Results of the First US Manned Orbital Space Flight
NASA Technical Reports Server (NTRS)
1962-01-01
The results of the first United States manned orbital space flight conducted on February 20, 1962 are presented. The prelaunch activities, spacecraft description, flight operations, flight data, and postflight analyses presented form a continuation of the information previously published for the two United States manned suborbital space flights conducted on May 5, 1961, and July 21, 1961, respectively, by the National Aeronautics and Space Administration.
Calcium Kinetics During Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.; OBrien, K. O.; Wastney, M. E.; Morukov, B. V.; Larina, I.; Abrams, S. A.; Lane, H. W.; Nillen, J. L.; Davis-Street, J. E.; Oganov, V.;
2001-01-01
Bone loss represents one of the most significant effects of space flight on the human body. Understanding the mechanisms underlying this loss is critical for maintaining crew health and safety during and after flight. This investigation documents the changes in bone metabolism and calcium kinetics during and after space flight. We previously reported calcium studies on three subjects during and after a 115-d stay on the Russian space station Mir. We report here data on an additional three subjects, whose stays on Mir were approximately 4 (n=l) and 6 (n=2) mos. Previously published data are included for comparison.
Thrust imbalance of solid rocket motor pairs on Space Shuttle flights
NASA Technical Reports Server (NTRS)
Foster, W. A., Jr.; Shu, P. H.; Sforzini, R. H.
1986-01-01
This analysis extends the investigation presented at the 17th Joint Propulsion Conference in 1981 to include fifteen sets of Space Shuttle flight data. The previous report dealt only with static test data and the first flight pair. The objective is to compare the authors' previous theoretical analysis of thrust imbalance with actual Space Shuttle performance. The theoretical prediction method, which involves a Monte Carlo technique, is reviewed briefly as are salient features of the flight instrumentation system and the statistical analysis. A scheme for smoothing flight data is discussed. The effects of changes in design parameters are discussed with special emphasis on the filament wound motor case being developed to replace the steel case. Good agreement between the predictions and the flight data is demonstrated.
Effects of Free Molecular Heating on the Space Shuttle Active Thermal Control System
NASA Technical Reports Server (NTRS)
McCloud, Peter L.; Wobick, Craig A.
2007-01-01
During Space Transportation System (STS) flight 121, higher than predicted radiator outlet temperatures were experienced from post insertion and up until nominal correction (NC) burn two. Effects from the higher than predicted heat loads on the radiator panels led to an additional 50 lbm of supply water consumed by the Flash Evaporator System (FES). Post-flight analysis and research revealed that the additional heat loads were due to Free Molecular Heating (FMH) on the radiator panels, which previously had not been considered as a significant environmental factor for the Space Shuttle radiators. The current Orbiter radiator heat flux models were adapted to incorporate the effects of FMH in addition to solar, earth infrared and albedo sources. Previous STS flights were also examined to find additional flight data on the FMH environment. Results of the model were compared to flight data and verified against results generated by the National Aeronautics and Space Administration (NASA), Johnson Space Center (JSC) Aero-sciences group to verify the accuracy of the model.
Descriptions of Space Processing Applications Rocket (SPAR) experiments
NASA Technical Reports Server (NTRS)
Naumann, R. J. (Editor)
1979-01-01
The experiments for all the Space Processing Applications Rocket experiments, including those flown on previous Space Processing flights as well as those under development for future flights are described. The experiment objective, rationale, approach, and results or anticipated results are summarized.
Previous experience in manned space flight: A survey of human factors lessons learned
NASA Technical Reports Server (NTRS)
Chandlee, George O.; Woolford, Barbara
1993-01-01
Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.
Immunological analyses of U.S. Space Shuttle crewmembers
NASA Technical Reports Server (NTRS)
Taylor, G. R.; Neale, L. S.; Dardano, J. R.
1986-01-01
Changes in the immunoresponsiveness of 'T' lymphocytes following space flight have been reported previously. Additional data collected before and after 11 Shuttle space flights show that absolute lymphocyte numbers, lymphocyte blastogenic capability, and eosinophil percent in the peripheral blood of crewmembers are generally depressed postflight. These responses resemble those associated with physical and emotional stress and may not be related to flight per se. Additional data from Space Shuttle flights 41B and 41D, involving 11 crewmembers, indicate a postflight decrease in cells reacting with 'B' lymphocyte and monocyte monoclonal antibody tags. Further, the loss of 'T' lymphocyte blast capability correlates with the decreased monocyte count (correlation coefficient = 0.697). This finding implies that the previously reported loss of blastogenic capability may be a function of decreased monocyte control, as noted in several nonspaceflight related studies.
Maximum Oxygen Uptake During and After Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Moore, Alan D., Jr.; Evetts, Simon N.; Feiveson, Alan H.; Lee, Stuart M. C.; McCleary. Frank A.; Platts, Steven H.
2010-01-01
Decreased maximum oxygen consumption (VO2max) during and after space flight may impair a crewmember s ability to perform mission-critical work that is high intensity and/or long duration in nature (Human Research Program Integrated Research Plan Risk 2.1.2: Risk of Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity). When VO2max was measured in Space Shuttle experiments, investigators reported that it did not change during short-duration space flight but decreased immediately after flight. Similar conclusions, based on the heart rate (HR) response of Skylab crewmembers, were made previously concerning long-duration space flight. Specifically, no change in the in-flight exercise HR response in 8 of 9 Skylab crewmembers indicated that VO2max was maintained during flight, but the elevated exercise HR after flight indicated that VO2max was decreased after landing. More recently, a different pattern of in-flight exercise HR response, and assumed changes in VO2max, emerged from routine testing of International Space Station (ISS) crewmembers. Most ISS crewmembers experience an elevated in-flight exercise HR response early in their mission, with a gradual return toward preflight levels as the mission progresses. Similar to previous reports, exercise HR is elevated after ISS missions and returns to preflight levels by 30 days after landing. VO2max has not been measured either during or after long-duration space flight. The purposes of the ISS VO2max experiment are (1) to measure VO2max during and after long-duration spaceflight, and (2) to determine if submaximal exercise test results can be used to accurately estimate VO 2max.
Effect of weightlessness and centrifugation on red cell survival in rats subjected to space flight
NASA Technical Reports Server (NTRS)
Leon, H. A.; Serova, L. V.; Landaw, S. A.
1980-01-01
Rats were flown aboard the Soviet biosatellite Cosmos 936 for 18.5 d during August, 1977. Five rats were subjected to near-weightless space flight, as with Cosmos 782, and five rats were subjected to a 1-G force via an on-board centrifuge. These rats and three control groups were injected with 2-(C-14) glycine 19 d preflight. The flight rats were recovered from orbit after 18.5 d of space flight. Erythrocyte hemolysis and lifespan were evaluated in the five groups of rats by quantitation of radioactive carbon monoxide exhaled in the breath which arises from the breakdown of the previously labeled hemoglobin. The results support the previous findings wherein hemolysis was found to increase as a result of weightless space flight. A comparison to the centrifuged animals indicates that artificial gravity attenuates the effect of weightlessness on hemolysis and appears to normalize the hemolytic rate in the early postflight period.
Approach to an Affordable and Productive Space Transportation System
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Robinson, John W.
2012-01-01
This paper describes an approach for creating space transportation architectures that are affordable, productive, and sustainable. The architectural scope includes both flight and ground system elements, and focuses on their compatibility to achieve a technical solution that is operationally productive, and also affordable throughout its life cycle. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper follows up previous work by using a structured process to derive examples of conceptual architectures that integrate a number of advanced concepts and technologies. The examples are not intended to provide a near-term alternative architecture to displace current near-term design and development activity. Rather, the examples demonstrate an approach that promotes early investments in advanced system concept studies and trades (flight and ground), as well as in advanced technologies with the goal of enabling highly affordable, productive flight and ground space transportation systems.
Space flight nutrition research: platforms and analogs
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Uchakin, Peter N.; Tobin, Brian W.
2002-01-01
Conducting research during actual or simulated weightlessness is a challenging endeavor, where even the simplest activities may present significant challenges. This article reviews some of the potential obstacles associated with performing research during space flight and offers brief descriptions of current and previous space research platforms and ground-based analogs, including those for human, animal, and cell-based research. This review is intended to highlight the main issues of space flight research analogs and leave the specifics for each physiologic system for the other papers in this section.
Bone Density Following Three Years of Recovery from Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Amin, Shreyasee; Achenbach, Sara J.; Atkinson, Elizabeth J.; Sibonga, Jean
2011-01-01
It is well recognized that bone mineral density [BMD] at load-bearing sites of the hip and spine sustain significant loss during space flight, estimated at approximately 0.5-1.0% per month. However, the long-term effects on bone health following return from long-duration space flight remain unclear. It is unknown whether BMD for men recovers beyond 1 year following return from space to what would be predicted or if deficits persist. Using our previously created prediction models, we compared the observed BMD of male US crew following 3 years since returning from longduration space flight with what would be predicted if they had not been exposed to microgravity.
Extended mission life support systems
NASA Technical Reports Server (NTRS)
Quattrone, P. D.
1985-01-01
Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.
Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss
NASA Technical Reports Server (NTRS)
LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey A.; Shapiro, Jay; Lang, Thomas F.; Smith, Scott M.; Shackelford, Linda C.; Sibonga, Jean; Evans, Harlan; Spector, Elisabeth;
2009-01-01
Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss (Bisphosphonates) will determine whether antiresorptive agents, in conjunction with the routine inflight exercise program, will protect ISS crewmembers from the regional decreases in bone mineral density documented on previous ISS missions.
14 CFR 60.17 - Previously qualified FSTDs.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Previously qualified FSTDs. 60.17 Section 60.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE § 60.17 Previously...
14 CFR 60.17 - Previously qualified FSTDs.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Previously qualified FSTDs. 60.17 Section 60.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE § 60.17 Previously...
14 CFR 60.17 - Previously qualified FSTDs.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Previously qualified FSTDs. 60.17 Section 60.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE § 60.17 Previously...
14 CFR 60.17 - Previously qualified FSTDs.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Previously qualified FSTDs. 60.17 Section 60.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE § 60.17 Previously...
14 CFR 60.17 - Previously qualified FSTDs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Previously qualified FSTDs. 60.17 Section 60.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE § 60.17 Previously...
NASA Technical Reports Server (NTRS)
Coleman, E. A.
1980-01-01
Scientific information from previous space flights, space medicine, exercise physiology, and sports medicine was used to prepare a physical fitness manual suitable for use by members of the NASA astronaut population. A variety of scientifically valid exercise programs and activities suitable for the development of physical fitness are provided. Programs, activities, and supportive scientific data are presented in a concise, easy to read format so as to permit the user to select his or her mode of training with confidence and devote time previously spent experimenting with training routines to preparation for space flight. The programs and activities included were tested and shown to be effective and enjoyable.
An Earth-based Model of Microgravity Pulmonary Physiology
NASA Technical Reports Server (NTRS)
Hirschl, Ronald B.; Bull, Joseph L.; Grotberg, James B.
2004-01-01
There are currently only two practical methods of achieving microgravity for experimentation: parabolic flight in an aircraft or space flight, both of which have limitations. As a result, there are many important aspects of pulmonary physiology that have not been investigated in microgravity. We propose to develop an earth-based animal model of microgravity by using liquid ventilation, which will allow us to fill the lungs with perfluorocarbon, and submersing the animal in water such that the density of the lungs is the same as the surrounding environment. By so doing, we will eliminate the effects of gravity on respiration. We will first validate the model by comparing measures of pulmonary mechanics, to previous space flight and parabolic flight measurements. After validating the model, we will investigate the impact of microgravity on aspects of lung physiology that have not been previously measured. These will include pulmonary blood flow distribution, ventillation distribution, pulmonary capillary wedge pressure, ventilation-perfusion matching and pleural pressures and flows. We expect that this earth-based model of microgravity will enhance our knowledge and understanding of lung physiology in space which will increase in importance as space flights increase in time and distance.
Soviet space flight: the human element.
Garshnek, V
1988-05-01
Building on past experience and knowledge, the Soviet manned space flight effort has become broad, comprehensive, and forward-looking. Their long-running space station program has provided the capabilities to investigate long-term effects of microgravity on human physiology and behavior and test various countermeasures against microgravity-induced physiological deconditioning. Since the beginning of Soviet manned space flight, the biomedical training and preparation of cosmonauts has evolved from a process that increased human tolerance to space flight factors, to a system of interrelated measures to prepare cosmonauts physically and psychologically to live and work in space. Currently, the Soviet Union is constructing a multimodular space station, the Mir. With the emergence of dedicated laboratory modules, the Soviets have begun the transition from small-scale experimental research to large-scale production activities and specialized scientific work in space. In the future, additional laboratory modules will be added, including one dedicated to biomedical research, called the "Medilab." The longest manned space flight to date (326 days) has been completed by the Soviets. The biomedical effects of previous long-duration flights, and perhaps those of still greater length, may contribute important insight ito the possibility of extended missions beyond Earth, such as a voyage to Mars.
NASA Technical Reports Server (NTRS)
Helly, J. J., Jr.; Bates, W. V.; Cutler, M.; Kelem, S.
1984-01-01
A new representation of malfunction procedure logic which permits the automation of these procedures using Boolean normal forms is presented. This representation is discussed in the context of the development of an expert system for space shuttle flight control including software and hardware implementation modes, and a distributed architecture. The roles and responsibility of the flight control team as well as previous work toward the development of expert systems for flight control support at Johnson Space Center are discussed. The notion of malfunction procedures as graphs is introduced as well as the concept of hardware-equivalence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livshits, N.N.; Apanasenko, Z.I.; Kuznetsova, M.A.
1978-10-26
It was previously demonstrated that radiobiological effects can change appreciably in space flights. However, there is no information in the known literature concerning the effects of inflight radiation on higher nervous activity (HNA). Yet this is an important question, since mental efficiency depends largely on the state of HNA. It was established in model laboratory experiments that dynamic factors (acceleration and vibration) modify the effect of radiation on HNA. For this reason, it was necessary to investigate the effect on HNA of radiation combined with the factors occurring in space flights.
HAL/S programmer's guide. [for space shuttle program
NASA Technical Reports Server (NTRS)
Newbold, P. M.; Hotz, R. L.
1974-01-01
This programming language was developed for the flight software of the NASA space shuttle program. HAL/S is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, HAL/s incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. As the name indicates, HAL/S is a dialect of the original HAL language previously developed. Changes have been incorporated to simplify syntax, curb excessive generality, or facilitate flight code emission.
Investigation of periodontal tissue during a long space flights
NASA Astrophysics Data System (ADS)
Solovyeva, Zoya; Viacheslav, Ilyin; Skedina, Marina
Previous studies conducted on the International Space Station found that upon completion of the space flight there are significant changes in the local immunity and periodontal microflora of astronauts. Also research in ground-based experiments that simulate space flight factors showed that prolonged hypokinesia antiorthostatic leads to impaired functional indicators of the periodontal vascular system, an unidirectional change from the microbiota and the immune system. That results in the appearance and progressive increase of the parodontial pathogenic bacteria and increase of the content of immunoglobulins in the oral fluid. All these changes are classified as risk factors for the development of inflammatory periodontal diseases in astronauts. However, the studies were unable to determine whether the changes result from a long space flight and the peculiarities of formation the local immunity and periodontal microbiota during the space flight, or they are one of the specific manifestations of the readaptationary post-flight condition of the body. In this regard, the planned research in a long space flight suggests: to use the means of microbial control, which can retain of the anaerobes periodontal microbiota sampling directly in the space flight; to assess the specificity of changes of the periodontal immune status under the influence of the space flight factors, and to assess the state of microcirculation of periodontal tissue in astronauts. A comprehensive study of the reaction of dentition during the space flight will make it possible to study the pathogenesis of changes for developing an adequate prevention aimed at optimizing the state of dentition of the astronauts.
Environmental stressors during space flight: potential effects on body temperature
NASA Technical Reports Server (NTRS)
Jauchem, J. R.
1988-01-01
1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.
Auto-Coding UML Statecharts for Flight Software
NASA Technical Reports Server (NTRS)
Benowitz, Edward G; Clark, Ken; Watney, Garth J.
2006-01-01
Statecharts have been used as a means to communicate behaviors in a precise manner between system engineers and software engineers. Hand-translating a statechart to code, as done on some previous space missions, introduces the possibility of errors in the transformation from chart to code. To improve auto-coding, we have developed a process that generates flight code from UML statecharts. Our process is being used for the flight software on the Space Interferometer Mission (SIM).
MS Linnehan watches EVA 2 from aft flight deck
2002-03-05
STS109-E-5621 (5 March 2002) --- Astronaut Richard M. Linnehan, mission specialist, monitors the STS-109 mission's second space walk from the aft flight deck of the Space Shuttle Columbia. Astronauts James H. Newman and Michael J. Massimino were working on the Hubble Space Telescope (HST), temporarily captured in the shuttle's cargo bay. Linnehan had participated in the mission's first space walk on the previous day. This image was recorded with a digital still camera.
In space performance of the lunar orbiter laser altimeter (LOLA) laser transmitter
NASA Astrophysics Data System (ADS)
Yu, Anthony W.; Shaw, George B.; Novo-Gradac, Ann Marie; Li, Steven X.; Cavanaugh, John
2011-11-01
In this paper we present the final configuration of the space flight laser transmitter as delivered to the Lunar Orbiter Laser Altimeter (LOLA) instrument along with some in-space operation performance data. The LOLA instrument is designed to map the lunar surface and provide unprecedented data products in anticipation of future manned flight missions. The laser transmitter has been operating on orbit at the Moon continuously since July 2009 and accumulated over 1.8 billion laser shots in space. The LOLA laser transmitter design has heritage dated back to the MOLA laser transmitter launched more than 10 years ago and incorporates lessons learned from previous laser altimeter missions at NASA Goddard Space Flight Center.
Space Station and the life sciences
NASA Technical Reports Server (NTRS)
White, R. J.; Leonard, J. I.; Cramer, D. B.; Bishop, W. P.
1983-01-01
Previous fundamental research in space life sciences is examined, and consideration is devoted to studies relevant to Space Station activities. Microgravity causes weight loss, hemoconcentration, and orthostatic intolerance when astronauts returns to earth. Losses in bone density, bone calcium, and muscle nitrogen have also been observed, together with cardiovascular deconditioning, fluid-electrolyte metabolism alteration, and space sickness. Experiments have been performed with plants, bacteria, fungi, protozoa, tissue cultures, invertebrate species, and with nonhuman vertebrates, showing little effect on simple cell functions. The Spacelab first flight will feature seven life science experiments and the second flight, two. Further studies will be performed on later flights. Continued life science studies to optimize human performance in space are necessary for the efficient operation of a Space Station and the assembly of large space structures, particularly in interaction with automated machinery.
NASA Technical Reports Server (NTRS)
Burchard, E. C.
1975-01-01
The physiological and psychological factors of manned space flight had a particular significance in the Skylab missions during which astronauts were subjected to a life in a space environment for longer periods of time than on previous space missions. The Skylab missions demonstrated again the great adaptability of human physiology to the environment of man. The results of Skylab have indicated also approaches for enhancing the capability of man to tolerate the physiological and psychological stresses of space flight.
An Earth-Based Model of Microgravity Pulmonary Physiology
NASA Technical Reports Server (NTRS)
Hirschl, Ronald B.; Bull, Joseph L.; Grothberg, James B.
2004-01-01
There are currently only two practical methods of achieving micro G for experimentation: parabolic flight in an aircraft or space flight, both of which have limitations. As a result, there are many important aspects of pulmonary physiology that have not been investigated in micro G. We propose to develop an earth-based animal model of micro G by using liquid ventilation, which will allow us to fill the lungs with perfluorocarbon, and submersing the animal in water such that the density of the lungs is the same as the surrounding environment. By so doing, we will eliminate the effects of gravity on respiration. We will first validate the model by comparing measures of pulmonary physiology, including cardiac output, central venous pressures, lung volumes, and pulmonary mechanics, to previous space flight and parabolic flight measurements. After validating the model, we will investigate the impact of micro G on aspects of lung physiology that have not been previously measured. These will include pulmonary blood flow distribution, ventilation distribution, pulmonary capillary wedge pressure, ventilation-perfusion matching, and pleural pressures and flows. We expect that this earth-based model of micro G will enhance our knowledge and understanding of lung physiology in space which will increase in importance as space flights increase in time and distance.
Personal miniature electrophysiological tape recorder
NASA Astrophysics Data System (ADS)
Green, H.
1981-11-01
The use of a personal miniature electrophysiological tape recorder to measure the physiological reactions of space flight personnel to space flight stress and weightlessness is described. The Oxford Instruments Medilog recorder, a battery-powered, four-channel cassette tape recorder with 24 hour endurance is carried on the person and will record EKG, EOG, EEG, and timing and event markers. The data will give information about heart rate and morphology changes, and document adaptation to zero gravity on the part of subjects who, unlike highly trained astronauts, are more representative of the normal population than were the subjects of previous space flight studies.
Gentamicin: effect on E. coli in space
NASA Technical Reports Server (NTRS)
Kacena, M. A.; Todd, P.
1999-01-01
Previous investigations have shown that liquid bacterial cultures grown in space flight were not killed as effectively by antibiotic treatments as were cultures grown on Earth. However, the cause for the decreased antibiotic effectiveness remains unknown. Possible explanations include modified cell proliferation and modified antibiotic transport in the culture medium. Escherichia coli cultures were grown in space flight (STS-69 and STS-73), with and without gentamicin, on a solid agar substrate thus eliminating fluid effects and reducing the unknowns associated with space-flight bacterial cultures in suspension. This research showed that E. coli cultures grown in flight on agar for 24 to 27 hours experienced a heightened growth compared to simultaneous controls. However, addition of gentamicin to the agar killed the bacteria such that both flight and ground control E. coli samples had similar final cell concentrations. Therefore, while the reported existence of a decrease in antibiotic effectiveness in liquid cultures remains unexplained, these data suggest that gentamicin in space flight was at least as effective as, if not more effective than, on Earth, when E. coli cells were grown on agar.
The Ruggedized STD Bus Microcomputer - A low cost computer suitable for Space Shuttle experiments
NASA Technical Reports Server (NTRS)
Budney, T. J.; Stone, R. W.
1982-01-01
Previous space flight computers have been costly in terms of both hardware and software. The Ruggedized STD Bus Microcomputer is based on the commercial Mostek/Pro-Log STD Bus. Ruggedized PC cards can be based on commercial cards from more than 60 manufacturers, reducing hardware cost and design time. Software costs are minimized by using standard 8-bit microprocessors and by debugging code using commercial versions of the ruggedized flight boards while the flight hardware is being fabricated.
Integration Testing of Space Flight Systems
NASA Technical Reports Server (NTRS)
Honeycutt, Timothy; Sowards, Stephanie
2008-01-01
Based on the previous success' of Multi-Element Integration Testing (MEITs) for the International Space Station Program, these type of integrated tests have also been planned for the Constellation Program: MEIT (1) CEV to ISS (emulated) (2) CEV to Lunar Lander/EDS (emulated) (3) Future: Lunar Surface Systems and Mars Missions Finite Element Integration Test (FEIT) (1) CEV/CLV (2) Lunar Lander/EDS/CaL V Integrated Verification Tests (IVT) (1) Performed as a subset of the FEITs during the flight tests and then performed for every flight after Full Operational Capability (FOC) has been obtained with the flight and ground Systems.
Blood and clonogenic hemopoietic cells of newts after the space flight
NASA Astrophysics Data System (ADS)
Michurina, T. V.; Domaratskaya, E. I.; Nikonova, T. M.; Khrushchov, N. G.
Ribbed newts were used for studying the effect of space flight on board of the biosatellite (Cosmos-2229) on blood and clonogenic hemopoietic cells. In blood of newts of the flight group, the relative proportion of neutrophils increased, whereas that of lymphocytes and eosinophils decreased. Space flight did not result in loss of the ability of newt blood cells to incorporate H^3-thymidine. Analysis of clonogenic hemopoietic cells was performed using the method of hemopoietic colony formation on cellulose acetate membranes implanted into the peritoneal cavity of irradiated newts. To analyze reconstitution of hemopoiesis after irradiation donor hemopoietic cells from flight or control newts were transplanted into irradiated newts whose hemopoietic organs were investigated. The newt can be considered an adequate model for studying hemopoiesis under the conditions of the space flight. Previous studies on rats subjected to 5- to 19-day space flights revealed a decrease in the number of clonogenic cells in their hemopoietic organs accompanied by specific changes in the precursor cell compartment and in blood /1,2/. Hence, it was interesting to analyze blood and hemopoietic tissue of lower vertebrates after a space flight and to compare the response to it of animals belonging to different taxonomic groups. We analyzed blood and clonogenic hemopoietic cells of ribbed newts, Pleurodeles waltl (age one year, weight 20-28 g) subjected to a 12-day space flight on board of a Cosmos-2229 biosatellite. The same animals were used in studies on limb and lens regeneration. The results were compared with those obtained with control groups of newts: (1) basic control, operated newts sacrificed on the day of biosatellite launching (BC); (2) synchronous control, operated newts kept in the laboratory under simulated space flight conditions (SC); and (3) intact newts (IC).
Mission safety evaluation report for STS-35: Postflight edition
NASA Technical Reports Server (NTRS)
Hill, William C.; Finkel, Seymour I.
1991-01-01
Space Transportation System 35 (STS-35) safety risk factors that represent a change from previous flights that had an impact on this flight, and factors that were unique to this flight are discussed. While some changes to the safety risk baseline since the previous flight are included to highlight their significance in risk level change, the primary purpose is to insure that changes which were too late too include in formal changes through the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) and Hazard Analysis process are documented along with the safety position, which includes the acceptance rationale.
Effect of Space Flight on Adrenal Medullary Function
NASA Technical Reports Server (NTRS)
Lelkes, Peter I.
1999-01-01
We hypothesize that microgravity conditions during space flight alter the expression and specific activities of the adrenal medullary CA synthesizing enzymes (CASE). Previously, we examined adrenals from six rats flown for six days aboard STS 54 and reported that microgravity induced a decrease in the expression and specific activity of rat adrenal medullary tyrosine hydroxylase, the rate limiting enzyme of CA synthesis, without affecting the expression of other CASE. In the past, we analyzed some of the > 300 adrenals from two previous Space Shuttle missions (PARE 03 and SLS 2). The preliminary results (a) attest to the good state of tissue preservation, thus proving the feasibility of subsequent large-scale evaluation, and (b) confirm and extend our previous findings. With this grant we will be able to expeditiously analyze all our specimens and to complete our studies in a timely fashion.
Main medical results of extended flights on space station Mir in 1986-1990
NASA Astrophysics Data System (ADS)
Grigoriev, A. I.; Bugrov, S. A.; Bogomolov, V. V.; Egorov, A. D.; Polyakov, V. V.; Tarasov, I. K.; Shulzhenko, E. B.
During 1986-1990 seven prime spacecrews (16 cosmonauts) have flow on-board the Mir orbital complex. The longest space mission duration was 366 days. The principal objectives of the medical tasks were the maintenance of good health and performance of the spacecrews and conducting medical research programs which included study of the cardiovascular, motor, endocrine, blood, immune, and metabolic systems. Results obtained point to the ability of humans to readily adapt to a year-long stay in space and maintain good health and performance. Readaptation had a similar course as after other previous long-term space flights of up to 8 months in duration. Primary body system changes were not qualitatively different from findings after flights aboard the Salyut 6 and 7 space stations. In this case, during and after an 11-12 month flight, body system alterations were even less severe which was a result of adequate countermeasure use, their systematic and creative employment and maintenance of required environments to support life and work in space.
Bioastronautics: optimizing human performance through research and medical innovations
NASA Technical Reports Server (NTRS)
Williams, David R.
2002-01-01
A strategic use of resources is essential to achieving long-duration space travel and understanding the human physiological changes in space, including the roles of food and nutrition in space. To effectively address the challenges of space flight, the Bioastronautics Initiative, undertaken in 2001, expands extramural collaboration and leverages unique capabilities of the scientific community and the federal government, all the while applying this integrated knowledge to Earth-based problems. Integral to the National Aeronautics and Space Administration's missions in space is the reduction of risk of medical complications, particularly during missions of long duration. Cumulative medical experience and research provide the ability to develop evidence-based medicine for prevention, countermeasures, and treatment modalities for space flight. The early approach applied terrestrial clinical judgment to predict medical problems in space. Space medicine has evolved to an evidence-based approach with the use of biomedical data gathered and lessons learned from previous space flight missions to systematically aid in decision making. This approach led, for example, to the determination of preliminary nutritional requirements for space flight, and it aids in the development of nutrition itself as a countermeasure to support nutritional mitigation of adaptation to space.
Effects of Long Duration Spaceflight on Venous and Arterial Compliance
NASA Technical Reports Server (NTRS)
Ribeiro, L. C.; Lee, S. M. C.; Martin, D. S.; Ploutz-Snyder, R.; Stenger, M. B.; Westby, C. M.; Platts, S. H.
2014-01-01
The visual impairment and intracranial pressure syndrome (VIIP) is a newly described space flight-associated medical condition made up of a constellation of symptoms affecting at least 34% of American astronauts who have flown International Space Station (ISS) missions. VIIP is defined primarily by visual acuity deficits and anatomical changes to eye structures, and is thought to be related to elevated intracranial pressure secondary to space flightinduced cephalad fluid shifts. Loss of visual acuity could be a significant threat to crew health and performance and may be suggestive of other adaptations with implications for years post-flight. Our primary objective is to determine whether vascular compliance is altered by space flight and whether such adaptations are related to the incidence of VIIP. In particular, we will measure ocular parameters and vascular compliance in vessels of the head and neck in astronauts who have no space flight experience, in astronauts before, during, and after space flight, and in bed rest subjects with conditions similar to space flight. Additionally, we will analyze astronaut data from the Lifetime Surveillance of Astronaut Health (LSAH) archive to determine which factors might be predictive of the development of VIIP. The project will be conducted in four separate but related parts. To understand the baseline condition of astronauts without any prior space flight experience, we will study 10 astronauts who have never flown in space by performing a comprehensive evaluation of the vasculature of the head, neck and eyes. Hemodynamic data (stroke volume and blood pressure), ocular (tonometry and ocular ultrasound), venous and arterial parameters will be acquired across a range of tilt angles (20, 10, 0, -10, -20 degrees). Vessels to be studied include the temporal, jugular, and vertebral veins and the cerebral, carotid and vertebral arteries. Ophthalmic data from the annual physical will be obtained through data sharing. To examine the relation between vascular compliance in the head and neck and the development of VIIP after a long duration space flight, we will study 10 astronauts before, during, and after long-duration ISS missions. Pre- and post-flight testing will be identical to that described above. During flight, images of the same vessels of interest will be obtained for later analysis. Ophthalmic data including VIIP scores will be obtained through data sharing from medically-required tests. To investigate the effects of age and elevated sodium intake, two potential contributors to VIIP, we will study 24 men (in two age groups: 25-35 and 45-55) during a 14 day 6deg head-down bed rest, a well-accepted analog of space flight. Standard NASA bed rest conditions will be maintained except for dietary sodium. Sodium intake will be similar to that of ISS astronauts, which is higher than consumed in previous bed rest studies. Pre- and post-bed rest testing procedures will be identical to the testing protocol described above for astronauts. Ophthalmic testing (optical coherence tomography, fundoscopy, and tonometry) will be conducted on the same day that vascular compliance measures are obtained. To identify parameters that may relate to an increase in an astronaut's susceptibility to developing VIIP, we will use data mining techniques to evaluate astronaut data obtained from the LSAH. Medical history, family history, space flight history and its related exposures, and history of high performance jet aircraft exposure will be examined for their potential relationship to ocular data. We hypothesize that the cephalad fluid shift induced by space flight will result in structural and functional adaptations in head and neck vessels leading to decreased vascular compliance and related to the development of VIIP symptoms. Further, although VIIP has not been observed in previous bed rest studies, we hypothesize that an elevated sodium intake will increase the incidence of VIIP symptoms in this space flight analog. Finally, we hypothesize that data mining analyses will reveal relationships between health history, previous exposures (including space flight and high performance aircraft), and the development of VIIP in the astronaut population.
Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm
NASA Technical Reports Server (NTRS)
Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.
2013-01-01
This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.
NASA Technical Reports Server (NTRS)
Whedon, G. D.; Reid, J.; Lutwak, L.; Rambaut, P.; Whittle, M.; Leach, C.; Smith, M.
1976-01-01
A metabolic study of the effects of space flight on various chemical elements, particularly those with special relevance to the musculo-skeletal system, was carried out on the nine astronauts who participated in the three Skylab flights of 28, 59 and 84 days in 1973-1974. The study required of the cooperating crewmen constant dietary intake, continuous 24-hour urine collections and total fecal collections for 21-31 days before each flight, throughout each flight and for 17-18 days post-flight. Increases in urinary calcium and negative calcium balances during space flight were generally similar to those found in previous immobilization and bedrest studies. The persistence of these alterations in calcium metabolism throughout the flights suggested that calcium losses would continue in weightlessness for a very long time. Significant losses of nitrogen and phosphorus occurred, associated with observed reduction in muscle tissue. Both mineral and muscle losses occurred despite rigorous exercise regimens in flight. It was concluded that unless protective measures can be developed, capable musculo-skeletal function is likely to be impaired in space flights, ultimately to be conducted to Mars, of 1-1/2 to 3 years duration.
Observations of narrow microburst trains in the geomagnetic storm of August 4-6, 1972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.R.
1973-04-01
In the intense geomagnetic disturbances of early August 1972, auroral zone microburst trains were observed at balloon altitude and found to be significantly narrower in burst width and spacing than microbursts found previously at the same site. These observations suggest that the spacing of microburst peaks, as well as their width, is related to variations in the power spectrum of a magnetospheric acceleration process rather than the bounce motions of electrons in the geomagnetic field or the modulation of electron precipitation by drift waves in magnetospheric plasma. In the geomagnetic activity that followed the solar flares in early August 1972,more » intense fluxes of auroral x rays were encountered during balloon flights launched from College, Alaska. Although much of the time variations of the x-ray fluxes observed during these flights represented known features of electron precipitation at auroral latitudes, one new and distinct feature was evident. In particular, it was found that the widths and spacings of auroral zone microbursts (Anderson and Milton, 1964) on this occasion were significantly smaller than those observed previously on many balloon flights from the same site. Thus, instead of microburst trains with widths at half-intensity points of ~0.2 sec and spacings of ~0.6 sec, the majority of the microbursts encountered on two flights from College had widths of ~0.1 sec and spacings of ~0.4 sec. (auth)« less
Mission control activity during STS-61 EVA-2
1993-12-05
STS61-S-094 (5 Dec 1993) --- Kyle Herring, second left, illustrates a point during mission commentary for the second Extravehicular Activity (EVA-2) of the STS-61 Hubble Space Telescope (HST) servicing mission. Astronaut Jerry L. Ross (center), a space walker on two previous NASA shuttle missions, amplified Herring's explanations. At the flight surgeon's console is Dr. Klaus Lohn (third right) of the Institute for Flight Medicine in Koln, Germany.
2004-02-04
KENNEDY SPACE CENTER, FLA. - One of the world’s highest performing visual film analysis systems, developed to review and analyze previous shuttle flight data (shown here) in preparation for the shuttle fleet’s return to flight, is being used today for another purpose. NASA has permitted its use in helping to analyze a film that shows a recent kidnapping in progress in Florida. The system, developed by NASA, United Space Alliance (USA) and Silicon Graphics Inc., allows multiple-person collaboration, highly detailed manipulation and evaluation of specific imagery. The system is housed in the Image Analysis Facility inside the Vehicle Assembly Building. [Photo taken Aug. 15, 2003, courtesy of Terry Wallace, SGI
[Bone marrow mononuclear cells from murine tibia after the space flight on biosatellite "Bion-M1"].
Andreeva, E R; Goncharova, E A; Gornostaeva, A N; Grigor'eva, O V; Buravkova, L B
2014-01-01
Cellularity, viability and immunophenotype of mononuclear cells derived from the tibial marrow of C57bL/6 mice were measured after the 30-day "Bion-M1" space flight and subsequent 7-day recovery. Cell number in the flight group was significantly less than in the group of vivarium control. There was no difference in the parameter between the flight and control groups after the recovery. Viability of mononuclear cells was more than 95% in all examined groups. Flow cytometric analysis failed to show differences in bone marrow cell immunophenotype (CD45, CD34, CD90.1 (Thy1); however, the flight animals had more large-sized CD45+ mononuclears than the control groups of mice. These results indicate that spaceflight factors did not have significant damaging effects on the number or immunophenotype of murine bone marrow mononuclears. These observations are consistent with the previously made assumption of a moderate and reversible stress reaction of mammals to space flight.
Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements
NASA Technical Reports Server (NTRS)
Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)
2003-01-01
Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.
1997-07-01
The Space Shuttle Columbia (STS-94) soared from Launch Pad 39A begirning its 16-day Microgravity Science Laboratory -1 (MSL-1) mission. The launch window was opened 47 minutes earlier than the originally scheduled time to improve the opportunity to lift off before Florida summer rain showers reached the space center. During the space flight, the MSL-1 was used to test some of the hardware, facilities and procedures that were planned for use on the International Space Station which were managed by scientists and engineers from the Marshall Space Flight Center, while the flight crew conducted combustion, protein crystal growth and materials processing experiments. Also onboard was the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which was attached to the right side of Columbia's payload bay. These payloads had previously flown on the STS-83 mission in April, which was cut short after nearly four days because of indications of a faulty fuel cell. STS-94 was a reflight of that mission.
Calcium and Bone Metabolism During Spaceflight
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2002-01-01
The ability to understand and counteract weightlessness-induced bone loss will be critical for crew health and safety during and after space station or exploration missions lasting months or years, respectively. Until its deorbit in 2001 , the Mir Space Station provided a valuable platform for long-duration space missions and life sciences research. Long-duration flights are critical for studying bone loss, as the 2- to 3-week Space Shuttle flights are not long enough to detect changes in bone mass. This review will describe human spaceflight data, focusing on biochemical surrogates of bone and calcium metabolism. This subject has been reviewed previously. 1-
2004-05-01
KENNEDY SPACE CENTER, FLA. -- Former astronaut Joe Engle acknowledges the applause as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Engle made 16 flights in the X-15 rocket plane before he became a NASA astronaut and flew two Space Shuttle missions. In 1981, he commanded the second flight of Columbia, the first manned spacecraft to be reflown in space, and in 1985 he commanded a five-man crew on the 20th shuttle flight, a satellite-deploy and repair mission. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
An automated water iodinating subsystem for manned space flight
NASA Technical Reports Server (NTRS)
Houck, O. K.; Wynveen, R. A.
1974-01-01
Controlling microbial growth by injecting iodine (l2) into water supplies is a widely acceptable technique, but requires a specialized injection method for space flight. An electrochemical l2 injection method and l2 level monitor are discussed in this paper, which also describe iodination practices previously used in the manned space program and major l2 biocidal characteristics. The development and design of the injector and monitor are described, and results of subsequent experiments are presented. Also presented are expected vehicle penalties for utilizing the l2 injector in certain space missions, especially the Space Shuttle, and possible injector failure modes and their criticality.
STS-65 Commander Cabana with SAREX-II on Columbia's, OV-102's, flight deck
1994-07-23
STS065-44-014 (8-23 July 1994) --- Astronaut Robert D. Cabana, mission commander, is seen on the Space Shuttle Columbia's flight deck with the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center (JSC) Amateur Radio Club to encourage public participation in the space program through a project to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.
The IXV experience, from the mission conception to the flight results
NASA Astrophysics Data System (ADS)
Tumino, G.; Mancuso, S.; Gallego, J.-M.; Dussy, S.; Preaud, J.-P.; Di Vita, G.; Brunner, P.
2016-07-01
The atmospheric re-entry domain is a cornerstone of a wide range of space applications, ranging from reusable launcher stages developments, robotic planetary exploration, human space flight, to innovative applications such as reusable research platforms for in orbit validation of multiple space applications technologies. The Intermediate experimental Vehicle (IXV) is an advanced demonstrator which has performed in-flight experimentation of atmospheric re-entry enabling systems and technologies aspects, with significant advancements on Europe's previous flight experiences, consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission objectives were the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention was paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight, successfully performed on February 11th, 2015.
