre-jump height(s). Subjects included 35 females and 42 males. By matched randomized sampling, subjects of each sex were assigned into four groups, namely, control, 10-cm hurdle, 20-cm hurdle, and 30-cm hurdle. They participated in the same training program for 6 weeks. Statistical analyses were based on one-way and repeated-measure analysis of variance (ANOVA). Analysis of the data showed that practice over hurdles of 10 cm was better than no hurdle and hurdles of >10 cm. Also, jump attempts over hurdles were efficient for trained athletes, but not for untrained athletes. For both sexes, the rate of spike improvement was much better in the experimental groups than in the control groups; it was independent from the rate of progress in jump, which was relatively less evident. It is likely that rather than increasing jump height, training over hurdle enabled the players to use a higher percent of their jump potentials.

  1. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height.

    PubMed

    Glatthorn, Julia F; Gouge, Sylvain; Nussbaumer, Silvio; Stauffacher, Simone; Impellizzeri, Franco M; Maffiuletti, Nicola A

    2011-02-01

    Vertical jump is one of the most prevalent acts performed in several sport activities. It is therefore important to ensure that the measurements of vertical jump height made as a part of research or athlete support work have adequate validity and reliability. The aim of this study was to evaluate concurrent validity and reliability of the Optojump photocell system (Microgate, Bolzano, Italy) with force plate measurements for estimating vertical jump height. Twenty subjects were asked to perform maximal squat jumps and countermovement jumps, and flight time-derived jump heights obtained by the force plate were compared with those provided by Optojump, to examine its concurrent (criterion-related) validity (study 1). Twenty other subjects completed the same jump series on 2 different occasions (separated by 1 week), and jump heights of session 1 were compared with session 2, to investigate test-retest reliability of the Optojump system (study 2). Intraclass correlation coefficients (ICCs) for validity were very high (0.997-0.998), even if a systematic difference was consistently observed between force plate and Optojump (-1.06 cm; p < 0.001). Test-retest reliability of the Optojump system was excellent, with ICCs ranging from 0.982 to 0.989, low coefficients of variation (2.7%), and low random errors (±2.81 cm). The Optojump photocell system demonstrated strong concurrent validity and excellent test-retest reliability for the estimation of vertical jump height. We propose the following equation that allows force plate and Optojump results to be used interchangeably: force plate jump height (cm) = 1.02 × Optojump jump height + 0.29. In conclusion, the use of Optojump photoelectric cells is legitimate for field-based assessments of vertical jump height.

  2. Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2010-01-01

    The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads at a high altitude, with an anchored computational methodology. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests, and deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line-jump is the peak side load physics for the round, slightly our-of-round, and more out-of-round cases, and the peak side load increases as the degree of out-of-roundness increases. For the significantly out-of-round nozzle, however, the peak side load reduces to comparable to that of the round nozzle and the separation line jump is not the peak side load physics. The counter-intuitive result of the significantly out-of-round case is found to be related to a side force reduction mechanism that splits the effect of the separation-line-jump into two parts, not only in the circumferential direction and most importantly in time.

  3. Dynamics and control of coherent structures in the turbulent wall layer: An overview

    NASA Technical Reports Server (NTRS)

    Berkooz, Gal; Holmes, Philip; Lumley, John

    1993-01-01

    We expand the velocity field in the vicinity of the wall in empirical eigenfunctions obtained from experiment. Truncating our system and using Galerkin projection, we obtain a closed set of non-linear ordinary differential equations with ten degrees of freedom. We find a rich dynamical behavior, including in particular a heteroclinic attracting orbit giving rise to intermittency. The intermittent jump from one attracting point to the other resembles in many respects the bursts observed in experiments. Specifically, the time between jumps and the duration of the jumps, is approximately that observed in a burst; the jump begins with the formation of a narrowed and intensified updraft, like the ejection phase of a burst, and is followed by a gentle, diffuse downdraft like the sweep phase of a burst. The magnitude of the Reynolds stress spike produced during a burst is limited by our truncation. The behavior is quite robust, much of it being due to the symmetries present (Aubry's group has examined dimensions up to 128 with persistence of the global behavior). We have examined eigenvalues and coefficients obtained from experiment, and from exact simulation, which differ in magnitude. Similar behavior is obtained in both cases; in the latter case, the heteroclinic orbits connect limit cycles instead of fixed points, corresponding to cross-stream waving of the streamwise rolls. The bifurcation diagram remains structurally similar, but somewhat distorted. The role of the pressure term is made clear - it triggers the intermittent jumps, which otherwise would occur at longer and longer intervals, as the system trajectory is attracted closer and closer to the heteroclinic cycle. The pressure term results in the jumps occurring at essentially random times, and the magnitude of the signal determines the average timing. Stretching of the wall region shows that the model is consistent with observations of polymer drag reduction. Change of the third order coefficients, corresponding to acceleration or deceleration of the mean flow, changes the heteroclinic cycles from attracting to repelling, increasing or decreasing the stability, in agreement with observations. The existence of fixed points is an artifact introduced by the projection; however, a decoupled model still displays the rich dynamics. Numerous assumptions made in Aubry et al. (1988) can now be proved exactly. Feeding back eigenfuncitons with the proper phase can delay the bursting, (the heteroclinic jump to the other fixed point), decreasing the drag. It is also possible to speed up the bursting, increasing mixing to control separation. Our approach is optimal for short time tracking in control.

  4. Influence of Knee-to-Feet Jump Training on Vertical Jump and Hang Clean Performance.

    PubMed

    Stark, Laura; Pickett, Karla; Bird, Michael; King, Adam C

    2016-11-01

    Stark, L, Pickett, K, Bird, M, and King, AC. Influence of knee-to-feet jump training on vertical jump and hang clean performance. J Strength Cond Res 30(11): 3084-3089, 2016-From a motor learning perspective, the practice/training environment can result in positive, negative, or neutral transfer to the testing conditions. The purpose of this study was to examine the training effect of a novel movement (knee-to-feet [K2F] jumps) and whether a 6-week training program induced a positive transfer effect to other power-related movements (vertical jump and hang clean [HC]). Twenty-six intercollegiate athletes from power-emphasized sports were paired and counter-balanced into a control (i.e., maintained their respective sport-specific lifting regimen) or an experimental group (i.e., completed a 6-week progressive training program of K2F jumps in addition to respective lifting regimen). A pre- and posttest design was used to investigate the effect of training on K2F jump height and transfer effect to vertical jump height (VJH) and 2-repetition maximum (RM) HC performance. A significant increase in K2F jump height was found for the experimental group. Vertical jump height significantly increased from pre- to posttest but no group or interaction (group × time) effect was found, and there were nonsignificant differences for HC. Posttest data showed significant correlations between all pairs of the selected exercises with the highest correlation between K2F jump height and VJ H (R = 0.40) followed by VJH and 2RM HC (R = 0.38) and 2RM HC and K2F jump height (R = 0.23). The results suggest that K2F jump training induced the desired learning effect but was specific to the movement in that no effect of transfer occurred to the other power-related movements. This finding is value for strength and condition professionals who design training programs to enhance athletic performance.

  5. Long memory behavior of returns after intraday financial jumps

    NASA Astrophysics Data System (ADS)

    Behfar, Stefan Kambiz

    2016-11-01

    In this paper, characterization of intraday financial jumps and time dynamics of returns after jumps is investigated, and will be analytically and empirically shown that intraday jumps are power-law distributed with the exponent 1 < μ < 2; in addition, returns after jumps show long-memory behavior. In the theory of finance, it is important to be able to distinguish between jumps and continuous sample path price movements, and this can be achieved by introducing a statistical test via calculating sums of products of returns over small period of time. In the case of having jump, the null hypothesis for normality test is rejected; this is based on the idea that returns are composed of mixture of normally-distributed and power-law distributed data (∼ 1 /r 1 + μ). Probability of rejection of null hypothesis is a function of μ, which is equal to one for 1 < μ < 2 within large intraday sample size M. To test this idea empirically, we downloaded S&P500 index data for both periods of 1997-1998 and 2014-2015, and showed that the Complementary Cumulative Distribution Function of jump return is power-law distributed with the exponent 1 < μ < 2. There are far more jumps in 1997-1998 as compared to 2015-2016; and it represents a power law exponent in 2015-2016 greater than one in 1997-1998. Assuming that i.i.d returns generally follow Poisson distribution, if the jump is a causal factor, high returns after jumps are the effect; we show that returns caused by jump decay as power-law distribution. To test this idea empirically, we average over the time dynamics of all days; therefore the superposed time dynamics after jump represent a power-law, which indicates that there is a long memory with a power-law distribution of return after jump.

  6. Scaled Jump in Gravity-Reduced Virtual Environments.

    PubMed

    Kim, MyoungGon; Cho, Sunglk; Tran, Tanh Quang; Kim, Seong-Pil; Kwon, Ohung; Han, JungHyun

    2017-04-01

    The reduced gravity experienced in lunar or Martian surfaces can be simulated on the earth using a cable-driven system, where the cable lifts a person to reduce his or her weight. This paper presents a novel cable-driven system designed for the purpose. It is integrated with a head-mounted display and a motion capture system. Focusing on jump motion within the system, this paper proposes to scale the jump and reports the experiments made for quantifying the extent to which a jump can be scaled without the discrepancy between physical and virtual jumps being noticed by the user. With the tolerable range of scaling computed from these experiments, an application named retargeted jump is developed, where a user can jump up onto virtual objects while physically jumping in the real-world flat floor. The core techniques presented in this paper can be extended to develop extreme-sport simulators such as parasailing and skydiving.

  7. Energy and time optimal trajectories in exploratory jumps of the spider Phidippus regius.

    PubMed

    Nabawy, Mostafa R A; Sivalingam, Girupakaran; Garwood, Russell J; Crowther, William J; Sellers, William I

    2018-05-08

    Jumping spiders are proficient jumpers that use jumps in a variety of behavioural contexts. We use high speed, high resolution video to measure the kinematics of a single regal jumping spider for a total of 15 different tasks based on a horizontal gap of 2-5 body lengths and vertical gap of +/-2 body lengths. For short range jumps, we show that low angled trajectories are used that minimise flight time. For longer jumps, take-off angles are steeper and closer to the optimum for minimum energy cost of transport. Comparison of jump performance against other arthropods shows that Phidippus regius is firmly in the group of animals that use dynamic muscle contraction for actuation as opposed to a stored energy catapult system. We find that the jump power requirements can be met from the estimated mass of leg muscle; hydraulic augmentation may be present but appears not to be energetically essential.

  8. Laterality versus jumping performance in men and women.

    PubMed

    Trzaskoma, Zbigniew; Ilnicka, Lidia; Wiszomirska, Ida; Wit, Andrzej; Wychowański, Michał

    2015-01-01

    The aim of this study was to investigate relationships between functional asymmetry of lower limbs, taking into account morphological features of the feet, and jumping ability in men and women. The study population consisted of 56 subjects, 30 women (age: 20.29 ± 0.59 years; body mass: 58.13 ± 4.58 kg, body height: 165.60 ± 5.03 cm) and 26 men (age: 20.41 ± 0.78 years, body mass: 78.39 ± 8.42 kg, body height: 181.15 ± 6.52 cm). The measurements of longitudinal arches were performed with the plan- tographic method on the basis of Clarke's angle mapped on a computer foot print. The measurements of jumping performance during bilateral (two legs) and unilateral (single-leg) counter movement jump (CMJ) were done on force plate. All subjects jumped three times each type of jump (total 9 jumps): three right leg, three left leg and three two legs. We put the test results through a detailed statistical analysis with the Statistica 8.0. The t-test for dependent variables and the Wilcoxon signed-rank test for divergent variances of the fea- tures compared. The analysis of relationships between the chosen podometric and plantographic features and jumping performance was conducted on the basis of the Pearson product-moment correlation coefficient (for the features which presented normal distribution, according to the Shapiro-Wilk test). The correlations between values of height of single-leg jumps (right and left) and bilateral jumps, and foot indices were found in few cases only in men who had greater values of jump height with the non-dominant limb. We did not find a significant difference in jumping ability between the dominant limb and the non-dominant limb in women. We found bilateral deficits in jumping ability in the study groups, though we did not find significant differences (P ≤ 0.05) between the values for women (a mean of 6.5%) and for men (a mean of 8.4%). We found significant gender differences of the correlations between the values of height of jumps (single-leg and bilateral jumps) and foot indices.

  9. Physiological monitoring and analysis of a manned stratospheric balloon test program.

    PubMed

    Garbino, Alejandro; Blue, Rebecca S; Pattarini, James M; Law, Jennifer; Clark, Jonathan B

    2014-02-01

    The Red Bull Stratos Project consisted of incremental high altitude parachute jumps [maximum altitude 127,852 ft (38,969 m)] from a pressurized capsule suspended from a stratospheric helium-filled balloon. A physiological monitoring system was worn by the parachutist to provide operational medical and acceleration data and to record a unique set of data in a supersonic environment. Various physiological parameters, including heart rate (HR), respiratory rate (RR), skin temperature, and triaxial acceleration, were collected during the ascent, high altitude float, free fall, and parachute opening and descent stages of multiple low- and high altitude jumps. Physiologic data were synchronized with global positioning system (GPS) and audiovisual data for a comprehensive understanding of the environmental stressors experienced. HR reached maximum during capsule egress and remained elevated throughout free fall and landing. RR reached its maximum during free fall. Temperature data were unreliable and did not provide useful results. The highest accelerations parameters were recorded during parachute opening and during landing. During each high altitude jump, immediately after capsule egress, the parachutist experienced a few seconds of microgravity during which some instability occurred. Control was regained as the parachutist entered denser atmosphere. The high altitude environment resulted in extremely high vertical speeds due to little air resistance in comparison to lower altitude jumps with similar equipment. The risk for tumbling was highest at initial step-off. Physiological responses included elevated HR and RR throughout critical phases of free fall. The monitoring unit performed well despite the austere environment and extreme human performance activities.

  10. Morning-evening difference of team-handball-related short-term maximal physical performances in female team handball players.

    PubMed

    Mhenni, Thouraya; Michalsik, Lars Bojsen; Mejri, Mohamed Arbi; Yousfi, Narimen; Chaouachi, Anis; Souissi, Nizar; Chamari, Karim

    2017-05-01

    This study investigated the two different time-of-day effect on team-handball-related short-term maximal physical performances. At two different time-of-day, fifteen young female team handball players performed different physical tests: HandGrip (HG) test, Ball-Throwing Velocity (BTV) test, Modified Agility T-test (MAT) and Repeated Shuttle-Sprint and Jump Ability (RSSJA) test. Rating of perceived exertion (RPE) scale was determined following the termination of the last test. Measurements were performed at two separate testing sessions (i.e., in the morning (7:00-8:30 h) and in the early evening (17:00-18:30 h)) in a randomised and counter-balanced setting on non-consecutive days. The results showed that HG (P = 0.0013), BTV (P = 0.0027) and MAT (P < 0.001) performances were better in the evening compared with the morning. During RSSJA, both best and mean sprint times were shorter in the evening compared to the morning (P < 0.001). Moreover, during the latter test, mean jump performance was higher in the evening compared to the morning (P = 0.026). However, there was no morning-evening difference in the best jump performance during RSSJA. Likewise, jump performance decrement was not affected by the time-of-day of testing. On the other hand, RPE fluctuated, with morning nadirs and afternoon/early evening highest values. The findings suggest that in female team handball players, team-handball-related short-term maximal physical performances were better in the afternoon than in the morning.

  11. Measuring the force of punches using an accelerometric punching bag - Relationship between force of punches and power of jump - An example of application of the modern information technology in sport

    NASA Astrophysics Data System (ADS)

    Pilewska, Wiesława; Buśko, Krzysztof; Nikolaidis, Pantelis Theodoros

    2017-11-01

    The main aim of the study was to design a new system to measure punching forces in boxers. In addition, the study examined whether there were any relationship between force of punches and power of jump. A total of 9 boxers (age: 17.5±1.2 years, body height: 174.1±8.1 cm, body mass: 73.9±11.8 kg) participated in the study. The punching bag was equipped with acceleration transducers and gyroscopes embedded in a cylinder covered with a layer to absorb shock as well as a set of colour signal diodes. Value of the punching bag's acceleration was used for calculating: strike force; the punching location on the bag; and time of a strike. The relative error of force calculation was 3%; the relative error in acceleration measurement was less than 1%. The maximal straight of rear and lead punching forces were 1702.4±497.8 N and 1262.0±417.7 N in boxers, respectively. Strong correlations were found between the punching force and power of lower limbs developed for the ACMJ, CMJ and SPJ jump. Height of rise of the body mass centre and punching force correlated insignificantly. Based on these findings, it was concluded that the modified punching bag is a good diagnostic tool for combat sports. The measurement of power during the jump may be a good diagnostic test in boxers.

  12. Analysis of competition performance in dressage and show jumping of Dutch Warmblood horses.

    PubMed

    Rovere, G; Ducro, B J; van Arendonk, J A M; Norberg, E; Madsen, P

    2016-12-01

    Most Warmblood horse studbooks aim to improve the performance in dressage and show jumping. The Dutch Royal Warmblood Studbook (KWPN) includes the highest score achieved in competition by a horse to evaluate its genetic ability of performance. However, the records collected during competition are associated with some aspects that might affect the quality of the genetic evaluation based on these records. These aspects include the influence of rider, censoring and preselection of the data. The aim of this study was to quantify the impact of rider effect, censoring and preselection on the genetic analysis of competition data of dressage and show jumping of KWPN. Different models including rider effect were evaluated. To assess the impact of censoring, genetic parameters were estimated in data sets that differed in the degree of censoring. The effect of preselection on variance components was analysed by defining a binary trait (sport-status) depending on whether the horse has a competition record or not. This trait was included in a bivariate model with the competition trait and used all horses registered by KWPN since 1984. Results showed that performance in competition for dressage and show jumping is a heritable trait (h 2 ~ 0.11-0.13) and that it is important to account for the effect of rider in the genetic analysis. Censoring had a small effect on the genetic parameter for highest performance achieved by the horse. A moderate heritability obtained for sport-status indicates that preselection has a genetic basis, but the effect on genetic parameters was relatively small. © 2016 Blackwell Verlag GmbH.

  13. Design of robust reliable control for T-S fuzzy Markovian jumping delayed neutral type neural networks with probabilistic actuator faults and leakage delays: An event-triggered communication scheme.

    PubMed

    Syed Ali, M; Vadivel, R; Saravanakumar, R

    2018-06-01

    This study examines the problem of robust reliable control for Takagi-Sugeno (T-S) fuzzy Markovian jumping delayed neural networks with probabilistic actuator faults and leakage terms. An event-triggered communication scheme. First, the randomly occurring actuator faults and their failures rates are governed by two sets of unrelated random variables satisfying certain probabilistic failures of every actuator, new type of distribution based event triggered fault model is proposed, which utilize the effect of transmission delay. Second, Takagi-Sugeno (T-S) fuzzy model is adopted for the neural networks and the randomness of actuators failures is modeled in a Markov jump model framework. Third, to guarantee the considered closed-loop system is exponential mean square stable with a prescribed reliable control performance, a Markov jump event-triggered scheme is designed in this paper, which is the main purpose of our study. Fourth, by constructing appropriate Lyapunov-Krasovskii functional, employing Newton-Leibniz formulation and integral inequalities, several delay-dependent criteria for the solvability of the addressed problem are derived. The obtained stability criteria are stated in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, numerical examples are given to illustrate the effectiveness and reduced conservatism of the proposed results over the existing ones, among them one example was supported by real-life application of the benchmark problem. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Take-off analysis of the Olympic ski jumping competition (HS-106m).

    PubMed

    Virmavirta, Mikko; Isolehto, Juha; Komi, Paavo; Schwameder, Hermann; Pigozzi, Fabio; Massazza, Giuseppe

    2009-05-29

    The take-off phase (approximately 6m) of the jumps of all athletes participating in the individual HS-106m hill ski jumping competition at the Torino Olympics was filmed with two high-speed cameras. The high altitude of the Pragelato ski jumping venue (1600m) and slight tail wind in the final jumping round were expected to affect the results of this competition. The most significant correlation with the length of the jump was found in the in-run velocity (r=0.628, p<0.001, n=50). This was a surprise in Olympic level ski jumping, and suggests that good jumpers simply had smaller friction between their skis and the in-run tracks and/or the aerodynamic quality of their in-run position was better. Angular velocity of the hip joint of the best jumpers was also correlated with jumping distance (r=0.651, p<0.05, n=10). The best jumpers in this competition exhibited very different take-off techniques, but still they jumped approximately the same distance. This certainly improves the interests in ski jumping among athletes and spectators. The comparison between the take-off techniques of the best jumpers showed that even though the more marked upper body movement creates higher air resistance, it does not necessarily result in shorter jumping distance if the exposure time to high air resistance is not too long. A comparison between the first and second round jumps of the same jumpers showed that the final results in this competition were at least partly affected by the wind conditions.

  15. Computer simulation of the last support phase of the long jump.

    PubMed

    Chow, John W; Hay, James G

    2005-01-01

    The purpose was to examine the interacting roles played by the approach velocity, the explosive strength (represented by vertical ground reaction force [VGRF]), and the change in angular momentum about a transverse axis through the jumper's center of mass (deltaHzz) during the last support phase of the long jump, using a computer simulation technique. A two-dimensional inverted-pendulum-plus-foot segment model was developed to simulate the last support phase. Using a reference jump derived from a jump performance reported in the literature, the effects of varying individual parameters were studied using sensitivity analyses. In each sensitivity analysis, the kinematic characteristics of the longest jumps with the deltaHzz considered and not considered when the parameter of interest was altered were noted. A sensitivity analysis examining the influence of altering both approach velocity and VGRF at the same time was also conducted. The major findings were that 1) the jump distance was more sensitive to changes in approach velocity (e.g., a 10% increase yielded a 10.0% increase in jump distance) than to changes in the VGRF (e.g., a 10% increase yielded a 7.2% increase in jump distance); 2) the relatively large change in jump distance when both the approach velocity and VGRF were altered (e.g., a 10% increase in both parameters yielded a 20.4% increase in jump distance), suggesting that these two parameters are not independent factors in determining the jump distance; and 3) the jump distance was overestimated if the deltaHzz was not considered in the analysis.

  16. Leg stiffness and expertise in men jumping.

    PubMed

    Laffaye, Guillaume; Bardy, Benoît G; Durey, Alain

    2005-04-01

    The aim of the present study is to investigate: a) the leg spring behavior in the one-leg vertical jump, b) the contribution of impulse parameters to this behavior, and c) the effect of jumping expertise on leg stiffness. Four categories of experts (handball, basketball, volleyball players, and Fosbury athletes), as well as novice subjects performed a run-and-jump test to touch a ball with the head. Five experimental conditions were tested from 55 to 95% of the maximum jump height. Kinematic and kinetic data were collected using six cameras and a force plate. The mechanical behavior of the musculoskeleton component of the human body can be modeled as a simple mass-spring system, from which leg stiffness values can be extracted to better understand energy transfer during running or jumping. The results indicate that leg stiffness (mean value of 11.5 kN.m) decreased with jumping height. Leg shortening at takeoff also increased with jumping height, whereas contact time decreased (-18%). No difference was found between experts and novices for leg stiffness. However, a principal components analysis (PCA) indicated the contribution of two main factors to the performance. The first factor emerged out of vertical force, stiffness, and duration of impulse. The second factor included leg shortening and jumping height. Differences between experts and novices were observed in terms of the contribution of leg stiffness to jump height, and more importantly, clear differences existed between experts in jumping parameters. The analysis performed on the sport categories indeed revealed different jumping profiles, characterized by specific, sport-related impulse parameters.

  17. The trampoline aftereffect: the motor and sensory modulations associated with jumping on an elastic surface.

    PubMed

    Márquez, Gonzalo; Aguado, Xavier; Alegre, Luis M; Lago, Angel; Acero, Rafael M; Fernández-del-Olmo, Miguel

    2010-08-01

    After repeated jumps over an elastic surface (e.g. a trampoline), subjects usually report a strange sensation when they jump again overground (e.g. they feel unable to jump because their body feels heavy). However, the motor and sensory effects of exposure to an elastic surface are unknown. In the present study, we examined the motor and perceptual effects of repeated jumps over two different surfaces (stiff and elastic), measuring how this affected maximal countermovement vertical jump (CMJ). Fourteen subjects participated in two counterbalanced sessions, 1 week apart. Each experimental session consisted of a series of maximal CMJs over a force plate before and after 1 min of light jumping on an elastic or stiff surface. We measured actual motor performance (height jump and leg stiffness during CMJ) and how that related to perceptual experience (jump height estimation and subjective sensation). After repeated jumps on an elastic surface, the first CMJ showed a significant increase in leg stiffness (P < or = 0.01), decrease in jump height (P < or = 0.01) increase in perceptual misestimation (P < or = 0.05) and abnormal subjective sensation (P < or = 0.001). These changes were not observed after repeated jumps on a rigid surface. In a complementary experiment, continuous surface transitions show that the effects persist across cycles, and the effects over the leg stiffness and subjective experience are minimized (P < or = 0.05). We propose that these aftereffects could be the consequence of an erroneous internal model resulting from the high vertical forces produced by the elastic surface.

  18. Sign realized jump risk and the cross-section of stock returns: Evidence from China's stock market

    PubMed Central

    Chao, Youcong; Liu, Xiaoqun; Guo, Shijun

    2017-01-01

    Using 5-minute high frequency data from the Chinese stock market, we employ a non-parametric method to estimate Fama-French portfolio realized jumps and investigate whether the estimated positive, negative and sign realized jumps could forecast or explain the cross-sectional stock returns. The Fama-MacBeth regression results show that not only have the realized jump components and the continuous volatility been compensated with risk premium, but also that the negative jump risk, the positive jump risk and the sign jump risk, to some extent, could explain the return of the stock portfolios. Therefore, we should pay high attention to the downside tail risk and the upside tail risk. PMID:28771514

  19. Using Math as a Springboard to Success

    ERIC Educational Resources Information Center

    Mighton, John

    2008-01-01

    Ten years ago, the author started a tutoring club called JUMP (Junior Undiscovered Math Prodigy) in his apartment. He initially worked with a set of the most challenged students in a local school, including a number in special education who were performing far below grade level. The success of his program led him to realize that not only can all…

  20. The Brothers and Sisters Learn To Write: Popular Literacies in Childhood and School Cultures.

    ERIC Educational Resources Information Center

    Dyson, Anne Haas

    Building on the author's groundbreaking work in "Building Superheroes," this book traces the influence of a wide-ranging set of "textual toys" from children's lives--church and hip-hop songs, rap music, movies, TV, traditional jump-rope rhymes, the words of professional sports announcers and radio deejays--upon school learning…

  1. Seismic modeling with radial basis function-generated finite differences (RBF-FD) – a simplified treatment of interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Bradley, E-mail: brma7253@colorado.edu; Fornberg, Bengt, E-mail: Fornberg@colorado.edu

    In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy formore » the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.« less

  2. Numerical simulation of the hydrodynamical combustion to strange quark matter

    NASA Astrophysics Data System (ADS)

    Niebergal, Brian; Ouyed, Rachid; Jaikumar, Prashanth

    2010-12-01

    We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable u,d,s quark matter. Our method solves hydrodynamical flow equations in one dimension with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change from heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature-dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below ≈2 times saturation density). In a two-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly leading to detonation.

