Serial casting for reconstruction of a deformed Charcot foot: a case report.
Rosenblum, Jonathan I; Weiss, Shmuel; Gazes, Michael; Amit-Kohn, Michal
2015-05-01
Charcot neuroarthropathy may occur in patients with peripheral neuropathy who do not notice pain while their bones and joints collapse or breakdown under the constant pressure of body weight. This can lead to ulcerations from severe deformity and potentially limb-threatening and life-threatening infections. Current treatments vary from immobilization to extensive reconstructive surgical interventions. Serial casting, used to correct many pediatric deformities while bones are often more pliable, was used with a 63-year-old male patient who presented with an active phase of Charcot foot with ulceration. The patient previously underwent foot reconstruction and had all hardware removed prior to serial casting. Due to the potential pliability of the bones, serial casting was attempted to reform the shape and position of the foot in a reverse Ponseti-type serial casting to create a more stable structure with less deformity that could lead to epithelial breakdown. The patient regained full ambulation with a plantargrade foot and no wounds, and was followed without complications for 36 months. Serial weekly casting was an effective modality for treatment of this patient's Charcot foot deformity.
Corrosion behavior of as-received and previously cast type III gold alloy.
Ayad, Mohamed F; Ayad, Ghada M
2010-04-01
The rationale for using gold alloys is based largely upon their alleged ability to resist corrosion, but little information is available to determine the corrosion behavior of recast alloys. This study characterized the elemental composition of as-received and recast type III gold alloy and examined the in vitro corrosion behavior in two media using a potentiodynamic polarization technique. Seventy-eight disk-shaped specimens were prepared from a type III gold alloy under three casting protocols according to the proportion of as-received and recast gold alloy (n = 26). (1) Group as received (100% as-received metal), (2) group 50% to 50% (50% wt. new metal, 50% wt. once recast metal), and (3) group recast (100% once recast metal). The surface structures of 20 specimens from each group were examined under scanning electron microscopy, and their elemental compositions were determined using X-ray energy-dispersive spectroscopy. Further, the potentiodynamic cyclic polarization between -1000 and +1000 mV (SCE) were performed for six specimens from each casting protocol in 0.09% NaCl solution (n = 3) and Fusayama artificial saliva (n = 3) at 37 degrees C. Zero-current potential and corrosion current density were determined. The data were analyzed with 1-way ANOVA and the Ryan-Einot-Gabriel-Welsch multiple-range test t (alpha= 0.05). Elemental composition was significantly different among the casting groups (p < 0.001). The mean weight percentage values were 72.4 to 75.7% Au, 4.5 to 7.0% Pd, 10.7 to 11.1% Ag, 7.8 to 8.4% Cu, and 1.0 to 1.4% Zn. The mean values for Zero-current potential and corrosion current density for all casting protocols were not significant (p > 0.05); however, the difference between the electrolytes was significant (p < 0.001). Fusayama artificial saliva seemed to offer the most corrosive environment. Type III gold alloy in any casting protocol retained passivity under electrochemical conditions similar to the oral environment. Moreover, high-gold type III alloys from reputable manufacturers and recasting protocol tested should produce acceptable corrosion-resistant castings.
Thompson, Geoffrey A; Luo, Qing; Hefti, Arthur
2013-12-01
Previous studies have shown casting methodology to influence the as-cast properties of dental casting alloys. It is important to consider clinically important mechanical properties so that the influence of casting can be clarified. The purpose of this study was to evaluate how torch/centrifugal and inductively cast and vacuum-pressure casting machines may affect the castability, microhardness, chemical composition, and microstructure of 2 high noble, 1 noble, and 1 base metal dental casting alloys. Two commonly used methods for casting were selected for comparison: torch/centrifugal casting and inductively heated/ vacuum-pressure casting. One hundred and twenty castability patterns were fabricated and divided into 8 groups. Four groups were torch/centrifugally cast in Olympia (O), Jelenko O (JO), Genesis II (G), and Liberty (L) alloys. Similarly, 4 groups were cast in O, JO, G, and L by an inductively induction/vacuum-pressure casting machine. Each specimen was evaluated for casting completeness to determine a castability value, while porosity was determined by standard x-ray techniques. Each group was metallographically prepared for further evaluation that included chemical composition, Vickers microhardness, and grain analysis of microstructure. Two-way ANOVA was used to determine significant differences among the main effects. Statistically significant effects were examined further with the Tukey HSD procedure for multiple comparisons. Data obtained from the castability experiments were non-normal and the variances were unequal. They were analyzed statistically with the Kruskal-Wallis rank sum test. Significant results were further investigated statistically with the Steel-Dwass method for multiple comparisons (α=.05). The alloy type had a significant effect on surface microhardness (P<.001). In contrast, the technique used for casting did not affect the microhardness of the test specimen (P=.465). Similarly, the interaction between the alloy and casting technique was not significant (P=.119). A high level of castability (98.5% on average) was achieved overall. The frequency of casting failures as a function of alloy type and casting method was determined. Failure was defined as a castability index score of <100%. Three of 28 possible comparisons between alloy and casting combinations were statistically significant. The results suggested that casting technique affects the castability index of alloys. Radiographic analysis detected large porosities in regions near the edge of the castability pattern and infrequently adjacent to noncast segments. All castings acquired traces of elements found in the casting crucibles. The grain size for each dental casting alloy was generally finer for specimens produced by the induction/vacuum-pressure method. The difference was substantial for JO and L. This study demonstrated a relation between casting techniques and some physical properties of metal ceramic casting alloys. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana
2018-03-01
The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.
Tarver, Matthew R; Schmelz, Eric A; Scharf, Michael E
2011-06-01
Caste systems and the division of labor they make possible are common underlying features of all social insects. Multiple extrinsic factors have been shown to impact caste composition in social insect colonies. Primer pheromones are one type of extrinsic caste-regulatory factor; they are chemical signaling molecules produced by certain colony members to impact developmental physiology of recipient nestmates. However, only limited evidence exists regarding primer pheromones and their actions in eusocial termites. In previous research we identified two soldier-produced terpenes, γ-cadinene (CAD) and γ-cadinenal (ALD), as candidate primer pheromones of the lower termite Reticulitermes flavipes. In the present study we tested hypotheses related to CAD and ALD action in recipient individuals. We examined the influences of terminally developed soldier termites on (1) CAD and ALD levels and (2) caste differentiation in developmentally totipotent workers. Our findings show CAD and ALD (respectively) are caste stimulatory and inhibitory components of chemical blends present in soldier heads, ALD levels increase significantly (10.9×) in workers only in the presence of soldiers, and soldiers can reduce developmental-hormone response thresholds of workers, presumably via ALD action. These findings provide novel evidence supporting that CAD and ALD are authentic caste-regulatory primer pheromones in Reticulitermes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cast titanium overlay denture for a geriatric patient with a reduced vertical dimension.
Guttal, Satyabodh; Patil, Narendra P
2005-12-01
An older patient reporting to the dental surgery for his/her dental treatment is becoming a common occurrence. Improved oral hygiene has meant that teeth are retained for a longer time, along with the potential problems of attrition, decreased vertical dimension, temporomandibular joint discomfort/strain, and poor aesthetics. The case in question is that of a 65-year-old male patient who had severe attrition in the lower arch, temporomandibular joint pain and reduced vertical dimension. The maxillary arch had previously been restored with a fixed partial prosthesis. For restoration of the lower teeth, a removable cast titanium overlay denture was fabricated incorporating an increased vertical dimension. Porcelain facings were placed to restore the aesthetics of the anterior teeth. The titanium was cast in a semi-automatic electric arc, pressure type casting machine. A titanium overlay denture with porcelain facing on the anterior teeth may provide a means of restoring a patient's concerns regarding aesthetics and function.
On the formation of fold-type oscillation marks in the continuous casting of steel.
Vynnycky, M; Saleem, S; Devine, K M; Florio, B J; Mitchell, S L; O'Brien, S B G
2017-06-01
Asymptotic methods are employed to revisit an earlier model for oscillation-mark formation in the continuous casting of steel. A systematic non-dimensionalization of the governing equations, which was not carried out previously, leads to a model with 12 dimensionless parameters. Analysis is provided in the same parameter regime as for the earlier model, and surprisingly simple analytical solutions are found for the oscillation-mark profiles; these are found to agree reasonably well with the numerical solution in the earlier model and very well with fold-type oscillation marks that have been obtained in more recent experimental work. The benefits of this approach, when compared with time-consuming numerical simulations, are discussed in the context of auxiliary models for macrosegregation and thermomechanical stresses and strains.
On the formation of fold-type oscillation marks in the continuous casting of steel
Saleem, S.; Devine, K. M.; Florio, B. J.; Mitchell, S. L.; O’Brien, S. B. G.
2017-01-01
Asymptotic methods are employed to revisit an earlier model for oscillation-mark formation in the continuous casting of steel. A systematic non-dimensionalization of the governing equations, which was not carried out previously, leads to a model with 12 dimensionless parameters. Analysis is provided in the same parameter regime as for the earlier model, and surprisingly simple analytical solutions are found for the oscillation-mark profiles; these are found to agree reasonably well with the numerical solution in the earlier model and very well with fold-type oscillation marks that have been obtained in more recent experimental work. The benefits of this approach, when compared with time-consuming numerical simulations, are discussed in the context of auxiliary models for macrosegregation and thermomechanical stresses and strains. PMID:28680666
Effect of Casting Material on the Cast Pressure After Sequential Cast Splitting.
Roberts, Aaron; Shaw, K Aaron; Boomsma, Shawn E; Cameron, Craig D
2017-01-01
Circumferential casting is a vital component of nonoperative fracture management. These casts are commonly valved to release pressure and decrease the risk of complications from swelling. However, little information exists regarding the effect of different casting supplies on the pressure within the cast. Seventy-five long-arm casts were performed on human volunteers, divided between 5 experimental groups with 15 casts in each groups. Testing groups consisted of 2 groups with a plaster short-arm cast overwrapped with fiberglass to a long arm with either cotton or synthetic cast padding. The 3 remaining groups included fiberglass long-arm casts with cotton, synthetic, or waterproof cast padding. A pediatric blood pressure cuff bladder was placed within the cast and inflated to 100 mm Hg. After inflation, the cast was sequentially released with pressure reading preformed after each stage. Order of release consisted of cast bivalve, cast padding release, and cotton stockinet release. After release, the cast was overwrapped with a loose elastic bandage. Difference in pressure readings were compared based upon the cast material. Pressures within the cast were found to decrease with sequential release of cast. The cast type had no effect of change in pressure. Post hoc testing demonstrated that the type of cast padding significantly affected the cast pressures with waterproof padding demonstrating the highest pressure readings at all time-points in the study, followed by synthetic padding. Cotton padding had the lowest pressure readings at all time-points. Type of cast padding significantly influences the amount of pressure within a long-arm cast, even after bivalving the cast and cutting the cast padding. Cotton cast padding allows for the greatest change in pressure. Cotton padding demonstrates the greatest change in pressure within a long-arm cast after undergoing bivalve. Synthetic and waterproof cast padding should not be used in the setting of an acute fracture to accommodate swelling.
Dai, Alper I; Demiryürek, Abdullah T
2017-06-01
The purpose of this study was to examine whether combination therapy of serial casting and botulinum toxin type A injection can further enhance the effects of botulinum toxin type A in children with cerebral palsy with scissoring of both legs. This study was a prospective and randomized trial. The children were divided into 2 groups, one of which received serial casting after botulinum toxin type A (n = 40), and the other which only received botulinum toxin type A (n = 40). Serial casting started 3 weeks after the botulinum toxin type A. Both groups received physiotherapy. Groups were assessed at baseline then compared at 6 and 12 weeks following the intervention. Significant improvements in Gross Motor Function Measure-66 and Caregiver Health Questionnaire were recorded in both groups ( P < .001). The modified Ashworth scale improved significantly following botulinum toxin type A in the serial casting group ( P < .05), but not in botulinum toxin type A only group. These results suggest that serial casting after botulinum toxin type A can enhance the benefits of botulinum toxin type A in children with cerebral palsy.
Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera).
Kapheim, Karen M; Rao, Vikyath D; Yeoman, Carl J; Wilson, Brenda A; White, Bryan A; Goldenfeld, Nigel; Robinson, Gene E
2015-01-01
Host-symbiont dynamics are known to influence host phenotype, but their role in social behavior has yet to be investigated. Variation in life history across honey bee (Apis mellifera) castes may influence community composition of gut symbionts, which may in turn influence caste phenotypes. We investigated the relationship between host-symbiont dynamics and social behavior by characterizing the hindgut microbiome among distinct honey bee castes: queens, males and two types of workers, nurses and foragers. Despite a shared hive environment and mouth-to-mouth food transfer among nestmates, we detected separation among gut microbiomes of queens, workers, and males. Gut microbiomes of nurses and foragers were similar to previously characterized honey bee worker microbiomes and to each other, despite differences in diet, activity, and exposure to the external environment. Queen microbiomes were enriched for bacteria that may enhance metabolic conversion of energy from food to egg production. We propose that the two types of workers, which have the highest diversity of operational taxonomic units (OTUs) of bacteria, are central to the maintenance of the colony microbiome. Foragers may introduce new strains of bacteria to the colony from the environment and transfer them to nurses, who filter and distribute them to the rest of the colony. Our results support the idea that host-symbiont dynamics influence microbiome composition and, reciprocally, host social behavior.
Lower limb intracast pressures generated by different types of immobilisation casts.
Chaudhury, Salma; Hazlerigg, Alexandra; Vusirikala, Anuhya; Nguyen, Joseph; Matthews, Stuart
2017-02-18
To determine if complete, split casts and backslabs [plaster of Paris (POP) and fiberglass] generate different intracast pressures and pain. Increased swelling within casts was modeled by a closed water system attached to an expandable bag placed directly under different types of casts applied to a healthy lower limb. Complete fiberglass and POP casts, split casts and backslabs were applied. Twenty-five milliliter aliquots of saline were injected into the system and the generated intracast pressures were measured using a sphygmomanometer. The subject was blinded to the pressure scores to avoid bias. All casts were applied to the same right limb on the same subject to avoid the effects of variations in anatomy or physiology on intracast pressures. Pain levels were evaluated using the Visual Analogue Score after each sequential saline injection. Each type of cast was reapplied four times and the measurements were repeated on four separate occasions. Sample sizes were determined by a pre-study 90% power calculation to detect a 20% difference in intracast pressures between cast groups. A significant difference between the various types of casts was noted when the saline volume was greater than 100 mL ( P = 0.009). The greatest intracast pressure was generated by complete fiberglass casts, which were significantly higher than complete POP casts or backslabs ( P = 0.018 and P = 0.008 respectively) at intracast saline volumes of 100 mL and higher. Backslabs produced a significantly lower intracast pressure compared to complete POP only once the saline volume within casts exceeded 225 mL ( P = 0.009). Intracast pressures were significantly lower in split casts ( P = 0.003). Split POP and fiberglass casts produced the lowest intracast pressures, even compared to backslabs ( P = 0.009). Complete fiberglass casts generated the highest pain levels at manometer pressures of 75 mmHg and greater ( P = 0.001). Split fiberglass casts had significantly reduced pain levels ( P = 0.001). In contrast, a split complete POP cast did not produce significantly reduced pain levels at pressures between 25-150 mmHg. There was no difference in pain generated by complete POP and backslabs at manometer pressures of 200 mmHg and lower. Fibreglass casts generate significantly higher intracast pressures and pain than POP casts. Split casts cause lower intracast pressures regardless of material, than complete casts and backslabs.
Factors contributing to the temperature beneath plaster or fiberglass cast material
Hutchinson, Michael J; Hutchinson, Mark R
2008-01-01
Background Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. Methods The temperature beneath various types (plaster, fiberglass, and fiberglass splints), brands, and thickness of cast material were measured after they were applied over thermometer which was on the surface of a single diameter and thickness PVC tube. A single layer of cotton stockinette with variable layers and types of cast padding were placed prior to application of the cast. Serial temperature measurements were made as the cast matured and reached peak temperature. Time to peak, duration of peak, and peak temperature were noted. Additional tests included varying the dip water temperature and assessing external insulating factors. Ambient temperature, ambient humidity and dip water freshness were controlled. Results Outcomes revealed that material type, cast thickness, and dip water temperature played key roles regarding the temperature beneath the cast. Faster setting plasters achieved peak temperature quicker and at a higher level than slower setting plasters. Thicker fiberglass and plaster casts led to greater peak temperature levels. Likewise increasing dip-water temperature led to elevated temperatures. The thickness and type of cast padding had less of an effect for all materials. With a definition of thermal injury risk of skin injury being greater than 49 degrees Celsius, we found that thick casts of extra fast setting plaster consistently approached dangerous levels (greater than 49 degrees for an extended period). Indeed a cast of extra-fast setting plaster, 20 layers thick, placed on a pillow during maturation maintained temperatures over 50 degrees of Celsius for over 20 minutes. Conclusion Clinicians should be cautious when applying thick casts with warm dip water. Fast setting plasters have increased risk of thermal injury while brand does not appear to play a significant role. Prefabricated fiberglass splints appear to be safer than circumferential casts. The greatest risk of thermal injury occurs when thick casts are allowed to mature while resting on pillow. PMID:18298851
Casting Of Multilayer Ceramic Tapes
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr.
1991-01-01
Procedure for casting thin, multilayer ceramic membranes, commonly called tapes, involves centrifugal casting at accelerations of 1,800 to 2,000 times normal gravitational acceleration. Layers of tape cast one at a time on top of any previous layer or layers. Each layer cast from slurry of ground ceramic suspended in mixture of solvents, binders, and other components. Used in capacitors, fuel cells, and electrolytic separation of oxygen from air.
The effects of different types of investments on the alpha-case layer of titanium castings.
Guilin, Yu; Nan, Li; Yousheng, Li; Yining, Wang
2007-03-01
Different types of investments affect the formation of the alpha-case (alpha-case) layer on titanium castings. This alpha-case layer may possibly alter the mechanical properties of cast titanium, which may influence the fabrication of removable and fixed prostheses. The formation mechanism for the alpha-case layer is not clear. The aim of this study was to evaluate the effect of 3 types of investments on the microstructure, composition, and microhardness of the alpha-case layer on titanium castings. Fifteen wax columns with a diameter of 5 mm and a length of 40 mm were divided into 3 groups of 5 patterns each. Patterns were invested using 3 types of investment materials, respectively, and were cast in pure titanium. The 3 types of materials tested were SiO(2)-, Al(2)O(3)-, and MgO-based investments. All specimens were sectioned and prepared for metallographic observation. The microstructure and composition of the surface reaction layer of titanium castings were investigated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The surface microhardness (VHN) for all specimens was measured using a hardness testing machine, and a mean value for each group was calculated. The alpha-case layer on titanium castings invested with SiO(2)-, Al(2)O(3)-, and MgO-based investments consisted of 3 layers-namely, the oxide layer, alloy layer, and hardening layer. In this study, the oxide layer and alloy layer were called the reaction layer. The thickness of the reaction layer for titanium castings using SiO(2)-, Al(2)O(3)-, and MgO-based investments was approximately 80 microm, 50 microm, and 14 microm, respectively. The surface microhardness of titanium castings made with SiO(2)-based investments was the highest, and that with MgO-based investments was the lowest. The type of investment affects the microstructure and microhardness of the alpha-case layer of titanium castings. Based on the thickness of the surface reaction layer and the surface microhardness of titanium castings, MgO-based investment materials may be the best choice for casting these materials.
... Kinds of Casts? Most casts are made of fiberglass. Fiberglass is a kind of plastic that can be ... to the body part. It dries hard. Some fiberglass casts are waterproof. Doctors only use this type ...
Nakai, Akira; Kakuta, Kiyoshi; Goto, Shin-ichi; Kato, Katuma; Yara, Atushi; Ogura, Hideo
2003-09-01
The objective of this study was to evaluate the efficacy of the developed investment for the prevention of blackening of a cast Type 4 gold and to analyze the oxides on its surface in relation to the blackening of the alloy. The experimental investments were prepared using a gypsum-bonded investment in which boron (B) or aluminum (Al) was added as a reducing agent. A Type 4 gold alloy was cast into the mold made of the prepared investment. The effect of the additives was evaluated from the color difference (deltaE*) between the as-cast surface and the polished surface of the cast specimen. B and Al were effective to prevent the blackening of a Type 4 gold alloy and the color of the as-cast surface approached that of the polished surface with increasing B and Al content. The prevention of the blackening of the gold alloy can be achieved by restraining the formation of CuO.
Rate of displacement for Jakob Type 1 lateral condyle fractures treated with a cast.
Zale, C; Winthrop, Z A; Hennrikus, W
2018-04-01
The aim of this retrospective study is to report the rate of displacement of Jakob Type 1 lateral condyle fractures that were initially treated in a cast. We performed a retrospective review of all patients that were treated for a non-displaced (Jakob Type 1 < 2 mm) lateral condyle fracture of the humerus at our institution between 2002 and 2015. A total of 59 patients were initially treated with casting. Five fractures displaced and were converted to a closed pinning treatment plan with a conversion rate of 8.5%. There was a mean of 13.2 days (4 to 21) between treatment by initial casting and closed pinning. This study demonstrates an 8.5% displacement and conversion rate from cast treatment to closed pinning for initially non-displaced Jakob Type 1 lateral condyle fractures of the humerus. The internal oblique radiograph is most accurate to determine displacement. We recommend obtaining an internal oblique view at initial evaluation and at follow-up in the cast for lateral condyle fractures. To minimize movement at the fracture site, we recommend treating Jakob Type 1 lateral condyle fractures with a long arm cast with the elbow at 90° and the forearm in the supine position with a sling-loop design. IV - retrospective therapeutic study.
NASA Astrophysics Data System (ADS)
Riahi, Samira; Niroumand, Behzad; Dorri Moghadam, Afsaneh; Rohatgi, Pradeep K.
2018-05-01
In the present study, variation in surface wetting behavior of a hypoeutectic cast iron with its microstructural features and surface roughness was investigated. Samples with an identical composition, i.e. Fe-3.2 wt%C.E., and different microstructures (a gray cast iron with A-type flake graphite and a white cast iron) were fabricated by gravity casting of molten cast iron in a chill mold at different cooling rates. A variation of surface roughness was also developed by polishing, a four-stage electroetching and a four-stage mechanical abrading on the samples. Roughness and water contact angles of all surfaces were then measured. The surface roughness factor and the solid fraction in contact with water by the Wenzel and Cassie-Baxter contact models were also calculated and compared with the corresponding measured contact angles to find out which regime was active. Results indicated that the surface microstructure and the type of constituents present at the surface influenced the cast iron surface wettability and that it was possible to change the surface contact angle by modification of the surface microstructure. The mechanically abraded gray cast iron followed the Wenzel-type regime while the electroetched surfaces of gray cast iron exhibited a transition from Wenzel to Cassie-Baxter type regime. In white cast iron, the results indicated Wenzel type behavior in the electroetched samples while for the mechanically abraded samples, none of these two models could predict the wetting behavior. Furthermore, the wetting angles of both gray and white cast irons were measured after 1, 2, 3 and 4 weeks of air exposure. The results showed that the wetting angles of both samples increased to above 90° after one week of air exposure which was likely due to adsorption of low surface energy hydrocarbons on the surfaces.
Application of TRIZ Theory in Patternless Casting Manufacturing Technique
NASA Astrophysics Data System (ADS)
Yang, Weidong; Gan, Dequan; Jiang, Ping; Tian, Yumei
The ultimate goal of Patternless Casting Manufacturing (referred to as PCM) is how to obtain the casts by casting the sand mold directly. In the previous PCM, the resin content of sand mold is much higher than that required by traditional resin sand, so the casts obtained are difficult to be sound and qualified products, which limits the application of this technique greatly. In this paper, the TRIZ algorithm is introduced to the innovation process in PCM systematically.
Spall behavior of cast iron with varying microstructures
NASA Astrophysics Data System (ADS)
Plume, Gifford; Rousseau, Carl-Ernst
2014-07-01
The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94-1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.
NASA Astrophysics Data System (ADS)
Kazantseva, N. V.; Stepanova, N. N.; Rigmant, M. B.; Davidov, D. I.; Shishkin, D. A.; Romanov, E. P.
The Co-19 at.%Al-6 at.%W alloy was prepared by two methods of casting. We used arc melting under an argon atmosphere with casting into a copper water-cooled casting mold and induction melting furnace with casting into a ceramic Al2O3 mold. According to the X-ray and SEM analyses, phase compositions depend on the cooling rate of the ingot after melting. After arc melting, the cast alloy has a three-phase structure, consisting of γ cobalt (FCC), intermetallic phases CoAl (B2) type, and Co3W (DO19) type. After the induction melting, the alloy has a three-phase structure, consisting of γ cobalt (FCC), intermetallic phases CoAl (B2) type, and Co7W6 (µ) type. All phases in the investigated ternary alloy at the room temperature are ferromagnetic. Curie temperatures of all obtained phases were defined. It is shown that the magnetic properties of the studied alloy are typical for soft magnetic materials.
Energy Consumption of Die Casting Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerald Brevick; clark Mount-Campbell; Carroll Mobley
2004-03-15
Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting formmore » of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
..., PrepCAST. AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: The Federal... . SUPPLEMENTARY INFORMATION: Collection of Information Title: PrepCAST. Type of information collection: Revision.... Abstract: PrepCAST is a collection instrument that will collect preparedness information at the State...
Prompt Neutron Time Decay in Single HEU and DU Metal Annular Storage Castings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pena, Kirsten E; McConchie, Seth M; Mihalczo, John T
2010-01-01
Previous measurements of highly enriched uranium (HEU) storage castings performed by Oak Ridge National Laboratory (ORNL) at the Y-12 National Security Complex showed a prompt neutron time decay that is not exponential. These measurements showed that multiple time constants originating from multiplication, time-of-flight, scattering in the assembly and room return could be associated with this prompt neutron decay. In this work, the contribution not associated with neutron multiplication was investigated via measurements with a depleted uranium (DU) casting. The measurements at ORNL used an annular (5.0-in OD, 3.5-in ID, 6.0-in H) DU casting with a time-tagged 252Cf source, centered verticallymore » on the axis, and four closely coupled 1 1 6-in.-long plastic scintillators with -in.- thick lead shielding adjacent to the outer surface of the casting. This setup was identical to the configuration used in the previously performed measurements with HEU castings at Y-12. The time correlation between fission events and detections in the plastic scintillators was measured, as well as the time distribution of coincidences between multiple detectors within a 512-ns time window. The measurement results were then compared to MCNP-PoliMi calculations and the previous HEU measurements. Time constants from decay fits to the HEU and DU data were compared to characterize the contributions resulting from multiplication, time-of-flight, and scattering.« less
Kobayashi, Kazuya; Matsuura, Kenji
2017-01-01
Insects protect themselves from microbial infections through innate immune responses, including pathogen recognition, phagocytosis, the activation of proteolytic cascades, and the synthesis of antimicrobial peptides. Termites, eusocial insects inhabiting microbe-rich wood, live in closely-related family groups that are susceptible to shared pathogen infections. To resist pathogenic infection, termite families have evolved diverse immune adaptations at both individual and societal levels, and a strategy of trade-offs between reproduction and immunity has been suggested. Although termite immune-inducible genes have been identified, few studies have investigated the differential expression of these genes between reproductive and neuter castes, and between sexes in each caste. In this study, we compared the expression levels of immune-related genes among castes, sexes, and ages in a Japanese subterranean termite, Reticulitermes speratus. Using RNA-seq, we found 197 immune-related genes, including 40 pattern recognition proteins, 97 signalling proteins, 60 effectors. Among these genes, 174 showed differential expression among castes. Comparing expression levels between males and females in each caste, we found sexually dimorphic expression of immune-related genes not only in reproductive castes, but also in neuter castes. Moreover, we identified age-related differential expression of 162 genes in male and/or female reproductives. In addition, although R. speratus is known to use the antibacterial peptide C-type lysozyme as an egg recognition pheromone, we determined that R. speratus has not only C-type, but also P-type and I-type lysozymes, as well as other termite species. Our transcriptomic analyses revealed immune response plasticity among all castes, and sex-biased expression of immune genes even in neuter castes, suggesting a sexual division of labor in the immune system of R. speratus. This study heightens the understanding of the evolution of antimicrobial strategies in eusocial insects, and of sexual roles in insect societies as a whole. PMID:28410430
Mitaka, Yuki; Kobayashi, Kazuya; Matsuura, Kenji
2017-01-01
Insects protect themselves from microbial infections through innate immune responses, including pathogen recognition, phagocytosis, the activation of proteolytic cascades, and the synthesis of antimicrobial peptides. Termites, eusocial insects inhabiting microbe-rich wood, live in closely-related family groups that are susceptible to shared pathogen infections. To resist pathogenic infection, termite families have evolved diverse immune adaptations at both individual and societal levels, and a strategy of trade-offs between reproduction and immunity has been suggested. Although termite immune-inducible genes have been identified, few studies have investigated the differential expression of these genes between reproductive and neuter castes, and between sexes in each caste. In this study, we compared the expression levels of immune-related genes among castes, sexes, and ages in a Japanese subterranean termite, Reticulitermes speratus. Using RNA-seq, we found 197 immune-related genes, including 40 pattern recognition proteins, 97 signalling proteins, 60 effectors. Among these genes, 174 showed differential expression among castes. Comparing expression levels between males and females in each caste, we found sexually dimorphic expression of immune-related genes not only in reproductive castes, but also in neuter castes. Moreover, we identified age-related differential expression of 162 genes in male and/or female reproductives. In addition, although R. speratus is known to use the antibacterial peptide C-type lysozyme as an egg recognition pheromone, we determined that R. speratus has not only C-type, but also P-type and I-type lysozymes, as well as other termite species. Our transcriptomic analyses revealed immune response plasticity among all castes, and sex-biased expression of immune genes even in neuter castes, suggesting a sexual division of labor in the immune system of R. speratus. This study heightens the understanding of the evolution of antimicrobial strategies in eusocial insects, and of sexual roles in insect societies as a whole.
Materials processing threshold report: 2. Use of low gravity for cast iron process development
NASA Technical Reports Server (NTRS)
Frankhouser, W. L.
1980-01-01
Potential applications of a low gravity environment of interest to the commercial producers of cast iron were assessed to determine whether low gravity conditions offer potential opportunities to producers for improving cast iron properties and expanding the use of cast irons. The assessment is limited to the gray and nodular types of iron, however, the findings are applicable to all cast irons. The potential advantages accrued through low gravity experiments with cast irons are described.
The Childhood Asperger Syndrome Test (CAST): Test-Retest Reliability in a High Scoring Sample
ERIC Educational Resources Information Center
Allison, Carrie; Williams, Jo; Scott, Fiona; Stott, Carol; Bolton, Patrick; Baron-Cohen, Simon; Brayne, Carol
2007-01-01
The Childhood Asperger Syndrome Test (CAST) is a 37-item parental self-completion questionnaire designed to screen for high-functioning autism spectrum conditions in epidemiological research. The CAST has previously demonstrated good accuracy for use as a screening test, with high sensitivity in studies with primary school aged children in…
Effect of surface contamination on adhesive bonding of cast pure titanium and Ti-6Al-4V alloy.
Watanabe, I; Watanabe, E; Yoshida, K; Okabe, T
1999-03-01
There is little information regarding bond strengths of resin cements to cast titanium surfaces contaminated by investment material. This study examined the effect of surface contamination on the shear bond strength of resin cements to cast titanium and Ti-6Al-4V alloy. Two types of disks were cast from commercially pure titanium (CP-Ti) and Ti-6Al-4V alloy ingots using an argon-arc pressure casting unit and a phosphate-bonded Al2 O3 /LiAlSiO6 investment. After casting, disks were subjected to 3 surface treatments: (1) cast surface sandblasted (50 microm-sized Al2 O3 ) for 30 seconds; (2) metal surface sanded with silicon-carbide paper (600 grit) after grinding the contaminated cast surface (approximately 200 microm in thickness); and (3) metal surface sandblasted for 30 seconds after treatment 2. Surface structures were examined after each treatment with SEM and optical microscopy. Each type of disk was then bonded with 2 types of luting materials. Bonded specimens were subjected to thermocycling for up to 50,000 cycles, and shear bond strengths were determined after 0 (baseline) and 50,000 thermocycles. Results were statistically analyzed with 3-way ANOVA (P <.05). Microscopic observation of cast CP-Ti and Ti-6Al-4V exhibited noticeable structures on the cast surfaces apparently contaminated with investment material. However, there were no statistical differences (P >.05) in the bond strengths of both cements between contaminated (treatment 1) and uncontaminated surfaces (treatment 3) for both metals at baseline and after 50,000 thermocycles. The bond strength of specimens sanded with silicon-carbide paper (treatment 2) deteriorated dramatically after 50,000 thermocycles. Contamination of the cast metal surfaces by elements of the investment during casting did not affect bond strengths of the luting materials to CP-Ti and Ti-6Al-4V.