Results of the Vapor Compression Distillation Flight Experiment (VCD-FE)
NASA Technical Reports Server (NTRS)
Hutchens, Cindy; Graves, Rex
2004-01-01
Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (ISS). Key aspects of the VCD design have been verified and significant improvements made throughout the ground;based development history. However, an important element lacking from previous subsystem development efforts was flight-testing. Consequently, the demonstration and validation of the VCD technology and the investigation of subsystem performance in micro-gravity were the primary goals of the VCD-FE. The Vapor Compression Distillation Flight Experiment (VCD-E) was a flight experiment aboard the Space Shuttle Columbia during the STS-107 mission. The VCD-FE was a full-scale developmental version of the Space Station Urine Processor Assembly (UPA) and was designed to test some of the potential micro-gravity issues with the design. This paper summarizes the experiment results.
NASA Flight Planning Branch Space Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III
2011-01-01
Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.
STS-1 operational flight profile. Volume 6: Abort analysis
NASA Technical Reports Server (NTRS)
1980-01-01
The abort analysis for the cycle 3 Operational Flight Profile (OFP) for the Space Transportation System 1 Flight (STS-1) is defined, superseding the abort analysis previously presented. Included are the flight description, abort analysis summary, flight design groundrules and constraints, initialization information, general abort description and results, abort solid rocket booster and external tank separation and disposal results, abort monitoring displays and discussion on both ground and onboard trajectory monitoring, abort initialization load summary for the onboard computer, list of the key abort powered flight dispersion analysis.
Autoflora in the upper respiratory tract of Apollo astronauts.
Decelle, J G; Taylor, G R
1976-01-01
The typical microbial inhabitants of the oral and nasal cavities of Apollo astronauts were identified before space flight and generally found to be similar to those previously reported for healthy male adults. Additional analyses of samples collected immediately after return of the Apollo 13, 14, 15, and 16 crew members to earth were performed to evaluate the effects of space travel on the microbial bioburden of the upper respiratory tract. In-flight cross-contamination and buildup of pathogens such as Staphylococcus aureus were noted, although significant increases in nonpathogenic species were absent. Other proposed alterations, such as dysbacteriosis (flooding of the mouth with a single species) and simplification of the autoflora, did not occur. Generally, the incidence and quantitation of each species after flight was within the preflight range, although the number of viable Haemophilus cells recovered from the mouth decreased significantly after space flight. Except for those minor alterations listed above, the aerobic and anaerobic bacterial components of the upper respiratory autoflora of Apollo astronauts was found to be stable after space flight of up to 295 h. PMID:984836
Psychological adaptation and salutogenesis in space: Lessons from a series of studies
NASA Astrophysics Data System (ADS)
Ritsher, J. B.; Kanas, N. A.; Ihle, E. C.; Saylor, S. A.
2007-02-01
Individuals who adapt positively to an inhospitable or extreme environment can derive benefit from their experiences. This positive effect may include an initial improvement in mental health as someone adjusts to the environment (adaptation) as well as more sustained personal growth during the mission (salutogenesis). We review relevant findings from our prior work, including two post-mission surveys of astronauts and cosmonauts, and three studies of crewmembers during missions in a space station simulator, the Mir space station, and the International Space Station (ISS). We also present new analyses showing evidence for adaptation to ISS missions. This finding replicates our previous results from the simulation study, but this effect was not found on the Mir. A better understanding of psychological adaptation and salutogenesis during space flight should help us develop strategies to enhance crewmembers' in-flight stress tolerance and post-flight adjustment.
Bone Density Following Three Years of Recovery from Long-Duration Space-Flight
NASA Technical Reports Server (NTRS)
Amin, S.; Achenbach, S. J.; Atkinson, E. J.; Sibonga, J.
2010-01-01
Bone loss during long-duration space flight is well recognized, but the long-term implications on bone health following return from flight remain unclear. Among US crew who were involved in long-duration missions in space (Mir and ISS), we have previously shown that at approximately 12 months following return, men, but not women, had BMD values at most sites that were still lower than would be expected had they not been exposed to a prolonged period of microgravity. We now extend our observations to 3 years of follow-up post-flight. Using their age, pre-flight BMD and follow-up time, post-flight BMD values for each US crew were predicted based on the model developed from the community sample. We found BMD measures to be either stable or improve by 3 years relative to their immediate post-flight BMD, however only total hip BMD still remains significantly lower than would be expected had they not been exposed to microgravity. Among male US crew, who have had their BMD measured following at least 3 years of recovery post long-duration flight, they continue to have lower BMD at the hip than would be expected, raising potential concerns regarding future hip fracture risk.
COBALT Flight Demonstrations Fuse Technologies
2017-06-07
This 5-minute, 50-second video shows how the CoOperative Blending of Autonomous Landing Technologies (COBALT) system pairs new landing sensor technologies that promise to yield the highest precision navigation solution ever tested for NASA space landing applications. The technologies included a navigation doppler lidar (NDL), which provides ultra-precise velocity and line-of-sight range measurements, and the Lander Vision System (LVS), which provides terrain-relative navigation. Through flight campaigns conducted in March and April 2017 aboard Masten Space Systems' Xodiac, a rocket-powered vertical takeoff, vertical landing (VTVL) platform, the COBALT system was flight tested to collect sensor performance data for NDL and LVS and to check the integration and communication between COBALT and the rocket. The flight tests provided excellent performance data for both sensors, as well as valuable information on the integrated performance with the rocket that will be used for subsequent COBALT modifications prior to follow-on flight tests. Based at NASA’s Armstrong Flight Research Center in Edwards, CA, the Flight Opportunities program funds technology development flight tests on commercial suborbital space providers of which Masten is a vendor. The program has previously tested the LVS on the Masten rocket and validated the technology for the Mars 2020 rover.
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Wood, S. J.; Cohen, H. S.; Bloomberg, J. J.
2012-01-01
Exposure to the microgravity conditions of space flight induces adaptive modification in sensorimotor function allowing astronauts to operate in this unique environment. This adaptive state, however, is inappropriate for a 1-g environment. Consequently astronauts must spend time readapting to Earth s gravity following their return to Earth. During this readaptation period, alterations in sensorimotor function cause various disturbances in astronaut gait during postflight walking. They often rely more on vision for postural and gait stability and many report the need for greater cognitive supervision of motor actions that previous to space flight were fully automated. Over the last several years our laboratory has investigated postflight astronaut locomotion with the aim of better understanding how adaptive changes in underlying sensorimotor mechanisms contribute to postflight gait dysfunction. Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibularly-mediated reflexive head movement during locomotion after space flight. Furthermore, during motor learning, adaptive transitions are composed of two main mechanisms: strategic and plastic. Strategic mechanisms represent immediate and transitory modifications in control to deal with changes in the prevailing environment that, if prolonged, induce plastic mechanisms designed to automate new behavioral responses. The goal of the present study was to examine the contributions of sensorimotor subsystems such as the vestibular and body load sensing (BLS) somatosensory influences on head movement control during locomotion after long-duration space flight. Further we present data on the two motor learning processes during readaptation of locomotor function after long-duration space flight.
Low-g fluid mixing - Further results from the Tank Pressure Control Experiment
NASA Technical Reports Server (NTRS)
Bentz, M. D.; Knoll, R. H.; Hasan, M. M.; Lin, C. S.
1993-01-01
The Tank Pressure Control Experiment (TPCE) made its first space flight on STS-43 in 1991. Its objective was to test the effectiveness of low-energy axial jet mixing at controlling pressures in low gravity. The experiment used refrigerant 113 at near-saturation conditions, at an 83 percent fill level, to simulate the fluid dynamics and thermodynamics of cryogenic fluids in future space applications. Results from this flight were reported previously. TPCE was again flown in space on STS-52 in 1992, this time primarily to study boiling and related thermal phenomena which will be reported elsewhere. However additional mixing and pressure control data were obtained from the reflight that supplement the data from the first flight.
STS-65 Commander Cabana with SAREX-II on Columbia's, OV-102's, flight deck
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Commander Robert D. Cabana is seen on the Space Shuttle Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck with the Shuttle Amateur Radio Experiment II (SAREX-II) (configuration C). Cabana is equipped with the SAREX-II headset and holds a cable leading to the 2-h window antenna mounted in forward flight deck window W1 (partially blocked by the seat headrest). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center (JSC) Amateur Radio Club to encourage public participation in the space program through a project to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the shuttle.
Space Biology and Medicine. Volume 4; Health, Performance, and Safety of Space Crews
NASA Technical Reports Server (NTRS)
Dietlein, Lawrence F. (Editor); Pestov, Igor D. (Editor)
2004-01-01
Volume IV is devoted to examining the medical and associated organizational measures used to maintain the health of space crews and to support their performance before, during, and after space flight. These measures, collectively known as the medical flight support system, are important contributors to the safety and success of space flight. The contributions of space hardware and the spacecraft environment to flight safety and mission success are covered in previous volumes of the Space Biology and Medicine series. In Volume IV, we address means of improving the reliability of people who are required to function in the unfamiliar environment of space flight as well as the importance of those who support the crew. Please note that the extensive collaboration between Russian and American teams for this volume of work resulted in a timeframe of publication longer than originally anticipated. Therefore, new research or insights may have emerged since the authors composed their chapters and references. This volume includes a list of authors' names and addresses should readers seek specifics on new information. At least three groups of factors act to perturb human physiological homeostasis during space flight. All have significant influence on health, psychological, and emotional status, tolerance, and work capacity. The first and most important of these factors is weightlessness, the most specific and radical change in the ambient environment; it causes a variety of functional and structural changes in human physiology. The second group of factors precludes the constraints associated with living in the sealed, confined environment of spacecraft. Although these factors are not unique to space flight, the limitations they entail in terms of an uncomfortable environment can diminish the well-being and performance of crewmembers in space. The third group of factors includes the occupational and social factors associated with the difficult, critical nature of the crewmembers' work: the risks involved in space flight, changes in circadian rhythms, and intragroup interactions. The physical and emotional stress and fatigue that develop under these conditions also can disturb human health and performance. In addition to these factors, the risk also exists that crewmembers will develop various illnesses during flight. The risk of illness is no less during space flight than on Earth, and may actually be greater for some classes of diseases.
Space flight effects on antioxidant molecules in dry tardigrades: the TARDIKISS experiment.
Rizzo, Angela Maria; Altiero, Tiziana; Corsetto, Paola Antonia; Montorfano, Gigliola; Guidetti, Roberto; Rebecchi, Lorena
2015-01-01
The TARDIKISS (Tardigrades in Space) experiment was part of the Biokon in Space (BIOKIS) payload, a set of multidisciplinary experiments performed during the DAMA (Dark Matter) mission organized by Italian Space Agency and Italian Air Force in 2011. This mission supported the execution of experiments in short duration (16 days) taking the advantage of the microgravity environment on board of the Space Shuttle Endeavour (its last mission STS-134) docked to the International Space Station. TARDIKISS was composed of three sample sets: one flight sample and two ground control samples. These samples provided the biological material used to test as space stressors, including microgravity, affected animal survivability, life cycle, DNA integrity, and pathways of molecules working as antioxidants. In this paper we compared the molecular pathways of some antioxidant molecules, thiobarbituric acid reactive substances, and fatty acid composition between flight and control samples in two tardigrade species, namely, Paramacrobiotus richtersi and Ramazzottius oberhaeuseri. In both species, the activities of ROS scavenging enzymes, the total content of glutathione, and the fatty acids composition between flight and control samples showed few significant differences. TARDIKISS experiment, together with a previous space experiment (TARSE), further confirms that both desiccated and hydrated tardigrades represent useful animal tool for space research.
2004-02-04
KENNEDY SPACE CENTER, FLA. - These towers are part of one of the world’s highest performing visual film analysis systems, developed to review and analyze previous shuttle flight data in preparation for the shuttle fleet’s return to flight. The system is being used today for another purpose. NASA has permitted its use in helping to analyze a film that shows a recent kidnapping in progress in Florida. Developed by NASA, United Space Alliance (USA) and Silicon Graphics Inc., the system allows multiple-person collaboration, highly detailed manipulation and evaluation of specific imagery. The system is housed in the Image Analysis Facility inside the Vehicle Assembly Building. [Photo taken Aug. 15, 2003, courtesy of Terry Wallace, SGI
Attitudes towards personal and shared space during the flight.
Ahmadpour, N; Kühne, M; Robert, J-M; Vink, P
2016-07-25
Aircraft passenger comfort experience was previously defined based on its underlying thematic components representing passengers' perception of the environmental elements and their link to their concerns. This paper aims to 1) identify aircraft passengers' attitudes towards their personal and shared space in the cabin environment during the flight which are linked to their comfort experience and 2) highlight passenger concerns associated with those attitudes. A sample involving 16 participants was conducted, collecting full accounts of their real-time flight experiences onboard commercial aircrafts, using questionnaires. Four types of attitudes were identified in reaction to participants' personal and shared space during the flight. Those were described as adjust, avoid, approach, and shield. Passengers' concerns associated with those attitudes were respectively: control, privacy, connectedness and tolerance. It is concluded that passenger comfort can be improved once the identified concerns and attitudes are addressed in the design of the aircraft seat and interior. Design recommendations are provided accordingly.
2014-02-28
From left, Wayne Arrington, a Boeing Company technician, and Steve Presti, a mechanical technician at NASA's Marshall Space Flight Center in Huntsville, Ala., install Developmental Flight Instrumentation Data Acquisition Units in Marshall's Systems Integration and Test Facility. The units are part of NASA's Space Launch System (SLS) core stage avionics, which will guide the biggest, most powerful rocket in history to deep space missions. When completed, the core stage will be more than 200 feet tall and store cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle's RS-25 engines. The hardware, software and operating systems for the SLS are arranged in flight configuration in the facility for testing. The new Data Acquisition Units will monitor vehicle behavior in flight -- like acceleration, thermal environments, shock and vibration. That data will then be used to validate previous ground tests and analyses models that were used in the development of the SLS vehicle.
Neurovestibular Considerations for Sub-Orbital Space Flight: A Framework for Future Investigation
Karmali, Faisal; Shelhamer, Mark
2013-01-01
Commercial sub-orbital operators will soon offer the excitement of traveling to space to thousands of people. Based on previous experience in space flight and parabolic flight, sensorimotor disruptions in eye movements, postural stability, and motor coordination are likely in these travelers. Here we propose a framework for developing strategies to overcome these sensorimotor disruptions. We delineate how approaches should differ from those applied to orbital flight and between sub-orbital passengers and pilots based on differing frequency of flights and mission objectives. Sensorimotor adaptation is one strategy for overcoming disruptions; an important question is whether it occurs quickly enough to be of use during periods of reduced and enhanced gravity lasting less than five minutes. Data are presented showing that sensorimotor adaptation of the pitch vestibulo-ocular reflex during parabolic flight takes a few consecutive days of flying to overcome an initial disruption. We conclude with recommendations for operators and researchers to improve safety and comfort during sub-orbital operations. We recommend using parabolic flight as a tool for pre-adapting sub-orbital passengers, along with further research into the required quantity and timing of these pre-adaptation flights and the tasks conducted during these flights. Likewise, for sub-orbital pilots, we recommend emphasizing recency of experience. PMID:20555165
NASA Technical Reports Server (NTRS)
Johnson, Jacqueline U.
1996-01-01
Previous space flight studies have described unfavorable effects of microgravity on testicular morphology and spermatogenesis (Cosmos 1887 Biosputnik flight, 9/29/87 - 10/12/87). The flight animals demonstrated small reductions in testicular and epididymal size, the phenomenon explained as resulting water loss. Yet, light microscopic histological preparations revealed few spermatozoa in the rete testis of the flight males compared to control animals. The cause for this finding was subjectively assessed to be due to "the anatomical dislocation of the organs... and a disturbance in testicular blood supply". Unfortunately, the reported effects of microgravity on the reproductive processes (particularly within males) are few and divergent. If habitation in space is a futuristic goal, more objective testing (of male and female gametes) in a microgravity environment will provide insight to the developmental potential of these reproductive cells. As part of the Marshall Space Flight Centers' Summer Faculty Fellowship Program within the Biophysics Branch, a key component of the research investigation was to develop a test to evaluate individual cell motility and orientation in varying gravitational environments, using computerized assessment of sperm cell concentration, morphology and motility to provide objective, quantitative experimental control. In previous work performed jointly by the author and a NASA colleague, it has been shown that macroscopic motile aggregates of spermatozoa were not altered by the absence of microgravity. Variations in the number of normal versus abnormal sperm due to microgravity influences have yet to be established. It is therefore of interest to monitor the cytoskeletal matrix (microtubulin) of these organisms as a possible indicator of cell viability and/or function.
Calcium and Bone Homeostasis During 4-6 Months Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.; OBrien, K.; Wastney, M.; Morukov, B.; Larina, I.; Abrams, S.; Lane, H.; Nillen, J.; Davis-Street, J.; Paloski, W. H. (Technical Monitor)
2000-01-01
Bone and calcium homeostasis are altered by weightlessness. We previously reported calcium studies on three subjects from the first joint US/Russian mission to Mir. We report here data on an additional three male subjects, whose stays on Mir were 4 (n= 1) and 6 (n=2) mos. Data were collected before, during, and after the missions. Inflight studies were conducted at 2-3 mos. Endocrine and biochemical indices were measured, along with 3-wk calcium tracer studies. Percent differences are reported compared to preflight. Ionized calcium was unchanged (2.8 +/-2.1 %) during flight. Calcium absorption was variable inflight, but was decreased after landing. Vitamin D stores were decreased 35 +/-24% inflight, similar to previous reports. Serum PTH was decreased 59 +/-9% during flight (greater than we previously reported), while 1,25(OH)(sub 2)-Vitamin D was decreased in 2 of 3 subjects. Markers of bone resorption (e.g., crosslinks) were increased in all subjects. Bone-specific alkaline phosphatase was decreased (n=1) or unchanged (n=2), while osteocalcin was decreased 34 +/-23%. Previously presented data showed that inflight bone loss is associated with increased resorption and unchanged/decreased formation. The data reported here support these earlier findings. These studies will help to extend our understanding of space flight-induced bone loss, and of bone loss associated with diseases such as osteoporosis or paralysis.
Genetic changes induced by space flight factors in barley seeds on Soyuz-5 and Soyuz-9 craft
NASA Technical Reports Server (NTRS)
Nuzhdin, N. I.; Dozortseva, R. L.
1980-01-01
Air-dry seeds of the barley Zimujuschij moscowskyi of the 1969 harvest were taken into space onboard the spaceships Soyuz-5 and Soyuz-9. A cytological study of the mitoses in meristemic cells in rootlet terminals revealed that space flight factors (SFF) in nonirradiated seeds induced about 3% of aberrant cells. After irradiation the effect of SFF increased over two-fold. Although the radio protectors ensured the seeds against from the SFF-induced damage either in irradiated or nonirradiated seed cells which is inconsistent with the previously obtained data.
NASA Astrophysics Data System (ADS)
1995-11-01
On this fourth day of the STS-74 mission, the flight crew, Cmdr. Kenneth Cameron, Pilot James Halsell, and Mission Specialists William McArthur, Jerry Ross, and Chris Hatfield, perform a successful docking between the space shuttle and the Mir space station using the Russian-made docking module that had been previously installed on the third day of the mission. The astronauts and the Mir 20 cosmonauts, Cmdr. Yuri Gidzenko, Flight Engineer Gergei Avdeyev, and Cosmonaut-Researcher (ESA) Thomas Reiter, are shown greeting each other from inside the docking module and an in-orbit interview between the crews and NASA is conducted in both English and Russian.
NASA Technical Reports Server (NTRS)
1995-01-01
On this fourth day of the STS-74 mission, the flight crew, Cmdr. Kenneth Cameron, Pilot James Halsell, and Mission Specialists William McArthur, Jerry Ross, and Chris Hadfield, perform a successful docking between the space shuttle and the Mir space station using the Russian-made docking module that had been previously installed on the third day of the mission. The astronauts and the Mir 20 cosmonauts, Cmdr. Yuri Gidzenko, Flight Engineer Gergei Avdeyev, and Cosmonaut-Researcher (ESA) Thomas Reiter, are shown greeting each other from inside the docking module and an in-orbit interview between the crews and NASA is conducted in both English and Russian.
Calcium Balance in Mature Rats Exposed to a Space Flight Model
NASA Technical Reports Server (NTRS)
Wolinsky, Ira
1996-01-01
Negative calcium balances are seen in humans during spaceflight and bed rest, an analog of space flight. Due to the infrequency and costliness of space flight and the difficulties, cost, and restraints in using invasive procedures in bed rest studies, several ground based animal models of space flight have been employed. The most useful and well developed of these models is hind limb unloading in the rat. In this model the hind limbs are non-weight bearing (unloaded) but still mobile; there is a cephalad fluid shift similar to that seen in astronauts in flight; the animals are able to feed, groom and locomote using their front limbs; the procedure is reversible; and, importantly, the model has been validated by comparison to space flight. Several laboratories have studied calcium balance using rats in hind limb unweighting. Roer and Dillaman used young male rats to study calcium balance in this model for 25 days. They found no differences in dietary calcium intake, percent calcium absorption, urinary and fecal excretion, hence indicating no differences in calcium balance between control and unloaded rats. In another study, employing 120 day old females, rats' hind limbs were unloaded for 28 days. While negative calcium balances were observed during a 25 day recovery period no balance measurements were possible during unweighting since the researchers did not employ appropriate metabolic cages. In a recent study from this laboratory, using 200 g rats in the space flight model for two weeks, we found depressed intestinal calcium absorption and increased fecal calcium excretion (indicating less positive calcium balances) and lower circulating 1,25-dihydroxyvitamin D. The above studies indicate that there remains a dearth of information on calcium balance during the hind limb unloading rat space flight model, especially in mature rats, whose use is a better model for planned manned space flight than juvenile or growing animals. With the aid of a newly designed metabolic cage developed in our laboratory it is now possible to accurately measure urinary and fecal calcium excretions in this space flight model. The purpose of this study, then, was to extend and enlarge our previous findings viz: to measure calcium balances in mature rats exposed to a space flight model.
Symposium Conclusion: Women's cardiovascular health after bed rest or space flight
NASA Astrophysics Data System (ADS)
Hughson, Richard L.; Arbeille, Phillipe; Shoemaker, Kevin; Edgell, Heather
The Canadian Space Agency has recently funded research on two long-duration missions to study cardiovascular deconditioning associated with bed rest or space flight. The first, Women's International Space simulation for Exploration (WISE-2005) examined the responses during a 60-day head down bed rest (HDBR) of 24 women with or without a countermeasure that consisted of supine treadmill running within a lower body negative pressure (LBNP) device followed by 10-minutes resting LBNP and on different days high intensity resistance exercise on a flywheel device. The second study, Cardiovascular and cerebrovascular Control on return from the International Space Station (CCISS) is currently underway with two male astronauts tested and the first woman anticipated later this year. Women have been previously identified as being more susceptible to orthostatic intolerance than men after both bed rest and space flight studies. Thus, in the WISE-2005 study we examined responses of the cardiovascular system after HDBR in women and compared these to previously published data from men. We found that after HDBR women have a greater increase in heart rate with infusion of the drug isoproterenol and this was consistent with observations in men. However, during drug infusion the women had a reduction in leg vascular resistance while men had an increase. The exercise countermeasure group had preserved heart rate and leg vascular resistance responses to drug infusion. The ability to vasoconstrict the legs and splanchnic region is critical to maintenance of upright posture after HDBR and space flight. In the WISE-2005 study, subjects who were able to constrict the legs and/or splanchnic region after HDBR were much less likely to have a marked drop in blood pressure before the end of 10-minutes upright tilt, and subjects who performed the countermeasure were more likely to be in this group of tilt test finishers. These data provide new insight into mechanisms that might be responsible for fainting after bed rest or space flight, and they can be used to understand why specific populations such as the elderly might be more likely to faint during life on Earth. Supported by Canadian Space Agency.
NASA Technical Reports Server (NTRS)
1996-01-01
On this ninth day of the STS-72 mission, the flight crew, Cmdr. Brian Duffy, Pilot Brent W. Jett, and Mission Specialists Leroy Chiao, Daniel T. Barry, Winston E. Scott, and Koichi Wakata (NASDA), awakened to music from the movie Star Wars. The astronauts conducted a news conference via satellite and answered questions from both Japanese and U.S. reporters at the Kennedy Space Center and the Johnson Space Center. The preparation for the scheduled night landing continues from the previous day's activities.
Krikalev and Currie perform an IFM on a battery recharger in the FGB/Zarya
2013-11-19
STS088-334-029 (4-15 Dec. 1998) --- Astronaut Nancy J. Currie, mission specialist, and cosmonaut Sergei K. Krikalev, mission specialist representing the Russian Space Agency (RSA), perform an in-flight maintenance on a battery charging unit on the Russian-built FGB Module (Zarya). One of Zarya's six batteries had experienced a problem discharging stored energy in its automatic configuration. Krikalev had swapped out an identical component during two previous flights on the Russia?s Mir Space Station.
Home Air Purifiers Eradicate Harmful Pathogens
NASA Technical Reports Server (NTRS)
2014-01-01
Marshall Space Flight Center funded the University of Madison-Wisconsin to develop ethylene scrubbers to keep produce fresh in space. Akida Holdings of Jacksonville, Florida, licensed the technology and developed Airocide, an air purifier that can kill airborne pathogens. Previously designed for industrial spaces, there is now a specially designed unit for home use.
Flight Planning Branch Space Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.
2011-01-01
Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.
Mercury Atomic Frequency Standards for Space Based Navigation and Timekeeping
NASA Technical Reports Server (NTRS)
Tjoelker, R. L.; Burt, E. A.; Chung, S.; Hamell, R. L.; Prestage, J. D.; Tucker, B.; Cash, P.; Lutwak, R.
2012-01-01
A low power Mercury Atomic Frequency Standard (MAFS) has been developed and demonstrated on the path towards future space clock applications. A self contained mercury ion breadboard clock: emulating flight clock interfaces, steering a USO local oscillator, and consuming approx 40 Watts has been operating at JPL for more than a year. This complete, modular ion clock instrument demonstrates that key GNSS size, weight, and power (SWaP) requirements can be achieved while still maintaining short and long term performance demonstrated in previous ground ion clocks. The MAFS breadboard serves as a flexible platform for optimizing further space clock development and guides engineering model design trades towards fabrication of an ion clock for space flight.
NASA Technical Reports Server (NTRS)
1993-01-01
Based on Johnson Space Flight Center's development of a rotating bioreactor cell culture apparatus for Space Shuttle medical research, Johnson Space Flight Center engineers who worked on the original project formed a company called Synthecon, with the intention of commercializing the bioreactor technology. Synthecon grows three dimensional tissues in the bioreactor. These are superior to previous two-dimensional tissue samples in the study of human cell growth. A refined version of the Johnson Space Center technology, Synthecon's Rotary Cell Culture System includes a cell culture chamber that rotates around a horizontal axis. The cells establish an orbit that approximates free fall through the liquid medium in the chamber. The technology has significant applications for cancer research and treatment as well as AIDS research.
NASA Astrophysics Data System (ADS)
Kirkpatrick, A. W.; Keaney, M. A.; Bentz, K.; Groleau, M.; Tyssen, M.; Keyte, J.; Ball, C. G.; Campbell, M. R.; Grenon, S. M.; McBeth, P.; Broderick, T. J.
2010-03-01
Emergency surgery will be needed to prevent death if humans are used to explore beyond low earth's orbit. Laparoscopic surgery (LS) is envisioned as a less invasive option for space, but will induce further stresses and complicate logistical requirements. Thus, further study into the technology and physiology of LS in weightlessness is required. We recently utilized the National Research Council of Canada's Flight Research Laboratory's Falcon 20 aircraft as a terrestrial analogue space environment (TASE) for space surgery research. The Falcon 20 had never been used for this purpose nor had the involved teams collaborated previously. There were many process challenges including the lack of antecedent surgical studies on this aircraft, a requirement for multiple disciplines who were unfamiliar and geographically distant from each other, flight performance limitations with the Falcon 20, complex animal care requirements, requirements for prototypical in-flight life-support surgical suites, financial limitations, and a need to use non-flight hardened technologies. Stepwise suggested solutions to these challenges are outlined as guidelines for future investigators intending similar research. Overall, the Falcon 20 TASE, backed by the flight resources, especially the design and fabrication capabilities of the NRC-FRL, provide investigators with a versatile and responsive opportunity to pursue research into advanced medical techniques that will be needed to save lives during space exploration.
STS-1 landing at Edwards - first orbital mission
NASA Technical Reports Server (NTRS)
1981-01-01
The first flight of a space shuttle into space and back occurred from April 12 to April 14, 1981. After years of testing of the space shuttle Columbia and training the astronauts in simulators, the orbiter lifted off into space on the 12th, boosted by the seven million pounds of thrust supplied by its solid-propellant rockets and liquid-hydrogen engines. The flight, one of four Orbital Flight Tests of Columbia, served as a two-day demonstration of the first reusable, piloted spacecraft's ability to go into orbit and return safely to Earth. Columbia carried as its main payload a Developmental Flight Instrumentation pallet with instruments to record pressures, temperatures, and levels of acceleration at various points on the vehicle during launch, flight, and landing. One of many cameras aboard--a remote television camera--revealed some of the thermal protection tiles had disengaged during launch. As Columbia reentered the atmosphere from space at Mach 24 (24 times the speed of sound) after 36 orbits, aerodynamic heating built up to over 3,000 degrees Fahrenheit, causing some concern during the moments when ionized gases disrupted radio communication. But at 188,000 feet and Mach 10, mission commander John W. Young and pilot Robert L. Crippen reported that the orbiter was performing as expected. After a series of maneuvers to reduce speed, the mission commander and pilot prepared to land. In flight, Young and Crippen tested the spacecraft's on-board systems, fired the orbital maneuvering system for changing orbits, employed the reaction control system for controlling attitude, and opened and closed the payload doors. Columbia was the first reusable, piloted spacecraft, the first piloted lifting-reentry vehicle, and the first piloted spacecraft without a crew escape system. Energy management for the space shuttles was based on previous experience with the X-15 at NASA's Flight Research Center (which had become the Dryden Flight Research Center in 1976). Landing the shuttles without power--and therefore without the weight penalty of an additional engine and fuel--was based on previous experience at the Flight Research Center with piloted lifting bodies that also landed without power, as had the X-15s. Dryden and Edwards Air Force Base (AFB) had also hosted the approach and landing tests of the shuttle prototype Enterprise in 1977 and had tested the computers used for the shuttles' flight control systems in the F-8 Digital Fly-By-Wire aircraft, which also contributed to the solution of a dangerous pilot induced oscillation that occurred on the final approach and landing test. In this clip Young and Crippen fly the orbiter Columbia to a picture-perfect, unpowered landing on the dry lakebed runway 23 at Edwards AFB, CA, after it's first orbital flight, which ended on April 14.
NASA Space Technology Can Improve Soldier Health, Performance and Safety
NASA Technical Reports Server (NTRS)
Cowings, Patricia S.; Toscano, William B.
2000-01-01
One of the primary goals of NASA Life Sciences research is '... to enable a permanent human presence in space.' To meet this goal, NASA is creating alternative protocols designed to evaluate and test countermeasures that will account for and correct the environmental effects of space flight on crewmembers health, safety, and operational performance. NASA investigators have previously evaluated the effects of long-duration space flight on physiology and performance of cosmonauts aboard the MIR space station. They also initiated tests of a countermeasure, Autogenic-Feedback Training Exercise (AFTE) designed to prevent and/or correct adverse effects, i.e., facilitate adaptation to space and re-adaptation to Earth. AFTE is a six-hour physiological training program that has proven to be a highly efficient and effective method for enabling people to monitor and voluntarily control a range of their own physiological responses, thereby minimizing adverse reactions to environmental stress. However, because of limited opportunities to test this technology with space flight crews, it is essential to find operational or 'real world' environments in which to validate the efficacy of this approach.
Preliminary Multivariable Cost Model for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored
Modal Survey Test of the SOTV 2X3 Meter Off-Axis Inflatable Concentrator
NASA Technical Reports Server (NTRS)
Engberg, Robert C.; Lassiter, John O.; McGee, Jennie K.
2000-01-01
NASA's Marshall Space Flight Center has had several projects involving inflatable space structures. Projects in solar thermal propulsion have had the most involvement, primarily inflatable concentrators. A flight project called Shooting Star Experiment initiated the first detailed design, analysis and testing effort involving an inflatable concentrator that supported a Fresnel lens. The lens was to concentrate the sun's rays to provide an extremely large heat transfer for an experimental solar propulsion engine. Since the conclusion of this experiment, research and development activities for solar propulsion at Marshall Space Flight Center have continued both in the solar propulsion engine technology as well as inflatable space structures. Experience gained in conducting modal survey tests of inflatable structures for the Shooting Star Experiment has been used by dynamic test engineers at Marshall Space Flight Center to conduct a modal survey test on a Solar Orbital Transfer Vehicle (SOTV) off-axis inflatable concentrator. This paper describes how both previously learned test methods and new test methods that address the unique test requirements for inflatable structures were used. Effects of the inherent nonlinear response of the inflatable concentrator on test methods and test results are noted as well. Nine analytical mode shapes were successfully correlated to test mode shapes. The paper concludes with several "lessons learned" applicable to future dynamics testing and shows how Marshall Space Flight Center has utilized traditional and new methods for modal survey testing of inflatable space structures.
Operations to Research: Communication of Lessons Learned
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer
2009-01-01
This presentation explores ways to build upon previous spaceflight experience and communicate this knowledge to prepare for future exploration. An operational approach is highlighted, focusing on selection and retention standards (disease screening and obtaining medical histories); pre-, in-, and post-flight monitoring (establishing degrees of bone loss, skeletal muscle loss, cardiovascular deconditioning, medical conditions, etc.); prevention, mitigation, or treatment (in-flight countermeasures); and, reconditioning, recovery, and reassignment (post-flight training regimen, return to pre-flight baseline and flight assignment). Experiences and lessons learned from the Apollo, Skylab, Shuttle, Shuttle-Mir, International Space Station, and Orion missions are outlined.
Rocket study of auroral processes
NASA Technical Reports Server (NTRS)
Arnoldy, R. L.
1981-01-01
Abstracts are presented of previously published reports analyzing data from three Echo 3 rocket flights. Particle experiments designed for the Terrier-Malmute flight, the Echo 5 flight, and the Norwegian Corbier Ferdinand 50 flight are described and their flight performance evaluated. Theoretical studies on auroral particle precipitation are reviewed according to observations made in three regions of space: (1) the region accessible to rockets and low altitude satellites (few hundred to a few thousand kilometers); (2) the region extending from 4000 to 8000 km (S3-3 satellite range); and (3) near the equatorial plane (geosynchronous satellite measurements). Questions raised about auroral arc formation are considered.
Specification and Design of Electrical Flight System Architectures with SysML
NASA Technical Reports Server (NTRS)
McKelvin, Mark L., Jr.; Jimenez, Alejandro
2012-01-01
Modern space flight systems are required to perform more complex functions than previous generations to support space missions. This demand is driving the trend to deploy more electronics to realize system functionality. The traditional approach for the specification, design, and deployment of electrical system architectures in space flight systems includes the use of informal definitions and descriptions that are often embedded within loosely coupled but highly interdependent design documents. Traditional methods become inefficient to cope with increasing system complexity, evolving requirements, and the ability to meet project budget and time constraints. Thus, there is a need for more rigorous methods to capture the relevant information about the electrical system architecture as the design evolves. In this work, we propose a model-centric approach to support the specification and design of electrical flight system architectures using the System Modeling Language (SysML). In our approach, we develop a domain specific language for specifying electrical system architectures, and we propose a design flow for the specification and design of electrical interfaces. Our approach is applied to a practical flight system.
Expedition 6 Crew Interviews: Nikolai Budarin FEI (Flight Engineer 1)
NASA Technical Reports Server (NTRS)
2002-01-01
Expedition 6 Flight Engineer Nikolai Budarin is seen during a prelaunch interview. He provides details on the mission's goals and significance, his role in the mission, what his responsibilities will be, what the crew activities will be like (docking of a Progress unpiloted supply vehicle, maintaining the space station, conducting science experiments and performing one spacewalk), the day-to-day life on an extended stay mission, and the experiments he will be conducting on board. Budarin also discusses how his previous experiences on mir space missions will help him and ends his thoughts on how valuable the International Space Station has proven.
Changes in mineral metabolism with immobilization/space flight
NASA Technical Reports Server (NTRS)
Gallagher, J. C.
1989-01-01
Researchers are still unsure of the accuracy of previous bone density measurements of their significance following a period of weightlessness. Rapid technological advances in the measurement of bone density will enable us now to measure bone density accurately at multiple sites in the skeleton with doses of radiation less than that given by a spine x ray. It may not be possible to obtain this type of information before the next series of space flights take place, although the bed-rest model may provide supporting information. Extensive testing of bone density on every astronaut should be performed before and after the space flight. Prevention and treatment can only be undertaken after gathering sufficient baseline information. The use of exercise in preventing bone loss is still highly speculative, but represents a relatively easy approach to the problem in terms of study.
An Integrated Analysis of the Physiological Effects of Space Flight: Executive Summary
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1985-01-01
A large array of models were applied in a unified manner to solve problems in space flight physiology. Mathematical simulation was used as an alternative way of looking at physiological systems and maximizing the yield from previous space flight experiments. A medical data analysis system was created which consist of an automated data base, a computerized biostatistical and data analysis system, and a set of simulation models of physiological systems. Five basic models were employed: (1) a pulsatile cardiovascular model; (2) a respiratory model; (3) a thermoregulatory model; (4) a circulatory, fluid, and electrolyte balance model; and (5) an erythropoiesis regulatory model. Algorithms were provided to perform routine statistical tests, multivariate analysis, nonlinear regression analysis, and autocorrelation analysis. Special purpose programs were prepared for rank correlation, factor analysis, and the integration of the metabolic balance data.
The dynamics of blood biochemical parameters in cosmonauts during long-term space flights
NASA Astrophysics Data System (ADS)
Markin, Andrei; Strogonova, Lubov; Balashov, Oleg; Polyakov, Valery; Tigner, Timoty
Most of the previously obtained data on cosmonauts' metabolic state concerned certain stages of the postflight period. In this connection, all conclusions, as to metabolism peculiarities during the space flight, were to a large extent probabilistic. The purpose of this work was study of metabolism characteristics in cosmonauts directly during long-term space flights. In the capillary blood samples taken from a finger, by "Reflotron IV" biochemical analyzer, "Boehringer Mannheim" GmbH, Germany, adapted to weightlessness environments, the activity of GOT, GPT, CK, gamma-GT, total and pancreatic amylase, as well as concentration of hemoglobin, glucose, total bilirubin, uric acid, urea, creatinine, total, HDL- and LDL cholesterol, triglycerides had been determined. HDL/LDL-cholesterol ratio also was computed. The crewmembers of 6 main missions to the "Mir" orbital station, a total of 17 cosmonauts, were examined. Biochemical tests were carryed out 30-60 days before lounch, and in the flights different stages between the 25-th and the 423-rd days of flights. In cosmonauts during space flight had been found tendency to increase, in compare with basal level, GOT, GPT, total amylase activity, glucose and total cholesterol concentration, and tendency to decrease of CK activity, hemoglobin, HDL-cholesterol concentration, and HDL/LDL — cholesterol ratio. Some definite trends in variations of other determined biochemical parameters had not been found. The same trends of mentioned biochemical parameters alterations observed in majority of tested cosmonauts, allows to suppose existence of connection between noted metabolic alterations with influence of space flight conditions upon cosmonaut's body. Variations of other studied blood biochemical parameters depends on, probably, pure individual causes.
NASA Technical Reports Server (NTRS)
1971-01-01
In 1973 three Americans will embark on the first of a series of Earth orbiting missions using Skylab, the first United States vehicle created specifically to enable man to live and work in space for extended periods. Sky lab is a program dedicated to the use of space and its unique environment and vantage point to increase our knowledge and understanding of the Earth's importance to man's well-being and man's influence on Earth's ecology. Sky lab will also be a major step in manned space flight. Habitation by the first crew will double our previous man-in-space duration (Gemini VII) and the second visit will redouble that duration. It will, in effect, create a bridge between the development flights of the 60s and the long duration operational space flights of the future. To accomplish its mission, Sky lab will be placed in Earth orbit and will be visited and inhabited by three different crews during an eight-month period. While successfully inhabiting and operating the vehicle for one- and two-month continuous periods, these crews will obtain data in areas pertinent to the man/Earth relationship and to long duration space flight. Data will be acquired by Skylab primarily through the conduct of "experiments." Four categories of investigation are planned. These are summarized in the following paragraphs.