  3. Seismic modeling with radial basis function-generated finite differences (RBF-FD) - a simplified treatment of interfaces

    NASA Astrophysics Data System (ADS)

    Martin, Bradley; Fornberg, Bengt

    2017-04-01

    In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy for the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.

  4. Effect of liquid surface tension on circular and linear hydraulic jumps; theory and experiments

    NASA Astrophysics Data System (ADS)

    Bhagat, Rajesh Kumar; Jha, Narsing Kumar; Linden, Paul F.; Wilson, David Ian

    2017-11-01

    The hydraulic jump has attracted considerable attention since Rayleigh published his account in 1914. Watson (1964) proposed the first satisfactory explanation of the circular hydraulic jump by balancing the momentum and hydrostatic pressure across the jump, but this solution did not explain what actually causes the jump to form. Bohr et al. (1992) showed that the hydraulic jump happens close to the point where the local Froude number equals to one, suggesting a balance between inertial and hydrostatic contributions. Bush & Aristoff (2003) subsequently incorporated the effect of surface tension and showed that this is important when the jump radius is small. In this study, we propose a new account to explain the formation and evolution of hydraulic jumps under conditions where the jump radius is strongly influenced by the liquid surface tension. The theory is compared with experiments employing liquids of different surface tension and different viscosity, in circular and linear configurations. The model predictions and the experimental results show excellent agreement. Commonwealth Scholarship Commission, St. John's college, University of Cambridge.

  5. The Time Course of Argument Reactivation Revealed: Using the Visual World Paradigm

    ERIC Educational Resources Information Center

    Koring, Loes; Mak, Pim; Reuland, Eric

    2012-01-01

    Previous research has found that the single argument of unaccusative verbs (such as "fall") is reactivated during sentence processing, but the argument of agentive verbs (such as "jump") is not ( and ). An open question so far was whether this difference in processing is caused by a difference in thematic roles the verbs assign, or a difference in…

  6. Jump Training in Youth Soccer Players: Effects of Haltere Type Handheld Loading.

    PubMed

    Rosas, F; Ramirez-Campillo, R; Diaz, D; Abad-Colil, F; Martinez-Salazar, C; Caniuqueo, A; Cañas-Jamet, R; Loturco, I; Nakamura, F Y; McKenzie, C; Gonzalez-Rivera, J; Sanchez-Sanchez, J; Izquierdo, M

    2016-12-01

    The aim of this study was to compare the effects of a jump training program, with or without haltere type handheld loading, on maximal intensity exercise performance. Youth soccer players (12.1±2.2 y) were assigned to either a jump training group (JG, n=21), a jump training group plus haltere type handheld loading (LJG, n=21), or a control group following only soccer training (CG, n=21). Athletes were evaluated for maximal-intensity performance measures before and after 6 weeks of training, during an in-season training period. The CG achieved a significant change in maximal kicking velocity only (ES=0.11-0.20). Both jump training groups improved in right leg (ES=0.28-0.45) and left leg horizontal countermovement jump with arms (ES=0.32-0.47), horizontal countermovement jump with arms (ES=0.28-0.37), vertical countermovement jump with arms (ES=0.26), 20-cm drop jump reactive strength index (ES=0.20-0.37), and maximal kicking velocity (ES=0.27-0.34). Nevertheless, compared to the CG, only the LJG exhibited greater improvements in all performance tests. Therefore, haltere type handheld loading further enhances performance adaptations during jump training in youth soccer players. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulroe, Megan D.; Srijanto, Bernadeta R.; Ahmadi, S. Farzad

    It was recently discovered that condensation growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface, triggered by naturally occurring coalescence events. Many reports have observed that droplets must grow to a size of order 10 μm before jumping is enabled upon coalescence; however, it remains unknown how the critical jumping size relates to the topography of the underlying nanostructure. Here, we characterize the dynamic behavior of condensation growing on six different superhydrophobic nanostructures, where the topography of the nanopillars was systematically varied. The critical jumping diameter was observed to be highly dependent upon the height, diameter, andmore » pitch of the nanopillars: tall and slender nanopillars promoted 2 μm jumping droplets while short and stout nanopillars increased the critical size to over 20 μm. The topology of each surface is successfully correlated to the critical jumping diameter by constructing an energetic model that predicts how large a nucleating embryo needs to grow before it can inflate into the air with an apparent contact angle large enough for jumping. Furthermore, by extending our model to consider any possible surface, it is revealed that properly designed nanostructures should enable nanometric jumping droplets, which would further enhance jumping droplet condensers for heat transfer, anti-fogging, and anti-frosting applications.« less

  8. Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation

    DOE PAGES

    Mulroe, Megan D.; Srijanto, Bernadeta R.; Ahmadi, S. Farzad; ...

    2017-07-18

    It was recently discovered that condensation growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface, triggered by naturally occurring coalescence events. Many reports have observed that droplets must grow to a size of order 10 μm before jumping is enabled upon coalescence; however, it remains unknown how the critical jumping size relates to the topography of the underlying nanostructure. Here, we characterize the dynamic behavior of condensation growing on six different superhydrophobic nanostructures, where the topography of the nanopillars was systematically varied. The critical jumping diameter was observed to be highly dependent upon the height, diameter, andmore » pitch of the nanopillars: tall and slender nanopillars promoted 2 μm jumping droplets while short and stout nanopillars increased the critical size to over 20 μm. The topology of each surface is successfully correlated to the critical jumping diameter by constructing an energetic model that predicts how large a nucleating embryo needs to grow before it can inflate into the air with an apparent contact angle large enough for jumping. Furthermore, by extending our model to consider any possible surface, it is revealed that properly designed nanostructures should enable nanometric jumping droplets, which would further enhance jumping droplet condensers for heat transfer, anti-fogging, and anti-frosting applications.« less

  9. Stochastic Games for Continuous-Time Jump Processes Under Finite-Horizon Payoff Criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Qingda, E-mail: weiqd@hqu.edu.cn; Chen, Xian, E-mail: chenxian@amss.ac.cn

    In this paper we study two-person nonzero-sum games for continuous-time jump processes with the randomized history-dependent strategies under the finite-horizon payoff criterion. The state space is countable, and the transition rates and payoff functions are allowed to be unbounded from above and from below. Under the suitable conditions, we introduce a new topology for the set of all randomized Markov multi-strategies and establish its compactness and metrizability. Then by constructing the approximating sequences of the transition rates and payoff functions, we show that the optimal value function for each player is a unique solution to the corresponding optimality equation andmore » obtain the existence of a randomized Markov Nash equilibrium. Furthermore, we illustrate the applications of our main results with a controlled birth and death system.« less

  10. Changes in skill and physical fitness following training in talent-identified volleyball players.

    PubMed

    Gabbett, Tim; Georgieff, Boris; Anderson, Steve; Cotton, Brad; Savovic, Darko; Nicholson, Lee

    2006-02-01

    This study investigated the effect of a skill-based training program on measurements of skill and physical fitness in talent-identified volleyball players. Twenty-six talented junior volleyball players (mean +/- SE age, 15.5 +/- 0.2 years) participated in an 8-week skill-based training program that included 3 skill-based court sessions per week. Skills sessions were designed to develop passing, setting, serving, spiking, and blocking technique and accuracy as well as game tactics and positioning skills. Coaches used a combination of technical and instructional coaching, coupled with skill-based games to facilitate learning. Subjects performed measurements of skill (passing, setting, serving, and spiking technique and accuracy), standard anthropometry (height, standing-reach height, body mass, and sum of 7 skinfolds), lower-body muscular power (vertical jump, spike jump), upper-body muscular power (overhead medicine-ball throw), speed (5- and 10-m sprint), agility (T-test), and maximal aerobic power (multistage fitness test) before and after training. Training induced significant (p < 0.05) improvements in spiking, setting, and passing accuracy and spiking and passing technique. Compared with pretraining, there were significant (p < 0.05) improvements in 5- and 10-m speed and agility. There were no significant differences between pretraining and posttraining for body mass, skinfold thickness, lower-body muscular power, upper-body muscular power, and maximal aerobic power. These findings demonstrate that skill-based volleyball training improves spiking, setting, and passing accuracy and spiking and passing technique, but has little effect on the physiological and anthropometric characteristics of players.

  11. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012-2014.

    PubMed

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-10-22

    Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.

  12. A Correction Equation for Jump Height Measured Using the Just Jump System.

    PubMed

    McMahon, John J; Jones, Paul A; Comfort, Paul

    2016-05-01

    To determine the concurrent validity and reliability of the popular Just Jump system (JJS) for determining jump height and, if necessary, provide a correction equation for future reference. Eighteen male college athletes performed 3 bilateral countermovement jumps (CMJs) on 2 JJSs (alternative method) that were placed on top of a force platform (criterion method). Two JJSs were used to establish consistency between systems. Jump height was calculated from flight time obtained from the JJS and force platform. Intraclass correlation coefficients (ICCs) demonstrated excellent within-session reliability of the CMJ height measurement derived from both the JJS (ICC = .96, P < .001) and the force platform (ICC = .96, P < .001). Dependent t tests revealed that the JJS yielded a significantly greater CMJ jump height (0.46 ± 0.09 m vs 0.33 ± 0.08 m) than the force platform (P < .001, Cohen d = 1.39, power = 1.00). There was, however, an excellent relationship between CMJ heights derived from the JJS and force platform (r = .998, P < .001, power = 1.00), with a coefficient of determination (R2) of .995. Therefore, the following correction equation was produced: Criterion jump height = (0.8747 × alternative jump height) - 0.0666. The JJS provides a reliable but overestimated measure of jump height. It is suggested, therefore, that practitioners who use the JJS as part of future work apply the correction equation presented in this study to resultant jump-height values.

  13. Improvement of Long-Jump Performance During Competition Using a Plyometric Exercise.

    PubMed

    Bogdanis, Gregory C; Tsoukos, Athanasios; Veligekas, Panagiotis

    2017-02-01

    To examine the acute effects of a conditioning plyometric exercise on long-jump performance during a simulated long-jump competition. Eight national-level track and field decathletes performed 6 long-jump attempts with a full approach run separated by 10-min recoveries. In the experimental condition subjects performed 3 rebound vertical jumps with maximal effort 3 min before the last 5 attempts, while the 1st attempt served as baseline. In the control condition the participants performed 6 long jumps without executing the conditioning exercise. Compared with baseline, long-jump performance progressively increased only in the experimental condition, from 3.0%, or 17.5 cm, in the 3rd attempt (P = .046, d = 0.56), to 4.8%, or 28.2 cm, in the 6th attempt (P = .0001, d = 0.84). The improvement in long-jump performance was due to a gradual increase in vertical takeoff velocity from the 3rd (by 8.7%, P = .0001, d = 1.82) to the 6th jump (by 17.7%, P = .0001, d = 4.38). Horizontal-approach velocity, takeoff duration, and horizontal velocity at takeoff were similar at all long-jump attempts in both conditions (P = .80, P = .36, and P = .15, respectively). Long-jump performance progressively improved during a simulated competition when a plyometric conditioning exercise was executed 3 min before each attempt. This improvement was due to a progressive increase in vertical velocity of takeoff, while there was no effect on the horizontal velocity.

  14. Validation of the iPhone app using the force platform to estimate vertical jump height.

    PubMed

    Carlos-Vivas, Jorge; Martin-Martinez, Juan P; Hernandez-Mocholi, Miguel A; Perez-Gomez, Jorge

    2018-03-01

    Vertical jump performance has been evaluated with several devices: force platforms, contact mats, Vertec, accelerometers, infrared cameras and high-velocity cameras; however, the force platform is considered the gold standard for measuring vertical jump height. The purpose of this study was to validate an iPhone app called My Jump, that measures vertical jump height by comparing it with other methods that use the force platform to estimate vertical jump height, namely, vertical velocity at take-off and time in the air. A total of 40 sport sciences students (age 21.4±1.9 years) completed five countermovement jumps (CMJs) over a force platform. Thus, 200 CMJ heights were evaluated from the vertical velocity at take-off and the time in the air using the force platform, and from the time in the air with the My Jump mobile application. The height obtained was compared using the intraclass correlation coefficient (ICC). Correlation between APP and force platform using the time in the air was perfect (ICC=1.000, P<0.001). Correlation between APP and force platform using the vertical velocity at take-off was also very high (ICC=0.996, P<0.001), with an error margin of 0.78%. Therefore, these results showed that application, My Jump, is an appropriate method to evaluate the vertical jump performance; however, vertical jump height is slightly overestimated compared with that of the force platform.

  15. Jump Shrug Height and Landing Forces Across Various Loads.

    PubMed

    Suchomel, Timothy J; Taber, Christopher B; Wright, Glenn A

    2016-01-01

    The purpose of this study was to examine the effect that load has on the mechanics of the jump shrug. Fifteen track and field and club/intramural athletes (age 21.7 ± 1.3 y, height 180.9 ± 6.6 cm, body mass 84.7 ± 13.2 kg, 1-repetition-maximum (1RM) hang power clean 109.1 ± 17.2 kg) performed repetitions of the jump shrug at 30%, 45%, 65%, and 80% of their 1RM hang power clean. Jump height, peak landing force, and potential energy of the system at jump-shrug apex were compared between loads using a series of 1-way repeated-measures ANOVAs. Statistical differences in jump height (P < .001), peak landing force (P = .012), and potential energy of the system (P < .001) existed; however, there were no statistically significant pairwise comparisons in peak landing force between loads (P > .05). The greatest magnitudes of jump height, peak landing force, and potential energy of the system at the apex of the jump shrug occurred at 30% 1RM hang power clean and decreased as the external load increased from 45% to 80% 1RM hang power clean. Relationships between peak landing force and potential energy of the system at jump-shrug apex indicate that the landing forces produced during the jump shrug may be due to the landing strategy used by the athletes, especially at lighter loads. Practitioners may prescribe heavier loads during the jump-shrug exercise without viewing landing force as a potential limitation.

  16. Jumping robots: a biomimetic solution to locomotion across rough terrain.

    PubMed

    Armour, Rhodri; Paskins, Keith; Bowyer, Adrian; Vincent, Julian; Megill, William; Bomphrey, Richard

    2007-09-01

    This paper introduces jumping robots as a means to traverse rough terrain; such terrain can pose problems for traditional wheeled, tracked and legged designs. The diversity of jumping mechanisms found in nature is explored to support the theory that jumping is a desirable ability for a robot locomotion system to incorporate, and then the size-related constraints are determined from first principles. A series of existing jumping robots are presented and their performance summarized. The authors present two new biologically inspired jumping robots, Jollbot and Glumper, both of which incorporate additional locomotion techniques of rolling and gliding respectively. Jollbot consists of metal hoop springs forming a 300 mm diameter sphere, and when jumping it raises its centre of gravity by 0.22 m and clears a height of 0.18 m. Glumper is of octahedral shape, with four 'legs' that each comprise two 500 mm lengths of CFRP tube articulating around torsion spring 'knees'. It is able to raise its centre of gravity by 1.60 m and clears a height of 1.17 m. The jumping performance of the jumping robot designs presented is discussed and compared against some specialized jumping animals. Specific power output is thought to be the performance-limiting factor for a jumping robot, which requires the maximization of the amount of energy that can be stored together with a minimization of mass. It is demonstrated that this can be achieved through optimization and careful materials selection.

  17. Re-examining the effects of verbal instructional type on early stage motor learning.

    PubMed

    Bobrownicki, Ray; MacPherson, Alan C; Coleman, Simon G S; Collins, Dave; Sproule, John

    2015-12-01

    The present study investigated the differential effects of analogy and explicit instructions on early stage motor learning and movement in a modified high jump task. Participants were randomly assigned to one of three experimental conditions: analogy, explicit light (reduced informational load), or traditional explicit (large informational load). During the two-day learning phase, participants learned a novel high jump technique based on the 'scissors' style using the instructions for their respective conditions. For the single-day testing phase, participants completed both a retention test and task-relevant pressure test, the latter of which featured a rising high-jump-bar pressure manipulation. Although analogy learners demonstrated slightly more efficient technique and reported fewer technical rules on average, the differences between the conditions were not statistically significant. There were, however, significant differences in joint variability with respect to instructional type, as variability was lowest for the analogy condition during both the learning and testing phases, and as a function of block, as joint variability decreased for all conditions during the learning phase. Findings suggest that reducing the informational volume of explicit instructions may mitigate the deleterious effects on performance previously associated with explicit learning in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Predictors of proximal tibia anterior shear force during a vertical stop-jump.

    PubMed

    Sell, Timothy C; Ferris, Cheryl M; Abt, John P; Tsai, Yung-Shen; Myers, Joseph B; Fu, Freddie H; Lephart, Scott M

    2007-12-01

    Anterior cruciate ligament (ACL) continues to be a significant medical issue for athletes participating in sports and recreational activities. Biomechanical analyses have determined that anterior shear force is the most direct loading mechanism of the ACL and a probable component of noncontact ACL injury. The purpose of this study was to examine the biomechanical predictors of proximal tibia anterior shear force during a stop-jump task. A biomechanical and electromyographic (EMG) analysis of the knee was conducted while subjects performed a vertical stop-jump task. The task was chosen to simulate an athletic maneuver that included a landing with a sharp deceleration and a change in direction. The final regression model indicated that posterior ground reaction force, external knee flexion moment, knee flexion angle, integrated EMG activity of the vastus lateralis, and sex (female) would significantly predict proximal tibia anterior shear force (p < 0.0001, R2 = 0.8609). Knee flexion moment had the greatest influence on proximal tibia anterior shear force. The mathematical relationships elucidated in the current study support previous clinical and basic science research examining noncontact ACL injuries. This data provides important evidence for clinicians who are examining the risk factors for these injuries and developing/validating training programs to reduce the incidence of injury. Copyright 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Inhibiting social support from massage-like stroking increases morphine dependence.

    PubMed

    Bates, M L Shawn; Emery, Michael A; Wellman, Paul J; Eitan, Shoshana

    2017-12-01

    Our previous studies showed that altering solely the drug experience of the cage mates with which rodents are housed affects the development of morphine dependence. In this study, we used designer receptors exclusively activated by designer drugs to artificially increase or decrease the activity of peripheral dorsal root ganglia sensory neurons expressing the G-protein-coupled receptor MRGPRB4. This is because sensory MRGPRB4-expressing neurons were shown to specifically detect the sensation of massage-like stroking resulting from social grooming, which is an important affiliative social behavior in the rodent. Blocking the sensation of social grooming in morphine-treated mice housed with drug-naive mice (i.e. morphine cage mates) significantly increased the display of jumping behavior in morphine-withdrawn animals. Activating the sensation of social grooming in morphine-treated animals housed solely with other morphine-treated animals (i.e. morphine only) did not significantly alter the display of jumping behavior in morphine-withdrawn animals. Repetitive jumping behaviors have been shown to correlate with morphine dependence. Thus, this study showed a role of social grooming in the protective effect of being housed with drug-naive mice on the development of morphine dependence. It further confirms a role of social support in the development of substance use problems.

  20. Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls.

    PubMed

    Khain, Evgeniy; Meerson, Baruch; Sasorov, Pavel V

    2008-10-01

    Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical prefactor O(1) , this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical prefactor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.

  1. Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling

    PubMed Central

    2016-01-01

    Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges. PMID:27626630

  2. Repeated Sprint Ability in Young Basketball Players: Multi-direction vs. One-Change of Direction (Part 1)

    PubMed Central

    Padulo, Johnny; Bragazzi, Nicola L.; Nikolaidis, Pantelis T.; Dello Iacono, Antonio; Attene, Giuseppe; Pizzolato, Fabio; Dal Pupo, Juliano; Zagatto, Alessandro M.; Oggianu, Marcello; Migliaccio, Gian M.

    2016-01-01

    The aim of the present study was to examine the reliability of a novel multi-direction repeated sprint ability (RSA) test [RSM; 10 × (6 × 5-m)] compared with a RSA with one change of direction [10 × (2 × 15-m)], and the relationship of the RSM and RSA with Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1) and jump performances [squat jump (SJ) and counter-movement-jump (CMJ)]. Thirty-six (male, n = 14, female n = 22) young basketball players (age 16.0 ± 0.9 yrs) performed the RSM, RSA, Yo-Yo IR1, SJ, and CMJ, and were re-tested only for RSM and RSA after 1 week. The absolute error of reliability (standard error of the measurement) was lower than 0.212 and 0.617-s for the time variables of the RSA and RSM test, respectively. Performance in the RSA and RSM test significantly correlated with CMJ and SJ. The best time, worst time, and total time of the RSA and RSM test were negatively correlated with Yo-Yo IR1 distance. Based on these findings, consistent with previously published studies, it was concluded that the novel RSM test was valid and reliable. PMID:27148072

  3. More than a safety line: jump-stabilizing silk of salticids.

    PubMed

    Chen, Yung-Kang; Liao, Chen-Pan; Tsai, Feng-Yueh; Chi, Kai-Jung

    2013-10-06

    Salticids are diurnal hunters known for acute vision, remarkable predatory strategies and jumping ability. Like other jumpers, they strive for stability and smooth landings. Instead of using inertia from swinging appendages or aerodynamic forces by flapping wings as in other organisms, we show that salticids use a different mechanism for in-air stability by using dragline silk, which was previously believed to function solely as a safety line. Analyses from high-speed images of jumps by the salticid Hasarius adansoni demonstrate that despite being subject to rearward pitch at take-off, spiders with dragline silk can change body orientation in the air. Instantaneous drag and silk forces calculated from kinematic data further suggest a comparable contribution to deceleration and energy dissipation, and reveal that adjustments by the spider to the silk force can reverse its body pitch for a predictable and optimal landing. Without silk, upright-landing spiders would slip or even tumble, deferring completion of landing. Thus, for salticids, dragline silk is critical for dynamic stability and prey-capture efficiency. The dynamic functioning of dragline silk revealed in this study can advance the understanding of silk's physiological control over material properties and its significance to spider ecology and evolution, and also provide inspiration for future manoeuvrable robot designs.

  4. Postactivation Potentiation Following Acute Bouts of Plyometric versus Heavy-Resistance Exercise in Collegiate Soccer Players.

    PubMed

    Sharma, Sourabh Kumar; Raza, Shahid; Moiz, Jamal Ali; Verma, Shalini; Naqvi, Irshad Husain; Anwer, Shahnawaz; Alghadir, Ahmad H

    2018-01-01

    Postactivation potentiation is referred to as an acute and temporary enhancement of muscle performance resulting from previous muscle contraction. The purpose of this study was to compare the acute effect of plyometric exercise (PLY) and heavy-resistance exercise (RES) on the blood lactate level (BLa) and physical performance. Fourteen male collegiate soccer players were randomized to perform either RES or PLY first and then crossed over to perform the opposite intervention. PLY consisted of 40 jumps, whereas RES comprised ten single repetitions at 90% of one repetition maximum. BLa and physical performance (countermovement jump height and 20-m sprint) were measured before and at 1 and 10 min following the exercise. No significant difference was observed in the BLa for both exercises (PLY and RES). Relative to baseline, countermovement jump (CMJ) height was significantly better for the PLY group after 1 min ( P = 0.004) and after 10 min ( P = 0.001) compared to that of the RES group. The 20-m sprint time was significantly better for PLY at 10 min ( P = 0.003) compared to that of RES. The present study concluded that, compared to RES, PLY causes greater potentiation, which leads to improved physical performance. This trial is registered with NCT03150277.

  5. More than a safety line: jump-stabilizing silk of salticids

    PubMed Central

    Chen, Yung-Kang; Liao, Chen-Pan; Tsai, Feng-Yueh; Chi, Kai-Jung

    2013-01-01

    Salticids are diurnal hunters known for acute vision, remarkable predatory strategies and jumping ability. Like other jumpers, they strive for stability and smooth landings. Instead of using inertia from swinging appendages or aerodynamic forces by flapping wings as in other organisms, we show that salticids use a different mechanism for in-air stability by using dragline silk, which was previously believed to function solely as a safety line. Analyses from high-speed images of jumps by the salticid Hasarius adansoni demonstrate that despite being subject to rearward pitch at take-off, spiders with dragline silk can change body orientation in the air. Instantaneous drag and silk forces calculated from kinematic data further suggest a comparable contribution to deceleration and energy dissipation, and reveal that adjustments by the spider to the silk force can reverse its body pitch for a predictable and optimal landing. Without silk, upright-landing spiders would slip or even tumble, deferring completion of landing. Thus, for salticids, dragline silk is critical for dynamic stability and prey-capture efficiency. The dynamic functioning of dragline silk revealed in this study can advance the understanding of silk's physiological control over material properties and its significance to spider ecology and evolution, and also provide inspiration for future manoeuvrable robot designs. PMID:23925983

  6. Promoting balance and jumping skills in children with Down syndrome.

    PubMed

    Wang, Wai-Yi; Ju, Yun-Huei

    2002-04-01

    The purpose of this study was to investigate the changes in balance and qualitative and quantitative jumping performances by 20 children with Down syndrome (3 to 6 years) on jumping lessons. 30 typical children ages 3 to 6 years were recruited as a comparison group. Before the jumping lesson, a pretest was given subjects for balance and jumping skill measures based on the Motor Proficiency and Motor Skill Inventory, respectively. Subjects with Down syndrome received 3 sessions on jumping per week for 6 weeks but not the typical children. Then, a posttest was administered to all subjects. Analysis of covariance showed the pre- and posttest differences on scores for floor walk, beam walk, and horizontal and vertical jumping by subjects with Down syndrome were significantly greater than those for the typical children.