2016-12-30
Operational Variable LeakFinderRT Equipment Logistics Portable Case Pipe Material Pit Cast Iron, Spun Cast Iron, Steel , Ductile Iron, Asbestos Cement ...AND ACRONYMS AC asbestos cement AMI advanced metering infrastructure AWWA American Water Works Association CI cast iron DI ductile iron DoD...assessing their ability to detect and accurately locate leaks in challenging pipe types such as polyvinyl chloride (PVC), asbestos cement (AC), and
Under Pressure: The Utility of Spacers in Univalved Fiberglass Casts.
Kleis, Kevin; Schlechter, John A; Doan, Joshua D; Farnsworth, Christine L; Edmonds, Eric W
2017-02-24
Univalving fiberglass casts after fracture manipulation or extremity surgery reduces the risk of developing compartment syndrome (CS). Previous experiments have demonstrated that univalving decreases intracompartmental pressures (ICPs), but increases the risk for loss of fracture reduction due to altering the mechanical properties of the cast. The purpose of this study was to correlate cast valve width within a univalved cast model to decreasing ICP. Saline bags (1 L) were covered with stockinette, Webril, and fiberglass tape then connected to an arterial pressure line monitor. Resting pressure was recorded. A water column was added to simulate 2 groups (n=5 each) of clinical CS: low pressure CS (LPCS range, 28 to 31 mm Hg) and high pressure CS (HPCS, range, 64 to 68 mm Hg). After the designated pressure was reached, the fiberglass was cut (stockinette and Webril remained intact). Cast spacers were inserted into each univalve and secured with varying widths: position #1 (3 mm wide), #2 (6 mm), #3 (9 mm), and #4 (12 mm). Pressure was recorded after cutting the fiberglass and following each spacer placement. In LPCS and HPCS groups, after univalve and placement of spacer position #1, pressure dropped by a mean of 52% and 58%, respectively. Spacer #2, decreased the pressure by a mean of 78% and 80%, respectively. Both spacer sizes significantly decreased the underlying pressure in both groups. Spacer #3 and #4 progressively reduced pressure within the cast, but not statistically significantly more than the previous spacer widths. This experimental model replicates the iatrogenic elevation in interstitial compartment pressure due to rigid cast application, not necessarily a self-sustained true CS. Increasing the univalved cast spread by ≥9 mm of the initial cast diameter will reduce pressure to a pre-CS level; however, a spread of only 6 mm can effectively reduce the pressure to <30 mm Hg depending on the initial elevated ICP. Cutting the Webril and stockinette in our model yielded a pressure decrease of 91% and 94% from the starting experimental pressure in the LPCS and the HPCS groups, respectively. Although the utility of splitting fiberglass casts has been previously demonstrated, we present evidence highlighting the benefit of spacing the split by at least 6 to 9 mm.
An Analysis of Industrial Technology Curriculum and Its Significance to the Casting Industry.
ERIC Educational Resources Information Center
Hauser, Roger Emmett
The purpose of this study was to determine to what extent industrial technology programs are training technologists in light of the needs of the casting industry. To determine the type of curriculum needed to prepare individuals for entry into the casting industry, and to study industrial technology programs as they relate to metal casting,…
Abduo, Jaafar
2017-01-01
This study evaluated and compared the effect of conventional and digital wax-ups on three lateral occlusion variables: contact number, contact area, and steepness. Dental casts of 10 patients with Angle Class I relationship were included in the study. All patients required fixed prosthodontic treatment that would affect lateral occlusion. The casts of all patients received conventional and digital wax-ups. For pretreatment, conventional wax-up, and digital wax-up casts, contact number, contact area, and occlusion steepness were measured at four lateral positions, that is, at excursions of 0.5, 1.0, 2.0, and 3.0 mm from maximal intercuspation. Lateral occlusion scheme variables were affected by use of diagnostic wax-ups. For all types of casts, contact number decreased as excursion increased. The two types of wax-ups had similar contact number patterns, and contact number was significantly greater for these casts than for pretreatment casts in the earlier stages of excursion. Similarly, contact area gradually decreased with increasing excursion in the pretreatment and conventional and digital wax-up casts. There was only a minimal decrease in occlusion steepness as excursion increased. However, lateral occlusion was generally steeper for digital wax-up casts.
Fatigue of die cast zinc alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.
2006-04-01
The rotating bending fatigue limit of die cast zinc alloy 2, alloy 3, alloy 5, AcuZinc 5, and ZA-8 were determined as a part of an on-going program by ILZRO into the mechanical properties of die cast zinc. The stress-life (S-N) curves of alloys 3, 5, AcuZinc 5, and ZA-8 were determined previously. This presentation reports the results of the S-N curve for Alloy 2 and the calculated fatigue limits for all five alloys. During the previous stress-life testing, the samples were stopped at 10 million cycles and the fatigue limit for alloy 3, alloy 5, and AcuZinc 5 appearedmore » to be higher and the fatigue limit for ZA-8 appeared to be lower than the values reported in the literature. This was further investigated in alloy 5 and ZA-8 by testing continuous cast bulk alloy 5 and ZA-8.« less
Determining casting defects in near-net shape casting aluminum parts by computed tomography
NASA Astrophysics Data System (ADS)
Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter
2018-03-01
Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.
Planning for Your Child's Surgery (Osteogenesis Imperfecta)
... Casts. Inquire about cast options to accommodate your child’s age and stage of development. Discuss the shape and type of cast and ... also are entertaining. Many children enjoy listening to music through headphones. As your child begins to feel better, family visits can be ...
2010-01-01
Background Strict regulation of caste differentiation, at the molecular level, is thought to be important to maintain social structure in insect societies. Previously, a number of extrinsic and intrinsic factors have been shown to influence caste composition in termite colonies. One important factor is the influence of nestmates; in particular, soldier termites are known to inhibit hormone-dependent worker-to-soldier differentiation. However, soldier influences on nestmates at the molecular level are virtually unknown. Here, to test the hypothesis that soldiers can influence nestmate gene expression, we investigated the impact of four treatments on whole-body gene expression in totipotent Reticulitermes flavipes workers: (i) juvenile hormone III (JHIII; a morphogenetic hormone), (ii) soldier head extracts (SHE), (iii) JHIII+SHE, and (iv) live soldiers. Results Using quantitative-real-time PCR we determined the expression patterns of 49 previously identified candidate genes in response to the four treatments at assay days 1, 5, and 10. Thirty-eight total genes from three categories (chemical production/degradation, hemolymph protein, and developmental) showed significant differential expression among treatments. Most importantly, SHE and live soldier treatments had a significant impact on a number of genes from families known to play roles in insect development, supporting previous findings and hypotheses that soldiers regulate nestmate caste differentiation via terpene primer pheromones contained in their heads. Conclusions This research provides new insights into the impacts that socio-environmental factors (JH, soldiers, primer pheromones) can have on termite gene expression and caste differentiation, and reveals a number of socially-relevant genes for investigation in subsequent caste differentiation research. PMID:20416061
Tarver, Matthew R; Zhou, Xuguo; Scharf, Michael E
2010-04-23
Strict regulation of caste differentiation, at the molecular level, is thought to be important to maintain social structure in insect societies. Previously, a number of extrinsic and intrinsic factors have been shown to influence caste composition in termite colonies. One important factor is the influence of nestmates; in particular, soldier termites are known to inhibit hormone-dependent worker-to-soldier differentiation. However, soldier influences on nestmates at the molecular level are virtually unknown. Here, to test the hypothesis that soldiers can influence nestmate gene expression, we investigated the impact of four treatments on whole-body gene expression in totipotent Reticulitermes flavipes workers: (i) juvenile hormone III (JHIII; a morphogenetic hormone), (ii) soldier head extracts (SHE), (iii) JHIII+SHE, and (iv) live soldiers. Using quantitative-real-time PCR we determined the expression patterns of 49 previously identified candidate genes in response to the four treatments at assay days 1, 5, and 10. Thirty-eight total genes from three categories (chemical production/degradation, hemolymph protein, and developmental) showed significant differential expression among treatments. Most importantly, SHE and live soldier treatments had a significant impact on a number of genes from families known to play roles in insect development, supporting previous findings and hypotheses that soldiers regulate nestmate caste differentiation via terpene primer pheromones contained in their heads. This research provides new insights into the impacts that socio-environmental factors (JH, soldiers, primer pheromones) can have on termite gene expression and caste differentiation, and reveals a number of socially-relevant genes for investigation in subsequent caste differentiation research.
Corrosion casts of big bubbles formed during deep anterior lamellar keratoplasty.
Feizi, Sepehr; Kanavi, Mozhgan Rezaei; Kharaghani, Davood; Balagholi, Sahar; Meskinfam, Masoumeh; Javadi, Mohammad Ali
2016-11-01
To characterize the walls of big bubbles formed during deep anterior lamellar keratoplasty (DALK) using the corrosion casting technique. Fresh corneoscleral buttons with normal transparency and without any known eye diseases (n = 11) were obtained from 11 human donors. A 20-gauge needle was used to inject a solution of 20 % polyvinyl alcohol (PVA) immediately beneath the corneal endothelium to form big bubbles in eight corneoscleral buttons. In the second experiment on three corneoscleral buttons, a big bubble was first formed by air injection beneath the endothelium. Thereafter, 20 % PVA was injected into the bubble space. Scanning electron microscopy was used to characterize the surfaces of the casts, which replicated the walls of the big bubbles. A type-1 bubble was formed in all corneas. In one cornea, one type-1 bubble was initially formed centrally, and while it was enlarged, an eccentric type-2 bubble appeared. Scanning electron microscopy showed that the casts of type-1 bubbles had two distinct surfaces. The anterior surface demonstrated several holes or pits, depending on the material used for the bubble formation, whereas the posterior surface exhibited an uneven surface. The anterior and posterior surfaces of the type-2 cast were more or less similar. A communication measuring 531.9 µm in length and 171.4 µm in diameter was found between the two bubbles. The corrosion casting technique provides a permanent three-dimensional record of the potential spaces and barriers in the posterior corneal stroma, which explains several features associated with big-bubble DALK.
Crystallography of in-situ transformations of the M 7C3 carbide in the cast Fe-Cr-Ni alloy
NASA Astrophysics Data System (ADS)
Kraposhin, V. S.; Kondrat'ev, S. Yu.; Talis, A. L.; Anastasiadi, G. P.
2017-03-01
In the process of holding of the cast heat-resistant Fe-Cr-Ni (0.45C-25Cr-35Ni) alloy at 1150°C, the eutectic chromium carbide present in its structure undergoes a gradual transition M 7C3 → M 23C6. The gradual formation of domains of the M 23C6 carbide inside the particles of the M 7C3 carbide makes it possible to assume that the observed phase transition is the well-known carbide transformation of the in situ type. The mechanism of the in situ transformation of the crystal structure of the carbide from M 7C3 into M 23C6 with a change in the number of nearest metal neighbors of carbon atoms is explained within the previously developed combinatory model of polymorphic transitions in the metals.
Watanabe, I; Watanabe, E; Cai, Z; Okabe, T; Atsuta, M
2001-09-01
The aim of this study was to investigate the effect of various heat treatments on the mechanical properties of gold alloys capable of age-hardening at intraoral temperature. Dumbbell-shaped patterns (ISO 6871) were cast with three gold alloys (Sofard; NC Type-IV; Aurum Cast, NihombashiTokuriki Co.). The Sofard alloy is age-hardenable at intraoral temperature. The castings underwent various heat treatments [as-cast (AC); solution treatment (ST); high-temperature aging (HA); intraoral aging (IA)]. After these heat treatments, ultimate tensile strength (UTS), 0.2% offset yield strength (YS), and elongation (EL) were measured at a strain rate of 1.7x10(-4)/s. Fracture surfaces of the specimens after tensile testing were observed using SEM. Vickers hardness was also measured after heat treating. After IA, the hardness values of the Sofard alloy increased and reached values similar to the hardness of the Sofard specimens aged at high temperature (HA). The hardness values of the NC Type-IV and Aurum Cast specimens slightly increased after IA, but did not reach the values of the specimens after HA. All the Sofard, NC Type-IV and Aurum Cast specimens showed significantly (P<0.05) greater hardness values after HA, compared with the values after any other heat treatments (AC, ST and IA). The UTS and YS of the specimens indicated a tendency similar to the results obtained for hardness. The Sofard specimens with ST showed the greatest elongation compared to the corresponding NC Type-IV and Aurum Cast specimens. However, the elongation of the Sofard specimens was abruptly reduced after intraoral aging. Intraoral aging significantly improved the mechanical properties and hardness of the Sofard alloy.
Management of Intolerance to Casting the Upper Extremities in Claustrophobic Patients
Nagura, Issei; Kanatani, Takako; Sumi, Masatoshi; Inui, Atsuyuki; Mifune, Yutaka; Kokubu, Takeshi; Kurosaka, Masahiro
2014-01-01
Introduction. Some patients showed unusual responses to the immobilization without any objective findings with casts in upper extremities. We hypothesized their that intolerance with excessive anxiety to casts is due to claustrophobia triggered by cast immobilization. The aim of this study is to analyze the relevance of cast immobilization to the feeling of claustrophobia and discover how to handle them. Methods. There were nine patients who showed the caustrophobic symptoms with their casts. They were assesed whether they were aware of their claustrophobis themselves. Further we investigated the alternative immobilization to casts. Results. Seven out of nine cases that were aware of their claustrophobic tendencies either were given removable splints initially or had the casts converted to removable splints when they exhibited symptoms. The two patients who were unaware of their latent claustrophobic tendencies were identified when they showed similar claustrophobic symptoms to the previous patients soon after short arm cast application. We replaced the casts with removable splints. This resolved the issue in all cases. Conclusions. We should be aware of the claustrophobia if patients showed unusual responses to the immobilization without any objective findings with casts in upper extremities, where removal splint is practical alternative to cast to continue the treatment successfully. PMID:25379544
EPA’s ToxCast chemical library spans diverse chemical use-types, functionalities, structures and features potentially relevant to toxicity and environmental exposure. However, this structural diversity, along with assay noise and low average hit rates across the varied ToxCast h...
The perception of 3-D shape from shadows cast onto curved surfaces.
Norman, J Farley; Lee, Young-lim; Phillips, Flip; Norman, Hideko F; Jennings, L RaShae; McBride, T Ryan
2009-05-01
In a natural environment, cast shadows abound. Objects cast shadows both upon themselves and upon background surfaces. Previous research on the perception of 3-D shape from cast shadows has only examined the informativeness of shadows cast upon flat background surfaces. In outdoor environments, however, background surfaces often possess significant curvature (large rocks, trees, hills, etc.), and this background curvature distorts the shape of cast shadows. The purpose of this study was to determine the extent to which observers can "discount" the distorting effects of curved background surfaces. In our experiments, observers viewed deforming or static shadows of naturally shaped objects, which were cast upon flat and curved background surfaces. The results showed that the discrimination of 3-D object shape from cast shadows was generally invariant over the distortions produced by hemispherical background surfaces. The observers often had difficulty, however, in identifying the shadows cast onto saddle-shaped background surfaces. The variations in curvature which occur in different directions on saddle-shaped background surfaces cause shadow distortions that lead to difficulties in object recognition and discrimination.
Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi₂ Thermoelectric Materials.
Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi
2014-09-04
The upgrade recycling of cast-iron scrap chips towards β-FeSi₂ thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi₂ is reduced and the industrial waste is recycled. In this study, β-FeSi₂ specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit ( ZT ) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi₂ prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi₂ shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.
Kioleoglou, Ioannis; Pissiotis, Argirios
2018-01-01
Background The purpose of this study was to evaluate the accuracy of fitting of an implant supported screw-retained bar made on definitive casts produced by 4 different dental stone products. Material and Methods The dental stones tested were QuickRock (Protechno), FujiRock (GC), Jade Stone (Whip Mix) and Moldasynt (Heraeus). Three external hexagon implants were placed in a polyoxymethylene block. Definitive impressions were made using monophase high viscosity polyvinylsiloxane in combination with custom trays. Then, definitive models from the different types of dental stones were fabricated. Three castable cylinders with a machined non-enganging base were cast and connected with a very small quantity of PMMA to a cast bar, which was used to verify the marginal discrepancies between the abutments and the prosthetic platforms of the implants. For that purpose special software and a camera mounted on an optical microscope were used. The gap was measured by taking 10 measurements on each abutment, after the Sheffield test was applied. Twelve definitive casts were fabricated for each gypsum product and 40 measurements were performed for each cast. Mean, minimum, and maximum values were calculated. The Shapiro-Wilk test of normality was performed. Mann-Whitney test (P<.06) was used for the statistical analysis of the measurements. Results The non-parametric Kruskal-Wallis test revealed a statistically significant effect of the stone factor on the marginal discrepancy for all Sheffield test combinations: 1. Abutment 2 when screw was fastened on abutment 1 (χ2=3, df=35.33, P<0.01), 2. Abutment 3 when the screw was fastened on abutment 1 (χ2=3, df=37.74, P<0.01), 3. Abutment 1 when the screw was fastened on abutment 3 (χ2=3, df=39.79, P<0.01), 4. Abutment 2 when the screw was fastened on abutment 3 (χ2=3, df=37.26, P<0.01). Conclusions A significant correlation exists between marginal discrepancy and different dental gypsum products used for the fabrication of definitive casts for implant supported bars. The smallest marginal discrepancy was noted on implant supported bars fabricated on definitive casts made by Type III mounting stone. The biggest marginal discrepancy was noted on implant supported bars fabricated on definitive casts made by Type V dental stone. The marginal discrepancies presented on implant supported bars fabricated on definitive casts made by two types of Type IV dental stone were not significantly different. Key words:Dental implant, passive fit, dental stones, marginal discrepancy. PMID:29721227
Keohane, John; Moore, Michael; O'Mahony, Seamus; Crosbie, Orla
2008-02-01
Biliary stent occlusion is a major complication of endoscopic stent insertion and results in repeat procedures. Various theories as to the etiology have been proposed, the most frequently studied is the attachment of gram negative bacteria within the stent. Several studies have shown prolongation of stent patency with antibiotic prophylaxis. We report the case of stent occlusion from a cast of a previously inserted straight biliary stent; a "stent cast" in an 86-year-old woman with obstructive jaundice. This was retrieved with the lithotrypter and she made an uneventful recovery. This is the first reported case of a biliary stent cast.
Relationship between Defect Size and Fatigue Life Distributions in Al-7 Pct Si-Mg Alloy Castings
NASA Astrophysics Data System (ADS)
Tiryakioğlu, Murat
2009-07-01
A new method for predicting the variability in fatigue life of castings was developed by combining the size distribution for the fatigue-initiating defects and a fatigue life model based on the Paris-Erdoğan law for crack propagation. Two datasets for the fatigue-initiating defects in Al-7 pct Si-Mg alloy castings, reported previously in the literature, were used to demonstrate that (1) the size of fatigue-initiating defects follow the Gumbel distribution; (2) the crack propagation model developed previously provides respectable fits to experimental data; and (3) the method developed in the present study expresses the variability in both datasets, almost as well as the lognormal distribution and better than the Weibull distribution.
High-Energy-Density Capacitors
NASA Technical Reports Server (NTRS)
Slenes, Kirk
2003-01-01
Capacitors capable of storing energy at high densities are being developed for use in pulse-power circuits in such diverse systems as defibrillators, particle- beam accelerators, microwave sources, and weapons. Like typical previously developed energy-storage capacitors, these capacitors are made from pairs of metal/solid-dielectric laminated sheets that are wound and pressed into compact shapes to fit into cans, which are then filled with dielectric fluids. Indeed, these capacitors can be fabricated largely by conventional fabrication techniques. The main features that distinguish these capacitors from previously developed ones are improvements in (1) the selection of laminate materials, (2) the fabrication of the laminated sheets from these materials, and (3) the selection of dielectric fluids. In simplest terms, a high-performance laminated sheet of the type used in these capacitors is made by casting a dielectric polymer onto a sheet of aluminized kraft paper. The dielectric polymer is a siloxane polymer that has been modified with polar pendant groups to increase its permittivity and dielectric strength. Potentially, this polymer is capable of withstanding an energy density of 7.5 J/cm3, which is four times that of the previous state-of-the-art-capacitor dielectric film material. However, the full potential of this polymer cannot be realized at present because (1) at thicknesses needed for optimum performance (.8.0 m), the mechanical strength of a film of this polymer is insufficient for incorporation into a wound capacitor and (2) at greater thickness, the achievable energy density decreases because of a logarithmic decrease in dielectric strength with increasing thickness. The aluminized kraft paper provides the mechanical strength needed for processing of the laminate and fabrication of the capacitor, and the aluminum film serves as an electrode layer. Because part of the thickness of the dielectric is not occupied by the modified siloxane polymer, the achievable energy density must be somewhat less than the maximum value. The laminate is produced by a continuous film-casting process, using the machinery depicted schematically in the figure. The designs of the process and machinery are dictated partly by the fact that during the processing step prior to casting the polymer, the aluminized kraft paper becomes wet with water. Because the polymer resin to be cast is hydrophobic, the paper must be dried to make it possible to coat the paper uniformly, leaving no pinholes. Accordingly, an infrared heater is placed next to the paper feed roll to dry the paper prior to casting.
NASA Astrophysics Data System (ADS)
Ramos, J.; Piamba, J. F.; Sánchez, H.; Alcazar, G. A. Pérez
2015-06-01
In present study Fe-29.0Mn-6Al-0.9C-1.8Mo-1.6Si-0.4Cu (%w) alloy was obtained after melted in an induction furnace, and then molded as an ingot. From the as cast ingot it were cut samples for the different characterization measurements. The microstructure of the as-cast sample is of dendritic type and its XRD pattern was refined with the lines of the austenite, with a big volumetric fraction, and the lines of the martensite, with small volumetric fraction. The Mössbauer spectrum of the sample was fitted with a broad singlet which corresponds to disordered austenite. After the tribology test, its XRD pattern was refined with the lines of two austenite phases, one similar to the previous one and other with bigger lattice parameter. The total volumetric fraction of the austenite is smaller than that obtained for sample without wear. It was added the lines of the martensite phase with bigger volumetric fraction than that of the previous sample. The Mössbauer spectrum of the weared sample was fitted with two paramagnetic sites which correspond to the two Fe austenite phases and a hyperfine magnetic field distribution which is associated to the disordered original martensite and the new one which appears in the surface as a consequence of the wear process. These results show that during wear process the original austenite phase is transformed in martensite and in a new austenite phase. The increases of the martensitic phase improves mechanical properties and wear behavior.
Transitions between type A flake, type D flake, and coral graphite eutectic structures in cast irons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.S.; Verhoeven, J.D.
1996-09-01
Directional solidification experiments were used to measure the transition velocities between the type A and coral eutectic structures in high-purity cast irons and between the type A and type D eutectic structures in S and Te doped cast irons. Introduction of O into the gas atmosphere was found to have little effect on the A {R_arrow} D transition velocities in S doped alloys, but it produced a strong reduction in the A {R_arrow} coral transition velocities in high-purity irons. Transmission electron microscopy revealed interesting variations in the defect structures of the graphite in the flake irons vs the type ofmore » flake (A or D) and the type of doping element. Scanning Auger microscopy demonstrated that both S and Te segregate to the iron/graphite interface. In the S doped alloys, type A flakes are generally covered with a monolayer of S with patches of O in the form of iron oxide having a thickness on the order of 2 nm. A series of experiments, including examination of fracture surfaces at the quenched solid/liquid growth front, have shown that S segregates to the iron/graphite interfaces from the liquid at the growth front, but O forms at these interfaces during the cooldown. These results are discussed in relation to current models of eutectic growth in cast irons.« less
MicroRNAs Associated with Caste Determination and Differentiation in a Primitively Eusocial Insect
Collins, David H.; Mohorianu, Irina; Beckers, Matthew; Moulton, Vincent; Dalmay, Tamas; Bourke, Andrew F. G.
2017-01-01
In eusocial Hymenoptera (ants, bees and wasps), queen and worker adult castes typically arise via environmental influences. A fundamental challenge is to understand how a single genome can thereby produce alternative phenotypes. A powerful approach is to compare the molecular basis of caste determination and differentiation along the evolutionary trajectory between primitively and advanced eusocial species, which have, respectively, relatively undifferentiated and strongly differentiated adult castes. In the advanced eusocial honeybee, Apis mellifera, studies suggest that microRNAs (miRNAs) play an important role in the molecular basis of caste determination and differentiation. To investigate how miRNAs affect caste in eusocial evolution, we used deep sequencing and Northern blots to isolate caste-associated miRNAs in the primitively eusocial bumblebee Bombus terrestris. We found that the miRNAs Bte-miR-6001-5p and -3p are more highly expressed in queen- than in worker-destined late-instar larvae. These are the first caste-associated miRNAs from outside advanced eusocial Hymenoptera, so providing evidence for caste-associated miRNAs occurring relatively early in eusocial evolution. Moreover, we found little evidence that miRNAs previously shown to be associated with caste in A. mellifera were differentially expressed across caste pathways in B. terrestris, suggesting that, in eusocial evolution, the caste-associated role of individual miRNAs is not conserved. PMID:28361900
Tarver, Matthew R; Schmelz, Eric A; Rocca, James R; Scharf, Michael E
2009-02-01
Primer pheromones play key roles in regulating division of labor, which is a fundamental and defining aspect of insect sociality. Primer pheromones are chemical messengers that transmit hormone-like messages among colony members; in recipients, these messages can either induce or suppress phenotypic caste differentiation. Here, we investigated soldier caste-derived chemicals as possible primer pheromones in the lower termite Reticulitermes flavipes, a species for which no primer pheromones have yet been identified. We determined that soldier head extracts (SHE), when provided to totipotent workers along with the insect morphogenetic juvenile hormone (JH), significantly enhanced soldier caste differentiation. When applied alone, however, SHE had no impacts on caste differentiation, survivorship, or any other aspect of worker biology. These findings support a function of soldier chemicals as primer pheromones that enhance the action of the endogenous JH. In accord with previous studies, gamma-cadinene and the corresponding aldehyde, gamma-cadinenal, were identified by gas chromatography-mass spectrometry and nuclear magnetic resonance analyses as the two most abundant components of R. flavipes SHE. Validative bioassays with commercially available cadinene confirmed activity. Several other terpenes, previously identified in R. flavipes soldiers, also were found to be active. These findings reveal a novel primer pheromone-like function for soldier-derived terpenes in termites and further suggest convergent evolution of terpene functions in enhancing JH-dependent soldier caste differentiation.
Influence of polyurethane resin dies on the fit and adaptation of full veneer crowns.
Lillywhite, Graeme R R; Vohra, Fahim
2015-01-01
Polyurethane resin is a possible alternative to type IV dental stone for fabrication of indirect restorations however its dimensional accuracy is questionable. The aim was to investigate the dimensional accuracy of silica filled polyurethane resin die material by evaluating the marginal fit and adaptation of indirect gold castings. Experimental, in vitro study. Totally 40 copper plated replicas of a nickel chrome master die analogous to a veneer gold crown preparation were made and impressions recorded using polyvinylsiloxane material. Twenty impressions were poured in type IV dental stone (control group (Vel-mix, Kerr, UK) and the remaining (n = 20) in silica filled polyurethane die material (test group) (Alpha Die MF, CA, USA). Gold castings were fabricated for each die using standardized techniques. The castings were seated on their respective copper plated dies, embedded in resin and sectioned. The specimens were analyzed by measuring marginal opening and the area beneath the casting at a ×63 magnification and using image analysis software. Data were analyzed using a Student's t-test. No significant difference was observed between the experimental groups (P > 0.05). The mean marginal opening for type IV, dental stone and polyurethane resin, was 57 ± 22.6 μm and 63.47 ± 27.1 μm, respectively. Stone displayed a smaller area beneath the casting (31581 ± 16297 μm 2 ) as compared to polyurethane resin (35003 ± 23039 μm 2 ). The fit and adaptation of indirect gold castings made on polyurethane and type IV dental stone dies were comparable.
Shah, Shabir A; Naqash, Talib Amin; Padmanabhan, T V; Subramanium; Lambodaran; Nazir, Shazana
2014-03-01
The sole objective of casting procedure is to provide a metallic duplication of missing tooth structure, with as great accuracy as possible. The ability to produce well fitting castings require strict adherence to certain fundamentals. A study was undertaken to comparatively evaluate the effect on casting accuracy by subjecting the invested wax patterns to burnout after different time intervals. The effect on casting accuracy using metal ring into a pre heated burnout furnace and using split ring was also carried. The readings obtained were tabulated and subjected to statistical analysis.
Religion insulates ingroup evaluations: the development of intergroup attitudes in India.
Dunham, Yarrow; Srinivasan, Mahesh; Dotsch, Ron; Barner, David
2014-03-01
Research on the development of implicit intergroup attitudes has placed heavy emphasis on race, leaving open how social categories that are prominent in other cultures might operate. We investigate two of India's primary means of social distinction, caste and religion, and explore the development of implicit and explicit attitudes towards these groups in minority-status Muslim children and majority-status Hindu children, the latter drawn from various positions in the Hindu caste system. Results from two tests of implicit attitudes find that caste attitudes parallel previous findings for race: higher-caste children as well as lower-caste children have robust high-caste preferences. However, results for religion were strikingly different: both lower-status Muslim children and higher-status Hindu children show strong implicit ingroup preferences. We suggest that religion may play a protective role in insulating children from the internalization of stigma. © 2013 John Wiley & Sons Ltd.
Y-chromosomal insights into the genetic impact of the caste system in India.
Zerjal, Tatiana; Pandya, Arpita; Thangaraj, Kumarasamy; Ling, Edmund Y S; Kearley, Jennifer; Bertoneri, Stefania; Paracchini, Silvia; Singh, Lalji; Tyler-Smith, Chris
2007-03-01
The caste system has persisted in Indian Hindu society for around 3,500 years. Like the Y chromosome, caste is defined at birth, and males cannot change their caste. In order to investigate the genetic consequences of this system, we have analysed male-lineage variation in a sample of 227 Indian men of known caste, 141 from the Jaunpur district of Uttar Pradesh and 86 from the rest of India. We typed 131 Y-chromosomal binary markers and 16 microsatellites. We find striking evidence for male substructure: in particular, Brahmins and Kshatriyas (but not other castes) from Jaunpur each show low diversity and the predominance of a single distinct cluster of haplotypes. These findings confirm the genetic isolation and drift within the Jaunpur upper castes, which are likely to result from founder effects and social factors. In the other castes, there may be either larger effective population sizes, or less strict isolation, or both.
ERIC Educational Resources Information Center
Chauhan, Chandra Pal Singh
2008-01-01
This paper analyses the policy of reservation for lower castes in India. This policy is similar to that of affirmative action in the United States. The paper provides a brief overview of the caste system and discusses the types of groups that are eligible for reservation, based on data from government reports. The stance of this paper is that…
Effect of microwave disinfection on compressive and tensile strengths of dental stones.
Robati Anaraki, Mahmood; Moslehifard, Elnaz; Aminifar, Soran; Ghanati, Hamed
2013-01-01
Although microwave irradiation has been used for disinfection of dental stone casts, there are concerns regarding mechanical damage to casts during the process. The aim of this study was to evaluate the effect of microwave irradiation on the compressive strength (CS) and diametral tensile strength (DTS) of stone casts. In this in vitro study, 80 cylindrical type III and IV stone models (20 × 40 mm) were prepared and divided into 8 groups of 10. The DTS and CS of the specimens were measured by a mechanical testing machine at a crosshead speed of 0.5 cm/min after 7 times of frequent wetting, irradiating at an energy level of 600 W for 3 minutes and cooling. Data were analyzed by Student's t-test. Microwave irradiation significantly increased DTS of type III and IV to 5.23 ± 0.64 and 8.17 ± 0.94, respectively (P < 0.01). According to the results, microwave disinfection increases DTS of type III and IV stone casts without any effects on their CS.