Air STAR Beyond Visual Range UAS Description and Preliminary Test Results
NASA Technical Reports Server (NTRS)
Cunningham, Kevin; Cox, David E.; Foster, John V.; Riddick, Stephen E.; Laughter, Sean A.
2016-01-01
The NASA Airborne Subscale Transport Aircraft Research Unmanned Aerial System project's capabilities were expanded by updating the system design and concept of operations. The new remotely piloted airplane system design was flight tested to assess integrity and operational readiness of the design to perform flight research. The purpose of the system design is to improve aviation safety by providing a capability to validate, in high-risk conditions, technologies to prevent airplane loss of control. Two principal design requirements were to provide a high degree of reliability and that the new design provide a significant increase in test volume (relative to operations using the previous design). The motivation for increased test volume is to improve test efficiency and allow new test capabilities that were not possible with the previous design and concept of operations. Three successful test flights were conducted from runway 4-22 at NASA Goddard Space Flight Center's Wallops Flight Facility.
NASA reliability preferred practices for design and test
NASA Technical Reports Server (NTRS)
1991-01-01
Given here is a manual that was produced to communicate within the aerospace community design practices that have contributed to NASA mission success. The information represents the best technical advice that NASA has to offer on reliability design and test practices. Topics covered include reliability practices, including design criteria, test procedures, and analytical techniques that have been applied to previous space flight programs; and reliability guidelines, including techniques currently applied to space flight projects, where sufficient information exists to certify that the technique will contribute to mission success.
Spacelab 4: Primate experiment support hardware
NASA Astrophysics Data System (ADS)
Fusco, P. R.; Peyran, R. J.
1984-05-01
A squirrel monkey feeder and automatic urine collection system were designed to fly on the Spacelab 4 Shuttle Mission presently scheduled for January 1986. Prototypes of the feeder and urine collection systems were fabricated and extensively tested on squirrel monkeys at the National Aeronautics and Space Administration's (NASA) Ames Research Center (ARC). The feeder design minimizes impact on the monkey's limited space in the cage and features improved reliability and biocompatibility over previous systems. The urine collection system is the first flight qualified, automatic urine collection device for squirrel monkeys. Flight systems are currently being fabricated.
Spacelab 4: Primate experiment support hardware
NASA Technical Reports Server (NTRS)
Fusco, P. R.; Peyran, R. J.
1984-01-01
A squirrel monkey feeder and automatic urine collection system were designed to fly on the Spacelab 4 Shuttle Mission presently scheduled for January 1986. Prototypes of the feeder and urine collection systems were fabricated and extensively tested on squirrel monkeys at the National Aeronautics and Space Administration's (NASA) Ames Research Center (ARC). The feeder design minimizes impact on the monkey's limited space in the cage and features improved reliability and biocompatibility over previous systems. The urine collection system is the first flight qualified, automatic urine collection device for squirrel monkeys. Flight systems are currently being fabricated.
Reducing Mission Costs by Leveraging Previous Investments in Space
NASA Technical Reports Server (NTRS)
Miller, Ron; Adams, W. James
1999-01-01
The Rapid Spacecraft Development Office (RSDO) at NASA's Goddard Space Flight Center has been charged with the responsibility to reduce mission cost by allowing access to previous developments on government and commercial space missions. RSDO accomplishes this responsibility by implementing two revolutionary contract vehicles, the Rapid Spacecraft Acquisition (RSA) and Quick Ride. This paper will describe the concept behind these contracts, the current capabilities available to missions, analysis of pricing trends to date using the RSDO processes, and future plans to increase flexibility and capabilities available to mission planners.
Severe traumatic injury during long duration spaceflight: Light years beyond ATLS.
Kirkpatrick, Andrew W; Ball, Chad G; Campbell, Mark; Williams, David R; Parazynski, Scott E; Mattox, Kenneth L; Broderick, Timothy J
2009-03-25
Traumatic injury strikes unexpectedly among the healthiest members of the human population, and has been an inevitable companion of exploration throughout history. In space flight beyond the Earth's orbit, NASA considers trauma to be the highest level of concern regarding the probable incidence versus impact on mission and health. Because of limited resources, medical care will have to focus on the conditions most likely to occur, as well as those with the most significant impact on the crew and mission. Although the relative risk of disabling injuries is significantly higher than traumatic deaths on earth, either issue would have catastrophic implications during space flight. As a result this review focuses on serious life-threatening injuries during space flight as determined by a NASA consensus conference attended by experts in all aspects of injury and space flight.In addition to discussing the impact of various mission profiles on the risk of injury, this manuscript outlines all issues relevant to trauma during space flight. These include the epidemiology of trauma, the pathophysiology of injury during weightlessness, pre-hospital issues, novel technologies, the concept of a space surgeon, appropriate training for a space physician, resuscitation of injured astronauts, hemorrhage control (cavitary and external), surgery in space (open and minimally invasive), postoperative care, vascular access, interventional radiology and pharmacology.Given the risks and isolation inherent in long duration space flight, a well trained surgeon and/or surgical capability will be required onboard any exploration vessel. More specifically, a broadly-trained surgically capable emergency/critical care specialist with innate capabilities to problem-solve and improvise would be desirable. It will be the ultimate remote setting, and hopefully one in which the most advanced of our societies' technologies can be pre-positioned to safeguard precious astronaut lives. Like so many previous space-related technologies, these developments will also greatly improve terrestrial care on earth.
Severe traumatic injury during long duration spaceflight: Light years beyond ATLS
Kirkpatrick, Andrew W; Ball, Chad G; Campbell, Mark; Williams, David R; Parazynski, Scott E; Mattox, Kenneth L; Broderick, Timothy J
2009-01-01
Traumatic injury strikes unexpectedly among the healthiest members of the human population, and has been an inevitable companion of exploration throughout history. In space flight beyond the Earth's orbit, NASA considers trauma to be the highest level of concern regarding the probable incidence versus impact on mission and health. Because of limited resources, medical care will have to focus on the conditions most likely to occur, as well as those with the most significant impact on the crew and mission. Although the relative risk of disabling injuries is significantly higher than traumatic deaths on earth, either issue would have catastrophic implications during space flight. As a result this review focuses on serious life-threatening injuries during space flight as determined by a NASA consensus conference attended by experts in all aspects of injury and space flight. In addition to discussing the impact of various mission profiles on the risk of injury, this manuscript outlines all issues relevant to trauma during space flight. These include the epidemiology of trauma, the pathophysiology of injury during weightlessness, pre-hospital issues, novel technologies, the concept of a space surgeon, appropriate training for a space physician, resuscitation of injured astronauts, hemorrhage control (cavitary and external), surgery in space (open and minimally invasive), postoperative care, vascular access, interventional radiology and pharmacology. Given the risks and isolation inherent in long duration space flight, a well trained surgeon and/or surgical capability will be required onboard any exploration vessel. More specifically, a broadly-trained surgically capable emergency/critical care specialist with innate capabilities to problem-solve and improvise would be desirable. It will be the ultimate remote setting, and hopefully one in which the most advanced of our societies' technologies can be pre-positioned to safeguard precious astronaut lives. Like so many previous space-related technologies, these developments will also greatly improve terrestrial care on earth. PMID:19320976
Use of Heritage Hardware on Orion MPCV Exploration Flight Test One
NASA Technical Reports Server (NTRS)
Rains, George Edward; Cross, Cynthia D.
2012-01-01
Due to an aggressive schedule for the first space flight of an unmanned Orion capsule, currently known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made within the Orion Program to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi-Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the MPLM cabin Positive Pressure Relief Assembly (PPRA), and the Shuttle Ground Support Equipment Heat Exchanger (GSE HX). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE HX had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the activities required in order to utilize heritage hardware for EFT1.
Parameter Validation for Evaluation of Spaceflight Hardware Reusability
NASA Technical Reports Server (NTRS)
Childress-Thompson, Rhonda; Dale, Thomas L.; Farrington, Phillip
2017-01-01
Within recent years, there has been an influx of companies around the world pursuing reusable systems for space flight. Much like NASA, many of these new entrants are learning that reusable systems are complex and difficult to acheive. For instance, in its first attempts to retrieve spaceflight hardware for future reuse, SpaceX unsuccessfully tried to land on a barge at sea, resulting in a crash-landing. As this new generation of launch developers continues to develop concepts for reusable systems, having a systematic approach for determining the most effective systems for reuse is paramount. Three factors that influence the effective implementation of reusability are cost, operability and reliability. Therefore, a method that integrates these factors into the decision-making process must be utilized to adequately determine whether hardware used in space flight should be reused or discarded. Previous research has identified seven features that contribute to the successful implementation of reusability for space flight applications, defined reusability for space flight applications, highlighted the importance of reusability, and presented areas that hinder successful implementation of reusability. The next step is to ensure that the list of reusability parameters previously identified is comprehensive, and any duplication is either removed or consolidated. The characteristics to judge the seven features as good indicators for successful reuse are identified and then assessed using multiattribute decision making. Next, discriminators in the form of metrics or descriptors are assigned to each parameter. This paper explains the approach used to evaluate these parameters, define the Measures of Effectiveness (MOE) for reusability, and quantify these parameters. Using the MOEs, each parameter is assessed for its contribution to the reusability of the hardware. Potential data sources needed to validate the approach will be identified.
Decreases in thymopoiesis of astronauts returning from space flight
Benjamin, Cara L.; Stowe, Raymond P.; St. John, Lisa; Sams, Clarence F.; Mehta, Satish K.; Crucian, Brian E.; Pierson, Duane L.
2016-01-01
Following the advent of molecular assays that measure T cell receptor excision circles (TRECs) present in recent thymic emigrants, it has been conclusively shown that thymopoiesis persists in most adults, but that functional output decreases with age, influencing the maintenance of a diverse and functional T cell receptor (TCR) repertoire. Space flight has been shown to result in a variety of phenotypic and functional changes in human T cells and in the reactivation of latent viruses. While space flight has been shown to influence thymic architecture in rodents, thymopoiesis has not previously been assessed in astronauts. Here, we assessed thymopoiesis longitudinally over a 1-year period prior to and after long-term space flight (median duration, 184 days) in 16 astronauts. While preflight assessments of thymopoiesis remained quite stable in individual astronauts, we detected significant suppression of thymopoiesis in all subjects upon return from space flight. We also found significant increases in urine and plasma levels of endogenous glucocorticoids coincident with the suppression of thymopoiesis. The glucocorticoid induction and thymopoiesis suppression were transient, and they normalized shortly after return to Earth. This is the first report to our knowledge to prospectively demonstrate a significant change in thymopoiesis in healthy individuals in association with a defined physiologic emotional and physical stress event. These results suggest that suppression of thymopoiesis has the potential to influence the maintenance of the TCR repertoire during extended space travel. Further studies of thymopoiesis and endogenous glucocorticoids in other stress states, including illness, are warranted. PMID:27699228
Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals
NASA Technical Reports Server (NTRS)
Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.
2008-01-01
This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.
How HRP Research Results Contribute to Human Space Exploration Risk Mitigation
NASA Technical Reports Server (NTRS)
Lumpkins, S. B.; Mindock, J. A.
2014-01-01
In addition to the scientific value of publications derived from research, results from Human Research Program (HRP) research also support HRP’s goals of mitigating crew health and performance risks in space flight. Research results are used to build the evidence base characterizing crew health and performance risks, to support risk research plan development, to inform crew health and performance standards, and to provide technologies to programs for meeting those standards and optimizing crew health and performance in space. This talk will describe examples of how research results support these efforts. For example, HRP research results are used to revise or even create new standards for human space flight, which have been established to protect crew health and performance during flight, and prevent negative long-term health consequences due to space flight. These standards are based on the best available clinical and scientific evidence, as well as operational experience from previous space flight missions, and are reviewed as new evidence emerges. Research results are also used to update the HRP evidence base, which is comprised of a set of reports that provide a current record of the state of knowledge from research and operations for each of the defined human health and performance risks for future NASA exploration missions. A discussion of the role of evidence within the HRP architecture will also be presented. The scope of HRP research results extends well beyond publications, as they are used in several capacities to support HRP deliverables and, ultimately, the advancement of human space exploration beyond low-Earth orbit.
How HRP Research Results Contribute to Human Space Exploration Risk Mitigation
NASA Technical Reports Server (NTRS)
Lumpkins, Sarah; Mindock, Jennifer
2014-01-01
In addition to the scientific value of publications derived from research, results from Human Research Program (HRP) research also support HRP's goals of mitigating crew health and performance risks in space flight. Research results are used to build the evidence base characterizing crew health and performance risks, to support risk research plan development, to inform crew health and performance standards, and to provide technologies to programs for meeting those standards and optimizing crew health and performance in space. This talk will describe examples of how research results support these efforts. For example, HRP research results are used to revise or even create new standards for human space flight, which have been established to protect crew health and performance during flight, and prevent negative long-term health consequences due to space flight. These standards are based on the best available clinical and scientific evidence, as well as operational experience from previous space flight missions, and are reviewed as new evidence emerges. Research results are also used to update the HRP evidence base, which is comprised of a set of reports that provide a current record of the state of knowledge from research and operations for each of the defined human health and performance risks for future NASA exploration missions. A discussion of the role of evidence within the HRP architecture will also be presented. The scope of HRP research results extends well beyond publications, as they are used in several capacities to support HRP deliverables and, ultimately, the advancement of human space exploration beyond low-Earth orbit.
TROPIX: A solar electric propulsion flight experiment
NASA Technical Reports Server (NTRS)
Hickman, J. Mark; Hillard, G. Barry; Oleson, Steven R.
1993-01-01
The Transfer Orbit Plasma Interaction Experiment (TROPIX) is a proposed scientific experiment and flight demonstration of a solar electric propulsion vehicle. Its mission goals are to significantly increase our knowledge of Earth's magnetosphere and its associated plasma environment and to demonstrate an operational solar electric upper stage (SEUS) for small launch vehicles. The scientific investigations and flight demonstration technology experiments are uniquely interrelated because of the spacecraft's interaction with the surrounding environment. The data obtained will complement previous studies of the Earth's magnetosphere and space plasma environment by supplying the knowledge necessary to attain the strategic objectives of the NASA Office of Space Science. This first operational use of a primary ion propulsion vehicle, designed to withstand the harsh environments from low Earth orbit to geosynchronous Earth orbit, may lead to the development of a new class of electric propulsion upper stages or space-based transfer vehicles and may improve future spacecraft design and safety.
STS-79 John Blaha address news media
NASA Technical Reports Server (NTRS)
1996-01-01
STS-79 Mission Specialist John E. Blaha addresses news media gathered for the flight crew's late night arrival at the KSC Shuttle Landing Facility. A veteran space traveler who served as either commander or pilot on his four previous Shuttle flights, Blaha is taking a mission specialist's slot on STS-79 because he will be transferring to the Russian Space Station Mir for an extended stay. American astronaut Shannon Lucid will take his place aboard the Space Shuttle Atlantis for the return trip home. Final preparations are under way for launch of Atlantis on Mission STS-79, with liftoff scheduled to occur during an approximately seven-minute window opening at 4:54 a.m. EDT, Sept.16.
NASA Technical Reports Server (NTRS)
Connelly, Joseph; Blake, Peter; Jones, Joycelyn
2008-01-01
The authors report operational upgrades and streamlined data analysis of a commissioned electronic speckle interferometer (ESPI) in a permanent in-house facility at NASA's Goddard Space Flight Center. Our ESPI was commercially purchased for use by the James Webb Space Telescope (JWST) development team. We have quantified and reduced systematic error sources, improved the software operability with a user-friendly graphic interface, developed an instrument simulator, streamlined data analysis for long-duration testing, and implemented a turn-key approach to speckle interferometry. We also summarize results from a test of the JWST support structure (previously published), and present new results from several pieces of test hardware at various environmental conditions.
NASA Astrophysics Data System (ADS)
Volova, Larissa
One of the major health problems of the astronauts are disorders of the musculoskeletal system, which determines the relevance of studies of the effect of space flight factors on osteoblastic and hondroblastic cells in vitro. An experiment to study the viability and proliferative activity of cells of mesenchymal origin on culture: chondroblasts and dermal fibroblasts was performed on SC "BION -M" No. 1 with scientific equipment " BIOKONT -B ." To study the effect of space flight conditions in vitro at the cellular level has developed a new model with 3D- graft as allogeneic demineralized spongiosa obtained on technology Lioplast ®. For space and simultaneous experiments in the laboratory of the Institute of Experimental Medicine and Biotechnology Samara State Medical University were obtained from the cell culture of hyaline cartilage and human skin, which have previously been grown, and then identified by morphological and immunohistochemical methods. In the experiment, they were seeded on the porous 3D- graft (controlled by means of scanning electron and confocal microscopy) and cultured in full growth medium. After completion of the flight of spacecraft "BION -M" No. 1 conducted studies of biological objects using a scanning electron microscope (JEOL JSM-6390A Analysis Station, Japan), confocal microscopy and LDH - test. According to the results of the experiment revealed that after a 30- day flight of the cells not only retained vitality, but also during the flight actively proliferate, and their number has increased by almost 8 times. In synchronous experiment, all the cells died by this date. The experimentally confirmed the adequacy of the proposed model 3D- graft in studying the effect of space flight on the morphological and functional characteristics of cells in vitro.
NASA Imaging for Safety, Science, and History
NASA Technical Reports Server (NTRS)
Grubbs, Rodney; Lindblom, Walt; Bowerman, Deborah S. (Technical Monitor)
2002-01-01
Since its creation in 1958 NASA has been making and documenting history, both on Earth and in space. To complete its missions NASA has long relied on still and motion imagery to document spacecraft performance, see what can't be seen by the naked eye, and enhance the safety of astronauts and expensive equipment. Today, NASA is working to take advantage of new digital imagery technologies and techniques to make its missions more safe and efficient. An HDTV camera was on-board the International Space Station from early August, to mid-December, 2001. HDTV cameras previously flown have had degradation in the CCD during the short duration of a Space Shuttle flight. Initial performance assessment of the CCD during the first-ever long duration space flight of a HDTV camera and earlier flights is discussed. Recent Space Shuttle launches have been documented with HDTV cameras and new long lenses giving clarity never before seen with video. Examples and comparisons will be illustrated between HD, highspeed film, and analog video of these launches and other NASA tests. Other uses of HDTV where image quality is of crucial importance will also be featured.
Radiation Hardening by Software Techniques on FPGAs: Flight Experiment Evaluation and Results
NASA Technical Reports Server (NTRS)
Schmidt, Andrew G.; Flatley, Thomas
2017-01-01
We present our work on implementing Radiation Hardening by Software (RHBSW) techniques on the Xilinx Virtex5 FPGAs PowerPC 440 processors on the SpaceCube 2.0 platform. The techniques have been matured and tested through simulation modeling, fault emulation, laser fault injection and now in a flight experiment, as part of the Space Test Program- Houston 4-ISS SpaceCube Experiment 2.0 (STP-H4-ISE 2.0). This work leverages concepts such as heartbeat monitoring, control flow assertions, and checkpointing, commonly used in the High Performance Computing industry, and adapts them for use in remote sensing embedded systems. These techniques are extremely low overhead (typically <1.3%), enabling a 3.3x gain in processing performance as compared to the equivalent traditionally radiation hardened processor. The recently concluded STP-H4 flight experiment was an opportunity to upgrade the RHBSW techniques for the Virtex5 FPGA and demonstrate them on-board the ISS to achieve TRL 7. This work details the implementation of the RHBSW techniques, that were previously developed for the Virtex4-based SpaceCube 1.0 platform, on the Virtex5-based SpaceCube 2.0 flight platform. The evaluation spans the development and integration with flight software, remotely uploading the new experiment to the ISS SpaceCube 2.0 platform, and conducting the experiment continuously for 16 days before the platform was decommissioned. The experiment was conducted on two PowerPCs embedded within the Virtex5 FPGA devices and the experiment collected 19,400 checkpoints, processed 253,482 status messages, and incurred 0 faults. These results are highly encouraging and future work is looking into longer duration testing as part of the STP-H5 flight experiment.
Are Samples Obtained after Return to Earth Reflective of Spaceflight or Increased Gravity?
NASA Technical Reports Server (NTRS)
Wade, C. R.; Holton, E.; Baer, L.; Moran, M.
2001-01-01
Upon return to Earth, following space flight, living systems are immediately exposed to an increase in gravity of 1G. It has been difficult to differentiate between changes that are residuals of the acclimation to space flight from those resulting from acute exposure to an increase in =gravity upon re-entry. We compared previously reported changes observed in male Sprague-Dawley rats upon return to Earth to those induced by centrifugation, because both paradigms result in an increase of 1G. With both treatments there was a reduction in body mass, due to reduced food intake and increased urine output. The decrease in food intake was initially greater with centrifugation. The magnitudes of the changes in food intake and urine output were similar in both treatments. However, the slightly greater initial loss in body mass with centrifugation was due to a decrease in water intake not seen after space flight. The absence of pronounced differences between these treatments suggest the responses observed after landing are not residuals of adaptation to the space flight environment, but the result of adaptation to an increase in the level of gravity.
Posture, locomotion, spatial orientation, and motion sickness as a function of space flight
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.; Layne, C.; McDonald, V.
1998-01-01
This article summarizes a variety of newly published findings obtained by the Neuroscience Laboratory, Johnson Space Center, and attempts to place this work within a historical framework of previous results on posture, locomotion, motion sickness, and perceptual responses that have been observed in conjunction with space flight. In this context, we have taken the view that correct transduction and integration of signals from all sensory systems is essential to maintaining stable vision, postural and locomotor control, and eye-hand coordination as components of spatial orientation. The plasticity of the human central nervous system allows individuals to adapt to altered stimulus conditions encountered in a microgravity environment. However, until some level of adaptation is achieved, astronauts and cosmonauts often experience space motion sickness, disturbances in motion control and eye-hand coordination, unstable vision, and illusory motion of the self, the visual scene, or both. Many of the same types of disturbances encountered in space flight reappear immediately after crew members return to earth. The magnitude of these neurosensory, sensory-motor and perceptual disturbances, and the time needed to recover from them, tend to vary as a function of mission duration and the space travelers prior experience with the stimulus rearrangement of space flight. To adequately chart the development of neurosensory changes associated with space flight, we recommend development of enhanced eye movement systems and body position measurement. We also advocate the use of a human small radius centrifuge as both a research tool and as a means of providing on-orbit countermeasures that will lessen the impact of living for long periods of time with out exposure to altering gravito-inertial forces. Copyright 1998 Elsevier Science B.V.
Biochemical responses of the Skylab crewman
NASA Technical Reports Server (NTRS)
Leach, C. S.; Rambaut, P. C.
1974-01-01
The biochemical investigations of the Skylab crewmen were designed to study the physiological changes that were observed on flight crews returning from previous space flight missions as well as to study those changes expected to result from prolonged weightless exposure. These studies can be divided into two broad categories. One category included routine blood studies similar to those used in clinical medical practice. The second included research-type endocrine analyses used to investigate more thoroughly the metabolic/endocrine responses to the space flight environment. The premission control values indicated that all Skylab crewmen were healthy and were free from biochemical abnormalities. The routine results during and after flight showed slight but significant changes in electrolytes, glucose, total protein, osmolality, uric acid, cholesterol, and creatinine. Plasma hormal changes included adrenocorticotrophic hormone, cortisol, angiotensin I, aldosterone, insulin, and thyroxine. The 24-hour urine analyses results revealed increased excretion of cortisol, catecholamines, antidiuretic hormone, and aldosterone as well as excretion of significant electrolyte and uric acid during the Skylab flights.
McArthur, Kimberly L; Dickman, J David
2011-04-01
Vestibular responses play an important role in maintaining gaze and posture stability during rotational motion. Previous studies suggest that these responses are state dependent, their expression varying with the environmental and locomotor conditions of the animal. In this study, we simulated an ethologically relevant state in the laboratory to study state-dependent vestibular responses in birds. We used frontal airflow to simulate gliding flight and measured pigeons' eye, head, and tail responses to rotational motion in darkness, under both head-fixed and head-free conditions. We show that both eye and head response gains are significantly higher during flight, thus enhancing gaze and head-in-space stability. We also characterize state-specific tail responses to pitch and roll rotation that would help to maintain body-in-space orientation during flight. These results demonstrate that vestibular sensorimotor processing is not fixed but depends instead on the animal's behavioral state.
State-dependent sensorimotor processing: gaze and posture stability during simulated flight in birds
McArthur, Kimberly L.
2011-01-01
Vestibular responses play an important role in maintaining gaze and posture stability during rotational motion. Previous studies suggest that these responses are state dependent, their expression varying with the environmental and locomotor conditions of the animal. In this study, we simulated an ethologically relevant state in the laboratory to study state-dependent vestibular responses in birds. We used frontal airflow to simulate gliding flight and measured pigeons′ eye, head, and tail responses to rotational motion in darkness, under both head-fixed and head-free conditions. We show that both eye and head response gains are significantly higher during flight, thus enhancing gaze and head-in-space stability. We also characterize state-specific tail responses to pitch and roll rotation that would help to maintain body-in-space orientation during flight. These results demonstrate that vestibular sensorimotor processing is not fixed but depends instead on the animal's behavioral state. PMID:21307332
NASA Astrophysics Data System (ADS)
Iskanderova, Zelina; Kleiman, Jacob I.; Tennyson, Rod C.
2009-01-01
Space flight data, collected and published by NASA Glenn Research Center (GRC) team for a set of pristine polymeric materials selected, compiled, and tested in two LEO flight experiments at the International Space Station, as part of the "Materials International Space Station Experiment" (MISSE), has been used for comparison with previously developed atomic oxygen erosion predictive models. The same set of materials was used for a ground-based fast atomic beam (FAO) experimental erosion study at ITL/UTIAS, where the FAO exposure was performed mostly at a standard fluence of 2×1020 cm-2, with the results collected in a database for the development of a prototype of predictive software. A comparison of MISSE-1 flight data with two predictive correlations has shown good agreement, confirming the developed approach to polymers erosion resistance forecast that might be used also for newly developed or untested in space polymeric materials. A number of surface-modified thin film space polymers, treated by two ITL-developed and patented surface modification technologies, Implantox™ [5] and Photosil™ [6], have been also included in MISSE flight experiment. The results from those MISSE samples have shown full protection of AO-sensitive main space-related hydrocarbon polymers, such as Kapton HN, back-metalized Kapton H and Kapton E, and Mylar, when treated by Implantox™ surface modification technology and significant erosion resistance enhancement up to full protection by Photosil™ treatment.
Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program
NASA Technical Reports Server (NTRS)
Curreri, Peter A. (Editor)
1993-01-01
This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.
NASA Precision Landing Technologies Completes Initial Flight Tests on Vertical Testbed Rocket
2017-04-19
This 2-minute, 40-second video shows how over the past 5 weeks, NASA and Masten Space Systems teams have prepared for and conducted sub-orbital rocket flight tests of next-generation lander navigation technology through the CoOperative Blending of Autonomous Landing Technologies (COBALT) project. The COBALT payload was integrated onto Masten’s rocket, Xodiac. The Xodiac vehicle used the Global Positioning System (GPS) for navigation during this first campaign, which was intentional to verify and refine COBALT system performance. The joint teams conducted numerous ground verification tests, made modifications in the process, practiced and refined operations’ procedures, conducted three tether tests, and have now flown two successful free flights. This successful, collaborative campaign has provided the COBALT and Xodiac teams with the valuable performance data needed to refine the systems and prepare them for the second flight test campaign this summer when the COBALT system will navigate the Xodiac rocket to a precision landing. The technologies within COBALT provide a spacecraft with knowledge during entry, descent, and landing that enables it to precisely navigate and softly land close to surface locations that have been previously too risky to target with current capabilities. The technologies will enable future exploration destinations on Mars, the moon, Europa, and other planets and moons. The two primary navigation components within COBALT include the Langley Research Center’s Navigation Doppler Lidar, which provides ultra-precise velocity and line-of-sight range measurements, and Jet Propulsion Laboratory’s Lander Vision System (LVS), which provides navigation estimates relative to an existing surface map. The integrated system is being flight tested onboard a Masten suborbital rocket vehicle called Xodiac. The COBALT project is led by the Johnson Space Center, with funding provided through the Game Changing Development, Flight Opportunities program, and Advanced Exploration Systems programs. Based at NASA’s Armstrong Flight Research Center in Edwards, CA, the Flight Opportunities program funds technology development flight tests on commercial suborbital space providers of which Masten is a vendor. The program has previously tested the LVS on the Masten rocket and validated the technology for the Mars 2020 rover.
Accomando, Alyssa W.; Vargas-Irwin, Carlos E.; Simmons, James A.
2018-01-01
Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus. In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape. PMID:29472848
Accomando, Alyssa W; Vargas-Irwin, Carlos E; Simmons, James A
2018-01-01
Bats emit biosonar pulses in complex temporal patterns that change to accommodate dynamic surroundings. Efforts to quantify these patterns have included analyses of inter-pulse intervals, sonar sound groups, and changes in individual signal parameters such as duration or frequency. Here, the similarity in temporal structure between trains of biosonar pulses is assessed. The spike train similarity space (SSIMS) algorithm, originally designed for neural activity pattern analysis, was applied to determine which features of the environment influence temporal patterning of pulses emitted by flying big brown bats, Eptesicus fuscus . In these laboratory experiments, bats flew down a flight corridor through an obstacle array. The corridor varied in width (100, 70, or 40 cm) and shape (straight or curved). Using a relational point-process framework, SSIMS was able to discriminate between echolocation call sequences recorded from flights in each of the corridor widths. SSIMS was also able to tell the difference between pulse trains recorded during flights where corridor shape through the obstacle array matched the previous trials (fixed, or expected) as opposed to those recorded from flights with randomized corridor shape (variable, or unexpected), but only for the flight path shape in which the bats had previous training. The results show that experience influences the temporal patterns with which bats emit their echolocation calls. It is demonstrated that obstacle proximity to the bat affects call patterns more dramatically than flight path shape.
NASA Technical Reports Server (NTRS)
Greenisen, M. C.; Bishop, P. A.; Sothmann, M.
2008-01-01
The purpose of this study was to determine the consequences of extended periods of weightlessness during space missions on astronauts f ability to perform a simulated contingency egress while wearing either of the Launch and Entry suits immediately after space flight. In our previous lab-based study of simulated contingency egress, we found only 4 of 12 non-astronauts wearing the Launch and Entry Suit (LES) successfully completed the simulated egress. However, 4 of 4 of the previous failures (when tested wearing the LES), were then successful in completing the test wearing the Advanced Crew Escape Suit (ACES). Therefore, this study tested 21 Astronaut Volunteers wearing either the LES or ACES while performing a simulated egress on a treadmill (TM) onboard the Crew Transportation Vehicle immediately after space flight at either the Kennedy Space Center or Edwards AFB. Astronauts walked for 400 meters at 1.6m/sec with g-suit inflation level set to preflight testing levels, visor down, breathing from the suit emergency O2 supply. Metabolic, heartrate, and perceived exertion data were collected during these post-flight tests. Exactly the same preflight simulated egress tests on a TM were performed in the lab at NASA/JSC by each crewmember at L-60. Preflight testing found 2 of the 21 crewmembers were unable to complete the simulated contingency egress. Postflight, 9 crew (8 ACES, 1 LES) completed the simulated contingency egress of 400 meters at 1.6m/sec. and 12 failed to meet that standard (7 ACES, 5 LES). Preflight physiological response tests failed to identify crew capable of performing the egress vs. those who failed. However, 18 of the 21 crew did make at least 2.67 minutes into the postflight egress testing. At that point in time, heartrate was higher (P <=.20) for the failures compared to the finishers. These findings indicate that NASA fs switch to the ACES for space flight crews should be expedited.
NASA's 3D Flight Computer for Space Applications
NASA Technical Reports Server (NTRS)
Alkalai, Leon
2000-01-01
The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).
STS 107 Shuttle Press Kit: Providing 24/7 Space Science Research
NASA Technical Reports Server (NTRS)
2002-01-01
Space shuttle mission STS-107, the 28th flight of the space shuttle Columbia and the 113th shuttle mission to date, will give more than 70 international scientists access to both the microgravity environment of space and a set of seven human researchers for 16 uninterrupted days. Columbia's 16-day mission is dedicated to a mixed complement of competitively selected and commercially sponsored research in the space, life and physical sciences. An international crew of seven, including the first Israeli astronaut, will work 24 hours a day in two alternating shifts to carry out experiments in the areas of astronaut health and safety; advanced technology development; and Earth and space sciences. When Columbia is launched from Kennedy Space Center's Launch Pad 39A it will carry a SPACEHAB Research Double Module (RDM) in its payload bay. The RDM is a pressurized environment that is accessible to the crew while in orbit via a tunnel from the shuttle's middeck. Together, the RDM and the middeck will accommodate the majority of the mission's payloads/experiments. STS-107 marks the first flight of the RDM, though SPACEHAB Modules and Cargo Carriers have flown on 17 previous space shuttle missions. Astronaut Rick Husband (Colonel, USAF) will command STS-107 and will be joined on Columbia's flight deck by pilot William 'Willie' McCool (Commander, USN). Columbia will be crewed by Mission Specialist 2 (Flight Engineer) Kalpana Chawla (Ph.D.), Mission Specialist 3 (Payload Commander) Michael Anderson (Lieutenant Colonel, USAF), Mission Specialist 1 David Brown (Captain, USN), Mission Specialist 4 Laurel Clark (Commander, USN) and Payload Specialist 1 Ilan Ramon (Colonel, Israeli Air Force), the first Israeli astronaut. STS-107 marks Husband's second flight into space - he served as pilot during STS-96, a 10-day mission that saw the first shuttle docking with the International Space Station. Husband served as Chief of Safety for the Astronaut Office until his selection to command the STS-107 crew. Anderson and Chawla will also be making their second spaceflights. Anderson first flew on STS-89 in January 1998 (the eighth Shuttle-Mir docking mission) while Chawla flew on STS-87 in November 1997 (the fourth U.S. Microgravity Payload flight). McCool, Brown, Clark and Ramon will be making their first flights into space.
Use of Heritage Hardware on MPCV Exploration Flight Test One
NASA Technical Reports Server (NTRS)
Rains, George Edward; Cross, Cynthia D.
2011-01-01
Due to an aggressive schedule for the first orbital test flight of an unmanned Orion capsule, known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the Shuttle Ground Support Equipment Heat Exchanger (GSE Hx) and the MPLM cabin Positive Pressure Relief Assembly (PPRA). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be significantly more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE Hx had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the certification of the use of heritage hardware for EFT1.
NASA Technical Reports Server (NTRS)
1980-01-01
The results of three nonlinear the Monte Carlo dispersion analyses for the Space Transportation System 1 Flight (STS-1) Orbiter Descent Operational Flight Profile, Cycle 3 are presented. Fifty randomly selected simulation for the end of mission (EOM) descent, the abort once around (AOA) descent targeted line are steep target line, and the AOA descent targeted to the shallow target line are analyzed. These analyses compare the flight environment with system and operational constraints on the flight environment and in some cases use simplified system models as an aid in assessing the STS-1 descent flight profile. In addition, descent flight envelops are provided as a data base for use by system specialists to determine the flight readiness for STS-1. The results of these dispersion analyses supersede results of the dispersion analysis previously documented.
Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.
2014-01-01
The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.
Radiation-Related Risk Analysis for Atmospheric Flight Civil Aviation Flight Personnel
NASA Technical Reports Server (NTRS)
DeAngelis, G.; Wilson, J. W.
2003-01-01
Human data on low dose rate radiation exposure and consequent effects are not readily available, and this fact generates groundtruth concerns for all risk assessment techniques for possible health effects induced by the space radiation environment, especially for long term missions like those foreseen now and in the near future. A large amount of such data may be obtained through civil aviation flight personnel cohorts, in the form of epidemiological studies on delayed health effects induced by the cosmic-ray generated atmospheric radiation environment, a high- LET low dose and low dose rate ionizing radiation with its typical neutron component, to which flight personnel are exposed all throughout their work activity. In the perspective of worldwide studies on radiation exposure of the civil aviation flight personnel, all the available results from previous studies on flight personnel radiation exposure have been examined in various ways (i.e. literature review, meta-analysis) to evaluate possible significant associations between atmospheric ionizing radiation environment and health risks, and to assess directions for future investigations. The physical characteristics of the atmospheric ionizing radiation environment make the results obtained for atmospheric flight personnel relevant for space exploration.
Kotovskaia, A R; Koloteva, M I; Luk'ianiuk, V Iu; Stepanova, G P; Filatova, L M; Buĭlov, S P; Zhernavkov, A F; Kondratiuk, L L
2007-01-01
Analyzed were deviations in cardiac function in 29 cosmonauts with previous aviation and other occupations ranging of 29 to 61 y.o. who made 8- to 30-day space flights (totai number of flights = 34) between 1982 and 2006. The deviations were identified in ECG records collected during clinical selection, clinical physiological examination (CPE) before flight, insertion and deorbit in transport vehicles, and post-flight CPE. Based on the analysis, the cosmonauts were distributed into three groups. The first group (55.2% of the cosmonauts) did not exhibit noticeable shifts and unfavorable trends in ECG at any time of the period of observation. The second group (34.5%) showed some deviations during selection and pre-flight CPE that became more apparent in the period of deorbit and were still present in post-flight ECG records. The third group (10.3%) displayed health-threatening deviations in cardiac function during deorbit. These findings give start to important investigations with the purpose to define permissible medical risks and ensuing establishment and perfection of medical criteria for candidates to cosmonauts with certain health problems.
Preliminary Report: Issues in selection and training for long duration space flight
NASA Technical Reports Server (NTRS)
Akins, F. R.
1979-01-01
Based on previous experience with crew selection, three important avenues of consideration for future missions are discussed: technical qualifications and expertise; medical fitness and ability to tolerate the various conditions of space; and psychological considerations including personality structure, motivation, intelligence, leadership potential, group compatibility, etc. Primary emphasis was given to the psychological considerations.
A phase one AR/C system design
NASA Technical Reports Server (NTRS)
Kachmar, Peter M.; Polutchko, Robert J.; Matusky, Martin; Chu, William; Jackson, William; Montez, Moises
1991-01-01
The Phase One AR&C System Design integrates an evolutionary design based on the legacy of previous mission successes, flight tested components from manned Rendezvous and Proximity Operations (RPO) space programs, and additional AR&C components validated using proven methods. The Phase One system has a modular, open architecture with the standardized interfaces proposed for Space Station Freedom system architecture.
International Space Station (ISS)
1999-09-01
This image shows the Integrated Truss Assembly S-1 (S-One), the Starboard Side Thermal Radiator Truss, for the International Space Station (ISS) undergoing final construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. Delivered and installed by the STS-112 mission, the S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing.
Development of a test and flight engineering oriented language, phase 3
NASA Technical Reports Server (NTRS)
Kamsler, W. F.; Case, C. W.; Kinney, E. L.; Gyure, J.
1970-01-01
Based on an analysis of previously developed test oriented languages and a study of test language requirements, a high order language was designed to enable test and flight engineers to checkout and operate the proposed space shuttle and other NASA vehicles and experiments. The language is called ALOFT (a language oriented to flight engineering and testing). The language is described, its terminology is compared to similar terms in other test languages, and its features and utilization are discussed. The appendix provides the specifications for ALOFT.