  7. Neuromuscular adaptations to 4 weeks of intensive drop jump training in well-trained athletes

    PubMed Central

    Alkjaer, Tine; Meyland, Jacob; Raffalt, Peter C; Lundbye-Jensen, Jesper; Simonsen, Erik B

    2013-01-01

    This study examined the effects of 4 weeks of intensive drop jump training in well-trained athletes on jumping performance and underlying changes in biomechanics and neuromuscular adaptations. Nine well-trained athletes at high national competition level within sprinting and jumping disciplines participated in the study. The training was supervised and augmented feedback on performance was used to ensure maximal training intensity. The drop jumps were performed with minimal contact time and maximal jumping height. Assessment of performance during training showed effects of motor learning. Before and after the training intervention maximal isometric muscle strength, the biomechanics, muscle activity pattern of the lower extremities and the soleus H-reflex and V-wave during drop jumping were measured. Maximal jump height and performance index (PI) defined as jumping height divided by contact time improved significantly by 11.9% (P = 0.024) and 16.2% (P = 0.009), respectively. Combined ankle and knee joint peak power was significantly increased by 7% after training (P = 0.047). The preactivity in the soleus muscle decreased 16% (P = 0.015). The soleus H-reflex was unchanged after training, while the soleus V-wave increased significantly at 45 msec after touchdown. This may indicate an increased drive to the α-motor neuron pool following training. Muscle strength parameters were unaffected by the training. The results demonstrate that 4 weeks of intensive drop jump training can improve jumping performance also in well-trained athletes without concomitant changes in muscle strength. It is suggested that the behavioral improvement is primarily due to neural factors regulating the activation pattern controlling the drop jump movement. PMID:24303171

  8. Effects of a Low-Load Gluteal Warm-Up on Explosive Jump Performance

    PubMed Central

    Comyns, Thomas; Kenny, Ian; Scales, Gerard

    2015-01-01

    The purpose of this study was to investigate the effects of a low-load gluteal warm-up protocol on countermovement and squat jump performance. Research by Crow et al. (2012) found that a low-load gluteal warm-up could be effective in enhancing peak power output during a countermovement jump. Eleven subjects performed countermovement and squat jumps before and after the gluteal warm-up protocol. Both jumps were examined in separate testing sessions and performed 30 seconds, and 2, 4, 6 & 8 minutes post warm-up. Height jumped and peak ground reaction force were the dependent variables examined in both jumps, with 6 additional variables related to fast force production being examined in the squat jump only. All jumps were performed on a force platform (AMTI OR6-5). Repeated measures analysis of variance found a number of significant differences (p ≤ 0.05) between baseline and post warm-up scores. Height jumped decreased significantly in both jumps at all rest intervals excluding 8 minutes. Improvement was seen in 7 of the 8 recorded SJ variables at the 8 minute interval. Five of these improvements were deemed statistically significant, namely time to peak GRF (43.0%), and time to the maximum rate of force development (65.7%) significantly decreased, while starting strength (63.4%), change of force in first 100 ms of contraction (49.1%) and speed strength (43.6%) significantly increased. The results indicate that a gluteal warm-up can enhance force production in squat jumps performed after 8 minutes recovery. Future research in this area should include additional warm-up intervention groups for comparative reasons. PMID:26240661

  9. Immediate effects of different types of stretching exercises on badminton jump smash.

    PubMed

    Jang, Hwi S; Kim, Daeho; Park, Jihong

    2018-01-01

    Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop point of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F(2,75)=1.19, P=0.31; static stretching: 22.1%, P<0.01, ES=0.98; dynamic stretching: 30.1%, P<0.01, ES=1.49; resistance dynamic stretching: 17.7%, P=0.03, ES=0.98) and velocities of jump-smashed shuttlecocks (type main effect: F(2,75)=2.18, P=0.12; static stretching: 5.7%, P=0.61, ES=0.39; dynamic stretching: 3.4%, P=0.94, ES=0.28; resistance dynamic stretching: 6%, P=0.50, ES=0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F(2,75)=0.88, P=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.

  10. Bilateral asymmetries in max effort single-leg vertical jumps.

    PubMed

    Stephens, Thomas M; Lawson, Brooke R; Reiser, Raoul F

    2005-01-01

    While asymmetries in the lower extremity during jumping may have implications during rehabilitation, it is not clear if healthy subjects should be expected to jump equivalently on each leg. Therefore, the goal of this study was to determine if asymmetries exist in maximal effort single-leg vertical jumps. After obtaining university-approved informed consent, 13 men and 12 women with competitive volleyball playing experience and no injuries of the lower-extremity that would predispose them to asymmetries participated. After thorough warm-up, five maximal effort vertical jumps with countermovement were performed on each leg (random order) with ground reaction forces and lower extremity kinematics recorded. The best three jumps from each leg were analyzed, assigning the leg with the highest jump height average as the dominant side. Asymmetry was assessed by determining statistical significance in the dominant versus non-dominant sides (p < 0.05). A significant interaction existed between side and gender for thigh length and peak vertical ground reaction force. Women had a significantly shorter thigh and men a greater peak vertical ground reaction force on their dominant side. All other parameters were assessed as whole group. Jumps were significantly greater off the dominant leg (2.8 cm on average). No other differences between sides were observed. Significant differences in magnitude (p < 0.05) existed between the men and women in jump height, several anthropometric parameters, minimum ankle and hip angles, and vertical ground reaction forces (peak and average). In conclusion, though a person may jump slightly higher on one leg relative to the other, and women may jump slightly differently than men, the magnitude of the difference should be relatively small and due to the multi-factorial nature of jump performance, individual parameters related to performance may not be consistently different.

  11. The type of mat (Contact vs. Photocell) affects vertical jump height estimated from flight time.

    PubMed

    García-López, Juan; Morante, Juan C; Ogueta-Alday, Ana; Rodríguez-Marroyo, Jose A

    2013-04-01

    The purposes of this study were to analyze the validity and reliability of 2 photocell mats and to probe the possible influence of the type of mat (contact vs. photocell) on vertical jump height estimated from flight time. In 2 separate studies, 89 and 92 physical students performed 3 countermovement jumps that were simultaneously registered by a Force Plate (gold standard method), 2 photocell mats (SportJump System Pro and ErgoJump Plus), and a contact mat (SportJump-v1.0). The first study showed that the 2 photocell mats underestimated the vertical jump height (1.3 ± 0.2 cm and 5.9 ± 5.2 cm, respectively), but only SportJump System Pro showed a high correlation with the Force Plate (r = 0.999 and 0.676, respectively) and good intraday reliability (coefficient of variation = 2.98 and 15.94%, intraclass correlation coefficients = 0.95-0.97 and 0.45-0.57, respectively). The second study demonstrated a strong correlation (r = 0.994) between the 2 technologies (contact vs. photocell mats) with differences in vertical jump height of 2.0 ± 0.8 cm (95% confidence interval = 1.9-2.1 cm), which depended on both flight time and subjects' body mass. In conclusion, SportJump System Pro was a valid and reliable device. The new devices to measure vertical jump height from flight time should be validated. The type of mat (contact vs. photocell) affected approximately 6% the vertical jump height (approximately 2 cm in this study), which should be considered in further studies. The use of validated photocell mats instead of the contact mats was recommended.

  12. Ballistic stretching increases flexibility and acute vertical jump height when combined with basketball activity.

    PubMed

    Woolstenhulme, Mandy T; Griffiths, Christine M; Woolstenhulme, Emily M; Parcell, Allen C

    2006-11-01

    Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p < 0.0001), while vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p < 0.05). Coaches should consider using ballistic stretching as a warm-up for basketball play, as it is beneficial to vertical jump performance.

  13. Jumping and Landing Techniques in Elite Women’s Volleyball

    PubMed Central

    Tillman, Mark D.; Hass, Chris J.; Brunt, Denis; Bennett, Gregg R.

    2004-01-01

    Volleyball has become one of the most widely played participant sports in the world. Participation requires expertise in many physical skills and performance is often dependent on an individual’s ability to jump and land. The incidence of injury in volleyball is similar to the rates reported for sports that are considered more physical contact sports. Though the most common source of injury in volleyball is the jump landing sequence, little research exists regarding the prevalence of jumping and landing techniques. The purpose of this study was to quantify the number of jumps performed by female volleyball players in competitive matches and to determine the relative frequency of different jump-landing techniques. Videotape recordings of two matches among four volleyball teams were analyzed for this study. Each activity was categorized by jump type (offensive spike or defensive block) and phase (jump or landing). Phase was subcategorized by foot use patterns (right, left, or both). Each of the players averaged nearly 22 jump-landings per game. Foot use patterns occurred in unequal amounts (p < 0.001) with over 50% of defensive landings occurring on one foot. Coaches, physical educators, and recreation providers may utilize the findings of this inquiry to help prevent injuries in volleyball. Key Points The incidence of injury in volleyball is nearly equivalent to injury rates reported for ice hockey and soccer. Most injuries in volleyball occur during the jump landing sequence, but few data exist regarding jump landing techniques for elite female players. Our data indicate that the vast majority of jumps utilize two feet, but approximately half of landings occur with only one foot. Coaches, physical educators, and recreation providers may utilize the findings of this inquiry to prevent possible injuries in athletes, students, or those who participate in volleyball for recreational purposes. PMID:24497818

  14. JMR Noise Diode Stability and Recalibration Methodology after Three Years On-Orbit

    NASA Technical Reports Server (NTRS)

    Brown, Shannon; Desai, Shailen; Keihm, Stephen; Ruf, Christopher

    2006-01-01

    The Jason Microwave Radiometer (JMR) is included on the Jason-1 ocean altimeter satellite to measure the wet tropospheric path delay (PD) experienced by the radar altimeter signal. JMR is nadir pointing and measures the radiometric brightness temperature (T(sub B)) at 18.7, 23.8 and 34.0 GHz. JMR is a Dicke radiometer and it is the first radiometer to be flown in space that uses noise diodes for calibration. Therefore, monitoring the long term stability of the noise diodes is essential. Each channel has three redundant noise diodes which are individually coupled into the antenna signal to provide an estimate of the gain. Two significant jumps in the JMR path delays, relative to ground truth, were observed around 300 and 700 days into the mission. Slow drifts in the retrieved products were also evident over the entire mission. During a recalibration effort, it was determined that a single set of calibration coefficients was not able to remove the calibration jumps and drifts, suggesting that there was a change in the hardware and time dependent coefficients would be required. To facilitate the derivation of time dependent coefficients, an optimal estimation based calibration system was developed which iteratively determines that set of calibration coefficients which minimize the RMS difference between the JMR TBs and on-Earth hot and cold absolute references. This optimal calibration algorithm was used to fine tune the front end path loss coefficients and derive a time series of the JMR noise diode brightness temperatures for each of the nine diodes. Jumps and drifts, on the order of 1% to 2%, are observed among the noise diodes in the first three years on-orbit.

  15. Biomotor structures in elite female handball players.

    PubMed

    Katić, Ratko; Cavala, Marijana; Srhoj, Vatromir

    2007-09-01

    In order to identify biomotor structures in elite female handball players, factor structures of morphological characteristics and basic motor abilities of elite female handball players (N = 53) were determined first, followed by determination of relations between the morphological-motor space factors obtained and the set of criterion variables evaluating situation motor abilities in handball. Factor analysis of 14 morphological measures produced three morphological factors, i.e. factor of absolute voluminosity (mesoendomorph), factor of longitudinal skeleton dimensionality, and factor of transverse hand dimensionality. Factor analysis of 15 motor variables yielded five basic motor dimensions, i.e. factor of agility, factor of jumping explosive strength, factor of throwing explosive strength, factor of movement frequency rate, and factor of running explosive strength (sprint). Four significant canonic correlations, i.e. linear combinations, explained the correlation between the set of eight latent variables of the morphological and basic motor space and five variables of situation motoricity. First canonic linear combination is based on the positive effect of the factors of agility/coordination on the ability of fast movement without ball. Second linear combination is based on the effect of jumping explosive strength and transverse hand dimensionality on ball manipulation, throw precision, and speed of movement with ball. Third linear combination is based on the running explosive strength determination by the speed of movement with ball, whereas fourth combination is determined by throwing and jumping explosive strength, and agility on ball pass. The results obtained were consistent with the model of selection in female handball proposed (Srhoj et al., 2006), showing the speed of movement without ball and the ability of ball manipulation to be the predominant specific abilities, as indicated by the first and second linear combination.

  16. Non-invasive Assessments of Subjective and Objective Recovery Characteristics Following an Exhaustive Jump Protocol

    PubMed Central

    Hohenauer, Erich; Clarys, Peter; Baeyens, Jean-Pierre; Clijsen, Ron

    2017-01-01

    Fast recovery after strenuous exercise is important in sports and is often studied via cryotherapy applications. Cryotherapy has a significant vasoconstrictive effect, which seems to be the leading factor in its effectiveness. The resulting enhanced recovery can be measured by using both objective and subjective parameters. Two commonly measured subjective characteristics of recovery are delayed-onset muscle soreness (DOMS) and ratings of perceived exertion (RPE). Two important objective recovery characteristics are countermovement jump (CMJ) performance and peak power output (PPO). Here, we provide a detailed protocol to induce muscular exhaustion of the frontal thighs with a self-paced, 3 x 30 countermovement jump protocol (30-s rest between each set). This randomized controlled trial protocol explains how to perform local cryotherapy cuff application (+ 8 °C for 20 min) and thermoneutral cuff application (+ 32 °C for 20 min) on both thighs as two possible post-exercise recovery modalities. Finally, we provide a non-invasive protocol to measure the effects of these two recovery modalities on subjective (i.e., DOMS of both frontal thighs and RPE) and objective recovery (i.e., CMJ and PPO) characteristics 24, 48, and 72 h post-application. The advantage of this method is that it provides a tool for researchers or coaches to induce muscular exhaustion, without using any expensive devices; to implement local cooling strategies; and to measure both subjective and objective recovery, without using invasive methods. Limitations of this protocol are that the 30 s rest period between sets is very short, and the cardiovascular demand is very high. Future studies may find the assessment of maximum voluntary contractions to be a more sensitive assessment of muscular exhaustion compared to CMJs. PMID:28654037

  17. Improvement of Repeated-Sprint Ability and Horizontal-Jumping Performance in Elite Young Basketball Players With Low-Volume Repeated-Maximal-Power Training.

    PubMed

    Gonzalo-Skok, Oliver; Tous-Fajardo, Julio; Arjol-Serrano, José Luis; Suarez-Arrones, Luis; Casajús, José Antonio; Mendez-Villanueva, Alberto

    2016-05-01

    To examine the effects of a low-volume repeated-power-ability (RPA) training program on repeated-sprint and change-of- direction (COD) ability and functional jumping performance. Twenty-two male elite young basketball players (age 16.2 ± 1.2 y, height 190.0 ± 10.0 cm, body mass 82.9 ± 10.1 kg) were randomly assigned either to an RPA-training group (n = 11) or a control group (n = 11). RPA training consisted of leg-press exercise, twice a week for 6 wk, of 1 or 2 blocks of 5 sets × 5 repetitions with 20 s of passive recovery between sets and 3 min between blocks with the load that maximized power output. Before and after training, performance was assessed by a repeated-sprint-ability (RSA) test, a repeated-COD-ability test, a hop for distance, and a drop jump followed by tests of a double unilateral hop with the right and left legs. Within-group and between-groups differences showed substantial improvements in slowest (RSAs) and mean time (RSAm) on RSA; best, slowest and mean time on repeated-COD ability; and unilateral right and left hop in the RPA group in comparison with control. While best time on RSA showed no improvement in any group, there was a large relationship (r = .68, 90% CI .43;.84) between the relative decrement in RSAm and RSAs, suggesting better sprint maintenance with RPA training. The relative improvements in best and mean repeated-COD ability were very largely correlated (r = .89, 90% CI .77;.94). Six weeks of lowvolume (4-14 min/wk) RPA training improved several physical-fitness tests in basketball players.

  18. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014

    PubMed Central

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-01-01

    Simple Summary This paper documents the dynamics of Australian thoroughbred jump racing in the 2012, 2013, and 2014 seasons with the aim of informing debate about risks to horses and the future of this activity. We conclude that the safety of Australian jump racing has improved in recent years but that steeplechases are considerably riskier for horses than hurdle races. Abstract Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these data in light of public controversy, political debate, and industry regulation related to jump horse safety. PMID:26506396

  19. Predicting vertical jump height from bar velocity.

    PubMed

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  20. Traditional vs. Sport-Specific Vertical Jump Tests: Reliability, Validity, and Relationship With the Legs Strength and Sprint Performance in Adult and Teen Soccer and Basketball Players.

    PubMed

    Rodríguez-Rosell, David; Mora-Custodio, Ricardo; Franco-Márquez, Felipe; Yáñez-García, Juan M; González-Badillo, Juan J

    2017-01-01

    Rodríguez-Rosell, D, Mora-Custodio, R, Franco-Márquez, F, Yáñez-García, JM, González-Badillo, JJ. Traditional vs. sport-specific vertical jump tests: reliability, validity, and relationship with the legs strength and sprint performance in adult and teen soccer and basketball players. J Strength Cond Res 31(1): 196-206, 2017-The vertical jump is considered an essential motor skill in many team sports. Many protocols have been used to assess vertical jump ability. However, controversy regarding test selection still exists based on the reliability and specificity of the tests. The main aim of this study was to analyze the reliability and validity of 2 standardized (countermovement jump [CMJ] and Abalakov jump [AJ]) and 2 sport-specific (run-up with 2 [2-LEGS] or 1 leg [1-LEG] take-off jump) vertical jump tests, and their usefulness as predictors of sprint and strength performance for soccer (n = 127) and basketball (n = 59) players in 3 different categories (Under-15, Under-18, and Adults). Three attempts for each of the 4 jump tests were recorded. Twenty-meter sprint time and estimated 1 repetition maximum in full squat were also evaluated. All jump tests showed high intraclass correlation coefficients (0.969-0.995) and low coefficients of variation (1.54-4.82%), although 1-LEG was the jump test with the lowest absolute and relative reliability. All selected jump tests were significantly correlated (r = 0.580-0.983). Factor analysis resulted in the extraction of one principal component, which explained 82.90-95.79% of the variance of all jump tests. The 1-LEG test showed the lowest associations with sprint and strength performance. The results of this study suggest that CMJ and AJ are the most reliable tests for the estimation of explosive force in soccer and basketball players in different age categories.

  1. Predicting Vertical Jump Height from Bar Velocity

    PubMed Central

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-01-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s-2). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r2 = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r2 = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key points Vertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer. The relationship between the point at which bar acceleration is less than -9.81 m·s-2 and the real take-off is affected by the velocity of movement. Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance. PMID:25983572

  2. Does plyometric training improve vertical jump height? A meta-analytical review.

    PubMed

    Markovic, Goran

    2007-06-01

    The aim of this study was to determine the precise effect of plyometric training (PT) on vertical jump height in healthy individuals. Meta-analyses of randomised and non-randomised controlled trials that evaluated the effect of PT on four typical vertical jump height tests were carried out: squat jump (SJ); countermovement jump (CMJ); countermovement jump with the arm swing (CMJA); and drop jump (DJ). Studies were identified by computerised and manual searches of the literature. Data on changes in jump height for the plyometric and control groups were extracted and statistically pooled in a meta-analysis, separately for each type of jump. A total of 26 studies yielding 13 data points for SJ, 19 data points for CMJ, 14 data points for CMJA and 7 data points for DJ met the initial inclusion criteria. The pooled estimate of the effect of PT on vertical jump height was 4.7% (95% CI 1.8 to 7.6%), 8.7% (95% CI 7.0 to 10.4%), 7.5% (95% CI 4.2 to 10.8%) and 4.7% (95% CI 0.8 to 8.6%) for the SJ, CMJ, CMJA and DJ, respectively. When expressed in standardised units (ie, effect sizes), the effect of PT on vertical jump height was 0.44 (95% CI 0.15 to 0.72), 0.88 (95% CI 0.64 to 1.11), 0.74 (95% CI 0.47 to 1.02) and 0.62 (95% CI 0.18 to 1.05) for the SJ, CMJ, CMJA and DJ, respectively. PT provides a statistically significant and practically relevant improvement in vertical jump height with the mean effect ranging from 4.7% (SJ and DJ), over 7.5% (CMJA) to 8.7% (CMJ). These results justify the application of PT for the purpose of development of vertical jump performance in healthy individuals.

  3. Manifestations of Proprioception During Vertical Jumps to Specific Heights

    PubMed Central

    Struzik, Artur; Pietraszewski, Bogdan; Winiarski, Sławomir; Juras, Grzegorz; Rokita, Andrzej

    2017-01-01

    Abstract Artur, S, Bogdan, P, Kawczyński, A, Winiarski, S, Grzegorz, J, and Andrzej, R. Manifestations of proprioception during vertical jumps to specific heights. J Strength Cond Res 31(6): 1694–1701, 2017—Jumping and proprioception are important abilities in many sports. The efficiency of the proprioceptive system is indirectly related to jumps performed at specified heights. Therefore, this study recorded the ability of young athletes who play team sports to jump to a specific height compared with their maximum ability. A total of 154 male (age: 14.8 ± 0.9 years, body height: 181.8 ± 8.9 cm, body weight: 69.8 ± 11.8 kg, training experience: 3.8 ± 1.7 years) and 151 female (age: 14.1 ± 0.8 years, body height: 170.5 ± 6.5 cm, body weight: 60.3 ± 9.4 kg, training experience: 3.7 ± 1.4 years) team games players were recruited for this study. Each participant performed 2 countermovement jumps with arm swing to 25, 50, 75, and 100% of the maximum height. Measurements were performed using a force plate. Jump height and its accuracy with respect to a specified height were calculated. The results revealed no significant differences in jump height and its accuracy to the specified heights between the groups (stratified by age, sex, and sport). Individuals with a higher jumping accuracy also exhibited greater maximum jump heights. Jumps to 25% of the maximum height were approximately 2 times higher than the target height. The decreased jump accuracy to a specific height when attempting to jump to lower heights should be reduced with training, particularly among athletes who play team sports. These findings provide useful information regarding the proprioceptive system for team sport coaches and may shape guidelines for training routines by working with submaximal loads. PMID:28538322

  4. Movement Analysis Applied to the Basketball Jump Shot--Part II.

    ERIC Educational Resources Information Center

    Martin, Thomas P.

    1981-01-01

    The jump shot is one of the most important shots in the game of basketball. The movement analysis of the jump shot designates four phases: (1) preparatory position; (2) movement phase I (crouch); (3) movement phase II (jump); and (4) follow-through. (JN)

  5. A Survey of Bioinspired Jumping Robot: Takeoff, Air Posture Adjustment, and Landing Buffer

    PubMed Central

    2017-01-01

    A bioinspired jumping robot has a strong ability to overcome obstacles. It can be applied to the occasion with complex and changeable environment, such as detection of planet surface, postdisaster relief, and military reconnaissance. So the bioinspired jumping robot has broad application prospect. The jumping process of the robot can be divided into three stages: takeoff, air posture adjustment, and landing buffer. The motivation of this review is to investigate the research results of the most published bioinspired jumping robots for these three stages. Then, the movement performance of the bioinspired jumping robots is analyzed and compared quantitatively. Then, the limitation of the research on bioinspired jumping robots is discussed, such as the research on the mechanism of biological motion is not thorough enough, the research method about structural design, material applications, and control are still traditional, and energy utilization is low, which make the robots far from practical applications. Finally, the development trend is summarized. This review provides a reference for further research of bioinspired jumping robots. PMID:29311756

  6. Low peak jump power is associated with elevated odds of dysmobility syndrome in community-dwelling elderly individuals: the Korean Urban Rural Elderly (KURE) study.

    PubMed

    Hong, Namki; Kim, Chang Oh; Youm, Yoosik; Kim, Hyeon Chang; Rhee, Yumie

    2018-06-01

    In a community-dwelling elderly cohort (Korean Urban Rural Elderly), low peak jump power was associated with elevated odds of dysmobility syndrome and its components, independent of age and comorbidities. Jump power measurement improved discrimination of individuals with dysmobility syndrome when added to conventional risk factors. Dysmobility syndrome was proposed to encompass the risks affecting musculoskeletal outcomes. Jump power measurement is a safe, reproducible high-intensity test for physical function in elderly. However, the relationship between jump power and dysmobility syndrome remains unknown. A total of 1369 subjects (mean 71.6 years; women, 66%) were analyzed from a community-based cohort. Dysmobility syndrome was defined as the presence of ≥ 3 factors among falls in the preceding year, low lean mass, high fat mass, osteoporosis, low grip strength, and low timed get-up-and-go (TUG) performance. Subjects were grouped into tertiles of jump power relative to weight based on sex-stratified cutoffs (32.4 and 27.6 W/kg in men; 23.9 and 19.9 W/kg in women) or into the failed-to-jump group. The prevalence of dysmobility syndrome was 20% overall, increasing from the highest (T1) to lowest (T3) jump power tertile (1, 11, 15% in men; 11, 16, 39% in women) and the failed-to-jump group (39% in men; 48% in women). Low jump power or failed-to-jump was associated with elevated odds of dysmobility syndrome (T3 vs. T1, adjusted odds ratio [aOR] 4.35, p < 0.001; failed-to-jump vs. T1, aOR 7.60, p < 0.001) and its components including falls, low lean mass, high fat mass, and poor TUG performance but not osteoporosis after adjustment for covariates. Jump power modestly discriminated dysmobility syndrome (area under the curve [AUC], 0.71, p < 0.001), which improved discriminatory performance when added to conventional risk factors (AUC, from 0.75 to 0.79, p < 0.001). Low peak jump power was associated with elevated odds of dysmobility syndrome and its components, independent of age and comorbidities.