An Investigation into the Effects of Sprue Attachment Design on Porosity and Castability
1990-12-01
of a dental alloy: sprue design, mold temperature, fusing and casting temperature of the alloy, type of casting machine, casting force, burnout time... Student at: University of Texas, San Antonio AFIT/CI/CIA-90-119 AFIT/CI Wright-Patterson AFB OH 45433-6583 Approved for Public Release IAW AFR 190-1...Supervising Professor: E. Steven Duke, D.D.S., M.S.D. Many variables are involved in the process of fabricating a dense dental casting which accurately
Prosthetic management of malpositioned implant using custom cast abutment
Chatterjee, Aishwarya; Ragher, Mallikarjuna; Patil, Sanket; Chatterjee, Debopriya; Dandekeri, Savita; Prabhu, Vishnu
2015-01-01
Two cases are reported with malpositioned implants. Both the implants were placed 6–7 months back. They had osseointegrated well with the surrounding bone. However, they presented severe facial inclination. Case I was restored with custom cast abutment with an auto polymerizing acrylic gingival veneer. Case II was restored with custom cast UCLA type plastic implant abutment. Ceramic was directly fired on the custom cast abutments. The dual treatment strategy resulted in functional and esthetic restorations despite facial malposition of the implants. PMID:26538957
Research on the influence of moulding-casting technology on the quality of castings
NASA Astrophysics Data System (ADS)
Josan, A.; Pinca Bretotean, C.; Raţiu, S.; Ardelean, E.; Ardelean, M.
2017-05-01
The quality of castings has a particularly role in the Romanian foundries. In this context, quality assurance is the overall objective of the foundries. The paper presents the critical analysis performed on moulding-casting technology of the type Lifting mechanism. This casting is a subset of the lifting and rotating mechanism of the furnace vault. The casting analysed is a medium size, with weight of 114 kg. The current moulding-casting technology involves moulding into three mould-parts leading to the occurrence of defects (decentering of the core, displacement of the lower mould and the middle mould and occurrence of burrs in area separated. Thus, to reduce the percentage of defects registered in industrial practice is necessary to change the moulding-casting technology. This requires the use of two mould-parts, re-dimensioning of the core and the core box and dimensioning of the runner network. The adoption of these changes in industrial practice has direct implications on the cost of casting and foundry costs default.
Ekwall, Anna; Carlberg, Eva; Palmberg, Gunilla; Sloberg, Rut
2018-06-01
Patients of all ages present to the Emergency Department (ED) with fractures that require immobilization using a cast. Various casting materials are used, all with advantages and disadvantages and there are considerable risks associated with fracture management using cast immobilization. The frequency and severity of complications from fiberglass or hybrid casts applied in the emergency setting has not previously been studied. The aim of this audit was to describe all the complications that occurred within 30 days in patients who had a fiberglass cast applied for immobilization of uncomplicated, non-angulated fractures of the foot, ankle or forearm. A retrospective care record audit was conducted that included 430 patients. The most common complications found were skin complications and cast related problems. No severe complications (e.g. compartment syndrome, venous thromboembolism or infection) were found. Fiberglass casts did not cause severe complications in this group of patients with uncomplicated fractures of the extremities. However, 25% of the patients experienced some form of complication. Interventions are needed that minimize the frequency of complications. As with all healthcare interventions, it is crucial that staff applying casts and providing follow-up care are competent. If casts are applied correctly and the patient is well informed and concordant, complications can be avoided. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lee, Sook Joung; Sung, In Young; Jang, Dae Hyun; Yi, Jin Hwa; Lee, Jin Ho; Ryu, Ju Seok
2011-06-01
To identify the effect of serial casting combined with Botulinum toxin type A (BTX-A) injection on spastic equinus foot. Twenty-nine children with cerebral palsy who had equinus foot were recruited from the outpatient clinic of Rehabilitation Medicine. The children were divided into 2 groups, one of which received serial casting after BTX-A injection, and the other which only received BTX-A injection. Serial casting started 3 weeks after the BTX-A injection, and was changed weekly for 3 times. Spasticity of the ankle joint was evaluated using the modified Ashworth scale (MAS), and the modified Tardieu scale (MTS). Gait pattern was measured using the physician's rating scale (PRS). The degree of ankle dorsiflexion and the MAS improved significantly until 12 weeks following the BTX-A injection in the serial casting group (p<0.001), while the BTX-A injection-only group improved until 6 weeks following injection (p<0.05). The combined group showed a significantly greater increase in the degree of dorsiflexion compared to the BTX-A injection-only group at post-injection weeks 6 and 12 (p<0.05). Three children (11.5%) suffered from foot ulcers as a complication caused by the serial casting. Our study demonstrated that the effect of BTX-A injection with serial casting was superior and lasted longer than the effect of BTX-A injection only in patients with spastic equinus foot. We therefore recommend BTX-A injection with serial casting for the treatment of equinus foot. However, physicians must also consider the possible complications associated with serial casting.
Papaspyridakos, Panos; Hirayama, Hiroshi; Chen, Chun-Jung; Ho, Chung-Han; Chronopoulos, Vasilios; Weber, Hans-Peter
2016-09-01
The aim of this study was to assess the effect of connection type and impression technique on the accuracy of fit of implant-supported fixed complete-arch dental prostheses (IFCDPs). An edentulous mandibular cast with five implants was fabricated to serve as master cast (control) for both implant- and abutment-level baselines. A titanium one-piece framework for an IFCDP was milled at abutment level and used for accuracy of fit measurements. Polyether impressions were made using a splinted and non-splinted technique at the implant and abutment level leading to four test groups, n = 10 each. Hence, four groups of test casts were generated. The impression accuracy was evaluated indirectly by assessing the fit of the IFCDP framework on the generated casts of the test groups, clinically and radiographically. Additionally, the control and all test casts were digitized with a high-resolution reference scanner (IScan D103i, Imetric, Courgenay, Switzerland) and standard tessellation language datasets were generated and superimposed. Potential correlations between the clinical accuracy of fit data and the data from the digital scanning were investigated. To compare the accuracy of casts of the test groups versus the control at the implant and abutment level, Fisher's exact test was used. Of the 10 casts of test group I (implant-level splint), all 10 presented with accurate clinical fit when the framework was seated on its respective cast, while only five of 10 casts of test group II (implant-level non-splint) showed adequate fit. All casts of group III (abutment-level splint) presented with accurate fit, whereas nine of 10 of the casts of test group IV (abutment-level non-splint) were accurate. Significant 3D deviations (P < 0.05) were found between group II and the control. No statistically significant differences were found between groups I, III, and IV compared with the control. Implant connection type (implant level vs. abutment level) and impression technique did affect the 3D accuracy of implant impressions only with the non-splint technique (P < 0.05). For one-piece IFCDPs, the implant-level splinted impression technique showed to be more accurate than the non-splinted approach, whereas at the abutment-level, no difference in the accuracy was found. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sun, Zhizhong; Niu, Xiaoping; Hu, Henry
In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in 5-step casting were determined based on experimental thermal histories data throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTC were evaluated using the polynomial curve fitting method. The results show that the wall thickness affects IHTC peak values significantly. The IHTC value for the thick step is higher than that for the thin steps.
The effect of investment type on the fit of cast titanium crowns.
Mori, T; Jean-Louis, M; Yabugami, M; Togaya, T
1994-12-01
In order to determine the best laboratory procedure for titanium crown casting, a set of thermal expansion measurements and casting experiments were carried out using a casting machine (argon arc, pressure difference type) and three different investments, two conventional SiO2 based investments and a new Al2O3/MgO based investment. The thermal expansion measurements involved a cycle of heating and cooling. The relatively low mould temperatures recommended (200 degrees C) or chosen (350 degrees C) for the conventional investments provided zero or negative mould expansion for the compensation of metal shrinkage. Crowns made from these investments exhibited heavy reaction with the mould, and the common cleaning method of sand blasting appeared to be essential. This cleaning process, however, was not adequate for the assessment of casting accuracy as the short sand blasting time (15 s) rapidly altered the fit of the crowns. The metal reacted little with the new investment and the best compensation (0.15 mm discrepancy) for the metal shrinkage, as assessed 'as cast', was achieved when the investment was heated to 950 degrees C and then cooled to the recommended mould temperature (600 degrees C).
The influence of cooling parameters on the speed of continuous steel casting
NASA Astrophysics Data System (ADS)
Tirian, G. O.; Gheorghiu, C. A.; Hepuţ, T.; Chioncel, C. P.
2018-01-01
This paper analyzes the cooling parameters of the continuous casting speed. In the researches carried out we aimed to establish some correlation equations between the parameters characterizing the continuous casting process, the temperature of the steel at the entrance to the crystallizer, the superheating of the steel and the flow of the cooling water in the crystallizer and different zones of the secondary cooling. Parallel to these parameters were also the values for the casting speed. The research was made for the casting of round ϕ270mm semi-finished steel products. The steel was developed in an electric EBT furnace with a capacity of 100t, treated in L.F. (Ladle - Furnace) and VD (Vacuum-Degassing) and poured in a 5-wire continuous casting plant. The obtained data was processed in MATLAB using three types of correlation equations. The obtained results are presented both in the analytical and graphical form, each correlation being analyzed from the technological point of view, indicating the optimal values for the independent parameters monitored. In the analysis we present a comparison between the results obtained after the three types of equations for each correlation.
Incidence and etiology of unplanned cast changes for fractures in the pediatric population.
DiPaola, Matthew J; Abzug, Joshua M; Pizzutillo, Peter D; Herman, Martin J
2014-09-01
The majority of pediatric fractures are treated in casts due to the child's ability to heal rapidly and remodel. Unplanned cast changes are a time and economic burden with potentially adverse effects on fracture management. The purpose of this study is to document the incidence, etiology, and complications related to unplanned cast changes. A prospective study was conducted over a 6-month period to determine the incidence of unplanned cast changes. All casts applied were nonwaterproof. Data collected include the reason for cast placement, type of cast placed, duration of wear before the unplanned change, reason for the unplanned change, experience level of the original cast applicator, and cast-related complications. A total of 1135 casts were placed with 58% placed by a resident, 38% by a cast technician, 2% by a physician's assistant, and 2% by an attending physician. Sixty casts (5.3%) required an unplanned change including 19 short-arm casts, 18 short-leg casts, 17 long-arm casts, 4 thumb spica casts, and 2 long-leg casts. The average duration from cast application until the unplanned change was 13 days. Twenty-eight (47%) were changed for wetness, 20 (33%) for wear/breakage, 2 (3%) for skin irritation, and 10 (17%) for other reasons including objects in the cast and patient self-removal. Two patients had superficial skin infections requiring oral antibiotics. No fracture reductions were lost secondary to an unplanned cast change. The need for an unplanned cast change did not correlate with the level of experience of the applicator. Most unplanned cast changes were the result of patient nonadherence to instructions and not related to cast application technique. Improved patient and family education regarding cast care may reduce the frequency of unplanned cast changes, thus reducing an economic and time burden on the health care system. Level II--prognostic study.
Ye, Hao; Luo, Heng; Ng, Hui Wen; Meehan, Joe; Ge, Weigong; Tong, Weida; Hong, Huixiao
2016-01-01
ToxCast data have been used to develop models for predicting in vivo toxicity. To predict the in vivo toxicity of a new chemical using a ToxCast data based model, its ToxCast bioactivity data are needed but not normally available. The capability of predicting ToxCast bioactivity data is necessary to fully utilize ToxCast data in the risk assessment of chemicals. We aimed to understand and elucidate the relationships between the chemicals and bioactivity data of the assays in ToxCast and to develop a network analysis based method for predicting ToxCast bioactivity data. We conducted modularity analysis on a quantitative network constructed from ToxCast data to explore the relationships between the assays and chemicals. We further developed Nebula (neighbor-edges based and unbiased leverage algorithm) for predicting ToxCast bioactivity data. Modularity analysis on the network constructed from ToxCast data yielded seven modules. Assays and chemicals in the seven modules were distinct. Leave-one-out cross-validation yielded a Q(2) of 0.5416, indicating ToxCast bioactivity data can be predicted by Nebula. Prediction domain analysis showed some types of ToxCast assay data could be more reliably predicted by Nebula than others. Network analysis is a promising approach to understand ToxCast data. Nebula is an effective algorithm for predicting ToxCast bioactivity data, helping fully utilize ToxCast data in the risk assessment of chemicals. Published by Elsevier Ltd.
Angiogenesis is a critical developmental process and a potential target for chemical teratogenesis. Over one-tenth of the Tox21 library of 10,000 compounds have been shown to disrupt mitochondrial function [Attene-Ramos et al., 2015]. Previous studies utilizing ToxCast chemicals ...
AMCC casting development, volume 2
NASA Technical Reports Server (NTRS)
1995-01-01
PCC successfully cast and performed nondestructive testing, FPI and x-ray, on seventeen AMCC castings. Destructive testing, lab analysis and chemical milling, was performed on eleven of the castings and the remaining six castings were shipped to NASA or Aerojet. Two of the six castings shipped, lots 015 and 016, were fully processed per blueprint requirements. PCC has fully developed the gating and processing parameters of this part and feels the part could be implemented into production, after four more castings have been completed to ensure the repeatability of the process. The AMCC casting has been a technically challenging part due to its size, configuration, and alloy type. The height and weight of the wax pattern assembly necessitated the development of a hollow gating system to ensure structural integrity of the shell throughout the investment process. The complexity in the jacket area of the casting required the development of an innovative casting technology that PCC has termed 'TGC' or thermal gradient control. This method of setting up thermal gradients in the casting during solidification represents a significant process improvement for PCC and has been successfully implemented on other programs. The alloy, JBK75, is a relatively new alloy in the investment casting arena and required our engineering staff to learn the gating, processing, and dimensional characteristics of the material.
Csiszár, Emilia; Nagy, Sebestyén
2017-10-15
Cellulose nanocrystals (CNCs) were released from bleached cotton and flax by a sulphuric acid hydrolysis with about 40 and 34% yield, respectively. The rod-like cotton-CNC particles were slightly longer and wider and had a less pronounced aggregation ability in aqueous suspension than the flax-CNC ones. Films were cast from the CNC suspensions with sorbitol and glycerol plasticisers. The concept behind this research was to explore how the plasticisers - with similar structure but different molecular weight - and their concentrations affect the perceptible and measured properties of CNC films. Results revealed that the type of plasticiser determined the morphology and the optical and tensile properties of films. The best quality CNC film with an averaged thickness of 50μm was obtained with 20% sorbitol from cotton-CNC. It was proved that behaviour of sorbitol and glycerol plasticisers in CNC films was very similar to that reported previously for starch films. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modular Hydropower Engineering and Pilot Scale Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesser, Phillip C.
Emrgy has developed, prototyped and tested a modular hydropower system for renewable energy generation. ORNL worked with Emrgy to demonstrate the use of additive manufacturing in the production of the hydrofoils and spokes for the hydrokinetic system. Specifically, during Phase 1 of this effort, ORNL printed and finished machined patterns for both the hydrofoils and spokes that were subsequently used in a sand casting manufacturing process. Emrgy utilized the sand castings for a pilot installation in Denver, CO, where the parts represented an 80% cost savings from the previous prototype build that was manufactured using subtractive manufacturing. In addition, themore » castings were completed with ORNL’s newly developed AlCeMg alloy that will be tested for performance improvements including higher corrosion resistance in a water application than the 6160 alloy used previously« less
An objective assessment of safety to drive in an upper limb cast.
Stevenson, H L; Peterson, N; Talbot, C; Dalal, S; Watts, A C; Trail, I A
2013-03-01
Patients managed with upper limb cast immobilization often seek advice about driving. There is very little published data to assist in decision making, and advice given varies between healthcare professionals. There are no specific guidelines available from the UK Drivers and Vehicles Licensing Agency, police, or insurance companies. Evidence-based guidelines would enable clinicians to standardize the advice given to patients. Six individuals (three male, three female; mean age 36 years, range 27-43 years) were assessed by a mobility occupational therapist and driving standards agency examiner while completing a formal driving test in six different types of upper limb casts (above-elbow, below-elbow neutral, and below-elbow cast incorporating the thumb [Bennett's cast]) on both left and right sides. Of the 36 tests, participants passed 31 tests, suggesting that most people were able to safely drive with upper limb cast immobilization. However, driving in a left above-elbow cast was considered unsafe.
Alfadda, Sara A
2014-01-01
To use a novel approach to measure the amount of vertical marginal gap in computer numeric controlled (CNC)-milled titanium frameworks and conventional cast frameworks. Ten cast frameworks were fabricated on the mandibular master casts of 10 patients. Then, 10 CNC-milled titanium frameworks were fabricated by laser scanning the cast frameworks. The vertical marginal gap was measured and analyzed using the Contura-G2 coordinate measuring machine and special computer software. The CNC-milled titanium frameworks showed an overall reduced mean vertical gap compared with the cast frameworks in all five analogs. This difference was highly statistically significant in the distal analogs. The largest mean gap in the cast framework was recorded in the most distal analogs, and the least amount was in the middle analog. Neither of the two types of frameworks provided a completely gap-free superstructure. The CNCmilled titanium frameworks showed a significantly smaller vertical marginal gap than the cast frameworks.
Y-chromosomal insights into the genetic impact of the caste system in India
Zerjal, Tatiana; Pandya, Arpita; Thangaraj, Kumarasamy; Ling, Edmund Y. S.; Kearley, Jennifer; Bertoneri, Stefania; Paracchini, Silvia; Singh, Lalji; Tyler-Smith, Chris
2008-01-01
The caste system has persisted in Indian Hindu society for around 3,500 years. Like the Y chromosome, caste is defined at birth, and males cannot change their caste. In order to investigate the genetic consequences of this system, we have analysed male-lineage variation in a sample of 227 Indian men of known caste, 141 from the Jaunpur district of Uttar Pradesh and 86 from the rest of India. We typed 131 Y-chromosomal binary markers and 16 microsatellites. We find striking evidence for male substructure: in particular, Brahmins and Kshatriyas (but not other castes) from Jaunpur each show low diversity and the predominance of a single distinct cluster of haplotypes. These findings confirm the genetic isolation and drift within the Jaunpur upper castes, which are likely to result from founder effects and social factors. In the other castes, there may be either larger effective population sizes, or less strict isolation, or both. PMID:17075717
The effect of casting conditions on the biaxial flexural strength of glass-ceramic materials.
Johnson, A; Shareef, M Y; Walsh, J M; Hatton, P V; van Noort, R; Hill, R G
1998-11-01
To assess the effect of mould and glass casting temperatures on the biaxial flexural strength (BFS) of two different types of castable glass-ceramic, using existing laboratory equipment and techniques. Two castable glass-ceramic materials were evaluated. One glass (LG3) is based on SiO2-Al2O3-P2O5-CaO-CaF2, and is similar in composition to glasses used in the manufacture of glass-ionomer cements. The other glass (SG3) is based on SiO2-K2O-Na2O-CaO-CaF2, and is a canasite-based material. Both materials were used to produce discs of 12 mm diameter and 2 mm thickness using the same lost-wax casting process as used for metal castings. Mould temperatures of between 500 degrees C and 1000 degrees C and glass casting temperatures of between 1100 degrees C and 1450 degrees C were evaluated. The cast discs were cerammed and the biaxial flexural strength determined with a Lloyd 2000 R tester. A significant difference was found for the BFS in the range of mould temperatures evaluated, with the optimum investment mould temperature being 590 degrees C for LG3 and 610 degrees C for SG3 (p = 0.0002 and p = 0.019, respectively). No significant differences were seen between any of the glass casting temperatures evaluated. The mould temperature for castable glass-ceramic materials produced using the lost-wax casting process can have a significant effect on BFS. The optimum mould temperature may differ slightly depending on the type of material being used. The glass casting temperature of these materials does not appear to have a significant effect on BFS.
Lee, Sook Joung; Jang, Dae Hyun; Yi, Jin Hwa; Lee, Jin Ho; Ryu, Ju Seok
2011-01-01
Objective To identify the effect of serial casting combined with Botulinum toxin type A (BTX-A) injection on spastic equinus foot. Method Twenty-nine children with cerebral palsy who had equinus foot were recruited from the outpatient clinic of Rehabilitation Medicine. The children were divided into 2 groups, one of which received serial casting after BTX-A injection, and the other which only received BTX-A injection. Serial casting started 3 weeks after the BTX-A injection, and was changed weekly for 3 times. Spasticity of the ankle joint was evaluated using the modified Ashworth scale (MAS), and the modified Tardieu scale (MTS). Gait pattern was measured using the physician's rating scale (PRS). Results The degree of ankle dorsiflexion and the MAS improved significantly until 12 weeks following the BTX-A injection in the serial casting group (p<0.001), while the BTX-A injection-only group improved until 6 weeks following injection (p<0.05). The combined group showed a significantly greater increase in the degree of dorsiflexion compared to the BTX-A injection-only group at post-injection weeks 6 and 12 (p<0.05). Three children (11.5%) suffered from foot ulcers as a complication caused by the serial casting. Conclusion Our study demonstrated that the effect of BTX-A injection with serial casting was superior and lasted longer than the effect of BTX-A injection only in patients with spastic equinus foot. We therefore recommend BTX-A injection with serial casting for the treatment of equinus foot. However, physicians must also consider the possible complications associated with serial casting. PMID:22506143
Comparison of the passivity between cast alloy and laser-welded titanium overdenture bars.
Paiva, Jose; Givan, Daniel A; Broome, James C; Lemons, Jack E; McCracken, Michael S
2009-12-01
The purpose of this study was to investigate the fit of cast alloy overdenture and laser-welded titanium-alloy bars by measuring induced strain upon tightening of the bars on a master cast as well as a function of screw tightening sequence. Four implant analogs were secured into Type IV dental stone to simulate a mandibular edentulous patient cast, and two groups of four overdenture bars were fabricated. Group I was four cast alloy bars and Group II was four laser-welded titanium bars. The cast alloy bars included Au-Ag-Pd, Pd-Ag-Au, Au-Ag-Cu-Pd, and Ag-Pd-Cu-Au, while the laser-welded bars were all Ti-Al-V alloy. Bars were made from the same master cast, were torqued into place, and the total strain in the bars was measured through five strain gauges bonded to the bar between the implants. Each bar was placed and torqued 27 times to 30 Ncm per screw using three tightening sequences. Data were processed through a strain amplifier and analyzed by computer using StrainSmart software. Data were analyzed by ANOVA and Tukey's post hoc test. Significant differences were found between alloy types. Laser-welded titanium bars tended to have lower strains than corresponding cast bars, although the Au-Ag-Pd bar was not significantly different. The magnitudes of total strain were the least when first tightening the ends of the bar. The passivity of implant overdenture bars was evaluated using total strain of the bar when tightening. Selecting a high modulus of elasticity cast alloy or use of laser-welded bar design resulted in the lowest average strain magnitudes. While the effect of screw tightening sequence was minimal, tightening the distal ends first demonstrated the lowest strain, and hence the best passivity.
Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; ...
2014-08-29
Here, the oxidation behavior of SiMo cast iron, Ni-resist D 5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H 2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo castmore » iron remained adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less
Wills, Lauren P.; Beeson, Gyda C.; Hoover, Douglas B.; Schnellmann, Rick G.; Beeson, Craig C.
2015-01-01
Previous high-throughput screens to identify mitochondrial toxicants used immortalized cell lines and focused on changes in mitochondrial membrane potential, which may not be sufficient and do not identify different types of mitochondrial dysfunction. Primary cultures of renal proximal tubule cells (RPTC) were examined with the Seahorse Extracellular Flux Analyzer to screen 676 compounds (5 μM; 1 h) from the ToxCast Phase II library for mitochondrial toxicants. Of the 676 compounds, 19 were classified as cytotoxicants, 376 were electron transport chain (ETC) inhibitors, and 5 were uncouplers. The remaining 276 compounds were examined after a 5-h exposure to identify slower acting mitochondrial toxicants. This experiment identified 3 cytotoxicants, 110 ETC inhibitors, and 163 compounds with no effect. A subset of the ToxCast Phase II library was also examined in immortalized human renal cells (HK2) to determine differences in susceptibility to mitochondrial toxicity. Of the 131 RPTC ETC inhibitors tested, only 14 were ETC inhibitors in HK2 cells. Of the 5 RPTC uncouplers, 1 compound was an uncoupler in HK2 cells. These results demonstrate that 73% (491/676) of the compounds in the ToxCast Phase II library compounds exhibit RPTC mitochondrial toxicity, overwhelmingly ETC inhibition. In contrast, renal HK2 cells are markedly less sensitive and only identified 6% of the compounds as mitochondrial toxicants. We suggest caution is needed when studying mitochondrial toxicity in immortalized cell lines. This information will provide mechanisms and chemical-based criteria for assessing and predicting mitochondrial liabilities of new drugs, consumer products, and environmental agents. PMID:25926417
Numerical simulation of the casting process of titanium tooth crowns and bridges.
Wu, M; Augthun, M; Wagner, I; Sahm, P R; Spiekermann, H
2001-06-01
The objectives of this paper were to simulate the casting process of titanium tooth crowns and bridges; to predict and control porosity defect. A casting simulation software, MAGMASOFT, was used. The geometry of the crowns with fine details of the occlusal surface were digitized by means of laser measuring technique, then converted and read in the simulation software. Both mold filling and solidification were simulated, the shrinkage porosity was predicted by a "feeding criterion", and the gas pore sensitivity was studied based on the mold filling and solidification simulations. Two types of dental prostheses (a single-crown casting and a three-unit-bridge) with various sprue designs were numerically "poured", and only one optimal design for each prosthesis was recommended for real casting trial. With the numerically optimized design, real titanium dental prostheses (five replicas for each) were made on a centrifugal casting machine. All the castings endured radiographic examination, and no porosity was detected in the cast prostheses. It indicates that the numerical simulation is an efficient tool for dental casting design and porosity control. Copyright 2001 Kluwer Academic Publishers
MACHINING ELIMINATION THROUGH APPLICATION OF THREAD FORMING FASTENERS IN NET SHAPED CAST HOLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleaver, Ryan J; Cleaver, Todd H; Talbott, Richard
The ultimate objective of this work was to eliminate approximately 30% of the machining performed in typical automotive engine and transmission plants by using thread forming fasteners in as-cast holes of aluminum and magnesium cast components. The primary issues at the source of engineers reluctance to implementing thread forming fasteners in lightweight castings are: * Little proof of consistency of clamp load vs. input torque in either aluminum or magnesium castings. * No known data to understand the effect on consistency of clamp load as casting dies wear. The clamp load consistency concern is founded in the fact that amore » portion of the input torque used to create clamp load is also used to create threads. The torque used for thread forming may not be consistent due to variations in casting material, hole size and shape due to tooling wear and process variation (thermal and mechanical). There is little data available to understand the magnitude of this concern or to form the basis of potential solutions if the range of clamp load variation is very high (> +/- 30%). The range of variation that can be expected in as-cast hole size and shape over the full life cycle of a high pressure die casting die was established in previous work completed by Pacific Northwest National Laboratory, (PNNL). This established range of variation was captured in a set of 12 cast bosses by designing core pins at the size and draft angles identified in the sited previous work. The cast bosses were cut into nuts that could be used in the Ford Fastener Laboratory test-cell to measure clamp load when a thread forming fastener was driven into a cast nut. There were two sets of experiments run. First, a series of cast aluminum nuts were made reflecting the range of shape and size variations to be expected over the life cycle of a die casting die. Taptite thread forming fasteners, (a widely used thread forming fastener suitable for aluminum applications), were driven into the various cored, as-cast nuts at a constant input torque and resulting clamp loads were recorded continuously. The clamp load data was used to determine the range of clamp loads to be expected. The bolts were driven to failure. The clamp load corresponding to the target input of 18.5 Nm was recorded for each fastener. In a like fashion, a second set of experiments were run with cast magnesium nuts and ALtracs thread forming fasteners, (a widely used thread forming fastener suitable for magnesium applications). Again all clamp loads were recorded and analyzed similarly to the Taptites in aluminum cast nuts. Results from previous work performed on the same test cell for a Battelle project using standard M8 bolts into standard M8 nuts were included as a comparator for a standard bolt and nut application. The results for the thread forming fasteners in aluminum cast holes were well within industry expectations of +/- 30% for out of the box and robustness range testing. The results for the dry and lubed extreme conditions were only slightly higher than industry expectations at +/- 35.6%. However, when compared to the actual Battelle results (+/- 40%) for a standard bolt and nut the tread forming fasteners performed slightly better. The results for the thread forming fasteners in magnesium cast holes were all well within industry expectations of +/- 30% for all three conditions. The robustness range (.05mm larger and smaller holes than the expected wear pattern of a die casting die at full life cycle) results also fell within the industry expectations for standard threaded fasteners. These results were very encouraging. It was concluded that this work showed that clamp load variation with thread forming fasteners is consistent with industry expectations for standard steel bolts and nuts at +/- 30%. There does not appear to be any significant increase in clamp load variation due to the application of thread forming fasteners in as-cast holes of aluminum or magnesium over the effective life of a die casting mold. The fully implemented potential benefit of thread forming fasteners in as-cast holes of aluminum and magnesium is estimated to be 6 trillion Btu per year for North America. Economic benefit is estimated to be nearly $800 million per year. Environmental benefits and quality improvements will also result from full implementation of this technology.« less
A computational study of low-head direct chill slab casting of aluminum alloy AA2024
NASA Astrophysics Data System (ADS)
Hasan, Mainul; Begum, Latifa
2016-04-01
The steady state casting of an industrial-sized AA2024 slab has been modeled for a vertical low-head direct chill caster. The previously verified 3-D CFD code is used to investigate the solidification phenomena of the said long-range alloy by varying the pouring temperature, casting speed and the metal-mold contact heat transfer coefficient from 654 to 702 °C, 60-180 mm/min, and 1.0-4.0 kW/(m2 K), respectively. The important predicted results are presented and thoroughly discussed.
NASA Astrophysics Data System (ADS)
Wagstaff, Samuel R.; Allanore, Antoine
2017-08-01
Recent reports have demonstrated the possibility of mitigating macrosegregation during the Direct-Chill casting of rolling slab ingots using an impinging jet. Herein, an analytical model is presented to predict the shape of the crater formed due to the impact of the jet on the slurry region. The model takes into account alloy composition, physical dimension, and casting speed on the distribution of forces and crater shape. The calculated shape of the crater profile is used to explain the centerline depletion in the impingement region previously reported.
Caste specific alkaloid chemistry of Solenopsis maboya and S
J.A. Torres; V.E. Zottig; J.E. Co; T.H. Jones; R.R. Snelling
2001-01-01
Examination of the alkaloids of Solenopsis maboya Snelling and comparison with those previously found in S. Torresi Snelling, reveals a clear example of caste-specific alkaloid production in the queens and workers of each species. The queens of Solenopsis maboya contain a single piperidine while the workers produce a different piperidine along with two indolizidine...
The paternal ancestry of Uttarakhand does not imitate the classical caste system of India.
Negi, Neetu; Tamang, Rakesh; Pande, Veena; Sharma, Amrita; Shah, Anish; Reddy, Alla G; Vishnupriya, Satti; Singh, Lalji; Chaubey, Gyaneshwer; Thangaraj, Kumarasamy
2016-02-01
Although, there have been rigorous research on the Indian caste system by several disciplines, it is still one of the most controversial socioscientific topic. Previous genetic studies on the subcontinent have supported a classical hierarchal sharing of genetic component by various castes of India. In the present study, we have used high-resolution mtDNA and Y chromosomal markers to characterize the genetic structuring of the Uttarakhand populations in the context of neighboring regions. Furthermore, we have tested whether the genetic structuring of caste populations at different social levels of this region, follow the classical chaturvarna system. Interestingly, we found that this region showed a high level of variation for East Eurasian ancestry in both maternal and paternal lines of descent. Moreover, the intrapopulation comparison showed a high level of heterogeneity, likely because of different caste hierarchy, interpolated on asymmetric admixture of populations inhabiting on both sides of the Himalayas.
PROTECTIVELY COVERED ARTICLE AND METHOD OF MANUFACTURE
Plott, R.F.
1958-10-28
A method of casting a protective jacket about a ura nium fuel element that will bond completely to the uranium without the use of stringers or supports that would ordinarily produce gaps in the cast metal coating and bond is presented. Preformed endcaps of alumlnum alloyed with 13% silicon are placed on the ends of the uranium fuel element. These caps will support the fuel element when placed in a mold. The mold is kept at a ing alloy but below that of uranium so the cast metal jacket will fuse with the endcaps forming a complete covering and bond to the fuel element, which would otherwise oxidize at the gaps or discontinuities lefi in the coating by previous casting methods.
Anatomical variations of the right hepatic veins and their relevance to surgery.