2008-07-29
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center roll the Cosmic Origins Spectrograph, or COS, into position in the clean room of the Payload Hazardous Servicing Facility for instrument testing and integration with the Flight Support System carrier. The COS will be installed on the Hubble Space Telescope on space shuttle Atlantis' STS-125 mission. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. COS's far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of STS-125 is targeted for Oct. 8. Photo credit: NASA/Jack Pfaller
2008-07-29
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center, workers from NASA's Goddard Space Flight Center prepare the Cosmic Origins Spectrograph, or COS, for instrument testing and integration with the Flight Support System carrier in the clean room of the Payload Hazardous Servicing Facility. The COS will be installed on the Hubble Space Telescope on space shuttle Atlantis' STS-125 mission. COS will be the most sensitive ultraviolet spectrograph ever flown on Hubble and will probe the "cosmic web" - the large-scale structure of the universe whose form is determined by the gravity of dark matter and is traced by galaxies and intergalactic gas. COS's far-ultraviolet channel has a sensitivity 30 times greater than that of previous spectroscopic instruments for the detection of extremely low light levels. Launch of STS-125 is targeted for Oct. 8. Photo credit: NASA/Jack Pfaller
Orion Stage Adapter move to Redstone Airfield
2018-04-03
NASA's Super Guppy aircraft arrives to the U.S. Army’s Redstone Airfield in Huntsville, Alabama, April 2, to pick up flight hardware for NASA’s Space Launch System – its new, deep-space rocket that will enable astronauts to begin their journey to explore destinations far into the solar system. The Guppy will depart on Tuesday, April 3 to deliver the Orion stage adapter to NASA’s Kennedy Space Center in Florida for flight preparations. On Exploration Mission-1, the first integrated flight of the SLS and the Orion spacecraft, the adapter will connect Orion to the rocket and carry 13 CubeSats as secondary payloads. Rumaasha Maasha, an aerospace engineer in Marshall's Spacecraft & Vehicle Systems Department, tours the cockpit of NASA's Super Guppy aircraft April 3 when it landed at Marshall to pick up the Orion stage adapter for transportation to NASA's Kennedy Space Center. Maasha holds a master's degree in aerospace engineering, is a certified aviation maintenance tech and pilot and previously worked as a 747 loadmaster and airline refueler.
Fluid and Electrolyte Nutrition
NASA Technical Reports Server (NTRS)
Lane, Helen W.; Smith, Scott M.; Leach, Carolyn S.; Rice, Barbara L.
1999-01-01
Studies of fluid and electrolyte homeostasis have been completed since the early human space flight programs, with comprehensive research completed on the Spacelab Life Sciences missions SLS-1 and SLS-2 flights, and more recently on the Mir 18 mission. This work documented the known shifts in fluids, the decrease in total blood volume, and indications of reduced thirst. Data from these flights was used to evaluate the nutritional needs for water, sodium, and potassium. Interpretations of the data are confounded by the inadequate energy intakes routinely observed during space flight. This in turn results in reduced fluid intake, as food provides approximately 70% water intake. Subsequently, body weight, lean body mass, total body water, and total body potassium may decrease. Given these issues, there is evidence to support a minimum required water intake of 2 L per day. Data from previous Shuttle flights indicated that water intake is 2285 +/- 715 ml/day (mean +/- SD, n=26). There are no indications that sodium intake or homeostasis is compromised during space flight. The normal or low aldosterone and urinary sodium levels suggest adequate sodium intake (4047 +/- 902 mg/day, n=26). Because excessive sodium intake is associated with hypercalciuria, the recommended maximum amount of sodium intake during flight is 3500 mg/day (i.e., similar to the Recommended Dietary Allowance, RDA). Potassium metabolism appears to be more complex. Data indicate loss of body potassium related to muscle atrophy and low dietary intake (2407 +/- 548 mg/day, n=26). Although possibly related to measurement error, the elevations in blood potassium suggest alterations in potassium homeostasis. The space RDA for minimum potassium intake is 3500 mg/day. With the documented inadequate intakes, efforts are being made to increase dietary consumption of potassium.
Cardiovascular function in space flight
NASA Astrophysics Data System (ADS)
Nicgossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.
Changes in orthostatic heart rate have been noted universally in Soviet and U.S. crewmembers post space flight. The magnitude of these changes appears to be influenced by mission duration, with increasing orthostatic intolerance for the first 7-10 days of flight and then a partial recovery in the orthostatic heart rate response. Fluid loading has been used as a countermeasure to this postflight orthostatic intolerance. Previous reports have documented the effectiveness of this technique, but it has also been noted that the effectiveness of volume expansion diminishes as flight duration exceeds one week. The response of carotid baroreceptor function was investigated utilizing a commercially available neck collar which could apply positive and negative pressure to effect receptor stimulation. Bedrest studies had validated the usefulness and validity of the device. In these studies it was shown that carotid baroreceptor function curves demonstrated less responsiveness to orthostatic stimulation than control individuals. Twelve Space Shuttle crewmembers were examined pre- and postflight from flights lasting from 4-5 days. Plots of baroreceptor function were constructed and plotted as change in R-R interval vs. carotid distending pressure (an orthostatic stimulus). Typical sigmoidal curves were obtained. Postflight the resting heart rate was higher (smaller R-R interval) and the range of R-R value and the slope of the carotid sigmoidal response were both depressed. These changes were not significant immediately postflight (L+O), but did become significant by the second day postflight (L+2), and remained suppressed for several days thereafter. It is hypothesized that the early adaptation to space flight involves a central fluid shift during the initial days of flight, but subsequent alterations in neural controlling mechanisms (such as carotid baroreceptor function) contribute to orthostatic intolerance.
Cardiovascular function in space flight
NASA Technical Reports Server (NTRS)
Nicogossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.; Nicgossian, A. E.
1991-01-01
Changes in orthostatic heart rate have been noted universally in Soviet and U.S. crewmembers post space flight. The magnitude of these changes appears to be influenced by mission duration, with increasing orthostatic intolerance for the first 7-10 days of flight and then a partial recovery in the orthostatic heart rate response. Fluid loading has been used as a countermeasure to this postflight orthostatic intolerance. Previous reports have documented the effectiveness of this technique, but it has also been noted that the effectiveness of volume expansion diminishes as flight duration exceeds one week. The response of carotid baroreceptor function was investigated utilizing a commercially available neck collar which could apply positive and negative pressure to effect receptor stimulation. Bedrest studies had validated the usefulness and validity of the device. In these studies it was shown that carotid baroreceptor function curves demonstrated less responsiveness to orthostatic stimulation than control individuals. Twelve Space Shuttle crewmembers were examined pre- and postflight from flights lasting from 4-5 days. Plots of baroreceptor function were constructed and plotted as change in R-R interval vs. carotid distending pressure (an orthostatic stimulus). Typical sigmoidal curves were obtained. Postflight the resting heart rate was higher (smaller R-R interval) and the range of R-R value and the slope of the carotid sigmoidal response were both depressed. These changes were not significant immediately postflight (L + O), but did become significant by the second day postflight (L + 2), and remained suppressed for several days thereafter. It is hypothesized that the early adaptation to space flight involves a central fluid shift during the initial days of flight, but subsequent alterations in neural controlling mechanisms (such as carotid baroreceptor function) contribute to orthostatic intolerance.
CDRA-4EU Testing in Support of ISS
NASA Technical Reports Server (NTRS)
Peters, Warren; Stanley, Christine; Knox, Jim
2016-01-01
NASA's Marshall Space Flight Center (MSFC) recently conducted tests on two desiccant beds of the four-bed molecular sieve carbon dioxide removal assembly (CDRA) returned from the International Space Station (ISS). MSFC had previously characterized the relationship between CDRA-4EU inlet conditions and the dewpoint at the desiccant bed exit and between the compressor and accumulator that make up the Carbon Dioxide Management Assembly (CDMA). MSFC installed the flight desiccant beds into the existing Exploration Test Chamber (E-chamber) using a suite of instrumentation not available on orbit to investigate the orbital performance of the desiccant beds. Test objectives, facility design and test results are presented.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. One of the worlds highest performing visual film analysis systems, developed to review and analyze previous shuttle flight data (shown here) in preparation for the shuttle fleets return to flight, is being used today for another purpose. NASA has permitted its use in helping to analyze a film that shows a recent kidnapping in progress in Florida. The system, developed by NASA, United Space Alliance (USA) and Silicon Graphics Inc., allows multiple-person collaboration, highly detailed manipulation and evaluation of specific imagery. The system is housed in the Image Analysis Facility inside the Vehicle Assembly Building. [Photo taken Aug. 15, 2003, courtesy of Terry Wallace, SGI
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. One of the worlds highest performing visual film analysis systems, developed to review and analyze previous shuttle flight data (shown here) in preparation for the shuttle fleets return to flight, is being used today for another purpose. NASA has permitted its use in helping to analyze a film that shows a recent kidnapping in progress in Florida. The system, developed by NASA, United Space Alliance (USA) and Silicon Graphics Inc., allows multiple-person collaboration, highly detailed manipulation and evaluation of specific imagery. The system is housed in the Image Analysis Facility inside the Vehicle Assembly Building. [Photo taken Aug. 15, 2003, courtesy of Terry Wallace, SGI
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. One of the worlds highest performing visual film analysis systems, developed to review and analyze previous shuttle flight data (shown here) in preparation for the shuttle fleets return to flight, is being used today for another purpose. NASA has permitted its use in helping to analyze a film that shows a recent kidnapping in progress in Florida. The system, developed by NASA, United Space Alliance (USA) and Silicon Graphics Inc., allows multiple-person collaboration, highly detailed manipulation and evaluation of specific imagery. The system is housed in the Image Analysis Facility inside the Vehicle Assembly Building. [Photo taken Aug. 15, 2003, courtesy of Terry Wallace, SGI
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. These towers are part of one of the worlds highest performing visual film analysis systems, developed to review and analyze previous shuttle flight data in preparation for the shuttle fleets return to flight. The system is being used today for another purpose. NASA has permitted its use in helping to analyze a film that shows a recent kidnapping in progress in Florida. Developed by NASA, United Space Alliance (USA) and Silicon Graphics Inc., the system allows multiple-person collaboration, highly detailed manipulation and evaluation of specific imagery. The system is housed in the Image Analysis Facility inside the Vehicle Assembly Building. [Photo taken Aug. 15, 2003, courtesy of Terry Wallace, SGI
STS-121/Discovery: Imagery Quick-Look Briefing
NASA Technical Reports Server (NTRS)
2006-01-01
Kyle Herring (NASA Public Affairs) introduced Wayne Hale (Space Shuttle Program Manager) who stated that the imagery for the Space shuttle external tank showed the tank performed very well. Image analysis showed small pieces of foam falling off the rocket booster and external tank. There was no risk involved in these minor incidents. Statistical models were built to assist in risk analysis. The orbiter performed excellently. Wayne also provided some close-up pictures of small pieces of foam separating from the external tank during launching. He said the crew will also perform a 100% inspection of the heat shield. This flight showed great improvement over previous flights.
Analysis of microgravity space experiments Space Shuttle programmatic safety requirements
NASA Technical Reports Server (NTRS)
Terlep, Judith A.
1996-01-01
This report documents the results of an analysis of microgravity space experiments space shuttle programmatic safety requirements and recommends the creation of a Safety Compliance Data Package (SCDP) Template for both flight and ground processes. These templates detail the programmatic requirements necessary to produce a complete SCDP. The templates were developed from various NASA centers' requirement documents, previously written guidelines on safety data packages, and from personal experiences. The templates are included in the back as part of this report.
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob J.; Reschke, Millard F.; Clement, Gilles R.; Mulavara, Ajitkumar P.; Taylor, Laura C..
2015-01-01
Control of vehicles and other complex systems is a high-level integrative function of the central nervous system (CNS). It requires well-functioning subsystem performance, including good visual acuity, eye-hand coordination, spatial and geographic orientation perception, and cognitive function. Evidence from space flight research demonstrates that the function of each of these subsystems is altered by removing gravity, a fundamental orientation reference, which is sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, posture, navigation, and coordination of movements. The available evidence also shows that the degree of alteration of each subsystem depends on a number of crew- and mission-related factors. There is only limited operational evidence that these alterations cause functional impacts on mission-critical vehicle (or complex system) control capabilities. Furthermore, while much of the operational performance data collected during space flight has not been available for independent analysis, those that have been reviewed are somewhat equivocal owing to uncontrolled (and/or unmeasured) environmental and/or engineering factors. Whether this can be improved by further analysis of previously inaccessible operational data or by development of new operational research protocols remains to be seen. The true operational risks will be estimable only after we have filled the knowledge gaps and when we can accurately assess integrated performance in off-nominal operational settings (Paloski et al. 2008). Thus, our current understanding of the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight is limited primarily to extrapolation of scientific research findings, and, since there are limited ground-based analogs of the sensorimotor and vestibular changes associated with space flight, observation of their functional impacts is limited to studies performed in the space flight environment. Fortunately, many sensorimotor and vestibular experiments have been performed during and/or after space flight missions since 1959 (Reschke et al. 2007). While not all of these experiments were directly relevant to the question of vehicle/complex system control, most provide insight into changes in aspects of sensorimotor control that might bear on the physiological subsystems underlying this high-level integrated function.
14 CFR 1214.1705 - Selection of space flight participants.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Selection of space flight participants. 1214.1705 Section 1214.1705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The agency will...
14 CFR 1214.1705 - Selection of space flight participants.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Selection of space flight participants. 1214.1705 Section 1214.1705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The agency will...
Cardiac morphology after conditions of microgravity during Cosmos 2044
NASA Technical Reports Server (NTRS)
Goldstein, Margaret A.; Edwards, Robert J.; Schroeter, John P.
1992-01-01
Light- and electron-microscopic studies were performed on cardiac muscle from rats flown on Cosmos 2044 and from four control groups. Average cross-sectional area of myofibers was measured by video analysis of the light-microscopic images of papillary and ventricular muscle samples from all animals. This cross-sectional area was significantly decreased in flight rats (P = 0.03) compared with synchronous controls. Additional findings at the electron microscopic level consistent with this atrophy were obtained by stereological analysis and optical diffraction analysis of papillary muscle samples. Slightly higher mitochondrial volume density values and mitochondria-to-myofibril ratios as well as normal A-band spacings (d1,0) and Z-band spacings of myofibrils were observed in the tail-suspension and flight groups. General morphological features similar to those in ventricular samples from the previous Cosmos 1887 flight were observed.
NASA Astrophysics Data System (ADS)
Baumstark-Khan, C.; Hellweg, C. E.; Arenz, A.
The combined action of ionizing radiation and microgravity will continue to influence future space missions with special risks for astronauts on the Moon surface or for long duration missions to Mars Previous space flight experiments have reported additive neither sensitization nor protection as well as synergistic increased radiation effect under microgravity interactions of radiation and microgravity in different cell systems Although a direct effect of microgravity on enzymatic mechanisms can be excluded on thermo dynamical reasons modifications of cellular repair can not be excluded as such processes are under the control of cellular signal transduction systems which are controlled by environmental parameters presumably also by gravity DNA repair studies in space on bacteria yeast cells and human fibroblasts which were irradiated before flight gave contradictory results from inhibition of repair by microgravity to enhancement whereas others did not detect any influence of microgravity on repair At the Radiation Biology Department of the German Aerospace Center DLR recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions The space experiment CERASP Cellular Responses to Radiation in Space to be performed at the International Space Station ISS will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity One of the biological endpoints will be survival
Evolved atmospheric entry corridor with safety factor
NASA Astrophysics Data System (ADS)
Liang, Zixuan; Ren, Zhang; Li, Qingdong
2018-02-01
Atmospheric entry corridors are established in previous research based on the equilibrium glide condition which assumes the flight-path angle to be zero. To get a better understanding of the highly constrained entry flight, an evolved entry corridor that considers the exact flight-path angle is developed in this study. Firstly, the conventional corridor in the altitude vs. velocity plane is extended into a three-dimensional one in the space of altitude, velocity, and flight-path angle. The three-dimensional corridor is generated by a series of constraint boxes. Then, based on a simple mapping method, an evolved two-dimensional entry corridor with safety factor is obtained. The safety factor is defined to describe the flexibility of the flight-path angle for a state within the corridor. Finally, the evolved entry corridor is simulated for the Space Shuttle and the Common Aero Vehicle (CAV) to demonstrate the effectiveness of the corridor generation approach. Compared with the conventional corridor, the evolved corridor is much wider and provides additional information. Therefore, the evolved corridor would benefit more to the entry trajectory design and analysis.
Long range targeting for space based rendezvous
NASA Technical Reports Server (NTRS)
Everett, Louis J.; Redfield, R. C.
1995-01-01
The work performed under this grant supported the Dexterous Flight Experiment one STS-62 The project required developing hardware and software for automating a TRAC sensor on orbit. The hardware developed by for the flight has been documented through standard NASA channels since it has to pass safety, environmental, and other issues. The software has not been documented previously, therefore, this report provides a software manual for the TRAC code developed for the grant.
Deep-Space Ka-Band Flight Experience
NASA Astrophysics Data System (ADS)
Morabito, D. D.
2017-11-01
Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.
14 CFR § 1214.1705 - Selection of space flight participants.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Selection of space flight participants. § 1214.1705 Section § 1214.1705 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Space Flight Participants § 1214.1705 Selection of space flight participants. (a) The...
NASA Technical Reports Server (NTRS)
Stackpoole, M.; Kao, D.; Qu, V.; Gonzales, G.
2013-01-01
Phenolic Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center. As a thermal protection material, PICA has the advantages of being able to withstand high heat fluxes with a relatively low density. This ablative material was used as the forebody heat shield material for the Stardust sample return capsule, which re-entered the Earths atmosphere in 2006. Based on PICA, SpaceX developed a variant, PICA-X, and used it as the heat shield material for its Dragon spacecraft, which successfully orbited the Earth and re-entered the atmosphere during the COTS Demo Flight 1 in 2010. Post-flight analysis was previously performed on the Stardust PICA heat shield material. Similarly, a near-stagnation core was obtained from the post-flight Dragon 1 heat shield, which was retrieved from the Pacific Ocean. Materials testing and analyses were performed on the core to evaluate its ablation performance and post-flight properties. Comparisons between PICA and PICA-X are made where applicable. Stardust and Dragon offer rare opportunities to evaluate materials post-flight - this data is beneficial in understanding material performance and also improves modeling capabilities.
Orion Powered Flight Guidance Burn Options for Near Term Exploration
NASA Technical Reports Server (NTRS)
Fill, Tom; Goodman, John; Robinson, Shane
2018-01-01
NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.
Orion's Powered Flight Guidance Burn Options for Near Term Exploration Missions
NASA Technical Reports Server (NTRS)
Fill, Thomas; Goodman, John; Robinson, Shane
2018-01-01
NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.
NASA Technical Reports Server (NTRS)
Callahan, P. X.; Schatte, C.; Grindeland, R. E.; Lencki, W. A.; Funk, G. A.
1986-01-01
A hardware description and experimental results are reported from the initial STS flight carrying two Research Animal Holding Facility (RAHF) units. The flight was mainly intended for engineering check-out of the RAHF design. The system development and prelaunch preparations are briefly summarized, including the provisions of retrieval teams at alternate landing sites and extensive rehearsals to ensure timely data analysis. The flight revealed a problem with the containment of particulates from the RAHFs and the provision of adequate water for the monkeys. On-board films showed that one of the monkeys experienced motion sickness, from which he recovered after 5 days in space. Necropsy of the subject rats documented suppressed interferon production, loss of muscle mass, an up to 13 percent loss in bone mass (after a one week flight), and a 20 percent decrease in growth-inducing hormone. The volume of data collected is thought to exceed the combined data gathered on all previous U.S. space missions.
Automatic Weather Station (AWS) Lidar
NASA Technical Reports Server (NTRS)
Rall, Jonathan A. R.; Campbell, James; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)
2001-01-01
A ground based, autonomous, low power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. We report on the design and anticipated performance of the proposed instrument and show data from two prototype lidar instruments previously deployed to Antarctica.
NASA Technical Reports Server (NTRS)
Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.
1991-01-01
A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.
STS-56 Commander Cameron uses SAREX on OV-103's aft flight deck
1993-04-17
STS056-30-022 (8-17 April 1993) --- Aboard Discovery, astronaut Kenneth D. Cameron (call letters N5AWP), talks to amateur radio operators on Earth via the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League\\Amateur Satellite Corporation and the Johnson Space Center Amateur Radio Club to encourage public participation in the space program. It is part of an endeavor to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.
STS-56 Pilot Oswald uses SAREX on forward flight deck of Discovery, OV-103
1993-04-17
STS056-04-004 (8-17 April 1993) --- Aboard Discovery, Astronaut Stephen S. Oswald, Pilot, talks to amateur radio operators on Earth via the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center Amateur Radio Club to encourage public participation in the space program through a program to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.
NASA Astrophysics Data System (ADS)
Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.
A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.
14 CFR 435.8 - Human space flight.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...
14 CFR 435.8 - Human space flight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...
14 CFR 435.8 - Human space flight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...
14 CFR 435.8 - Human space flight.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...
14 CFR 435.8 - Human space flight.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Human space flight. 435.8 Section 435.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Human space flight. An applicant for a license to conduct a reentry with flight crew or a space flight...
Dietary and Urinary Sulfur can Predict Changes in Bone Metabolism During Space Flight
NASA Technical Reports Server (NTRS)
Zwart, Sara R.; Heer, Martina; Shackelford, Linda; Smith, Scott M.
2015-01-01
Mitigating space flight-induced bone loss is critical for space exploration, and diet can play a major role in this effort. Previous ground-based studies provide evidence that dietary composition can influence bone resorption during bed rest. In this study we examined the role of dietary intake patterns as one factor that can influence bone mineral loss in astronauts during space flight. Crew members were asked to consume, for 4 days at a time, prescribed menus with either a low (0.3-0.6 g/mEq) or high (1.0-1.3 g/mEq) ratio of animal protein to potassium (APro:K). Menus were developed for each crewmember, and were designed to meet both crew preferences and study constraints. Intakes of energy, total protein, calcium, and sodium were held relatively constant between the two diets. The order of the menus was randomized, and crews completed each set (low and high) once before and twice during space flight, for a total of 6 controlled diet sessions. One inflight session and three postflight sessions (R+30, R+180, R+365) monitored typical dietary intake. As of this writing, data are available from 14 crew members. The final three subjects' inflight samples are awaiting return from the International Space Station via Space-X. On the last day of each of the 4-d controlled diet sessions, 24-h urine samples were collected, along with a fasting blood sample on the morning of the 5th day. Preliminary analyses show that urinary excretion of sulfate (normalized to lean body mass) is a significant predictor of urinary n-telopeptide (NTX). Dietary sulfate (normalized to lean body mass) is also a significant predictor of urinary NTX. The results from this study, will be important to better understand diet and bone interrelationships during space flight as well as on Earth. This study was funded by the Human Health Countermeasures Element of the NASA Human Research Program.
Autogenic-Feedback Training for the Control of Space Motion Sickness
NASA Technical Reports Server (NTRS)
Cowings, Patricia S.; Toscano, W. B.
1994-01-01
This paper presents case-studies of 9 shuttle crewmembers (prime and alternates) and one U.S. Navy F-18 pilot, as they participated in all preflight training and testing activities in support of a life sciences flight experiment aboard Spacelab-J, and Spacelab-3. The primary objective of the flight experiment was to determine if Autogenic-feedback training (AFT), a physiological self-regulation training technique would be an effective treatment for motion sickness and space motion sickness in these crewmembers. Additional objectives of this study involved the examining human physiological responses to motion sickness on Earth and in space, as well as developing predictive criteria for susceptibility to space motion sickness based on ground-based data. Comparisons of these crewmembers are made to a larger set of subjects from previous experiments (treatment and "test-only" controls subjects). This paper describes all preflight methods, results and proposed changes for future tests.
NASA Managers Set July 20 As Launch Date for Chandra Telescope
NASA Astrophysics Data System (ADS)
1999-07-01
NASA managers set Tuesday, July 20, 1999, as the official launch date for NASA's second Space Shuttle Mission of the year that will mark the launch of the first female Shuttle Commander and the Chandra X-Ray Observatory. Columbia is scheduled to liftoff from Launch Pad 39-B at the Kennedy Space Center on July 20 at the opening of a 46-minute launch window at 12:36 a.m. EDT. Columbia's planned five-day mission is scheduled to end with a night landing at the Kennedy Space Center just after 11:30 p.m. EDT on July 24. Following its deployment from the Shuttle, Chandra will join the Hubble Space Telescope and the Compton Gamma Ray Observatory as the next in NASA's series of "Great Observatories." Chandra will spend at least five years in a highly elliptical orbit which will carry it one-third of the way to the moon to observe invisible and often violent realms of the cosmos containing some of the most intriguing mysteries in astronomy ranging from comets in our solar system to quasars at the edge of the universe. Columbia's 26th flight is led by Air Force Col. Eileen Collins, who will command a Space Shuttle mission following two previous flights as a pilot. The STS-93 Pilot is Navy Captain Jeff Ashby who will be making his first flight into space. The three mission specialists for the flight are: Air Force Lt. Col. Catherine "Cady" Coleman, who will be making her second flight into space; Steven A. Hawley, Ph.D, making his fifth flight; and French Air Force Col. Michel Tognini of the French Space Agency (CNES), who is making his first Space Shuttle flight and second trip into space after spending two weeks on the Mir Space Station as a visiting cosmonaut in 1992. NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the message (not the subject line) users should type the words "subscribe press-release" (no quotes). The system will reply with a confirmation via E-mail of each subscription. A second automatic message will include additional information on the service. NASA releases also are available via CompuServe using the command GO NASA. To unsubscribe from this mailing list, address an E-mail message to domo@hq.nasa.gov, leave the subject blank, and type only "unsubscribe press-release" (no quotes) in the body of the message.
NASA Technical Reports Server (NTRS)
Hill, Michael A.; Haering, Edward A., Jr.
2017-01-01
The Background Oriented Schlieren using Celestial Objects series of flights was undertaken in the spring of 2016 at National Aeronautics and Space Administration Armstrong Flight Research Center to further develop and improve a flow visualization technique which can be performed from the ground upon flying aircraft. Improved hardware and imaging techniques from previous schlieren tests were investigated. A United States Air Force T-38C and NASA B200 King Air aircraft were imaged eclipsing the sun at ranges varying from 2 to 6 nautical miles, at subsonic and supersonic speeds.
Airborne surveys of USA urban areas at 121.5/243 MHz
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Hill, J. S.
1979-01-01
In situ, aircraft flight measurements were made in 1976 and 1977 by NASA of the radio-frequency environment over USA urban areas within the emergency distress search and rescue frequency bands at 121.5 and 243.0 MHz. This paper analyzes test results reported previously for USA East Coast and Midwest flight surveys; presented also are test results obtained in May 1977 for the USA West Coast during the NASA, ASSESS-II, Space Shuttle/Spacelab simulation aircraft flights. The USA West Coast flight include data at 121.5/243 MHz during an extensive series of aircraft passes for the Los Angeles urban area. The USA East Coast/Midwest measurements show correlation with population count.
2005-11-10
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 3, a remote manipulator system, or space shuttle arm, previously installed on the orbiter Atlantis, is being installed in Discovery’s payload bay. The arms were switched because the arm that was installed on Atlantis has special instrumentation to gather loads data from the second return-to-flight mission, STS-121. Discovery is the designated orbiter to fly on STS-121. scheduled to launch no earlier than May 2006.
2005-11-10
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 3, a remote manipulator system, or space shuttle arm, previously installed on the orbiter Atlantis, is being installed in Discovery’s payload bay. The arms were switched because the arm that was installed on Atlantis has special instrumentation to gather loads data from the second return-to-flight mission, STS-121. Discovery is the designated orbiter to fly on STS-121. scheduled to launch no earlier than May 2006.
2005-11-10
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 3, technicians install a remote manipulator system, or space shuttle arm, previously installed on the orbiter Atlantis, in Discovery’s payload bay. The arms were switched because the arm that was installed on Atlantis has special instrumentation to gather loads data from the second return-to-flight mission, STS-121. Discovery is the designated orbiter to fly on STS-121. scheduled to launch no earlier than May 2006.
2005-11-10
KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 3, technicians install a remote manipulator system, or space shuttle arm, previously installed on the orbiter Atlantis, in Discovery’s payload bay. The arms were switched because the arm that was installed on Atlantis has special instrumentation to gather loads data from the second return-to-flight mission, STS-121. Discovery is the designated orbiter to fly on STS-121. scheduled to launch no earlier than May 2006.
Physiological constraints on deceleration during the aerocapture of manned vehicles
NASA Technical Reports Server (NTRS)
Lyne, J. E.
1992-01-01
The peak deceleration load allowed for aerobraking of manned vehicles is a critical parameter in planning future excursions to Mars. However, considerable variation exists in the limits used by various investigators. The goal of this study was to determine the most appropriate level for this limit. Methods: Since previous U.S. space flights have been limited to 84 days duration, Soviet flight results were examined. Published details of Soviet entry trajectories were not available. However, personal communication with Soviet cosmonauts suggested that peak entry loads of 5-6 G had been encountered upon return from 8 months in orbit. Soyuz entry capsule's characteristics were established and the capsule's entry trajectory was numerically calculated. The results confirm a peak load of 5 to 6 G. Results: Although the Soviet flights were of shorter duration than expected Mars missions, evidence exists that the deceleration experience is applicable. G tolerance has been shown to stabilize after 1 to 3 months in space if adequate countermeasures are used. The calculated Soyuz deceleration histories are graphically compared with those expected for Mars aerobraking. Conclusions: Previous spaceflight experience supports the use of a 5 G limit for the aerocapture of a manned vehicle at Mars.
NASA Technical Reports Server (NTRS)
Gomez-Rosa, Carlos; Cifuentes, Juan; Wasiak, Francis; Alfonzo, Agustin
2015-01-01
The mission readiness environment is where spacecraft and ground systems converge to form the entire as built flight system for the final phase of operationally-themed testing. For most space missions, this phase starts between nine to twelve months prior to the planned launch. In the mission readiness environment, the goal is to perform sufficient testing to exercise the flight teams and systems through all mission phases in order to demonstrate that all elements are ready to support. As part of the maturation process, a mission rehearsal program is introduced to focus on team processes within the final flight system, in a more realistic operational environment. The overall goal for a mission rehearsal program is to: 1) ensure all flight system elements are able to meet mission objectives as a cohesive team; 2) reduce the risk in space based operations due to deficiencies in people, processes, procedures, or systems; and 3) instill confidence in the teams that will execute these first time flight activities. A good rehearsal program ensures critical events are exercised, discovers team or flight system nuances whose impact were previously unknown, and provides a real-time environment in which to interact with the various teams and systems. For flight team members, the rehearsal program provides experience and training in the event of planned (or unplanned) flight contingencies. To preserve the essence for team based rehearsals, this paper will explore the important elements necessary for a successful rehearsal program, document differences driven by Earth Orbiting (Aqua, Aura, Suomi-National Polar-orbiting Partnership (NPP)) and Deep Space missions (New Horizons, Mars Atmosphere and Volatile EvolutioN (MAVEN)) and discuss common challenges to both mission types. In addition, large scale program considerations and enhancements or additional steps for developing a rehearsal program will also be considered. For NASA missions, the mission rehearsal phase is a key milestone for predicting and ensuring on-orbit success.
Cognitive Neuroscience in Space
De la Torre, Gabriel G.
2014-01-01
Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond. PMID:25370373
Fundamental concepts of structural loading and load relief techniques for the space shuttle
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Mowery, D. K.; Winder, S. W.
1972-01-01
The prediction of flight loads and their potential reduction, using various control system logics for the space shuttle vehicles, is discussed. Some factors not found on previous launch vehicles that increase the complexity are large lifting surfaces, unsymmetrical structure, unsymmetrical aerodynamics, trajectory control system coupling, and large aeroelastic effects. These load-producing factors and load-reducing techniques are analyzed.
Water and sodium balance in space.
Drummer, C; Norsk, P; Heer, M
2001-09-01
We have previously shown that fluid balances and body fluid regulation in microgravity (microG) differ from those on Earth (Drummer et al, Eur J Physiol 441:R66-R72, 2000). Arriving in microG leads to a redistribution of body fluid-composed of a shift of fluid to the upper part of the body and an exaggerated extravasation very early in-flight. The mechanisms for the increased vascular permeability are not known. Evaporation, oral hydration, and urinary fluid excretion, the major components of water balance, are generally diminished during space flight compared with conditions on Earth. Nevertheless, cumulative water balance and total body water content are stable during flight if hydration, nutritional energy supply, and protection of muscle mass are at an acceptable level. Recent water balance data disclose that the phenomenon of an absolute water loss during space flight, which has often been reported in the past, is not a consequence of the variable microG. The handling of sodium, however, is considerably affected by microG. Sodium-retaining endocrine systems, such as renin-aldosterone and catecholamines, are much more activated during microG than on Earth. Despite a comparable oral sodium supply, urinary sodium excretion is diminished and a considerable amount of sodium is retained-without accumulating in the intravascular space. An enormous storage capacity for sodium in the extravascular space and a mechanism that allows the dissociation between water and sodium handling likely contribute to the fluid balance adaptation in weightlessness.
NASA Technical Reports Server (NTRS)
Levine, Jack
1988-01-01
Information is given in viewgraph form on the activities of the Flight Projects Division of NASA's Office of Aeronautics and Space Technology. Information is given on space research and technology strategy, current space flight experiments, the Long Duration Exposure Facility, the Orbiter Experiment Program, the Lidar In-Space Technology Experiment, the Ion Auxiliary Propulsion System, the Arcjet Flight Experiment, the Telerobotic Intelligent Interface Flight Experiment, the Cryogenic Fluid Management Flight Experiment, the Industry/University In-Space Flight Experiments, and the Aeroassist Flight Experiment.
Microgravity Fluid Management Symposium
NASA Technical Reports Server (NTRS)
1987-01-01
The NASA Microgravity Fluid Management Symposium, held at the NASA Lewis Research Center, September 9 to 10, 1986, focused on future research in the microgravity fluid management field. The symposium allowed researchers and managers to review space applications that require fluid management technology, to present the current status of technology development, and to identify the technology developments required for future missions. The 19 papers covered three major categories: (1) fluid storage, acquisition, and transfer; (2) fluid management applications, i.e., space power and thermal management systems, and environmental control and life support systems; (3) project activities and insights including two descriptions of previous flight experiments and a summary of typical activities required during development of a shuttle flight experiment.
The Skylab program - An overview
NASA Technical Reports Server (NTRS)
Disher, J. H.
1975-01-01
A brief survey is made of significant aspects of the Skylab missions, with emphasis on atmospheric control, electrical power, stabilization and attitude control, prevention of instrument contamination, habitability of the spacecraft, in-flight maintenance and repair, and crew training. Skylab, unlike previous manned spacecraft, had a two-gas atmosphere of oxygen and nitrogen. The station's 25-kW capability was the largest electrical system ever flown in space. Skylab was the first flight application of large control-moment gyroscopes for attitude control. The missions provided significant scientific data in the fields of solar physics, biomedicine, earth resources, and materials processing. Particularly important was the finding of no physical limitation to men's ability to work in space for long periods.
Modeling and Analysis of Large Amplitude Flight Maneuvers
NASA Technical Reports Server (NTRS)
Anderson, Mark R.
2004-01-01
Analytical methods for stability analysis of large amplitude aircraft motion have been slow to develop because many nonlinear system stability assessment methods are restricted to a state-space dimension of less than three. The proffered approach is to create regional cell-to-cell maps for strategically located two-dimensional subspaces within the higher-dimensional model statespace. These regional solutions capture nonlinear behavior better than linearized point solutions. They also avoid the computational difficulties that emerge when attempting to create a cell map for the entire state-space. Example stability results are presented for a general aviation aircraft and a micro-aerial vehicle configuration. The analytical results are consistent with characteristics that were discovered during previous flight-testing.
Applied Meteorology Unit (AMU) Quarterly Report Fourth Quarter FY-14
NASA Technical Reports Server (NTRS)
Bauman, William H.; Crawford, Winifred C.; Watson, Leela R.; Shafer, Jaclyn
2014-01-01
Ms. Crawford completed the final report for the dual-Doppler wind field task. Dr. Bauman completed transitioning the 915-MHz and 50-MHz Doppler Radar Wind Profiler (DRWP) splicing algorithm developed at Marshall Space Flight Center (MSFC) into the AMU Upper Winds Tool. Dr. Watson completed work to assimilate data into model configurations for Wallops Flight Facility (WFF) and Kennedy Space Center/Cape Canaveral Air Force Station (KSC/CCAFS). Ms. Shafer began evaluating the a local high-resolution model she had set up previously for its ability to forecast weather elements that affect launches at KSC/CCAFS. Dr. Watson began a task to optimize the data-assimilated model she just developed to run in real time.
Radiation measurements aboard Spacelab 1
NASA Technical Reports Server (NTRS)
Benton, E. V.; Almasi, J.; Cassou, R.; Frank, A.; Henke, R. P.; Rowe, V.; Parnell, T. A.; Schopper, E.
1984-01-01
The radiation environment inside Spacelab 1 was measured by a set of passive radiation detectors distributed throughout the volume inside the module, in the access tunnel, and outside on the pallet. Measurements of the low linear energy transfer (LET) component obtained from the thermoluminescence detectors ranged from 102 to 190 millirads, yielding an average low LET dose rate of 11.2 millirads/day inside the module, about twice the low LET dose rate measured on previous flights of the Space Shuttle. Because of the higher inclination of the orbit (57 versus 28.5 deg for previous Shuttle flights), substantial fluxes of highly ionizing high charge and energy galactic cosmic ray particles were observed, yielding an overall average mission dose-equivalent of about 150 millirems, more than three times higher than that measured on previous Shuttle missions.
Morphometric analysis of rat muscle fibers following space flight and hypogravity
NASA Technical Reports Server (NTRS)
Chui, L. A.; Castleman, K. R.
1982-01-01
The effect of hypogravity on striate muscles, containing both fast twitch glycolytic and slow twitch oxidative fibers, was studied in rats aboard two Cosmos biosatellites. Results of a computer-assisted image analysis of extensor digitorum muscles from five rats, exposed to 18.5 days of hypogravity and processed for the alkaline ATPase reaction, showed a reduction of the mean fiber diameter (41.32 + or - 0.55 microns), compared to synchronous (46.32 + or - 0.55 microns) and vivarium (49 + or - 0.5 microns) controls. A further experiment studied the ratio of fast to slow twitch fibers in 25 rats exposed to 18.5 days of hypogravity and analyzed at four different periods of recovery following the space flight. Using the previous techniques, the gastrocnemius muscle showed a reduction of the total muscle fiber area in square microns and a reduction in the percentage of slow fibers of flight animals compared to the control animals.
Solar cosmic rays as a specific source of radiation risk during piloted space flight.
Petrov, V M
2004-01-01
Solar cosmic rays present one of several radiation sources that are unique to space flight. Under ground conditions the exposure to individuals has a controlled form and radiation risk occurs as stochastic radiobiological effects. Existence of solar cosmic rays in space leads to a stochastic mode of radiation environment as a result of which any radiobiological consequences of exposure to solar cosmic rays during the flight will be probabilistic values. In this case, the hazard of deterministic effects should also be expressed in radiation risk values. The main deterministic effect under space conditions is radiation sickness. The best dosimetric functional for its analysis is the blood forming organs dose equivalent but not an effective dose. In addition, the repair processes in red bone marrow affect strongly on the manifestation of this pathology and they must be taken into account for radiation risk assessment. A method for taking into account the mentioned above peculiarities for the solar cosmic rays radiation risk assessment during the interplanetary flights is given in the report. It is shown that radiation risk of deterministic effects defined, as the death probability caused by radiation sickness due to acute solar cosmic rays exposure, can be comparable to risk of stochastic effects. Its value decreases strongly because of the fractional mode of exposure during the orbital movement of the spacecraft. On the contrary, during the interplanetary flight, radiation risk of deterministic effects increases significantly because of the residual component of the blood forming organs dose from previous solar proton events. The noted quality of radiation responses must be taken into account for estimating radiation hazard in space. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
From Process to Product: Your Risk Process at Work
NASA Technical Reports Server (NTRS)
Kundrot, Craig E.; Fogarty, Jenifer; Charles, John; Buquo, Lynn; Sibonga, Jean; Alexander, David; Horn, Wayne G.; Edwards, J. Michelle
2010-01-01
The Space Life Sciences Directorate (SLSD) and Human Research Program (HRP) at the NASA/Johnson Space Center work together to address and manage the human health and performance risks associated with human space flight. This includes all human system requirements before, during, and after space flight, providing for research, and managing the risk of adverse long-term health outcomes for the crew. We previously described the framework and processes developed for identifying and managing these human system risks. The focus of this panel is to demonstrate how the implementation of the framework and associated processes has provided guidance in the management and communication of human system risks. The risks of early onset osteoporosis, CO2 exposure, and intracranial hypertension in particular have all benefitted from the processes developed for human system risk management. Moreover, we are continuing to develop capabilities, particularly in the area of information architecture, which will also be described. We are working to create a system whereby all risks and associated actions can be tracked and related to one another electronically. Such a system will enhance the management and communication capabilities for the human system risks, thereby increasing the benefit to researchers and flight surgeons.