  7. Aeromechanics of the Spider Cricket Jump: How to Jump 60+ Times Your Body Length and Still Land on Your Feet

    NASA Astrophysics Data System (ADS)

    Palmer, Emily; Deshler, Nicolas; Gorman, David; Neves, Catarina; Mittal, Rajat

    2015-11-01

    Flapping, gliding, running, crawling and swimming have all been studied extensively in the past and have served as a source of inspiration for engineering designs. In the current project, we explore a mode of locomotion that straddles ground and air: jumping. The subject of our study is among the most proficient of long-jumpers in Nature: the spider cricket of the family Rhaphidophoridae, which can jump more than 60 times its body length. Despite jumping this immense distance, these crickets usually land on their feet, indicating an ability to control their posture during ``flight.'' We employ high-speed videogrammetry, to examine the jumps and to track the crickets' posture and appendage orientation throughout their jumps. Simple aerodynamic models are developed to predict the aerodynamic forces and moment on the crickets during `flight`. The analysis shows that these wingless insects employ carefully controlled and coordinated positioning of the limbs during flight so as to increase jump distance and to stabilize body posture during flight. The principles distilled from this study could serve as an inspiration for small jumping robots that can traverse complex terrains.

  8. Immediate Effects of Different Trunk Exercise Programs on Jump Performance.

    PubMed

    Imai, A; Kaneoka, K; Okubo, Y; Shiraki, H

    2016-03-01

    The aim of this study was to investigate the immediate effects of trunk stabilization exercise (SE) and conventional trunk exercise (CE) programs on jump performance. 13 adolescent male soccer players performed 2 kinds of jump testing before and immediate after 3 experimental conditions: SE, CE, and non-exercise (NE). The SE program consisted of the elbow-toe, hand-knee, and back bridge, and the CE program consisted of the sit-up, sit-up with trunk rotation and back extension. Testing of a countermovement jump (CMJ) and rebound jump (RJ) were performed to assess jump performance. Jump height of the CMJ and RJ-index, contact time, and jump height of the RJ were analyzed. The RJ index was improved significantly only after SE (p=0.017). However, contact time and jump height did not improve significantly in the SE condition. Moreover, no significant interaction or main effects of time or group were observed in the CMJ. Consequently, this study showed the different immediate effect on the RJ between the SE and CE, and suggested the possibility that the SE used in this study is useful as a warm-up program to improve the explosive movements. © Georg Thieme Verlag KG Stuttgart · New York.

  9. In vivo measurement of muscle output in intact Drosophila.

    PubMed

    Elliott, Christopher J H; Sparrow, John C

    2012-01-01

    We describe our methods for analysing muscle function in a whole intact small insect, taking advantage of a simple flexible optical beam to produce an inexpensive transducer with wide application. We review our previous data measuring the response to a single action potential driven muscle twitch to explore jumping behaviour in Drosophila melanogaster. In the fruitfly, where the sophisticated and powerful genetic toolbox is being widely employed to investigate neuromuscular function, we further demonstrate the use of the apparatus to analyse in detail, within whole flies, neuronal and muscle mutations affecting activation of muscle contraction in the jump muscle. We have now extended the use of the apparatus to record the muscle forces during larval and other aspects of adult locomotion. The robustness, simplicity and versatility of the apparatus are key to these measurements. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Effects of heavy episodic drinking on physical performance in club level rugby union players.

    PubMed

    Prentice, Christopher; Stannard, Stephen R; Barnes, Matthew J

    2015-05-01

    This study investigated the effects of acute alcohol consumption, in a natural setting, on exercise performance in the 2 days after the drinking episode. Additionally, alcohol related behaviours of this group of rugby players were identified. Prospective cohort study. Nineteen male club rugby players volunteered for this study. Measures of counter movement jump, maximal lower body strength, repeated sprint ability and hydration were made 2 days before and in the 2 days following heavy episodic alcohol consumption. Participants completed a questionnaire at each time point so that alcohol consumption and sleep hours from the previous 24 h period could be quantified. Additionally, participants completed the Alcohol Use Disorders Test (AUDIT) prior to completing baseline measures of performance. Reported alcohol consumption ranged from 6 to >20 standard drinks (mean category scale score=11-19 standard drinks). A significant decrease in sleep hours (p=0.01) was reported after the drinking episode with participants reporting 1-3 h for the night. A significant reduction (-1.8±1.5 cm) in counter movement jump (p<0.01) the morning after the drinking episode was observed; no other measures were altered at any time point compared to baseline (p>0.05). AUDIT scores for this group (18.2±4.3) indicate regular alcohol consumption at a hazardous level. Heavy episodic alcohol use, and associated reduced sleep hours, results in a reduction in lower body power output but not other measures of anaerobic performance the morning after a drinking session. Full recovery from this behaviour is achieved by 2 days post drinking episode. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Loaded and unloaded jump performance of top-level volleyball players from different age categories

    PubMed Central

    Kitamura, Katia; Pereira, Lucas Adriano; Kobal, Ronaldo; Cal Abad, Cesar Cavinato; Finotti, Ronaldo; Nakamura, Fábio Yuzo

    2017-01-01

    The aim of this study was to investigate the differences in loaded and unloaded jump performances between different age categories of top-level volleyball players from the same club. Forty-three volleyball players were divided into four age groups: under-17, under-19, under-21 and professional. Vertical jumping height for squat jump (SJ), countermovement jump (CMJ) and CMJ with arm swing (CMJa) and mean propulsive velocity (MPV) in the loaded jump squat exercise with 40% of the athlete’s body mass were compared among the different age categories, considering body mass as a covariate. SJ and CMJ jump height values were higher for professional and under-21 players than under-17 players (p<0.05). CMJa height was higher for under-21 players than under-19 and under-17 players (p<0.05). MPV in the loaded jump squat was higher for under-21 players than under-17 players (p<0.05). From a general perspective, these results suggest that aging per se is not capable of substantially improving loaded and unloaded vertical jump performances across different age categories of top-level volleyball players. Therefore, to increase the vertical jumping ability of these team sport athletes throughout their long-term development, coaches and strength and conditioning professionals are encouraged to implement consistent neuromuscular training strategies, in accordance with the specific needs and physiological characteristics of each age group. PMID:29158621

  12. Validation of the VERT wearable jump monitor device in elite youth volleyball players

    PubMed Central

    Borges, Thiago O.; Moreira, Alexandre; Bacchi, Renato; Finotti1, Ronaldo L.; Ramos, Mayara; Lopes, Charles R.

    2017-01-01

    This technical report aims to determine the validity and the accuracy of the VERT Wearable Jump Monitor. The participants of this study were all experienced volleyball players from the U18 category from the Brazilian National team. To assess jump performance, the VERT scores were compared to the VERTEC (jump and reach device). Each athlete performed 3 attack and 3 block jumps in a random, counterbalanced order, and the average score was registered. In the attack jumps, the VERTEC and VERT mean ± SD scores were 70.9±8.2 and 76.3±7.5 cm, respectively, and the typical error of the estimate (TEE) as a coefficient of variation (CV) was 7.8% (90% CL 7.0 to 8.9%). VERTEC and VERT devices presented a very large Pearson’s correlation for attack jumps (r=0.75; 90% CL 0.68 to 0.81). In addition, the mean±SD block jumps were 53.7±6.1 and 58.5±5.7 cm for the VERTEC and VERT, respectively and the TEE as a CV was 7.9% (90% CL 7.1 to 8.9%). Pearson’s correlation coefficient was very large for block jumps (r=0.75; 90% CL 0.67 to 0.81). The VERT device was found to be a very practical tool to quantify jump performance in volleyball players. PMID:29158616

  13. Validity of a Jump Mat for assessing Countermovement Jump Performance in Elite Rugby Players.

    PubMed

    Dobbin, Nick; Hunwicks, Richard; Highton, Jamie; Twist, Craig

    2017-02-01

    This study determined the validity of the Just Jump System ® (JJS) for measuring flight time, jump height and peak power output (PPO) in elite rugby league players. 37 elite rugby league players performed 6 countermovement jumps (CMJ; 3 with and 3 without arms) on a jump mat and force platform. A sub-sample (n=28) was used to cross-validate the equations for flight time, jump height and PPO. The JJS systematically overestimated flight time and jump height compared to the force platform (P<0.05), but demonstrated strong associations for flight time ( with R 2 =0.938; without R 2 =0.972) and jump height ( with R 2 =0.945; without R 2 =0.987). Our equations revealed no systematic difference between corrected and force platform scores and an improved the agreement for flight time (Ratio limits of agreement: with 1.00 vs. 1.36; without 1.00 vs. 1.16) and jump height ( with 1.01 vs. 1.34; without 1.01 vs. 1.15), meaning that our equations can be used to correct JJS scores for elite rugby players. While our equation improved the estimation of PPO ( with 1.02; without 1.01) compared to existing equations (Harman: 1.20; Sayers: 1.04), this only accounted for 64 and 69% of PPO. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Loaded and unloaded jump performance of top-level volleyball players from different age categories.

    PubMed

    Kitamura, Katia; Pereira, Lucas Adriano; Kobal, Ronaldo; Cal Abad, Cesar Cavinato; Finotti, Ronaldo; Nakamura, Fábio Yuzo; Loturco, Irineu

    2017-09-01

    The aim of this study was to investigate the differences in loaded and unloaded jump performances between different age categories of top-level volleyball players from the same club. Forty-three volleyball players were divided into four age groups: under-17, under-19, under-21 and professional. Vertical jumping height for squat jump (SJ), countermovement jump (CMJ) and CMJ with arm swing (CMJa) and mean propulsive velocity (MPV) in the loaded jump squat exercise with 40% of the athlete's body mass were compared among the different age categories, considering body mass as a covariate. SJ and CMJ jump height values were higher for professional and under-21 players than under-17 players (p<0.05). CMJa height was higher for under-21 players than under-19 and under-17 players (p<0.05). MPV in the loaded jump squat was higher for under-21 players than under-17 players (p<0.05). From a general perspective, these results suggest that aging per se is not capable of substantially improving loaded and unloaded vertical jump performances across different age categories of top-level volleyball players. Therefore, to increase the vertical jumping ability of these team sport athletes throughout their long-term development, coaches and strength and conditioning professionals are encouraged to implement consistent neuromuscular training strategies, in accordance with the specific needs and physiological characteristics of each age group.

  15. Characteristics of Air Entrainment in Hydraulic Jump

    NASA Astrophysics Data System (ADS)

    Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.

    2018-04-01

    The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.

  16. Nearly reversible conformational change of amyloid fibrils as revealed by pH-jump experiments.

    PubMed

    Yamaguchi, Kei-ichi; Kamatari, Yuji O; Fukuoka, Mayuko; Miyaji, Reiji; Kuwata, Kazuo

    2013-10-01

    pH-jump induced conformational transitions between substates of preformed amyloid fibrils made by a fragmented peptide of helix 2 (H2 peptide) of MoPrP were detected, and their kinetics were analyzed using a novel pH-jump apparatus specially designed for observing amyloids. Previously, we reported that H2 peptide formed ordered fibrils with a minimum at 207 nm on CD spectra at pH 2.9 (named pH 2.9 fibrils), but formed aggregate-like fibrils with a minimum at 220 nm at pH 7.5 (named pH 7.5 fibrils). When pH-jump from 2.9 to 7.5 was performed, the CD spectrum changed instantly, but the finally observed ellipticities were clearly distinct from those of pH 7.5 fibrils. Thus, the finally observed state is termed 'pH 7.5-like fibrils'. However, pH 7.5-like fibrils reverted to the conformation very similar to that of the pH 2.9 fibrils when the pH of the solution was restored to 2.9. Then, we examined the kinetics of the nearly reversible conformational changes between pH 2.9 fibrils and pH 7.5-like fibrils using ANS fluorescence stopped-flow, and we observed relatively fast phases (0.7-18 s(-1)). In contrast, the conversion between pH 7.5-like fibrils and pH 7.5 fibrils never occurred (<0.2 day(-1)). Thus, H2 fibrils can be switched readily between distinct conformations separated by a low energy barrier, while a large energy barrier clearly separated the different conformations. These conformational varieties of amyloid fibrils may explain the physical basis of the diversity in prion.

  17. Pre-Steady-State Kinetics of Ba-Ca Exchange Reveals a Second Electrogenic Step Involved in Ca2+ Translocation by the Na-Ca Exchanger

    PubMed Central

    Haase, Andreas; Hartung, Klaus

    2009-01-01

    Kinetic properties of the Na-Ca exchanger (guinea pig NCX1) expressed in Xenopus oocytes were investigated with excised membrane patches in the inside-out configuration and photolytic Ca2+ concentration jumps with either 5 mM extracellular Sr2+ or Ba2+. After a Ca2+ concentration jump on the cytoplasmic side, the exchanger performed Sr-Ca or Ba-Ca exchange. In the Sr-Ca mode, currents are transient and decay in a monoexponential manner similar to that of currents in the Ca-Ca exchange mode described before. Currents recorded in the Ba-Ca mode are also transient, but the decay is biphasic. In the Sr-Ca mode the amount of charge translocated increases at negative potentials in agreement with experiments performed in the Ca-Ca mode. In the Ba-Ca mode the total amount of charge translocated after a Ca2+ concentration jump is ∼4 to 5 times that in Ca-Ca or Sr-Ca mode. In the Ba-Ca mode the voltage dependence of charge translocation depends on the Ca2+ concentration on the cytosolic side before the Ca2+ concentration jump. At low initial Ca2+ levels (∼0.5 μM), charge translocation is voltage independent. At a higher initial concentration (1 μM Ca2+), the amount of charge translocated increases at positive potentials. Biphasic relaxation of the current was also observed in the Ca-Ca mode if the external Ca2+ concentration was reduced to ≤0.5 mM. The results reported here and in previous publications can be described by using a 6-state model with two voltage-dependent conformational transitions. PMID:19486679

  18. Vortex shedding noise of a cylinder with hairy flaps

    NASA Astrophysics Data System (ADS)

    Kamps, Laura; Geyer, Thomas F.; Sarradj, Ennes; Brücker, Christoph

    2017-02-01

    This study describes the modification of acoustic noise emitted from cylinders in a stationary subsonic flow for a cylinder equipped with flexible hairy flaps at the aft part as a passive way to manipulate the flow and acoustics. The study was motivated by the results from previous water tunnel measurements, which demonstrated that hairy flaps can modify the shedding cycle behind the cylinder and can reduce the wake deficit. In the present study, wind tunnel experiments were conducted on such a modified cylinder and the results were compared to the reference case of a plain cylinder. The acoustic spectrum was measured using two microphones while simultaneously recording the flap motion. To further examine the flow structures in the downstream vicinity of the cylinder, constant temperature anemometry measurements as well as flow visualizations were also performed. The results show that, above a certain Reynolds number, the hairy flaps lead to a jump in the vortex shedding frequency. This phenomenon is similarly observed in the water flow experiments as a jump in the non-dimensional Strouhal number that is related to the change of the shedding cycle. This jump appears to be coupled to a resonant excitation of the flaps. The specific Reynolds number at which the jump occurs is higher in the present case, which is attributed to the lower added mass in air as compared with the one in water. The flow visualizations confirmed that such action of the flaps lead to a more slender elongated shape of the time-averaged separation bubble. In addition, the hairy flaps induce a noticeable reduction of the tonal noise as well as broadband noise as long as the flaps do not touch each other.

  19. Agreement Between Visual Assessment and 2-Dimensional Analysis During Jump Landing Among Healthy Female Athletes.

    PubMed

    Rabin, Alon; Einstein, Ofira; Kozol, Zvi

    2018-04-01

      Altered movement patterns, including increased frontal-plane knee movement and decreased sagittal-plane hip and knee movement, have been associated with several knee disorders. Nevertheless, the ability of clinicians to visually detect such altered movement patterns during high-speed athletic tasks is relatively unknown.   To explore the association between visual assessment and 2-dimensional (2D) analysis of frontal-plane knee movement and sagittal-plane hip and knee movement during a jump-landing task among healthy female athletes.   Cross-sectional study.   Gymnasiums of participating volleyball teams.   A total of 39 healthy female volleyball players (age = 21.0 ± 5.2 years, height = 172.0 ± 8.6 cm, mass = 64.2 ± 7.2 kg) from Divisions I and II of the Israeli Volleyball Association.   Frontal-plane knee movement and sagittal-plane hip and knee movement during jump landing were visually rated as good, moderate, or poor based on previously established criteria. Frontal-plane knee excursion and sagittal-plane hip and knee excursions were measured using free motion-analysis software and compared among athletes with different visual ratings of the corresponding movements.   Participants with different visual ratings of frontal-plane knee movement displayed differences in 2D frontal-plane knee excursion ( P < .01), whereas participants with different visual ratings of sagittal-plane hip and knee movement displayed differences in 2D sagittal-plane hip and knee excursions ( P < .01).   Visual ratings of frontal-plane knee movement and sagittal-plane hip and knee movement were associated with differences in the corresponding 2D hip and knee excursions. Visual rating of these movements may serve as an initial screening tool for detecting altered movement patterns during jump landings.

  20. Jumping without slipping: leafhoppers (Hemiptera: Cicadellidae) possess special tarsal structures for jumping from smooth surfaces.

    PubMed

    Clemente, Christofer J; Goetzke, Hanns Hagen; Bullock, James M R; Sutton, Gregory P; Burrows, Malcolm; Federle, Walter

    2017-05-01

    Many hemipteran bugs can jump explosively from plant substrates, which can be very smooth. We therefore analysed the jumping performance of froghoppers ( Philaenus spumarius, Aphrophoridae) and leafhoppers ( Aphrodes bicinctus/makarovi, Cicadellidae) taking off from smooth (glass) and rough (sandpaper, 30 µm asperity size) surfaces. On glass, the propulsive hind legs of Philaenus froghoppers slipped, resulting in uncontrolled jumps with a fast forward spin, a steeper angle and only a quarter of the velocity compared with jumps from rough surfaces. By contrast, Aphrodes leafhoppers took off without their propulsive hind legs slipping, and reached low take-off angles and high velocities on both substrates. This difference in jumping ability from smooth surfaces can be explained not only by the lower acceleration of the long-legged leafhoppers, but also by the presence of 2-9 soft pad-like structures (platellae) on their hind tarsi, which are absent in froghoppers. High-speed videos of jumping showed that platellae contact the surface briefly (approx. 3 ms) during the acceleration phase. Friction force measurements on individual hind tarsi on glass revealed that at low sliding speeds, both pushing and pulling forces were small, and insufficient to explain the recorded jumps. Only when the tarsi were pushed with higher velocities did the contact area of the platellae increase markedly, and high friction forces were produced, consistent with the observed jumps. Our findings show that leafhoppers have special adhesive footpads for jumping from smooth surfaces, which achieve firm grip and rapid control of attachment/detachment by combining anisotropic friction with velocity dependence. © 2017 The Authors.

  1. Test-retest reliability of jump execution variables using mechanography: a comparison of jump protocols.

    PubMed

    Fitzgerald, John S; Johnson, LuAnn; Tomkinson, Grant; Stein, Jesse; Roemmich, James N

    2018-05-01

    Mechanography during the vertical jump may enhance screening and determining mechanistic causes underlying physical performance changes. Utility of jump mechanography for evaluation is limited by scant test-retest reliability data on force-time variables. This study examined the test-retest reliability of eight jump execution variables assessed from mechanography. Thirty-two women (mean±SD: age 20.8 ± 1.3 yr) and 16 men (age 22.1 ± 1.9 yr) attended a familiarization session and two testing sessions, all one week apart. Participants performed two variations of the squat jump with squat depth self-selected and controlled using a goniometer to 80º knee flexion. Test-retest reliability was quantified as the systematic error (using effect size between jumps), random error (using coefficients of variation), and test-retest correlations (using intra-class correlation coefficients). Overall, jump execution variables demonstrated acceptable reliability, evidenced by small systematic errors (mean±95%CI: 0.2 ± 0.07), moderate random errors (mean±95%CI: 17.8 ± 3.7%), and very strong test-retest correlations (range: 0.73-0.97). Differences in random errors between controlled and self-selected protocols were negligible (mean±95%CI: 1.3 ± 2.3%). Jump execution variables demonstrated acceptable reliability, with no meaningful differences between the controlled and self-selected jump protocols. To simplify testing, a self-selected jump protocol can be used to assess force-time variables with negligible impact on measurement error.

  2. Jumping without slipping: leafhoppers (Hemiptera: Cicadellidae) possess special tarsal structures for jumping from smooth surfaces

    PubMed Central

    Bullock, James M. R.

    2017-01-01

    Many hemipteran bugs can jump explosively from plant substrates, which can be very smooth. We therefore analysed the jumping performance of froghoppers (Philaenus spumarius, Aphrophoridae) and leafhoppers (Aphrodes bicinctus/makarovi, Cicadellidae) taking off from smooth (glass) and rough (sandpaper, 30 µm asperity size) surfaces. On glass, the propulsive hind legs of Philaenus froghoppers slipped, resulting in uncontrolled jumps with a fast forward spin, a steeper angle and only a quarter of the velocity compared with jumps from rough surfaces. By contrast, Aphrodes leafhoppers took off without their propulsive hind legs slipping, and reached low take-off angles and high velocities on both substrates. This difference in jumping ability from smooth surfaces can be explained not only by the lower acceleration of the long-legged leafhoppers, but also by the presence of 2–9 soft pad-like structures (platellae) on their hind tarsi, which are absent in froghoppers. High-speed videos of jumping showed that platellae contact the surface briefly (approx. 3 ms) during the acceleration phase. Friction force measurements on individual hind tarsi on glass revealed that at low sliding speeds, both pushing and pulling forces were small, and insufficient to explain the recorded jumps. Only when the tarsi were pushed with higher velocities did the contact area of the platellae increase markedly, and high friction forces were produced, consistent with the observed jumps. Our findings show that leafhoppers have special adhesive footpads for jumping from smooth surfaces, which achieve firm grip and rapid control of attachment/detachment by combining anisotropic friction with velocity dependence. PMID:28468924

  3. Test-retest reliability of jump execution variables using mechanography: a comparison of jump protocols

    USDA-ARS?s Scientific Manuscript database

    Mechanography during the vertical jump may enhance screening and determining mechanistic causes for functional deficits that reduce physical performance. Utility of jump mechanography for evaluation is limited by scant test-retest reliability data on force-time variables. This study examined the tes...

  4. Increase in Jumping Height Associated with Maximal Effort Vertical Depth Jumps.

    ERIC Educational Resources Information Center

    Bedi, John F.; And Others

    1987-01-01

    In order to assess if there existed a statistically significant increase in jumping performance when dropping from different heights, 32 males, aged 19 to 26, performed a series of maximal effort vertical jumps after dropping from eight heights onto a force plate. Results are analyzed. (Author/MT)

  5. Overcoming numerical shockwave anomalies using energy balanced numerical schemes. Application to the Shallow Water Equations with discontinuous topography

    NASA Astrophysics Data System (ADS)

    Navas-Montilla, A.; Murillo, J.

    2017-07-01

    When designing a numerical scheme for the resolution of conservation laws, the selection of a particular source term discretization (STD) may seem irrelevant whenever it ensures convergence with mesh refinement, but it has a decisive impact on the solution. In the framework of the Shallow Water Equations (SWE), well-balanced STD based on quiescent equilibrium are unable to converge to physically based solutions, which can be constructed considering energy arguments. Energy based discretizations can be designed assuming dissipation or conservation, but in any case, the STD procedure required should not be merely based on ad hoc approximations. The STD proposed in this work is derived from the Generalized Hugoniot Locus obtained from the Generalized Rankine Hugoniot conditions and the Integral Curve across the contact wave associated to the bed step. In any case, the STD must allow energy-dissipative solutions: steady and unsteady hydraulic jumps, for which some numerical anomalies have been documented in the literature. These anomalies are the incorrect positioning of steady jumps and the presence of a spurious spike of discharge inside the cell containing the jump. The former issue can be addressed by proposing a modification of the energy-conservative STD that ensures a correct dissipation rate across the hydraulic jump, whereas the latter is of greater complexity and cannot be fixed by simply choosing a suitable STD, as there are more variables involved. The problem concerning the spike of discharge is a well-known problem in the scientific community, also known as slowly-moving shock anomaly, it is produced by a nonlinearity of the Hugoniot locus connecting the states at both sides of the jump. However, it seems that this issue is more a feature than a problem when considering steady solutions of the SWE containing hydraulic jumps. The presence of the spurious spike in the discharge has been taken for granted and has become a feature of the solution. Even though it does not disturb the rest of the solution in steady cases, when considering transient cases it produces a very undesirable shedding of spurious oscillations downstream that should be circumvented. Based on spike-reducing techniques (originally designed for homogeneous Euler equations) that propose the construction of interpolated fluxes in the untrustworthy regions, we design a novel Roe-type scheme for the SWE with discontinuous topography that reduces the presence of the aforementioned spurious spike. The resulting spike-reducing method in combination with the proposed STD ensures an accurate positioning of steady jumps, provides convergence with mesh refinement, which was not possible for previous methods that cannot avoid the spike.

  6. Effect of a Brazilian Jiu-jitsu-simulated tournament on strength parameters and perceptual responses.

    PubMed

    Detanico, Daniele; Dellagrana, Rodolfo André; Athayde, Marina Saldanha da Silva; Kons, Rafael Lima; Góes, Angel

    2017-03-01

    This study aimed to analyse the effects of a simulated Brazilian jiu-jitsu (BJJ) tournament on vertical jump performance, grip strength test and perceived effort responses. 22 male BJJ athletes participated in a simulated tournament consisting of three 7 min matches separated by 14 min of rest. Kimono grip strength test (KGST), counter movement jump (CMJ) and rate of perceived exertion (RPE) were measured before and after each match, while RPE of specific areas was assessed after three matches. ANOVA for repeated measures was used to compare strength parameters after each match with the level of significance set at 5%. The key results showed a significant decrease of jump height (p = 0.001) and net vertical impulse in the CMJ (p = 0.031), as well as a reduction of the number of reps in the KGST (p < 0.001). A significant increase of RPE was found throughout the matches (p < 0.001). Considering the RPE in specific areas, no differences were observed between the upper and lower body (p = 0.743). We conclude that the BJJ simulated tournament generated a decrease of performance in both upper and lower limbs and provoked a progressive increase in the effort perception over the matches.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippone, Michele; Dusuel, Sebastien; Vidal, Julien

    We consider a set of fully connected spin models that display first- or second-order transitions and for which we compute the ground-state entanglement in the thermodynamical limit. We analyze several entanglement measures (concurrence, Renyi entropy, and negativity) and show that, in general, discontinuous transitions lead to a jump of these quantities at the transition point. Interestingly, we also find examples where this is not the case.