Hribernik, Marija; de Cecchis, Lucio; Trotovsek, Blaz; Gadzijev, Eldar M; Ravnik, Dean
2003-01-01
In a morphological study of the right hepatic veins anatomical characteristics of surgical importance were looked for. 110 cadaveric human livers were prepared by the corrosion casts method. The confluence patterns of the superior right hepatic vein, the hepatocaval confluence, the accessory right hepatic veins and the anastomoses between hepatic veins in the right hemiliver were examined. Four types of the superior right hepatic vein, based on the length of its trunk and the confluence pattern of its main tributaries were determined and their frequency was calculated. Type I was found in 20%, type II in 40%, type III in 25% and type IV in 15%. Accessory right hepatic veins with a minimal caliber of 0.4 cm, which were always present in type IV, were also found in other types, all together in 27% of the casts. The tributary-free part of the superior right hepatic vein at hepatocaval confluence was longer than 1 cm in 77%. In the right hemiliver 109 anastomoses were found in 29/110 liver casts. Knowing the characteristics of different superior right hepatic vein types and of the accessory right hepatic veins may be useful in segment-oriented liver resections and in right side living donor resections.
Cai, Zhencun; Li, Lianyong; Zhang, Lijun; Ji, Shijun; Zhao, Qun
2017-02-01
Objective To evaluate the effect of dynamic long leg casting in paediatric patients with developmental dysplasia of hip (DDH) diagnosed at 12-18 months. Methods The adductor tenotomy, closed reduction, and dynamic long leg casting method was adopted to treat paediatric patients with DDH. The hips were divided into four groups according to the Tonnis radiographic dislocation classification. Groups were also classified according to the baseline acetabular index (AI): 30°-35°, 36°-40°, and > 40°. The outcomes of the reductions were evaluated according to McKay's hip function criteria and Severin's radiological criteria. Results A total of 246 patients (339 hips) had complete follow-up data. After 3 months of orthosis fixation, the results were satisfactory in 264 hips (77.88%). Hip function was rated as 'excellent' or 'good' in 43 of 51 (84.31%) Tonnis type 1 hips, 125 of 155 (80.65%) type 2 hips, 70 of 90 (77.78%) type 3 hips, and 34 of 43 (79.07%) type 4 hips. The higher the baseline AI, the lower the rates of 'excellent' and 'good' hip function. Favourable radiological results (Severin types I and II) were found in 266 of 339 (78.47) hips. Conclusions Dynamic long leg casting is an effective method for treating patients with DDH aged 12-18 months at diagnosis.
AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prof. Alan W. Camb; Prof. Anthony Rollett
2001-08-31
To determine the potential for strip casting in the steel industry and to develop the fundamental knowledge necessary to allow the role of strip casting in the modern steel industry to be understood. Based upon a study of carbon steel strip castings that were either produced for the program at British Steel or were received from a pre-commercial production machine, the following conclusions were made. Strip casting of carbon steels is technically feasible for sheet material from slightly less than 1 mm thick to 3 mm thick, and, assuming that it is economically viable, it will be first applied inmore » carbon steel markets that do not require stringent surface quality or extensive forming. The potential of strip casting as a casting process to be developed for steel castings is very high as the cast strip has some very novel characteristics. Direct cast carbon strip has better surface quality, shape and profile than any other casting process currently available. The more rapidly solidified structure of direct cast strip tends to be strong with low ductility; however, with adequate thermal treatment, it is possible to develop a variety of properties from the same grade. The process is more amenable at this time to production tonnages per year of the order of 500,000 tons and as such will first find niche type applications. This technology is an additional technology for steel production and will be in addition to, rather than a replacement for, current casting machines.« less
NASA Astrophysics Data System (ADS)
Ceschini, L.; Morri, Alessandro; Morri, Andrea
2017-05-01
The aim of this research was to investigate the effects of casting size (10-210 mm) on the microstructure and mechanical properties of spheroidal (SGI) and compacted (CGI) graphite cast irons. A comparison of the experimental mechanical data with those specified by ISO standards is presented and discussed. The study highlighted that the microstructure and mechanical properties of SGI (also known as ductile or nodular cast iron) are more sensitive to casting size than CGI (also known as vermicular graphite cast irons). In particular, in both types of cast iron, hardness, yield strength and ultimate tensile strength decreased, with increasing casting size, by 27% in SGI and 17% in CGI. Elongation to failure showed, instead, an opposite trend, decreasing from 5 to 3% in CGI, while increasing from 5 to 11% in SGI. These results were related to different microstructures, the ferritic fraction being more sensitive to the casting size in SGI than CGI. Degeneration of spheroidal graphite was observed at casting size above 120 mm. The microstructural similarities between degenerated SGI and CGI suggested the proposal of a unified empirical constitutional law relating the most important microstructural parameters to the ultimate tensile strength. An outstanding result was also the finding that standard specifications underestimated the mechanical properties of both cast irons (in particular SGI) and, moreover, did not take into account their variation with casting size, at thicknesses over 60 mm.
NASA Astrophysics Data System (ADS)
Sato, Kazuhisa; Tashiro, Shunya; Matsunaga, Shuhei; Yamaguchi, Yohei; Kiguchi, Takanori; Konno, Toyohiko J.
2018-07-01
We have studied three-dimensional (3D) structures and growth processes of 14H-type long-period stacking order (LPSO) formed in Mg97Zn1Gd2 cast alloys by single tilt-axis electron tomography (ET) using high-angle annular dark-field scanning transmission electron microscopy. Evolution of the solute-enriched stacking faults (SFs) and the 14H LPSO by ageing were visualised in 3D with a high spatial resolution in multi-scale fields of views from a few nanometres to 10 μm. Lateral growth of the solute-enriched SFs and the LPSO in the (0 0 0 1)Mg plane is notable compared to the out-of-plane growth in the [0 0 0 1]Mg direction. The 14H LPSO grows at the cost of decomposition of the (Mg, Zn)3Gd-type precipitates, and accompany a change of in-plane edge angles from 30 to 60°. We have updated the Time-Temperature-Transformation diagram for precipitation in Mg97Zn1Gd2 alloys: starting temperatures of both solute-enriched SFs and LPSO formation shifted to a shorter time side than those in the previous diagram.
Partial-depth repair of jointed PCC pavements : cast-in-place and precast procedures.
DOT National Transportation Integrated Search
1977-01-01
The installation of durable patches on jointed portland cement concrete pavement using several types of cast-in-place concrete, is described. The recommended procedures for pavement preparation and patch installation are given, and additional mainten...
Properties of a hybrid plaster-fibreglass cast
Charles, Mark N.; Yen, David
2000-01-01
Objective To examine the suitability of a plaster-fibreglass hybrid cast for orthopedic applications, comparing them to plaster of Paris (POP) and fibreglass constructs. Method Groups of 10 standardized hybrid, POP and fibreglass casts were studied. An Instron servo-hydraulic system was used to test the casts in 3-point bending and shear. Outcome measures Strength, stiffness, weight, thickness and cost of the 3 types of cast, and shear strength at the interface between the POP and fibreglass in the hybrid casts. Results The hybrid casts were twice as strong as the POP constructs, were stiffer and weighed 14% less but were thicker and cost 2.5 times more. They were almost as strong as and less than half the cost of the fibreglass constructs but were thicker, not as stiff, and weighed 42% more. The shear strength of the POP–fibreglass interface in the hybrid casts was higher than the 3-point bending strength of this construct by a factor of 3. Conclusions Plaster-fibreglass hybrid casts should be considered for orthopedic use on the basis of their strength, stiffness, weight and cost, combined with their acknowledged advantages of good moulding ability and water resistance. PMID:11045095
Development of cast alumina-forming austenitic stainless steels
Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; ...
2016-09-06
Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt. % are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt. % Ni with good creep strength and the ability to form a protective alumina scale for use atmore » temperatures up to 800 C - 850 C in H 2O-, S-, and C- containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloy along with improved oxidation resistance typical of alumina-forming alloys. Lastly, challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.« less
Development of Cast Alumina-Forming Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.
2016-11-01
Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.
Thin Gauge Twin-Roll Casting, Process Capabilities and Product Quality
NASA Astrophysics Data System (ADS)
Daaland, O.; Espedal, A. B.; Nedreberg, M. L.; Alvestad, I.
Traditionally industrial twin roll casters have been operated at gauges 6-10 mm, depending on the type of caster and the final product requirements. Over the past few years it has become apparent that a significant increase in productivity can be achieved when the casting gauge is reduced. Hydro Aluminium embarked on an extensive research and development, thin gauge casting programme, in the beginning of the 1990's and this paper presents some results from a five year lasting project (joint programme between Hydro Aluminium a.s. and Lauener Engineering). Based on more than 400 casting trials the major benefits and limitations of casting at reduced gauge and increased speed are outlined. Important aspects related to process development and product quality are discussed including: productivity and limitations, surface defects, microstructural characteristics, cooling rates and dendrite structure, segregation behaviour and mechanical properties after thermo-mechanical processing. Results for casting of several alloys are given. Additionally, numerical modelling results of the strip casting process are included.
M. Case; C.B. Halpern; S.A. Levin
2013-01-01
Pocket gophers (Geomyidae) are major agents of disturbance in North American grasslands. Gopher mounds bury existing plants and influence community structure through various mechanisms. However, in mountain meadows that experience winter snowpack, gophers also create winter castings, smaller tube-shaped deposits, previously ignored in studies of plantâgopher...
Effect of investment type and mold temperature on casting accuracy and titanium-ceramic bond.
Leal, Mônica Barbosa; Pagnano, Valéria Oliveira; Bezzon, Osvaldo Luiz
2013-01-01
This study evaluated the casting accuracy of crown margins and metal-ceramic shear bond strength (SBS) of pure titanium injected into casting molds made using 2 investment types at 3 mold temperatures. Sixty crown (30-degree beveled finish line) and 60 cylinder (5mm diameter × 8mm high) patterns were divided into 6 groups (n=10), and cast using a phosphate-bonded investment (P) and a magnesium oxide-bonded investment (U), at 400°C (groups P400 and U400), 550°C (groups P550 and U550) and 700°C (groups P700 and U700) mold temperatures. Crown margins were recorded in impression material, the degree of marginal rounding was measured and margin length deficiencies (µm) were calculated. Titanium-ceramic specimens were prepared using Triceram ceramic (2mm high) and SBS was tested. Failure modes were assessed by optical microscopy. Data were subjected to two-way ANOVA and Tukey's HSD test (α=0.05). For casting accuracy, expressed by marginal deficiency (µm), investment U provided more accurate results (64 ± 11) than P (81 ± 23) (p<0.001). The increase in temperature resulted in different effects for the tested investments (p<0.001), as it provided better casting accuracy for U700 (55 ± 7) and worse for P700 (109 ± 18). Casting accuracy at 700°C (82 ± 31) was significantly different from 400°C (69 ± 9) and 550°C (68 ± 9) (p<0.05). For SBS, there was no significant differences among the groups for factors investment (p=0.062) and temperature (p=0.224), or for their interaction (p=0.149). Investment U provided better casting accuracy than investment P. The SBS was similar for all combinations of investments and temperatures.
Johnson, A; Shareef, M Y; van Noort, R; Walsh, J M
2000-07-01
To assess the effect of different heat treatment conditions when using two different furnace types on the biaxial flexural strength (BFS) of a fluorcanasite castable glass-ceramic. Two furnace types, one a programmable furnace (PF), the other a dental laboratory burnout furnace (DLF), were used with various ceramming times to determine their effect on the BFS of a fluorcanasite castable glass-ceramic. The glass-ceramic material was cast to produce discs of 12 mm diameter and 2 mm thickness using the lost wax casting process (n = 80). After casting, both furnace types were used to ceram the discs. Half the discs were not de-vested from the casting ring before ceramming but cerammed in situ (DLF) and half were de-vested before ceramming (PF). All the discs were given a nucleation heat treatment at 520 degrees C for 1 h and then cerammed at 860 degrees C using four heat soak times (0.5, 1, 2 and 3 h). The DLF furnace had a rate of climb of 13 degrees C/min and the PF furnace had a rate of climb of 5 degrees C/min to 520 degrees C and 3 degrees C/min to 860 degrees C. After ceramming the discs were de-vested and the BFS determined using a Lloyd 2000R tester. The maximum BFS values seen for both furnace types were almost identical (280 MPa), but were achieved at different heat soak times (1 h DLF, and 2 h PF). The only significant differences in BFS values for the two furnaces were between the 0.5 and 2 h heat soak times (p < or = 0.05). Individual differences were seen between results obtained from each furnace type/heat soak times evaluated (p < or = 0.05). Already available dental laboratory burnout furnaces can be used to ceram fluorcanasite glass-ceramic castings to the same BFS values as more expensive and slower specialist programmable furnaces.
Vojvodic, Svjetlana; Johnson, Brian R; Harpur, Brock A; Kent, Clement F; Zayed, Amro; Anderson, Kirk E; Linksvayer, Timothy A
2015-11-01
The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify genes with putative direct and indirect effects on honey bee caste development, and we subsequently studied the relative rates of molecular evolution at these caste-associated genes. We experimentally induced the production of new queens by removing the current colony queen, and we used RNA sequencing to study the gene expression profiles of both developing larvae and their caregiving nurses before and after queen removal. By comparing the gene expression profiles of queen-destined versus worker-destined larvae as well as nurses observed feeding these two types of larvae, we identified larval and nurse genes associated with caste development. Of 950 differentially expressed genes associated with caste, 82% were expressed in larvae with putative direct effects on larval caste, and 18% were expressed in nurses with putative indirect effects on caste. Estimated selection coefficients suggest that both nurse and larval genes putatively associated with caste are rapidly evolving, especially those genes associated with worker development. Altogether, our results suggest that indirect effect genes play important roles in both the expression and evolution of socially influenced traits such as caste.
Optimization of Melt Treatment for Austenitic Steel Grain Refinement
NASA Astrophysics Data System (ADS)
Lekakh, Simon N.; Ge, Jun; Richards, Von; O'Malley, Ron; TerBush, Jessica R.
2017-02-01
Refinement of the as-cast grain structure of austenitic steels requires the presence of active solid nuclei during solidification. These nuclei can be formed in situ in the liquid alloy by promoting reactions between transition metals (Ti, Zr, Nb, and Hf) and metalloid elements (C, S, O, and N) dissolved in the melt. Using thermodynamic simulations, experiments were designed to evaluate the effectiveness of a predicted sequence of reactions targeted to form precipitates that could act as active nuclei for grain refinement in austenitic steel castings. Melt additions performed to promote the sequential precipitation of titanium nitride (TiN) onto previously formed spinel (Al2MgO4) inclusions in the melt resulted in a significant refinement of the as-cast grain structure in heavy section Cr-Ni-Mo stainless steel castings. A refined as-cast structure consisting of an inner fine-equiaxed grain structure and outer columnar dendrite zone structure of limited length was achieved in experimental castings. The sequential of precipitation of TiN onto Al2MgO4 was confirmed using automated SEM/EDX and TEM analyses.
Pal, P K; Kamble, Suresh S; Chaurasia, Ranjitkumar Rampratap; Chaurasia, Vishwajit Rampratap; Tiwari, Samarth; Bansal, Deepak
2014-06-01
The present study was done to evaluate the dimensional stability and surface quality of Type IV gypsum casts retrieved from disinfected elastomeric impression materials. In an in vitro study contaminated impression material with known bacterial species was disinfected with disinfectants followed by culturing the swab sample to assess reduction in level of bacterial colony. Changes in surface detail reproduction of impression were assessed fallowing disinfection. All the three disinfectants used in the study produced a 100% reduction in colony forming units of the test organisms. All the three disinfectants produced complete disinfection, and didn't cause any deterioration in surface detail reproduction. How to cite the article: Pal PK, Kamble SS, Chaurasia RR, Chaurasia VR, Tiwari S, Bansal D. Evaluation of dimensional stability and surface quality of type IV gypsum casts retrieved from disinfected elastomeric impression materials. J Int Oral Health 2014;6(3):77-81.
Formation of Hot Tear Under Controlled Solidification Conditions
NASA Astrophysics Data System (ADS)
Subroto, Tungky; Miroux, Alexis; Bouffier, Lionel; Josserond, Charles; Salvo, Luc; Suéry, Michel; Eskin, Dmitry G.; Katgerman, Laurens
2014-06-01
Aluminum alloy 7050 is known for its superior mechanical properties, and thus finds its application in aerospace industry. Vertical direct-chill (DC) casting process is typically employed for producing such an alloy. Despite its advantages, AA7050 is considered as a "hard-to-cast" alloy because of its propensity to cold cracking. This type of cracks occurs catastrophically and is difficult to predict. Previous research suggested that such a crack could be initiated by undeveloped hot tears (microscopic hot tear) formed during the DC casting process if they reach a certain critical size. However, validation of such a hypothesis has not been done yet. Therefore, a method to produce a hot tear with a controlled size is needed as part of the verification studies. In the current study, we demonstrate a method that has a potential to control the size of the created hot tear in a small-scale solidification process. We found that by changing two variables, cooling rate and displacement compensation rate, the size of the hot tear during solidification can be modified in a controlled way. An X-ray microtomography characterization technique is utilized to quantify the created hot tear. We suggest that feeding and strain rate during DC casting are more important compared with the exerted force on the sample for the formation of a hot tear. In addition, we show that there are four different domains of hot-tear development in the explored experimental window—compression, microscopic hot tear, macroscopic hot tear, and failure. The samples produced in the current study will be used for subsequent experiments that simulate cold-cracking conditions to confirm the earlier proposed model.
Repair welding of cast iron coated electrodes
NASA Astrophysics Data System (ADS)
Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.
2017-08-01
Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.
Control of elasticity in cast elastomeric shock/vibration isolators
NASA Technical Reports Server (NTRS)
Owens, L.; Bright, C.
1974-01-01
Elasticity is determined by isolators physical dimensions and by type of elastomer used. Once elastomer is selected and cast between two concentric tubes of device, isolator elasticity will remain fixed. Isolators having same dimensions can be built to different elasticity requirements using same elastomer.
EPA's ToxCast chemical library, currently exceeding 4000 unique chemicals, has successfully captured a broad diversity of chemical use-types, functionality, and structures and features potentially relevant to toxicity and environmental exposure landscapes. Chemical diversity in ...
Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight
NASA Technical Reports Server (NTRS)
Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.
1995-01-01
A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.
Structural and compositional analysis of a casting mold sherd from ancient China.
Zong, Yunbing; Yao, Shengkun; Lang, Jianfeng; Chen, Xuexiang; Fan, Jiadong; Sun, Zhibin; Duan, Xiulan; Li, Nannan; Fang, Hui; Zhou, Guangzhao; Xiao, Tiqiao; Li, Aiguo; Jiang, Huaidong
2017-01-01
Casting had symbolic significance and was strictly controlled in the Shang dynasty of ancient China. Vessel casting was mainly distributed around the Shang capital, Yin Ruins, which indicates a rigorous centralization of authority. Thus, for a casting mold to be excavated far from the capital region is rare. In addition to some bronze vessel molds excavated at the Buyao Village site, another key discovery of a bronze vessel mold occurred at Daxinzhuang. The Daxinzhuang site was a core area in the east of Shang state and is an important site to study the eastward expansion of the Shang. Here, combining synchrotron X-rays and other physicochemical analysis methods, nondestructive three-dimensional structure imaging and different elemental analyses were conducted on this mold sherd. Through high penetration X-ray tomography, we obtained insights on the internal structure and discovered some pores. We infer that the generation of pores inside the casting mold sherd was used to enhance air permeability during casting. Furthermore, we suppose that the decorative patterns on the surface were carved and not pasted onto it. Considering the previous compositional studies of bronze vessels, the copper and iron elements were analyzed by different methods. Unexpectedly, a larger amount of iron than of copper was detected on the surface. According to the data analysis and archaeological context, the source of iron on the casting mold sherd could be attributed to local soil contamination. A refined compositional analysis confirms that this casting mold was fabricated locally and used for bronze casting.
Thanseem, Ismail; Thangaraj, Kumarasamy; Chaubey, Gyaneshwer; Singh, Vijay Kumar; Bhaskar, Lakkakula V K S; Reddy, B Mohan; Reddy, Alla G; Singh, Lalji
2006-08-07
India is a country with enormous social and cultural diversity due to its positioning on the crossroads of many historic and pre-historic human migrations. The hierarchical caste system in the Hindu society dominates the social structure of the Indian populations. The origin of the caste system in India is a matter of debate with many linguists and anthropologists suggesting that it began with the arrival of Indo-European speakers from Central Asia about 3500 years ago. Previous genetic studies based on Indian populations failed to achieve a consensus in this regard. We analysed the Y-chromosome and mitochondrial DNA of three tribal populations of southern India, compared the results with available data from the Indian subcontinent and tried to reconstruct the evolutionary history of Indian caste and tribal populations. No significant difference was observed in the mitochondrial DNA between Indian tribal and caste populations, except for the presence of a higher frequency of west Eurasian-specific haplogroups in the higher castes, mostly in the north western part of India. On the other hand, the study of the Indian Y lineages revealed distinct distribution patterns among caste and tribal populations. The paternal lineages of Indian lower castes showed significantly closer affinity to the tribal populations than to the upper castes. The frequencies of deep-rooted Y haplogroups such as M89, M52, and M95 were higher in the lower castes and tribes, compared to the upper castes. The present study suggests that the vast majority (> 98%) of the Indian maternal gene pool, consisting of Indio-European and Dravidian speakers, is genetically more or less uniform. Invasions after the late Pleistocene settlement might have been mostly male-mediated. However, Y-SNP data provides compelling genetic evidence for a tribal origin of the lower caste populations in the subcontinent. Lower caste groups might have originated with the hierarchical divisions that arose within the tribal groups with the spread of Neolithic agriculturalists, much earlier than the arrival of Aryan speakers. The Indo-Europeans established themselves as upper castes among this already developed caste-like class structure within the tribes.
Thanseem, Ismail; Thangaraj, Kumarasamy; Chaubey, Gyaneshwer; Singh, Vijay Kumar; Bhaskar, Lakkakula VKS; Reddy, B Mohan; Reddy, Alla G; Singh, Lalji
2006-01-01
Background India is a country with enormous social and cultural diversity due to its positioning on the crossroads of many historic and pre-historic human migrations. The hierarchical caste system in the Hindu society dominates the social structure of the Indian populations. The origin of the caste system in India is a matter of debate with many linguists and anthropologists suggesting that it began with the arrival of Indo-European speakers from Central Asia about 3500 years ago. Previous genetic studies based on Indian populations failed to achieve a consensus in this regard. We analysed the Y-chromosome and mitochondrial DNA of three tribal populations of southern India, compared the results with available data from the Indian subcontinent and tried to reconstruct the evolutionary history of Indian caste and tribal populations. Results No significant difference was observed in the mitochondrial DNA between Indian tribal and caste populations, except for the presence of a higher frequency of west Eurasian-specific haplogroups in the higher castes, mostly in the north western part of India. On the other hand, the study of the Indian Y lineages revealed distinct distribution patterns among caste and tribal populations. The paternal lineages of Indian lower castes showed significantly closer affinity to the tribal populations than to the upper castes. The frequencies of deep-rooted Y haplogroups such as M89, M52, and M95 were higher in the lower castes and tribes, compared to the upper castes. Conclusion The present study suggests that the vast majority (>98%) of the Indian maternal gene pool, consisting of Indio-European and Dravidian speakers, is genetically more or less uniform. Invasions after the late Pleistocene settlement might have been mostly male-mediated. However, Y-SNP data provides compelling genetic evidence for a tribal origin of the lower caste populations in the subcontinent. Lower caste groups might have originated with the hierarchical divisions that arose within the tribal groups with the spread of Neolithic agriculturalists, much earlier than the arrival of Aryan speakers. The Indo-Europeans established themselves as upper castes among this already developed caste-like class structure within the tribes. PMID:16893451
AMCC casting development. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
1995-01-01
The Advanced Combustion Chamber Casting (AMCC) has been a technically challenging part due to its size, configuration, and alloy type. The height and weight of the wax pattern assembly necessitated the development of a hollow gating system to ensure structural integrity of the shell throughout the investment process. The complexity in the jacket area of the casting required the development of an innovative casting technology that PCC has termed 'TGC' or Thermal Gradient Control. This method, of setting up thermal gradients in the casting during solidification, represents a significant process improvement for PCC and has been successfully implemented on other programs. Metallurgical integrity of the final four castings was very good. Only the areas of the parts that utilized 'TGC Shape & Location System #2' showed any significant areas of microshrinkage when evaluated by non-destructive tests. Alumina oxides detected by FPI on the 'float' surfaces (top sid surfaces of the casting during solidification) of the part were almost entirely less than the acceptance criteria of .032 inches in diameter. Destructive chem mill of the castings was required to determine the effect of the process variables used during the processing of these last four parts (with the exception of the 'Shape & Location of TGC' variable).
Women's health in a rural community in Kerala, India: do caste and socioeconomic position matter?
Mohindra, K S; Haddad, Slim; Narayana, D
2006-01-01
Objectives To examine the social patterning of women's self‐reported health status in India and the validity of the two hypotheses: (1) low caste and lower socioeconomic position is associated with worse reported health status, and (2) associations between socioeconomic position and reported health status vary across castes. Design Cross‐sectional household survey, age‐adjusted percentages and odds ratios, and multilevel multinomial logistic regression models were used for analysis. Setting A panchayat (territorial decentralised unit) in Kerala, India, in 2003. Participants 4196 non‐elderly women. Outcome measures Self‐perceived health status and reported limitations in activities in daily living. Results Women from lower castes (scheduled castes/scheduled tribes (SC/ST) and other backward castes (OBC) reported a higher prevalence of poor health than women from forward castes. Socioeconomic inequalities were observed in health regardless of the indicators, education, women's employment status or household landholdings. The multilevel multinomial models indicate that the associations between socioeconomic indicators and health vary across caste. Among SC/ST and OBC women, the influence of socioeconomic variables led to a “magnifying” effect, whereas among forward caste women, a “buffering” effect was found. Among lower caste women, the associations between socioeconomic factors and self‐assessed health are graded; the associations are strongest when comparing the lowest and highest ratings of health. Conclusions Even in a relatively egalitarian state in India, there are caste and socioeconomic inequalities in women's health. Implementing interventions that concomitantly deal with caste and socioeconomic disparities will likely produce more equitable results than targeting either type of inequality in isolation. PMID:17108296
Canavese, Federico; Rousset, Marie; Mansour, Mounira; Samba, Antoine; Dimeglio, Alain
2016-02-01
Infantile and juvenile scoliosis, among different types of spinal deformity, is still a challenge for pediatric orthopedic surgeons. The ideal treatment of infantile and juvenile scoliosis has not yet been identified as both clinicians and surgeons still face multiple challenges, including preservation of the thoracic spine, thoracic cage, lung growth and cardiac function without reducing spinal motion. Elongation, derotation, flexion (EDF) casting technique is a custom-made thoracolumbar cast based on a three dimensional correction concept. This cast offers three-dimensional correction and can control the evolution of the deformity in some cases. Spinal growth can be guided by EDF casting as it can influence the initially curved spine to grow straighter. This article aimed to provide a comprehensive review of how infantile and juvenile scoliosis can affect normal spine and thorax and how these deformities can be treated with serial EDF casting technique. A current literature review is mandatory in order to understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in young and very young patients.
End-Stage Renal Disease From Cast Nephropathy in a Teenager With Neuroendocrine Carcinoma.
Butani, Lavjay; Ducore, Jonathan
2016-07-01
Cast nephropathy is the most common manifestation of renal injury in patients with multiple myeloma but is rarely reported in other conditions. We are reporting our experience in caring for a teenager with a metastatic neuroendocrine carcinoma who developed rapidly progressive kidney injury that advanced to end-stage renal disease. On renal biopsy extensive tubular necrosis and intratubular eosinophilic casts were noted. This previously unreported finding should prompt oncologists to closely monitor for such a complication in patients with secretory tumors. Whether early plasmapheresis could be of benefit, as has been tried in multiple myeloma, remains to be determined.
Hajiaghaei, Behnam; Ebrahimi, Ismail; Kamyab, Mojtaba; Saeedi, Hassan; Jalali, Maryam
2016-01-01
Creating a socket with proper fit is an important factor to ensure the comfort and control of prosthetic devices. Several techniques are commonly used to cast transtibial stumps but their effect on stump shape deformation is not well understood. This study compares the dimensions, circumferences and volumes of the positive casts and also the socket comfort between two casting methods. Our hypothesis was that the casts prepared by air pressure method have less volume and are more comfortable than those prepared by weight bearing method. Fifteen transtibial unilateral amputees participated in the study. Two weight bearing and air pressure casting methods were utilized for their residual limbs. The diameters and circumferences of various areas of the residual limbs and positive casts were compared. The volumes of two types of casts were measured by a volumeter and compared. Visual Analogue Scale (VAS) was used to measure the sockets fit comfort. Circumferences at 10 and 15 cm below the patella on the casts were significantly smaller in air pressure casting method compared to the weight bearing method (p=0.00 and 0.01 respectively). The volume of the cast in air pressure method was lower than that of the weight bearing method (p=0.006). The amputees found the fit of the sockets prepared by air pressure method more comfortable than the weight bearing sockets (p=0.015). The air pressure casting reduced the circumferences of the distal portion of residual limbs which has more soft tissue and because of its snug fit it provided more comfort for amputees, according to the VAS measurements.
EPA’s ToxCast chemical library spans diverse chemical use-types, functionalities, structures and features potentially relevant to toxicity and environmental exposure. However, this structural diversity, along with assay noise and low average hit rates across the varied Tox...
Use of Knowledge-informed Chemotypes to Explore the ToxCast/Tox21 Chemical-Data Landscape (OpenTox)
The ToxCast and Tox21 chemical libraries currently exceed 3000 and 9000 unique chemicals, respectively, and span a broad diversity of chemical use-types, functionality, and toxicity mechanism and endpoint space. These libraries function as mechanism probes across hundreds of hig...
A knowledge-informed chemotype approach to mining the ToxCast/Tox21 chemical-data landscape (WC9)
ToxCast and Tox21 chemical libraries currently exceed 2000 and 8000 unique chemicals, respectively, and span a broad diversity of chemical use-types, functionality, and toxicity mechanism and endpoint space. These libraries function as mechanism probes across hundreds of high-th...
Zinelis, S
2000-11-01
Porosity is a frequently observed casting defect in dental titanium alloys. This study evaluated the effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium (cp Ti) castings. Eight groups (A-H) of 16 rectangular wax patterns each (30 mm in length, 3 mm in width, and 1 mm in depth) were prepared. The wax patterns were invested with a magnesia-based material and cast with cp Ti (grade II). Groups A, C, E, and G were cast under a pressure of 1 atm, and groups B, D, F, and H were cast under a pressure of 0.5 atm of He, Ar, Kr, and Xe, respectively. The extent of the porosity of the cast specimens was determined radiographically and quantified by image analysis. Three specimens of each group and 3 cylinders of the as-received cp Ti used as a reference were embedded in resin and studied metallographically after grinding, polishing, and chemical etching. These surfaces were used for determination of the Vickers hardness (VHN) as well. Eight specimens from each group were fractured in the tensile mode, and the 0.2% yield strength, fracture stress, and percentage elongation were calculated. Porosity was analyzed with 2-way ANOVA and the Newman-Keuls multiple range test. VHN measurements and tensile properties for specimen groups were compared with 1-way ANOVA and the Newman-Keuls multiple range test (95% significance level). The porosity levels per group were (%): A = 5.50 +/- 4.34, B = 0.77 +/- 1.27, C = 2.44 +/- 3.68, D = 0.06 +/- 0.12, E-H = 0. Two-way ANOVA showed that there was no detectable interaction (P<.05) between gas type and applied pressure. Metallographic examination revealed no differences in microstructure among the groups studied. A finer grain size was observed in all cast groups compared with the original cp Ti. The VHN of the as-received cp Ti was significantly greater than all the cast groups tested. Groups cast under He showed the highest VHN, yield strength, and fracture stress. No significant differences were found in percentage elongation values among the groups. Porosity and mechanical properties of cp Ti castings are dependent on the gas type and pressure, whereas the microstructure remains unaffected.
Use of freeze-casting in advanced burner reactor fuel design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, A. L.; Yablinsky, C. A.; Allen, T. R.
2012-07-01
This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by thatmore » fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results show that criticality is achievable with freeze-cast fuel pins despite the significant amount of inert fuel matrix. Freeze casting is a promising method to achieve very precise fuel placement within fuel pins. (authors)« less
Effects of Casting Conditions on End Product Defects in Direct Chill Casted Hot Rolling Ingots
NASA Astrophysics Data System (ADS)
Yorulmaz, Arda; Yüksel, Çağlar; Erzi, Eraz; Dispinar, Derya
Direct chill casting is a reliable casting process for almost any wrought aluminum alloy for subsequent deformation via hot rolling to supply vital industries such as aerospace, automotive, construction, packaging and maritime. While some defects occur during casting, like hot tearing, some others like surface defect causing blisters, appear after hot rolling process or annealing after final cold rolling steps. It was found that some of these defects are caused by melt impurities formed from entrained folded aluminum oxides or bifilms. A study in a hot rolling casting facility was carried out with different melt cleaning practices, launder and molten metal transferring designs. Bifilm index and reduced pressure test were used for determining melt cleanliness measurement. It was found that porous plug gas diffusons for degassing are more effective than lance type degassers and a design towards less turbulent molten metal flow from furnace to mould cavity are necessary for reducing defects caused by bifilms.