14 CFR 460.51 - Space flight participant training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...
14 CFR 460.51 - Space flight participant training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...
14 CFR 460.51 - Space flight participant training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...
14 CFR 460.51 - Space flight participant training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...
14 CFR 460.51 - Space flight participant training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Space flight participant training. 460.51 Section 460.51 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight...
NASA Technical Reports Server (NTRS)
Zwart, Sara R.; Heer, Martina; Shackelford, Linda; Smith, Scott M.
2015-01-01
Mitigating space flight-induced bone loss is critical for space exploration, and diet can play a major role in this effort (1). Previous ground-based studies provide evidence that dietary composition can influence bone resorption during bed rest (2). In this study we examined the role of dietary intake patterns as one factor that can influence bone mineral loss in astronauts during space flight. Crew members were asked to consume, for 4 days at a time, prescribed menus with either a low (0.3-0.6 g/mEq) or high (1.0-1.3 g/mEq) ratio of animal protein to potassium (APro:K). Menus were developed for each crewmember, and were designed to meet both crew preferences and study constraints. Intakes of energy, total protein, calcium, and sodium were held relatively constant between the two diets. The order of the menus was randomized, and crews completed each set (low and high) once before and twice during space flight, for a total of 6 controlled diet sessions. One inflight session and three postflight sessions (R+30, R+180, R+365) monitored typical dietary intake. As of this writing, data are available from 14 crew members. Two subject's samples are awaiting return from ISS via Space-X, and the final subject has one more collection session planned in November 2014. On the last day of each of the 4-d controlled diet sessions, 24-h urine samples were collected, along with a fasting blood sample on the morning of the 5th day. Preliminary analyses will show the relationships between diet and flight on markers of bone metabolism. The results from this study, which represent healthy individuals in a unique environment, will be important to better understand diet and bone interrelationships during space flight as well as on Earth. These data will be important as nutritional requirements and food systems are developed for future exploration-class missions. This study was funded by the Human Health Countermeasures Element of NASA Human Research Program.
Physiological spacecraft environment data documentation
NASA Technical Reports Server (NTRS)
1977-01-01
The physiological limits of exposure to environmental parameters encountered during space flight was documented. The environmental limits which have been previously established were described in terms of acceptable physiological changes. The process of coordinating data and assembling the completed data book is described in this report.
2016-05-10
ISS047e111084 (05/10/2016) --- NASA astronaut Tim Kopra poses inside the cupola module onboard the International Space Station. Kopra, who was born in Austin, Texas, is the commander of Expedition 47 and previously served as a flight engineer during Expeditions 46 and 20.
Bisphosphonate as a Countermeasure to Space Flight-Induced Bone Loss
NASA Technical Reports Server (NTRS)
Spector, Elisabeth; LeBlanc, A.; Sibonga, J.; Matsumoto, T.; Jones, J.; Smith, S. M.; Shackelford, L.; Shapiro, J.; Lang, T.; Evans, H.;
2009-01-01
The purpose of this research is to determine whether anti-resorptive pharmaceuticals such as bisphosphonates, in conjunction with the routine in-flight exercise program, will protect ISS crewmembers from the regional decreases in bone mineral density and bone strength and the increased renal stone risk documented on previous long-duration space flights [1-3]. Losses averaged 1 to 2 percent per month in such regions as the lumbar spine and hip. Although losses showed significant heterogeneity among individuals and between bones within a given subject, space flight-induced bone loss was a consistent finding. More than 90 percent of astronauts and cosmonauts on long-duration flights (average 171 days) aboard Mir and the ISS, had a minimum 5 percent loss in at least one skeletal site, 40 percent of them had a 10 percent or greater loss in at least one skeletal site, and 22 percent of the Mir cosmonauts experienced a 15 to 20 percent loss in at least one site. These losses occurred even though the crewmembers performed time-consuming in-flight exercise regimens. Moreover, a recent study of 16 ISS astronauts using quantitative computed tomography (QCT) demonstrated trabecular bone losses from the hip averaging 2.3 percent per month [4]. These losses were accompanied by significant losses in hip bone strength that may not be recovered quickly [5]. This rapid loss of bone mass results from a combination of increased and uncoupled remodeling, as demonstrated by increased resorption with little or no change in bone formation markers [6-7]. This elevated remodeling rate likely affects the cortical and trabecular architecture and may lead to irreversible changes. In addition to bone loss, the resulting hypercalciuria increases renal stone risk. Therefore, it is logical to attempt to attenuate this increased remodeling with anti-resorption drugs such as bisphosphonates. Success with alendronate was demonstrated in a bed rest study [8]. This work has been extended to space flight and two dosing regimens: 1) an oral dose of 70 mg of alendronate taken weekly during flight or 2) a single intravenous (IV) dose of 4 mg of zoledronic acid given several weeks before flight. Currently the study is focusing on the oral option because of NASA s safety concerns with the IV-administered drug. The protocol requests 10 male or female crewmembers on ISS flights of 90 days or longer. Controls are 16 previous ISS crewmembers with QCT scans of the hip performed by these same investigators. The primary outcome measure for this study is hip trabecular bone mineral density measured by QCT, but other measures of bone mass are performed including peripheral QCT (pQCT) and dual-energy x-ray absorptiometry. Serum and urinary bone markers and renal stone risk measured before, during, and after flight are included. Postflight data are currently being collected from 2 ISS crewmembers. Two additional crewmembers will return this spring after 6-month missions. To date no untoward effects have been encountered.
NASA Technical Reports Server (NTRS)
1999-01-01
Noted author and previous Marshall Space Flight Center employee Mr. Homer Hickam Jr. poses in front of a placque commemorating his achievement in realizing his dreams of becoming a rocket scientist. The dedication site is located at the U. S. Space and Rocket Center in Huntsville, AL, and is used by amature rocket builders attending the Space Camp to launch their self-made rockets like Mr. Hickam did as a youth growing up in rural West Virginia. Posing with Mr. Hickam is the Madison County Commissioner Mr. Mike Gillispie.
STS-56 MS1 Foale uses SAREX on forward flight deck of Discovery, OV-103
1993-04-17
STS056-30-001 (8-17 April 1993) --- Aboard Discovery, astronaut C. Michael Foale, (call letters KB5UAC), talks to amateur radio operators on Earth via the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center Amateur Radio Club to encourage public participation in the space program through an endeavor to demonstrate the effectiveness of conducting short-wave radio transmissions. These transmissions occur between the Shuttle and ground-based radio operators at low cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.
Anticipatory Postural Activity During Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Layne, C. S.; Mulavara, A. P.; McDonald, P. V.; Pruett, C. J.; Koslovskaya, B.; Bloomberg, J. J.
1999-01-01
Somatosensory input has been used to modify motor output in many contexts. During space flight, the use of the lower limb musculature is much less than during activities in 1g. Consequently the neuromuscular activity of the legs is also reduced during space flight. This decrease in muscle activity contributes to muscle atrophy. Furthermore, adaptations to weightlessness contribute to posture and locomotion problems upon the return to Earth. Providing techniques to counter the negative effects of weightlessness on the neuromuscular system is an important goal, particularly during a long-duration mission. Previous work by our group has shown that lower limb neuromuscular activation that normally precedes arm movements in 1g is absent or greatly reduced during similar movements made while freefloating. However, preliminary evidence indicates that applying pressure to the feet results in enhanced neuromuscular activation during rapid arm movements performed while freefloating. This finding suggests that sensory input can be used to "drive" the motor system to increase neuromuscular functioning throughout a mission. The purpose of this investigation was to quantify the increase in neuromuscular activation resulting from the application of pressure to the feet.
NASA Technical Reports Server (NTRS)
Matin, A. C.; Benoit, M.; Chin. M.; Chinn, T. N.; Cohen, A.; Friedericks, C.; Henschke, M. B.; Keyhan, M.; Lera, M. P.; Padgen, M. R.;
2015-01-01
Human immune response is compromised in space and incidence of urinary tract infections (UTI) in astronauts has been reported. We have found that the causative agent of UTI, the uropathogenic Escherichia coli, becomes more resistant to gentamicin (Gm), which is commonly used to treat this disease, under modeled microgravity conditions (MMG), the increase being controlled by the stress response master regulator, ss. While the wild type bacterium becomes virtually invincible under MMG, the strain missing this sigma factor barely survives. We report here preparatory ground work for testing this finding in space flight on a nanosatellite. We have shown that the effect of Gm treatment on culture viability is directly correlated to increased Alamar Blue (AB) reduction; we have identified conditions to keep the experimental elements - the bacterial cultures, Gm, and AB - in a state of viability and potency to permit successful spaceflight experimentation given the necessary constraints. Spaceflight kinetics of AB reduction will be transmitted from the satellite via telemetry. The PharmaSat hardware previously used for space experimentation with yeast was modified to permit studies with bacteria by reducing the filter pore size and increasing fluidics volume to enable more fluid exchanges. Several verification tests have been run using the nanosatellite's flight software and prototype hardware. Cells were grown to stationary phase to induce the ss-controlled stress resistance and treated with Gm. Without Gm, the mutant took longer than the wild type to reduce the AB; this time difference increased almost 8 fold at 55 µg/mL Gm concentration. Thus, using flight hardware the mutant shows similarly increased sensitivity to Gm compared to the wild type to that found in our pilot microtiter plate experiments. Previous inflight experiments have given contradictory results concerning bacterial antibiotic resistance; none has yet explored the involvement of specific genes in this phenomenon. With our system ready to fly in late 2015/early 2016, these questions can be approached
Study of values and interpersonal perception in cosmonauts on board of international space station
NASA Astrophysics Data System (ADS)
Vinokhodova, A. G.; Gushin, V. I.
2014-01-01
The increased heterogeneity of International Space Station (ISS) crews' composition (in terms of nationality, profession and gender) together with stressful situations, due to space flight, can have a significant impact on group interaction and cohesion, as well as on communications with Mission Control Center (MCC) and the success of the mission as a whole. Culturally related differences in values, goals, and behavioral norms could influence mutual perception and, thus, cohesive group formation. The purpose of onboard "Interaction-Attitudes" experiment is to study the patterns of small group (space crew) behavior in extended space flight. Onboard studies were performed in the course of ISS Missions 19-30 with participation of twelve Russian crewmembers. Experimental schedule included 3 phases: preflight training and Baseline Data Collection; inflight activities once in two weeks; post-flight measurement. We used Personal Self-Perception and Attitudes (PSPA) software for analyzing subjects' attitudes toward social environment (crewmembers and MCC). It is based on the semantic differential and the repertory grid technique. To study the content of interpersonal perception we used content-analysis with participation of the experts, independently attributing each construct to the 17 semantic categories, which were described in our previous study. The data obtained demonstrated that the system of values and personal attitudes in the majority of participated cosmonauts remained mostly stable under stress-factors of extended space flight. Content-analysis of the important criteria elaborated by the subjects for evaluation of their social environment, showed that the most valuable personal traits for cosmonauts were those that provided the successful fulfillment of professional activity (motivation, intellectual level, knowledge, and self-discipline) and good social relationships (sociability, friendship, and tolerance), as well. Post-flight study of changes in perceptions, related to Real Self-image, did not reveal significant differences between the images of Russian crew-members and representatives from foreign space agencies. A certain difference in perceptions was found in cosmonauts with more integrated system of evaluations: after space flight they perceived foreign participants as "closer" to their Ideal, while Russian crew-members were perceived mostly as "distant" from Ideal Self of these subjects. Perceptions of people from Earth were also more critical. These differences are likely to be manifestations of interpersonal perception stereotypes. Described patterns of changes in perceptions of cosmonauts, who have performed space flight as a part of ISS multinational crew, allow us to suggest the recommendations for development of ISS crew training, in particular, it seems useful to increase the time of joint training for deepening of intercultural interaction.
NASA Technical Reports Server (NTRS)
Lee, Cynthia C.; Obara, Clifford J.; Vijgen, Paul M.; Wusk, Michael S.
1991-01-01
Flight test results are reported from an experiment designed to study the detailed growth of disturbances in the laminar boundary layer. A gloved wing section incorporating closely-spaced flush-mounted streamwise-located instrumentation for measuring instability frequencies and amplitude growths as well as pressure distributions was used. The growth of Tollmien-Schlichting (T-S) and crossflow instabilities is predicted by the linear e exp n method and compared to the measured boundary-layer disturbance frequencies. The predictions showed good agreement with the measured data. The results exhibited fair agreement with previous n(T-S) and n(CF) flight correlations for several of the conditions analyzed. It is inferred from the high n(T-S) values for these data that moderately swept wings at compressible speeds can withstand higher combinations of n(T-S) and n(CF) values and still remain laminar than previously thought.
Update of the Bisphosphonate ISS Flight Experiment
NASA Technical Reports Server (NTRS)
LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackelford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elisabeth; Ploutz-Snyder, Robert;
2014-01-01
The bisphosphonate study is an international collaboration between the NASA and JAXA space agencies to investigate the potential value of antiresorptive drugs to mitigate the well-established bone changes associated with long-duration spaceflight. Our hypothesis is that an antiresorptive drug in combination with in-flight exercise will ameliorate bone loss and hypercalcuria during long-duration spaceflight. We have completed data analysis for 7 crewmembers treated with alendronate during flight and 3 of 10 controls without treatment. We previously reported the pre/postflight changes in bone density and the pre versus in-flight changes in various biomarkers in crewmembers taking alendronate during flight. The purpose of this report is to compare these results with the 12- month follow-up data. The table below presents these data as a percentage change from baseline either immediately postflight or in-flight (biochemical markers) with a 1-year follow-up.
Effect of microgravity on plant growth
NASA Technical Reports Server (NTRS)
Lewis, Norman G.
1994-01-01
The overall goal of this research is to determine the effect of microgravity proper on plant growth (metabolism and cell wall formation). In addressing this goal, the work conducted during this grant period was divided into three components: analyses of various plant tissues previously grown in space aboard MIR Space Station; analyses of wheat tissues grown on Shuttle flight STS-51; and Phenylpropanoid metabolism and plant cell wall synthesis (earth-based investigations).
Space shuttle galley water system test program
NASA Technical Reports Server (NTRS)
1975-01-01
A water system for food rehydration was tested to determine the requirements for a space shuttle gallery flight system. A new food package concept had been previously developed in which water was introduced into the sealed package by means of a needle and septum. The needle configuration was developed and the flow characteristics measured. The interface between the food package and the water system, oven, and food tray was determined.
The cart before the horse: Mariner spacecraft and launch vehicles
NASA Technical Reports Server (NTRS)
1984-01-01
Evolution of unmanned space exploration (Pioneer, Ranger, Surveyor, and Prospector) up to 1960, and the problems in the design and use of the Atlas Centaur launch vehicle were discussed. The Mariner Program was developed from the experience gained from the previous unmanned flights.
Living and working in space. A history of Skylab
NASA Technical Reports Server (NTRS)
Compton, W. D.; Benson, C. D.
1983-01-01
The history of Skylab is examined with emphasis on program development from previous Apollo missions, modifications to spacecraft, onboard experiments, and flight crew training. A listing of the missions and an evaluation of results are included with a brief description of the workshop's reentry.
NASA Technical Reports Server (NTRS)
Somers, Jeffrey T.; Newby, Nate; Wells, Jessica
2015-01-01
A panel of experts was convened in 2010 to help define acceptable injury risk levels for space vehicle launches, landings, and abort scenarios. Classifications of spaceflight-relevant injuries were defined using four categories ranging from minor to severe injury. Limits for each injury category were agreed to, dependent on the expected number of crew exposures in a given vehicle and on whether the flight was considered nominal or off-nominal. Somers et al. captured the findings of this summit in a NASA technical memorandum. This panel was recently re-convened (December 1, 2014) to determine whether the previous recommended injury limits were applicable to newly-designed commercial space flight vehicles. In particular, previous limits were based in part on the number of crew exposures per vehicle and also were sensitive to a definition of nominal and off-nominal vehicle performance. Reconsideration of these aspects led to a new consensus on a definition of injury risk.
NASA Technical Reports Server (NTRS)
Lee, Mona D.; Tuttle, Ronald; Girten, Beverly
1995-01-01
There are limited data regarding changes in oxidative and antioxidant enzymes induced by simulated or actual weightlessness, and any additional information would provide insight into potential mechanisms involving other changes observed in muscles from animals previously flown in space. Thus, the NASA Biospecimen Sharing Program was an opportunity to collect valuable information. Oxidative and antioxidant enzyme levels, as well as lipid peroxidation, were measured in respiratory muscles from rates flown on board Space Shuttle mission STS-54. The results indicated that there was an increasing trend in citrate synthase activity in the flight diaphragm when compared to ground based controls, and there were no significant changes observed in the intercostal muscles for any of the parameters. However, the lipid peroxidation was significantly (p less than 0.05) decreased in the flight diaphragm. These results indicate that 6 day exposure to microgravity may have a different effect on oxidative and antioxidant activity in rat respiratory muscles when compared to data from previous 14 day hindlimb suspension studies.
X-38 Ship #2 Landing on Lakebed, Completing the Program's 4th Flight
NASA Technical Reports Server (NTRS)
1999-01-01
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), makes a gentle lakebed landing at the end of a July 1999 test flight at the Dryden Flight Research Center, Edwards, California. It was the fourth free flight of the test vehicles in the X-38 program, and the second free flight test of Vehicle 132 or Ship 2. The goal of this flight was to release the vehicle from a higher altitude -- 31,500 feet -- and to fly the vehicle longer -- 31 seconds -- than any previous X-38 vehicle had yet flown. The project team also conducted aerodynamic verification maneuvers and checked improvements made to the drogue parachute. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
The Effects of Liquid Cooling Garments on Post-Space Flight Orthostatic Intolerance
NASA Technical Reports Server (NTRS)
Billica, Roger; Kraft, Daniel
1997-01-01
Post space flight orthostatic intolerance among Space Shuttle crew members following exposure to extended periods of microgravity has been of significant concern to the safety of the shuttle program. Following the Challenger accident, flight crews were required to wear launch and entry suits (LES). It was noted that overall, there appeared to be a higher degree of orthostatic intolerance among the post-Challenger crews (approaching 30%). It was hypothesized that the increased heat load incurred when wearing the LES, contributed to an increased degree of orthostatic intolerance, possibly mediated through increased peripheral vasodilatation triggered by the heat load. The use of liquid cooling garments (LCG) beneath the launch and entry suits was gradually implemented among flight crews in an attempt to decrease heat load, increase crew comfort, and hopefully improve orthostatic tolerance during reentry and landing. The hypothesis that the use of the LCG during reentry and landing would decrease the degree of orthostasis has not been previously tested. Operational stand-tests were performed pre and post flight to assess crewmember's cardiovascular system's ability to respond to gravitational stress. Stand test and debrief information were collected and databased for 27 space shuttle missions. 63 crewpersons wearing the LCG, and 70 crewpersons not wearing the LCG were entered into the database for analysis. Of 17 crewmembers who exhibited pre-syncopal symptoms at the R+O analysis, 15 were not wearing the LCG. This corresponds to a 21% rate of postflight orthostatic intolerance among those without the LCG, and a 3% rate for those wearing LCG. There were differences in these individual's average post-flight maximal systolic blood pressure, and lower minimal Systolic Blood pressures in those without LCG. Though other factors, such as type of fluid loading, and exercise have improved concurrently with LCG introduction, from this data analysis, it appears that LCG usage provided a significant degree of protection from post-flight orthostatic intolerance.
Design, Development, and Integration of A Space Shuttle Orbiter Bay 13 Payload Carrier
NASA Technical Reports Server (NTRS)
Spencer, Susan H.; Phillips, Michael W.; Upton, Lanny (Technical Monitor)
2002-01-01
Bay 13 of the Space Shuttle Orbiter has been limited to small sidewall mounted payloads and ballast. In order to efficiently utilize this space, a concept was developed for a cross-bay cargo carrier to mount Orbital Replacement Units (ORU's) for delivery to the International Space Station and provide additional opportunities for science payloads, while meeting the Orbiter ballast requirements. The Lightweight Multi-Purpose Experiment Support Structure (MPESS) Carrie (LMC) was developed and tested by NASA's Marshall Space Flight Center and the Boeing Company. The Multi-Purpose Experiment Support Structure (MPESS), which was developed for the Spacelab program was modified, removing the keel structure and relocating the sill trunnions to fit in Bay 13. Without the keel fitting, the LMC required a new and innovative concept for transferring Y loads into the Orbiter structure. Since there is no keel fitting available in the Bay 13 location, the design had to utilize the longeron bridge T-rail to distribute the Y loads. This concept has not previously been used in designing Shuttle payloads. A concept was developed to protect for Launch-On-Need ORU's, while providing opportunities for science payloads. Categories of potential ORU's were defined, and Get-Away Special (GAS) payloads of similar mass properties were provided by NASA's Goddard Space Flight Center. Four GAS payloads were manifest as the baseline configuration, preserving the capability to swap up to two ORU's for the corresponding science payloads, after installation into the Orbiter cargo bay at the pad, prior to closeout. Multiple configurations were considered for the analytical integration, to protect for all defined combinations of ORU's and GAS payloads. The first physical integration of the LMC war performed by Goddard Space Flight Center and Kennedy Space Center at an off-line facility at Kennedy Space Center. This paper will discuss the design challenges, structural testing, analytical and physical integration for the LMC's successful maiden flight on STS-108/ISS UF-1 mission in December 2001.
NASA Technical Reports Server (NTRS)
Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Globus, R. K.; Ronca, A. E.
2016-01-01
As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group phenotype. This analysis contributes to the first NASA long-duration study of rodent behavior, providing evidence for the emergence of a distinctive, organized group behavior unique to the weightless space environment.
MPLNET V3 Cloud and Planetary Boundary Layer Detection
NASA Technical Reports Server (NTRS)
Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.
2016-01-01
The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-08
... Flight Requirements for Crew and Space Flight Participants AGENCY: Federal Aviation Administration (FAA...-0720. Title: Human Space Flight Requirements for Crew and Space Flight Participants. Form Numbers... information collection. Background: The FAA has established requirements for human space flight of crew and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
... Flight Requirements for Crew and Space Flight Participants AGENCY: Federal Aviation Administration (FAA...-0720. Title: Human Space Flight Requirements for Crew and Space Flight Participants. Form Numbers... information collection. Background: The FAA has established requirements for human space flight of crew and...
NASA Technical Reports Server (NTRS)
Wortz, E. C.; Saur, A. J.; Nowlis, D. P.; Kendall, M. P.
1974-01-01
Results are presented of an initial experiment in a research program designed to develop objective techniques for psychological assessment of individuals and groups participating in long-duration space flights. Specifically examined is the rationale for utilizing measures of attention as an objective assessment technique. Subjects participating in the experiment performed various tasks (eg, playing matrix games which appeared on a display screen along with auditory stimuli). The psychophysiological reactions of the subjects were measured and are given. Previous research of various performance and psychophysiological methods of measuring attention is also discussed. The experiment design (independent and dependent variables) and apparatus (computers and display devices) are described and shown. Conclusions and recommendations are presented.
The Human in Space: Lesson from ISS
NASA Technical Reports Server (NTRS)
Sams, Clarence F.
2009-01-01
This viewgraph presentation reviews the lessons learned from manned space flight on the International Space Station. The contents include: 1) Overview of space flight effects on crewmembers; 2) General overview of immune system; 3) How does space flight alter immune system? 4) What factors associated with space flight inteact with crewmember immune function and impact health risks? 5) What is the current understanding of space flight effects on the immune system? and 6) Why should NASA be interested in immunology? Why is it significant?
2012-09-25
New Stennis Director Rick Gilbrech (r) shakes hands with his predecessor, Patrick Scheuermann, following announcement of the leadership change during an all hands session Sept. 25. Scheuermann ended his tenure at Stennis to become director of Marshall Space Flight Center in Huntsville, Ala. Gilbrech previously served as director at Stennis in 2006-7.
Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss
NASA Technical Reports Server (NTRS)
Halloran, B.; Weider, T.; Morey-Holton, E.
1999-01-01
The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.
NASA Technical Reports Server (NTRS)
Smith, S. M.; Davis-Street, J.; Rice, B. L.; Lane, H. W.
1997-01-01
The authors review studies conducted to define nutritional requirements for astronauts during space flight and to assess nutrition before, during, and after space flight. Topics include space food systems, research and limitations on spacecraft, physiological adaptation to weightlessness, energy requirements, dietary intake during space flight, bone demineralization, gastrointestinal function, blood volume, and nutrition requirements for space flight. Benefits of space-related nutrition research are highlighted.
Astronaut Walz on flight deck with IMAX camera
1996-11-04
STS079-362-023 (16-26 Sept. 1996) --- Astronaut Carl E. Walz, mission specialist, positions the IMAX camera for a shoot on the flight deck of the Space Shuttle Atlantis. The IMAX project is a collaboration among NASA, the Smithsonian Institution's National Air and Space Museum, IMAX Systems Corporation and the Lockheed Corporation to document in motion picture format significant space activities and promote NASA's educational goals using the IMAX film medium. This system, developed by IMAX of Toronto, uses specially designed 65mm cameras and projectors to record and display very high definition color motion pictures which, accompanied by six-channel high fidelity sound, are displayed on screens in IMAX and OMNIMAX theaters that are up to ten times larger than a conventional screen, producing a feeling of "being there." The 65mm photography is transferred to 70mm motion picture films for showing in IMAX theaters. IMAX cameras have been flown on 14 previous missions.
General view of the flight deck of the Orbiter Discovery ...
General view of the flight deck of the Orbiter Discovery looking forward along the approximate center line of the orbiter at the center console. The Multifunction Electronic Display System (MEDS) is evident in the mid-ground center of this image, this system was a major upgrade from the previous analog display system. The commander's station is on the port side or left in this view and the pilot's station is on the starboard side or right tin this view. Not the grab bar in the upper center of the image which was primarily used for commander and pilot ingress with the orbiter in a vertical position on the launch pad. Also note that the forward observation windows have protective covers over them. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
SPACEHAB module at LC-39B for STS-76
NASA Technical Reports Server (NTRS)
1996-01-01
At Launch Pad 39B, the SPACEHAB module has been installed in the payload bay of the Space Shuttle Atlantis, which was rolled out to the pad a day previously. Already located in the payload bay was the Orbiter Docking System (ODS), to which the SPACEHAB was connected via a tunnel. During the upcoming flight of Atlantis on Mission STS-76, the ODS will be docked to the Docking Module located on the Kristall module docking port on the Russian Space Station Mir. The SPACEHAB will be filled with Russian and U.S. logistics equipment for transfer to Mir. Also located in the mini-research laboratory is the European Space Agency's Biorack, which houses experiments to be conducted by the U.S. astronauts during the nine-day flight. Atlantis is scheduled to lift off on the third Shuttle-Mir docking mission on March 21.
Effects of Autonomic Conditioning on Motion Sickness Tolerance
NASA Technical Reports Server (NTRS)
Cowings, P. S.; Toscano, W. B.
1994-01-01
This paper presents case-studies of 9 shuttle crewmembers (prime and alternates) and one U.S. Navy F-18 pilot, as they participated in all preflight training and testing activities in support of a life sciences flight experiment aboard Spacelab-J, and Spacelab-3. The primary objective of the flight experiment was to determine if Autogenic-feedback training (AFT), a physiological self-regulation training technique would be an effective treatment for motion sickness and space motion sickness in these crewmembers. Additional objectives of this study involved the examining human Physiological- responses to motion sickness on Earth and in space, as well as developing predictive criteria for susceptibility to space motion sickness based on ground-based data. Comparisons of these crewmembers are made to a larger set of subjects from previous experiments (treatment and test-only controls subjects). This paper describes all preflight methods, results and proposed changes for future tests.
In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space flight
NASA Technical Reports Server (NTRS)
Taylor, G. R.; Janney, R. P.
1992-01-01
The cell-mediated immune (CMI) mechanism was evaluated in 10 space shuttle astronauts by measuring their delayed-type hypersensitivity response to seven common recall antigens. The Multitest CMI test system was used to administer antigens of tetanus, diphtheria, Streptococcus, Proteus, old tuberculin, Candida, and Trichophyton to the forearm 46 h before nominal mission termination; readings were conducted 2 h after landing. The mean number of reactions was reduced from 4.5 preflight to 3.0 inflight, and the mean reaction score was reduced from 21.4 to 13.7 mm inflight. The data presented suggest that the CMI system is still being degraded by space flight conditions on day 4 and that between day 5 and day 10, the depression maximizes and the system begins to adjust to the new conditions. The relation of these in vivo findings to previously reported in vitro results is discussed.
The Charlotte (TM) intra-vehicular robot
NASA Technical Reports Server (NTRS)
Swaim, Patrick L.; Thompson, Clark J.; Campbell, Perry D.
1994-01-01
NASA has identified telerobotics and telescience as essential technologies to reduce the crew extra-vehicular activity (EVA) and intra-vehicular activity (IVA) workloads. Under this project, we are developing and flight testing a novel IVA robot to relieve the crew of tedious and routine tasks. Through ground telerobotic control of this robot, we will enable ground researchers to routinely interact with experiments in space. Our approach is to develop an IVA robot system incrementally by employing a series of flight tests with increasing complexity. This approach has the advantages of providing an early IVA capability that can assist the crew, demonstrate capabilities that ground researchers can be confident of in planning for future experiments, and allow incremental refinement of system capabilities and insertion of new technology. In parallel with this approach to flight testing, we seek to establish ground test beds, in which the requirements of payload experimenters can be further investigated. In 1993 we reviewed manifested SpaceHab experiments and defined IVA robot requirements to assist in their operation. We also examined previous IVA robot designs and assessed them against flight requirements. We rejected previous design concepts on the basis of threat to crew safety, operability, and maintainability. Based on this insight, we developed an entirely new concept for IVA robotics, the CHARLOTTE robot system. Ground based testing of a prototype version of the system has already proven its ability to perform most common tasks demanded of the crew, including operation of switches, buttons, knobs, dials, and performing video surveys of experiments and switch panels.
Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors
NASA Technical Reports Server (NTRS)
Flatley, Thomas P.
2015-01-01
SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A C-band radar antenna stands ready to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An X-band radar antenna is in place to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - A C-band (left) and an X-band radar antenna are positioned to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - A C-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - A C-band radar antenna stands ready to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - An X-band radar antenna is in place to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - An X-band (left) and a C-band radar antenna are prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - An X-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A C-band (left) and an X-band radar antenna are positioned to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An X-band (left) and a C-band radar antenna are prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A C-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An X-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
Hubble Space Telescope Deploy, Cuba, Bahamas and Gulf of Mexico
1990-04-29
STS031-151-010 (25 April 1990) --- The Hubble Space Telescope (HST), still in the grasp of Discovery's Remote Manipulator System (RMS), is backdropped over Cuba and the Bahama Islands. In this scene, it has yet to have deployment of its solar array panels and its high gain antennae. This scene was captured with a large format Aero Linhof camera used by several previous flight crews to record Earth scenes.
NASA Aerospace Flight Battery Systems Program: An update
NASA Astrophysics Data System (ADS)
Manzo, Michelle A.
1992-02-01
The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.
NASA Aerospace Flight Battery Systems Program: An Update
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
1992-01-01
The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.
Role of Corticosteroids in Bone Loss During Space Flight
NASA Technical Reports Server (NTRS)
Wronski, Thomas J.; Halloran, Bernard P.; Miller, Scott C.
1998-01-01
The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.
14 CFR 437.27 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...
14 CFR 437.27 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...
14 CFR 437.27 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...
14 CFR 437.27 - Pre-flight and post-flight operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...
14 CFR 1214.115 - Standard services.
Code of Federal Regulations, 2010 CFR
2010-01-01
....115 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.... (d) A five-person flight crew: commander, pilot and three mission specialists. (e) Orbiter flight...
14 CFR 1214.115 - Standard services.
Code of Federal Regulations, 2013 CFR
2013-01-01
....115 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.... (d) A five-person flight crew: commander, pilot and three mission specialists. (e) Orbiter flight...
14 CFR 1214.115 - Standard services.
Code of Federal Regulations, 2012 CFR
2012-01-01
....115 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.... (d) A five-person flight crew: commander, pilot and three mission specialists. (e) Orbiter flight...
NASA Technical Reports Server (NTRS)
Shteyne, B. A.; Nevzgodina, L. V.; Miller, A. T.
1982-01-01
The effects of space flight factors on lettuce seeds aboard the Kosmos-936 and Kosmos-1129 satellites for 20 days were studied. The phytochrome dependent (PD) reaction of light sensitive seeds was a sensitive criterion for evaluating the biological effects of space flight factors. The PD reaction of air dry lettuce seeds was suppressed after space flight, especially if the seeds were exposed to open space during the flight. Space flight affects the physiological activity of both phytochrome forms, and both the phi sub 730 dependent reactions of lettuce seeds were suppressed.
The role of visual context in manual target localization
NASA Technical Reports Server (NTRS)
Barry, Susan R.
1993-01-01
During space flight and immediately after return to the 1-g environment of earth, astronauts experience perceptual and sensory-motor disturbances. These changes result from adaptation of the astronaut to the microgravity environment of space. During space flight, sensory information from the eyes, limbs, and vestibular organs is reinterpreted by the central nervous system in order to produce appropriate body movements in the microgravity. This adaptation takes several days to develop. Upon return to earth, the changes in the sensory-motor system are no longer appropriate to a 1-g environment. Over several days, the astronaut must re-adapt to the terrestrial environment. Alterations in sensory-motor function may affect eye-head-hand coordination and, thus, the crewmember's ability to manually locate objects in extrapersonal space. Previous reports have demonstrated that crewmembers have difficulty in estimating joint and limb position and in pointing to memorized target positions on orbit and immediately postflight. The ability to point at or reach toward an object or perform other manual tasks is essential for safe Shuttle operation and may be compromised particularly during re-entry and landing sequences and during possible emergency egress from the Shuttle. An understanding of eye-head-hand coordination and the changes produced during space flight is necessary to develop effective countermeasures. This summer's project formed part of the study of the sensory cues use in the manual localization of objects.
Revolutionary Concepts of Radiation Shielding for Human Exploration of Space
NASA Technical Reports Server (NTRS)
Adams, J. H., Jr.; Hathaway, D. H.; Grugel, R. N.; Watts, J. W.; Parnell, T. A.; Gregory, J. C.; Winglee, R. M.
2005-01-01
This Technical Memorandum covers revolutionary ideas for space radiation shielding that would mitigate mission costs while limiting human exposure, as studied in a workshop held at Marshall Space Flight Center at the request of NASA Headquarters. None of the revolutionary new ideas examined for the .rst time in this workshop showed clear promise. The workshop attendees felt that some previously examined concepts were de.nitely useful and should be pursued. The workshop attendees also concluded that several of the new concepts warranted further investigation to clarify their value.
Artificial gravity: Phyiological perspectives for long-term space exploration
NASA Astrophysics Data System (ADS)
di Prampero, P.; Antonutto, G.
2005-08-01
We suggested previously the Twin Bike System (TBS) as a possible countermeasure to prevent cardiovascular deconditioning during long term space flight. The TBS consists of two bicycles, operated by the astronauts, moving at the very same speed, but in the opposite sense, along the inner wall of a cylindrical space module, thus generating a centrifugal acceleration vector, mimicking gravity. To gain some insight on the effectiveness of the TBS we hereby propose a similar approach (the Mono Bike System, MBS) to be tested during bed rest on Earth.
PhoneSat 2.4 Launches to Orbit aboard Minotaur-1 Rocket (Reporter Package)
2013-11-21
On November 19, NASA's PhoneSat 2.4 successfully launched into space on board a Minotaur-1 rocket from the Wallops Flight Facility in Virginia. Built at NASA's Ames Research Center, the smartphone-based cubesat is an improved version of the previous PhoneSat satellites.
International Space Station Medical Operations
NASA Technical Reports Server (NTRS)
Jones, Jeffrey A.
2008-01-01
NASA is currently the leader, in conjunction with our Russian counterpart co-leads, of the Multilateral Medical Policy Board (MMPB), the Multilateral Medical Operations Panel (MMOP), which coordinates medical system support for International Space Station (ISS) crews, and the Multilateral Space Medicine Board (MSMB), which medically certifies all crewmembers for space flight on-board the ISS. These three organizations have representatives from NASA, RSA-IMBP (Russian Space Agency- Institute for Biomedical Problems), GCTC (Gagarin Cosmonaut Training Center), ESA (European Space Agency), JAXA (Japanese Space Agency), and CSA (Canadian Space Agency). The policy and strategic coordination of ISS medical operations occurs at this level, and includes interactions with MMOP working groups in Radiation Health, Countermeasures, Extra Vehicular Activity (EVA), Informatics, Environmental Health, Behavioral Health and Performance, Nutrition, Clinical Medicine, Standards, Post-flight Activities and Rehabilitation, and Training. Each ISS Expedition has a lead Crew Surgeon from NASA and a Russian Crew Surgeon from GCTC assigned to the mission. Day-to-day issues are worked real-time by the flight surgeons and biomedical engineers (also called the Integrated Medical Group) on consoles at the MCC (Mission Control Center) in Houston and the TsUP (Center for Flight Control) in Moscow/Korolev. In the future, this may also include mission control centers in Europe and Japan, when their modules are added onto the ISS. Private medical conferences (PMCs) are conducted regularly and upon crew request with the ISS crew via private audio and video communication links from the biomedical MPSR (multipurpose support room) at MCC Houston. When issues arise in the day-to-day medical support of ISS crews, they are discussed and resolved at the SMOT (space medical operations team) meetings, which occur weekly among the International Partners. Any medical or life science issue that is not resolved at the SMOT can be taken to the Mission Management Team meeting, which occurs biweekly from MCC-Houston. This meeting includes the other International Partners and all flight support and console position representatives via teleconference. ISS Crew Surgeons have handled many medical conditions on orbit; including skin rashes, dental abscesses, lacerations, and STT segment EKG changes. Fortunately to date, there have not been any forced medical evacuations from the ISS. This speaks well for the implementation of the primary, secondary and even tertiary prevention strategies invoked by the Integrated Medical Group, as there were several medical evacuations during the previous Russian space stations.
Technology-enabled Airborne Spacing and Merging
NASA Technical Reports Server (NTRS)
Hull, James; Barmore, Bryan; Abbott, Tetence
2005-01-01
Over the last several decades, advances in airborne and groundside technologies have allowed the Air Traffic Service Provider (ATSP) to give safer and more efficient service, reduce workload and frequency congestion, and help accommodate a critically escalating traffic volume. These new technologies have included advanced radar displays, and data and communication automation to name a few. In step with such advances, NASA Langley is developing a precision spacing concept designed to increase runway throughput by enabling the flight crews to manage their inter-arrival spacing from TRACON entry to the runway threshold. This concept is being developed as part of NASA s Distributed Air/Ground Traffic Management (DAG-TM) project under the Advanced Air Transportation Technologies Program. Precision spacing is enabled by Automatic Dependent Surveillance-Broadcast (ADS-B), which provides air-to-air data exchange including position and velocity reports; real-time wind information and other necessary data. On the flight deck, a research prototype system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR) processes this information and provides speed guidance to the flight crew to achieve the desired inter-arrival spacing. AMSTAR is designed to support current ATC operations, provide operationally acceptable system-wide increases in approach spacing performance and increase runway throughput through system stability, predictability and precision spacing. This paper describes problems and costs associated with an imprecise arrival flow. It also discusses methods by which Air Traffic Controllers achieve and maintain an optimum interarrival interval, and explores means by which AMSTAR can assist in this pursuit. AMSTAR is an extension of NASA s previous work on in-trail spacing that was successfully demonstrated in a flight evaluation at Chicago O Hare International Airport in September 2002. In addition to providing for precision inter-arrival spacing, AMSTAR provides speed guidance for aircraft on converging routes to safely and smoothly merge onto a common approach. Much consideration has been given to working with operational conditions such as imperfect ADS-B data, wind prediction errors, changing winds, differing aircraft types and wake vortex separation requirements. A series of Monte Carlo simulations are planned for the spring and summer of 2004 at NASA Langley to further study the system behavior and performance under more operationally extreme and varying conditions. This will coincide with a human-in-the-loop study to investigate the flight crew interface, workload and acceptability.