  8. Challenges and Strategies in Social Work and Social Welfare PhD Education: Helping Candidates Jump through the Dissertation Hoops

    ERIC Educational Resources Information Center

    Berger, Roni

    2015-01-01

    A major task of social work doctoral programs is preparing the next generation of researchers and educators in the profession. To develop competence in generating new knowledge relevant to social work practice and disseminating it to future practitioners, doctoral candidates need to master a broad and complicated set of theoretical, empirical, and…

  9. Ski jump takeoff performance predictions for a mixed-flow, remote-lift STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.

    1992-01-01

    A ski jump model was developed to predict ski jump takeoff performance for a short takeoff and vertical landing (STOVL) aircraft. The objective was to verify the model with results from a piloted simulation of a mixed flow, remote lift STOVL aircraft. The prediction model is discussed. The predicted results are compared with the piloted simulation results. The ski jump model can be utilized for basic research of other thrust vectoring STOVL aircraft performing a ski jump takeoff.

  10. Hypohydration Reduces Vertical Ground Reaction Impulse But Not Jump Height

    DTIC Science & Technology

    2010-01-01

    countermovement jump from a 660 9 660 9 60 mm dual force plate plat- form (Leonardo v3.07, Orthometrix, Inc.) connected to a PC for the purpose of collecting... force data and calculating jump height (described below). Subjects stood still on the platform with one foot on each force plate for approxi- mately 10...study examined vertical jump performance using a force platform and weighted vest to determine why hypohydration (~4% body mass) does not improve jump

  11. Level set immersed boundary method for gas-liquid-solid interactions with phase-change

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash; Balaras, Elias; Riaz, Amir; Kim, Jungho

    2017-11-01

    We will discuss an approach to simulate the interaction between two-phase flows with phase changes and stationary/moving structures. In our formulation, the Navier-Stokes and heat advection-diffusion equations are solved on a block-structured grid using adaptive mesh refinement (AMR) along with sharp jump in pressure, velocity and temperature across the interface separating the different phases. The jumps are implemented using a modified Ghost Fluid Method (Lee et al., J. Comput. Physics, 344:381-418, 2017), and the interface is tracked with a level set approach. Phase transition is achieved by calculating mass flux near the interface and extrapolating it to the rest of the domain using a Hamilton-Jacobi equation. Stationary/moving structures are simulated with an immersed boundary formulation based on moving least squares (Vanella & Balaras, J. Comput. Physics, 228:6617-6628, 2009). A variety of canonical problems involving vaporization, film boiling and nucleate boiling is presented to validate the method and demonstrate the its formal accuracy. The robustness of the solver in complex problems, which are crucial in efficient design of heat transfer mechanisms for various applications, will also be demonstrated. Work supported by NASA, Grant NNX16AQ77G.

  12. The Vertical Drop Jump Is a Poor Screening Test for ACL Injuries in Female Elite Soccer and Handball Players: A Prospective Cohort Study of 710 Athletes.

    PubMed

    Krosshaug, Tron; Steffen, Kathrin; Kristianslund, Eirik; Nilstad, Agnethe; Mok, Kam-Ming; Myklebust, Grethe; Andersen, Thor Einar; Holme, Ingar; Engebretsen, Lars; Bahr, Roald

    2016-04-01

    The evidence linking knee kinematics and kinetics during a vertical drop jump (VDJ) to anterior cruciate ligament (ACL) injury risk is restricted to a single small sample. Still, the VDJ test continues to be advocated for clinical screening purposes. To test whether 5 selected kinematic and kinetic variables were associated with future ACL injuries in a large cohort of Norwegian female elite soccer and handball players. Furthermore, we wanted to assess whether the VDJ test can be recommended as a screening test to identify players with increased risk. Cohort study; Level of evidence, 2. Elite female soccer and handball players participated in preseason screening tests from 2007 through 2014. The tests included marker-based 3-dimensional motion analysis of a drop-jump landing. We followed a predefined statistical protocol in which we included the following candidate risk factors in 5 separate logistic regression analyses, with new ACL injury as the outcome: (1) knee valgus angle at initial contact, (2) peak knee abduction moment, (3) peak knee flexion angle, (4) peak vertical ground-reaction force, and (5) medial knee displacement. A total of 782 players were tested (age, 21 ± 4 years; height, 170 ± 7 cm; body mass, 67 ± 8 kg), of which 710 were included in the analyses. We registered 42 new noncontact ACL injuries, including 12 in previously ACL-injured players. Previous ACL injury (relative risk, 3.8; 95% CI, 2.1-7.1) and medial knee displacement (odds ratio, 1.40; 95% CI, 1.12-1.74 per 1-SD change) were associated with increased risk for injury. However, among the 643 players without previous injury, we found no association with medial knee displacement. A receiver operating characteristic curve analysis of medial knee displacement showed an area under the curve of 0.6, indicating a poor-to-failed combined sensitivity and specificity of the test, even when including previously injured players. Of the 5 risk factors considered, medial knee displacement was the only factor associated with increased risk for ACL. However, receiver operating characteristic curve analysis indicated a poor combined sensitivity and specificity when medial knee displacement was used as a screening test for predicting ACL injury. For players with no previous injury, none of the VDJ variables were associated with increased injury risk. VDJ tests cannot predict ACL injuries in female elite soccer and handball players. © 2016 The Author(s).

  13. Stochastic stability properties of jump linear systems

    NASA Technical Reports Server (NTRS)

    Feng, Xiangbo; Loparo, Kenneth A.; Ji, Yuandong; Chizeck, Howard J.

    1992-01-01

    Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented.

  14. Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump.

    PubMed

    Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun

    2016-08-01

    [Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball.

  15. BIOMECHANICS. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects.

    PubMed

    Koh, Je-Sung; Yang, Eunjin; Jung, Gwang-Pil; Jung, Sun-Pill; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Wood, Robert J; Kim, Ho-Young; Cho, Kyu-Jin

    2015-07-31

    Jumping on water is a unique locomotion mode found in semi-aquatic arthropods, such as water striders. To reproduce this feat in a surface tension-dominant jumping robot, we elucidated the hydrodynamics involved and applied them to develop a bio-inspired impulsive mechanism that maximizes momentum transfer to water. We found that water striders rotate the curved tips of their legs inward at a relatively low descending velocity with a force just below that required to break the water surface (144 millinewtons/meter). We built a 68-milligram at-scale jumping robotic insect and verified that it jumps on water with maximum momentum transfer. The results suggest an understanding of the hydrodynamic phenomena used by semi-aquatic arthropods during water jumping and prescribe a method for reproducing these capabilities in artificial systems. Copyright © 2015, American Association for the Advancement of Science.

  16. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology.

    PubMed

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Kim, Ho-Young

    2016-12-07

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  17. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G.; Kim, Ho-Young

    2016-12-01

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  18. The Physics of Equestrian Show Jumping

    ERIC Educational Resources Information Center

    Stinner, Art

    2014-01-01

    This article discusses the kinematics and dynamics of equestrian show jumping. For some time I have attended a series of show jumping events at Spruce Meadows, an international equestrian center near Calgary, Alberta, often referred to as the "Wimbledon of equestrian jumping." I have always had a desire to write an article such as this…

  19. DC-Powered Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Farhang, Amiri

    2016-01-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…

  20. Role of Vertical Jumps and Anthropometric Variables in Maximal Kicking Ball Velocities in Elite Soccer Players

    PubMed Central

    Rodríguez-Lorenzo, Lois; Fernandez-del-Olmo, Miguel; Sanchez-Molina, José Andrés

    2016-01-01

    Abstract Kicking is one of the most important skills in soccer and the ability to achieve ma ximal kicking velocity with both legs leads to an advantage for the soccer player. This study examined the relationship be tween kicking ball velocity with both legs using anthropometric measurements and vertical jumps (a squat jump (SJ); a countermovement jump without (CMJ) and with the arm swing (CMJA) and a reactive jump (RJ)). Anthropome tric measurements did not correlate with kicking ball velocity. Vertical jumps correlated significantly with kicking ball velocity using the dominant leg only (r = .47, r = .58, r = .44, r = .51, for SJ, CMJ, CMJA and RJ, respectively) . Maximal kicking velocity with the dominant leg was significantly higher than with the non-dominant leg (t = 18.0 4, p < 0.001). Our results suggest that vertical jumps may be an optimal test to assess neuromuscular skills involved in kicking at maximal speed. Lack of the relationship between vertical jumps and kicking velocity with the non-dominant leg may reflect a difficulty to exhibit the neuromuscular skills during dominant leg kicking. PMID:28149419

  1. A pulsed jumping ring apparatus for demonstration of Lenz's law

    NASA Astrophysics Data System (ADS)

    Tanner, Paul; Loebach, Jeff; Cook, James; Hallen, H. D.

    2001-08-01

    Lenz's law is often demonstrated in classrooms by the use of Elihu Thomson's jumping ring. However, it is ironic that a thorough analysis of the physics of the ac jumping ring reveals that the operation is due mainly to a phase difference, not Lenz's law. A complete analysis of the physics behind the ac jumping ring is difficult for the introductory student. We present a design for a pulsed jumping ring which can be fully described by the application of Lenz's law. Other advantages of this system are that it lends itself to a rigorous analysis of the force balances and energy flow. The simple jumping ring apparatus closely resembles Thomson's, but is powered by a capacitor bank. The jump heights were measured for several rings as a function of energy stored in the capacitors. A simple model describes the data well. Currents in both the drive coil and ring are measured and that of the drive coil modeled to illuminate some properties of the capacitors. An analysis of the energy flow in the system explains the higher jump heights, to 2 m, when the ring is cooled.

  2. Aerial Jumping in the Trinidadian Guppy (Poecilia reticulata)

    PubMed Central

    Soares, Daphne; Bierman, Hilary S.

    2013-01-01

    Many fishes are able to jump out of the water and launch themselves into the air. Such behavior has been connected with prey capture, migration and predator avoidance. We found that jumping behavior of the guppy Poecilia reticulata is not associated with any of the above. The fish jump spontaneously, without being triggered by overt sensory cues, is not migratory and does not attempt to capture aerial food items. Here, we use high speed video imaging to analyze the kinematics of the jumping behavior P. reticulata. Fish jump from a still position by slowly backing up while using its pectoral fins, followed by strong body trusts which lead to launching into the air several body lengths. The liftoff phase of the jump is fast and fish will continue with whole body thrusts and tail beats, even when out of the water. This behavior occurs when fish are in a group or in isolation. Geography has had substantial effects on guppy evolution, with waterfalls reducing gene flow and constraining dispersal. We suggest that jumping has evolved in guppies as a behavioral phenotype for dispersal. PMID:23613883

  3. Jumping to (fatal) conclusions? An analysis of video film on a social networking web site of recreational jumping from height into water.

    PubMed

    Moran, Kevin

    2014-01-01

    In high-income countries, death as a consequence of recreational jumping into water from height has not been well investigated partly because it traditionally has been a covert activity within youth culture. An observational study of video recordings posted on the YouTube web site was used to gather data on the nature of jumping activity in New Zealand and Australia. An analytical framework was developed to identify site- participant- social characteristics (10 variables) and online feedback (4 variables). Of the 389 videos recorded in New Zealand (n = 210) and Australia (n = 179), 929 jumpers were observed, and rivers were the most frequently reported site of jumping activity (New Zealand 47%; Australia 35%). One fifth (20%) of the jumps in New Zealand and one third (33%) in Australia were from heights estimated to be more than 12 m. The YouTube website portraying jumps from height were visited almost half a million times (495,686 hits). Ways of reducing recreational jumping risk via targeted education interventions may be best directed at young male adults. Use of social network sites to foster safe behaviours may be an effective way to educate young people of the inherent risks of jumping from height into water.

  4. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping.

    PubMed

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    1987-08-01

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce drop jumps the influence of dropping height on the biomechanics of the jumps. Six subjects executed bounce drop jumps from heights of 20 cm (designated here as DJ20), 40 cm (designated here as DJ40), and 60 cm (designated here as DJ60). During jumping, they were filmed, and ground reaction forces were recorded. The results of a biomechanical analysis show no difference between DJ20 and DJ40 in mechanical output about the joints during the push-off phase. Peak values of moment and power output about the ankles during the push-off phase were found to be smaller in DJ60 than in DJ40 (DJ20 = DJ60). The amplitude of joint reaction forces increased with dropping height. During DJ60, the net joint reaction forces showed a sharp peak on the instant that the heels came down on the ground. Based on the results, researchers are advised to limit dropping height to 20 or 40 cm when investigating training effects of the execution of bounce drop jumps.

  5. The effect of increasing strength and approach velocity on triple jump performance.

    PubMed

    Allen, Sam J; Yeadon, M R Fred; King, Mark A

    2016-12-08

    The triple jump is an athletic event comprising three phases in which the optimal phase ratio (the proportion of each phase to the total distance jumped) is unknown. This study used a planar whole body torque-driven computer simulation model of the ground contact parts of all three phases of the triple jump to investigate the effect of strength and approach velocity on optimal performance. The strength and approach velocity of the simulation model were each increased by up to 30% in 10% increments from baseline data collected from a national standard triple jumper. Increasing strength always resulted in an increased overall jump distance. Increasing approach velocity also typically resulted in an increased overall jump distance but there was a point past which increasing approach velocity without increasing strength did not lead to an increase in overall jump distance. Increasing both strength and approach velocity by 10%, 20%, and 30% led to roughly equivalent increases in overall jump distances. Distances ranged from 14.05m with baseline strength and approach velocity, up to 18.49m with 30% increases in both. Optimal phase ratios were either hop-dominated or balanced, and typically became more balanced when the strength of the model was increased by a greater percentage than its approach velocity. The range of triple jump distances that resulted from the optimisation process suggests that strength and approach velocity are of great importance for triple jump performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effect of drop jump technique on the reactive strength index.

    PubMed

    Struzik, Artur; Juras, Grzegorz; Pietraszewski, Bogdan; Rokita, Andrzej

    2016-09-01

    The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI) for countermovement drop jumps (CDJs) and bounce drop jumps (BDJs). The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p < 0.05) between RSI values for CDJs and BDJs were recorded for jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p < 0.05) than the values recorded for BDJs. Times of contact, amortization and take-off during BDJs were significantly shorter (p < 0.05) than the respective values obtained for CDJs. Therefore, the use of the RSI to monitor plyometric training should be based on the drop jump technique that is commonly performed by basketball players.

  7. Numerical simulations of katabatic jumps in coats land, Antartica

    NASA Astrophysics Data System (ADS)

    Yu, Ye; Cai, Xiaoming; King, John C.; Renfrew, Ian A.

    A non-hydrostatic numerical model, the Regional Atmospheric Modeling System (RAMS), has been used to investigate the development of katabatic jumps in Coats Land, Antarctica. In the control run with a 5 m s-1downslope directed initial wind, a katabatic jump develops near the foot of the idealized slope. The jump is manifested as a rapid deceleration of the downslope flow and a change from supercritical to subcritical flow, in a hydraulic sense, i.e., the Froude number (Fr) of the flow changes from Fr > 1 to Fr> 1. Results from sensitivity experiments show that an increase in the upstream flow rate strengthens the jump, while an increase in the downstream inversion-layer depth results in a retreat of the jump. Hydraulic theory and Bernoulli''s theorem have been used to explain the surface pressure change across the jump. It is found that hydraulic theory always underestimates the surface pressure change, while Bernoulli''s theorem provides a satisfactory estimation. An analysis of the downs balance for the katabatic jump indicates that the important forces are those related to the pressure gradient, advection and, to a lesser extent, the turbulent momentum divergence. The development of katabatic jumps can be divided into two phases. In phase I, the t gradient force is nearly balanced by advection, while in phase II, the pressure gradient force is counterbalanced by turbulent momentum divergence. The upslope pressure gradient force associated with a pool of cold air over the ice shelf facilitates the formation of the katabatic jump.

  8. Effect of drop jump technique on the reactive strength index

    PubMed Central

    Juras, Grzegorz; Pietraszewski, Bogdan; Rokita, Andrzej

    2016-01-01

    Abstract The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI) for countermovement drop jumps (CDJs) and bounce drop jumps (BDJs). The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p < 0.05) between RSI values for CDJs and BDJs were recorded for jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p < 0.05) than the values recorded for BDJs. Times of contact, amortization and take-off during BDJs were significantly shorter (p < 0.05) than the respective values obtained for CDJs. Therefore, the use of the RSI to monitor plyometric training should be based on the drop jump technique that is commonly performed by basketball players. PMID:28149403

  9. A 3-Month Jump-Landing Training Program: A Feasibility Study Using the RE-AIM Framework

    PubMed Central

    Aerts, Inne; Cumps, Elke; Verhagen, Evert; Mathieu, Niels; Van Schuerbeeck, Sander; Meeusen, Romain

    2013-01-01

    Context: Evaluating the translatability and feasibility of an intervention program has become as important as determining the effectiveness of the intervention. Objective: To evaluate the applicability of a 3-month jump-landing training program in basketball players, using the RE-AIM (reach, effectiveness, adoption, implementation, and maintenance) framework. Design: Randomized controlled trial. Setting: National and regional basketball teams. Patients or Other Participants: Twenty-four teams of the second highest national division and regional basketball divisions in Flanders, Belgium, were randomly assigned (1:1) to a control group and intervention group. A total of 243 athletes (control group = 129, intervention group = 114), ages 15 to 41 years, volunteered. Intervention(s): All exercises in the intervention program followed a progressive development, emphasizing lower extremity alignment during jump-landing activities. Main Outcome Measure(s): The results of the process evaluation of the intervention program were based on the 5 dimensions of the RE-AIM framework. The injury incidence density, hazard ratios, and 95% confidence intervals were determined. Results: The participation rate of the total sample was 100% (reach). The hazard ratio was different between the intervention group and the control group (0.40 [95% confidence interval = 0.16, 0.99]; effectiveness). Of the 12 teams in the intervention group, 8 teams (66.7%) agreed to participate in the study (adoption). Eight of the participating coaches (66.7%) felt positively about the intervention program and stated that they had implemented the training sessions of the program as intended (implementation). All coaches except 1 (87.5%) intended to continue the intervention program the next season (maintenance). Conclusions: Compliance of the coaches in this coach-supervised jump-landing training program was high. In addition, the program was effective in preventing lower extremity injuries. PMID:23675788

  10. Molecular dynamics simulations of hydrogen diffusion in aluminum

    DOE PAGES

    Zhou, X. W.; El Gabaly, F.; Stavila, V.; ...

    2016-03-23

    In this study, hydrogen diffusion impacts the performance of solid-state hydrogen storage materials and contributes to the embrittlement of structural materials under hydrogen-containing environments. In atomistic simulations, the diffusion energy barriers are usually calculated using molecular statics simulations where a nudged elastic band method is used to constrain a path connecting the two end points of an atomic jump. This approach requires prior knowledge of the “end points”. For alloy and defective systems, the number of possible atomic jumps with respect to local atomic configurations is tremendous. Even when these jumps can be exhaustively studied, it is still unclear howmore » they can be combined to give an overall diffusion behavior seen in experiments. Here we describe the use of molecular dynamics simulations to determine the overall diffusion energy barrier from the Arrhenius equation. This method does not require information about atomic jumps, and it has additional advantages, such as the ability to incorporate finite temperature effects and to determine the pre-exponential factor. As a test case for a generic method, we focus on hydrogen diffusion in bulk aluminum. We find that the challenge of this method is the statistical variation of the results. However, highly converged energy barriers can be achieved by an appropriate set of temperatures, output time intervals (for tracking hydrogen positions), and a long total simulation time. Our results help elucidate the inconsistencies of the experimental diffusion data published in the literature. The robust approach developed here may also open up future molecular dynamics simulations to rapidly study diffusion properties of complex material systems in multidimensional spaces involving composition and defects.« less

  11. Effects of Isometric Scaling on Vertical Jumping Performance

    PubMed Central

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  12. Acute Effects of Plyometric Intervention—Performance Improvement and Related Changes in Sprinting Gait Variability.

    PubMed

    Maćkała, Krzysztof; Fostiak, Marek

    2015-07-01

    The purpose of this study was to examine the effect of a short high-intensity plyometric program on the improvement of explosive power of lower extremities and sprint performance as well as changes in sprinting stride variability in male sprinters. Fourteen healthy male sprinters (mean ± SD: age: 18.07 ± 0.73 years, body mass: 73 ± 9.14 kg, height: 180.57 ± 8.16 cm, and best 100 m: 10.89 ± 0.23) participated in the experiment. The experimental protocol included vertical jumping such as squat jump, countermovement jump, and horizontal jumps; standing long jump and standing triple jumps to assess lower-body power, maximal running velocity; a 20-m flying start sprint that evaluated variability of 10 running steps and 60-m starting block sprint. All analyzed parameters were obtained using the new technology of OptoJump-Microgate (OptoJump, Italy). The short-term plyometric training program significantly increased the explosive power of lower extremities, both vertical and horizontal jumping improvement. However, the vertical jumps increased much more than the horizontal. The 20-m improvements were derived from an increase of stride frequency from 4.31 to 4.39 Hz because of a decrease of ground contact time from 138 to 133 milliseconds. This did not translate into step length changes. Therefore, the significantly increased frequency of stride (1.8%), which is a specific expression of ground contact time reduction during support phase, resulted in an increase of speed. The training volume of 2 weeks (with 6 sessions) using high-intensity (between 180 and 250 jumps per session) plyometric exercises can be recommended as the short-term strategy that will optimize one's probability of reaching strong improvements in explosive power and sprint velocity performance.

  13. Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women.

    PubMed

    Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W

    2012-03-01

    The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.

  14. The Effects of Caffeine on Vertical Jump Height and Execution in Collegiate Athletes.

    PubMed

    Bloms, Lucas P; Fitzgerald, John S; Short, Martin W; Whitehead, James R

    2016-07-01

    Bloms, LP, Fitzgerald, JS, Short, MW, and Whitehead, JR. The effects of caffeine on vertical jump height and execution in collegiate athletes. J Strength Cond Res 30(7): 1855-1861, 2016-Caffeine ingestion elicits a variety of physiological effects that may be beneficial to maximal-intensity exercise performance, although its effectiveness and physical mechanism of action enhancing ballistic task performance are unclear. The purpose of this study was to examine the effects of caffeine ingestion on vertical jump height and jump execution in Division I collegiate athletes. The study used a single-blind, randomized, crossover design. Athletes (n = 25) consumed either caffeine (5 mg·kg) or placebo. After a 60-minute waiting period, athletes performed 3 squat jumps (SJ) and 3 countermovement jumps (CMJ) while standing on a force platform. Jump height and execution variables were calculated from mechanography data. In comparison with placebo, caffeine increased SJ height (32.8 ± 6.2 vs. 34.5 ± 6.7 cm; p = 0.001) and CMJ height (36.4 ± 6.9 vs. 37.9 ± 7.4 cm; p = 0.001). Peak force (p = 0.032) and average rate of force development (p = 0.037) were increased during the CMJ in the caffeine trail compared with the control. Time to half peak force was the only execution variable improved with caffeine (p = 0.019) during the SJ. It seems that caffeine affects both height and execution of jumping. Our data indicate that the physical mechanism of jump enhancement is increased peak force production or rate of force development during jumping depending on technique. The physical mechanism of jump enhancement suggests that the ergogenic effects of caffeine may transfer to other ballistic tasks involving the lower-body musculature in collegiate athletes.

  15. Effect of a prehop on the muscle-tendon interaction during vertical jumps.

    PubMed

    Aeles, Jeroen; Lichtwark, Glen; Peeters, Dries; Delecluse, Christophe; Jonkers, Ilse; Vanwanseele, Benedicte

    2018-05-01

    Many movements use stretch-shortening cycles of a muscle-tendon unit (MTU) for storing and releasing elastic energy. The required stretching of medial gastrocnemius (MG) tendinous tissue during jumps, however, requires large length changes of the muscle fascicles because of the lack of MTU length changes. This has a negative impact on the force-generating capacity of the muscle fascicles. The purpose of this study was to induce a MG MTU stretch before shortening by adding a prehop to the squat jump. Eleven well-trained athletes specialized in jumping performed a prehop squat jump (PHSJ) and a standard squat jump (SSJ). Kinematic data were collected using a 3D motion capture system and were used in a musculoskeletal model to calculate MTU lengths. B-mode ultrasonography of the MG was used to measure fascicle length and pennation angle during the jumps. By combining the muscle-tendon unit lengths, fascicle lengths, and pennation angles, the stretch and recoil of the series elastic element of MG were calculated using a simple geometric muscle-tendon model. Our results show less length changes of the muscle fascicles during the upward motion and lower maximal shortening velocities, increasing the moment-generating capacity of the plantar flexors, reflected in the higher ankle joint moment in the PHSJ compared with the SSJ. Although muscle-tendon interaction during the PHSJ was more optimal, athletes were not able to increase their jump height compared with the SSJ. NEW & NOTEWORTHY This is the first study that aimed to improve the muscle-tendon interaction in squat jumping. We effectively introduced a stretch to the medial gastrocnemius muscle-tendon unit resulting in lower maximal shortening velocities and thus an increase in the plantar flexor force-generating capacity, reflected in the higher ankle joint moment in the prehop squat jump compared with the standard squat jump. Here, we demonstrate an effective method for mechanical optimization of the muscle-tendon interaction in the medial gastrocnemius during squat jumping.

  16. Vertical and Horizontal Asymmetries are Related to Slower Sprinting and Jump Performance in Elite Youth Female Soccer Players.