A molecular concept of caste in insect societies.
Sumner, Seirian; Bell, Emily; Taylor, Daisy
2018-02-01
The term 'caste' is used to describe the division of reproductive labour that defines eusocial insect societies. The definition of 'caste' has been debated over the last 50 years, specifically with respect to the simplest insect societies; this raises the question of whether a simple categorisation of social behaviour by reproductive state alone is helpful. Gene-level analyses of behaviours of individuals in hymenopteran social insect societies now provide a new empirical base-line for defining caste and understanding the evolution and maintenance of a reproductive division of labour. We review this literature to identify a set of potential molecular signatures that, combined with behavioural, morphological and physiological data, help define caste more precisely; these signatures vary with the type of society, and are likely to be influenced by ecology, life-history, and stage in the colony cycle. We conclude that genomic approaches provide us with additional ways to help quantify and categorise caste, and behaviour in general. Copyright © 2017 Elsevier Inc. All rights reserved.
Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses
Pei, Zhipu; Ju, Dongying
2017-01-01
The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons. PMID:28772779
Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses.
Pei, Zhipu; Ju, Dongying
2017-04-17
The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons.
Results of Casting in Severe Curves in Infantile Scoliosis.
Stasikelis, Peter J; Carpenter, Ashley M
2018-04-01
Previous work has demonstrated best results for casting in infantile scoliosis when the curves are small and the child begins casting under 2 years of age. This study examines if casting can delay the need for growth friendly instrumentation in severe curves (50 to 106 degrees) and how the comorbidities of syrinx or genetic syndromes affected outcomes. All children undergoing casting for scoliosis at a single institution over an 8-year period were examined. Inclusion criteria included initial curve at first casting of ≥50 degrees, age ≤3 years at the start of casting, and a minimum follow-up of 3 years. Of 148 children undergoing casting during this period, 44 met our inclusion criteria. All children underwent magnetic resonance imaging. Ten children with a syrinx were identified. Ten children had known genetic syndromes (2 who also had a syrinx). The 26 children without these comorbidities were considered idiopathic. Curve magnitude ranged from 50 to 106 degrees. Nine of the 26 (35%) children in the children with idiopathic curves demonstrated resolution of their curves, while only 3 of the remaining 18 (17%) did. Of the children that did not have resolution of their curves, 14 were maintained over the entire follow-up period to within 15 degrees of their initial curve and 13 were improved 15 degrees or more. Only 5 children had an increase of 15 degrees or more over the follow-up period and 4 of these have undergone growth friendly instrumentation after a mean delay from initial cast of 71 months (range, 18 to 100 mo). This study demonstrates that even in severe curves, casting was effective in delaying instrumentation in all cases, and led to curve resolution of the curves in 12 of 44 children. Level III-case control study.
The role of serial casting in early-onset scoliosis (EOS).
Baulesh, David M; Huh, Jeannie; Judkins, Timothy; Garg, Sumeet; Miller, Nancy H; Erickson, Mark A
2012-01-01
Serial casting has demonstrated efficacy for idiopathic early-onset scoliosis (EOS). Results of casting in nonidiopathic (syndromic and congenital) EOS patients have not previously been well described. A total of 53 patients underwent serial casting for EOS from 2005 to 2010 at a single institution. Deformity was classified as idiopathic or nonidiopathic. Diagnosis, time in cast, number of casts, use of bracing, complications, and outcomes were recorded. Radiographic measures included Cobb angle and thoracic height (T1-T12). Thoracic height velocity was calculated and compared with established norms. A total of 36 patients, 19 idiopathic and 17 nonidiopathic (14 syndromic, 3 congenital), completed cast treatment and had >6-month follow-up and were therefore included. Of those, 17% (6/36) experienced resolution of their deformity, 53% (19/26) are currently in braces, and 31% (11/36) had undergone surgery. Surgery occurred on average at age 5.6 years and was delayed by an average of 2.1 years from time of first cast. A 19% complication was observed. There was no statistical difference in the rate of resolution of deformity between idiopathic (5/19) and nonidiopathic (1/17) patients (P=0.182), although there exists a trend toward greater curve correction in idiopathic patients. Surgery occurred in fewer patients (2/19) in the idiopathic group compared with the nonidiopathic group (9/17) (P=0.006). Significant improvements in Cobb angle was observed in the idiopathic group (12.2 degrees) during casting (P=0.003). Nonidiopathic patients did not maintain the correction gained during casting at the time of final follow-up. T1-T12 height increased across all study patients regardless of etiology during the period of casting at similar velocity to established norms of 1.4 cm/y for this age group. Serial casting offers modest deformity correction in idiopathic deformities compared with nonidiopathic deformities. Thoracic height growth continued throughout the casting period at normal velocity. Serial casting maintained normal longitudinal thoracic growth in all patients with EOS in this cohort. Although many required surgery, the increased thoracic height may have positive implications on ultimate pulmonary function. Therapeutic level III.
Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration
Ma, Marek; Ferguson, Toby A.; Schoch, Kathleen M.; Li, Jian; Qian, Yaping; Shofer, Frances S.; Saatman, Kathryn E.; Neumar, Robert W.
2013-01-01
In both the central nervous system (CNS) and peripheral nervous system (PNS), transected axons undergo Wallerian degeneration. Even though Augustus Waller first described this process after transection of axons in 1850, the molecular mechanisms may be shared, at least in part, by many human diseases. Early pathology includes failure of synaptic transmission, target denervation, and granular disintegration of the axonal cytoskeleton (GDC). The Ca2+-dependent proteases calpains have been implicated in GDC but causality has not been established. To test the hypothesis that calpains play a causal role in axonal and synaptic degeneration in vivo, we studied transgenic mice that express human calpastatin (hCAST), the endogenous calpain inhibitor, in optic and sciatic nerve axons. Five days after optic nerve transection and 48 hours after sciatic nerve transection, robust neurofilament proteolysis observed in wild-type controls was reduced in hCAST transgenic mice. Protection of the axonal cytoskeleton in sciatic nerves of hCAST mice was nearly complete 48 hours post-transection. In addition, hCAST expression preserved the morphological integrity of neuromuscular junctions. However, compound muscle action potential amplitudes after nerve transection were similar in wild-type and hCAST mice. These results, in total, provide direct evidence that calpains are responsible for the morphological degeneration of the axon and synapse during Wallerian degeneration. PMID:23542511
Structural and compositional analysis of a casting mold sherd from ancient China
Zong, Yunbing; Yao, Shengkun; Lang, Jianfeng; Chen, Xuexiang; Fan, Jiadong; Sun, Zhibin; Duan, Xiulan; Li, Nannan; Fang, Hui; Zhou, Guangzhao; Xiao, Tiqiao; Li, Aiguo; Jiang, Huaidong
2017-01-01
Casting had symbolic significance and was strictly controlled in the Shang dynasty of ancient China. Vessel casting was mainly distributed around the Shang capital, Yin Ruins, which indicates a rigorous centralization of authority. Thus, for a casting mold to be excavated far from the capital region is rare. In addition to some bronze vessel molds excavated at the Buyao Village site, another key discovery of a bronze vessel mold occurred at Daxinzhuang. The Daxinzhuang site was a core area in the east of Shang state and is an important site to study the eastward expansion of the Shang. Here, combining synchrotron X-rays and other physicochemical analysis methods, nondestructive three-dimensional structure imaging and different elemental analyses were conducted on this mold sherd. Through high penetration X-ray tomography, we obtained insights on the internal structure and discovered some pores. We infer that the generation of pores inside the casting mold sherd was used to enhance air permeability during casting. Furthermore, we suppose that the decorative patterns on the surface were carved and not pasted onto it. Considering the previous compositional studies of bronze vessels, the copper and iron elements were analyzed by different methods. Unexpectedly, a larger amount of iron than of copper was detected on the surface. According to the data analysis and archaeological context, the source of iron on the casting mold sherd could be attributed to local soil contamination. A refined compositional analysis confirms that this casting mold was fabricated locally and used for bronze casting. PMID:28296963
The effects of below-elbow immobilization on driving performance.
Jones, Evan M; Barrow, Aaron E; Skordas, Nic J; Green, David P; Cho, Mickey S
2017-02-01
There is limited research to guide physicians and patients in deciding whether it is safe to drive while wearing various forms of upper extremity immobilization. The purpose of this study is to evaluate the effect of below-elbow removable splints and fiberglass casts on automobile driving performance. 20 healthy subjects completed 10 runs through a closed, cone-marked driving course while wearing a randomized sequence of four different types of immobilization on each extremity (short arm thumb spica fiberglass cast, short arm fiberglass cast, short arm thumb spica splint, and short arm wrist splint). The first and last driving runs were without immobilization and served as controls. Performance was measured based on evaluation by a certified driving instructor (pass/fail scoring), cones hit, run time, and subject-perceived driving difficulty (1-10 analogue scoring). The greatest number of instructor-scored failures occurred while immobilized in right arm spica casts (n=6; p=0.02) and left arm spica casts (n=5; p=0.049). The right arm spica cast had the highest subject-perceived difficulty (5.2±1.9; p<0.001). All forms of immobilization had significantly increased perceived difficulty compared to control, except for the left short arm splint (2.5±1.6; p>0.05). There was no significant difference in number of cones hit or driving time between control runs and runs with any type of immobilization. Drivers should use caution when wearing any of the forms of upper extremity immobilization tested in this study. All forms of immobilization, with exception of the left short arm splint significantly increased perceived driving difficulty. However, only the fiberglass spica casts (both left and right arm), significantly increased drive run failures due to loss of vehicle control. We recommend against driving when wearing a below-elbow fiberglass spica cast on either extremity. Copyright © 2016. Published by Elsevier Ltd.
Data Package for Secondary Waste Form Down-Selection—Cast Stone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serne, R. Jeffrey; Westsik, Joseph H.
2011-09-05
Available literature on Cast Stone and Saltstone was reviewed with an emphasis on determining how Cast Stone and related grout waste forms performed in relationship to various criteria that will be used to decide whether a specific type of waste form meets acceptance criteria for disposal in the Integrated Disposal Facility (IDF) at Hanford. After the critical review of the Cast Stone/Saltstone literature, we conclude that Cast Stone is a good candidate waste form for further consideration. Cast stone meets the target IDF acceptance criteria for compressive strength, no free liquids, TCLP leachate are below the UTS permissible concentrations andmore » leach rates for Na and Tc-99 are suiteably low. The cost of starting ingredients and equipment necessary to generate Cast Stone waste forms with secondary waste streams are low and the Cast Stone dry blend formulation can be tailored to accommodate variations in liquid waste stream compositions. The database for Cast Stone short-term performance is quite extensive compared to the other three candidate waste solidification processes. The solidification of liquid wastes in Cast Stone is a mature process in comparison to the other three candidates. Successful production of Cast Stone or Saltstone has been demonstrated from lab-scale monoliths with volumes of cm3 through m3 sized blocks to 210-liter sized drums all the way to the large pours into vaults at Savannah River. To date over 9 million gallons of low activity liquid waste has been solidified and disposed in concrete vaults at Savannah River.« less
Variation of Shrinkage Strain within the Depth of Concrete Beams.
Jeong, Jong-Hyun; Park, Yeong-Seong; Lee, Yong-Hak
2015-11-16
The variation of shrinkage strain within beam depth was examined through four series of time-dependent laboratory experiments on unreinforced concrete beam specimens. Two types of beam specimens, horizontally cast and vertically cast, were tested; shrinkage variation was observed in the horizontally cast specimens. This indicated that the shrinkage variation within the beam depth was due to water bleeding and tamping during the placement of the fresh concrete. Shrinkage strains were measured within the beam depth by two types of strain gages, surface-attached and embedded. The shrinkage strain distribution within the beam depth showed a consistent tendency for the two types of gages. The test beams were cut into four sections after completion of the test, and the cutting planes were divided into four equal sub-areas to measure the aggregate concentration for each sub-area of the cutting plane. The aggregate concentration increased towards the bottom of the beam. The shrinkage strain distribution was estimated by Hobbs' equation, which accounts for the change of aggregate volume concentration.
Variation of Shrinkage Strain within the Depth of Concrete Beams
Jeong, Jong-Hyun; Park, Yeong-Seong; Lee, Yong-Hak
2015-01-01
The variation of shrinkage strain within beam depth was examined through four series of time-dependent laboratory experiments on unreinforced concrete beam specimens. Two types of beam specimens, horizontally cast and vertically cast, were tested; shrinkage variation was observed in the horizontally cast specimens. This indicated that the shrinkage variation within the beam depth was due to water bleeding and tamping during the placement of the fresh concrete. Shrinkage strains were measured within the beam depth by two types of strain gages, surface-attached and embedded. The shrinkage strain distribution within the beam depth showed a consistent tendency for the two types of gages. The test beams were cut into four sections after completion of the test, and the cutting planes were divided into four equal sub-areas to measure the aggregate concentration for each sub-area of the cutting plane. The aggregate concentration increased towards the bottom of the beam. The shrinkage strain distribution was estimated by Hobbs’ equation, which accounts for the change of aggregate volume concentration. PMID:28793677
Forni, Cristiana; Zoli, Marina; Loro, Loretta; Tremosini, Morena; Mini, Sandra; Pirini, Valter; Turrini, Roberta; Durante, Stefano; Nicolini, Annamaria; Riccioni, Francesca; Girolami, Roberto
2009-01-01
Pressure sores, especially at the heel, are a side effect of the cast. To assess the incidence of late skin complications (heel pressure sores) of a cast and determine risk factors. All consecutive patients treated with a leg cast over a 16 months observation time were recruited. Risk factors were identified by the nurse that placed the cast and skin lesions classified with the NPUAP scale when the cast was removed. In the 216 enrolled patients 17.6% (38) developed a pressure sore: 16/124 in orthopedic wards; 22/92 in oncology wards. The multivariate analysis identified the following risk factors: administration of cytotoxic drugs (p = 0.033; OR = 2.61; having a cancer did not increase the risk); skin redness before cast application (p = 0.001; OR = 4.44) and having reported symptoms after the application (p = 0.000; OR = 7.86). Pressure sores were mainly stage 1 and only 6/216 (2.4%) > or = stage II. The type of plaster cast, the material, the number of days it was worn and having had a surgery are not significant risk factors. Pressure sores related to leg plaster casts are a frequent complication in at risk sub-groups. The acknowledgement and identification of specific risk factors may allow to identify and evaluate preventive interventions to improve the care of these patients.
Wooding, Stephen; Ostler, Christopher; Prasad, B V Ravi; Watkins, W Scott; Sung, Sandy; Bamshad, Mike; Jorde, Lynn B
2004-08-01
Genetic, ethnographic, and historical evidence suggests that the Hindu castes have been highly endogamous for several thousand years and that, when movement between castes does occur, it typically consists of females joining castes of higher social status. However, little is known about migration rates in these populations or the extent to which migration occurs between caste groups of low, middle, and high social status. To investigate these aspects of migration, we analyzed the largest collection of genetic markers collected to date in Hindu caste populations. These data included 45 newly typed autosomal short tandem repeat polymorphisms (STRPs), 411 bp of mitochondrial DNA sequence, and 43 Y-chromosomal single-nucleotide polymorphisms that were assayed in more than 200 individuals of known caste status sampled in Andrah Pradesh, in South India. Application of recently developed likelihood-based analyses to this dataset enabled us to obtain genetically derived estimates of intercaste migration rates. STRPs indicated migration rates of 1-2% per generation between high-, middle-, and low-status caste groups. We also found support for the hypothesis that rates of gene flow differ between maternally and paternally inherited genes. Migration rates were substantially higher in maternally than in paternally inherited markers. In addition, while prevailing patterns of migration involved movement between castes of similar rank, paternally inherited markers in the low-status castes were most likely to move into high-status castes. Our findings support earlier evidence that the caste system has been a significant, long-term source of population structuring in South Indian Hindu populations, and that patterns of migration differ between males and females. Copyright 2004 Springer-Verlag
Prasad, Rahul; Al-Keraif, Abdulaziz Abdullah; Kathuria, Nidhi; Gandhi, P V; Bhide, S V
2014-02-01
The purpose of this study was to determine whether the ringless casting and accelerated wax-elimination techniques can be combined to offer a cost-effective, clinically acceptable, and time-saving alternative for fabricating single unit castings in fixed prosthodontics. Sixty standardized wax copings were fabricated on a type IV stone replica of a stainless steel die. The wax patterns were divided into four groups. The first group was cast using the ringless investment technique and conventional wax-elimination method; the second group was cast using the ringless investment technique and accelerated wax-elimination method; the third group was cast using the conventional metal ring investment technique and conventional wax-elimination method; the fourth group was cast using the metal ring investment technique and accelerated wax-elimination method. The vertical marginal gap was measured at four sites per specimen, using a digital optical microscope at 100× magnification. The results were analyzed using two-way ANOVA to determine statistical significance. The vertical marginal gaps of castings fabricated using the ringless technique (76.98 ± 7.59 μm) were significantly less (p < 0.05) than those castings fabricated using the conventional metal ring technique (138.44 ± 28.59 μm); however, the vertical marginal gaps of the conventional (102.63 ± 36.12 μm) and accelerated wax-elimination (112.79 ± 38.34 μm) castings were not statistically significant (p > 0.05). The ringless investment technique can produce castings with higher accuracy and can be favorably combined with the accelerated wax-elimination method as a vital alternative to the time-consuming conventional technique of casting restorations in fixed prosthodontics. © 2013 by the American College of Prosthodontists.
Garcia-Vedrenne, Ana E; Quintana, Anastasia C E; DeRogatis, Andrea M; Dover, Christina M; Lopez, Maribel; Kuris, Armand M; Hechinger, Ryan F
2017-01-01
Recent findings have extended the documentation of complex sociality to the Platyhelminthes, describing the existence of a reproductive division of labour involving a soldier caste among the parthenitae of trematode parasites. However, all species examined to date occupy high positions in trematode interspecific dominance hierarchies and belong to two closely related families, the Echinostomatidae and the Philophthalmidae (Superfamily Echinostomatoidea). Further, the two species documented as lacking soldiers also belong to the Echinostomatidae. Here, we examine four species of intermediate dominance, all belonging to the family Heterophyidae (Superfamily Opisthorchioidea): Euhaplorchis californiensis, Phocitremoides ovale, Pygidiopsoides spindalis and Stictodora hancocki, all of which infect the California horn snail, Cerithideopsis californica (=Cerithidea californica). We quantify morphology, distribution and behaviour of rediae from fully developed colonies. We also provide information on colony structure for three developing heterophyid colonies to better understand colony development. We discuss the implications of our findings, particularly with respect to how they suggest alternatives to the conclusions of other researchers concerning the nature of trematode sociality. Our analyses of morphological, distributional and behavioural patterns of developed colonies indicate that these heterophyid trematodes have a non-reproductive caste whose function is defence of the colony from invading trematodes. Hence, a soldier caste occurs for species lower in dominance hierarchies than previously known, and is present in at least two superfamilies of digenean trematodes, suggesting that selection for a soldier caste may be much more common among the Trematoda than previously recognised. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Dd-antigen-antibody system in five caste groups in north India.
Berry, V; Kaur, H
1991-12-01
Antigen Dd, a polymorphic antigen found in extracts of certain human dandruff specimens, was investigated in five caste groups of north India. The incidence of antigen Dd-positive type varied from 21.21 per cent in Brahmins to 29.08 per cent in the Jat Sikhs of Punjab. However, a high frequency (45%) was observed in the Sunni Muslims of Kashmir, which differed significantly, when compared with different caste groups of Punjab. Family studies on 44 families indicated its inherited nature, the mode of inheritance being autosomal dominant.
Treatment outcomes in 4 modes of orthodontic practice.
Poulton, Donald; Vlaskalic, Vicki; Baumrind, Sheldon
2005-03-01
This study is a continuation of a previously published report on the outcome of orthodontic treatment provided in offices representing different modes of practice. The sample consisted of duplicate pretreatment (T1) and posttreatment (T2) dental casts of 348 patients from traditional private orthodontic practices (5 offices, 134 patients), company-owned practices (5 offices, 107 patients), offices associated with practice-management organizations (2 offices, 60 patients), and general dental practices (2 offices, 47 patients). Methods were used to obtain random, representative samples from each office, starting with lists of patients who were treated consecutively with full fixed orthodontic appliances. The dental casts were measured by 2 independent judges who used the unweighted PAR score. Good interjudge agreement was shown on the initial casts, but the agreement was not as strong on the final casts. The measurements showed that treatment outcomes were generally satisfactory, although some significant differences between offices and management modes were shown.
Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu
1995-01-01
As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.
McCaughey, Conor; Tsakiropoulos, Panos
2018-06-07
The Nb-silicide-based alloy of near eutectic composition (at.%) Nb-21.1Si-8.3Ti-5.4Mo-4W-0.7Hf (alloy CM1) was studied in the cast and heat-treated (1500 °C/100 h) conditions. The alloy was produced in the form of buttons and bars using three different methods, namely arc-melting, arc-melting and suction casting, and optical floating zone (OFZ) melting. In the former two cases the alloy solidified in water-cooled copper crucibles. Buttons and suction-cast bars of different size, respectively of 10 g and 600 g weight and 6 mm and 8 mm diameter, were produced. The OFZ bars were grown at three different growth rates of 12, 60 and 150 mm/h. It was confirmed that the type of Nb₅Si₃ formed in the cast microstructures depended on the solidification conditions. The primary phase in the alloy CM1 was the βNb₅Si₃. The transformation of βNb₅Si₃ to αNb₅Si₃ had occurred in the as cast large size button and the OFZ bars grown at the three different growth rates, and after the heat treatment of the small size button and the suction-cast bars of the alloy. This transformation was accompanied by subgrain formation in Nb₅Si₃ and the precipitation of Nb ss in the large size as cast button and only by the precipitation of Nb ss in the cast OFZ bars. Subgrains and precipitation of Nb ss in αNb₅Si₃ was observed in the small size button and suction-cast bars after the heat treatment. Subgrains formed in αNb₅Si₃ after the heat treatment of the OFZ bars. The partitioning of solutes and in particular of Mo and Ti was key to this phase transformation. Subgrain formation was not necessary for precipitation of Nb ss in αNb₅Si₃, but the partitioning of solutes was essential for this precipitation.
Bile Cast Nephropathy in Cirrhotic Patients: Effects of Chronic Hyperbilirubinemia.
Foshat, Michelle; Ruff, Heather M; Fischer, Wayne G; Beach, Robert E; Fowler, Mark R; Ju, Hyunsu; Aronson, Judith F; Afrouzian, Marjan
2017-05-01
The aim of this study was to determine the prevalence of bile cast nephropathy (BCN) in autopsied cirrhotic patients and to correlate BCN with clinical and laboratory data to direct attention to this underrecognized renal complication of liver failure. We assessed 114 autopsy cases of cirrhosis for the presence of renal intratubular bile casts using Hall stain for bile. Presence of bile casts was correlated with etiology of cirrhosis, clinical and laboratory data, and histologic findings. Bile casts were identified in 55% of cases. The most common etiology of cirrhosis was hepatitis C virus (HCV) infection (52%), and serum creatinine ( P = .02) and serum urea nitrogen ( P = .01) were significantly higher in the Hall-positive group. Conjugated bilirubin was below 20 mg/dL in 90%, and levels below 10 mg/dL were noted in 80% of cases. To our knowledge, this is the largest study of BCN in human subjects and a first report describing the association of BCN with HCV-related cirrhosis. We demonstrated that in the face of protracted chronic hyperbilirubinemia, bile casts are formed at much lower bilirubin levels than previously thought. Furthermore, we proposed an algorithm to assist in better identification of bile casts. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Ohno, H
1976-11-01
The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.
MLEP-Fail calibration for 1/8 inch thick cast plate of 17-4 steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corona, Edmundo
The purpose of the work presented in this memo was to calibrate the Sierra material model Multilinear Elastic-Plastic Hardening Model with Failure (MLEP-Fail) for 1/8 inch thick cast plate of 17-4 steel. The calibration approach is essentially the same as that recently used in a previous memo using data from smooth and notched tensile specimens. The notched specimens were manufactured with three notch radii R = 1=8, 1/32 and 1/64 inches. The dimensions of the smooth and notched specimens are given in the prints in Appendix A. Two cast plates, Plate 3 and Plate 4, with nominally identical properties weremore » considered.« less
Castillo-de-Oyagüe, Raquel; Sánchez-Turrión, Andrés; López-Lozano, José-Francisco; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria-Jesús
2012-07-01
This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p < 0.001). For each cement type, LS samples exhibited the best fit (p < 0.01) whereas CC and CT frames were statistically similar. Within each alloy group, PF and RXU provided comparably greater discrepancies than KC, PIC, and DT, which showed no differences. Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range.
Solidification structures grown under induced flow and continuous casting of steel
NASA Technical Reports Server (NTRS)
Tsavaras, A. A.
1984-01-01
The use of induced flow as a means to control solidification structures in strand cast steel is investigated. The quality problems in strand cast steel stemming from columnar growth can be partially controlled, by Electro Magnetic Stirring (EMS). Induced flow changes the normal morphology of dendrites. Solids grown under intense stirring conditions show both negative and positive segregation which is considered unacceptable by some steel producers. The inclusion size and population is strongly affected by induced flow (EMS). Laboratory and industrial data show substantial reduction in inclusion size and content, but the overall effect of flow on inclusions is affected by the particular type of flow patterns utilized in each case. Productivity and quality are raised substantially in steel strand casting by utilizing EMS.
Experimental Procedure for Warm Spinning of Cast Aluminum Components.
Roy, Matthew J; Maijer, Daan M
2017-02-01
High performance, cast aluminum automotive wheels are increasingly being incrementally formed via flow forming/metal spinning at elevated temperatures to improve material properties. With a wide array of processing parameters which can affect both the shape attained and resulting material properties, this type of processing is notoriously difficult to commission. A simplified, light-duty version of the process has been designed and implemented for full-size automotive wheels. The apparatus is intended to assist in understanding the deformation mechanisms and the material response to this type of processing. An experimental protocol has been developed to prepare for, and subsequently perform forming trials and is described for as-cast A356 wheel blanks. The thermal profile attained, along with instrumentation details are provided. Similitude with full-scale forming operations which impart significantly more deformation at faster rates is discussed.
Experimental Procedure for Warm Spinning of Cast Aluminum Components
Roy, Matthew J.; Maijer, Daan M.
2017-01-01
High performance, cast aluminum automotive wheels are increasingly being incrementally formed via flow forming/metal spinning at elevated temperatures to improve material properties. With a wide array of processing parameters which can affect both the shape attained and resulting material properties, this type of processing is notoriously difficult to commission. A simplified, light-duty version of the process has been designed and implemented for full-size automotive wheels. The apparatus is intended to assist in understanding the deformation mechanisms and the material response to this type of processing. An experimental protocol has been developed to prepare for, and subsequently perform forming trials and is described for as-cast A356 wheel blanks. The thermal profile attained, along with instrumentation details are provided. Similitude with full-scale forming operations which impart significantly more deformation at faster rates is discussed. PMID:28190063
Tate, David J; Bahin, Farzan F; Desomer, Lobke; Sidhu, Mayenaaz; Gupta, Vikas; Bourke, Michael J
2018-01-01
Non-lifting large laterally spreading colorectal lesions (LSLs) are challenging to resect endoscopically and often necessitate surgery. A safe, simple technique to treat non-lifting LSLs endoscopically with robust long-term outcomes has not been described. In this single-center prospective observational study of consecutive patients referred for endoscopic mucosal resection (EMR) of LSLs ≥ 20 mm, LSLs not completely resectable by snare because of non-lifting underwent standardized completion of resection with cold-forceps avulsion and adjuvant snare-tip soft coagulation (CAST). Scheduled surveillance colonoscopies were performed at 4 - 6 months (SC1) and 18 months (SC2). Primary outcomes were endoscopic evidence of adenoma clearance and avoidance of surgery. The secondary outcome was safety. From January 2012 to October 2016, 540 lifting LSLs (82.2 %) underwent complete snare excision at EMR. CAST was required for complete removal in 101 non-lifting LSLs (17.8 %): 63 naïve non-lifting lesions (NNLs; 62.7 %) and 38 previously attempted non-lifting lesions (PANLs; 37.3 %). PANLs were smaller ( P < 0.001) and more likely to be non-granular ( P = 0.001) than the lifting LSLs. NNLs were of similar size ( P = 0.77) and morphology ( P = 0.10) to the lifting LSLs. CAST was successful in all cases and adverse events were comparable to lifting LSLs resected by complete snare excision. Recurrence at SC1 was comparable for PANLs (15.2 %) and lifting LSLs (15.3 %; P = 0.99), whereas NNLs recurred more frequently (27.5 %; P = 0.049); however, surgery was no more common for either type of non-lifting LSL than for lifting LSLs. CAST is a safe, effective, and surgery-sparing therapy for the majority of non-lifting LSLs. It is easy to use, inexpensive, and does not require additional equipment. © Georg Thieme Verlag KG Stuttgart · New York.
Timing of Getter Material Addition in Cementitious Wasteforms
NASA Astrophysics Data System (ADS)
Lawter, A.; Qafoku, N. P.; Asmussen, M.; Neeway, J.; Smith, G. L.
2015-12-01
A cementitious waste form, Cast Stone, is being evaluated as a possible supplemental immobilization technology for the Hanford sites's low activity waste (LAW), which contains radioactive 99Tc and 129I, as part of the tank waste cleanup mission. Cast Stone is made of a dry blend 47% blast furnace slag, 45% fly ash, and 8% ordinary Portland cement, mixed with a low-activity waste (LAW). To improve the retention of Tc and/or I in Cast Stone, materials with a high affinity for Tc and/or I, termed "getters," can be added to provide a stable domain for the radionuclides of concern. Previous testing conducted with a variety of getters has identified Tin(II)-Apatite and Silver Exchanged Zeolite as promising candidates for Tc and I, respectively. Investigation into the sequence in which getters are added to Cast Stone was performed following two methods: 1) adding getters to the Cast Stone dry blend, and then mixing with liquid waste, and 2) adding getters to the liquid waste first, followed by addition of the Cast Stone dry blend. Cast Stone monolith samples were prepared with each method and leach tests, following EPA method 1315, were conducted in either distilled water or simulated vadose zone porewater for a period of up to 63 days. The leachate was analyzed for Tc, I, Na, NO3-, NO2- and Cr with ICP-MS, ICP-OES and ion chromatography and the results indicated that the Cast Stone with getter addition in the dry blend mix (method 1) has lower rates of Tc and I leaching. The mechanisms of radionuclide release from the Cast Stone were also investigated with a variety of solid phase characterization techniques of the monoliths before and after leaching, such as XRD, SEM/EDS, TEM/SAED and other spectroscopic techniques.
The Effects of Casting Porosity on the Tensile Behavior of Investment Cast 17-4PH Stainless Steel
NASA Astrophysics Data System (ADS)
Susan, D. F.; Crenshaw, T. B.; Gearhart, J. S.
2015-08-01
The effect of casting porosity on the mechanical behavior of investment cast 17-4PH stainless steel was studied as well as the effect of heat treatment on the alloy's sensitivity to casting defects. Interdendritic porosity, formed during solidification and shrinkage of the alloy, reduces the yield strength and ultimate tensile strength roughly in proportion to the reduction in load bearing cross-section. The effects of casting porosity on ductility (% strain, % reduction in area) are more severe, in agreement with research on other alloy systems. In this study, 10% porosity reduced the ductility of 17-4PH stainless steel by almost 80% for the high-strength H925 condition. Tensile testing at -10°C (263 K) further reduces the alloy ductility with and without pores present. In the lower strength H1100 condition, the ductility is higher than the H925 condition, as expected, and somewhat less sensitive to porosity. By measuring the area % porosity on the fracture surface of tensile specimens, the trend in failure strain versus area % porosity was obtained and analyzed using two methods: an empirical approach to determine an index of defect susceptibility with a logarithmic fit and an analytical approach based on the constitutive stress-strain behavior and critical strain concentration in the vicinity of the casting voids. The applicability of the second method depends on the amount of non-uniform strain (necking) and, as such, the softer H1100 material did not correlate well to the model. The behavior of 17-4PH was compared to previous work on cast Al alloys, Mg alloys, and other cast materials.