Houston, We Have a Problem Solving Model for Training
NASA Technical Reports Server (NTRS)
Schmidt, Lacey; Slack, Kelley; Keeton, Kathryn; Barshi, Immanuel; Martin, Lynne; Mauro, Robert; O'Keefe, William; Baldwin, Evelyn; Huning, Therese
2011-01-01
In late 2006, the Mission Operations Directorate (MOD) at NASA began looking at ways to make training more efficient for the flight controllers who support the International Space Station. The average certification times for flight controllers spanned from 18 months to three years and the MOD, responsible for technical training, was eager to develop creative solutions that would reduce the time to 12 months. Additionally, previously trained flight controllers sometimes participated in more than 50 very costly, eight-hour integrated simulations before becoming certified. New trainees needed to gain proficiency with far fewer lessons and training simulations than their predecessors. This poster presentation reviews the approach and the process that is currently in development to accomplish this goal.
14 CFR § 1214.115 - Standard services.
Code of Federal Regulations, 2014 CFR
2014-01-01
...§ 1214.115 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.... (d) A five-person flight crew: commander, pilot and three mission specialists. (e) Orbiter flight...
Effects of the space flight environment on the immune system
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.
2003-01-01
Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.
Small total dose measurement system for SDS-1
NASA Astrophysics Data System (ADS)
Kimoto, Yugo; Satoh, Yohei; Tachihara, Hiroshi
2009-11-01
The Japanese Aerospace Exploration Agency (JAXA) uses monitors on board satellites to measure and record in-flight data on ionization effects in space. A compact, total dose measurement system for the small satellite (SDS-1) was developed based on the previous system for measuring total ionizing dose effects. Especially, the sensor for SDS-1 is quite smaller than the sensor for SOHLA-1, which is presented in the last year. The sensor is 8 mm wide×3 mm high×19 mm long and weighs approximately 4 g with 500 mm its wire harness. Eight pin LCC RADFET and temperature sensor are arranged on it. Seven sensors are arranged on some components inside the SDS-1. One of the sensors is arranged on a printed board in advanced microprocessing in-ORBIT experiment equipment (AMI). The AMI demonstrate 320 MIPS microprocessor and DC-DC converter for space. The absorbed dose at the points where the sensors are arranged was evaluated before flight and will be compared with resulting flight data.
EEE Links, Volume 9, No. 1, January 2003 Focus on Plastic Parts
NASA Technical Reports Server (NTRS)
2003-01-01
The January 2003 issue of Electronic, Electromechanical, Electric (EEE) Links is presented. The Programmable Logic Application Notes column has been reinstated in this newsletter. Written by Rich Katz of NASA's Office of Logic Design (OLD), the application notes offer technical tips intended to prevent flight design errors and enhance research, development, and use of programmable logic and elements for space flight applications. An archive of these notes columns from previous issues of EEE Links is available at http://www.klabs.org/richcontent/eeelink s/EEE Links.htm.
Experimental control requirements for life sciences
NASA Technical Reports Server (NTRS)
Berry, W. E.; Sharp, J. C.
1978-01-01
The Life Sciences dedicated Spacelab will enable scientists to test hypotheses in various disciplines. Building upon experience gained in mission simulations, orbital flight test experiments, and the first three Spacelab missions, NASA will be able to progressively develop the engineering and management capabilities necessary for the first Life Sciences Spacelab. Development of experiments for these missions will require implementation of life-support systems not previously flown in space. Plant growth chambers, animal holding facilities, aquatic specimen life-support systems, and centrifuge-mounted specimen holding units are examples of systems currently being designed and fabricated for flight.
Life Science Research In Space: The Spacelab Era
NASA Astrophysics Data System (ADS)
Farrell, R. M.; Cramer, D. B.; Reid, D. H.
1982-02-01
This manuscript summarizes the events leading to the first Spacelab mission dedicated exclusively to life sciences experimentation. This mission is currently planned for a Space Shuttle flight in the 1984-1985 time frame. Following publication of a NASA Announce ment of Opportunity in 1978, approximately 400 proposals were received from researchers in universities, government laboratories, and industrial firms both in the U. S. and abroad. In 1979, 87 candidate experiments were selected for definition studies to identify the detailed resources which would need to be accommodated by the Spacelab. These proposals addressed problems encountered in man's previous space flight experience, such as space motion sickness, cardiovascular deconditioning, muscle wasting, calcium loss and a reduction in red cell mass. Additionally, experiments were selected in areas of bioengineering, behavior and performance, Plant physiology, and cell biology. Animal species (rodents and small primates) to be investigated will be housed in a specially-developed animal holding facility which will provide all life support requirements for the animals. Human subjects will consist of a Mission Specialist Astronaut and up to four Payload Specialists. Plant species will be housed in Plant Growth Units. A general purpose work station and biological containment facility will provide the working area for much of the in-space experimentation. A comprehensive array of flight qualified laboratory equipment will be made available by NASA to Principal Investigators for in-flight use by the Payload Specialists. This equipment includes microscopes, biotelemetry systems, cameras, centrifuges, refrigerators, and similar equipment. All of this equipment has been designed for use in weightlessness. The process to develop a primary payload of about 20 experiments is now underway for Spacelab mission number four, the first dedicated life sciences flight. Under the overall guidance of NASA Headquarters, responsibility for carrying out this program rests with NASA and contractor scientists, physicians, engineers hind technicians at the Johnson Space Center, Ames Research Center, and the Kennedy Space Center. Spacelab-4 will be the first of a series of dedicated life sciences missions; future dedicated missions are planned at 18-month intervals.
Sub-orbital commercial Human space flight and informed consent in the United States
NASA Astrophysics Data System (ADS)
Carminati, Maria-Vittoria « Giugi »; Griffith, Doug; Campbell, Mark R.
2013-12-01
Commercial space flight is expected to rapidly develop in the near future. This will begin with sub-orbital missions and then progress to orbital flights. In the United States, technical informed consent of space flight participants is required by the commercial space flight operator for regulatory purposes. Additionally, though not required by U.S. regulation, the aerospace medicine professional involved in the medical screening of both space flight participants and crewmembers will be asked to assist operators in obtaining medical informed consent for liability purposes. The various US federal and state regulations regarding informed consent for sub-orbital commercial space flight are evolving and are unfamiliar to most aerospace medical professionals and are reviewed and discussed.
NASA Technical Reports Server (NTRS)
Lane, H. W.; Gretebeck, R. J.; Schoeller, D. A.; Davis-Street, J.; Socki, R. A.; Gibson, E. K.
1997-01-01
Energy requirements during space flight are poorly defined because they depend on metabolic-balance studies, food disappearance, and dietary records. Water turnover has been estimated by balance methods only. The purpose of this study was to determine energy requirements and water turnover for short-term space flights (8-14 d). Subjects were 13 male astronauts aged 36-51 y with normal body mass indexes (BMIs). Total energy expenditure (TEE) was determined during both a ground-based period and space flight and compared with the World Health Organization (WHO) calculations of energy requirements and dietary intake. TEE was not different for the ground-based and the space-flight periods (12.40 +/- 2.83 and 11.70 +/- 1.89 MJ/d, respectively), and the WHO calculation using the moderate activity correction was a good predictor of TEE during space flight. During the ground-based period, energy intake and TEE did not differ, but during space flight energy intake was significantly lower than TEE; body weight was also less at landing than before flight. Water turnover was lower during space flight than during the ground-based period (2.7 +/- 0.6 compared with 3.8 +/- 0.5 L/d), probably because of lower fluid intakes and perspiration loss during flight. This study confirmed that the WHO calculation can be used for male crew members' energy requirements during short space flights.
NASA's Space Launch System: Enabling Exploration and Discovery
NASA Technical Reports Server (NTRS)
Schorr, Andrew; Robinson, Kimberly F.; Hitt, David
2017-01-01
As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 t to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 t to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity allowing astronauts to gain experience living and working in deep space, a testbed for new systems and capabilities needed for exploration beyond, and a departure point for NASA and partners to send missions to other destinations. Assembly of the Gateway would be followed by a Deep Space Transport, which would be a vehicle capable of carrying astronauts farther into our solar system and eventually to Mars. This paper will give an overview of SLS' current status and its capabilities, and discuss current utilization planning.
NASA's Space Launch System: Enabling Exploration and Discovery
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Schorr, Andrew
2017-01-01
As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 metric tons to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 metric tons to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity allowing astronauts to gain experience living and working in deep space, a testbed for new systems and capabilities needed for exploration beyond, and a departure point for NASA and partners to send missions to other destinations. Assembly of the Gateway would be followed by a Deep Space Transport, which would be a vehicle capable of carrying astronauts farther into our solar system and eventually to Mars. This paper will give an overview of SLS' current status and its capabilities, and discuss current utilization planning.
NASA Technical Reports Server (NTRS)
Dischinger, H. Charles, Jr.; Stambolian, Damon B.; Miller, Darcy H.
2008-01-01
The National Aeronautics and Space Administration has long applied standards-derived human engineering requirements to the development of hardware and software for use by astronauts while in flight. The most important source of these requirements has been NASA-STD-3000. While there have been several ground systems human engineering requirements documents, none has been applicable to the flight system as handled at NASA's launch facility at Kennedy Space Center. At the time of the development of previous human launch systems, there were other considerations that were deemed more important than developing worksites for ground crews; e.g., hardware development schedule and vehicle performance. However, experience with these systems has shown that failure to design for ground tasks has resulted in launch schedule delays, ground operations that are more costly than they might be, and threats to flight safety. As the Agency begins the development of new systems to return humans to the moon, the new Constellation Program is addressing this issue with a new set of human engineering requirements. Among these requirements is a subset that will apply to the design of the flight components and that is intended to assure ground crew success in vehicle assembly and maintenance tasks. These requirements address worksite design for usability and for ground crew safety.
Hot-Fire Testing of 5N and 22N HPGP Thrusters
NASA Technical Reports Server (NTRS)
Burnside, Christopher G.; Pedersen, Kevin W.; Pierce, Charles W.
2015-01-01
This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends.NASA completed hot-fire testing of 5N and 22N HPGP thrusters at the Marshall Space Flight Center’s Component Development Area altitude test stand in April 2015. Both thrusters are ground test articles and not flight ready units, but are representative of potential flight hardware with a known path towards flight application. The purpose of the 5N testing was to perform facility check-outs and generate a small set of data for comparison to ECAPS and Orbital ATK data sets. The 5N thruster performed as expected with thrust and propellant flow-rate data generated that are similar to previous testing at Orbital ATK. Immediately following the 5N testing, and using the same facility, the 22N testing was conducted on the same test stand with the purpose of demonstrating the 22N performance. The results of 22N testing indicate it performed as expected.The results of the hot-fire testing are presented in this paper and presentation.
Kuznets, E I; Bobrov, A F; Bekreneva, L N; Mikhailova, L I; Utekhin, B A; Pruzhinina, T I; Iakovleva, E V; Chadov, V I
1996-01-01
The problem of evaluating and predicting the thermal status of a cosmonaut in the long-term space mission is a pressing one and remains to be solved. The previous studies indicated that the best plan to be followed is to evaluate the thermal status of a cosmonaut during his egress into outer space with the use of the procedure of parotid thermometry of the mean body temperature.
Long range planning for the development of space flight emergency systems.
NASA Technical Reports Server (NTRS)
Bolger, P. H.; Childs, C. W.
1972-01-01
The importance of long-range planning for space flight emergency systems is pointed out. Factors in emergency systems planning are considered, giving attention to some of the mission classes which have to be taken into account. Examples of the hazards in space flight include fire, decompression, mechanical structure failures, radiation, collision, and meteoroid penetration. The criteria for rescue vehicles are examined together with aspects regarding the conduction of rescue missions. Future space flight programs are discussed, taking into consideration low earth orbit space stations, geosynchronous orbit space stations, lunar operations, manned planetary missions, future space flight vehicles, the space shuttle, special purpose space vehicles, and a reusable nuclear shuttle.
NASA Wallops Rocket Launch Lights up the Mid-Atlantic Coast
2017-12-08
July 4 fireworks came early when a NASA Terrier-Improved Malemute sounding rocket was successfully launched at 4:25 a.m., Thursday, June 29, from the agency’s Wallops Flight Facility in Virginia. During the 8-minute flight, 10 canisters about the size of a soft drink can were ejected in space, 6 to 12 miles away from the 670-pound main payload. The canisters deployed blue-green and red vapor that formed artificial clouds visible from New York to North Carolina. During an ionosphere or aurora science mission, these clouds, or vapor tracers, allow scientists on the ground to visually track particle motions in space. The development of the multi-canister ampoule ejection system will allow scientists to gather information over a much larger area than previously possible when deploying the tracers just from the main payload. Credit: NASA/Wallops NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Young PHD's in Human Space Flight
NASA Technical Reports Server (NTRS)
Wilson, Eleanor
2002-01-01
The Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME) in cooperation with the NASA Office of Space Flight, Human Exploration and Development of Space Enterprise sponsored a summer institute, Young PHD#s (Persons Having Dreams) in Human Space Flight. This 3-day institute used the curriculum of a workshop designed for space professionals, 'Human Space Flight-Analysis and Design: An Integrated, Systematic Approach.' The content was tailored to a high school audience. This institute seeks to stimulate the interest of pre-college students in space flight and motivate them to pursue further experiences in this field. Additionally, this institute will serve as a pilot model for a pre- collegiate training program that can be replicated throughout the country. The institute was complemented with a trip to the Goddard Space Flight Center.
Gravity, Calcium, and Bone: Update, 1989
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Morey-Holton, Emily
1991-01-01
Some of the results of recent short-term flights and ground-based experiments that have contributed new insights into skeletal adaptation, calcium metabolism, and growth processes in 0 g, are highlighted. After 6 months in space, bone demineralization, invariably involving the os calcis, was found not to extend to the lumbar spine in 4 exercising cosmonauts. A flight experiment in the Space Shuttle crew has documented the early events in the calcium endocrine system during spaceflight. On the ground, brief and long-term bed rest studies of healthy volunteers in the head-down tile (HDT) model of weightlessness were completed. The skeleton of the adult male responds more rapidly to unloading than previously recognized. Regional changes in bone density can be quantified in only 30 days, are highly individual, and follow the direction of gravitational forces in the HDT model during inactivity. Bone biopsy results in healthy volunteers after bed rest differ from results in paraplegics from the same sampling site. Flight experiments in growing rats reveal changes in the composition of bone mineral and matrix in the femur postflight that were found to be highly regional and suggestive of an effect of gravity on mineral distribution. These observations may be relevant to the results from an earlier Cosmos flight where artificial gravity in space was found to maintain bone strength, but not to correct the radial growth deficit.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.
2013-01-01
The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.
Containerless preparation of advanced optical glasses: Experiment 77F095
NASA Technical Reports Server (NTRS)
Happe, R. A.; Kim, K. S.
1982-01-01
Containerless processing of optical glasses was studied in preparation for space shuttle MEA flight experiments. Ground based investigation, experiment/hardware coordination activities and development of flight experiment and sample characterization plans were investigated. In the ground based investigation over 100 candidate glass materials for space processing were screened and promising compositions were identified. The system of Nb2O5-TiO2-CaO was found to be very rich with containerless glass compositions and as extensive number of the oxides combinations were tried resulting in a glass formation ternary phase diagram. The frequent occurrence of glass formation by containerless processing among the compositions for which no glass formations were previously reported indicated the possibility and an advantage of containerless processing in a terrestrial environment.
76 FR 24836 - Regulatory Approach for Commercial Orbital Human Spaceflight
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
... regulating commercial human space flight. In December 2006, the FAA issued human space flight regulations in... space flight participants until December 23, 2012, or until a design feature or operating practice has... or serious injury, to crew or space flight participants during a licensed or permitted commercial...
1992-01-01
The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), the French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Dedicated to the study of life and materials sciences in microgravity, the IML missions explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. In this photograph, Commander Ronald J. Grabe works with the Mental Workload and Performance Evaluation Experiment (MWPE) in the IML-1 module. This experiment was designed as a result of difficulty experienced by crewmembers working at a computer station on a previous Space Shuttle mission. The problem was due to the workstation's design being based on Earthbound conditions with the operator in a typical one-G standing position. Information gained from this experiment was used to design workstations for future Spacelab missions and the International Space Station. Managed by the Marshall Space Flight Center, IML-1 was launched on January 22, 1992 aboard the Space Shuttle Orbiter Discovery (STS-42 mission).
Energy requirements for space flight
NASA Technical Reports Server (NTRS)
Lane, Helen W.
1992-01-01
Both the United States and the Soviet Union perform human space research. This paper reviews data available on energy metabolism in the microgravity of space flight. The level of energy utilization in space seems to be similar to that on earth, as does energy availability. However, despite adequate intake of energy and protein and in-flight exercise, lean body mass was catabolized, as indicated by negative nitrogen balance. Metabolic studies during simulated microgravity (bed rest) and true microgravity in flight have shown changes in blood glucose, fatty acids and insulin concentrations, suggesting that energy metabolism may be altered during space flight. Future research should focus on the interactions of lean body mass, diet and exercise in space, and their roles in energy metabolism during space flight.
NASA Technical Reports Server (NTRS)
Barret, C.
1996-01-01
Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability and for flight control. Recently, due to the aft center-of-gravity (cg) locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that can be provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability and payload capability. As a starting point for the novel design of aerodynamic flight control augmentors for a Saturn class, aft cg launch vehicle, this report undertakes a review of our national heritage of launch vehicles using aerodynamic surfaces, along with a survey of current use of aerodynamic surfaces on large launch vehicles of other nations. This report presents one facet of Center Director's Discretionary Fund Project 93-05 and has a previous and subsequent companion publication.
Immunology presentation at the 1990 NASA/NSF Antarctica Biomedical Science Working Group
NASA Technical Reports Server (NTRS)
Meehan, Richard T.
1990-01-01
An overview of methodology used for determining human in vitro lymphocyte activation, proliferation and effector cell function was presented and results of previous manned space flight immunology studies from Apollo through Shuttle were reviewed. Until the Shuttle era, lymphocyte assays were not very sensitive and had such large variations among normal subjects that it was difficult to define a consistent effect of space flight. More sensitive assay, however, even with Shuttle missions as brief as 6 days indicate depressed T-cell proliferative responses are routinely observed following space flight. Using a slight modification of the Shuttle assay, five different human stress-immunology models have been studied over the last 6 years in our lab. These have included: academic examinations of medical students having blood drawn during major test periods on three separate groups of first year students and two hypoxia studies (at 25,000 feet in a 6 week chamber ascent to the equivalent of Mount Everest and twice on Pikes Peak at 14,000 feet). These studies are particularly pertinent to Antarctica, since the altitude equivalent of 11,000 feet at the South Pole may affect some of the variables that are being measured in immunology, physiology or cognitive studies. An extravehicular study was performed drawing blood from 35 individuals before and immediately following a chamber exposure study. Preliminary results from 30 Shuttle astronauts investigated immunophenotype analysis and the role of a novel monocyte population in modulating the previously observed suppressed in vitro immune function. The results of the Air Force Academy cadet stress study were also presented.
The first meeting of the Advisory Committee on the Future of the US Space Program (C-FUSSP)
NASA Technical Reports Server (NTRS)
1990-01-01
These are minutes of the Advisory Committee on the Future of the U.S. Space Program (C-FUSSP). From September 13-15, 1990, presentations were made by the major leaders at NASA as well as industry leaders. The presentations draw on previous studies of the future of NASA space programs. Allowance was made for plenty of questions. The minutes reflect the views of governmental units such as the National Space Council, the NASA Administrators Office, Office of Space Science and Applications, Office of Space Flight, Office of Space Operations, Office of Aeronautics, Exploration, and Technology as well as other pertinent units and outside organizations. Members of the committee are listed at the conclusion of the minutes.
Space Flight. Teacher Resources.
ERIC Educational Resources Information Center
2001
This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4)…
2002-03-07
STS-109 Astronaut Michael J. Massimino, mission specialist, perched on the Shuttle's robotic arm is working at the stowage area for the Hubble Space Telescope's port side solar array. Working in tandem with James. H. Newman, Massimino removed the old port solar array and stored it in Columbia's payload bay for return to Earth. The two went on to install a third generation solar array and its associated electrical components. Two crew mates had accomplished the same feat with the starboard array on the previous day. In addition to the replacement of the solar arrays, the STS-109 crew also installed the experimental cooling system for the Hubble's Near-Infrared Camera (NICMOS), replaced the power control unit (PCU), and replaced the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS). The 108th flight overall in NASA's Space Shuttle Program, the Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 for 10 days, 22 hours, and 11 minutes. Five space walks were conducted to complete the HST upgrades. The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built.
Green Propellant Landing Demonstration at U.S. Range
NASA Technical Reports Server (NTRS)
Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.
2016-01-01
The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation in order to investigate the handling and process safety variances in project resources between LMP-103S and typical in-space propellants. The GPLD risk reduction operation proved successful for many reasons including handling the green propellant at a U.S. Range, loading and pressurizing a flight-like tank, expelling the propellant, measuring the tank expulsion efficiency, and most significantly, GSFC propulsion personnel's new insight into the LMP-103S propellant handling details.
Green Propellant Loading Demonstration at U.S. Range
NASA Technical Reports Server (NTRS)
Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.
2016-01-01
The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation in order to investigate the handling and process safety variances in project resources between LMP-103S and typical in-space propellants. The GPLD risk reduction operation proved successful for many reasons including handling the green propellant at a U.S. Range, loading and pressurizing a flight-like tank, expelling the propellant, measuring the tank expulsion efficiency, and most significantly, GSFC propulsion personnel's new insight into the LMP-103S propellant handling details.
14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...
14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...
14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...
14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...
14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...
Investigation of HZETRN 2010 as a Tool for Single Event Effect Qualification of Avionics Systems
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Koontz, Steve; Atwell, William; Boeder, Paul
2014-01-01
NASA's future missions are focused on long-duration deep space missions for human exploration which offers no options for a quick emergency return to Earth. The combination of long mission duration with no quick emergency return option leads to unprecedented spacecraft system safety and reliability requirements. It is important that spacecraft avionics systems for human deep space missions are not susceptible to Single Event Effect (SEE) failures caused by space radiation (primarily the continuous galactic cosmic ray background and the occasional solar particle event) interactions with electronic components and systems. SEE effects are typically managed during the design, development, and test (DD&T) phase of spacecraft development by using heritage hardware (if possible) and through extensive component level testing, followed by system level failure analysis tasks that are both time consuming and costly. The ultimate product of the SEE DD&T program is a prediction of spacecraft avionics reliability in the flight environment produced using various nuclear reaction and transport codes in combination with the component and subsystem level radiation test data. Previous work by Koontz, et al.1 utilized FLUKA, a Monte Carlo nuclear reaction and transport code, to calculate SEE and single event upset (SEU) rates. This code was then validated against in-flight data for a variety of spacecraft and space flight environments. However, FLUKA has a long run-time (on the order of days). CREME962, an easy to use deterministic code offering short run times, was also compared with FLUKA predictions and in-flight data. CREME96, though fast and easy to use, has not been updated in several years and underestimates secondary particle shower effects in spacecraft structural shielding mass. Thus, this paper will investigate the use of HZETRN 20103, a fast and easy to use deterministic transport code, similar to CREME96, that was developed at NASA Langley Research Center primarily for flight crew ionizing radiation dose assessments. HZETRN 2010 includes updates to address secondary particle shower effects more accurately, and might be used as another tool to verify spacecraft avionics system reliability in space flight SEE environments.
14 CFR 415.8 - Human space flight.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license, an...
14 CFR 415.8 - Human space flight.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license, an...
14 CFR 415.8 - Human space flight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license, an...
14 CFR 415.8 - Human space flight.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license, an...
14 CFR 415.8 - Human space flight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Human space flight. 415.8 Section 415.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH LICENSE General § 415.8 Human space flight. To obtain a launch license, an...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...
Code of Federal Regulations, 2013 CFR
2013-01-01
.... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...
Two X-38 Ship Demonstrators in Development at NASA Johnson Space Flight Center
NASA Technical Reports Server (NTRS)
1999-01-01
This photo shows two X-38 Crew Return Vehicle technology demonstrators under development at NASA's Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
The Three Main Rings of the X-38 Vehicle 201 Shown under Construction at NASA Johnson Space Flight C
NASA Technical Reports Server (NTRS)
1999-01-01
This photo shows the X-38 Vehicle 201, intended for spaceflight testing, under construction at NASA Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
X-38 Prototype Technology Demonstrator for the Crew Return Vehicle (CRV) and Project Managers Bob Ba
NASA Technical Reports Server (NTRS)
1999-01-01
Bob Baron of the Dryden Flight Research Center (left) and Brian Anderson of the Johnson Space Flight Center (right) flank an X-38 prototype Crew Return Vehicle technology demonstrator under construction at the Johnson Space Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
X-38 - On Ground after First Free Flight, March 12, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
Crew members surround the X-38 lifting body research vehicle after a successful test flight and landing in March 1998. The flight was the first free flight for the vehicle and took place at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
Immune responses in space flight
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.
1998-01-01
Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological significance of space flight-induced changes in immune parameters remains to be established; however, as duration of flights increases, the potential for difficulties due to impaired immune responses also increases.
Metabolic and Regulatory Systems in Space Flight
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session JP2, the discussion focuses on the following topics: The Dynamics of Blood Biochemical Parameters in Cosmonauts During Long-Term Space Flights; Efficiency of Functional Loading Test for Investigations of Metabolic Responses to Weightlessness; Human Cellular Immunity and Space Flight; Cytokine Production and Head-Down Tilt Bed Rest; Plasma and Urine Amino Acids During Human Space Flight; and DNA Fingerprinting, Applications to Space Microbiology.
Fluid handling 2: Surgical applications
NASA Technical Reports Server (NTRS)
Billica, Roger; Young, John; Rushing, Doug; Kizzee, Victor D.
1991-01-01
The methods proposed for managing fluids and particulate debris during minor surgery on Space Station Freedom (SSF) were investigated and demonstrated. A KC-135 parabolic flight test was performed, in which the flight followed the standard 40 parabola profile with 20 to 25 seconds in near-zero gravity in each parabola. The equipment (suction and laminar flow device) was evaluated. While this equipment performed satisfactorily previously in the dental simulation, the purpose of the current flight was to reconfigure the equipment in support of a minor surgical situation in order to evaluate its efficacy and establish clear requirements for the actual flight hardware. To accomplish the study the Health Maintenance Facility medical restraint system was deployed as for surgical use and mannequin suture arm was restrained to its surface. The surgical area was established as for performing minor surgery with standard tray and suture instruments employed.
A Core Plug and Play Architecture for Reusable Flight Software Systems
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan
2006-01-01
The Flight Software Branch, at Goddard Space Flight Center (GSFC), has been working on a run-time approach to facilitate a formal software reuse process. The reuse process is designed to enable rapid development and integration of high-quality software systems and to more accurately predict development costs and schedule. Previous reuse practices have been somewhat successful when the same teams are moved from project to project. But this typically requires taking the software system in an all-or-nothing approach where useful components cannot be easily extracted from the whole. As a result, the system is less flexible and scalable with limited applicability to new projects. This paper will focus on the rationale behind, and implementation of the run-time executive. This executive is the core for the component-based flight software commonality and reuse process adopted at Goddard.
Some results of radiobiological studies performed on Cosmos-110 biosatellite.
Antipov, V V; Delone, N L; Nikitin, M D; Parfyonov, G P; Saxonov, P P
1969-01-01
The experiment carried out on the Cosmos 110 biosatellite is a step further in radiobiological investigations performed in outer space and differs appreciably from flight experiments conducted on board the Vostok and Voskhod spacecraft. The difference lies, firstly, in the integral dose of cosmic radiation. According to the onboard dosimeter readings, it was 12 rad at an average dose rate of 500 mrad/day during the biosatellite flight, whereas in previous biological flight experiments, as is well known, the total dose was below 80 mrad (on a five-day flight of Vostok 5) at a dose rate of 80 to 20 mrad/day. Secondly, during the biosatellite mission, cosmic radiation originated not from the primary cosmic radiation as was the case in the Vostok and Voskhod flights but mainly from the Earth's radiation belts. Thirdly, the duration of the Cosmos 110 flight was far longer than that of any previous mission: the effect of weightlessness lasted for about 22 days. The paper presents results of investigations performed on E. coli K-12 lambda lysogenic bacteria, Tradescantia microspores, dry seeds of higher plants, different Chlorella strains and an intact plant of Tradescantia paludosa. The biological effect of space flight factors was evaluated by various physiological, cytogenetic, genetic and microbiological techniques. Similar to previous experiments carried out on board the Vostok 3-6 spacecraft, tests with lysogenic bacteria revealed a statistically significant induction of moderate bacteriophage. The induction value was shown to lag behind the mission duration dependence level. This seems to be related to a change of inducibility properties of lysogenic bacteria and a reduction of the yield range of phages per bacterial cell. Other tests (duration of the latent period, formation pattern of phage components) indicated no significant differences between test and control objects (N.N. Zhukov-Verezhnikov, N.I. Rybakov, V.A. Kozlov et al.). A study of protective properties of chemical compounds of different types in relation to the bacteriophage induction demonstrated that preparations of the aminothiolic group produced a high antimutagenic effect (V.A. Kozlov, N.I. Rybakov et al.). A postflight cytological analysis of Tradescantia paludosa microspores indicated their changes of three types: chromosome aberrations, mitotic disturbances and disorders of growth processes in the cell. Examinations of dry seeds of wheat, barley, pine and other plants, as well as of Allium cepa bulbs, gave evidence of a diverse effect of space flight factors on both physiological processes and hereditary structures of the objects. In some cases an increased percentage of seed germination, stimulation of their growth and a significant increase of aberrations were found. An investigation of the occurrence frequency of visible mutations in reaction cell cultures of different Chlorella strains (LARG-1, LARG-3 and others) showed no significant differences between the test and control material. Some cultures taken under a more detailed study indicated a delay with which cells entered the first sporulation and a greater amount of cells that divided into a lesser than usual number of autospores. In addition, test variants of the strains showed a slightly reduced survival of Chlorella cells. The reduction appeared to be statistically significant for the LARG-3 strain only (E.N. Vaulina et al.). A postflight examination of the appearance of the Tradescantia paludosa plant showed that it retained good turgor; its leaves were dark green and several bright flowers bloomed. No signs of its inhibition or etiolation were noted. As compared to the control, the test plant grew noticeably and the stem became crooked. Certain problems of biological indications of outer space are discussed.
Results from the Joint US/Russian Sensory-Motor Investigations
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session FA3, the discussion focuses on the following topics: The Effect of Long Duration Space Flight on the Acquisition of Predictable Targets in Three Dimensional Space; Effects of Microgravity on Spinal Reflex Mechanisms; Three Dimensional Head Movement Control During Locomotion After Long-Duration Space Flight; Human Body Shock Wave Transmission Properties After Long Duration Space Flight; Adaptation of Neuromuscular Activation Patterns During Locomotion After Long Duration Space Flight; Balance Control Deficits Following Long-Duration Space Flight; Influence of Weightlessness on Postural Muscular Activity Coordination; and The Use of Inflight Foot Pressure as a Countermeasure to Neuromuscular Degradation.
14 CFR 460.45 - Operator informing space flight participant of risk.
Code of Federal Regulations, 2014 CFR
2014-01-01
... understanding of the hazards and risks of the mission, and each space flight participant must then provide... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Operator informing space flight participant of risk. 460.45 Section 460.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...
14 CFR 460.45 - Operator informing space flight participant of risk.
Code of Federal Regulations, 2013 CFR
2013-01-01
... understanding of the hazards and risks of the mission, and each space flight participant must then provide... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Operator informing space flight participant of risk. 460.45 Section 460.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...
14 CFR 460.45 - Operator informing space flight participant of risk.
Code of Federal Regulations, 2012 CFR
2012-01-01
... understanding of the hazards and risks of the mission, and each space flight participant must then provide... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Operator informing space flight participant of risk. 460.45 Section 460.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...
14 CFR 431.8 - Human space flight.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...
14 CFR 431.8 - Human space flight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...
14 CFR 431.8 - Human space flight.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...
14 CFR 431.8 - Human space flight.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...
14 CFR 431.8 - Human space flight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Human space flight. 431.8 Section 431.8 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) General § 431.8 Human space flight...
Challenges of In Space Robotic Servicing
NASA Technical Reports Server (NTRS)
Roberts, Brian John
2015-01-01
As future space missions extend beyond the friendly confines of low earth orbit, robots are becoming an increasingly vital component on flight manifests. While the main focus to-date has been on satellite servicing due to its high commercial potential, robots are also being considered for orbital debris removal, space construction, and asteroid sample retrieval. The robotic technologies and automation required to carry out these missions represent a significant advancement beyond the manipulation technology used previously on the Space Shuttle, the International Space Station, and planetary rovers. While higher demands are being driven by the more ambitious nature of the tasks, the handling of uncooperative targets such as satellites and asteroids, present a greater challenge.
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
Effects of Space Flight on Ovarian-Hypophyseal Function in Postpartum Rats
NASA Technical Reports Server (NTRS)
Burden, H. W.; Zary, J.; Lawrence, I. E.; Jonnalagadda, P.; Davis, M.; Hodson, C. A.
1997-01-01
The effect of space flight in a National Aeronautics and Space Administration (NASA) shuttle was studied in pregnant rats. Rats were launched on day 9 of gestation and recovered on day 20 of gestation. On day 20 of gestation, rats were unilaterally hysterectomized and subsequently allowed to go to term and deliver vaginally. There was no effect of space flight on pituitary and ovary mass postpartum. In addition, space flight did not alter healthy and atretic ovarian antral follicle populations, fetal wastage in utero, plasma concentrations of progesterone and luteinizing hormone (LH) or pituitary content of follicle stimulating hormone (FSH). Space flight significantly increased plasma concentrations of FSH and decreased pituitary content of LH at the postpartum sampling time. Collectively, these data show that space flight, initiated during the postimplantation period of pregnancy, and concluded before parturition, is compatible with maintenance of pregnancy and has minimal effects on postpartum hypophyseal parameters; however, none of the ovarian parameters examined was altered by space flight.
Water and Energy Dietary Requirements and Endocrinology of Human Space Flight
NASA Technical Reports Server (NTRS)
Lane, Helen W.; Feeback, Daniel L.
2002-01-01
Fluid and energy metabolism and related endocrine changes have been studied nearly from the beginning of human space flight in association with short- and long-duration flights. Fluid and electrolyte nutrition status is affected by many factors including the microgravity environment, stress, changes in body composition, diet, exercise habits, sleep cycles, and ambient temperature and humidity conditions. Space flight exposes astronauts to all these factors and consequently poses significant challenges to establishing dietary water, sodium, potassium, and energy recommendations. The purpose of this article is to review the results of ground-based and space flight research studies that have led to current water, electrolyte, and energy dietary requirements for humans during space flight and to give an overview of related endocrinologic changes that have been observed in humans during short- and long-duration space flight.
Space Flight Software Development Software for Intelligent System Health Management
NASA Technical Reports Server (NTRS)
Trevino, Luis C.; Crumbley, Tim
2004-01-01
The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... government reimbursable payload on the Space Shuttle. § 1214.101 Section § 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...
STS-103 Crew at Breakfast, Suiting, Departing O&C
NASA Technical Reports Server (NTRS)
1999-01-01
The Hubble Space Telescope (HST) team is preparing for NASA's third scheduled service call to Hubble. This mission, STS-103, will launch from Kennedy Space Center aboard the Space Shuttle Discovery. The seven flight crew members for STS-103 are: Commander Curtis L. Brown (his sixth flight), Pilot Scott J. Kelly and European Space Agency (ESA) astronaut Jean-Francois Clervoy (his third flight) will join space walkers Steven L. Smith (his third flight), C. Michael Foale (his fifth flight), John M. Grunsfeld (his third flight) and ESA astronaut Claude Nicollier (his fourth flight). This current video presents a live footage of the seven STS-103 crewmembers eating breakfast, suiting, and departing the O&C (Operations and Checkout) before the 6:50 p.m. lift-off.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free of NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Facility, Edwards, California in 1977 as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Center, Edwards, California in 1977, as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
Intersatellite communications optoelectronics research at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Krainak, Michael A.
1992-01-01
A review is presented of current optoelectronics research and development at the NASA Goddard Space Flight Center for high-power, high-bandwidth laser transmitters; high-bandwidth, high-sensitivity optical receivers; pointing, acquisition, and tracking components; and experimental and theoretical system modeling at the NASA Goddard Space Flight Center. Program hardware and space flight opportunities are presented.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.
2013-01-01
Space radiation effects mitigation has been identified as one of the highest priority technology development areas for human space flight in the NASA Strategic Space Technology Investment Plan (Dec. 2012). In this paper we review the special features of space radiation that lead to severe constraints on long-term (more than 180 days) human flight operations outside Earth's magnetosphere. We then quantify the impacts of human space radiation dose limits on spacecraft engineering design and development, flight program architecture, as well as flight program schedule and cost. A new Deep Space Habitat (DSH) concept, the hybrid inflatable habitat, is presented and shown to enable a flexible, affordable approach to long term manned interplanetary flight today.
NASA Tests 2nd RS-25 Flight Engine for Space Launch System
2018-01-16
On Jan. 16, 2018, engineers at NASA’s Stennis Space Center in Mississippi conducted a certification test of another RS-25 engine flight controller on the A-1 Test Stand at Stennis Space Center. The 365-second, full-duration test came a month after the space agency capped a year of RS-25 testing with a flight controller test in mid-December. For the “green run” test the flight controller was installed on RS-25 developmental engine E0528 and fired just as during an actual launch. Once certified, the flight controller will be removed and installed on a flight engine for use by NASA’s new deep-space rocket, the Space Launch System (SLS).
View of human problems to be addressed for long-duration space flights
NASA Technical Reports Server (NTRS)
Berry, C. A.
1973-01-01
Review of the principal physiological changes seen in space flight, and discussion of various countermeasures which may prove to be useful in combating these changes in long-term space flight. A number of transient changes seen in Apollo astronauts following space flights are discussed, including cardiovascular and hemodynamic responses to weightlessness, musculoskeletal changes, changes in fluid and electrolyte balance, microbiological changes, and vestibular effects. A number of countermeasures to the effects of space flight on man are cited, including exercise, medication, diet, lower-body negative pressure, gradient positive pressure, venous occlusion cuffs, and others. A detailed review is then made of a number of psychological factors bearing on the ability of the human organism to withstand the rigors of long space flights.
Space Shuttle Projects Overview to Columbia Air Forces War College
NASA Technical Reports Server (NTRS)
Singer, Jody; McCool, Alex (Technical Monitor)
2000-01-01
This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.
NASA Technical Reports Server (NTRS)
Brown, N. E.
1973-01-01
Parameters that require consideration by the planners and designers when planning for man to perform functions outside the vehicle are presented in terms of the impact the extravehicular crewmen and major EV equipment items have on the mission, vehicle, and payload. Summary data on man's performance capabilities in the weightless space environment are also provided. The performance data are based on orbital and transearth EVA from previous space flight programs and earthbound simulations, such as water immersion and zero-g aircraft.
Soyuz MS-06 Landing_2018_58_623322
2018-02-28
Expedition 54 Commander Alexander Misurkin of Roscosmos and Flight Engineers Mark Vande Hei and Joe Acaba of NASA landed safely near the town of Dzhezkazgan, Kazakhstan Feb. 27, U.S. time (Feb. 28 in Kazakhstan). Just a few hours previously, they bid farewell to their colleagues on the complex and undocked their Soyuz MS-06 spacecraft from the Poisk Module on the International Space Station. The trio spent almost six months in space conducting research and operational work in support of the station.
Movable Ground Based Recovery System for Reuseable Space Flight Hardware
NASA Technical Reports Server (NTRS)
Sarver, George L. (Inventor)
2013-01-01
A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.
NASA Technical Reports Server (NTRS)
1998-01-01
The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.