    PubMed

    Bishop, Chris; Read, Paul; McCubbine, Jermaine; Turner, Anthony

    2018-02-27

    Inter-limb asymmetries have been shown to be greater during vertical jumping compared to horizontal jumping. Notable inter-limb differences have also been established at an early age in male youth soccer players. Furthermore, given the multi-planar nature of soccer, establishing between-limb differences from multiple jump tests is warranted. At present, a paucity of data exists regarding asymmetries in youth female soccer players and their effects on physical performance. The aims of this study were to quantify inter-limb asymmetries from unilateral jump tests and examine their effects on speed and jump performance. Nineteen elite youth female soccer players performed a single leg countermovement jump (SLCMJ), single, triple, and crossover hops for distance and a 20 m sprint test. Test reliability was good to excellent (ICC = 0.81-0.99) and variability acceptable (CV = 1.74-5.42%). A one-way ANOVA highlighted larger asymmetries from the SLCMJ compared to all other jump tests (p < 0.05). Pearson's correlations portrayed significant relationships between vertical asymmetries from the SLCMJ and slower sprint times (r = 0.49-0.59). Significant negative relationships were also found between horizontal asymmetries during the triple hop test and horizontal jump performance (r = -0.47 to -0.58) and vertical asymmetries during the SLCMJ and vertical jump performance (r = -0.47 to -0.53). The results from this study highlight that the SLCMJ appears to be the most appropriate jump test for identifying between-limb differences with values ∼12% showing negative associations with sprint times. Furthermore, larger asymmetries are associated with reduced jump performance and would appear to be direction-specific. Practitioners can use this information as normative data to be mindful of when quantifying inter-limb asymmetries and assessing their potential impact on physical performance in youth female soccer players.

  17. High-Intensity Jump Training Is Tolerated during 60 Days of Bed Rest and Is Very Effective in Preserving Leg Power and Lean Body Mass: An Overview of the Cologne RSL Study.

    PubMed

    Kramer, Andreas; Kümmel, Jakob; Mulder, Edwin; Gollhofer, Albert; Frings-Meuthen, Petra; Gruber, Markus

    2017-01-01

    Space agencies are looking for effective and efficient countermeasures for the degrading effects of weightlessness on the human body. The aim of this study was to assess the effects of a novel jump exercise countermeasure during bed rest on vitals, body mass, body composition, and jump performance. 23 male participants (29±6 years, 181±6 cm, 77±7 kg) were confined to a bed rest facility for 90 days: a 15-day ambulatory measurement phase, a 60-day six-degree head-down-tilt bed rest phase (HDT), and a 15-day ambulatory recovery phase. Participants were randomly allocated to the jump training group (JUMP, n = 12) or the control group (CTRL, n = 11). A typical training session consisted of 4x10 countermovement jumps and 2x10 hops in a sledge jump system. The training group had to complete 5-6 sessions per week. Peak force for the reactive hops (3.6±0.4 kN) as well as jump height (35±4 cm) and peak power (3.1±0.2 kW) for the countermovement jumps could be maintained over the 60 days of HDT. Lean body mass decreased in CTRL but not in JUMP (-1.6±1.9 kg and 0±1.0 kg, respectively, interaction effect p = 0.03). Resting heart rate during recovery was significantly increased for CTRL but not for JUMP (interaction effect p<0.001). Participants tolerated the near-daily high-intensity jump training and maintained high peak forces and high power output during 60 days of bed rest. The countermeasure was effective in preserving lean body mass and partly preventing cardiac deconditioning with only several minutes of training per day.

  18. Kinematic And Neuromuscular Measures Of Intensity During Plyometric Jumps.

    PubMed

    Andrade, David Cristóbal; Manzo, Oscar; Beltrán, Ana Rosa; Álvarez, Cristian; Del Rio, Rodrigo; Toledo, Camilo; Moran, Jason; Ramirez-Campillo, Rodrigo

    2017-08-15

    The aim of this study was to assess jumping performance and neuromuscular activity in lower limb muscles after drop jumps (DJ) from different drop heights (intensity) and during continuous jumping (fatigue), using markers such as reactive strength, jump height, mechanical power and surface electromyography (sEMG). The eccentric (EC) and concentric (CON) sEMG from the medial gastrocnemius (MG), biceps femoris (BF) and rectus (R) muscles were assessed during all tests. In a cross-sectional, randomized study, eleven volleyball players (age 24.4±3.2 years) completed 20 to 90-cm (DJ20 to DJ90) drop jumps and a 60-s continuous jump test. A one-way ANOVA test was used for comparisons, with Sidak post-hoc. The α level was <0.05. Reactive strength was greater for DJ40 compared to DJ90 (p<0.05; ES: 1.27). Additionally jump height was greater for DJ40 and DJ60 compared to DJ20 (p<0.05; ES: 1.26 and 1.27, respectively). No clear pattern of neuromuscular activity appeared during DJ20 to DJ90: some muscles showed greater, lower, or no change with increasing heights for both agonist and antagonist muscles, as well as for eccentric and concentric activity. Mechanical power, but not reactive strength, was reduced in the 60-s jump test (p<0.05; ES: 3.46). No changes were observed in sEMG for any muscle during the eccentric phase nor for the R muscle during the concentric phase of the 60-s jump test. However, for both MG and BF, concentric sEMG was reduced during the 60-s jump test (p<0.05; ES: 5.10 and 4.61, respectively). In conclusion, jumping performance and neuromuscular markers are sensitive to DJ height (intensity), although not in a clear dose-response fashion. In addition, markers such as mechanical power and sEMG are especially sensitive to the effects of continuous jumping (fatigue). Therefore, increasing the drop height during DJ does not ensure a greater training intensity and a combination of different drop heights may be required to elicit adaptations.

  19. Jump-Down Performance Alterations after Space Flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements in astronauts abilities to maintain balance and achieve a postural stability upon landing from a jump early after flight. However, the jump landing adaptation process often begins after the first jump with full recovery of most performance parameters within days after space flight. As expected, performance of ISS astronauts on the first day after flight was similar to that of Shuttle crewmembers on landing day.

  20. Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height.

    PubMed

    Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian

    2017-11-01

    Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Cross-sectional study; Level of evidence, 3. A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association ( r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association ( r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = -0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Initial analysis showed a strong association between isokinetic strength and jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research.

  1. Vertical Jump and Leg Power Normative Data for Colombian Schoolchildren Aged 9-17.9 Years: The FUPRECOL Study.

    PubMed

    Ramírez-Vélez, Robinson; Correa-Bautista, Jorge E; Lobelo, Felipe; Cadore, Eduardo L; Alonso-Martinez, Alicia M; Izquierdo, Mikel

    2017-04-01

    Ramírez-Vélez, R, Correa-Bautista, JE, Lobelo, F, Cadore, EL, Alonso-Martinez, AM, and Izquierdo, M. Vertical jump and leg power normative data for Colombian schoolchildren aged 9-17.9 years: the FUPRECOL study. J Strength Cond Res 31(4): 990-998, 2017-The aims of the present study were to generate normative vertical jump height and predicted peak power (Ppeak) data for 9- to 17.9-year-olds and to investigate between-sex and age group differences in these measures. This was a cross-sectional study of 7,614 healthy schoolchildren (boys n = 3,258 and girls n = 4,356, mean [SD] age 12.8 [2.3] years). Each participant performed 2 countermovement jumps; jump height was calculated using a Takei 5414 Jump-DF Digital Vertical (Takei Scientific Instruments Co., Ltd.). The highest jump was used for analysis and in the calculation of predicted Ppeak. Centile smoothed curves, percentiles, and tables for the 3rd, 10th, 25th, 50th, 75th, 90th, and 97th percentiles were calculated using Cole's LMS (L [curve Box-Cox], M [curve median], and S [curve coefficient of variation]) method. The 2-way analysis of variance tests showed that maximum jump height (in centimeters) and predicted Ppeak (in watts) were higher in boys than in girls (p < 0.01). Post hoc analyses within sexes showed yearly increases in jump height and Ppeak in all ages. In boys, the maximum jump height and predicted Ppeak 50th percentile ranged from 24.0 to 38.0 cm and from 845.5 to 3061.6 W, respectively. In girls, the 50th percentile for jump height ranged from 22.3 to 27.0 cm, and the predicted Ppeak was 710.1-2036.4 W. For girls, jump height increased yearly from 9 to 17.9 years old. Our results provide, for the first time, sex- and age-specific vertical jump height and predicted Ppeak reference standards for Colombian schoolchildren aged 9-17.9 years.

  2. [Effects of Reactive Jump Training in Handball Players Regarding Jump Height and Power Development in the Triceps Surae Muscle].

    PubMed

    Rensing, N; Westermann, A; Möller, D; von Piekartz, H

    2015-12-01

    Studies have shown changes in the technical and physical demands in modern handball. The game has increased considerably in speed, power and dynamics. Jump training has, therefore, become ever more important in the training of the athletes. These developments contribute to the fact that handball is now one of the most injury-prone types of sport, with the lower extremities being most frequently affected. Reactive jump training is not only used in training by now, but also increasingly in injury prevention. The aim of this study was to investigate the effectiveness of reactive jump training with handball players. 21 regional league handball players were randomly divided into an intervention group (n = 12) and a control group (n = 9). The intervention group completed a six-week reactive jump training programme while the control group went through a non-specific training programme. Jump height (squat and counter movement jump), isokinetic and isometric maximum power as well as muscle activity served as measuring parameters. A comparison of the intervention and control groups revealed that the reactive jump training led to significant improvements in jump height. The isometric and isokinetic maximum power measurements and the electromyographic activities of the triceps surae muscle demonstrated an improvement in the values within the intervention group. However, this improvement was not significant compared with the control group. Likewise both jumps correlated with the muscle activity of the soleus muscle as shown by electromyography. A moderate correlation was noticed between the isokinetic maximum power measurement and the electromyographic activity of the soleus and gastrocnemius medialis muscles. Furthermore, the correlations of the isometric and isokinetic maximum power meas-urements resulted in a strong correlation coefficient. This study revealed a significant increase in jump height after reactive jump training. There was no significant difference in power development between the two groups. However, we were able to demonstrate correlations which would make it seem reasonable and interesting to investigate the question more closely. An interesting field of research could be the question of the effectiveness of reactive jump training in the areas of rehabilitation and injury prevention. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Effect of Ankle Joint Contact Angle and Ground Contact Time on Depth Jump Performance.

    PubMed

    Phillips, Joshua H; Flanagan, Sean P

    2015-11-01

    Athletes often need to both jump high and get off the ground quickly, but getting off the ground quickly can decrease the vertical ground reaction force (VGRF) impulse, impeding jump height. Energy stored in the muscle-tendon complex during the stretch-shortening cycle (SSC) may mitigate the effects of short ground contact times (GCTs). To take advantage of the SSC, several coaches recommend "attacking" the ground with the foot in a dorsiflexed (DF) position at contact. However, the efficacy of this technique has not been tested. This investigation tested the hypotheses that shorter GCTs would lead to smaller vertical depth jump heights (VDJH), and that this difference could be mitigated by instructing the athletes to land in a DF as opposed to a plantar flexed (PF) foot position. Eighteen healthy junior college athletes performed depth jumps from a 45-cm box onto force platforms under instruction to achieve one of the 2 objectives (maximum jump height [hmax] or minimal GCT [tmin]), with one of the 2 foot conditions (DF or PF). These variations created 4 distinct jump conditions: DF-hmax, DF-tmin, PF-hmax, and PF-tmin. For all variables examined, there were no significant interactions. For all 4 conditions, the ankle was PF during landing, but the DF condition was 28.87% less PF than the PF condition. The tmin conditions had a 23.48% shorter GCT than hmax. There were no significant main effects for jump height. The peak impact force for tmin was 22.14% greater than hmax and 19.11% greater for DF compared with PF conditions. A shorter GCT did not necessitate a smaller jump height, and a less PF foot did not lead to improvements in jump height or contact time during a depth jump from a 45-cm box. The same jump height was attained in less PF and shorter GCT conditions by larger impact forces. To decrease contact time while maintaining jump height, athletes should be instructed to "get off the ground as fast as possible." This cue seems to be more important than foot position. However, it should be acknowledged that this technique leads to larger impact forces, which should be considered when prescribing the number of foot contacts in a plyometrics program. The ability of athletes to truly land in a DF position during depth jumps is questioned and needs further investigation.

  4. Greater Hip Extension but Not Hip Abduction Explosive Strength Is Associated With Lesser Hip Adduction and Knee Valgus Motion During a Single-Leg Jump-Cut

    PubMed Central

    Cronin, Baker; Johnson, Samuel T.; Chang, Eunwook; Pollard, Christine D.; Norcross, Marc F.

    2016-01-01

    Background: The relationships between hip abductor and extensor strength and frontal plane hip and knee motions that are associated with anterior cruciate ligament injury risk are equivocal. However, previous research on these relationships has evaluated relatively low-level movement tasks and peak torque rather than a time-critical strength measure such as the rate of torque development (RTD). Hypothesis: Females with greater hip abduction and extension RTD would exhibit lesser frontal plane hip and knee motion during a single-leg jump-cutting task. Study Design: Descriptive laboratory study. Methods: Forty recreationally active females performed maximal isometric contractions and single-leg jump-cuts. From recorded torque data, hip extension and abduction RTD was calculated from torque onset to 200 ms after onset. Three-dimensional motion analysis was used to quantify frontal plane hip and knee kinematics during the movement task. For each RTD measure, jump-cut biomechanics were compared between participants in the highest (high) and lowest (low) RTD tertiles. Results: No differences in frontal plane hip and knee kinematics were identified between high and low hip abduction RTD groups. However, those in the high hip extension RTD group exhibited lower hip adduction (high, 3.8° ± 3.0°; low, 6.5° ± 3.0°; P = .019) and knee valgus (high, –2.5° ± 2.3°; low, –4.4° ± 3.2°; P = .046) displacements during the jump-cut. Conclusion: In movements such as cutting that are performed with the hip in a relatively abducted and flexed position, the ability of the gluteus medius to control hip adduction may be compromised. However, the gluteus maximus, functioning as a hip abductor, may take on a pivotal role in controlling hip adduction and knee valgus motion during these types of tasks. Clinical Relevance: Training with a specific emphasis on increasing explosive strength of the hip extensors may be a means through which to improve frontal plane hip and knee control during high-risk maneuvers such as cutting. PMID:27104207

  5. New Passivity Criteria for Fuzzy Bam Neural Networks with Markovian Jumping Parameters and Time-Varying Delays

    NASA Astrophysics Data System (ADS)

    Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Thangaraj, P.

    2013-02-01

    This paper addresses the problem of passivity analysis issue for a class of fuzzy bidirectional associative memory (BAM) neural networks with Markovian jumping parameters and time varying delays. A set of sufficient conditions for the passiveness of the considered fuzzy BAM neural network model is derived in terms of linear matrix inequalities by using the delay fractioning technique together with the Lyapunov function approach. In addition, the uncertainties are inevitable in neural networks because of the existence of modeling errors and external disturbance. Further, this result is extended to study the robust passivity criteria for uncertain fuzzy BAM neural networks with time varying delays and uncertainties. These criteria are expressed in the form of linear matrix inequalities (LMIs), which can be efficiently solved via standard numerical software. Two numerical examples are provided to demonstrate the effectiveness of the obtained results.

  6. Effect of Age Group on Technical-Tactical Performance Profile of the Serve in Men's Volleyball.

    PubMed

    García-de-Alcaraz, Antonio; Ortega, Enrique; Palao, José M

    2016-10-01

    The aim of this study was to analyze the technical-tactical performance profile of the serve for various age groups and categories of competition in men's volleyball. The sample comprised 13,262 serves performed by 986 players in 299 sets observed in various categories of competition (U-14, U-16, U-19, national senior, and international senior). An observational design was used. The variables studied were category of competition, type of execution, and serve performance. The results showed that for higher age groups (senior categories), there were significantly fewer jump serves and poorer serve performance, regardless of players' maturity and training development. The use of the jump serves increased the serve risk while attempting to hinder the organization of the opponent attack. This paper discusses the serve evolution and the implications on the training process at the different age groups in men's volleyball. © The Author(s) 2016.

  7. How mesoscopic staircases condense to macroscopic barriers in confined plasma turbulence

    NASA Astrophysics Data System (ADS)

    Ashourvan, Arash; Diamond, P. H.

    2016-11-01

    This Rapid Communication sets forth the mechanism by which mesoscale staircase structures condense to form macroscopic states of enhanced confinement. Density, vorticity, and turbulent potential enstrophy are the variables for this model. Formation of the staircase structures is due to inhomogeneous mixing of (generalized) potential vorticity (PV). Such mixing results in the local sharpening of density and vorticity gradients. When PV gradients steepen, the density staircase structure develops into a lattice of mesoscale "jumps" and "steps," which are, respectively, regions of local gradient steepening and flattening. The jumps then merge and migrate in radius, leading to the emergence of a new macroscale profile structure, so indicating that profile self-organization is a global process, which may be described by a local, but nonlinear model. This work predicts and demonstrates how mesoscale condensation of staircases leads to global states of enhanced confinement.

  8. Double Deception: Ant-Mimicking Spiders Elude Both Visually- and Chemically-Oriented Predators

    PubMed Central

    Uma, Divya; Durkee, Caitlin; Herzner, Gudrun; Weiss, Martha

    2013-01-01

    Biological mimicry is often multimodal, in that a mimic reinforces its resemblance to another organism via different kinds of signals that can be perceived by a specific target audience. In this paper we describe a novel scenario, in which a mimic deceives at least two distinct audiences, each of which relies primarily on a different sensory modality for decision-making. We have previously shown that Peckhamia picata, a myrmecomorphic spider that morphologically and behaviorally resembles the ant Camponotus nearcticus, experiences reduced predation by visually-oriented jumping spiders. Here we report that Peckhamia also faces reduced aggression from spider-hunting sphecid wasps as well as from its model ant, both of which use chemical cues to identify prey. We also report that Peckhamia does not chemically resemble its model ants, and that its total cuticular hydrocarbons are significantly lower than those of the ants and non-mimic spiders. Although further studies are needed to clarify the basis of Peckhamia's chemically-mediated protection, to our knowledge, such ‘double deception,’ in which a single organism sends misleading visual cues to one set of predators while chemically misleading another set, has not been reported; however, it is likely to be common among what have until now been considered purely visual mimics. PMID:24236152

  9. Vertical Jump and Leg Power Norms for Young Adults

    ERIC Educational Resources Information Center

    Patterson, David D.; Peterson, D. Fred

    2004-01-01

    Medical students and their spouses (N = 724) served as participants to create norm-referenced vertical jump values for active, healthy people ages 21-30. All tests were conducted and measured by the same individual during a campus fitness evaluation using a Vertec[TM] apparatus. Jump height was measured to the nearest 0.5 in. Mean jump height was…

  10. Reliability of Metrics Associated with a Counter-Movement Jump Performed on a Force Plate

    ERIC Educational Resources Information Center

    Lombard, Wayne; Reid, Sorrel; Pearson, Keagan; Lambert, Michael

    2017-01-01

    The counter-movement jump is a consequence of maximal force, rate of force developed, and neuromuscular coordination. Thus, the counter-movement jump has been used to monitor various training adaptations. However, the smallest detectable difference of counter-movement jump metrics has yet to be established. The objective of the present study was…

  11. Strawberry Shortcake and Other Jumping Rope Ideas.

    ERIC Educational Resources Information Center

    Adams, Polly K.; Taylor, Michaell K.

    Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…

  12. BPS Jumping Loci are Automorphic

    NASA Astrophysics Data System (ADS)

    Kachru, Shamit; Tripathy, Arnav

    2018-06-01

    We show that BPS jumping loci-loci in the moduli space of string compactifications where the number of BPS states jumps in an upper semi-continuous manner—naturally appear as Fourier coefficients of (vector space-valued) automorphic forms. For the case of T 2 compactification, the jumping loci are governed by a modular form studied by Hirzebruch and Zagier, while the jumping loci in K3 compactification appear in a story developed by Oda and Kudla-Millson in arithmetic geometry. We also comment on some curious related automorphy in the physics of black hole attractors and flux vacua.

  13. Towards Stability Analysis of Jump Linear Systems with State-Dependent and Stochastic Switching

    NASA Technical Reports Server (NTRS)

    Tejada, Arturo; Gonzalez, Oscar R.; Gray, W. Steven

    2004-01-01

    This paper analyzes the stability of hierarchical jump linear systems where the supervisor is driven by a Markovian stochastic process and by the values of the supervised jump linear system s states. The stability framework for this class of systems is developed over infinite and finite time horizons. The framework is then used to derive sufficient stability conditions for a specific class of hybrid jump linear systems with performance supervision. New sufficient stochastic stability conditions for discrete-time jump linear systems are also presented.

  14. Jump phenomena. [large amplitude responses of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Reiss, E. L.

    1980-01-01

    The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.

  15. Evidence of infinite and finite jump processes in commodity futures prices: Crude oil and natural gas

    NASA Astrophysics Data System (ADS)

    Cao, Wenbin; Guernsey, Scott B.; Linn, Scott C.

    2018-07-01

    We examine the frequency and character of price jumps in front month oil and natural gas futures prices. Prices are sampled every five seconds over the period 2006-2014. Our test results indicate that jumps in crude oil and natural gas futures prices can be decomposed into an infinite activity jump diffusion process and a less frequent but larger jump process. We also find that we cannot reject the hypothesis that Brownian motion is also present in both return series. The results are based on a battery of tests that are "model free". We further find that jumps account for respectively 36 and 41 percent of the realized variances of the crude oil and the natural gas returns.

  16. Season-to-Season Variations of Physiological Fitness Within a Squad of Professional Male Soccer Players

    PubMed Central

    Clark, Niall A.; Edwards, Andrew M.; Morton, R. Hugh; Butterly, Ronald J.

    2008-01-01

    The purpose of this study was to examine season-to-season variations in physiological fitness parameters among a 1st team squad of professional adult male soccer players for the confirmatory purposes of identifying normative responses (immediately prior to pre-season training (PPS), mid-season (MID), and end-of-season (EOS)). Test-retest data were collected from a student population on the primary dependent variables of anaerobic threshold (AT) and maximal aerobic power (VO2 max) to define meaningful measurement change in excess of test-retest technical error between test-to-test performances. Participants from a pool of 42 professional soccer players were tested over a set sequence of tests during the 3-year period: 1) basic anthropometry, 2) countermovement jump (CMJ) tests 3) a combined AT and VO2 max test. Over the 3-year period there were no test-to-test changes in mean VO2 max performance exceeding pre-defined limits of test agreement (mean of eight measures: 61.6 ± 0.6 ml·kg-1·min-1). In contrast, VO2 at AT was significantly higher at the MID test occasion in seasons 2 (+4.8%; p = 0.04, p < 0.05) and 3 (+6.8%; p = 0.03, p < 0.05). The CMJ tests showed a test-to-test improvement of 6.3% (best of 3 jumps) (p = 0.03, p < 0.05) and 10.3% (20-s sustained jumping test) (p = 0.007, p < 0.01) between PPS2 and MID2 and thereafter remained stable. Anthropometrics were unaffected. In summary, despite some personnel changes in the elite cohort between test-to-test occasions, VO2 max values did not vary significantly over the study which supports previous short-term observations suggesting a general ‘elite’ threshold of 60 ml·kg-1 min. Interestingly, AT significantly varied where VO2 max was stable and these variations also coincided with on- and off-seasons suggesting that AT is a better indication of acute training state than VO2 max. Key points Maximal aerobic power remains fairly stable across inter- and intra-season measurements. Anaerobic threshold appears more sensitive of training state confirming our earlier observations. The professional players tended to attain optimal performances at the mid-season interval over the 3 seasons, presumably prior to the development of accumulative fatigue. PMID:24150149

  17. Gradient augmented level set method for phase change simulations

    NASA Astrophysics Data System (ADS)

    Anumolu, Lakshman; Trujillo, Mario F.

    2018-01-01

    A numerical method for the simulation of two-phase flow with phase change based on the Gradient-Augmented-Level-set (GALS) strategy is presented. Sharp capturing of the vaporization process is enabled by: i) identification of the vapor-liquid interface, Γ (t), at the subgrid level, ii) discontinuous treatment of thermal physical properties (except for μ), and iii) enforcement of mass, momentum, and energy jump conditions, where the gradients of the dependent variables are obtained at Γ (t) and are consistent with their analytical expression, i.e. no local averaging is applied. Treatment of the jump in velocity and pressure at Γ (t) is achieved using the Ghost Fluid Method. The solution of the energy equation employs the sub-grid knowledge of Γ (t) to discretize the temperature Laplacian using second-order one-sided differences, i.e. the numerical stencil completely resides within each respective phase. To carefully evaluate the benefits or disadvantages of the GALS approach, the standard level set method is implemented and compared against the GALS predictions. The results show the expected trend that interface identification and transport are predicted noticeably better with GALS over the standard level set. This benefit carries over to the prediction of the Laplacian and temperature gradients in the neighborhood of the interface, which are directly linked to the calculation of the vaporization rate. However, when combining the calculation of interface transport and reinitialization with two-phase momentum and energy, the benefits of GALS are to some extent neutralized, and the causes for this behavior are identified and analyzed. Overall the additional computational costs associated with GALS are almost the same as those using the standard level set technique.

  18. Effects of general, specific and combined warm-up on explosive muscular performance

    PubMed Central

    Henriquez–Olguín, C; Beltrán, AR; Ramírez, MA; Labarca, C; Cornejo, M; Álvarez, C; Ramírez-Campillo, R

    2015-01-01

    The purpose of this study was to compare the acute effects of general, specific and combined warm-up (WU) on explosive performance. Healthy male (n = 10) subjects participated in six WU protocols in a crossover randomized study design. Protocols were: passive rest (PR; 15 min of passive rest), running (Run; 5 min of running at 70% of maximum heart rate), stretching (STR; 5 min of static stretching exercise), jumping [Jump; 5 min of jumping exercises – 3x8 countermovement jumps (CMJ) and 3x8 drop jumps from 60 cm (DJ60)], and combined (COM; protocols Run+STR+Jump combined). Immediately before and after each WU, subjects were assessed for explosive concentric-only (i.e. squat jump – SJ), slow stretch-shortening cycle (i.e. CMJ), fast stretch-shortening cycle (i.e. DJ60) and contact time (CT) muscle performance. PR significantly reduced SJ performance (p =0.007). Run increased SJ (p =0.0001) and CMJ (p =0.002). STR increased CMJ (p =0.048). Specific WU (i.e. Jump) increased SJ (p =0.001), CMJ (p =0.028) and DJ60 (p =0.006) performance. COM increased CMJ performance (p =0.006). Jump was superior in SJ performance vs. PR (p =0.001). Jump reduced (p =0.03) CT in DJ60. In conclusion, general, specific and combined WU increase slow stretch-shortening cycle (SSC) muscle performance, but only specific WU increases fast SSC muscle performance. Therefore, to increase fast SSC performance, specific fast SSC muscle actions must be included during the WU. PMID:26060335

  19. Vertical jump performance of professional male and female volleyball players: effects of playing position and competition level.