USDA-ARS?s Scientific Manuscript database
Genetic marker effects and type of inheritance are estimated with poor precision when minor marker allele frequencies are low. An Angus population was subjected to marker assisted selection for multiple years to equalize CAPN1 haplotypes, CAST, and GHR genetic marker frequencies. The objective was t...
Tomonaga, Masaki; Imura, Tomoko
2010-07-08
Humans readily perceive whole shapes as intact when some portions of these shapes are occluded by another object. This type of amodal completion has also been widely reported among nonhuman animals and is related to pictorial depth perception. However, the effect of a cast shadow, a critical pictorial-depth cue for amodal completion has been investigated only rarely from the comparative-cognitive perspective. In the present study, we examined this effect in chimpanzees and humans. Chimpanzees were slower in responding to a Pacman target with an occluding square than to the control condition, suggesting that participants perceptually completed the whole circle. When a cast shadow was added to the square, amodal completion occurred in both species. On the other hand, however, critical differences between the species emerged when the cast shadow was added to the Pacman figure, implying that Pacman was in the sky casting a shadow on the square. The cast shadow prevented, to a significant extent, compulsory amodal completion in humans, but had no effect on chimpanzees. These results suggest that cast shadows played a critical role in enabling humans to infer the spatial relationship between Pacman and the square. For chimpanzees, however, a cast shadow may be perceived as another "object". A limited role for cast shadows in the perception of pictorial depth has also been reported with respect to human cognitive development. Further studies on nonhuman primates using a comparative-developmental perspective will clarify the evolutionary origin of the role of cast shadows in visual perception.
Eslamian, Morteza; Zabihi, Fatemeh
2015-12-01
A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.
Cohesive taping and short-leg casting in acute low-type ankle sprains in physically active patients.
Uslu, Mustafa; Inanmaz, Mustafa E; Ozsahin, Mustafa; Isık, Cengiz; Arıcan, Mehmet; Gecer, Yavuz
2015-07-01
Cohesive taping is commonly used for the prevention or treatment of ankle sprain injuries. Short-leg cast immobilization or splinting is another treatment option in such cases. To determine the clinical efficacy and antiedema effects of cohesive taping and short-leg cast immobilization in acute low-type ankle sprains of physically active patients, we performed a preliminary clinical study to assess objective evidence for edema and functional patient American Orthopaedic Foot and Ankle Society (AOFAS) scores with these alternative treatments. Fifty-nine physically active patients were included: 32 in the taping group and 27 in the short-leg cast group within a year. If a sprain was moderate (grade II) or mild (grade I), we used functional taping or short-leg cast immobilization for 10 days. We evaluated the edema and the functional scores of the injured ankle using the AOFAS Clinical Rating System on days 1, 10, and 100. In each group, edema significantly decreased and AOFAS scores increased indicating that both treatment methods were effective. With the numbers available, no statistically significant difference could be detected. Each treatment method was effective in decreasing the edema and increasing the functional scores of the ankle. At the beginning of treatment, not only the level of edema but also the initial functional scores of the ankle and examinations are important in making decisions regarding the optimal treatment option.
Guo, Qunfeng; Wang, Liang; Lu, Xuhua; Guo, Xiang; Ni, Bin
2017-04-01
To evaluate differences in radiologic and functional outcomes between C1-C2 posterior temporary fixation (PTF) and cephalocervicothoracic cast fixation for type III odontoid fractures. Data from 13 patients who underwent PTF and 13 cases who underwent cephalocervicothoracic cast fixation due to fresh type III odontoid fractures were reviewed retrospectively. All patients with fracture healing underwent a functional computed tomography scan at the final follow-up to evaluate the range of motion in C1-C2 rotation. Functional outcomes were evaluated in the form of visual analog scale for neck pain, neck stiffness, patient satisfaction, and Neck Disability Index. The outcomes were compared between the 2 groups. At the final follow up, all 26 patients achieved healing of their fractures. There were no complications associated with either treatment. The left-to-right ranges of motion of C1-C2 rotation were 41.9° ± 11.9° in the PTF group and 43.5° ± 12.0° in the cephalocervicothoracic cast fixation group. There was no statistical difference between the 2 groups regarding the C1-C2 rotation angle (P > 0.05). There also were no significant differences between 2 groups in functional outcomes evaluated by visual analog scale for neck pain, neck stiffness, Neck Disability Index, and patient satisfaction (all P > 0.05). The outcomes of PTF and cephalocervicothoracic cast fixation were comparable in the treatment of type III odontoid fractures. For type III odontoid fractures that cannot be managed by nonoperative fixation or anterior screw fixation, PTF may be the treatment of choice, because it spares the motion of the C1-C2 complex. Copyright © 2016 Elsevier Inc. All rights reserved.
Heat treatment of investment cast PH 13-8 Mo stainless steel: Part II. Isothermal aging kinetics
NASA Astrophysics Data System (ADS)
Robino, C. V.; Cieslak, M. J.; Hochanadel, P. W.; Edwards, G. R.
1994-04-01
The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 °C to 593 °C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 °C, 538 °C, 566 °C, and 593 °C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that Β-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the Β-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels. Although the Avrami analysis was found not to provide a tenable description of the precipitation kinetics, it does provide a reasonable methodology for portrayal of the hardening response of PH 13-8 Mo stainless steel.
Detection of BRAF-V600E and V600K in melanoma circulating tumour cells by droplet digital PCR.
Reid, Anna L; Freeman, James B; Millward, Michael; Ziman, Melanie; Gray, Elin S
2015-10-01
Defining the BRAF mutation status in metastatic melanoma patients is critical to selecting patients for therapeutic treatment with targeted therapies. Circulating tumour cells (CTCs) can provide an alternative source of contemporaneous tumour genetic material. However methodologies to analyse the presence of rare mutations in a background of wild-type DNA requires a detailed assessment. Here we evaluate the sensitivity of two technologies for cancer mutation detection and the suitability of whole genome amplified DNA as a template for the detection of BRAF-V600 mutations. Serial dilutions of mutant BRAF-V600E DNA in wild-type DNA were tested using both competitive allele-specific PCR (castPCR) and droplet digital PCR (ddPCR), with and without previous whole genome amplification (WGA). Using immunomagnetic beads, we partially enriched CTCs from blood obtained from metastatic melanoma patients with confirmed BRAF mutation positive tumours and extracted RNA and DNA from the CTCs. We used RT-PCR of RNA to confirm the presence of melanoma cells in the CTC fraction then the DNAs of CTC positive fractions were WGA and tested for BRAF V600E or V600K mutations by ddPCRs. WGA DNA produced lower than expected fractional abundances by castPCR analysis but not by ddPCR. Moreover, ddPCR was found to be 200 times more sensitive than castPCR and in combination with WGA produced the most concordant results, with a limit of detection of 0.0005%. BRAF-V600E or V600K mutated DNA was detected in 77% and 44%, respectively, of enriched CTC fractions from metastatic melanoma patients carrying the corresponding mutations. Our results demonstrate that using ddPCR in combination with WGA DNA allows the detection with high sensitivity of cancer mutations in partially enriched CTC fractions. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasoyinu, Yemi; Griffin, John A.
2014-03-31
With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their longmore » freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.« less
Development of a CFD code for casting simulation
NASA Technical Reports Server (NTRS)
Murph, Jesse E.
1993-01-01
Because of high rejection rates for large structural castings (e.g., the Space Shuttle Main Engine Alternate Turbopump Design Program), a reliable casting simulation computer code is very desirable. This code would reduce both the development time and life cycle costs by allowing accurate modeling of the entire casting process. While this code could be used for other types of castings, the most significant reductions of time and cost would probably be realized in complex investment castings, where any reduction in the number of development castings would be of significant benefit. The casting process is conveniently divided into three distinct phases: (1) mold filling, where the melt is poured or forced into the mold cavity; (2) solidification, where the melt undergoes a phase change to the solid state; and (3) cool down, where the solidified part continues to cool to ambient conditions. While these phases may appear to be separate and distinct, temporal overlaps do exist between phases (e.g., local solidification occurring during mold filling), and some phenomenological events are affected by others (e.g., residual stresses depend on solidification and cooling rates). Therefore, a reliable code must accurately model all three phases and the interactions between each. While many codes have been developed (to various stages of complexity) to model the solidification and cool down phases, only a few codes have been developed to model mold filling.
NASA Astrophysics Data System (ADS)
Niknezhad, Setareh
The major objective of this study was to investigate the effect of ultrasonic treatment on the dispersion of modified clay particles in LLDPE and PA6 matrices and the final properties of nanocomposites. LLDPE and PA6 are two polymers that are widely used in packaging industry. Blown and cast films were manufactured from the prepared nanocomposites. To achieve one step film processing, an online ultrasonic film casting was developed. Ultrasonic waves caused high-energy mixing and dispersion due to the acoustic cavitation, causing the clay agglomorates to separate into individual platelets in polymer matrix. Ultrasonic waves also broke down the polymer molecular chains reducing viscosity of the melt, facilating dispersion of the clay platelets throughout the matrix. Ultrasound also led to a breakage of the clay platelets reducing the particle size and improving their distribution. Clay particles acted as a heterogenous nucleation agent generating smaller size polymer crystals. In turn, these improved different properties including mechanical properties, oxygen permeability and transparency of films. In LLDPE/clay 20A nanocomposites, the effect of ultrasound was more obvious at higher clay loadings. Exfoliated structure for ultrasonically treated nanocomposites containing 2.5, 5 and 7.5 wt% of clay 20A and highly intercalated structure for ultrasonically treated nanocomposites containing 10 wt% of clay 20A were achieved. However, in blown films, the exfoliated structure transferred to the intercalated structure due to the addition of more shear and thermal degradation of surfactants of the clay particles. While, manufacturing cast films using the new developed online ultrasonic cast film machine revealed the exfoliated structure with ultrasonic treatment till 7.5 wt% of clay loadings. Cast films of nanocomposites containing 5 wt% of clay loadings were also prepared with addition of different compatibilizers. The compatibilizer containing higher amount of grafted maleic anhydride (MA) affected mechanical properties and oxygen permeability with ultrasonic treatment to higher extent. However, use of compatibilizers led to a higher die pressure and resulted in opaque cast films. The mechanical properties were in agreement with crystallinity of samples. The exfoliated structure was achieved for PA6/clay 30B nanocomposites prepared using ultrasonically assisted single screw extrusion except for untreated nanocomposites containing 10 wt% of clay 30B. Untreated 92.5/7.5 and 90/10 PA6/clay 30B blown films showed the intercalated structure, but the exfoliated structure was achieved with ultrasonic treatment. All cast films of PA6/clay 30B showed the exfoliated structure. FTIR spectroscopy along with XRD results confirmed the existence of alpha and gamma-type crystals in the cast films, with clay particles favoring the formation of gamma-type crystals, and ultrasonic treatment favoring the formation of alpha-type crystals. Both parameters increased crystallinity of cast films improving their mechanical properties and oxygen permeability.
Hill, J F
1980-08-01
The purpose of this study was to compare the clinical acceptability of polymacon spin-cast to polymacon lathe-cut hydrophilic contact lenses. Ten patients successfully wearing polymacon spin-cast lenses were studied. Each patient had one eye refitted with polymacon lathe-cut lenses. Comparison of the two types of lenses was then made. Objective evaluation included centration, movement, visual acuity, and over-refraction. Subjective criteria were based on patient comfort and stability and quality of vision. Results indicate that lathe-cut lenses can be just as clinically satisfactory as the spincast ones.
Atrophy and growth failure of rat hindlimb muscles in tail-cast suspension
NASA Technical Reports Server (NTRS)
Jaspers, S. R.; Tischler, M. E.
1984-01-01
The primary objective of the present study is related to an evaluation of a modified tail-cast suspension model as a means of identifying metabolic factors which control or are associated with muscle atrophy and growth failure. Two different control conditions (normal and tail-casted weight bearing) were studied to determine the appropriate control for tail-cast suspension. A description is presented of a model which is most useful for studying atrophy of hindlimb muscles under certain conditions. Female Sprague-Dawley rats were employed in the experiments. Attention is given to growth rate and urinary excretion of urea and ammonia in different types of rats, the relationship between body weight and skeletal muscle weight, and the relationship between animal body weight and rates of protein synthesis and protein degradation.
Hair casts due to a deodorant spray.
Ena, Pasquale; Mazzarello, Vittorio; Chiarolini, Fausto
2005-11-01
A 7-year-old girl presented with itching and greyish-white sleeve-like structures in her hair. After ruling out other possible causes for the symptoms, such as nits and dandruff, it was determined that the patient was affected by hair casts. These are small cylindrical structures resembling louse eggs that encircle individual scalp hairs and are easily movable along the hair shafts. It was concluded that she had induced the condition through misuse of a deodorant body spray. Scanning electron microscopy combined with electron dispersive X-ray analysis (X-ray microanalysis) of the hair casts showed the chemical nature of the structures. Some elements present in the composition of the ingredients of the deodorant spray, such as aluminium, chlorine, silicon, magnesium and carbon, were also present in this uncommon type of hair casts.
Validation of tool mark analysis of cut costal cartilage.
Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles
2012-03-01
This study was designed to establish the potential error rate associated with the generally accepted method of tool mark analysis of cut marks in costal cartilage. Three knives with different blade types were used to make experimental cut marks in costal cartilage of pigs. Each cut surface was cast, and each cast was examined by three analysts working independently. The presence of striations, regularity of striations, and presence of a primary and secondary striation pattern were recorded for each cast. The distance between each striation was measured. The results showed that striations were not consistently impressed on the cut surface by the blade's cutting edge. Also, blade type classification by the presence or absence of striations led to a 65% misclassification rate. Use of the classification tree and cross-validation methods and inclusion of the mean interstriation distance decreased the error rate to c. 50%. © 2011 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Klasik, Adam; Pietrzak, Krystyna; Makowska, Katarzyna; Sobczak, Jerzy; Rudnik, Dariusz; Wojciechowski, Andrzej
2016-08-01
Based on previous results, the commercial composites of A359 (AlSi9Mg) alloy reinforced with 22 vol.% Al2O3 particles were submitted to multiple remelting by means of gravity casting and squeeze-casting procedures. The studies were focused on tribological tests, x-ray phase analyses, and microstructural examinations. More promising results were obtained for squeeze-casting method mainly because of the reduction of the negative microstructural effects such as shrinkage porosity or other microstructural defects and discontinuities. The results showed that direct remelting may be treated as economically well-founded and alternative way compared to other recycling processes. It was underlined that the multiple remelting method must be analyzed for any material separately.
Method of producing monolithic ceramic cross-flow filter
Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III
1998-02-10
Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.
Method of producing monolithic ceramic cross-flow filter
Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.
1998-01-01
Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, N., E-mail: nirupamd@barc.gov.in; Sengupta, P.; Abraham, G.
Highlights: • Grain refinement was made in Zr–16 wt.% SS alloy while prepared by suction casting process. • Distribution of Laves phase, e.g., Zr{sub 2}(Fe, Cr) was raised in suction cast (SC) Zr–16 wt.% SS. • Corrosion resistance was improved in SC alloy compared to that of arc-melt-cast alloy. • Grain refinement in SC alloy assisted for an increase in its corrosion resistance. - Abstract: Zirconium (Zr)-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) with the motivation of disposing of Zr and SS base nuclear metallic wastes. Zr–16 wt.% SS, a MWF alloymore » optimized from previous studies, exhibit significant grain refinement and changes in phase assemblages (soft phase: Zr{sub 2}(Fe, Cr)/α-Zr vs. hard phase: Zr{sub 3}(Fe, Ni)) when prepared by suction casting (SC) technique in comparison to arc-cast-melt (AMC) route. Variation in Cr-distribution among different phases are found to be low in suction cast alloy, which along with grain refinement restricted Cr-depletion at the Zr{sub 2}(Fe, Cr)/Zr interfaces, prone to localized attack. Hence, SC alloy, compared to AMC alloy, showed lower current density, higher potential at the breakdown of passivity and higher corrosion potential during polarization experiments (carried out under possible geological repository environments, viz., pH 8, 5 and 1) indicating its superior corrosion resistance.« less
Origin of Toughness in Dispersion-Cast Nafion Membranes
Kim, Yu Seung; Welch, Cynthia F.; Hjelm, Rex Paul; ...
2015-03-23
In this study, the gelation behavior of Nafion dispersions was investigated using small-angle neutron scattering to better understand the mechanical toughness of dispersion-cast Nafion membranes. Three types of gelation were observed, depending on dispersing fluids: (i) homogeneous, thermally reversible gelation that was present in most aprotic polar dispersing fluids; (ii) inhomogeneous, thermally irreversible gelation as films, found in alcohols; and (iii) inhomogeneous, thermally irreversible gelation which precipitates in water/monohydric alcohol mixtures. The mechanical toughness of dispersion-cast Nafion membranes depends on the dispersing fluid, varying by more than 4 orders of magnitude. Excellent correlation between the critical gelation concentration and mechanicalmore » toughness was demonstrated with the Nafion membranes cast at 140 °C. Additional thermal effects among Nafion membranes cast at 190 °C were qualitatively related to the boiling point of dispersing fluids. Little correlation between mechanical toughness and percent crystalline area of Nafion was observed, suggesting that the origin of mechanical toughness of dispersion-cast Nafion membranes is due to chain entanglements rather than crystallinity. Finally, the correlation between critical gelation concentration and mechanical toughness is a new way of predicting mechanical behavior in dispersion-cast polymer systems in which both polymer-dispersing fluid and polymer–polymer interactions play a significant role in the formation of polymer chain entanglements.« less
Casting Simulation of an Austrian Bronze Age Sword Hilt
NASA Astrophysics Data System (ADS)
Pola, Annalisa; Mödlinger, Marianne; Piccardo, Paolo; Montesano, Lorenzo
2015-07-01
Bronze Age swords with a metal hilt can be considered the peak of Bronze Age casting technologies. To reconstruct the casting techniques used more than 3000 years ago, a metal hilted sword of the Schalenknauf type from Lower Austria was studied with the aid of macroscopic analyses and simulation of mold filling and casting solidification. A three-dimensional model of the hilt was created based on optical scanner measurements performed on a hilt recently discovered during archaeological excavations. Three different configurations of the gating system were considered, two on the pommel disk and one on the knob, and the effect of its location on the formation of casting defects was investigated. Three-dimensional computed tomography was used to detect internal defects, such as gas and shrinkage porosity, which were then compared with those calculated by simulation. The best match between actual and predicted hilt quality demonstrated the location of the gating system, which turned out to be on the pommel disk.
Cutting efficiency of air-turbine burs on cast titanium and dental casting alloys.
Watanabe, I; Ohkubo, C; Ford, J P; Atsuta, M; Okabe, T
2000-11-01
The purpose of this study was to investigate the cutting efficiency of air-turbine burs on cast free-machining titanium alloy (DT2F) and to compare the results with those for cast commercially pure (CP) Ti, Ti-6Al-4V alloy, and dental casting alloys. The cast metal (DT2F, CP Ti, Ti-6Al-4V, Type IV gold alloy and Co-Cr alloy) specimens were cut with air-turbine burs (carbide burs and diamond points) at air pressures of 138 or 207 kPa and a cutting force of 0.784 N. The cutting efficiency of each bur was evaluated as volume loss calculated from the weight loss cut for 5 s and the density of each metal. The bulk microhardness was measured to correlate the machinability and the hardness of each metal. The amounts of DT2F cut with the carbide burs were significantly (p < 0.05) greater than for the other titanium specimens at either 138 or 207 kPa. The diamond points exhibited similar machining efficiency among all metals except for Type IV gold alloy. The increase in the volume loss of Co-Cr alloy (Vitallium) cut with the diamond points showed a negative value (-29%) with an increase in air pressure from 138 to 207 kPa. There was a negative correlation between the amounts of metal removed (volume loss) and the hardness (r2 = 0.689) when the carbide burs were used. The results of this study indicated that a free-machining titanium alloy (DT2F) exhibited better machinability compared to CP Ti and Ti-6Al-4V alloy when using carbide fissure burs. When machining cast CP Ti and its alloys, carbide fissure burs possessed a greater machining efficiency than the diamond points and are recommended for titanium dental prostheses.
Dai, F F; Liu, Y; Xu, T M; Chen, G
2018-04-18
To explore a cone beam computed tomography (CBCT)-independent method for mandibular digital dental cast superimposition to evaluate three-dimensional (3D) mandibular tooth movement after orthodontic treatment in adults, and to evaluate the accuracy of this method. Fifteen post-extraction orthodontic treatment adults from the Department of Orthodontics, Peking University School and Hospital of Stomatology were included. All the patients had four first premolars extracted, and were treated with straight wire appliance. The pre- and post-treatment plaster dental casts and craniofacial CBCT scans were obtained. The plaster dental casts were transferred to digital dental casts by 3D laser scanning, and lateral cephalograms were created from the craniofacial CBCT scans by orthogonal projection. The lateral cephalogram-based mandibular digital dental cast superimposition was achieved by sequential maxillary dental cast superimposition registered on the palatal stable region, occlusal transfer, and adjustment of mandibular rotation and translation obtained from lateral cephalogram superimposition. The accuracy of the lateral cephalogram-based mandibular digital dental cast superimposition method was evaluated with the CBCT-based mandibular digital dental cast superimposition method as the standard reference. After mandibular digital dental cast superimposition using both methods, 3D coordinate system was established, and 3D displacements of the lower bilateral first molars, canines and central incisors were measured. Differences between the two superimposition methods in tooth displacement measurements were assessed using the paired t-test with the level of statistical significance set at P<0.05. No significant differences were found between the lateral cephalogram-based and CBCT-based mandibular digital dental cast superimposition methods in 3D displacements of the lower first molars, and sagittal and vertical displacements of the canines and central incisors; transverse displacements of the canines and central incisors differed by (0.3±0.5) mm with statistical significance. The lateral cephalogram-based mandibular digital dental cast superimposition method has the similar accuracy as the CBCT-based mandibular digital dental cast superimposition method in 3D evaluation of mandibular orthodontic tooth displacement, except for minor differences for the transverse displacements of anterior teeth. This method is applicable to adult patients with conventional orthodontic treatment records, especially the previous precious orthodontic data in the absence of CBCT scans.
de Aguiar, Fábio Afrânio; Tiossi, Rodrigo; Rodrigues, Renata Cristina Silveira; Mattos, Maria de Gloria Chiarello; Ribeiro, Ricardo Faria
2009-04-01
The aim of this study was to compare the accuracy of fit of three types of implant-supported frameworks cast in Ni-Cr alloy: specifically, a framework cast as one piece compared to frameworks cast separately in sections to the transverse or the diagonal axis, and later laser welded. Three sets of similar implant-supported frameworks were constructed. The first group of six 3-unit implant-supported frameworks were cast as one piece, the second group of six were sectioned in the transverse axis of the pontic region prior to casting, and the last group of six were sectioned in the diagonal axis of the pontic region prior to casting. The sectioned frameworks were positioned in the matrix (10 N.cm torque) and laser welded. To evaluate passive fit, readings were made with an optical microscope with both screws tightened and with only one-screw tightened. Data were submitted to ANOVA and Tukey-Kramer's test (p < 0.05). When both screws were tightened, no differences were found between the three groups (p > 0.05). In the single-screw-tightened test, with readings made opposite to the tightened side, the group cast as one piece (57.02 +/- 33.48 mum) was significantly different (p < 0.05) from the group sectioned diagonally (18.92 +/- 4.75 microm) but no different (p > 0.05) from the group transversally sectioned (31.42 +/- 20.68 microm). On the tightened side, no significant differences were found between the groups (p > 0.05). Results of this study showed that casting diagonally sectioned frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves the levels of passivity to the same frameworks when compared to structures cast as one piece.
NASA Astrophysics Data System (ADS)
Li, T.; Griffiths, W. D.
2016-03-01
In the casting of light alloys, the oxidised film on the melt surface can be folded due to surface turbulence, thus forming entrainment defects that have a significant negative effect on the mechanical properties of castings. Previous researchers reported that the surface film of Mg alloys formed in an atmosphere containing SF6 had a complicated structure composed of MgO and MgF2. The work reported here aims to investigate the behaviour of entrainment defects formed in magnesium alloys protected by SF6-containing atmospheres. Tensile test bars of commercial purity Mg were cast in an unsealed environment under a cover gas of pure SF6. 34Scanning electron microscopy (SEM) of the fracture surface of the test bars indicated entrainment defects that consisted of symmetrical films containing MgO, but also sulphur and fluorine. The results of these examinations of the symmetrical films were used to infer the potential formation and development of entrainment defects in commercial purity Mg alloy.
Advanced single crystal for SSME turbopumps
NASA Technical Reports Server (NTRS)
Fritzemeier, L. G.
1989-01-01
The objective of this program was to evaluate the influence of high thermal gradient casting, hot isostatic pressing (HIP) and alternate heat treatments on the microstructure and mechanical properties of a single crystal nickel base superalloy. The alloy chosen for the study was PWA 1480, a well characterized, commercial alloy which had previously been chosen as a candidate for the Space Shuttle Main Engine high pressure turbopump turbine blades. Microstructural characterization evaluated the influence of casting thermal gradient on dendrite arm spacing, casting porosity distribution and alloy homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve hydrogen environment embrittlement resistance and for potential fatigue life improvement. Mechanical property evaluation was aimed primarily at determining improvements in low cycle and high cycle fatigue life due to the advanced processing methods. Statistically significant numbers of tests were conducted to quantitatively demonstrate life differences. High thermal gradient casting improves as-cast homogeneity, which facilitates solution heat treatment of PWA 1480 and provides a decrease in internal pore size, leading to increases in low cycle and high cycle fatigue lives.
NASA Astrophysics Data System (ADS)
Zhao, L. Z.; Hong, Y.; Fang, X. G.; Qiu, Z. G.; Zhong, X. C.; Gao, X. S.; Liu, Z. W.
2016-06-01
High coercivity Nd25Fe40Co20Al15-xBx (x=7-15) hard magnets were prepared by a simple process of injection casting. Different from many previous investigations on nanocomposite compositions, the magnets in this work contain hard magnetic Nd2(FeCoAl)14B, Nd-rich, and Nd1+ε(FeCo)4B4 phases. The magnetic properties, phase evolution, and microstructure of the as-cast and annealed magnets were investigated. As the boron content increased from 7 to 11 at%, the intrinsic coercivity Hcj of the as-cast magnet increased from 816 to 1140 kA/m. The magnets annealed at 750 °C have shown more regular and smaller grains than the as-cast alloys, especially for the x=11 alloy. The high intrinsic coercivities for the annealed alloys with x=8~11 result from the presence of small-sized grains in the microstructure. The highest Hcj of 1427 kA/m was obtained for the heat treated alloy with x=10. This work provides an alternative approach for preparing fully dense Nd-rich bulk hard magnets with relatively good properties.
Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space.
Shah, Falgun; Greene, Nigel
2014-01-21
The U.S. Environmental Protection Agency (EPA) launched the ToxCast program in 2007 with the goal of evaluating high-throughput in vitro assays to prioritize chemicals that need toxicity testing. Their goal was to develop predictive bioactivity signatures for toxic compounds using a set of in vitro assays and/or in silico properties. In 2009, Pfizer joined the ToxCast initiative by contributing 52 compounds with preclinical and clinical data for profiling across the multiple assay platforms available. Here, we describe the initial analysis of the Pfizer subset of compounds within the ToxCast chemical (n = 1814) and in vitro assay (n = 486) space. An analysis of the hit rate of Pfizer compounds in the ToxCast assay panel allowed us to focus our mining of assays potentially most relevant to the attrition of our compounds. We compared the bioactivity profile of Pfizer compounds to other compounds in the ToxCast chemical space to gain insights into common toxicity pathways. Additionally, we explored the similarity in the chemical and biological spaces between drug-like compounds and environmental chemicals in ToxCast and compared the in vivo profiles of a subset of failed pharmaceuticals having high similarity in both spaces. We found differences in the chemical and biological spaces of pharmaceuticals compared to environmental chemicals, which may question the applicability of bioactivity signatures developed exclusively based on the latter to drug-like compounds if used without prior validation with the ToxCast Phase-II chemicals. Finally, our analysis has allowed us to identify novel interactions for our compounds in particular with multiple nuclear receptors that were previously not known. This insight may help us to identify potential liabilities with future novel compounds.
Silva, Mauricio; Sadlik, Gal; Avoian, Tigran; Ebramzadeh, Edward
2018-04-01
The ideal type of immobilization for nondisplaced pediatric elbow fractures has not been established. We hypothesized that the use of a long-arm cylinder made of soft cast material will result in similar outcomes to those obtained with a traditional long-arm hard cast. We randomly assigned 100 consecutive children who presented with a closed, nondisplaced, type I supracondylar humeral fracture or an occult, closed, acute elbow injury, to 1 of 2 groups: group A (n=50) received a long-arm, traditional fiberglass (hard) cast. Group B (n=50) received a long-arm, soft fiberglass cast. After 4 weeks, the cast was removed in group A by a member of our staff using a cast saw, and in group B by one of the patient's parents by rolling back the soft fiberglass material. We compared the amount of fracture displacement and/or angulation, recovery of range of motion, elbow pain, and patient satisfaction. There were no instances of unplanned removal of the cast by the patient or parent. No evidence of fracture displacement or angulation was seen in either group. The final carrying angle of the affected elbow was nearly identical of that of the normal, contralateral elbow in both groups (P=0.64). At the latest follow-up appointment, elbows in groups A and B had a similar mean arc of motion (156 vs. 154 degrees; P=0.45), and had achieved identical relative arc of motion of 99.6% and 99.5% of that of the normal, contralateral side, respectively (P=0.94). Main pain scores were low and comparable over the study period. All patients in both groups reported the highest rate of satisfaction at the eighth week of follow-up. The results indicate that children with nondisplaced supracondylar humeral fractures can be successfully managed with the use of a removable long-arm soft cast, maintaining fracture alignment and resulting in comparable rates of range of motion, pain, and patient satisfaction. The use of a removable immobilization that can reliably maintain fracture alignment and result in similar outcomes, while minimizing the risk of noncompliance, could be advantageous. Although we elected to remove the soft cast during a scheduled follow-up, it appears that such immobilization could be removed easily and safely at home, potentially resulting in a lower number of patient visits, decreased health care costs, and higher patient/parent satisfaction. Level I.
Lightweight Concrete Produced Using a Two-Stage Casting Process.
Yoon, Jin Young; Kim, Jae Hong; Hwang, Yoon Yi; Shin, Dong Kyu
2015-03-25
The type of lightweight aggregate and its volume fraction in a mix determine the density of lightweight concrete. Minimizing the density obviously requires a higher volume fraction, but this usually causes aggregates segregation in a conventional mixing process. This paper proposes a two-stage casting process to produce a lightweight concrete. This process involves placing lightweight aggregates in a frame and then filling in the remaining interstitial voids with cementitious grout. The casting process results in the lowest density of lightweight concrete, which consequently has low compressive strength. The irregularly shaped aggregates compensate for the weak point in terms of strength while the round-shape aggregates provide a strength of 20 MPa. Therefore, the proposed casting process can be applied for manufacturing non-structural elements and structural composites requiring a very low density and a strength of at most 20 MPa.
The fractography of casting alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, G.W.
1994-10-01
Several types of casting alloys were fractured using various loading modes (uniaxial tension, bending, impact, and torsion, and cyclic stressing), and the corresponding mechanical properties were determined. The unetched and etched fracture surfaces and the microstructures were examined using conventional techniques. The types of casting alloys that were the subjects f these investigations include gray iron, ductile iron, cast steel, and aluminum-base alloys (A380, A356, and 319). The fractographic studies have yielded these generalizations regarding the topography of the fracture surfaces. In the case of low-ductility alloys such as gray iron and the aluminum-base alloys, the tensile edge of amore » fracture surface produced by a stress system with a strong bending-moment component has a highly irregular contour, whereas the compressive edge of the fracture surface is quite straight and parallel to the bend axis. On the other hand, the periphery of a fracture surface produced by uniaxial tension has a completely irregular contour. The fracture surface produced by cyclic loading of a gray iron does not display any macroscopic evidence (such as a thumb nail) of the loading mode. However, the fracture surface of each of the other casting alloys displays clear, macroscopic evidence of failure induced by fatigue. The aluminum-base alloys fracture completely within the interdendritic region of the microstructure when subjected to monotonic loading by uniaxial tension or bending, whereas a fatigue crack propagates predominantly through the primary crystals of the microstructure.« less
Sánchez-Turrión, Andrés; López-Lozano, José F.; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria J.