1999-01-21
The Chandra X-ray Observatory (CXO), NASA's newest space telescope, is seen above at the unveiling ceremony at TRW Space and Electronics Group in Redondo Beach, Calif. The photo was taken by Marshall Space Flight Center and appears on its Marshall News Center Web site, along with other digital images of the completely assembled observatory. Formerly called the Advanced X-ray Astrophysics Facility, the CXO is the world's most powerful X-ray telescope. Scientists believe its ability to see previously invisible black holes and high-temperature gas clouds give the observatory the potential to rewrite the books on the structure and evolution of our universe
Popova, I A; Grigor'ev, A I
1992-01-01
Cosmos biosatellites research program was the unique possibility to study the metabolic features influenced by space flight factors. Based on the existing ideas about relationships between some metabolic responses, the state of metabolism and the systems of its control in the rats flown in space was evaluated to differentiate the processes occurred in microgravity, possibly under effect of this factor and during first postflight hours. The biochemical results of studying the rats exposed to space environments during 7, 14, 18.5 and 19.5 days and sacrificed 4-11 h after landing (Cosmos-782, -936, -1129, -1667, -2044 flight) are used. The major portion of data are in line with understanding that after landing when the microgravity-adapted rats again return to 1-g environments they display an acute stress reaction. A postflight stress reaction is manifested itself in a specific way as compared to adequate and well studied model of acute and chronic stress and dictates subsequent metabolic changes. Postflight together with the acute stressful and progressing readaptation shifts the metabolic signs of previous adaptation to microgravity are shown up. In the absence of engineering feasibility to control or record the state of metabolism inflight it can only presupposed what metabolic status is typical of the animals in space environments and that its development is triggered by a decreased secretion of the biologically active growth hormone. This concept is confirmed by the postflight data.
NASA Astrophysics Data System (ADS)
Nechitailo, Galina S.; Yurov, S.; Cojocaru, A.; Revin, A.
The analysis of the lycopene and other carotenoids in tomatoes produced from seeds exposed under space flight conditions at the orbital station MIR for six years is presented in this work. Our previous experiments with tomato plants showed the germination of seeds to be 32%Genetic investigations revealed 18%in the experiment and 8%experiments were conducted to study the capacity of various stimulating factors to increase germination of seeds exposed for a long time to the action of space flight factors. An increase of 20%achieved but at the same time mutants having no analogues in the control variants were detected. For the present investigations of the third generation of plants produced from seeds stored for a long time under space flight conditions 80 tomatoes from forty plants were selected. The concentration of lycopene in the experimental specimens was 2.5-3 times higher than in the control variants. The spectrophotometric analysis of ripe tomatoes revealed typical three-peaked carotenoid spectra with a high maximum of lycopene (a medium maximum at 474 nm), a moderate maximum of its predecessor, phytoin, (a medium maximum at 267 nm) and a low maximum of carotenes. In green tomatoes, on the contrary, a high maximum of phytoin, a moderate maximum of lycopene and a low maximum of carotenes were observed. The results of the spectral analysis point to the retardation of biosynthesis of carotenes while the production of lycopene is increased and to the synthesis of lycopene from phytoin. Electric conduction of tomato juice in the experimental samples is increased thus suggesting higher amounts of carotenoids, including lycopene and electrolytes. The higher is the value of electric conduction of a specimen, the higher are the spectral maxima of lycopene. The hydrogen ion exponent of the juice of ripe tomatoes increases due to which the efficiency of ATP biosynthesis in cell mitochondria is likely to increase, too. The results demonstrating an increase in the content of lycopene correlate with the data about increased biological activities of cell cultures of ginseng, stevia and saffron during a space flight aboard the orbital station MIR. The data obtained indicate that the space flight factors (heavy charged particles, high-energy adrons and weightlessness) have a nonspecific effect on living organisms.
STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci
2009-05-13
JSC2009-E-119745 (13 May 2009) --- Flight director Tony Ceccacci (left) and astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitor data at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities. The Hubble Space Telescope, grappled by Space Shuttle Atlantis? remote manipulator system (RMS), is visible on one of the big screens.
STS-125 Flight Controllers on Console During HST Grapple - Orbit 1. Flight Director: Tony Ceccacci
2009-05-13
JSC2009-E-119746 (13 May 2009) --- Flight director Tony Ceccacci (left) and astronaut Dan Burbank, STS-125 spacecraft communicator (CAPCOM), monitor data at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day three activities. The Hubble Space Telescope, grappled by Space Shuttle Atlantis? remote manipulator system (RMS), is visible on one of the big screens.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) over Rogers Dry Lake during the second of five free flights carried out at the Dryden Flight Research Center, Edwards, California, as part of the Shuttle program's Approach and Landing Tests (ALT) in 1977. The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. A series of test flights during which Enterprise was taken aloft atop the SCA, but was not released, preceded the free flight tests. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...
NASA Technical Reports Server (NTRS)
Charles, John B.; Richard, Elizabeth E.
2010-01-01
There is currently too little reproducible data for a scientifically valid understanding of the initial responses of a diverse human population to weightlessness and other space flight factors. Astronauts on orbital space flights to date have been extremely healthy and fit, unlike the general human population. Data collection opportunities during the earliest phases of space flights to date, when the most dynamic responses may occur in response to abrupt transitions in acceleration loads, have been limited by operational restrictions on our ability to encumber the astronauts with even minimal monitoring instrumentation. The era of commercial personal suborbital space flights promises the availability of a large (perhaps hundreds per year), diverse population of potential participants with a vested interest in their own responses to space flight factors, and a number of flight providers interested in documenting and demonstrating the attractiveness and safety of the experience they are offering. Voluntary participation by even a fraction of the flying population in a uniform set of unobtrusive biomedical data collections would provide a database enabling statistical analyses of a variety of acute responses to a standardized space flight environment. This will benefit both the space life sciences discipline and the general state of human knowledge.
Effects of space flight on surface marker expression
NASA Astrophysics Data System (ADS)
Sonnenfeld, G.
1999-01-01
Space flight has been shown to affect expression of several cell surface markers. These markers play important roles in regulation of immune responses, including CD4 and CD8. The studies have involved flight of experimental animals and humans followed by analysis of tissue samples (blood in humans, rats and monkeys, spleen, thymus, lymph nodes and bone marrow in rodents). The degree and direction of the changes induced by space flight have been determined by the conditions of the flight. Also, there may be compartmentalization of the response of surface markers to space flight, with differences in the response of cells isolated from blood and local immune tissue. The same type of compartmentalization was also observed with cell adhesion molecules (integrins). In this case, the expression of integrins from lymph node cells differed from that of splenocytes isolated from rats immediately after space flight. Cell culture studies have indicated that there may be an inhibition in conversion of a precursor cell line to cells exhibiting mature macrophage characteristics after space flight, however, these experiments were limited as a result of technical difficulties. In general, it is clear that space flight results in alterations of cell surface markers. The biological significance of these changes remains to be established.
Industrial Engineering Lifts Off at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Barth, Tim
1998-01-01
When the National Aeronautics and Space Administration (NASA) began the Space Shuttle Program, it did not have an established industrial engineering (IE) capability for several probable reasons. For example, it was easy for some managers to dismiss IE principles as being inapplicable at NASA's John F. Kennedy Space Center (KSC). When NASA was formed by the National Aeronautics and Space Act of 1958, most industrial engineers worked in more traditional factory environments. The primary emphasis early in the shuttle program, and during previous human space flight programs such as Mercury and Apollo, was on technical accomplishments. Industrial engineering is sometimes difficult to explain in NASA's highly technical culture. IE is different in many ways from other engineering disciplines because it is devoted to process management and improvement, rather than product design. Images of clipboards and stopwatches still come to the minds of many people when the term industrial engineering is mentioned. The discipline of IE has only recently begun to gain acceptance and understanding in NASA. From an IE perspective today, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are among the most spectacular in the world: safe and successful launches of shuttles and expendable vehicles that carry tremendous payloads into space.
Long-Duration Space Flight Provokes Pathologic Q-Tc Interval Prolongation
NASA Technical Reports Server (NTRS)
D'Aunno, DOminick S.; Dougherty, Anne H.; DeBlock, Heidi F.; Meck, Janice V.
2002-01-01
Space flight has a profound influence on the cardiovascular and autonomic nervous systems. Alterations in baroreflex function, plasma catecholamine concentrations, and arterial pressure regulation have been observed. Changes in autonomic regulation of cardiac function may lead to serious rhythm disturbances. In fact, ventricular tachycardia has been reported during long-duration space flight. The study aim was to determine the effects of space flight on cardiac conduction. Methods and Results: Electrocardiograms (ECGs) and serum electrolytes were obtained before and after short-duration (SD) (4-16 days) and long-duration (LD) (4-6 months) missions. Holter recordings were obtained from 3 different subjects before, during and after a 4-month mission. P-R, R-R, and Q-T intervals were measured manually in a random, blinded fashion and Bazzet's formula used to correct the Q-T interval (Q-Tc). Space flight had no clinically significant effect on electrolyte concentrations. P-R and RR intervals were decreased after SD flight (p<0.05) and recovered 3 days after landing. In the same subjects, P-R and Q-Tc intervals were prolonged after LD flight (p<0.01). Clinically significant Q-Tc prolongation (>0.44 sec) occurred during the first month of flight and persisted until 3 days after landing (p<0.01). Conclusions - Space flight alters cardiac conduction with more ominous changes seen with LD missions. Alterations in autonomic tone may explain ECG changes associated with space flight. Primary cardiac changes may also contribute to the conduction changes with LD flight. Q-Tc prolongation may predispose astronauts to ventricular arrhythmias during and after long-duration space flight.
Effect of space flight on cytokine production
NASA Astrophysics Data System (ADS)
Sonnenfeld, Gerald
Space flight has been shown to alter many immunological responses. Among those affected are the production of cytokines, Cytokines are the messengers of the immune system that facilitate communication among cells that allow the interaction among cells leading to the development of immune responses. Included among the cytokines are the interferons, interleukins, and colony stimulating factors. Cytokines also facilitate communication between the immune system and other body systems, such as the neuroendocrine and musculoskeletal systems. Some cytokines also have direct protective effects on the host, such as interferon, which can inhibit the replication of viruses. Studies in both humans and animals indicate that models of space flight as well as actual space flight alter the production and action of cytokines. Included among these changes are altered interferon production, altered responsiveness of bone marrow cells to granulocyte/monocyte-colony stimulating factor, but no alteration in the production of interleukin-3. This suggests that there are selective effects of space flight on immune responses, i.e. not all cytokines are affected in the same fashion by space flight. Tissue culture studies also suggest that there may be direct effects of space flight on the cells responsible for cytokine production and action. The results of the above study indicate that the effects of space flight on cytokines may be a fundamental mechanism by which space flight not only affects immune responses, but also other biological systems of the human.
NASA Astrophysics Data System (ADS)
Nechitailo, Galina S.; Kuznetsov, Anatoli
The fundamental result of biological investigations with plants in space flight is an experimen-tal evidence of vegetative growth from seeds to harvest, with passing of all those stages of development when the plant can be used for food. The changes of plant observed after space flight mission gives a knowledge, which has to be used for precise selection of the plants for future space missions. The experimental investigation of the plants under space flight condi-tions showed that the germinations ability, rate of growth and biometric parameters decrease in comparison with Earth plants. The first two of these factors can be caused by the influence of specific cultivation in space, but the third factor is caused by the influence of space flight conditions, in particular, microgravity. The investigations of germination, plants deaths at var-ious stages of growth, survival probability, and recessive mutations indicated an impairment of genetic apparatus of meristem cells, which results the lethal effect at various stages of develop-ment. The density of paramagnetic centers in seeds was measured in order to determine the free radical concentration under space flight conditions. The concentration of paramagnetic centers is higher for plants with high density of these centers initially. Perhaps, the observed genetic effects in plants under space flight conditions are connected with free radicals. The changes are observed in cells of the plants. The changes included twist, contraction and deformation of the cell walls, curvature and loose arrangement of lamellae in chloroplasts, break of outer membrane of mitochondria and disappearance of mitochondria cristae. A large number of stach grains is observed in chloroplasts. The seeds of various plants were successfully used in space flights: welsh onion, wheat, peas, maize, barley, tomatoes, etc. Mostly stabe plants to space flight factors are found as peas, wheat and tomatoes. Ten generation of wheat and tomatoues exposed in space flights were grown on Earth after flight. The investigation of these plants is used for recommendations of next space flight missions on ISS including new sorts of plants.
X-38 - First Free Flight, March 12, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert in its first free flight at the Dryden Flight Research Center, Edwards, California. The flight took place March 12, 1998. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
X-38 Vehicle #132 in Flight Approaching Landing during First Free Flight
NASA Technical Reports Server (NTRS)
1999-01-01
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), maneuvers toward landing at the end of a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
X-38 Vehicle #132 in Flight with Deployed Parafoil during First Free Flight
NASA Technical Reports Server (NTRS)
1999-01-01
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), descends under its steerable parafoil on a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
NASA Technical Reports Server (NTRS)
Mckee, J. W.
1974-01-01
Experiments are performed during manned space flights in an attempt to acquire knowledge that can advance science and technology or that can be applied to operational techniques for future space flights. A description is given of the procedures that the personnel who are directly assigned to the function of crew support at the NASA Lyndon B. Johnson Space Center use to prepare for and to conduct experiments during space flight.
Research and Technology, 1987, Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Guerny, Gene (Editor); Moe, Karen (Editor); Paddack, Steven (Editor); Soffen, Gerald (Editor); Sullivan, Walter (Editor); Ballard, Jan (Editor)
1987-01-01
Research at Goddard Space Flight Center during 1987 is summarized. Topics addressed include space and earth sciences, technology, flight projects and mission definition studies, and institutional technology.
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2006-01-01
Since the end of the Apollo program in 1972, human space flight has been restricted to altitudes below 600 km above the Earth s surface with most missions restricted to a ceiling below 400 km. An investigation of the tracked satellite population transiting and influencing the human space flight regime during the past 11 years (equivalent to a full solar cycle) has recently been completed. The overall effects of satellite breakups and solar activity are typically less pronounced in the human space flight regime than other regions of low Earth orbit. As of January 2006 nearly 1500 tracked objects resided in or traversed the human space flight regime, although two-thirds of these objects were in orbits of moderate to high eccentricity, significantly reducing their effect on human space flight safety. During the period investigated, the spatial density of tracked objects in the 350-400 km altitude regime of the International Space Station demonstrated a steady decline, actually decreasing by 50% by the end of the period. On the other hand, the region immediately above 600 km experienced a significant increase in its population density. This regime is important for future risk assessments, since this region represents the reservoir of debris which will influence human space flight safety in the future. The paper seeks to put into sharper perspective the risks posed to human space flight by the tracked satellite population, as well as the influences of solar activity and the effects of compliance with orbital debris mitigation guidelines on human space flight missions. Finally, the methods and successes of characterizing the population of smaller debris at human space flight regimes are addressed.
Bisphosphonate ISS Flight Experiment
NASA Technical Reports Server (NTRS)
LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackleford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elizabeth; Ploutz-Snyder, Robert;
2014-01-01
The bisphosphonate study is a collaborative effort between the NASA and JAXA space agencies to investigate the potential for antiresorptive drugs to mitigate bone changes associated with long-duration spaceflight. Elevated bone resorption is a hallmark of human spaceflight and bed rest (common zero-G analog). We tested whether an antiresorptive drug in combination with in-flight exercise would ameliorate bone loss and hypercalcuria during longduration spaceflight. Measurements include DXA, QCT, pQCT, and urine and blood biomarkers. We have completed analysis of 7 crewmembers treated with alendronate during flight and the immediate postflight (R+<2 week) data collection in 5 of 10 controls without treatment. Both groups used the advanced resistive exercise device (ARED) during their missions. We previously reported the pre/postflight results of crew taking alendronate during flight (Osteoporosis Int. 24:2105-2114, 2013). The purpose of this report is to present the 12-month follow-up data in the treated astronauts and to compare these results with preliminary data from untreated crewmembers exercising with ARED (ARED control) or without ARED (Pre-ARED control). Results: the table presents DXA and QCT BMD expressed as percentage change from preflight in the control astronauts (18 Pre-ARED and the current 5 ARED-1-year data not yet available) and the 7 treated subjects. As shown previously the combination of exercise plus antiresorptive is effective in preventing bone loss during flight. Bone measures for treated subjects, 1 year after return from space remain at or near baseline values. Except in one region, the treated group maintained or gained bone 1 year after flight. Biomarker data are not currently available for either control group and therefore not presented. However, data from other studies with or without ARED show elevated bone resorption and urinary Ca excretion while bisphosphonate treated subjects show decreases during flight. Comparing the two control groups suggests significant but incomplete improvement in maintaining BMD using the newer exercise protocols compared to earlier resistive exercise protocols. Quantitative characterization of this improvement requires additional measurements in the ARED control group that we are currently collecting. In conclusion, these results indicate that an antiresorptive may be an effective adjunct to exercise during long-duration spaceflight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Former astronaut Frederick (Rick) Hauck acknowledges the warm response to his introduction as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russias Mir space station; the late Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Hauck flew on three Space Shuttle missions, including command of the redesigned spaceship on its critical first flight after the explosion of Challenger. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
2004-05-01
KENNEDY SPACE CENTER, FLA. -- Former astronaut Frederick (Rick) Hauck acknowledges the warm response to his introduction as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Hauck flew on three Space Shuttle missions, including command of the redesigned spaceship on its critical first flight after the explosion of Challenger. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
2004-05-01
KENNEDY SPACE CENTER, FLA. -- Former astronaut Ed Gibson acknowledges the warm response to his introduction as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Gibson orbited the Earth for 84 days during the final manned flight of the Skylab Space Station in 1973 and 1974. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
NASA Galactic Cosmic Radiation Environment Model: Badhwar - O'Neill (2014)
NASA Technical Reports Server (NTRS)
Golge, S.; O'Neill, P. M.; Slaba, T. C.
2015-01-01
The Badhwar-O'Neill (BON) Galactic Cosmic Ray (GCR) flux model has been used by NASA to certify microelectronic systems and in the analysis of radiation health risks for human space flight missions. Of special interest to NASA is the kinetic energy region below 4.0 GeV/n due to the fact that exposure from GCR behind shielding (e.g., inside a space vehicle) is heavily influenced by the GCR particles from this energy domain. The BON model numerically solves the Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration under the assumption of a spherically symmetric heliosphere. The model utilizes a comprehensive database of GCR measurements from various particle detectors to determine boundary conditions. By using an updated GCR database and improved model fit parameters, the new BON model (BON14) is significantly improved over the previous BON models for describing the GCR radiation environment of interest to human space flight.
NASA Galactic Cosmic Radiation Environment Model: Badhwar-O'Neill (2014)
NASA Technical Reports Server (NTRS)
O'Neill, P. M.; Golge, S.; Slaba, T. C.
2015-01-01
The Badhwar-O'Neill (BON) Galactic Cosmic Ray (GCR) flux model is used by NASA to certify microelectronic systems and in the analysis of radiation health risks for human space flight missions. Of special interest to NASA is the kinetic energy region below 4.0 GeV/n due to the fact that exposure from GCR behind shielding (e.g., inside a space vehicle) is heavily influenced by the GCR particles from this energy domain. The BON model numerically solves the Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration under the assumption of a spherically symmetric heliosphere. The model utilizes a GCR measurements database from various particle detectors to determine the boundary conditions. By using an updated GCR database and improved model fit parameters, the new BON model (BON14) is significantly improved over the previous BON models for describing the GCR radiation environment of interest to human space flight.
Use of System Safety Risk Assessments for the Space Shuttle Reusable Solid Rocket Motor (RSRM)
NASA Technical Reports Server (NTRS)
Greenhalgh, Phillip O.; McCool, Alex (Technical Monitor)
2001-01-01
This paper discusses the System Safety approach used to assess risk for the Space Shuttle Reusable Solid Rocket Motor (RSRM). Previous to the first RSRM flight in the fall of 1988, all systems were analyzed extensively to assure that hazards were identified, assessed and that the baseline risk was understood and appropriately communicated. Since the original RSRM baseline was established, Thiokol and NASA have implemented a number of initiatives that have further improved the RSRM. The robust design, completion of rigorous testing and flight success of the RSRM has resulted in a wise reluctance to make changes. One of the primary assessments required to accompany the documentation of each proposed change and aid in the decision making process is a risk assessment. Documentation supporting proposed changes, including the risk assessments from System Safety, are reviewed and assessed by Thiokol and NASA technical management. After thorough consideration, approved changes are implemented adding improvements to and reducing risk of the Space Shuttle RSRM.
Compact time- and space-integrating SAR processor: performance analysis
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.; Christensen, Marc P.
1995-06-01
Progress made during the previous 12 months toward the fabrication and test of a flight demonstration prototype of the acousto-optic time- and space-integrating real-time SAR image formation processor is reported. Compact, rugged, and low-power analog optical signal processing techniques are used for the most computationally taxing portions of the SAR imaging problem to overcome the size and power consumption limitations of electronic approaches. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported for this year include tests of a laboratory version of the RAPID SAR concept on phase history data generated from real SAR high-resolution imagery; a description of the new compact 2D acousto-optic scanner that has a 2D space bandwidth product approaching 106 sports, specified and procured for NEOS Technologies during the last year; and a design and layout of the optical module portion of the flight-worthy prototype.
14 CFR 121.425 - Flight engineers: Initial and transition flight training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.425 - Flight engineers: Initial and transition flight training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.426 - Flight navigators: Initial and transition flight training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.426 - Flight navigators: Initial and transition flight training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.425 - Flight engineers: Initial and transition flight training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.426 - Flight navigators: Initial and transition flight training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.426 - Flight navigators: Initial and transition flight training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.425 - Flight engineers: Initial and transition flight training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.425 - Flight engineers: Initial and transition flight training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...
Long-duration space flight and bed rest effects on testosterone and other steroids.
Smith, Scott M; Heer, Martina; Wang, Zuwei; Huntoon, Carolyn L; Zwart, Sara R
2012-01-01
Limited data suggest that testosterone is decreased during space flight, which could contribute to bone and muscle loss. The main objective was to assess testosterone and hormone status in long- and short-duration space flight and bed rest environments and to determine relationships with other physiological systems, including bone and muscle. Blood and urine samples were collected before, during, and after long-duration space flight. Samples were also collected before and after 12- to 14-d missions and from participants in 30- to 90-d bed rest studies. Space flight studies were conducted on the International Space Station and before and after Space Shuttle missions. Bed rest studies were conducted in a clinical research center setting. Data from Skylab missions are also presented. All of the participants were male, and they included 15 long-duration and nine short-duration mission crew members and 30 bed rest subjects. Serum total, free, and bioavailable testosterone were measured along with serum and urinary cortisol, serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and SHBG. Total, free, and bioavailable testosterone was not changed during long-duration space flight but were decreased (P < 0.01) on landing day after these flights and after short-duration space flight. There were no changes in other hormones measured. Testosterone concentrations dropped before and soon after bed rest, but bed rest itself had no effect on testosterone. There was no evidence for decrements in testosterone during long-duration space flight or bed rest.
Esrange Space Center, a Gate to Space
NASA Astrophysics Data System (ADS)
Widell, Ola
Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.
Research and technology, 1984: Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Moorehead, T. W. (Editor)
1984-01-01
The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.
Space Flight: The First 30 Years
NASA Technical Reports Server (NTRS)
1991-01-01
A history of space flight from Project Mercury to the Space Shuttle is told from the perspective of NASA flight programs. Details are given on Mercury missions, Gemini missions, Apollo missions, Skylab missions, the Apollo-Soyuz Test Project, and the Space Shuttle missions.
Enterprise Separates from 747 SCA for First Tailcone off Free Flight
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise rises from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preparation for the first space mission with the orbiter Columbia in April 1981. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
Effects of space flight and IGF-1 on immune function
NASA Astrophysics Data System (ADS)
1999-01-01
We tested the hypothesis that insulin-like growth factor-1 (IGF-1) would ameliorate space flight-induced effects on the immune system. Twelve male, Sprague-Dawley rats, surgically implanted with mini osmotic pumps, were subjected to space flight for 10 days on STS-77. Six rats received 10 mg/kg/day of IGF-1 and 6 rats received saline. Flight animals had a lymphocytopenia and granulocytosis which were reversed by IGF-1. Flight animals had significantly higher corticosterone levels than ground controls but IGF-1 did not impact this stress hormone. Therefore, the reversed granulocytosis did not correlate with serum corticosterone. Space flight and IGF-1 also combined to induce a monocytopenia that was not evident in ground control animals treated with IGF-1 or in animals subjected to space flight but given physiological saline. There was a significant increase in spleen weights in vivarium animals treated with IGF-1, however, this change did not occur in flight animals. We observed reduced agonist-induced lymph node cell proliferation by cells from flight animals compared to ground controls. The reduced proliferation was not augmented by IGF-1 treatment. There was enhanced secretion of TNF, IL-6 and NO by flight-animal peritoneal macrophages compared to vivarium controls, however, O2- secretion was not affected. These data suggest that IGF-1 can ameliorate some of the effects of space flight but that space flight can also impact the normal response to IGF-1.
14 CFR 460.17 - Verification program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...
14 CFR 460.17 - Verification program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...
14 CFR 460.17 - Verification program.
Code of Federal Regulations, 2012 CFR
2012-01-01
... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...
14 CFR 460.17 - Verification program.
Code of Federal Regulations, 2013 CFR
2013-01-01
... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...
14 CFR 460.17 - Verification program.
Code of Federal Regulations, 2014 CFR
2014-01-01
... software in an operational flight environment before allowing any space flight participant on board during a flight. Verification must include flight testing. ... TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with Crew § 460.17 Verification...
NASA Technical Reports Server (NTRS)
Fischer, G. L.; Daniels, J. C.; Levin, W. C.; Kimzey, S. L.; Cobb, E. K.; Ritzmann, S. E.
1972-01-01
The present studies were undertaken to assess the effects of the environment of space flights on the cellular division of the human immune system. Peripheral blood absolute lymphocyte counts were determined at various preflight and postflight intervals for the 21 crewmen of Apollo Missions 7-13. Mean lymphocyte numbers tended to exhibit a delayed significant but fluctuating increase shortly after recovery, although a variety of responses was seen in individual astronauts. The in vitro reactivity of lymphocytes, reflected by RNA and DNA synthesis rates by unstimulated and PHA-stimulated lymphocytes tissue-cultured preflight and postflight from the same participants, was found to remain within previously established normal ranges. These results indicate that functional integrity of cellular immune potential as reflected by in vitro techniques is maintained during this spaceflight experience.
Plasma arc welding repair of space flight hardware
NASA Technical Reports Server (NTRS)
Hoffman, David S.
1993-01-01
Repair and refurbishment of flight and test hardware can extend the useful life of very expensive components. A technique to weld repair the main combustion chamber of space shuttle main engines has been developed. The technique uses the plasma arc welding process and active cooling to seal cracks and pinholes in the hot-gas wall of the main combustion chamber liner. The liner hot-gas wall is made of NARloyZ, a copper alloy previously thought to be unweldable using conventional arc welding processes. The process must provide extensive heat input to melt the high conductivity NARloyZ while protecting the delicate structure of the surrounding material. The higher energy density of the plasma arc process provides the necessary heat input while active water cooling protects the surrounding structure. The welding process is precisely controlled using a computerized robotic welding system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Flight rules. 437.39 Section 437.39 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Documentation § 437.39 Flight rules. An applicant must provide flight rules as required by § 437.71. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight rules. 437.39 Section 437.39 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Documentation § 437.39 Flight rules. An applicant must provide flight rules as required by § 437.71. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight rules. 437.39 Section 437.39 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Documentation § 437.39 Flight rules. An applicant must provide flight rules as required by § 437.71. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Flight rules. 437.39 Section 437.39 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Documentation § 437.39 Flight rules. An applicant must provide flight rules as required by § 437.71. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Flight rules. 437.39 Section 437.39 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Documentation § 437.39 Flight rules. An applicant must provide flight rules as required by § 437.71. ...
NASA Technical Reports Server (NTRS)
Sitterley, T. E.
1974-01-01
The effectivess of an improved static retraining method was evaluated for a simulated space vehicle approach and landing under instrument and visual flight conditions. Experienced pilots were trained and then tested after 4 months without flying to compare their performance using the improved method with three methods previously evaluated. Use of the improved static retraining method resulted in no practical or significant skill degradation and was found to be even more effective than methods using a dynamic presentation of visual cues. The results suggested that properly structured open loop methods of flight control task retraining are feasible.
Genitourinary issues during spaceflight: a review.
Jones, J A; Jennings, R; Pietryzk, R; Ciftcioglu, N; Stepaniak, P
2005-12-01
The genitourinary (GU) system is not uncommonly affected during previous spaceflights. GU issues that have been observed during spaceflight include urinary calculi, infections, retention, waste management, and reproductive. In-flight countermeasures for each of these issues are being developed to reduce the likelihood of adverse sequelae, due to GU issues during exploration-class spaceflight, to begin in 2018 with flights back to the Moon and on to Mars, according to the February 2004 Presendent's Vision for US Space Exploration. With implementation of a robust countermeasures program, GU issues should not have a significant threat for mission impact during future spaceflights.
Flight Validation of On-Demand Operations: The Deep Space One Beacon Monitor Operations Experiment
NASA Technical Reports Server (NTRS)
Wyatt, Jay; Sherwood, Rob; Sue, Miles; Szijjarto, John
2000-01-01
After a brief overview of the operational concept, this paper will provide a detailed description of the _as-flown_ flight software components, the DS1 experiment plan, and experiment results to date. Special emphasis will be given to experiment results and lessons learned since the basic system design has been previously reported. Mission scenarios where beacon operations is highly applicable will be described. Detailed cost savings estimates for a sample science mission will be provided as will cumulative savings that are possible over the next fifteen years of NASA missions.
NASA Astrophysics Data System (ADS)
Traon, A. Pavy-le; Roussel, B.
1993-09-01
Manned space flights have shown it is possible to sleep in microgravity. However, some sleep disturbances have been reported which influence performance of the crew and safety of space flight. This paper reviews the main studies of in-flight sleep in animal and man. Most disturbances are related to phase lags due to operational requirements. Factors which can disturb in-flight sleep are analysed: • environmental factors. Some of them are secondary to space flight ergonomics. Conversely, effects of microgravity on light-dark alternance are less known and lead to interesting problems of fundamental research, • psychological factors, especially during long duration flights.
NASA Astrophysics Data System (ADS)
Vorobiev, D.; Maillet, A.; Fortrat, J. O.; Pastushkova, L.; Allevard, A. M.; Sigaudo, D.; Cartier, R.; Patricot, M.; Andre-Deshays, C.; Kotovskaya, A.; Grigoriev, A.; Gharib, C.; Gauquelin, G.
During the Altair MIR' 93 mission we studied several parameters involved in blood volume regulation. The experiment was done on two cosmonauts before (B-60, B-30), during (D6, D12, D18 for French and D7, D12, D17 for Russian) and after the flight (R+1, R+3 and R+7). Space flight durations were different for two cosmonauts: for the Russian the flight duration was 198 days and for the French 21 days. On board the MIR station only urinary (volume and electrolytes, atrial natriuretic peptide (ANP), cyclic guanosine monophosphate (cGMP) and catecholamines) and salivary (cGMP and cortisol) samples were collected, centrifuged and stored in freezer. Lithium was used as a tracer to know exactly the 24 h urine output (CNES urine collection Kit). Before and after flight, blood was drawn with an epicite needle and vacutainer system for hormonal assays (renin, antidiuretic hormone, cGMP, ANP and aldosterone) in two positions: after 30 min rest in upright seated position and after 90 min of supine position. Salivary samples were collected simultaneously. During flight a decrease of diuresis and ANP and an increase of osmolality were found. No modifications of hematocrit, but an increase of salivary cGMP and cortisol were also observed. The decrease of urinary ANP is in favor of hypovolemia as described in previous flights. The postflight examinations revealed changes in fluid-electrolyte metabolism which indicate a hypohydration status and a stimulation of hormonal system responsible for water and electrolyte retention in order to readapt to the normal gravity.
1997-07-01
KENNEDY SPACE CENTER, Fla. -- The Space Shuttle Columbia soars from Launch Pad 39A at 2:02 p.m. EDT July 1 to begin the 16-day STS-94 Microgravity Science Laboratory-1 (MSL-1) mission. The launch window was opened 47 minutes earlier than the originally scheduled time of 2:37 p.m. to improve the opportunity to lift off before Florida summer rain showers reached the space center. The crew members are Mission Commander James D. Halsell Jr.; Pilot Susan L. Still; Payload Commander Janice Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the space flight, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments. Also onboard is the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia’s payload bay. These payloads had previously flown on the STS-83 mission in April, which was cut short after nearly four days because of indications of a faulty fuel cell. STS-94 is a reflight of that mission
1997-07-01
KENNEDY SPACE CENTER, Fla. -- The Space Shuttle Columbia soars from Launch Pad 39A at 2:02 p.m. EDT July 1 to begin the 16-day STS-94 Microgravity Science Laboratory-1 (MSL-1) mission. The launch window was opened 47 minutes earlier than the originally scheduled time of 2:37 p.m. to improve the opportunity to lift off before Florida summer rain showers reached the space center. The crew members are Mission Commander James D. Halsell Jr.; Pilot Susan L. Still; Payload Commander Janice Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the space flight, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments. Also onboard is the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia’s payload bay. These payloads had previously flown on the STS-83 mission in April, which was cut short after nearly four days because of indications of a faulty fuel cell. STS-94 is a reflight of that mission
1997-07-01
KENNEDY SPACE CENTER, Fla. -- The Space Shuttle Columbia soars from Launch Pad 39A at 2:02 p.m. EDT July 1 to begin the 16-day STS-94 Microgravity Science Laboratory-1 (MSL-1) mission. The launch window was opened 47 minutes earlier than the originally scheduled time of 2:37 p.m. to improve the opportunity to lift off before Florida summer rain showers reached the space center. The crew members are Mission Commander James D. Halsell Jr.; Pilot Susan L. Still; Payload Commander Janice Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the space flight, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments. Also onboard is the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia’s payload bay. These payloads had previously flown on the STS-83 mission in April, which was cut short after nearly four days because of indications of a faulty fuel cell. STS-94 is a reflight of that mission
1997-07-01
KENNEDY SPACE CENTER, Fla. -- The Space Shuttle Columbia soars from Launch Pad 39A at 2:02 p.m. EDT July 1 to begin the 16-day STS-94 Microgravity Science Laboratory-1 (MSL-1) mission. The launch window was opened 47 minutes earlier than the originally scheduled time of 2:37 p.m. to improve the opportunity to lift off before Florida summer rain showers reached the space center. The crew members are Mission Commander James D. Halsell Jr.; Pilot Susan L. Still; Payload Commander Janice Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the space flight, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments. Also onboard is the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia’s payload bay. These payloads had previously flown on the STS-83 mission in April, which was cut short after nearly four days because of indications of a faulty fuel cell. STS-94 is a reflight of that mission
1997-07-01
KENNEDY SPACE CENTER, Fla. -- The Space Shuttle Columbia soars from Launch Pad 39A at 2:02 p.m. EDT July 1 to begin the 16-day STS-94 Microgravity Science Laboratory-1 (MSL-1) mission. The launch window was opened 47 minutes earlier than the originally scheduled time of 2:37 p.m. to improve the opportunity to lift off before Florida summer rain showers reached the space center. The crew members are Mission Commander James D. Halsell Jr.; Pilot Susan L. Still; Payload Commander Janice Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the space flight, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments. Also onboard is the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia’s payload bay. These payloads had previously flown on the STS-83 mission in April, which was cut short after nearly four days because of indications of a faulty fuel cell. STS-94 is a reflight of that mission
1997-07-01
KENNEDY SPACE CENTER, Fla. -- The Space Shuttle Columbia soars from Launch Pad 39A at 2:02 p.m. EDT July 1 to begin the 16-day STS-94 Microgravity Science Laboratory-1 (MSL-1) mission. The launch window was opened 47 minutes earlier than the originally scheduled time of 2:37 p.m. to improve the opportunity to lift off before Florida summer rain showers reached the space center. The crew members are Mission Commander James D. Halsell Jr.; Pilot Susan L. Still; Payload Commander Janice Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the space flight, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments. Also onboard is the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia’s payload bay. These payloads had previously flown on the STS-83 mission in April, which was cut short after nearly four days because of indications of a faulty fuel cell. STS-94 is a reflight of that mission
1997-07-01
KENNEDY SPACE CENTER, Fla. -- The Space Shuttle Columbia soars from Launch Pad 39A at 2:02 p.m. EDT July 1 to begin the 16-day STS-94 Microgravity Science Laboratory-1 (MSL-1) mission. The launch window was opened 47 minutes earlier than the originally scheduled time of 2:37 p.m. to improve the opportunity to lift off before Florida summer rain showers reached the space center. The crew members are Mission Commander James D. Halsell Jr.; Pilot Susan L. Still; Payload Commander Janice Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the space flight, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments. Also onboard is the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia’s payload bay. These payloads had previously flown on the STS-83 mission in April, which was cut short after nearly four days because of indications of a faulty fuel cell. STS-94 is a reflight of that mission
1997-07-01
KENNEDY SPACE CENTER, Fla. -- The Space Shuttle Columbia soars from Launch Pad 39A at 2:02 p.m. EDT July 1 to begin the 16-day STS-94 Microgravity Science Laboratory-1 (MSL-1) mission. The launch window was opened 47 minutes earlier than the originally scheduled time of 2:37 p.m. to improve the opportunity to lift off before Florida summer rain showers reached the space center. The crew members are Mission Commander James D. Halsell Jr.; Pilot Susan L. Still; Payload Commander Janice Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the space flight, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments. Also onboard is the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia’s payload bay. These payloads had previously flown on the STS-83 mission in April, which was cut short after nearly four days because of indications of a faulty fuel cell. STS-94 is a reflight of that mission
Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance
2009-01-01
The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.
X-38: Artist Concept of Re-Entering Earth's Atmosphere
NASA Technical Reports Server (NTRS)
1997-01-01
This is an artist's depiction of NASA's proposed Crew Return Vehicle (CRV) re-entering the earth's atmosphere. A team of NASA researchers began free flight tests of the X-38, a technology demonstrator for the CRV, at NASA's Dryden Flight Research Center, Edwards, California, in 1998. The CRV is being designed as a 'lifeboat' for the International Space Station The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
Validation of the Pulmonary Function System for Use on the International Space Station
NASA Technical Reports Server (NTRS)
McCleary, Frank A.; Moore, Alan D., Jr.; Hagan, R. Donald
2007-01-01
Aerobic deconditioning occurs during long duration space flight despite the use of exercise countermeasures (Convertino, 1996). As a part of International Space Station (ISS) medical operations, periodic tests designed to estimate aerobic capacity are performed to track changes in aerobic fitness and to determine the effectiveness of exercise countermeasures. These tests are performed prior to, during, and after missions of greater than 30 days in duration. Crewmembers selected for missions aboard the ISS perform a graded exercise test on a cycle ergometer approximately 270 days prior to their scheduled launch date in order to measure peak oxygen consumption (VO2PK) and peak heart rate (HRpk). Approximately 30 to 45 days prior to launch, crewmembers perform a submaximal cycle ergometer test at work rates set to elicit 25, 50 and 75% of their pre-flight VO2PK. This test, known as the Periodic Fitness Evaluation (PFE), serves as a baseline measure to which subsequent in-and post-flight exercise tests are compared. While onboard the ISS, crewmembers are normally scheduled to perform the PFE beginning with flight day (FD) 14 and every 30 days thereafter. The PFE is also conducted 5 and 30 days following flight. Using PFE data, aerobic fitness is estimated by quantifying the VO2 vs. HR relationship using linear regression and calculating the VO2 that would occur at the crewmember s previously measured HRpk. Currently, for data collected during flight, this technique assumes that the pre- vs. in-flight oxygen consumption per given cycle workload is similar. However, the validity of this assumption is based upon a sparse amount of data collected during the Skylab era (Michel, et al. 1977). The method of using heart rate and cycle ergometer work rates has been used to estimate aerobic fitness in normal gravity (Astrand and Ryhming, 1954; Lee, 1993). Due to spaceflight induced physiological alterations, such as shifts in extracellular fluid (e.g. plasma) volume, this method may not be valid during space flight. In addition, the ergometer onboard ISS is vibration-isolated and moves with the astronaut s application of force into the pedals. The effect of this movement on the VO2 of cycle exercise on ISS has not been quantified.
14 CFR 1214.115 - Standard services.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: commander, pilot and three mission specialists. (e) Orbiter flight planning services. (f) One day of... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.115 Standard...
STS-80 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1997-01-01
The STS-80 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the eightieth flight of the Space Shuttle Program, the fifty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Columbia (OV-102).