    PubMed

    Sattler, Tine; Hadžić, Vedran; Dervišević, Edvin; Markovic, Goran

    2015-06-01

    Vertical jump (VJ) performance is an important element for successful volleyball practice. The aims of the study were (a) to explore the overall VJ performance of elite volleyball players of both sexes, (b) to explore the differences in VJ performance among different competition levels and different playing positions, and (c) to evaluate the sex-related differences in the role of the arm swing and 3-step approach with arm swing on the jump height. We assessed the VJ capacity in 253 volleyball players (113 males and 140 females) from Slovenian first and second Volleyball Division. The height of squat jump (SJ), countermovement jump, block jump, and attack jump was tested using an Optojump system. We observed significant differences (p ≤ 0.05) in VJ height between different levels of play that were most pronounced in the SJ. Position-related differences in VJ performance were observed in male players between receivers and setters (p ≤ 0.05), whereas in females, VJ performance across different playing positions seems equal. Finally, we found that male players significantly better use the arm swing during VJ than females (p ≤ 0.05), whereas the use of eccentric part of the jump and approach before the spike to improve VJ performance seem to be equally mastered activity in both sexes. These results could assist coaches in the development of jumping performance in volleyball players. Furthermore, presented normative data for jump heights of elite male and female volleyball players could be useful in selection and profiling of young volleyball players.

  20. Simulation-Based Design for Wearable Robotic Systems: An Optimization Framework for Enhancing a Standing Long Jump.

    PubMed

    Ong, Carmichael F; Hicks, Jennifer L; Delp, Scott L

    2016-05-01

    Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human-robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135, 365, and 297 Nm to the ankle, knee, and hip, respectively. Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Simulation can aid in the design of performance-enhancing technologies.

  1. Isometric and dynamic strength and neuromuscular attributes as predictors of vertical jump performance in 11- to 13-year-old male athletes.

    PubMed

    McKinlay, Brandon John; Wallace, Phillip J; Dotan, Raffy; Long, Devon; Tokuno, Craig; Gabriel, David A; Falk, Bareket

    2017-09-01

    In explosive contractions, neural activation is a major factor in determining the rate of torque development, while the latter is an important determinant of jump performance. However, the contribution of neuromuscular activation and rate of torque development to jump performance in children and youth is unclear. The purpose of this study was to examine the relationships between the rate of neuromuscular activation, peak torque, rate of torque development, and jump performance in young male athletes. Forty-one 12.5 ± 0.5-year-old male soccer players completed explosive, unilateral isometric and dynamic (240°/s) knee extensions (Biodex System III), as well as countermovement-, squat-, and drop-jumps. Peak torque (pT), peak rate of torque development (pRTD), and rate of vastus lateralis activation (Q 30 ) during the isometric and dynamic contractions were examined in relation to attained jump heights. Isometric pT and pRTD were strongly correlated (r = 0.71) but not related to jump performance. Dynamic pT and pRTD, normalized to body mass, were significantly related to jump height in all 3 jumps (r = 0.38-0.66, p < 0.05). Dynamic normalized, but not absolute pRTD, was significantly related to Q 30 (r = 0.35, p < 0.05). In young soccer players, neuromuscular activation and rate of torque development in dynamic contractions are related to jump performance, while isometric contractions are not. These findings have implications in the choice of training and assessment methods for young athletes.

  2. Effect of Olympic and traditional resistance training on vertical jump improvement in high school boys.

    PubMed

    Channell, Brian T; Barfield, J P

    2008-09-01

    The purpose of this study was to compare the effects of a ballistic resistance training program of Olympic lifts with those of a traditional resistance training program of power lifts on vertical jump improvement in male high school athletes. Twenty-seven male student athletes were recruited from a high school football program at a small, rural school in the Southeast. The subjects were divided into an Olympic training group (OT, n = 11), a power training group (PT, n = 10), and a control group (n = 6). Analysis of variance was used to determine whether a significant mean difference existed among groups on vertical jump improvement after 8 weeks of group-specific training. Effect size of vertical jump improvement between groups, and correlations between strength and vertical jump performance, were also examined. There was no significant mean difference (p >or= 0.05) among OT, PT, and control groups, but large effect sizes between OT and control (d = 1.06) and PT and control (d = 0.94) demonstrate that both OT and PT are effective in improving vertical jump performance in male high school athletes. Moderate to high correlations were noted between squat score and vertical jump after adjusting for body weight (r = 0.42) and between power clean and vertical jump after adjusting for body weight (r = 0.75). Findings from the current study indicate that Olympic lifts as well as power lifts provide improvement in vertical jump performance and that Olympic lifts may provide a modest advantage over power lifts for vertical jump improvement in high school athletes.

  3. Power variables and bilateral force differences during unloaded and loaded squat jumps in high performance alpine ski racers.

    PubMed

    Patterson, Carson; Raschner, Christian; Platzer, Hans-Peter

    2009-05-01

    The purpose of this paper was to investigate the power-load relationship and to compare power variables and bilateral force imbalances between sexes with squat jumps. Twenty men and 17 women, all members of the Austrian alpine ski team (junior and European Cup), performed unloaded and loaded (barbell loads equal to 25, 50, 75, and 100% body weight [BW]) squat jumps with free weights using a specially designed spotting system. Ground reaction force records from 2 force platforms were used to calculate relative average power (P), relative average power in the first 100 ms of the jump (P01), relative average power in the first 200 ms of the jump (P02), jump height, percentage of best jump height (%Jump), and maximal force difference between dominant and nondominant leg (Fmaxdiff). The men displayed significantly higher values at all loads for P and jump height (p < 0.05). No significant differences were found in P01. The men had significantly higher P02 at all loads except 75% BW). Maximum P was reached at light loads (men at 25% BW and women at 0% BW), and P decreased uniformly thereafter. Individual power-load curves show a deflection point. It is proposed that the load where the power-load deflection point occurs be used as the power training load and not the load at which maximum P is reached. It is also proposed that loads not be described in %1-repetition maximum (RM), but as %BW. This system can be used to safely assess and train power with loaded jumps and free weights.

  4. Propulsion efficiency and imposed flow fields of a copepod jump.

    PubMed

    Jiang, Houshuo; Kiørboe, Thomas

    2011-02-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump quickly evolves into two counter-rotating viscous vortex rings that are near mirror image of one another, one in the wake and one around the body of the copepod; this near symmetrical flow may provide hydrodynamic camouflage because it contains no information about the position of the copepod prey within the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94-0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms but is caused by the rapidity and impulsiveness of the jump that allows only a low-cost viscous wake vortex to travel backwards.

  5. Prediction of vertical jump height from anthropometric factors in male and female martial arts athletes.

    PubMed

    Abidin, Nahdiya Zainal; Adam, Mohd Bakri

    2013-01-01

    Vertical jump is an index representing leg/kick power. The explosive movement of the kick is the key to scoring in martial arts competitions. It is important to determine factors that influence the vertical jump to help athletes improve their leg power. The objective of the present study is to identify anthropometric factors that influence vertical jump height for male and female martial arts athletes. Twenty-nine male and 25 female athletes participated in this study. Participants were Malaysian undergraduate students whose ages ranged from 18 to 24 years old. Their heights were measured using a stadiometer. The subjects were weighted using digital scale. Body mass index was calculated by kg/m(2). Waist-hip ratio was measured from the ratio of waist to hip circumferences. Body fat % was obtained from the sum of four skinfold thickness using Harpenden callipers. The highest vertical jump from a stationary standing position was recorded. The maximum grip was recorded using a dynamometer. For standing back strength, the maximum pull upwards using a handle bar was recorded. Multiple linear regression was used to obtain the relationship between vertical jump height and explanatory variables with gender effect. Body fat % has a significant negative relationship with vertical jump height (P < 0.001). The effect of gender is significant (P < 0.001): on average, males jumped 26% higher than females did. Vertical jump height of martial arts athletes can be predicted by body fat %. The vertical jump for male is higher than for their female counterparts. Reducing body fat by proper dietary planning will help to improve leg power.

  6. Jump performance and augmented feedback: immediate benefits and long-term training effects.

    PubMed

    Keller, Martin; Lauber, Benedikt; Gehring, Dominic; Leukel, Christian; Taube, Wolfgang

    2014-08-01

    Drop jumps and their adaptations to training have been extensively investigated. However, the influence of augmented feedback (aF) on stretch-shortening cycle (SSC) was not scrutinized so far despite the well-known positive effects of aF on motor performance and motor learning. The aim of the present study was therefore to investigate the effects of aF by evaluating immediate within-session effects and long-term adaptations. 34 participants were assigned to three groups that trained drop jumps with different relative frequencies of aF about their jump height: 100%, 50%, or 0%. A significant within-session effect of aF on jump height was observed before and also after the training period (pre: +4.6%; post: +2.6%). In the long-term (comparing pre- to post-measurement), the 100% group showed the greatest increase in jump height (+14%), followed by the 50% (+10%) and the 0% group (+6%). The importance of aF on drop jumps is therefore twofold: (i) to immediately increase jump performance and (ii) to improve long-term training efficacy. In contrast to the proposition of the guidance hypothesis, high frequency of aF seems to be beneficial when maximizing SSC-performance. As jump height cannot be quantified without objective technical measures it is recommended to include them into daily training. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A 12-year National Study of Suicide by Jumping From Bridges in Norway.

    PubMed

    Sæheim, Aleksandra; Hestetun, Ingebjørg; Mork, Erlend; Nrugham, Latha; Mehlum, Lars

    2017-01-01

    Studies from several countries suggest that erecting fences on bridges more commonly used for suicide by jumping may be an effective way of reducing the risk of suicide by jumping from these bridges. Distribution of suicides by jumping off bridges has not yet been studied on a national level in any country. This study included all suicides by jumping from high places registered in the Norwegian Cause of Death Registry (COD) in the period 1999-2010 (n = 319). Combining data from the COD registry and information from police records, 71 cases of suicide by jumping off a bridge were identified involving 36 bridges. This form of suicide constituted approximately 1% of all suicides in Norway in the period 1999-2010. Almost half of these suicides were registered at only 6 bridges. Three Norwegian bridges were secured during the observation period of this study. Two bridges had barriers installed on the full length of the bridge with 11 suicides registered before barriers were installed, and none after. On the 1 bridge that was only partially secured, no change in numbers of suicides was observed after barriers were installed. One-third of jumps from bridges occurred over land. We found that although suicide by jumping off bridges was a relatively rare event, there is a potential for saving lives by installing physical barriers on bridges that are more commonly used for suicide by jumping.

  8. Knee Muscular Control During Jump Landing in Multidirections.

    PubMed

    Sinsurin, Komsak; Vachalathiti, Roongtiwa; Jalayondeja, Wattana; Limroongreungrat, Weerawat

    2016-06-01

    Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks. The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direction jump landing. Eighteen male athletes performed the jump-landing test in four directions: forward (0°), 30° diagonal, 60° diagonal, and lateral (90°). Muscles tested were vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), semitendinosus (ST), and biceps femoris (BF). A Vicon(TM) 612 workstation collected the kinematic data. An electromyography was synchronized with the Vicon(TM) Motion system to quantify dynamic muscle function. Repeated measure ANOVA was used to analyze the data. Jump-landing direction significantly influenced (P < 0.05) muscle activities of VL, RF, and ST and knee flexion excursion. Jumpers landed with a trend of decreasing knee flexion excursion and ST muscle activity 100 ms before foot contact progressively from forward to lateral directions of jump landing. A higher risk of knee injury might occur during lateral jump landing than forward and diagonal directions. Athletes should have more practice in jump landing in lateral direction to avoid injury. Landing technique with high knee flexion in multi-directions should be taught to jumpers for knee injury prevention.

  9. [Correlation coefficient-based principle and method for the classification of jump degree in hydrological time series].

    PubMed

    Wu, Zi Yi; Xie, Ping; Sang, Yan Fang; Gu, Hai Ting

    2018-04-01

    The phenomenon of jump is one of the importantly external forms of hydrological variabi-lity under environmental changes, representing the adaption of hydrological nonlinear systems to the influence of external disturbances. Presently, the related studies mainly focus on the methods for identifying the jump positions and jump times in hydrological time series. In contrast, few studies have focused on the quantitative description and classification of jump degree in hydrological time series, which make it difficult to understand the environmental changes and evaluate its potential impacts. Here, we proposed a theatrically reliable and easy-to-apply method for the classification of jump degree in hydrological time series, using the correlation coefficient as a basic index. The statistical tests verified the accuracy, reasonability, and applicability of this method. The relationship between the correlation coefficient and the jump degree of series were described using mathematical equation by derivation. After that, several thresholds of correlation coefficients under different statistical significance levels were chosen, based on which the jump degree could be classified into five levels: no, weak, moderate, strong and very strong. Finally, our method was applied to five diffe-rent observed hydrological time series, with diverse geographic and hydrological conditions in China. The results of the classification of jump degrees in those series were closely accorded with their physically hydrological mechanisms, indicating the practicability of our method.

  10. Explosive Strength Imbalances in Professional Basketball Players

    PubMed Central

    Schiltz, Marc; Lehance, Cédric; Maquet, Didier; Bury, Thierry; Crielaard, Jean-Michel; Croisier, Jean-Louis

    2009-01-01

    Context: Despite the high rate of lower limb injuries in basketball players, studies of the dominant-limb effect in elite athletes often neglect injury history. Objective: To determine lower limb explosive-strength asymmetries in professional basketball players compared with junior basketball players and control participants. Design: Cohort study. Setting: Academic medical institution. Patients or Other Participants: 15 professional basketball players, 10 junior basketball players, and 20 healthy men. Main Outcome Measure(s): We performed an isokinetic examination to evaluate the knee extensor (Ext) and flexor (Fl) concentric peak torque at 60°·s−1 and 240°·s−1 and (Fl only) eccentric peak torque at 30°·s−1 and 120°·s−1. Functional evaluation included countermovement jump, countermovement jump with arms, 10-m sprint, single-leg drop jump, and single-leg, 10-second continuous jumping. Variables were compared among groups using analysis of variance or a generalized linear mixed model for bilateral variables. Results: The 2 groups of basketball players demonstrated better isokinetic and functional performances than the control group did. No differences in functional or relative isokinetic variables were noted between professional and junior basketball players. Professional players with a history of knee injury failed to reach normal knee extensor strength at 60°·s−1. Knee Ext (60°·s−1) and Fl (eccentric 120°·s−1) torque values as well as 10-second continuous jumping scores were higher in those professional players without a history of knee injury than those with such a history. Compared with the group without a history of knee injury, the group with a history of knee injury maintained leg asymmetry ratios greater than 10% for almost all isokinetic variables and more than 15% for unilateral functional variables. Conclusions: The relative isokinetic and functional performances of professional basketball players were similar to those of junior players, with no dominant-side effect. A history of knee injury in the professional athlete, however, was reflected in bilateral isokinetic and functional asymmetries and should be considered in future studies of explosive strength. PMID:19180217

  11. Dynamic Warm-Up Protocols, With and Without a Weighted Vest, and Fitness Performance in High School Female Athletes

    PubMed Central

    Faigenbaum, Avery D; McFarland, James E; Schwerdtman, Jeff A; Ratamess, Nicholas A; Kang, Jie; Hoffman, Jay R

    2006-01-01

    Context: Recent authors have not found substantial evidence to support the use of static stretching for improving performance, so interest in dynamic warm-up procedures has risen. Our findings may improve the understanding of the acute effects of different types of pre-exercise protocols on performance and may help clinicians develop effective warm-up protocols for sports practice and competition. Objective: To examine the acute effects of 4 warm-up protocols with and without a weighted vest on anaerobic performance in female high school athletes. Design: Randomized, counterbalanced, repeated-measures design. Setting: High school fitness center. Patients or Other Participants: Eighteen healthy high school female athletes (age = 15.3 ± 1.2 years, height = 166.3 ± 9.1 cm, mass = 61.6 ± 10.4 kg). Intervention(s): After 5 minutes of jogging, subjects performed 4 randomly ordered warm-up protocols: (1) Five static stretches (2 × 30 seconds) (SS), (2) nine moderate-intensity to high-intensity dynamic exercises (DY), (3) the same 9 dynamic exercises performed with a vest weighted with 2% of body mass (DY2), and (4) the same 9 dynamic exercises performed with a vest weighted with 6% of body mass (DY6). Main Outcome Measure(s): Vertical jump, long jump, seated medicine ball toss, and 10-yard sprint. Results: Vertical jump performance was significantly greater after DY (41.3 ± 5.4 cm) and DY2 (42.1 ± 5.2 cm) compared with SS (37.1 ± 5.1 cm), and long jump performance was significantly greater after DY2 (180.5 ± 20.3 cm) compared with SS (160.4 ± 20.8 cm) ( P ≤ .05). No significant differences between trials were observed for the seated medicine ball toss or 10-yard sprint. Conclusions: A dynamic warm-up performed with a vest weighted with 2% of body mass may be the most effective warm-up protocol for enhancing jumping performance in high school female athletes. PMID:17273458

  12. Effect of High-Speed Strength Training on Physical Performance in Young Soccer Players of Different Ages.

    PubMed

    Rodríguez-Rosell, David; Franco-Márquez, Felipe; Mora-Custodio, Ricardo; González-Badillo, Juan José

    2017-09-01

    Rodríguez-Rosell, D, Franco-Márquez, F, Mora-Custodio, R, and González-Badillo, JJ. Effect of high-speed strength training on physical performance in young soccer players of different ages. J Strength Cond Res 31(9): 2498-2508, 2017-The aim of the present study was to compare the effectiveness of low-load, low-volume weight training combined with plyometrics on strength, sprint, and jump performance in soccer players of different ages. Eighty-six soccer players from the same academy were categorized into 3 groups by age (under 13 years, U13, n = 30; under 15, U15, n = 28; and under 17, U17, n = 28) and then randomly assigned into 2 subgroups: a strength training group (STG) and a control group (CG). The strength training program was performed twice a week for 6 weeks and consisted of full squats (load: 45-60% 1 repetition maximum; volume: 3 set of 8-4 repetitions), jumps, and straight line sprint exercises. After training intervention, the STGs showed significant improvements in maximal strength (7.5-54.5%; p < 0.001), jump height (5.7-12.5%; p <0.01-0.001), and sprint time (-3.7 to -1.2%; p ≤0.05-0.001), whereas no significant gains were found for any variable in the CGs. Comparison between experimental groups resulted in a greater magnitude of change for U13 compared with U15 (effect sizes [ES]: 0.10-0.53) and U17 (ES: 0.14-1.41) soccer players in most variables, whereas U15 showed higher improvements in jump and strength parameters than U17 (ES: 0.25-0.90) soccer players. Thus, although our results indicates that a combined weight training and plyometrics program may be effective in eliciting gains in strength, jump, and sprint in soccer players of different ages, the training program used appears to be generally less effective as the age of the soccer players increased. Therefore, it appears that training characteristics (mainly volume, intensity, and type of exercise) should be modified in relation to maturity status and initial strength level.

  13. Kinematic Analysis of the Standing Long Jump in Children 6- to 12-Years-Old

    ERIC Educational Resources Information Center

    Fernandez-Santos, Jorge R.; Gonzalez-Montesinos, Jose Luis; Ruiz, Jonatan R.; Jiménez-Pavón, David; Castro-Piñero, Jose

    2018-01-01

    The purpose of this study was to analyze the kinematic variables that determine the performance of the standing long jump in children 6- to 12-years-old. There were 121 healthy children (58 girls) recorded while they performed the standing long jump test. All kinematic variables showed a significant correlation with calculated jump distance and…

  14. The "Suicide Guard Rail": a minimal structural intervention in hospitals reduces suicide jumps.

    PubMed

    Mohl, Andreas; Stulz, Niklaus; Martin, Andrea; Eigenmann, Franz; Hepp, Urs; Hüsler, Jürg; Beer, Jürg H

    2012-08-04

    Jumping from heights is a readily available and lethal method of suicide. This study examined the effectiveness of a minimal structural intervention in preventing suicide jumps at a Swiss general teaching hospital. Following a series of suicide jumps out of the hospital's windows, a metal guard rail was installed at each window of the high-rise building. In the 114 months prior to the installation of the metal guard rail, 10 suicides by jumping out of the hospital's windows occurred among 119,269 inpatients. This figure was significantly reduced to 2 fatal incidents among 104,435 inpatients treated during the 78 months immediately following the installation of the rails at the hospital's windows (χ2 = 4.34, df = 1, p = .037). Even a minimal structural intervention might prevent suicide jumps in a general hospital. Further work is needed to examine the effectiveness of minimal structural interventions in preventing suicide jumps.

  15. The “Suicide Guard Rail”: a minimal structural intervention in hospitals reduces suicide jumps

    PubMed Central

    2012-01-01

    Background Jumping from heights is a readily available and lethal method of suicide. This study examined the effectiveness of a minimal structural intervention in preventing suicide jumps at a Swiss general teaching hospital. Following a series of suicide jumps out of the hospital’s windows, a metal guard rail was installed at each window of the high-rise building. Results In the 114 months prior to the installation of the metal guard rail, 10 suicides by jumping out of the hospital’s windows occurred among 119,269 inpatients. This figure was significantly reduced to 2 fatal incidents among 104,435 inpatients treated during the 78 months immediately following the installation of the rails at the hospital’s windows (χ2 = 4.34, df = 1, p = .037). Conclusions Even a minimal structural intervention might prevent suicide jumps in a general hospital. Further work is needed to examine the effectiveness of minimal structural interventions in preventing suicide jumps. PMID:22862804

  16. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces

    PubMed Central

    Chen, Xuemei; Patel, Ravi S.; Weibel, Justin A.; Garimella, Suresh V.

    2016-01-01

    Coalescence-induced jumping of condensate droplets from a superhydrophobic surface with hierarchical micro/nanoscale roughness is quantitatively characterized. Experimental observations show that the condensate droplet jumping is induced by coalescence of multiple droplets of different sizes, and that the coalesced droplet trajectories typically deviate from the surface normal. A depth-from-defocus image processing technique is developed to track the out-of-plane displacement of the jumping droplets, so as to accurately measure the droplet size and velocity. The results demonstrate that the highest jumping velocity is achieved when two droplets coalesce. The jumping velocity decreases gradually with an increase in the number of coalescing droplets, despite the greater potential surface energy released upon coalescence. A general theoretical model that accounts for viscous dissipation, surface adhesion, line tension, the initial droplet wetting states, and the number and sizes of the coalescing droplets is developed to explain the trends of droplet jumping velocity observed in the experiments. PMID:26725512

  17. The Application of Nonstandard Analysis to the Study of Inviscid Shock Wave Jump Conditions

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Baty, R. S.

    1998-01-01

    The use of conservation laws in nonconservative form for deriving shock jump conditions by Schwartz distribution theory leads to ambiguous products of generalized functions. Nonstandard analysis is used to define a class of Heaviside functions where the jump from zero to one occurs on an infinitesimal interval. These Heaviside functions differ by their microstructure near x = 0, i.e., by the nature of the rise within the infinitesimal interval it is shown that the conservation laws in nonconservative form can relate the different Heaviside functions used to define jumps in different flow parameters. There are no mathematical or logical ambiguities in the derivation of the jump conditions. An important result is that the microstructure of the Heaviside function of the jump in entropy has a positive peak greater than one within the infinitesimal interval where the jump occurs. This phenomena is known from more sophisticated studies of the structure of shock waves using viscous fluid assumption. However, the present analysis is simpler and more direct.

  18. Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Arun; Rakheja, Shaloo

    2018-06-01

    The jump-noise is a nonhomogeneous Poisson process which models thermal effects in magnetization dynamics, with special applications in low temperature escape rate phenomena. In this work, we develop improved numerical methods for Monte Carlo simulation of the jump-noise dynamics and validate the method by comparing the stationary distribution obtained empirically against the Boltzmann distribution. In accordance with the Néel-Brown theory, the jump-noise dynamics display an exponential relaxation toward equilibrium with a characteristic reversal time, which we extract for nanomagnets with uniaxial and cubic anisotropy. We relate the jump-noise dynamics to the equivalent Landau-Lifshitz dynamics up to second order correction for a general energy landscape and obtain the analogous Néel-Brown theory's solution of the reversal time. We find that the reversal time of jump-noise dynamics is characterized by Néel-Brown theory's solution at the energy saddle point for small noise. For large noise, the magnetization reversal due to jump-noise dynamics phenomenologically represents macroscopic tunneling of magnetization.

  19. Novel Integrated System Architecture for an Autonomous Jumping Micro-Robot

    DTIC Science & Technology

    2010-01-01

    traces Figure 45 Solder joints made directly to FET and capacitor before assembling circuit on hexapod Figure 46 Metal pads attached to...energetic chip using Loctite Figure 47 Circuit connected to oxidized nanoporous Si by soldering to pads on the substrate Figure 48 Capacitor discharge...thermal, shape memory alloy (SMA), piezoelectric , magnetic, etc. Each actuator has a unique set of characteristics, which include operating

  20. Neuromuscular Fatigue and Physiological Responses After Five Dynamic Squat Exercise Protocols.

    PubMed

    Raeder, Christian; Wiewelhove, Thimo; Westphal-Martinez, Marc P; Fernandez-Fernandez, Jaime; de Paula Simola, Rauno A; Kellmann, Michael; Meyer, Tim; Pfeiffer, Mark; Ferrauti, Alexander

    2016-04-01

    This aimed to analyze neuromuscular, physiological and perceptual responses to a single bout of 5 different dynamic squat exercise protocols. In a randomized and counterbalanced order, 15 male resistance-trained athletes (mean ± SD; age: 23.1 ± 1.9 years, body mass: 77.4 ± 8.0 kg) completed traditional multiple sets (MS: 4 × 6, 85% 1 repetition maximum [RM]), drop sets (DS: 1 × 6, 85% 1RM + 3 drop sets), eccentric overload (EO: 4 × 6, 70% 1RM concentric, 100% 1RM eccentric), flywheel YoYo squat (FW: 4 × 6, all-out), and a plyometric jump protocol (PJ: 4 × 15, all-out). Blood lactate (La), ratings of perceived exertion (RPE), counter movement jump height (CMJ), multiple rebound jump (MRJ) performance, maximal voluntary isometric contraction force, serum creatine kinase (CK) and delayed onset muscle soreness were measured. Immediately post exercise, La was significantly (p < 0.001) higher in FW (mean ± 95% confidence limit; 12.2 ± 0.9 mmol·L) and lower in PJ (3.0 ± 0.8 mmol·L) compared with MS (7.7 ± 1.5 mmol·L), DS (8.5 ± 0.6 mmol·L), and EO (8.2 ± 1.6 mmol·L), accompanied by similar RPE responses. Neuromuscular performance (CMJ, MRJ) significantly remained decreased (p < 0.001) from 0.5 to 48 hours post exercise in all protocols. There was a significant time × protocol interaction (p ≤ 0.05) in MRJ with a significant lower performance in DS, EO, and FW compared with PJ (0.5 hours post exercise), and in EO compared with all other protocols (24 hours post exercise). A significant main time effect with peak values 24 hours post exercise was observed in CK serum concentrations (p < 0.001), but there was no time × protocol interaction. In conclusion, (a) metabolic and perceptual demands were higher in FW and EO compared with MS, DS and PJ, (b) neuromuscular fatigue was consistent up to 48 hours post exercise in all protocols, and (c) EO induced the greatest neuromuscular fatigue.