2012-01-01
Objectives. This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Study Design. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. Results. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p < 0.001). For each cement type, LS samples exhibited the best fit (p < 0.01) whereas CC and CT frames were statistically similar. Within each alloy group, PF and RXU provided comparably greater discrepancies than KC, PIC, and DT, which showed no differences. Conclusions. Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range. Key words:Dental alloy, laser sintering, implant-supported prostheses, vertical discrepancy, vertical misfit. PMID:22322524
Koike, Mari; Hummel, Susan K; Ball, John D; Okabe, Toru
2012-06-01
Although pure titanium is known to have good biocompatibility, a titanium alloy with better strength is needed for fabricating clinically acceptable, partial removable dental prosthesis (RDP) frameworks. The mechanical properties of an experimental Ti-5Al-5Cu alloy cast with a 2-step investment technique were examined for RDP framework applications. Patterns for tests for various properties and denture frameworks for a preliminary trial casting were invested with a 2-step coating method using 2 types of mold materials: a less reactive spinel compound (Al(2)O(3)·MgO) and a less expensive SiO(2)-based material. The yield and tensile strength (n=5), modulus of elasticity (n=5), elongation (n=5), and hardness (n=8) of the cast Ti-5Al-5Cu alloy were determined. The external appearance and internal porosities of the preliminary trial castings of denture frameworks (n=2) were examined with a conventional dental radiographic unit. Cast Ti-6Al-4V alloy and commercially pure titanium (CP Ti) were used as controls. The data for the mechanical properties were statistically analyzed with 1-way ANOVA (α=.05). The yield strength of the cast Ti-5Al-5Cu alloy was 851 MPa and the hardness was 356 HV. These properties were comparable to those of the cast Ti-6Al-4V and were higher than those of CP Ti (P<.05). One of the acrylic resin-retention areas of the Ti-5Al-5Cu frameworks was found to have been incompletely cast. The cast biocompatible experimental Ti-5Al-5Cu alloy exhibited high strength when cast with a 2-step coating method. With a dedicated study to determine the effect of sprue design on the quality of castings, biocompatible Ti-5Al-5Cu RDP frameworks for a clinical trial can be produced. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Effect of train type on annoyance and acoustic features of the rolling noise.
Kasess, Christian H; Noll, Anton; Majdak, Piotr; Waubke, Holger
2013-08-01
This study investigated the annoyance associated with the rolling noise of different railway stock. Passbys of nine train types (passenger and freight trains) equipped with different braking systems were recorded. Acoustic features showed a clear distinction of the braking system with the A-weighted energy equivalent sound level (LAeq) showing a difference in the range of 10 dB between cast-iron braked trains and trains with disk or K-block brakes. Further, annoyance was evaluated in a psychoacoustic experiment where listeners rated the relative annoyance of the rolling noise for the different train types. Stimuli with and without the original LAeq differences were tested. For the original LAeq differences, the braking system significantly affected the annoyance with cast-iron brakes being most annoying, most likely as a consequence of the increased wheel roughness causing an increased LAeq. Contribution of the acoustic features to the annoyance was investigated revealing that the LAeq explained up to 94% of the variance. For the stimuli without differences in the LAeq, cast-iron braked train types were significantly less annoying and the spectral features explained up to 60% of the variance in the annoyance. The effect of these spectral features on the annoyance of the rolling noise is discussed.
Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow
Katsuyama, Narumi; Usui, Nobuo; Taira, Masato
2016-01-01
A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity. PMID:27597999
Design of experiments to optimize an in vitro cast to predict human nasal drug deposition.
Shah, Samir A; Dickens, Colin J; Ward, David J; Banaszek, Anna A; George, Chris; Horodnik, Walter
2014-02-01
Previous studies showed nasal spray in vitro tests cannot predict in vivo deposition, pharmacokinetics, or pharmacodynamics. This challenge makes it difficult to assess deposition achieved with new technologies delivering to the therapeutically beneficial posterior nasal cavity. In this study, we determined best parameters for using a regionally divided nasal cast to predict deposition. Our study used a model suspension and a design of experiments to produce repeatable deposition results that mimic nasal deposition patterns of nasal suspensions from the literature. The seven-section (the nozzle locator, nasal vestibule, front turbinate, rear turbinate, olfactory region, nasopharynx, and throat filter) nylon nasal cast was based on computed tomography images of healthy humans. It was coated with a glycerol/Brij-35 solution to mimic mucus. After assembling and orienting, airflow was applied and nasal spray containing a model suspension was sprayed. After disassembling the cast, drug depositing in each section was assayed by HPLC. The success criteria for optimal settings were based on nine in vivo studies in the literature. The design of experiments included exploratory and half factorial screening experiments to identify variables affecting deposition (angles, airflow, and airflow time), optimization experiments, and then repeatability and reproducibility experiments. We found tilt angle and airflow time after actuation affected deposition the most. The optimized settings were flow rate of 16 L/min, postactuation flow time of 12 sec, a tilt angle of 23°, nozzle angles of 0°, and actuation speed of 5 cm/sec. Neither cast nor operator caused significant variation of results. We determined cast parameters to produce results resembling suspension nasal sprays in the literature. The results were repeatable and unaffected by operator or cast. These nasal spray parameters could be used to assess deposition from new devices or formulations. For human deposition studies using radiolabeled formulations, this cast could show that radiolabel deposition represents drug deposition. Our methods could also be used to optimize settings for other casts.
Aira, Manuel; Bybee, Seth; Pérez-Losada, Marcos; Domínguez, Jorge
2015-11-01
Earthworms play a key role in nutrient cycling by interacting with microorganisms thus accelerating organic matter turnover in soil systems. As detritivores, some earthworm types ingest and digest a mixture of dead organic matter and microorganisms, like animal manures (i.e. animal gut microbiomes). Here we described the earthworm cast microbiome and the role ingested bacteria play on its composition. We fed Eisenia andrei with cow, horse and pig manures and determined the taxonomic and phylogenetic composition of the these manures before and after passage through the earthworm gut. Earthworm cast microbiomes showed a smaller diversity than the manure they fed on. Manures strongly differed in their taxonomic and phylogenetic composition, but these differences were markedly reduced once transformed into earthworm cast microbiomes after passage through the earthworm gut. The core earthworm cast microbiome comprised 30 OTUs (2.6% of OTUs from cast samples), of which 10 are possibly native to the earthworm gut. Most of the core cast microbiome OTUs belonged to phyla Actinobacteria and Proteobacteria, as opposed to already described animal core gut microbiomes, which are composed mainly of Firmicutes and Bacteroidetes. Our results suggest that earthworms build up their cast microbiome by selecting from the pool of ingested bacteria. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Passive fit of frameworks in titanium and palladium-silver alloy submitted the laser welding.
de Sousa, S A; de Arruda Nobilo, M A; Henriques, G E P; Mesquita, M F
2008-02-01
This study evaluated the precision of fit of implant frameworks cast in titanium (cp Ti) and palladium-silver alloy (Pd-Ag), made by the one-piece cast and laser welding techniques. From a metal matrix with five implants, 20 master casts were obtained, to which replicas of implants were incorporated. On these masters 10 frameworks were made for each type of material (cp Ti and Pd-Ag alloy). Half of these were made by the one-piece cast technique and the other half by the laser welding technique. The implant/prosthesis interface was analysed and measured in the vestibular and lingual regions of the central and distal implants with the help of a measuring microscope. The results indicated that in the central cylinders, the Tukey test (P<0.0005) showed a significant difference in the passive fit between the laser-welded frameworks (34.73 microm) and those one-piece cast frameworks (151.39 microm), and as regards materials, the palladium-silver alloy (66.30 microm) showed better results than the titanium (119.83 microm). In the distal cylinders there was no significant difference between the frameworks cast in titanium and palladium-silver by the one-piece technique. However, after laser welding, there was a significant difference for the frameworks cast in titanium (31.37 microm) and palladium-silver (106.59 microm).
Bond strengths of custom cast and prefabricated posts luted with two cements.
Aleisa, Khalil Ibrahim
2011-02-01
This in vitro study evaluated the bond strength of custom cast and prefabricated posts luted with resin or zinc phosphate cements into unobturated canals of extracted teeth. Forty-eight custom cast and prefabricated posts were placed into extracted single-rooted human teeth. Post-cavity preparation was 1.5 mm in diameter and 10 mm in depth. Specimens were randomly divided into 4 groups of 12 each. Two of the groups were then luted with resin cement, while the other two groups were luted with zinc phosphate cement. A pull-out bond strength evaluation was performed using a universal testing machine. The Kolmogorov-Smirnov test was used to prove normal distribution. Data were statistically analyzed using two-way ANOVA and the Student t test (alpha = .05). For both luting agents, the prefabricated posts group exhibited significantly less bond strength than the custom cast posts group (P = .0001). There were statistically significant differences in mean bond strength for the prefabricated posts group luted with resin cement vs the group cemented with zinc phosphate cement (P = .002). There was no significant difference between the mean bond strength values of custom cast posts luted with resin cement or zinc phosphate cement. Custom cast posts showed significantly greater bond strength than prefabricated posts when luted with either resin or zinc phosphate cements. The type of cement had less significance on the retention of custom cast posts.
Army Investment Casting Industry Report
1987-04-01
Page 9 #5 Capacity Utilization Rates Page 10 #6 Labor Intensity Indicator Page 11 #7 Market Share By Firm Size Page 12 #8 Market Share By Type of Firm...information gathered from the U.S. casters. These similarities coupled with the relatively small Canadian market share resulted in similar conclusions...investment castings further expanding into the Defense market some foreseeable difficulties that could arise would be: a. Lack of adequate tooling. b
Microstructure of As-cast Co-Cr-Mo Alloy Prepared by Investment Casting
NASA Astrophysics Data System (ADS)
Park, Jong Bum; Jung, Kyung-Hwan; Kim, Kang Min; Son, Yong; Lee, Jung-Il; Ryu, Jeong Ho
2018-04-01
The microstructure of a cobalt-base alloy (Co-Cr-Mo) obtained by an investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants owing to its high strength, good corrosion resistance, and excellent biocompatibility. This work focuses on the resulting microstructures arising from normal industrial environmental conditions. The characterization of the samples was carried out using optical microscopy, field emission scanning electron microscopy and energy-dispersive spectroscopy. In this study, the as-cast microstructure is an γ-Co (face-centered cubic) dendritic matrix with the presence of a secondary phase, such as M23C6 carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloy. Other minority phases, such as the σ phase, were also detected, and their presence could be linked to the manufacturing process and environment.
Lightweight Concrete Produced Using a Two-Stage Casting Process
Yoon, Jin Young; Kim, Jae Hong; Hwang, Yoon Yi; Shin, Dong Kyu
2015-01-01
The type of lightweight aggregate and its volume fraction in a mix determine the density of lightweight concrete. Minimizing the density obviously requires a higher volume fraction, but this usually causes aggregates segregation in a conventional mixing process. This paper proposes a two-stage casting process to produce a lightweight concrete. This process involves placing lightweight aggregates in a frame and then filling in the remaining interstitial voids with cementitious grout. The casting process results in the lowest density of lightweight concrete, which consequently has low compressive strength. The irregularly shaped aggregates compensate for the weak point in terms of strength while the round-shape aggregates provide a strength of 20 MPa. Therefore, the proposed casting process can be applied for manufacturing non-structural elements and structural composites requiring a very low density and a strength of at most 20 MPa. PMID:28788007
A Study of the Oscillation Marks' Characteristics of Continuously Cast Incoloy Alloy 825 Blooms
NASA Astrophysics Data System (ADS)
Saleem, Saud; Vynnycky, Michael; Fredriksson, Hasse
2016-08-01
A comprehensive experimental study of oscillation mark (OM) formation and its characteristics during the solidification of Incoloy alloy 825 in the continuous casting of blooms is investigated by plant trials and metallographic study. The experiments involved two heats with the same casting and mold conditions and sampling at different locations across the strand. The metallographic study combined macro/micro-examinations of OMs and segregation analysis of Cr, Mn, Mo, Ni, and Si by microprobe analysis. The results show that OMs have widely different characteristics, such as mark type, depth, segregation, and accompanying microstructure. Furthermore, the mark pitch can vary considerably even for the similar casting conditions, leading to different conditions for the marks' formation in relation to the mold's cyclic movement. Finally, a mechanism for the OM formation is discussed and proposed. Possible solutions for minimizing the observed defects by optimizing the mold conditions are suggested.
Accuracy of six elastic impression materials used for complete-arch fixed partial dentures.
Stauffer, J P; Meyer, J M; Nally, J N
1976-04-01
1. The accuracy of four types of impression materials used to make a complete-arch fixed partial denture was evaluated by visual comparison and indirect measurement methods. 2. None of the tested materials allows safe finishing of a complete-arch fixed partial denture on a cast poured from one single master impression. 3. All of the tested materials can be used for impressions for a complete-arch fixed partial denture provided it is not finished on one single cast. Errors can be avoided by making a new impression with the fitted castings in place. Assembly and soldering should be done on the second cast. 4. In making the master fixed partial denture for this study, inaccurate soldering was a problem that was overcome with the use of epoxy glue. Hence, soldering seems to be a major source of inaccuracy for every fixed partial denture.
Feasibility Study for Casting of High Temperature Refractory Superalloy Composites
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
1998-01-01
Abstract This study investigated the feasibility of using conventional casting technique to fabricate refractory wires reinforced superalloy composites. These composites were being developed for advanced rocket engine turbine blades and other high temperature applications operating up to 2000 F. Several types of refractory metal wires such as W- Th, W-Re, Mo-Hf-C and W-HF-C reinforced waspaloy were experimentally cast and heat treated at 2000 F up to 48 hrs. Scanning electron microscope analysis was conducted in regions adjacent to the wire-matrix interface to determine the reaction zone and chemical compatibility resulting from material interdiffusion. It was concluded that fabrication using conventional casting may be feasible because the wire-matrix reaction zone thickness was comparable to similar composites produced by arc-sprayed monotape with hot isostatic pressing technique, Moreover, it was also found that the chemical compatibility could be improved significantly through a slight modification of the superalloy matrix compositions.
Ni{sub 3}Al technology transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikka, V.K.; Viswanathan, S.; Santella, M.L.
1997-04-01
Ductile Ni{sub 3}Al and Ni{sub 3}Al-based alloys have been identified for a range of applications. These applications require the use of material in a variety of product forms such as sheet, plate, bar, wire, tubing, piping, and castings. Although significant progress has been made in the melting, casting, and near-net-shape forming of nickel aluminides, some issues still remain. These include the need for: (1) high-strength castable composition for many applications that have been identified; (2) castability (mold type, fluidity, hot-shortness, porosity, etc.); (3) weld reparability of castings; and (4) workability of cast or powder metallurgy product to sheet, bar, andmore » wire. The four issues listed above can be {open_quotes}show stoppers{close_quotes} for the commercial application of nickel aluminides. This report describes the work completed to address some of these issues during FY 1996.« less
Morpurgo, Giorgio; Babudri, Nora; Fioretti, Bernard; Catacuzzeno, Luigi
2010-12-01
The role of haplodiploidy in the evolution of eusocial insects and why in Hymenoptera males do not perform any work is presently unknown. We show here that within-colony conflict caused by the coexistence of individuals of the same caste expressing the same character in different ways can be fundamental in the evolution of social characters in species that have already reached the eusocial condition. Mosaic colonies, composed by individuals expressing either the wild-type or a mutant phenotype, inevitably occurs during the evolution of advantageous social traits in insects. We simulated the evolution of an advantageous social trait increasing colony fitness in haplodiploid and diplodiploid species considering all possible conditions, i.e. dominance/recessivity of the allele determining the new social character, sex of the castes, and influence of mosaicism on the colony fitness. When mosaicism lowered colony fitness below that of the colony homogeneous for the wild type allele, the fixation of an advantageous social character was possible only in haplodiploids with female castes. When mosaicism caused smaller reductions in colony fitness, reaching frequencies of 90% was much faster in haplodiploids with female castes and dominant mutations. Our results suggest that the evolution of social characters is easier in haplodiploid than in diplodiploid species, provided that workers are females.
NASA Astrophysics Data System (ADS)
Witantyo; Setyawan, David
2018-03-01
In a lead acid battery industry, grid casting is a process that has high defect and thickness variation level. DMAIC (Define-Measure-Analyse-Improve-Control) method and its tools will be used to improve the casting process. In the Define stage, it is used project charter and SIPOC (Supplier Input Process Output Customer) method to map the existent problem. In the Measure stage, it is conducted a data retrieval related to the types of defect and the amount of it, also the grid thickness variation that happened. And then the retrieved data is processed and analyzed by using 5 Why’s and FMEA method. In the Analyze stage, it is conducted a grid observation that experience fragile and crack type of defect by using microscope showing the amount of oxide Pb inclusion in the grid. Analysis that is used in grid casting process shows the difference of temperature that is too high between the metal fluid and mold temperature, also the corking process that doesn’t have standard. The Improve stage is conducted a fixing process which generates the reduction of grid variation thickness level and defect/unit level from 9,184% to 0,492%. In Control stage, it is conducted a new working standard determination and already fixed control process.
Behavioral and Genetic Dissection of a Mouse Model for Advanced Sleep Phase Syndrome
Jiang, Peng; Striz, Martin; Wisor, Jonathan P.; O'Hara, Bruce F.
2011-01-01
Study Objective: The adaptive value of the endogenous circadian clock arises from its ability to synchronize (i.e., entrain) to external light-dark (LD) cycles at an appropriate phase. Studies have suggested that advanced circadian phase alignment might result from shortening of the period length of the clock. Here we explore mechanisms that contribute to an early activity phase in CAST/EiJ (CAST) mice. Methods: We investigated circadian rhythms of wheel-running activity in C57BL/6J (B6), CAST and 2 strains of B6.CAST congenic mice, which carry CAST segments introgressed in a B6 genome. Results: When entrained, all CAST mice initiate daily activity several hours earlier than normal mice. This difference could not be explained by alterations in the endogenous period, as activity onset did not correlate with period length. However, the photic phase-shifting responses in these mice were phase-lagged by 3 hours relative to their activity. Attenuated light masking responses were also found in CAST mice, which allow for activity normally inhibited by light. A previously identified quantitative trait locus (QTL), Era1, which contributes to the early activity trait, was confirmed and refined here using two B6.CAST congenic strains. Surprisingly, these B6.CAST mice exhibited longer rather than shorter endogenous periods, further demonstrating that the advanced phase in these mice is not due to alterations in period. Conclusions: CAST mice have an advanced activity phase similar to human advanced sleep phase syndrome. This advanced phase is not due to its shorter period length or smaller light-induced phase shifts, but appears to be related to both light masking and altered coupling of the circadian pacemaker with various outputs. Lastly, a QTL influencing this trait was confirmed and narrowed using congenic mice as a first step toward gene identification. Citation: Jiang P; Striz M; Wisor JP; O'Hara BF. Behavioral and genetic dissection of a mouse model for advanced sleep phase syndrome. SLEEP 2011;34(1):39-48. PMID:21203370
Wang, H Y; Lu, Y C; Shiau, Y Y; Tsou, D
1996-03-01
A coordinate measurement machine with laser probe was used to measure the vertical distortion of the casts produced by use of three types of impression materials (irreversible hydrocolloid, condensation silicone, and addition silicone) and two types of trays (stock and custom trays). Results indicated that all impression groups showed positive vertical distortion (ranging from 0.00566 to 0.30299 mm) at the edentulous ridges and palatal area. The amount of the vertical distortion was greatest at the palatal area and was followed by the high edentulous ridge and the low edentulous ridge. Addition silicone, with either custom tray or stock tray, was the most accurate impression material. Condensation silicone was more accurate than irreversible hydrocolloid in custom tray impression. However, in stock tray impression the irreversible hydrocolloid was more accurate than the condensation silicone. The results suggest that, with careful manipulation, irreversible hydrocolloid with stock tray impression may provide a satisfactory cast for fabricating the framework of a distal extension removable partial denture.
NASA Astrophysics Data System (ADS)
Deguchi, T.; Kim, H. J.; Ikeda, T.
2017-05-01
The mechanical behavior of ductile cast iron is governed by graphite particles and casting defects in the microstructures, which can significantly decrease the fatigue strength. In our previous study, the fatigue limit of ferritic-pearlitic ductile cast iron specimens with small defects ((\\sqrt{{area}}=80˜ 1500{{μ }}{{m}})) could successfully be predicted based on the \\sqrt{{area}} parameter model by using \\sqrt{{area}} as a geometrical parameter of defect as well as the tensile strength as a material parameter. In addition, the fatigue limit for larger defects could be predicted based on the conventional fracture mechanics approach. In this study, rotating bending and tension-compression fatigue tests with ferritic-pearlitic ductile cast iron containing circumferential sharp notches as well as smooth specimens were performed to investigate quantitatively the effects of defect. The notch depths ranged 10 ˜ 2500 μm and the notch root radii were 5 and 50 μm. The stress ratios were R = -1 and 0.1. The microscopic observation of crack propagation near fatigue limit revealed that the fatigue limit was determined by the threshold condition for propagation of a small crack emanating from graphite particles. The fatigue limit could be successfully predicted as a function of R using a method proposed in this study.
Ahlers, M Oliver; Edelhoff, Daniel; Jakstat, Holger A
2018-06-21
The benefit from positioning the maxillary casts with the aid of face-bows has been questioned in the past. Therefore, the aim of this study was to investigate the reliability and validity of arbitrary face-bow transfers compared to a process solely based on the orientation by means of average values. For optimized validity, the study was conducted using a controlled, randomized, anonymized, and blinded patient simulator study design. Thirty-eight undergraduate dental students were randomly divided into two groups; both groups were applied to both methods, in opposite sequences. Investigated methods were the transfer of casts using an arbitrary face-bow in comparison to the transfer using average values based on Bonwill's triangle and the Balkwill angle. The "patient" used in this study was a patient simulator. All casts were transferred to the same individual articulator, and all the transferred casts were made using type IV special hard stone plaster; for the attachment into the articulator, type II plaster was used. A blinded evaluation was performed based on three-dimensional measurements of three reference points. The results are presented three-dimensionally in scatterplots. Statistical analysis indicated a significantly smaller variance (Student's t test, p < 0.05) for the transfer using a face-bow, applicable for all three reference points. The use of an arbitrary face-bow significantly improves the transfer reliability and hence the validity. To simulate the patient situation in an individual articulator correctly, casts should be transferred at least by means of an arbitrary face-bow.
2014-01-01
As social insects, termites live in densely populated colonies with specialized castes under conditions conducive to microbial growth and transmission. Furthermore, termites are exposed to xenobiotics in soil and their lignocellulose diet. Therefore, termites are valuable models for studying gene expression involved in response to septic injury, immunity and detoxification in relation to caste membership. In this study, workers and soldiers of the Formosan subterranean termite, Coptotermes formosanus, were challenged by bacterial injection or by no-choice feeding with a sublethal concentration (0.5%) of phenobarbital. Constitutive and induced expression of six putative immune response genes (two encoding for lectin-like proteins, one for a ficolin-precursor, one for the Down syndrome cell adhesion molecule, one for a chitin binding protein, and one for the gram-negative binding protein 2) and four putative detoxification genes (two encoding for cytochrome P450s, one for glutathione S-transferase, and one for the multi antimicrobial extrusion protein), were measured via quantitative real time polymerase chain reaction and compared within and among 1) colonies, 2) treatment types and 3) castes via ANOVA. Eight genes were inducible by septic injury, feeding with phenobarbital or both. Colony origin had no effect on inducibility or differential gene expression. However, treatment type showed significant effects on the expression of the eight inducible genes. Caste effects on expression levels were significant in five of the eight inducible genes with constitutive and induced expression of most target genes being higher in workers than in soldiers. PMID:25141339
Sotiriou, Michael; Zissis, Alcibiades
2014-01-01
Objective The aim of this survey was to record removable partial denture (RPD) retentive elements and abutment teeth in partially edentulous patients, identified in commercial laboratories in Athens, Greece. Material and Methods 628 master casts with the corresponding cast metal frameworks used in the construction of RPDs were evaluated. Casts were photographed to identify the number and position of existing teeth, the partial edentulism class and the retentive elements. Prevalence tables and the x2 test were used for the statistical analysis of the collected data (α=.05). Results There were 276 maxillary (43.9%) and 352 (56.1%) mandibular casts. Maxillary edentulism entailed almost a total absence of right third molars in 96.7% and left third molars 96.0% of casts, with lower rates for the first and second molars. Edentulism in the posterior mandible presented a similar pattern. The most profound findings concerning retentive elements were: 91.9% of the retainers used were clasps and the remaining 8.1% were attachments. Of the clasps used, 48.9% were of the Roach Τ type, a finding more common in Kennedy Class I as compared to other Kennedy Classes (p<0.01). The circumferential clasps accounted for 19.3% of the total clasps used, and it was less frequently presented (8.8%) in Kennedy I Classes (p<0.01). Conclusions Roach clasps were used in the majority of cases whereas RPI clasps and attachments were rarely used. PMID:27688367
ERIC Educational Resources Information Center
Beitzel, Brian D.; Staley, Richard K.; DuBois, Nelson F.
2011-01-01
Previous research has cast doubt on the efficacy of utilizing external representations as an aid to solving word problems. The present study replicates previous findings that concrete representations hinder college students' ability to solve probability word problems, and extends those findings to apply to a multimedia instructional context. Our…
NASA Technical Reports Server (NTRS)
Janowski, G. M.
1985-01-01
The microstructure, phase compositions, and phase fractions were studied in conventionally cast B-1900 + Hf and both conventionally cast and directionally solidified MAR-M247 as a function of tantalum concentration. The hot tensile and creep rupture properties of the solutionized and aged MAR-M247-type alloys were also determined as a function of tantalum level. The effects of tantalum on the microstructure and phase compositions of B-1900 + Hf and MAR-M247 (conventionally cast and directionally solidified) were found to be very similar. The addition of tantalum to the as cast and heat treated alloys was shown to cause the partial replacement of the Hf in the MC carbides by Ta, although the degree of replacement was decreased by the solutionizing and aging heat treatment. The gamma prime and minor phase fractions (primarily MC type carbides) both increased approximately linearly with tantalum concentration. The gamma prime phase compositions were relatively insensitive to tantalum variations with the exception of the tantalum and/or hafnium levels. Bulk tantalum additions increased the tantalum, chromium, and cobalt levels of the gamma phase in both alloy series. The increase in the concentrations of the latter two elements in the gamma phase was a result of the decrease in the gamma phase fraction with increasing bulk tantalum concentration and constant gamma/gamma prime partitioning ratio. Tantalum additions increased the yield stress and ultimate tensile strength of the directionally solidified MAR-M247 type alloys and had no significant effect on ductility.
New Insights into Hard Phases of CoCrMo Metal-on-Metal Hip Replacements
Liao, Y.; Pourzal, R.; Stemmer, P.; Wimmer, M.A.; Jacobs, J.J.; Fischer, A.; Marks, L. D.
2012-01-01
The microstructural and mechanical properties of the hard phases in CoCrMo prosthetic alloys in both cast and wrought conditions were examined using transmission electron microscopy and nanoindentation. Besides the known carbides of M23C6-type (M=Cr, Mo, Co) and M6C-type which are formed by either eutectic solidification or precipitation, a new mixed-phase hard constituent has been found in the cast alloys, which is composed of ~100 nm fine grains. The nanosized grains were identified to be mostly of M23C6 type using nano-beam precession electron diffraction, and the chemical composition varied from grain to grain being either Cr- or Co-rich. In contrast, the carbides within the wrought alloy having the same M23C6 structure were homogeneous, which can be attributed to the repeated heating and deformation steps. Nanoindentation measurements showed that the hardness of the hard phase mixture in the cast specimen was ~15.7 GPa, while the M23C6 carbides in the wrought alloy were twice as hard (~30.7 GPa). The origin of the nanostructured hard phase mixture was found to be related to slow cooling during casting. Mixed hard phases were produced at a cooling rate of 0.2 °C/s, whereas single phase carbides were formed at a cooling rate of 50 °C/s. This is consistent with sluggish kinetics and rationalizes different and partly conflicting microstructural results in the literature, and could be a source of variations in the performance of prosthetic devices in-vivo. PMID:22659365
Accuracy of single-abutment digital cast obtained using intraoral and cast scanners.
Lee, Jae-Jun; Jeong, Ii-Do; Park, Jin-Young; Jeon, Jin-Hun; Kim, Ji-Hwan; Kim, Woong-Chul
2017-02-01
Scanners are frequently used in the fabrication of dental prostheses. However, the accuracy of these scanners is variable, and little information is available. The purpose of this in vitro study was to compare the accuracy of cast scanners with that of intraoral scanners by using different image impression techniques. A poly(methyl methacrylate) master model was fabricated to replicate a maxillary first molar single-abutment tooth model. The master model was scanned with an accurate engineering scanner to obtain a true value (n=1) and with 2 intraoral scanners (CEREC Bluecam and CEREC Omnicam; n=6 each). The cast scanner scanned the master model and duplicated the dental stone cast from the master model (n=6). The trueness and precision of the data were measured using a 3-dimensional analysis program. The Kruskal-Wallis test was used to compare the different sets of scanning data, followed by a post hoc Mann-Whitney U test with a significance level modified by Bonferroni correction (α/6=.0083). The type 1 error level (α) was set at .05. The trueness value (root mean square: mean ±standard deviation) was 17.5 ±1.8 μm for the Bluecam, 13.8 ±1.4 μm for the Omnicam, 17.4 ±1.7 μm for cast scanner 1, and 12.3 ±0.1 μm for cast scanner 2. The differences between the Bluecam and the cast scanner 1 and between the Omnicam and the cast scanner 2 were not statistically significant (P>.0083), but a statistically significant difference was found between all the other pairs (P<.0083). The precision of the scanners was 12.7 ±2.6 μm for the Bluecam, 12.5 ±3.7 μm for the Omnicam, 9.2 ±1.2 μm for cast scanner 1, and 6.9 ±2.6 μm for cast scanner 2. The differences between Bluecam and Omnicam and between Omnicam and cast scanner 1 were not statistically significant (P>.0083), but there was a statistically significant difference between all the other pairs (P<.0083). An Omnicam in video image impression had better trueness than a cast scanner but with a similar level of precision. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Microstructures of ancient and modern cast silver–copper alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Northover, S.M., E-mail: s.m.northover@open.ac.uk; Northover, J.P., E-mail: peter.northover@materials.ox.ac.uk
The microstructures of modern cast Sterling silver and of cast silver objects about 2500 years old have been compared using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray microanalysis (EDX) and electron backscatter diffraction (EBSD). Microstructures of both ancient and modern alloys were typified by silver-rich dendrites with a few pools of eutectic and occasional cuprite particles with an oxidised rim on the outer surface. EBSD showed the dendrites to have a complex internal structure, often involving extensive twinning. There was copious intragranular precipitation within the dendrites, in themore » form of very fine copper-rich rods which TEM, X-ray diffraction (XRD), SEM and STEM suggest to be of a metastable face-centred-cubic (FCC) phase with a cube–cube orientation relationship to the silver-rich matrix but a higher silver content than the copper-rich β in the eutectic. Samples from ancient objects displayed a wider range of microstructures including a fine scale interpenetration of the adjoining grains not seen in the modern material. Although this study found no unambiguous evidence that this resulted from microstructural change produced over archaeological time, the copper supersaturation remaining after intragranular precipitation suggests that such changes, previously proposed for wrought and annealed material, may indeed occur in ancient silver castings. - Highlights: • Similar twinned structures and oxidised surfaces seen in ancient and modern cast silver • General precipitation of fine Cu-rich rods apparently formed by discontinuous precipitation is characteristic of as-cast silver. • The fine rods are cube-cube related to the matrix in contrast with the eutectic. • The silver-rich phase remains supersaturated with copper. • Possibly age-related grain boundary features seen in ancient cast silver.« less
Development of a New Membrane Casting Apparatus for Studying Macrovoid Defects in Low-G
NASA Technical Reports Server (NTRS)
Lee, Hanyong; Hwang, Sun-Tak; Krantz, William B.; Greenberg, Alan R.; Khare, Vivek; Zartman, Jeremiah; Todd, Paul W.