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121510 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121511 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121512 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
STS-125 Entry flight controllers on console with Flight Director Norman Knight
2009-05-24
JSC2009-E-121509 (24 May 2009) --- Flight controllers in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center watch the big screens during the landing of Space Shuttle Atlantis (STS-125) at Edwards Air Force Base in California.
Space shuttle orbiter test flight series
NASA Technical Reports Server (NTRS)
Garrett, D.; Gordon, R.; Jackson, R. B.
1977-01-01
The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.
A Full-Size Mockup of the Cabin for the Crew Return Vehicle (CRV) for the International Space Statio
NASA Technical Reports Server (NTRS)
1999-01-01
This photo, taken at NASA's Johnson Space Center, Houston, Texas, shows a full-size mockup of the cabin for the Crew Return Vehicle (CRV) for the International Space Station The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
The immune system in space, including Earth-based benefits of space-based research.
Sonnenfeld, Gerald
2005-08-01
Exposure to space flight conditions has been shown to result in alterations in immune responses. Changes in immune responses of humans and experimental animals have been shown to be altered during and after space flight of humans and experimental animals or cell cultures of lymphoid cells. Exposure of subjects to ground-based models of space flight conditions, such as hindlimb unloading of rodents or chronic bed rest of humans, has also resulted in changes in the immune system. The relationship of these changes to compromised resistance to infection or tumors in space flight has not been fully established, but results from model systems suggest that alterations in the immune system that occur in space flight conditions may be related to decreases in resistance to infection. The establishment of such a relationship could lead to the development of countermeasures that could prevent or ameliorate any compromises in resistance to infection resulting from exposure to space flight conditions. An understanding of the mechanisms of space flight conditions effects on the immune response and development of countermeasures to prevent them could contribute to the development of treatments for compromised immunity on earth.
Space Launch System Implementation of Adaptive Augmenting Control
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Wall, John H.; Orr, Jeb S.
2014-01-01
Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to robustly demonstrate stable and high performance flight. On its development path to preliminary design review (PDR), the stability of the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant dynamics. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an adaptive augmenting control (AAC) algorithm previously presented by Orr and VanZwieten, has been shown to extend the envelope of failures and flight anomalies for which the SLS control system can accommodate while maintaining a direct link to flight control stability criteria (e.g. gain & phase margin). In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the SLS digital 3-axis autopilot, including existing load-relief elements, and necessary steps for integration with the production flight software prototype have been implemented. Several updates to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.
NASA Technical Reports Server (NTRS)
Woolford, Barbara; Mount, Frances
2004-01-01
The first human space flight, in the early 1960s, was aimed primarily at determining whether humans could indeed survive and function in micro-gravity. Would eating and sleeping be possible? What mental and physical tasks could be performed? Subsequent programs increased the complexity of the tasks the crew performed. Table 1 summarizes the history of U.S. space flight, showing the projects, their dates, crew sizes, and mission durations. With over forty years of experience with human space flight, the emphasis now is on how to design space vehicles, habitats, and missions to produce the greatest returns to human knowledge. What are the roles of the humans in space flight in low earth orbit, on the moon, and in exploring Mars?
Metabolic energy required for flight
NASA Astrophysics Data System (ADS)
Lane, H. W.; Gretebeck, R. J.
1994-11-01
This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in space and their roles in energy metabolism during space flight.
Metabolic energy required for flight
NASA Technical Reports Server (NTRS)
Lane, H. W.; Gretebeck, R. J.
1994-01-01
This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in spaced and their roles in energy metabolism during space flight.
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
Pulmonary function evaluation during and following Skylab space flights
NASA Technical Reports Server (NTRS)
Sawin, C. F.; Nicogossian, A. E.; Schachter, A. P.; Rummel, J. A.; Michel, E. L.
1974-01-01
Previous experience during the Apollo postflight exercise testing indicated no major changes in pulmonary function. Although pulmonary function has been studied in detail following exposure to hypoxic and hyperoxic environments, few studies have dealt with normoxic environments at reduced total pressure as encountered during the Skylab missions. Forced vital capacity was measured during the preflight and postflight periods of the Skylab 2 mission. Initial in-flight measurements of vital capacity were obtained during the last two weeks of the second manned mission (Skylab 3). Comprehensive pulmonary function screening was accomplished during the Skylab 4 mission. The primary measurements made during Skylab 4 testing included residual volume determination, closing volume, vital capacity, and forced vital capacity and its derivatives. In addition, comprehensive in-flight vital capacity measurements were made during the Skylab 4 mission. Vital capacity was decreased slightly during flight in all Skylab 4 crewmen. No major preflight to postflight changes were observed in the other parameters.
Hu, Cong; Li, Zhi; Zhou, Tian; Zhu, Aijun; Xu, Chuanpei
2016-01-01
We propose a new meta-heuristic algorithm named Levy flights multi-verse optimizer (LFMVO), which incorporates Levy flights into multi-verse optimizer (MVO) algorithm to solve numerical and engineering optimization problems. The Original MVO easily falls into stagnation when wormholes stochastically re-span a number of universes (solutions) around the best universe achieved over the course of iterations. Since Levy flights are superior in exploring unknown, large-scale search space, they are integrated into the previous best universe to force MVO out of stagnation. We test this method on three sets of 23 well-known benchmark test functions and an NP complete problem of test scheduling for Network-on-Chip (NoC). Experimental results prove that the proposed LFMVO is more competitive than its peers in both the quality of the resulting solutions and convergence speed.
Hu, Cong; Li, Zhi; Zhou, Tian; Zhu, Aijun; Xu, Chuanpei
2016-01-01
We propose a new meta-heuristic algorithm named Levy flights multi-verse optimizer (LFMVO), which incorporates Levy flights into multi-verse optimizer (MVO) algorithm to solve numerical and engineering optimization problems. The Original MVO easily falls into stagnation when wormholes stochastically re-span a number of universes (solutions) around the best universe achieved over the course of iterations. Since Levy flights are superior in exploring unknown, large-scale search space, they are integrated into the previous best universe to force MVO out of stagnation. We test this method on three sets of 23 well-known benchmark test functions and an NP complete problem of test scheduling for Network-on-Chip (NoC). Experimental results prove that the proposed LFMVO is more competitive than its peers in both the quality of the resulting solutions and convergence speed. PMID:27926946
[Morphohistochemical study of skeletal muscles in rats after experimental flight on "Kosmos-1887"].
Il'ina-Kakueva, E I
1990-01-01
Morphometric and histochemical methods were used to examine the soleus, gastrocnemius (medial portion), quadriceps femoris (central portion) and biceps brachii muscles of Wistar SPF rats two days after the 13-day flight on Cosmos-1887. It was found that significant atrophy developed only in the soleus muscle. The space flight did not change the percentage content of slow (type I) and fast (type II) fibers in fast twitch muscles. During two days at 1 g the slow soleus muscle developed substantial circulation disorders, which led to interstitial edema and necrotic changes. The gastrocnemius muscle showed small foci containing necrotic myofibers. Two days after recovery no glycogen aggregates were seen in myofibers, which were previously observed in other rats examined 4--8 hours after flight. An initial stage of muscle readaptation to 1 g occurred, when NAD.H2-dehydrogenase activity was decreased.
Expedition_55_Education_In-flight_Interview_with Boeing_Genes_in Space_2018_130_1615_651411
2018-05-10
SPACE STATION CREW MEMBERS DISCUSS RESEARCH WITH TEXAS STUDENTS------- Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Scott Tingle of NASA discussed research on the orbital laboratory during an in-flight educational event May 10 with students gathered at Space Center Houston. The in-flight event centered around the Boeing-sponsored Genes in Space experiment which enlisted students in grades 7-12 to submit various ideas for DNA research with an eye to future implications for deep space exploration.
[Ultraviolet radiation and long term space flight].
Wu, H B; Su, S N; Ba, F S
2000-08-01
With the prolongation of space flight, influences of various aerospace environmental factors on the astronauts become more and more severe, while ultraviolet radiation is lacking. Some studies indicated that low doses of ultraviolet rays are useful and essential for human body. In space flight, ultraviolet rays can improve the hygienic condition in the space cabin, enhance astronaut's working ability and resistance to unfavorable factors, prevent mineral metabolic disorders, cure purulent skin diseases and deallergize the allergens. So in long-term space flight, moderate amount of ultraviolet rays in the space cabin would be beneficial.
Rocket flight of a multilayer coated high-density EUV toroidal grating
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Davila, Joseph M.
1992-01-01
A multilayer coated high density toroidal grating was flown on a sounding rocket experiment in the Solar EUV Rocket Telescope and Spectrograph (SERTS) instrument. To our knowledge this is the first space flight of a multilayer coated grating. Pre-flight performance evaluation showed that the application of a 10-layer Ir/Si multilayer coating to the 3600 l/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength around 30 nm in first order over the standard gold coating, with a measured EUV efficiency that peaked at 3.3 percent. In addition, the grating's spectral resolution of better than 5000 was maintained. The region of enhanced grating efficiency due to the multilayer coating is clearly evident in the flight data. Within the bandpass of the multilayer coating, the recorded film densities were roughly equivalent to those obtained with a factor of six longer exposure on the previous flight of the SERTS instrument.
2004-05-01
KENNEDY SPACE CENTER, FLA. -- Former astronaut Jim Lovell acknowledges the applause as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Lovell piloted Gemini 7, commanded Gemini 12, orbited the Moon on Apollo 8 and commanded the aborted Apollo 13 moon flight. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
Space 2100: A Shared Visioning Exercise for the Future Space Economy
NASA Astrophysics Data System (ADS)
Ferguson, C. K.; Nall, M. E.; Scott, D. W.; Tinker, M. L.; Oneil, D.; Sivak, A. D.; Wright, G. M.; Eberly, E. A.; Ramdall, C.
In 2013, NASA's Marshall Space Flight Center chartered a diverse team for a six-week "sprint" to envision how Earth, space, and public/private entities might be operating in the year 2100. This sprint intended to inspire innovation, creativity and improved teamwork between all levels of employees, in addition to pulling diverse ideas about exploration from organizations that are not traditionally included in technology development at NASA. The team was named Space 2100. In 2014, the team ran a sprint based on the previous outcomes to a) develop detailed estimates of operations and challenges of space activities in the vicinity of the Earth and Moon in the year 2050, b) identify evolutionary steps to make this vision a reality, and c) recommend actions to enable those steps. In 2015, the team continued building on previous years by identifying technologies and approaches to reduce and ultimately eliminate the need for resupply from Earth, enabling self-sufficient exploration throughout the solar system. This exercise identified 30 technologies as potential critical paths to Earth independency. Space 2100's conclusions and recommendations are not part of NASA's strategic planning or policy. This paper explores the three Space 2100 sprints and their implications for the future of space exploration.
NASA Crew Launch Vehicle Flight Test Options
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Davis, Stephan R.; Robonson, Kimberly; Tuma, Margaret L.; Sullivan, Greg
2006-01-01
Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented.
14 CFR 1214.301 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... mission specialist, when designated for a flight, will participate in the planning of the mission and will... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space... goals. A single mission might require more than one flight or more than one mission might be...
14 CFR § 1214.301 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... specialist will fly. The mission specialist, when designated for a flight, will participate in the planning....301 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload... in space to achieve program goals. A single mission might require more than one flight or more than...
14 CFR 1214.301 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... mission specialist, when designated for a flight, will participate in the planning of the mission and will... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space... goals. A single mission might require more than one flight or more than one mission might be...
14 CFR 1214.301 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... mission specialist, when designated for a flight, will participate in the planning of the mission and will... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space... goals. A single mission might require more than one flight or more than one mission might be...
Recent findings in cardiovascular physiology with space travel.
Hughson, Richard L
2009-10-01
The cardiovascular system undergoes major changes in stress with space flight primarily related to the elimination of the head-to-foot gravitational force. A major observation has been that the central venous pressure is not elevated early in space flight yet stroke volume is increased at least early in flight. Recent observations demonstrate that heart rate remains lower during the normal daily activities of space flight compared to Earth-based conditions. Structural and functional adaptations occur in the vascular system that could result in impaired response with demands of physical exertion and return to Earth. Cardiac muscle mass is reduced after flight and contractile function may be altered. Regular and specific countermeasures are essential to maintain cardiovascular health during long-duration space flight.
Biotechnological experiments in space flights on board of space stations
NASA Astrophysics Data System (ADS)
Nechitailo, Galina S.
2012-07-01
Space flight conditions are stressful for any plant and cause structural-functional transition due to mobiliation of adaptivity. In space flight experiments with pea tissue, wheat and arabidopsis we found anatomical-morphological transformations and biochemistry of plants. In following experiments, tissue of stevia (Stevia rebaudiana), potato (Solanum tuberosum), callus culture and culture and bulbs of suffron (Crocus sativus), callus culture of ginseng (Panax ginseng) were investigated. Experiments with stevia carried out in special chambers. The duration of experiment was 8-14 days. Board lamp was used for illumination of the plants. After experiment the plants grew in the same chamber and after 50 days the plants were moved into artificial ionexchange soil. The biochemical analysis of plants was done. The total concentration of glycozides and ratio of stevioside and rebauside were found different in space and ground plants. In following generations of stevia after flight the total concentration of stevioside and rebauside remains higher than in ground plants. Experiments with callus culture of suffron carried out in tubes. Duration of space flight experiment was 8-167 days. Board lamp was used for illumination of the plants. We found picrocitina pigment in the space plants but not in ground plants. Tissue culture of ginseng was grown in special container in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 167 days. Biological activity of space flight culutre was in 5 times higher than the ground culture. This difference was observed after recultivation of space flight samples on Earth during year after flight. Callus tissue of potato was grown in tubes in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 14 days. Concentration of regenerates in flight samples was in 5 times higher than in ground samples. The space flight experiments show, that microgravity and other factors of space flight change direction of biological processes, and show a possibility to get special kinds of bioproducts with new properties.
NASA Wallops Rocket Launch Lights up the Mid-Atlantic Coast
2017-06-29
July 4 fireworks came early when a NASA Terrier-Improved Malemute sounding rocket was successfully launched at 4:25 a.m., Thursday, June 29, from the agency’s Wallops Flight Facility in Virginia. During the 8-minute flight, 10 canisters about the size of a soft drink can were ejected in space, 6 to 12 miles away from the 670-pound main payload. The canisters deployed blue-green and red vapor that formed artificial clouds visible from New York to North Carolina. During an ionosphere or aurora science mission, these clouds, or vapor tracers, allow scientists on the ground to visually track particle motions in space. The development of the multi-canister ampoule ejection system will allow scientists to gather information over a much larger area than previously possible when deploying the tracers just from the main payload. Read more here: www.nasa.gov/feature/wallops/2017/nasa-sounding-rocket-wi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Third Space Weather Summit Held for Industry and Government Agencies
NASA Astrophysics Data System (ADS)
Intriligator, Devrie S.
2009-12-01
The potential for space weather effects has been increasing significantly in recent years. For instance, in 2008 airlines flew about 8000 transpolar flights, which experience greater exposure to space weather than nontranspolar flights. This is up from 368 transpolar flights in 2000, and the number of such flights is expected to continue to grow. Transpolar flights are just one example of the diverse technologies susceptible to space weather effects identified by the National Research Council's Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (2008). To discuss issues related to the increasing need for reliable space weather information, experts from industry and government agencies met at the third summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center (SWPC), held 30 April 2009 during Space Weather Week (SWW), in Boulder, Colo.
The Evolution of Failure Analysis at NASA's Kennedy Space Center and the Lessons Learned
NASA Technical Reports Server (NTRS)
Long, Victoria S.; Wright, M. Clara; McDanels, Steve
2015-01-01
The United States has had four manned launch programs and three station programs since the era of human space flight began in 1961. The launch programs, Mercury, Gemini, Apollo, and Shuttle, and the station programs, Skylab, Shuttle-Mir, and the International Space Station (ISS), have all been enormously successful, not only in advancing the exploration of space, but also in advancing related technologies. As each subsequent program built upon the successes of previous programs, they similarly learned from their predecessors' failures. While some failures were spectacular and captivated the attention of the world, most only held the attention of the dedicated men and women working to make the missions succeed.
Long-Duration Space Flight and Bed Rest Effects on Testosterone and Other Steroids
Heer, Martina; Wang, Zuwei; Huntoon, Carolyn L.; Zwart, Sara R.
2012-01-01
Context: Limited data suggest that testosterone is decreased during space flight, which could contribute to bone and muscle loss. Objective: The main objective was to assess testosterone and hormone status in long- and short-duration space flight and bed rest environments and to determine relationships with other physiological systems, including bone and muscle. Design: Blood and urine samples were collected before, during, and after long-duration space flight. Samples were also collected before and after 12- to 14-d missions and from participants in 30- to 90-d bed rest studies. Setting: Space flight studies were conducted on the International Space Station and before and after Space Shuttle missions. Bed rest studies were conducted in a clinical research center setting. Data from Skylab missions are also presented. Participants: All of the participants were male, and they included 15 long-duration and nine short-duration mission crew members and 30 bed rest subjects. Main Outcome Measures: Serum total, free, and bioavailable testosterone were measured along with serum and urinary cortisol, serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and SHBG. Results: Total, free, and bioavailable testosterone was not changed during long-duration space flight but were decreased (P < 0.01) on landing day after these flights and after short-duration space flight. There were no changes in other hormones measured. Testosterone concentrations dropped before and soon after bed rest, but bed rest itself had no effect on testosterone. Conclusions: There was no evidence for decrements in testosterone during long-duration space flight or bed rest. PMID:22049169
Expedition_55_In-flight_with_Czech_TV_2018_099_1055_637949
2018-04-09
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH CZECH MEDIA---------Aboard the International Space Station, Expedition 55 Flight Engineer Drew Feustel of NASA discussed his mission on the orbital outpost during an in-flight question and answer session April 9 with Czech Television in Prague, Czech Republic. Feustel is in his third flight into space, conducting scientific research and operational support of station systems.
X-38 Vehicle #132 Landing on First Free Flight
NASA Technical Reports Server (NTRS)
1999-01-01
The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), flares for its lakebed landing at the end of a March 1999 test flight at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
X-38 - First Free Flight, March 12, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
The X-38 Crew Return Vehicle descends under its steerable parafoil over the California desert during its first free flight in March 1998 at the Dryden Flight Research Center, Edwards, California. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
X-38 - Landing After First Free Flight, March 12, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
The X-38 Crew Return Vehicle touches down amidst the California desert scrubbrush at the end of its first free flight at the Dryden Flight Research Center, Edwards, California, in March 1998. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
X-38 on Lakebed after Landing on Second Free Flight
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's X-38, a prototype of a Crew Return Vehicle (CRV) resting on the lakebed near the Dryden Flight Research Center after the completion of its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew freely for 45 seconds, reaching a speed of over 500 miles per hour before deploying its parachutes for a landing on Rogers Dry Lakebed. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode with controls from the ground.
14 CFR 121.426 - Flight navigators: Initial and transition flight training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. Link to an amendment published at...
14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...
Barger, Laura K; Flynn-Evans, Erin E; Kubey, Alan; Walsh, Lorcan; Ronda, Joseph M; Wang, Wei; Wright, Kenneth P; Czeisler, Charles A
2014-09-01
Sleep deprivation and fatigue are common subjective complaints among astronauts. Previous studies of sleep and hypnotic drug use in space have been limited to post-flight subjective survey data or in-flight objective data collection from a small number of crew members. We aimed to characterise representative sleep patterns of astronauts on both short-duration and long-duration spaceflight missions. For this observational study, we recruited crew members assigned to Space Transportation System shuttle flights with in-flight experiments between July 12, 2001, and July 21, 2011, or assigned to International Space Station (ISS) expeditions between Sept 18, 2006, and March 16, 2011. We assessed sleep-wake timing objectively via wrist actigraphy, and subjective sleep characteristics and hypnotic drug use via daily logs, in-flight and during Earth-based data-collection intervals: for 2 weeks scheduled about 3 months before launch, 11 days before launch until launch day, and for 7 days upon return to Earth. We collected data from 64 astronauts on 80 space shuttle missions (26 flights, 1063 in-flight days) and 21 astronauts on 13 ISS missions (3248 in-flight days), with ground-based data from all astronauts (4014 days). Crew members attempted and obtained significantly less sleep per night as estimated by actigraphy during space shuttle missions (7·35 h [SD 0·47] attempted, 5·96 h [0·56] obtained), in the 11 days before spaceflight (7·35 h [0·51], 6·04 h [0·72]), and about 3 months before spaceflight (7·40 h [0·59], 6·29 h [0·67]) compared with the first week post-mission (8·01 h [0·78], 6·74 h [0·91]; p<0·0001 for both measures). Crew members on ISS missions obtained significantly less sleep during spaceflight (6·09 h [0·67]), in the 11 days before spaceflight (5·86 h [0·94]), and during the 2-week interval scheduled about 3 months before spaceflight (6·41 h [SD 0·65]) compared with in the first week post-mission (6·95 h [1·04]; p<0·0001). 61 (78%) of 78 shuttle-mission crew members reported taking a dose of sleep-promoting drug on 500 (52%) of 963 nights; 12 (75%) of 16 ISS crew members reported using sleep-promoting drugs. Sleep deficiency in astronauts was prevalent not only during space shuttle and ISS missions, but also throughout a 3 month preflight training interval. Despite chronic sleep curtailment, use of sleep-promoting drugs was pervasive during spaceflight. Because chronic sleep loss leads to performance decrements, our findings emphasise the need for development of effective countermeasures to promote sleep. The National Aeronautics and Space Administration. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kerstman, Eric
2011-01-01
International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.
Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul
2016-01-01
Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.
2007-04-17
KENNEDY SPACE CENTER, FLA. -- Bill Parsons (left), director of Kennedy Space Center, greets pilot Rick Svetkoff after a test flight of the Starfighter F-104. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett
Post-flight BET products for the 2nd discovery entry, STS-19 (51-A)
NASA Technical Reports Server (NTRS)
Kelly, G. M.; Mcconnell, J. G.; Heck, M. L.; Troutman, P. A.; Waters, L. A.; Findlay, J. T.
1985-01-01
The post-flight products for the second Discovery flight, STS-19 (51-A), are summarized. The inertial best estimate trajectory (BET), BT19D19/UN=169750N, was developed using spacecraft dynamic measurements from Inertial Measurement Unit 2 (IMU2) in conjunction with the best tracking coverage available for any of the earlier Shuttle entries. As a consequence of the latter, an anchor epoch was selected which conforms to an initial altitude of greater than a million feet. The Extended BET, ST19BET/UN=274885C, incorporated the previously mentioned inertial reconstructed state information and the Langley Atmospheric Information Retrieval System (LAIRS) atmosphere, ST19MET/UN=712662N, with some minor exceptions. Primary and back-up AEROBET reels are NK0165 and NK0201, respectively. This product was only developed over the lowermost 360 kft altitude range due to atmosphere problems but this relates to altitudes well above meaningful signal in the IMUs. Summary results generated from the AEROBET for this flight are presented with meaningful configuration and statistical comparisons from the previous thirteen flights. Modified maximum likelihood estimation (MMLE) files were generated based on IMU2 and the Rate Gyro Assembly/Accelerometer Assembly (RGA/AA), respectively. Appendices attached define spacecraft and physical constants utilized, show plots of the final tracking data residuals from the post-flight fit, list relevant parameters from the BET at a two second spacing, and retain for archival purpose all relevant input and output tapes and files generated.
14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...
14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...
14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...
14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...
14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...
NASA Technical Reports Server (NTRS)
1994-01-01
The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.
NASA Technical Reports Server (NTRS)
Globus, R. K.; Choi, S.; Gong, C.; Leveson-Gower, D.; Ronca, A.; Taylor, E.; Beegle, J.
2016-01-01
Rodent research is a valuable essential tool for advancing biomedical discoveries in life sciences on Earth and in space. The National Research Counsel's Decadal survey (1) emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, new flight hardware, operations, and science capabilities were developed at NASA ARC to support commercial and government-sponsored research. The flight phases of two separate spaceflight missions (Rodent Research-1 and Rodent Research-2) have been completed and new capabilities are in development. The first flight experiments carrying 20 mice were launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4; Rodent Research-1 was dedicated to achieving both NASA validation and CASIS science objectives, while Rodent Reesearch-2 extended the period on orbit to 60 days. Groundbased control groups (housed in flight hardware or standard cages) were maintained in environmental chambers at Kennedy Space Center. Crewmembers previously trained in animal handling transferred mice from the Transporter into Habitats under simultaneous veterinary supervision by video streaming and were deemed healthy. Health and behavior of all mice on the ISS was monitored by video feed on a daily basis, and post-flight quantitative analyses of behavior were performed. The 10 mice from RR-1 Validation (16wk old, female C57Bl6/J) ambulated freely and actively throughout the Habitat, relying heavily on their forelimbs for locomotion. The first on-orbit dissections of mice were performed successfully, and high quality RNA (RIN values>9) and liver enzyme activities were obtained, validating the quality of sample recovery. Post-flight sample analysis revealed that body weights of FLT animals did not differ from ground controls (GC) housed in the same hardware, or vivarium controls (VIV) housed in standard cages. Organ weights analyzed post-flight showed that there were no differences between FLT and GC groups in adrenal gland and spleen weights, whereas FLT thymus and liver weights exceeded those of GC. Minimal differences between the control groups (GC and VIV) were observed. In addition, Over 3,000 aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for the Biospecimen Sharing Program and Genelab project. New capabilities recently developed include DEXA scanning, grip strength tests and male mice. In conclusion, new capability for long duration rodent habitation of group-housed rodents was developed and includes in-flight sample collection, thus avoiding the complication of reentry. Results obtained to date reveal the possibility of striking differences between the effects of short duration vs. long duration spaceflight. This Rodent Research system enables achievement of both basic science and translational research objectives to advance human exploration of space.
Visual Odometry for Autonomous Deep-Space Navigation Project
NASA Technical Reports Server (NTRS)
Robinson, Shane; Pedrotty, Sam
2016-01-01
Autonomous rendezvous and docking (AR&D) is a critical need for manned spaceflight, especially in deep space where communication delays essentially leave crews on their own for critical operations like docking. Previously developed AR&D sensors have been large, heavy, power-hungry, and may still require further development (e.g. Flash LiDAR). Other approaches to vision-based navigation are not computationally efficient enough to operate quickly on slower, flight-like computers. The key technical challenge for visual odometry is to adapt it from the current terrestrial applications it was designed for to function in the harsh lighting conditions of space. This effort leveraged Draper Laboratory’s considerable prior development and expertise, benefitting both parties. The algorithm Draper has created is unique from other pose estimation efforts as it has a comparatively small computational footprint (suitable for use onboard a spacecraft, unlike alternatives) and potentially offers accuracy and precision needed for docking. This presents a solution to the AR&D problem that only requires a camera, which is much smaller, lighter, and requires far less power than competing AR&D sensors. We have demonstrated the algorithm’s performance and ability to process ‘flight-like’ imagery formats with a ‘flight-like’ trajectory, positioning ourselves to easily process flight data from the upcoming ‘ISS Selfie’ activity and then compare the algorithm’s quantified performance to the simulated imagery. This will bring visual odometry beyond TRL 5, proving its readiness to be demonstrated as part of an integrated system.Once beyond TRL 5, visual odometry will be poised to be demonstrated as part of a system in an in-space demo where relative pose is critical, like Orion AR&D, ISS robotic operations, asteroid proximity operations, and more.
Visual Odometry for Autonomous Deep-Space Navigation Project
NASA Technical Reports Server (NTRS)
Robinson, Shane; Pedrotty, Sam
2016-01-01
Autonomous rendezvous and docking (AR&D) is a critical need for manned spaceflight, especially in deep space where communication delays essentially leave crews on their own for critical operations like docking. Previously developed AR&D sensors have been large, heavy, power-hungry, and may still require further development (e.g. Flash LiDAR). Other approaches to vision-based navigation are not computationally efficient enough to operate quickly on slower, flight-like computers. The key technical challenge for visual odometry is to adapt it from the current terrestrial applications it was designed for to function in the harsh lighting conditions of space. This effort leveraged Draper Laboratory's considerable prior development and expertise, benefitting both parties. The algorithm Draper has created is unique from other pose estimation efforts as it has a comparatively small computational footprint (suitable for use onboard a spacecraft, unlike alternatives) and potentially offers accuracy and precision needed for docking. This presents a solution to the AR&D problem that only requires a camera, which is much smaller, lighter, and requires far less power than competing AR&D sensors. We have demonstrated the algorithm's performance and ability to process 'flight-like' imagery formats with a 'flight-like' trajectory, positioning ourselves to easily process flight data from the upcoming 'ISS Selfie' activity and then compare the algorithm's quantified performance to the simulated imagery. This will bring visual odometry beyond TRL 5, proving its readiness to be demonstrated as part of an integrated system. Once beyond TRL 5, visual odometry will be poised to be demonstrated as part of a system in an in-space demo where relative pose is critical, like Orion AR&D, ISS robotic operations, asteroid proximity operations, and more.
2015-08-14
The BARREL team prepares to release the second scientific balloon in its Sweden campaign on Aug. 13, 2015. In addition to the instruments used in previous BARREL campaigns, this second balloon launched from the Esrange Space Center in Kiruna is carrying one of two instruments designed by a team from the University of Houston. With funding from the Undergraduate Student Instrument Program, or USIP, at NASA Goddard Space Flight Center’s Wallops Flight Facility, the team of 12 students, under the direction of Edgar Bering at the University of Houston, developed a magnetometer -- which measures magnetic fields -- and an instrument to measure electrons, which flew on this launch. To collect their data, the University of Houston team needs to recover their instrument after the balloon comes down. After this launch, the balloon began to drift toward the mountains, which would have impeded recovery. So the team terminated the flight at 1:18 pm EDT to bring the payload slowly and safely to the ground. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – measures electrons in the atmosphere near the poles. Such electrons rain down into the atmosphere from two giant radiation belts surrounding Earth, called the Van Allen belts. For its third campaign, BARREL is launching six balloons from the Esrange Space Center in Kiruna, Sweden. BARREL is led by Dartmouth College in Hanover, New Hampshire. Credit: NASA/University of Houston/Edgar Bering NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Polk, James D.; Parazynski, Scott; Kelly, Scott; Hurst, Victor, IV; Doerr, Harold K.
2007-01-01
Airway management techniques are necessary to establish and maintain a patent airway while treating a patient undergoing respiratory distress. There are situations where such settings are suboptimal, thus causing the caregiver to adapt to these suboptimal conditions. Such occurrences are no exception aboard the International Space Station (ISS). As a result, the NASA flight surgeon (FS) and NASA astronaut cohorts must be ready to adapt their optimal airway management techniques for suboptimal situations. Based on previous work conducted by the Medical Operation Support Team (MOST) and other investigators, the MOST had members of both the FS and astronaut cohorts evaluate two oral airway insertion techniques for the Intubating Laryngeal Mask Airway (ILMA) to determine whether either technique is sufficient to perform in suboptimal conditions within a microgravity environment. Methods All experiments were conducted in a simulated microgravity environment provided by parabolic flight aboard DC-9 aircraft. Each participant acted as a caregiver and was directed to attempt both suboptimal ILMA insertion techniques following a preflight instruction session on the day of the flight and a demonstration of the technique by an anesthesiologist physician in the simulated microgravity environment aboard the aircraft. Results Fourteen participants conducted 46 trials of the suboptimal ILMA insertion techniques. Overall, 43 of 46 trials (94%) conducted were properly performed based on criteria developed by the MOST and other investigators. Discussion The study demonstrated the use of airway management techniques in suboptimal conditions relating to space flight. Use of these techniques will provide a crew with options for using the ILMA to manage airway issues aboard the ISS. Although it is understood that the optimal method for patient care during space flight is to have both patient and caregiver restrained, these techniques provide a needed backup should conditions not present themselves in an ideal manner.
Life support for aquatic species - past; present; future
NASA Astrophysics Data System (ADS)
Slenzka, K.
Life Support is a basic issue since manned space flight began. Not only to support astronauts and cosmonauts with the essential things to live, however, also animals which were carried for research to space etc together with men need support systems to survive under space conditions. Most of the animals transported to space participate at the life support system of the spacecraft. However, aquatic species live in water as environment and thus need special developments. Research with aquatic animals has a long tradition in manned space flight resulting in numerous life support systems for them starting with simple plastic bags up to complex support hardware. Most of the recent developments have to be identified as part of a technological oriented system and can be described as small technospheres. As the importance arose to study our Earth as the extraordinary Biosphere we live in, the modeling of small ecosystems began as part of ecophysiological research. In parallel the investigations of Bioregenerative Life Support Systems were launched and identified as necessity for long-term space missions or traveling to Moon and Mars and beyond. This paper focus on previous developments of Life Support Systems for aquatic animals and will show future potential developments towards Bioregenerative Life Support which additionally strongly benefits to our Earth's basic understanding.
NASA Technical Reports Server (NTRS)
Wilkinson, J. P.
1990-01-01
The performance of the thermal protection system, field joint protection system, and systems tunnel components of Flight Set 360L006, are documented, as evaluated by postflight hardware inspection. The condition of both motors was similar to previous flights. Sixteen aft edge hits were noted on the ground environment instrumentation thermal protection system. Each hit left a clean substrate, indicating that the damage was caused by nozzle severance debris and/or water impact. No National Space and Transporation System debris criteria for missing thermal protection system were violated. One 5.0 by 1.0 in. unbond was observed on the left hand center field joint K5NA closeout and was elevated to an in-flight anomaly (STS-34-M-4) by the NASA Ice/Debris team. Aft edge damage to the K5NA and an associated black streak indicate that burning debris from the nozzle severance system was the likely cause of the damage. Minor divots caused by debris were seen on previous flights, but this is the first occurrence of a K5NA unbond. Since the unbond occurred after booster separation there is no impact on flight safety and no corrective actions was taken. The right hand center field joint primary heater failed the dielectric withstanding voltage test after joint closeout. The heater was then disabled by opening the circuit breaker, and the redundant heater was used. The redundant heater performed nominally during the launch countdown. A similar condition occurred on Flight 4 when a secondary joint heater failed the dielectric withstanding voltage test.
Growth-rate periodicity of Streptomyces levoris during space flight
NASA Technical Reports Server (NTRS)
Rogers, T. D.; Brower, M. E.; Taylor, G. R.
1977-01-01
Streptomyces levoris provides a suitable biological test system to investigate the effects of space flight on the rhythms of vegetative and spore phase characteristics of both growth-rate periodicity and culture morphology during the pre-, in-, and post-flight periods of the Apollo-Soyuz Test Project. The objectives of the American participation were to study the effects of space flight on the biorhythms of Streptomyces levoris based on a comparison of the growth-rate periodicity of the vegetative and spore phase within each culture, to examine the possible alteration of spore morphology and development by SEM, and to compare the effects of a 12-hr phase shift on the periodic growth characteristics of this microorganism in cultures which were exchanged during the joint activities of the space flight. No uniform differences in the biorhythm of Streptomyces levoris during space flight were observed. It appears that the single most variable factor related to the experiment was the lack of temperature control for the space-flight specimens.
New challenges for Life Sciences flight project management
NASA Technical Reports Server (NTRS)
Huntoon, C. L.
1999-01-01
Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.
New challenges for Life Sciences flight project management.
Huntoon, C L
1999-01-01
Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.
New challenges for life sciences flight project management
NASA Astrophysics Data System (ADS)
Huntoon, Carolyn L.
1999-09-01
Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-of-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program. The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.
Pharmacotherapeutic Aspects of Space Medicine
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi
2004-01-01
Medications are used for a wide variety of indications during space flight. For example, astronauts have taken drugs in flight to ameliorate or prevent symptoms of space motion sickness, headache, sleeplessness, backache, nasal congestion, and constipation. Russian cosmonauts reportedly take medications to prevent metabolic disturbances of the myocardium and intestinal flora, and to optimize their work capacity. Although the discomfort associated with some acute responses to microgravity (e.g., space motion sickness) is expected to diminish with length of time in flight, other responses that have delayed onset (e.g., maintaining nutritional status, bone and muscle strength, and perhaps immune response) may affect health and quality of life during longer missions. Therefore, as the duration of space flights increases, the need for treatment with medications is expected to increase accordingly. Medications carried on Space Shuttle missions have varied somewhat from flight to flight, depending on the individual needs of the crewmembers. Medications use during Shuttle flights seems to be more prevalent than during earlier programs, perhaps because drugs are provided in easy-to-use forms. In fact, nearly all medications taken to date have been ingested orally in tablet form. However, given that the oral route may not be ideal for those suffering motion-sickness symptoms, intramuscular and intranasal preparations are being tested. For example, intramuscular administration of promethazine hydrochloride (Phenergan(Registered TradeMark)) has been reported to be more effective in alleviating motion-sickness symptoms. The difficulties involved in conducting definitive studies of drug efficacy during U.S. space flights have been compounded by the absence of a systematic approach to determining which drugs were taken by whom and under what circumstances. The use of some drugs in space has been less efficacious than expected. The onset, intensity, and duration of the response produced by any drug depend upon rates of absorption, distribution, metabolism, and elimination of the drug; space flight-induced changes in blood flow and the function of the gastrointestinal (GI) tract, liver, or kidneys may alter these processes. Another important aspect of clinical efficacy of medications in space is the stability of pharmaceuticals. As the U.S. space program is moving toward extended Space Shuttle flights and beyond, to space station missions and planetary explorations, understanding how space flight affects organ systems and clinical pharmacology is necessary to optimize pharmacotherapeutics in space and ensure adequate safety and health of crewmembers.
Atmospheric reentry flight test of winged space vehicle
NASA Astrophysics Data System (ADS)
Inatani, Yoshifumi; Akiba, Ryojiro; Hinada, Motoki; Nagatomo, Makoto
A summary of the atmospheric reentry flight experiment of winged space vehicle is presented. The test was conducted and carried out by the Institute of Space and Astronautical Science (ISAS) in Feb. 1992 in Kagoshima Space Center. It is the first Japanese atmospheric reentry flight of the controlled lifting vehicle. A prime objective of the flight is to demonstrate a high speed atmospheric entry flight capability and high-angle-of-attack flight capability in terms of aerodynamics, flight dynamics and flight control of these kind of vehicles. The launch of the winged vehicle was made by balloon and solid propellant rocket booster which was also the first trial in Japan. The vehicle accomplishes the lfight from space-equivalent condition to the atmospheric flight condition where reaction control system (RCS) attitude stabilization and aerodynamic control was used, respectively. In the flight, the vehicle's attitude was measured by both an inertial measurement unit (IMU) and an air data sensor (ADS) which were employed into an auto-pilot flight control loop. After completion of the entry transient flight, the vehicle experienced unexpected instability during the atmospheric decelerating flight; however, it recovered the attitude orientation and completed the transonic flight after that. The latest analysis shows that it is due to the ADS measurement error and the flight control gain scheduling; what happened was all understood. Some details of the test and the brief summary of the current status of the post flight analysis are presented.
ACES: Space shuttle flight software analysis expert system
NASA Technical Reports Server (NTRS)
Satterwhite, R. Scott
1990-01-01
The Analysis Criteria Evaluation System (ACES) is a knowledge based expert system that automates the final certification of the Space Shuttle onboard flight software. Guidance, navigation and control of the Space Shuttle through all its flight phases are accomplished by a complex onboard flight software system. This software is reconfigured for each flight to allow thousands of mission-specific parameters to be introduced and must therefore be thoroughly certified prior to each flight. This certification is performed in ground simulations by executing the software in the flight computers. Flight trajectories from liftoff to landing, including abort scenarios, are simulated and the results are stored for analysis. The current methodology of performing this analysis is repetitive and requires many man-hours. The ultimate goals of ACES are to capture the knowledge of the current experts and improve the quality and reduce the manpower required to certify the Space Shuttle onboard flight software.
48 CFR 1852.246-73 - Human space flight item.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Human space flight item. 1852.246-73 Section 1852.246-73 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... 1852.246-73 Human space flight item. As prescribed in 1845.370(b), insert the following clause: Human...
48 CFR 1852.246-73 - Human space flight item.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Human space flight item. 1852.246-73 Section 1852.246-73 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... 1852.246-73 Human space flight item. As prescribed in 1845.370(b), insert the following clause: Human...
48 CFR 1852.246-73 - Human space flight item.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Human space flight item. 1852.246-73 Section 1852.246-73 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE... 1852.246-73 Human space flight item. As prescribed in 1845.370(b), insert the following clause: Human...