  1. Comparative Effects of In-Season Full-Back Squat, Resisted Sprint Training, and Plyometric Training on Explosive Performance in U-19 Elite Soccer Players.

    PubMed

    de Hoyo, Moises; Gonzalo-Skok, Oliver; Sañudo, Borja; Carrascal, Claudio; Plaza-Armas, Jose R; Camacho-Candil, Fernando; Otero-Esquina, Carlos

    2016-02-01

    The aim of this study was to analyze the effects of 3 different low/moderate load strength training methods (full-back squat [SQ], resisted sprint with sled towing [RS], and plyometric and specific drills training [PLYO]) on sprinting, jumping, and change of direction (COD) abilities in soccer players. Thirty-two young elite male Spanish soccer players participated in the study. Subjects performed 2 specific strength training sessions per week, in addition to their normal training sessions for 8 weeks. The full-back squat protocol consisted of 2-3 sets × 4-8 repetitions at 40-60% 1 repetition maximum (∼ 1.28-0.98 m · s(-1)). The resisted sprint training was compounded by 6-10 sets × 20-m loaded sprints (12.6% of body mass). The plyometric and specific drills training was based on 1-3 sets × 2-3 repetitions of 8 plyometric and speed/agility exercises. Testing sessions included a countermovement jump (CMJ), a 20-m sprint (10-m split time), a 50-m (30-m split time) sprint, and COD test (i.e., Zig-Zag test). Substantial improvements (likely to almost certainly) in CMJ (effect size [ES]: 0.50-0.57) and 30-50 m (ES: 0.45-0.84) were found in every group in comparison to pretest results. Moreover, players in PLYO and SQ groups also showed substantial enhancements (likely to very likely) in 0-50 m (ES: 0.46-0.60). In addition, 10-20 m was also improved (very likely) in the SQ group (ES: 0.61). Between-group analyses showed that improvements in 10-20 m (ES: 0.57) and 30-50 m (ES: 0.40) were likely greater in the SQ group than in the RS group. Also, 10-20 m (ES: 0.49) was substantially better in the SQ group than in the PLYO group. In conclusion, the present strength training methods used in this study seem to be effective to improve jumping and sprinting abilities, but COD might need other stimulus to achieve positive effects.

  2. End-growth/evaporation living polymerization kinetics revisited

    NASA Astrophysics Data System (ADS)

    Semenov, A. N.; Nyrkova, I. A.

    2011-03-01

    End-growth/evaporation kinetics in living polymer systems with "association-ready" free unimers (no initiator) is considered theoretically. The study is focused on the systems with long chains (typical aggregation number N ≫ 1) at long times. A closed system of continuous equations is derived and is applied to study the kinetics of the chain length distribution (CLD) following a jump of a parameter (T-jump) inducing a change of the equilibrium mean chain length from N0 to N. The continuous approach is asymptotically exact for t ≫ t1, where t1 is the dimer dissociation time. It yields a number of essentially new analytical results concerning the CLD kinetics in some representative regimes. In particular, we obtained the asymptotically exact CLD response (for N ≫ 1) to a weak T-jump (ɛ = N0/N - 1 ≪ 1). For arbitrary T-jumps we found that the longest relaxation time tmax = 1/γ is always quadratic in N (γ is the relaxation rate of the slowest normal mode). More precisely tmax ∝4N2 for N0 < 2N and tmax ∝NN0/(1 - N/N0) for N0 > 2N. The mean chain length Nn is shown to change significantly during the intermediate slow relaxation stage t1 ≪ t ≪ tmax . We predict that N_n(t)-N_n(0)∝ √{t} in the intermediate regime for weak (or moderate) T-jumps. For a deep T-quench inducing strong increase of the equilibrium Nn (N ≫ N0 ≫ 1), the mean chain length follows a similar law, N_n(t)∝ √{t}, while an opposite T-jump (inducing chain shortening, N0 ≫ N ≫ 1) leads to a power-law decrease of Nn: Nn(t)∝t-1/3. It is also shown that a living polymer system gets strongly polydisperse in the latter regime, the maximum polydispersity index r = Nw/Nn being r* ≈ 0.77N0/N ≫ 1. The concentration of free unimers relaxes mainly during the fast process with the characteristic time tf ˜ t1N0/N2. A nonexponential CLD dominated by short chains develops as a result of the fast stage in the case of N0 = 1 and N ≫ 1. The obtained analytical results are supported, in part, by comparison with numerical results found both previously and in the present paper.

  3. Open Quantum Walks with Noncommuting Jump Operators

    NASA Astrophysics Data System (ADS)

    Caballar, Roland Cristopher; Petruccione, Francesco; Sinayskiy, Ilya

    2014-03-01

    We examine homogeneous open quantum walks along a line, wherein each forward step is due to one quantum jump operator, and each backward step due to another quantum jump operator. We assume that these two quantum jump operators do not commute with each other. We show that if the system has N internal degrees of freedom, for particular forms of these quantum jump operators, we can obtain exact probability distributions which fall into two distinct classes, namely Gaussian distributions and solitonic distributions. We also show that it is possible for a maximum of 2 solitonic distributions to be present simultaneously in the system. Finally, we consider applications of these classes of jump operators in quantum state preparation and quantum information. We acknowledge support from the National Institute for Theoretical Physics (NITheP).

  4. Computer Literacy Education

    DTIC Science & Technology

    1989-01-01

    of the 33,000 schools that had not previously used computers began to do so. " The proportion of elementary schools with 5 or more computers jumped...scale studies of primary and secondary education throughout the country, for the Federal government. In 1980, they found 15% of elementary schools and 50...of secondary schools offering instruction in the use of computers. By 1985, these figuires climbed to 82% of elementary schools and 93% of secondary

  5. XMM-Newton Observations of the Southeastern Radio Relic in Abell 3667

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Vink, Jacco; Zandanel, Fabio; Akamatsu, Hiroki

    2018-06-01

    Radio relics, elongated, non-thermal, structures located at the edges of galaxy clusters, are the result of synchrotron radiation from cosmic-ray electrons accelerated by merger-driven shocks at the cluster outskirts. However, X-ray observations of such shocks in some clusters suggest that they are too weak to efficiently accelerate electrons via diffusive shock acceleration to energies required to produce the observed radio power. We examine this issue in the merging galaxy cluster Abell 3667 (A3667), which hosts a pair of radio relics. While the Northwest relic in A3667 has been well studied in the radio and X-ray by multiple instruments, the Southeast relic region has only been observed so far by Suzaku, which detected a temperature jump across the relic, suggesting the presence of a weak shock. We present observations of the Southeastern region of A3667 with XMM-Newton centered on the radio relic. We confirm the existence of an X-ray shock with Mach number of about 1.8 from a clear detection of temperature jump and a tentative detection of a density jump, consistent with previous measurements by Suzaku. We discuss the implications of this measurement for diffusive shock acceleration as the main mechanism for explaining the origin of radio relics. We then speculate on the plausibility of alternative scenarios, including re-acceleration and variations in the Mach number along shock fronts.

  6. The application of modern methods of biomechanics to the evaluation of jumping performance in ancient Greece.

    PubMed

    Ward-Smith, A J

    1995-06-01

    Modern methods of biomechanics are applied to examine some of the outstanding feats of jumping that have been reported in the literature from classical times. It is concluded that these feats could not have been achieved using the current long-jump prescription, with the take-off and landing areas in the same horizontal plane. A possible explanation is that the landing area was some 5.5 m or more below the take-off area. Alternatively, and more plausibly, the jump could have been similar to the modern triple jump.

  7. Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height

    PubMed Central

    Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian

    2017-01-01

    Background: Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. Hypothesis: A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. Results: The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association (r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association (r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = –0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Conclusion: Initial analysis showed a strong association between isokinetic strength and jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research. PMID:29147670

  8. Thomson's Jumping Ring over a Long Coil

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Amiri, Farhang

    2018-01-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to…

  9. Investigating the Relationship between Sprint and Jump Performances with Velocity and Power Parameters during Propulsive Phase of the Loaded-Squat Jump Exercise

    ERIC Educational Resources Information Center

    Can, Ibrahim

    2018-01-01

    The purpose of this study was to investigate the relationship between sprint and jump performance with velocity parameters in the loaded-squat jump exercise (SQ[subscript Loaded]). In accordance with this purpose, a total of 13 athletes competing in martial sports have participated in this study voluntarily. In this study, sprint tests, vertical…

  10. Predictive Ability of the Medicine Ball Chest Throw and Vertical Jump Tests for Determining Muscular Strength and Power in Adolescents

    ERIC Educational Resources Information Center

    Hackett, Daniel A.; Davies, Timothy B.; Ibel, Denis; Cobley, Stephen; Sanders, Ross

    2018-01-01

    This study examined the predictive ability of the medicine ball chest throw and vertical jump for muscular strength and power in adolescents. One hundred and ninety adolescents participated in this study. Participants performed trials of the medicine ball chest throw and vertical jump, with vertical jump peak power calculated via an estimation…

  11. Gender Differences and Biomechanics in the 3000M Steeplechase Water Jump.

    PubMed

    Hunter, Ian; Lindsay, Bryan K; Andersen, Kassi R

    2008-01-01

    Since 1996, women have been competing in the 3000m steeplechase race internationally. Whenever women and men both compete in similar events with different equipment (the barriers are lower for women) consideration should be given as to how techniques should be coached differently. This study investigated the differences in water-jump technique between men and women after accounting for differences in running speed and which techniques led to maintenance of race pace through the water-jump. Eighteen men and 18 women were filmed at two major track and field meets during the 2004 season. Peak Motus 8.2 was used to digitize all seven jumps from each athlete. Various characteristics of water-jump technique were measured or calculated and compared using two multiple linear regressions (one for men and one for women) to determine which characteristics led to maintaining race pace speeds through the water jump obstacle. Repeated measures ANOVA was used to determine any differences between men and women in the measured characteristics of technique.Velocity through the jump divided by race pace was predicted very well by approach velocity and landing distance for men and women. Other characteristics of the movement were non-significant. Differences between genders were found in: approach velocity, take-off distance, landing distance, push-off angle, velocity through jump, and exit velocity. Men and women steeplechasers must focus on approach velocity and landing distance to complete the water-jump close to their race pace. Coaches need to consider many characteristics of technique that differ between men and women. Key pointsWomen may need to be coached differently than men in the steeplechase water jump due to different techniques required.Men and women must focus on a high approach velocity to complete the steeplechase water jump successfully.Men and women must generate a relatively long landing distance to maintain velocity and keep from having to use extra energy exiting the water pit.Women's race paces were affected more than men's by the water jump in a negative way.

  12. Optimal coordination of maximal-effort horizontal and vertical jump motions – a computer simulation study

    PubMed Central

    Nagano, Akinori; Komura, Taku; Fukashiro, Senshi

    2007-01-01

    Background The purpose of this study was to investigate the coordination strategy of maximal-effort horizontal jumping in comparison with vertical jumping, using the methodology of computer simulation. Methods A skeletal model that has nine rigid body segments and twenty degrees of freedom was developed. Thirty-two Hill-type lower limb muscles were attached to the model. The excitation-contraction dynamics of the contractile element, the tissues around the joints to limit the joint range of motion, as well as the foot-ground interaction were implemented. Simulations were initiated from an identical standing posture for both motions. Optimal pattern of the activation input signal was searched through numerical optimization. For the horizontal jumping, the goal was to maximize the horizontal distance traveled by the body's center of mass. For the vertical jumping, the goal was to maximize the height reached by the body's center of mass. Results As a result, it was found that the hip joint was utilized more vigorously in the horizontal jumping than in the vertical jumping. The muscles that have a function of joint flexion such as the m. iliopsoas, m. rectus femoris and m. tibialis anterior were activated to a greater level during the countermovement in the horizontal jumping with an effect of moving the body's center of mass in the forward direction. Muscular work was transferred to the mechanical energy of the body's center of mass more effectively in the horizontal jump, which resulted in a greater energy gain of the body's center of mass throughout the motion. Conclusion These differences in the optimal coordination strategy seem to be caused from the requirement that the body's center of mass needs to be located above the feet in a vertical jumping, whereas this requirement is not so strict in a horizontal jumping. PMID:17543118

  13. Caffeinated energy drinks improve volleyball performance in elite female players.

    PubMed

    Pérez-López, Alberto; Salinero, Juan José; Abian-Vicen, Javier; Valadés, David; Lara, Beatriz; Hernandez, Cesar; Areces, Francisco; González, Cristina; Del Coso, Juan

    2015-04-01

    The objective of this study is to determine the effects of a caffeine-containing energy drink on female volleyball players' performance. Thirteen elite female volleyball players ingested 3 mg·kg of caffeine with an energy drink or the same drink without caffeine (placebo drink) in a double-blind and randomized study. Then, participants performed the following: standing spike, jumping spike, spike jump, blocking jump, squat jump, countermovement jump, manual dynamometry, and the agility t-test. A simulated volleyball game was played, videotaped, and notated afterward. In comparison to the placebo drink, the ingestion of the caffeinated energy drink increased the ball velocity in the standing spike (19.2 ± 2.1 vs 19.7 ± 1.9 m·s, P = 0.023) and in the jumping spike (17.9 ± 2.2 vs 18.8 ± 2.2 m·s, P = 0.038) and the jump height in the squat jump (28.1 ± 3.2 vs 29.4 ± 3.6 cm, P = 0.028), countermovement jump (32.0 ± 4.6 vs 33.1 ± 4.5 cm, P = 0.018), spike jump (43.3 ± 4.7 vs 44.4 ± 5.0 cm, P = 0.025), and block jump (35.2 ± 5.1 vs 36.1 ± 5.1 cm, P = 0.044). Furthermore, the caffeinated energy drink decreased the time needed to complete the agility t-test (11.1 ± 0.5 vs 10.9 ± 0.3 s, P = 0.036). During the game, the volleyball actions categorized as successful were more frequent with the caffeinated energy drink (34% ± 9% vs 45% ± 9%, P < 0.001), whereas imprecise actions decreased (28% ± 7% vs 14% ± 9%, P < 0.001) when compared with the placebo drink. Commercially available energy drinks can significantly improve physical performance in female volleyball players. Increased physical performance led to improved accuracy during an actual volleyball match.

  14. Effects of jumping skill training on walking balance for children with mental retardation and Down's syndrome.

    PubMed

    Wang, W Y; Chang, J J

    1997-08-01

    In the present study, we hypothesized that the enhancements obtained from the practice of jumping activity could be transferred to improve the walking balance in children with mental retardation (MR) and Down's syndrome (DS). Fourteen children with the diagnosis of MR or DS, aged 3 to 6 years, were recruited from a day care institution. They were ambulant but without jumping ability. Sixty-one non-handicapped children was used to serve as a normative comparison group. Before the training program, the performances of walking balance, jump skills and jumping distances were assessed individually by one physical therapist. The balance sub-test in the Bruininks Oseretsky Test of Motor Proficiency (BOTMP) was administered to assess the walking balance. Motor Skill Inventory (MSI) was used to assess the qualitative levels of jumping skills. A jumping skill training lesson that included horizontal jumps and vertical jumps was designed and integrated into the educational program. The recruited children received 3 sessions of training per-week for 6 weeks. A post-training test and a follow-up test were administered to the handicapped children. In BOTMP scores, statistical differences exited between the pre-training and post-training tests in the tested items of floor walk and beam walk. However, no significant difference was found in the items of floor stand, beam stand and floor heel-toe walk. MSI scales revealed there were significant differences between pre-training and post-training tests. There was no significant difference between the scores of post-training test and the follow-up test. The results implicated that the jumping activity might effectively evoke the automatic and dynamic postural control. Moreover, the significant improvements of the floor walk and beam walk performances might be due to the transferred effects via the practice of dynamic jumping activity. Furthermore, implications and suggestions are discussed.

  15. The Effect of a Combined High-Intensity Plyometric and Speed Training Program on the Running and Jumping Ability of Male Handball Players

    PubMed Central

    Cherif, Monsef; Said, Mohamed; Chaatani, Sana; Nejlaoui, Olfa; Gomri, Daghbaji; Abdallah, Aouidet

    2012-01-01

    Purpose The aim of this study was to investigate the effect of a combined program including sprint repetitions and drop jump training in the same session on male handball players. Methods Twenty-two male handball players aged more than 20 years were assigned into 2 groups: experimental group (n=11) and control group (n=11). Selection was based on variables “axis” and “lines”, goalkeepers were not included. The experimental group was subjected to 2 testing periods (test and retest) separated by 12 weeks of an additional combined plyometric and running speed training program. The control group performed the usual handball training. The testing period comprised, at the first day, a medical checking, anthropometric measurements and an incremental exercise test called yo-yo intermittent recovery test. 2 days later, participants performed the Repeated Sprint Ability test (RSA), and performed the Jumping Performance using 3 different events: Squat jump (SJ), Countermovement jump without (CMJ) and with arms (CMJA), and Drop jump (DJ). At the end of the training period, participants performed again the repeated sprint ability test, and the jumping performance. Results The conventional combined program improved the explosive force ability of handball players in CMJ (P=0.01), CMJA (P=0.01) and DJR (P=0.03). The change was 2.78, 2.42 and 2.62% respectively. No significant changes were noted in performances of the experimental group at the squat jump test and the drop jump with the left leg test. The training intervention also improved the running speed ability of the experimental group (P=0.003). No statistical differences were observed between lines or axes. Conclusion Additional combined training program between sprint repetition and vertical jump in the same training session positively influence the jumping ability and the sprint ability of handball players. PMID:22461962

  16. The effect of a combined high-intensity plyometric and speed training program on the running and jumping ability of male handball players.

    PubMed

    Cherif, Monsef; Said, Mohamed; Chaatani, Sana; Nejlaoui, Olfa; Gomri, Daghbaji; Abdallah, Aouidet

    2012-03-01

    The aim of this study was to investigate the effect of a combined program including sprint repetitions and drop jump training in the same session on male handball players. Twenty-two male handball players aged more than 20 years were assigned into 2 groups: experimental group (n=11) and control group (n=11). Selection was based on variables "axis" and "lines", goalkeepers were not included. The experimental group was subjected to 2 testing periods (test and retest) separated by 12 weeks of an additional combined plyometric and running speed training program. The control group performed the usual handball training. The testing period comprised, at the first day, a medical checking, anthropometric measurements and an incremental exercise test called yo-yo intermittent recovery test. 2 days later, participants performed the Repeated Sprint Ability test (RSA), and performed the Jumping Performance using 3 different events: Squat jump (SJ), Countermovement jump without (CMJ) and with arms (CMJA), and Drop jump (DJ). At the end of the training period, participants performed again the repeated sprint ability test, and the jumping performance. The conventional combined program improved the explosive force ability of handball players in CMJ (P=0.01), CMJA (P=0.01) and DJR (P=0.03). The change was 2.78, 2.42 and 2.62% respectively. No significant changes were noted in performances of the experimental group at the squat jump test and the drop jump with the left leg test. The training intervention also improved the running speed ability of the experimental group (P=0.003). No statistical differences were observed between lines or axes. Additional combined training program between sprint repetition and vertical jump in the same training session positively influence the jumping ability and the sprint ability of handball players.

  17. Impact of traditional Greek dancing on jumping ability, muscular strength and lower limb endurance in cardiac rehabilitation programmes.

    PubMed

    Vordos, Zacharias; Kouidi, Evangelia; Mavrovouniotis, Fotios; Metaxas, Thomas; Dimitros, Eleftherios; Kaltsatou, Antonia; Deligiannis, Asterios

    2017-02-01

    The objective of this study was to evaluate the effect of a training programme based on traditional Greek dance on the jumping ability, muscle strength and lower limb endurance in patients with chronic heart failure (CHF). Forty Greek patients with CHF graded as NYHA ⩽ II and aged 73.2±4.7 years were randomly divided into two groups. Group A ( n=20) participated in a three-month physical rehabilitation programme based on Greek traditional dances, whereas group B ( n=20) remained untrained and served as the control group. All patients were studied before and after the 12-week exercise training programme. At baseline and follow-up the exercise capacity of the patients was evaluated by the six-minute walking test, their lower extremity muscle strength was evaluated by an isokinetic dynamometer and their jumping ability by the Myotest-Pro test, which includes three types of jumps (plyometric, countermovement and squat jumps). No significant difference was observed between the two groups at the baseline evaluation. At follow-up, group A showed significant improvements in walking distance calculated from the six-minute walking test (10.0% improvement; p<0.05), in lower limb strength (10.32% improvement; p<0.05), and in countermovement jump speed (6.9%; p<0.05) and squat jump speed (5.8%; p<0.05). Group A also increased their jump plyometry height by 13.86% ( p<0.05), their counter jump height by 10.68% ( p<0.05) and their squat jump height by 10.45% ( p<0.05). Group A had a 6.85% ( p<0.05) increased force of counter jump compared with group B. The design and implementation of cardiac rehabilitation programmes using Greek traditional dances in patients with CHF are both safe and effective in improving lower limb function.

  18. A comparison of pairs figure skaters in repeated jumps.

    PubMed

    Sands, William A; Kimmel, Wendy L; McNeal, Jeni R; Murray, Steven Ross; Stone, Michael H

    2012-01-01

    Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg) calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA) showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare. Key pointsThe repeated jumps test can account for about 50% of the variance in pairs ranks.Changes in technique are largely due to fatigue, but the athletes were able to maintain a maximum flexion knee angle very close to the desired 90 degrees. Changes in angular velocity and jump heights occurred as expected, again probably due to fatigue.As expected from metabolic information, the athletes' power indexes peak around 20s and decline thereafter. Coaches should be aware of this time as a boundary beyond which fatigue becomes more manifest, and use careful choreographic choices to provide rest periods that are disguised as less demanding skating elements to afford recovery.The repeated jumps test may be a helpful off-ice test of power-endurance for figure skaters.

  19. Acute Effects of Drop-Jump Protocols on Explosive Performances of Elite Handball Players.

    PubMed

    Dello Iacono, Antonio; Martone, Domenico; Padulo, Johnny

    2016-11-01

    Dello Iacono, A, Martone, D, and Padulo, J. Acute effects of drop-jump protocols on explosive performances of elite handball players. J Strength Cond Res 30(11): 3122-3133, 2016-This study aimed to assess the acute effects of vertical and horizontal drop jump-based postactivation potentiation (PAP) protocols on neuromuscular abilities in tasks such as jumping, sprinting, and change of direction (COD). Eighteen handball players were assessed before and after PAP regimens, consisting of either vertical single-leg drop-jumps (VDJ) or horizontal single-leg drop-jumps (HDJ) single-leg drop-jumps, on countermovement jump (CMJ), linear sprint, shuttle sprint, and agility performance. The HDJ led to greater improvement of the COD performance in comparison with the VDJ (-6.8 vs. -1.3%; p ≤ 0.05), whereas the VDJ caused greater improvement in the CMJ task compared with the HDJs (+6.5 vs. +1%; p ≤ 0.05). Moreover, the VDJ regimens compared with HDJ induced greater changes in most of the kinetic variables associated with vertical jumping performance, such as peak ground reaction forces (+9.6 vs. +1.3%), vertical displacement (-13.4 vs. -5.3%), leg-spring stiffness (+18.6 vs. +3.6%), contact time (-9.2 vs. -1.3%), and reactive strength index (+7.3 vs. +2.4%) (all comparisons with p ≤ 0.05). Conversely, the HDJ regimens were able to improve the COD performance only by reducing the contact time on COD more than the VDJ (-13.3 vs. -2.4% with p ≤ 0.05). The results showed that both PAPs were able to improve the performances that specifically featured similar force-orientation production. This investigation showed the crucial role that different and specific PAP regimens play in optimizing related functional performances. Specifically oriented vertical and horizontal single-leg drop-jump protocols represent viable means for achieving enhanced explosive-based tasks such as jumping and COD.

  20. Prediction of Vertical Jump Height from Anthropometric Factors in Male and Female Martial Arts Athletes

    PubMed Central

    Abidin, Nahdiya Zainal; Adam, Mohd Bakri

    2013-01-01

    Background: Vertical jump is an index representing leg/kick power. The explosive movement of the kick is the key to scoring in martial arts competitions. It is important to determine factors that influence the vertical jump to help athletes improve their leg power. The objective of the present study is to identify anthropometric factors that influence vertical jump height for male and female martial arts athletes. Methods: Twenty-nine male and 25 female athletes participated in this study. Participants were Malaysian undergraduate students whose ages ranged from 18 to 24 years old. Their heights were measured using a stadiometer. The subjects were weighted using digital scale. Body mass index was calculated by kg/m2. Waist–hip ratio was measured from the ratio of waist to hip circumferences. Body fat % was obtained from the sum of four skinfold thickness using Harpenden callipers. The highest vertical jump from a stationary standing position was recorded. The maximum grip was recorded using a dynamometer. For standing back strength, the maximum pull upwards using a handle bar was recorded. Multiple linear regression was used to obtain the relationship between vertical jump height and explanatory variables with gender effect. Results: Body fat % has a significant negative relationship with vertical jump height (P < 0.001). The effect of gender is significant (P < 0.001): on average, males jumped 26% higher than females did. Conclusion: Vertical jump height of martial arts athletes can be predicted by body fat %. The vertical jump for male is higher than for their female counterparts. Reducing body fat by proper dietary planning will help to improve leg power. PMID:23785254

Top