2002-01-01
A new membrane-casting apparatus is developed for studying macrovoid defects in polymeric membranes made by the wet- and dry-casting process in low-gravity. Macrovoids are large (10-50 micron), open cavities interspersed among the smaller pores in the substructure under the gelled skin surface layer of the cast membrane. Although their occurrence is considered endemic to the wet- and dry-casting process since they can lead to compaction or skin rupture in the membrane process, recent studies suggest several useful applications such as transdermal and osmotic drug delivery systems, miniature bioreactors, etc. However, lack of knowledge about the macrovoid formation mechanism is an obstacle to further development of applications using them. An on-going debate is the role of the surface-tension-driven solutocapillary convection during macrovoid formation. The rapid growth of macrovoids within 1-5 seconds and the high polymer concentration in and near macrovoids make it difficult to explain the mechanism of macrovoid growth by diffusion alone, which is the widely accepted hypothesis proposed by Reuvers et al. The hypothesis advanced by our research group can explain this rapid growth via a mechanism that involves diffusion from the casting solution in the meta-stable region to the macrovoid enhanced by solutocapillary convection induced by the steep nonsolvent concentration gradient in the vicinity of the macrovoid. Since macrovoid growth is hypothesized to be the interplay of a solutocapillary-induced driving force counteracted by viscous drag and buoyancy, eliminate the latter provides a means for testing this hypothesis. Moreover, free convection mass transfer in the nonsolvent immersion bath used to cause phase-separation in membrane casting complicates developing a model for both the wet-casting process and macrovoid growth. The low-g environment minimizes gravitationally induced free convection thereby permitting a tractable solution to the ternary diffusion equations that characterize membrane formation. NASA's Parabolic Flight Research Aircraft provides a small window of low-g (approximately 25 s) that can be used to study macrovoid development in both wet- and dry-cast membranes if an appropriate casting apparatus is used. This casting apparatus should be able to cast the membrane in both low- and high-g in a manner so that essential one-dimensional mass transfer conditions are achieved to insure lateral uniformity in the membrane. The apparatus used in previous research on membrane casting in low-gravity was operated with the plunger driven mechanism. The spring-loaded plunger pushes the bottom block containing the polymer casting solution well directly under the absorbent chamber located in the upper stationary block. However, membranes made via this casting apparatus often displayed lateral nonuniformities that precluded obtaining quantitative information on the macrovoid growth process. Thus, it was necessary to determine the reason for these structural irregularities observed in the low-g casting apparatus. Both experimental as well as computer simulation studies of the low-g casting apparatus established that the impulsive action of the plunger caused the undesired structural nonuniformities. The simulation results showed that the width-to-depth aspect ratio of the shallow well that contains the casting solution in this apparatus was not an important factor in minimizing this problem. Even for a 40:1 (width : depth) aspect ratio, any convection induced by the horizontal motion of the interface of the casting solution will be damped out within 6.25x10(exp 4) seconds. However, the experimental studies revealed that the impulsive motion of the plunger caused a 'sloshing' of the casting solution that had to be eliminated. Therefore, the plungerdriven mechanism was changed to a cam-driven mechanism that did not cause any impulsive motion of the casting solution. Other refinements to this new membrane-casting apparatus include provision for removing the membranes from the casting wells in a less destructive manner. This was accomplished by using a slit geometry for the casting well that permitted disassembly for removal of the cast membrane. The materials used in the construction of this casting apparatus were chosen to insure wetting at the side walls and to maintain precise control of the thickness of the polymer solution in the casting well. An additional provision in this new casting apparatus is the ability to carry out both wet- as well as dry-casting. As such, this apparatus permitted the first studies of the wet-casting of polymeric membranes in low-g. Both wet- and dry-casting experiments on NASA's KC-135 research aircraft employing this new membrane-casting apparatus are scheduled in July 2002. The morphology of the resulting membranes will be characterized using an environmental scanning electron microscope (ESEM). The results of these low-g studies will be reported later.
Utilization of Seismic and Infrasound Signals for Characterizing Mining Explosions
2001-10-01
different types of mining operations exist, ranging from surface coal cast blasting to hard rock fragmentation blasting in porphyry copper mines. The study...both seismic and infrasound signals. The seismic coupling of large-scale cast blasts in Wyoming, copper fragmentation blasts in Arizona and New Mexico...mining explosions from the copper fragmentation blasts in SE Arizona were observed at Los Alamos. Detected events were among the largest of the blasts
Mechanical Properties of Be-Al Alloys
2000-02-22
technology (sand and mold casting) producing a coarse dendritic structure that did not produce mechanical properties appropriate for structural ... Mechanical Properties of Be-AI Alloys 2. REPORT TYPE Technical Report 6. AUTHOR(S) E. U. Lee K. George V. V. Agarwala H. Sanders 3. DATES...SUPPLEMENTARY NOTES 14. ABSTRACT ~ — — This study was conducted to define the mechanical properties of a wrought 62Be-38A1 alloy and a cast 65Be-32A1
A meshless approach to thermomechanics of DC casting of aluminium billets
NASA Astrophysics Data System (ADS)
Mavrič, B.; Šarler, B.
2016-03-01
The ability to model thermomechanics in DC casting is important due to the technological challenges caused by physical phenomena such as different ingot distortions, cracking, hot tearing and residual stress. Many thermomechanical models already exist and usually take into account three contributions: elastic, thermal expansion, and viscoplastic to model the mushy zone. These models are, in a vast majority, solved by the finite element method. In the present work the elastic model that accounts for linear thermal expansion is considered. The method used for solving the model is of a novel meshless type and extends our previous meshless attempts in solving fluid mechanics problems. The solution to the problem is constructed using collocation on the overlapping subdomains, which are composed of computational nodes. Multiquadric radial basis functions, augmented by monomials, are used for the displacement interpolation. The interpolation is constructed in such a manner that it readily satisfies the boundary conditions. The discretization results in construction of a global square sparse matrix representing the system of linear equations for the displacement field. The developed method has many advantages. The system of equations can be easily constructed and efficiently solved. There is no need to perform expensive meshing of the domain and the formulation of the method is similar in two and three dimensions. Since no meshing is required, the nodes can easily be added or removed, which allows for efficient adaption of the node arrangement density. The order of convergence, estimated through an analytically solvable test, can be adjusted through the number of interpolation nodes in the subdomain, with 6 nodes being enough for the second order convergence. Simulations of axisymmetric mechanical problems, associated with low frequency electromagnetic DC casting are presented.
An in vitro study of coronal leakage after intraradicular preparation of cast-dowel space.
Pappen, A F; Bravo, M; Gonzalez-Lopez, S; Gonzalez-Rodriguez, M P
2005-09-01
Coronal leakage can produce contamination of periapical tissues, resulting in endodontic failure. The purpose of this in vitro study was to evaluate the ability of 2 sealers to prevent coronal leakage in canals filled with gutta-percha and prepared for cast dowels but without coronal sealing. The crowns of 60 extracted single-rooted teeth were amputated. The root canals were prepared corono-apically and filled with gutta-percha cones and 1 of 2 different endodontic sealers: a resin-based sealer (AH Plus) and a calcium hydroxide-based sealer (Sealapex). Specimens were then stored in water for 7 days to allow the sealers to set. The specimens were prepared in 1 of 2 ways: no preparation for cast dowel or preparation of cast-dowel space (n=15). External surfaces of the roots were sealed with cyanoacrylate cement. The teeth were thermal cycled at 5 degrees and 55 degrees C in water baths (dwell time=30 seconds) for 500 cycles. Specimens were then submerged in 2% methylene blue colorant for 24 hours. Microleakage was measured according to the percentage of area stained with the colorant. Effects of each factor (cast-dowel preparation and type of sealant) on microleakage were analyzed by the Student t test (alpha=.05). The AH Plus and Sealapex sealers with cast-dowel preparation resulted in significantly (P<.001) more leakage compared to sealers with no dowel preparation. Cast dowel-space preparation had a negative influence on the sealing ability of the remnant root-canal filling material.
Optimization of Squeeze Casting for Aluminum Alloy Parts
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Schwam; John F. Wallace; Qingming Chang
2002-07-30
This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' formore » evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it must remain open until the casting is solidified and pressure is maintained on the solidifying casting. Fanned gates, particularly on the smaller section castings avoid jetting effects at the ingate end. The fan type ingate helps accomplish a rapid fill without high velocities. The molten metal has to fill the cavity before localized solidification occurs. This is best accomplished with a larger ingate to attain rapid filling without excessive velocity or jetting that occurs at high metal velocities. Straight gates are prone to case jetting of the metal stream even a low velocities. Fanned gates allow use of higher fill velocity without excessive jetting. A higher metal pressure provides a more complete fill of the die including improved compensation for solidification shrinkage. With the proper filling pattern, ingates, overflows and die temperature for a given die, very good tensile properties can be attained in squeeze casting. In general, the smaller squeeze castings require higher die temperatures. Computer models using the UES Procast and MagmaSoft finite element software can, after suitable adjustments, predict the flow pattern in the die cavity.« less
2011-01-01
Background In the Indian context, a household's caste characteristics are most relevant for identifying its poverty and vulnerability status. Inadequate provision of public health care, the near-absence of health insurance and increasing dependence on the private health sector have impoverished the poor and the marginalised, especially the scheduled tribe population. This study examines caste-based inequalities in households' out-of-pocket health expenditure in the south Indian state of Kerala and provides evidence on the consequent financial burden inflicted upon households in different caste groups. Methods Using data from a 2003-2004 panel survey in Kottathara Panchayat that collected detailed information on health care consumption from 543 households, we analysed inequality in per capita out-of-pocket health expenditure across castes by considering households' health care needs and types of care utilised. We used multivariate regression to measure the caste-based inequality in health expenditure. To assess health expenditure burden, we analysed households incurring high health expenses and their sources of finance for meeting health expenses. Results The per capita health expenditures reported by four caste groups accord with their status in the caste hierarchy. This was confirmed by multivariate analysis after controlling for health care needs and influential confounders. Households with high health care needs are more disadvantaged in terms of spending on health care. Households with high health care needs are generally at higher risk of spending heavily on health care. Hospitalisation expenditure was found to have the most impoverishing impacts, especially on backward caste households. Conclusion Caste-based inequality in household health expenditure reflects unequal access to quality health care by different caste groups. Households with high health care needs and chronic health care needs are most affected by this inequality. Households in the most marginalised castes and with high health care need require protection against impoverishing health expenditures. Special emphasis must be given to funding hospitalisation, as this expenditure puts households most at risk in terms of mobilising monetary resources. However, designing protection instruments requires deeper understanding of how the uncovered financial burden of out-patient and hospitalisation expenditure creates negative consequences and of the relative magnitude of this burden on households. PMID:21214941
Canavese, Federico; Botnari, Alexei; Dimeglio, Alain; Samba, Antoine; Pereira, Bruno; Gerst, Adeline; Granier, Marie; Rousset, Marie; Dubousset, Jean
2016-02-01
Juvenile scoliosis (JS), among different types of spinal deformity, remains still a challenge for orthopedic surgeons. Elongation, derotation and flexion (EDF) casting technique is a custom-made thoracolumbar cast based on a three-dimensional correction concept. The primary objective of the present study was to measure changes on plain radiographs of patients with JS treated with EDF plaster technique. The second aim was to evaluate the effectiveness of the EDF plaster technique realized under general anesthesia (GA) and neuromuscular blocking drugs, i.e. curare, on the radiological curve correction. A retrospective comparative case series study was performed in which were included forty-four skeletally immature patients. Three patient groups were selected. Group 1: EDF cast applied with patients awaken and no anesthesia; Group 2: EDF cast applied under GA without neuromuscular blocking drugs; Group 3: EDF cast applied under GA with neuromuscular blocking drugs. All the patients were treated with two serial EDF casts by 2 months and a half each. All measurements were taken from the radiographic exams. Cobb's angle; RVAD and Nash and Moe grade of rotation were assessed before and after applying the cast. Thirty-four (77.3 %) patients were followed up at least 24 months after removal of last EDF cast. Eighteen patients (3 males, 15 females) were included in Group 1, 12 (2 males, 10 females) in Group 2 and 14 (5 males, 9 females) in Group 3. Serial EDF casting was more effective at initial curve reduction and in preventing curve progression when applied under GA with neuromuscular blocking drugs, i.e. curare. RVAD and Nash and Moe score improved significantly in all groups of patients treated according to principles of EDF technique. During follow-up period, six patients required surgery in Group 1 (6/18; 33.3 %), 3 patients required surgery in Group 2 (3/12; 25 %) and 2 patients underwent surgery in Group 3 (2/14; 15 %). Preliminary results show EDF casting is effective in controlling the curve in both frontal (Cobb's angle) and transverse plane (rib vertebral angle and apical vertebral rotation degree).
NASA Astrophysics Data System (ADS)
Eisenmann, David J.
In the design of exhaust manifolds for internal combustion engines the materials used must exhibit resistance to corrosion at high temperatures while maintaining a stable microstructure. Cast iron has been used for manifolds for many years by auto manufacturers due to a combination of suitable mechanical properties, low cost, and ease of casting. Over time cast iron is susceptible to microstructural changes, corrosion, and oxidation which can result in failure due to fatigue. This thesis seeks to answer the question: "Can observed microstructural changes and measured high temperature fatigue life in cast iron alloys be used to develop a predictive model for fatigue life?" the importance of this question lies in the fact that there is little data for the behavior of cast iron alloys at high temperature. For this study two different types of cast iron, 50HS and HSM will be examined. Of particular concern for the high Si+C cast irons (and Mo in the case of the HSM cast iron) are subsurface microstructural changes that result due to heat treatment including (1) decarburization, (2) ferrite formation, (3) graphitization, (4) internal oxidation of the Si, (5) high temperature fatigue resistance, and (6) creep potential. Initial results obtained include microstructure examination after being exposed to high temperatures, grain size, nodule size, and hardness measurements. The initial examinations concluded that both cast irons performed fairly similarly, although the microstructure of the HSM samples did show slightly better resistance to high temperature as compared to that of the 50HS. Follow on work involved high temperature fatigue testing of these two materials in order to better determine if the newer alloy, HSM is a better choice for exhaust manifolds. Correlations between fatigue performance and microstructure were made and discussed, with the results examined in light of current and proposed models for predicting fatigue performance based on computational methods, to see if any suitable models exist that might be used to assist in designing with these cast alloys.
ScienceCast 136: A Sudden Multiplication of Planets
2014-02-26
Today, NASA announced a breakthrough addition to the catalog of new planets. Researchers using Kepler have confirmed 715 new worlds, almost quadrupling the number of planets previously confirmed by the planet-hunting spacecraft.
2012-09-06
Once, astronomers thought planets couldn't form around binary stars. Now Kepler has found a whole system of planers orbiting a double star. This finding shows that planetary systems are weirder and more abundant than previously thought.
Metallographic Characterization of Wrought Depleted Uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsyth, Robert Thomas; Hill, Mary Ann
Metallographic characterization was performed on wrought depleted uranium (DU) samples taken from the longitudinal and transverse orientations from specific locations on two specimens. Characterization of the samples included general microstructure, inclusion analysis, grain size analysis, and microhardness testing. Comparisons of the characterization results were made to determine any differences based on specimen, sample orientation, or sample location. In addition, the characterization results for the wrought DU samples were also compared with data obtained from the metallographic characterization of cast DU samples previously characterized. No differences were observed in microstructure, inclusion size, morphology, and distribution, or grain size in regard tomore » specimen, location, or orientation for the wrought depleted uranium samples. However, a small difference was observed in average hardness with regard to orientation at the same locations within the same specimen. The longitudinal samples were slightly harder than the transverse samples from the same location of the same specimen. This was true for both wrought DU specimens. Comparing the wrought DU sample data with the previously characterized cast DU sample data, distinct differences in microstructure, inclusion size, morphology and distribution, grain size, and microhardness were observed. As expected, the microstructure of the wrought DU samples consisted of small recrystallized grains which were uniform, randomly oriented, and equiaxed with minimal twinning observed in only a few grains. In contrast, the cast DU microstructure consisted of large irregularly shaped grains with extensive twinning observed in most grains. Inclusions in the wrought DU samples were elongated, broken and cracked and light and dark phases were observed in some inclusions. The mean inclusion area percentage for the wrought DU samples ranged from 0.08% to 0.34% and the average density from all wrought DU samples was 1.62E+04/cm 2. Inclusions in the cast DU samples were equiaxed and intact with light and dark phases observed in some inclusions. The mean inclusion area percentage for the cast DU samples ranged from 0.93% to 1.00% and the average density from all wrought DU samples was 2.83E+04/cm 2. The average mean grain area from all wrought DU samples was 141 μm 2 while the average mean grain area from all cast DU samples was 1.7 mm2. The average Knoop microhardness from all wrought DU samples was 215 HK and the average Knoop microhardness from all cast DU samples was 264 HK.« less
NASA Astrophysics Data System (ADS)
Ahiale, Godwin Kwame; Choi, Won-Doo; Suh, Yongchan; Lee, Young-Kook; Oh, Yong-Jun
2015-11-01
The thermal fatigue behavior of indefinite chilled cast iron rolls with various V+Nb contents and Si/Cr ratios was evaluated. Increasing the ratio of Si/Cr prolonged the life of the rolls by reducing brittle cementites. Higher V+Nb addition also increased the life through the formation of carbides that refined and toughened the martensite matrix and reduced the thermal expansion mismatch in the microstructure.
Menz, Hylton B; Allan, Jamie J; Bonanno, Daniel R; Landorf, Karl B; Murley, George S
2017-01-01
Foot orthoses are widely used in the prevention and treatment of foot disorders. The aim of this study was to describe characteristics of custom-made foot orthosis prescriptions from a Australian podiatric orthotic laboratory. One thousand consecutive foot orthosis prescription forms were obtained from a commercial prescription foot orthosis laboratory located in Melbourne, Victoria, Australia (Footwork Podiatric Laboratory). Each item from the prescription form was documented in relation to orthosis type, cast correction, arch fill technique, cast modifications, shell material, shell modifications and cover material. Cluster analysis and discriminant function analysis were applied to identify patterns in the prescription data. Prescriptions were obtained from 178 clinical practices across Australia and Hong Kong, with patients ranging in age from 5 to 92 years. Three broad categories ('clusters') were observed that were indicative of increasing 'control' of rearfoot pronation. A combination of five variables (rearfoot cast correction, cover shape, orthosis type, forefoot cast correction and plantar fascial accommodation) was able to identify these clusters with an accuracy of 70%. Significant differences between clusters were observed in relation to age and sex of the patient and the geographic location of the prescribing clinician. Foot orthosis prescriptions are complex, but can be broadly classified into three categories. Selection of these prescription subtypes appears to be influenced by both patient factors (age and sex) and clinician factors (clinic location).
Flexible Blades for Wind Turbines
NASA Astrophysics Data System (ADS)
Collins, Madeline Carlisle; Macphee, David; Harris, Caleb
2016-11-01
Previous research has shown that windmills with flexible blades are more efficient than those with rigid blades. Flexibility offers passive pitch control, preferable to active pitch control which is costly and requires maintenance. Flexible blades morph such that the blade more closely resembles its design point at part load and over load. The lift-to-drag ratios on individual blades was investigated. A mold was designed and machined from an acrylic slab for the casting of blades with a NACA 0012 cross section. A flexible blade was cast from silicone and a rigid blade was cast from polyurethane. Each of these blades was tested in a wind tunnel, cantilever mounted, spanning the whole test section. The angle of attack was varied by rotating the mount. All tests were performed at the same wind speed. A load cell within the mount measured forces on the blade, from which the lift and drag forces were calculated. The stall point for the flexible blade occurred later than for the rigid blade, which agrees with previous research. Lift-to-drag ratios were larger for the flexible blade at all angles of attack tested. Flexible blades seem to be a viable option for passive pitch control. Future research will include different airfoil cross sections, wind speeds, and blade materials. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.
Thermomechanical and bithermal fatigue behavior of cast B1900 + Hf and wrought Haynes 188
NASA Technical Reports Server (NTRS)
Halford, G. R.; Verrilli, M. J.; Kalluri, S.; Ritzert, F. J.; Duckert, R. E.; Holland, F. A.
1992-01-01
A thermomechanical fatigue (TMF) high-temperature life prediction method has been evaluated using the experimental data. Bithermal fatigue (BTF), bithermal creep-fatigue (BTC-F), and TMF experiments were performed using two aerospace structural alloys, cast B1900 + Hf and wrought Haynes 188. The method which is based on the total strain version of strain range partitioning and unified cyclic constitutive modeling requires, as an input, information on the flow and failure behavior of the material of interest. Bithermal temperatures of 483 and 871 C were used for the cast B1900 + Hf nickel-base alloy and 316 and 760 C for the wrought Haynes 188 cobalt-base alloy. Maximum and minimum temperatures were also used in both TMF and BTF tests. Comparisons were made between the results of these tests and isothermal tensile and fatigue test data obtained previously. Qualitative correlations were observed between tensile and isothermal fatigue tests.
Characterization of dust from blast furnace cast house de-dusting.
Lanzerstorfer, Christof
2017-10-01
During casting of liquid iron and slag, a considerable amount of dust is emitted into the cast house of a blast furnace (BF). Usually, this dust is extracted via exhaust hoods and subsequently separated from the ventilation air. In most BFs the cast house dust is recycled. In this study a sample of cast house dust was split by air classification into five size fractions, which were then analysed. Micrographs showed that the dominating particle type in all size fractions is that of single spherical-shaped particles. However, some irregular-shaped particles were also found and in the finest size fraction also some agglomerates were present. Almost spherical particles consisted of Fe and O, while highly irregular-shaped particles consisted of C. The most abundant element was Fe, followed by Ca and C. These elements were distributed relatively uniformly in the size fractions. As, Cd, Cu, K, Pb, S, Sb and Zn were enriched significantly in the fine size fractions. Thus, air classification would be an effective method for improved recycling. By separating a small fraction of fines (about 10-20%), a reduction of the mass of Zn in the coarse dust recycled in the range of 40-55% would be possible.
Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process
NASA Astrophysics Data System (ADS)
Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu
This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.
NASA Astrophysics Data System (ADS)
Fatima, Noshin; Ahmed, Muhammad M.; Karimov, Khasan S.; Ahmad, Zubair; Fariq Muhammad, Fahmi
2017-06-01
In this study, solution processed composite films of nickel phthalocyanine (NiPc) and cobalt phthalocyanine (CoPc) are deposited by drop casting and under centrifugal force. The films are deposited on surface-type inter-digitated silver electrodes on ceramic alumina substrates. The effects of illumination on the impedance and capacitance of the NiPc-CoPc composite samples are investigated. The samples deposited under centrifugal force show better conductivity than the samples deposited by drop casting technique. In terms of impedance and capacitance sensitivities the samples fabricated under centrifugal force are more sensitive than the drop casting samples. The values of impedance sensitivity ({S}z) are equal to (-1.83) {{M}}{{Ω }}\\cdot {{cm}}2/{mW} and (-5.365){{M}}{{Ω }}\\cdot {{cm}}2/{mW} for the samples fabricated using drop casting and under centrifugal force, respectively. Similarly, the values of capacitance sensitivity ({S}{{c}}) are equal to 0.083 {pF}\\cdot {{cm}}2/{mW} and 0.185 {pF}\\cdot {{cm}}2/{mW} for the samples fabricated by drop casting and under centrifugal force. The films deposited using the different procedures could potentially be viable for different operational modes (i.e., conductive or capacitive) of the optical sensors. Both experimental and simulated results are discussed. Project supported by the Center for Advanced Materials (CAM), Qatar University, Qatar.
ScienceCast 135: Follow the Water
2014-02-21
NASA and JAXA launched a new satellite that can see through storms, tracking rain and snow around the globe better than any previous observatory. The Global Precipitation Measurement Core Observatory lifted off from Japan on Feb. 27th
Biased gene expression in early honeybee larval development
2013-01-01
Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621
Wald, David J.; Lin, Kuo-wan; Kircher, C.A.; Jaiswal, Kishor; Luco, Nicolas; Turner, L.; Slosky, Daniel
2017-01-01
The ShakeCast system is an openly available, near real-time post-earthquake information management system. ShakeCast is widely used by public and private emergency planners and responders, lifeline utility operators and transportation engineers to automatically receive and process ShakeMap products for situational awareness, inspection priority, or damage assessment of their own infrastructure or building portfolios. The success of ShakeCast to date and its broad, critical-user base mandates improved software usability and functionality, including improved engineering-based damage and loss functions. In order to make the software more accessible to novice users—while still utilizing advanced users’ technical and engineering background—we have developed a “ShakeCast Workbook”, a well documented, Excel spreadsheet-based user interface that allows users to input notification and inventory data and export XML files requisite for operating the ShakeCast system. Users will be able to select structure based on a minimum set of user-specified facility (building location, size, height, use, construction age, etc.). “Expert” users will be able to import user-modified structural response properties into facility inventory associated with the HAZUS Advanced Engineering Building Modules (AEBM). The goal of the ShakeCast system is to provide simplified real-time potential impact and inspection metrics (i.e., green, yellow, orange and red priority ratings) to allow users to institute customized earthquake response protocols. Previously, fragilities were approximated using individual ShakeMap intensity measures (IMs, specifically PGA and 0.3 and 1s spectral accelerations) for each facility but we are now performing capacity-spectrum damage state calculations using a more robust characterization of spectral deamnd.We are also developing methods for the direct import of ShakeMap’s multi-period spectra in lieu of the assumed three-domain design spectrum (at 0.3s for constant acceleration; 1s or 3s for constant velocity and constant displacement at very long response periods). As part of ongoing ShakeCast research and development, we will also explore the use of ShakeMap IM uncertainty estimates and evaluate the assumption of employing multiple response spectral damping values rather than the single 5%-damped value currently employed. Developing and incorporating advanced fragility assignments into the ShakeCast Workbook requires related software modifications and database improvements; these enhancements are part of an extensive rewrite of the ShakeCast application.
Mrazek, Franklin C.; Smaga, John A.; Battles, James E.
1983-01-01
A positive electrode for a secondary electrochemical cell wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.
NASA Astrophysics Data System (ADS)
Liu, Ke; Wang, Chang; Liu, Guo-liang; Ding, Ning; Sun, Qi-song; Tian, Zhi-hong
2017-04-01
To investigate the formation of one kind of typical inter-dendritic crack around triple point region in continuous casting(CC) slab during the operation of soft reduction, fully coupled 3D thermo-mechanical finite element models was developed, also plant trials were carried out in a domestic continuous casting machine. Three possible types of soft reduction amount distribution (SRAD) in the soft reduction region were analyzed. The relationship between the typical inter-dendritic cracks and soft reduction conditions is presented and demonstrated in production practice. Considering the critical strain of internal crack formation, a critical tolerance for the soft reduction amount distribution and related casing parameters have been proposed for better contribution of soft reduction to the internal quality of slabs. The typical inter-dendritic crack around the triple point region had been eliminated effectively through the application of proposed suggestions for continuous casting of X70 pipeline steel in industrial practice.
NASA Astrophysics Data System (ADS)
Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Nikzad, Siamak; Shafizadeh, Mahdi
2015-02-01
In this research, the semisolid stir joining method was used to overcome the problem of hot cracking in welding aluminum and silicon bronzes. Moreover, the effects of grooved and cylindrical tools on the microstructure and mechanical properties of samples were examined. After welding specimens, mechanical tests were carried out to find differences between the cast and welded samples. Optical microscopy and scanning electron microscopy were used to study microstructure. X-ray diffraction was used to investigate compounds formed during casting and welding. The solidus and liquidus temperatures of the alloy were measured by differential scanning calorimetry. In this study, the temperature of the work pieces was raised to 1203 K (930 °C) that is in the semisolid region, and the weld seams were stirred by two different types of tools at the speed of 1600 rpm. Macro and micro-structural analyses show uniformity in the phase distribution for specimens welded by cylindrical tool. Desirable and uniform mechanical properties obtained when the cylindrical tool was used.
NASA Astrophysics Data System (ADS)
Es-Said, O. S.; Zeihen, A.; Ruprich, M.; Quattrocchi, J.; Thomas, M.; H. Shin, K.; O'Brien, M.; Johansen, D.; Tijoe, W. H.; Ruhl, D.
1995-06-01
Electrical resistivity, superficial hardness, tensile testing, and quantitative metallography techniques were used in this study. The strip cast type 3004 aluminum alloy received sixteen different thermomechanical treatments before cups were drawn. The top edges of the drawn cups were not flat. Rather there were high points or ears with valleys between them. The homogenization temperature varied form 510 to 621 °C at 24 h. Some samples received an additional 426 °C/24 h homogenization anneal. Most specimens were rolled along the longitudinal direction of the as-cast material, and some were rolled in the transverse direction. Most samples were recrystallized at 454 °C for 24 h in addition to the homogenization treatment. Some were recrystallized for 168 h. All samples were subsequently rolled to 0.33 mm for cup drawing and percent earing determination. The percent earing results of some samples were less than 1.5%, but the mechanical strength was also lowered. The high-temperature recrystallization anneal of 454 °C was the controlling factor in determining the earing and mechanical strength of the final rolled sheet.
NASA Astrophysics Data System (ADS)
Es-Said, O. S.; Zeihen, A.; Ruprich, M.; Quattrocchi, J.; Thomas, M.; Shin, K. H.; O'Brien, M.; Johansen, D.; Tijoe, W. H.; Ruhl, D.
1994-02-01
Electrical resistivity, superficial hardness, tensile testing, and quantitative metallography techniques were used in this study. The strip cast type 3004 aluminum alloy received sixteen different thermomechanical treatments before cups were drawn. The top edges of the drawn cups were not flat. Rather, there were high points or ears with valleys between them. The homogenization temperature varied from 510 to 621 °C at 24 h. Some samples received an additional 426 °C/24 h homogenization anneal. Most specimens were rolled along the longitudinal direction of the as-cast material, and some were rolled in the transverse direction. Most samples were recrystallized at 454 °C for 24 h in addition to the homogenization treatment. Some were recrystallized for 168 h. All samples were subsequently rolled to 0.33 mm for cup drawing and percent earing determination. The percent earing results of some samples were less than 1.5%, but the mechanical strength was also lowered. The high-temperature recrystallization anneal of 454 °C was the controlling factor in determining the earing and mechanical strength of the final rolled sheet.
Delta-Ferrite Distribution in a Continuous Casting Slab of Fe-Cr-Mn Austenitic Stainless Steel
NASA Astrophysics Data System (ADS)
Chen, Chao; Cheng, Guoguang
2017-10-01
The delta-ferrite distribution in a continuous casting slab of Fe-Cr-Mn stainless steel grade (200 series J4) was analyzed. The results showed that the ferrite fraction was less than 3 pct. The "M" type distribution was observed in the thickness direction. For the distribution at the centerline, the maximum ferrite content was found in the triangular zone of the macrostructure. In addition, in this zone, the carbon and sulfur were severely segregated. Furthermore, an equilibrium solidification calculation by Thermo-Calc® software indicates that the solidification mode of the composition in this triangular zone is the same as the solidification mode of the averaged composition, i.e., the FA (ferrite-austenite) mode. None of the nickel-chromium equivalent formulas combined with the Schaeffler-type diagram could predict the ferrite fraction of the Cr-Mn stainless steel grade in a reasonable manner. The authors propose that more attention should be paid to the development of prediction models for the ferrite fraction of stainless steels under continuous casting conditions.
Infiltration of Slag Film into the Grooves on a Continuous Casting Mold
NASA Astrophysics Data System (ADS)
Cho, Jung-Wook; Jeong, Hee-Tae
2013-02-01
An analytical model is developed to clarify the slag film infiltration into grooves on a copper mold during the continuous casting of steel slabs. A grooved-type casting mold was applied to investigate the infiltration of slag film into the grooves of a pitch of 0.8 mm, width of 0.7 mm, and depth of 0.6 mm at the vicinity of a meniscus. The plant trial tests were carried out at a casting speed of 5.5 m min-1. The slag film captured at a commercial thin slab casting plant showed that both the overall and the liquid film thickness were decreased exponentially as the distance from the meniscus increases. In contrast, the infiltration of slag film into the grooves had been increased with increasing distance from the meniscus. A theoretic model has been derived based on the measured profile of slag film thickness to calculate the infiltration of slag film into the grooves. It successfully reproduces the empirical observation that infiltration ratio increased sharply along casting direction, about 80 pct at 50 mm and 95 pct at 150 mm below the meniscus. In the model calculation, the infiltration of slag film increases with increasing groove width and/or surface tension of the slag. The effect of groove depth is negligible when the width to depth ratio of the groove is larger than unity. It is expected that the developed model for slag film infiltration in this study will be widely utilized to optimize the design of groove dimensions in continuous casting molds.
Cast erosion from the cleaning of debris after the use of a cast trimmer.
Hansen, Paul A; Beatty, Mark W
2017-02-01
Whether using tap water to rinse off debris will make a clinical difference to the surface detail of a gypsum cast is unknown. In addition, how best to remove debris from the cast is unknown. The purpose of this in vitro study was to evaluate the efficiency of different methods of cleaning a gypsum cast after trimming and the effect of short-term exposure to tap water on the surface quality of the cast. A die fitting American National Standards Institute/American Dental Association specification 25 (International Standards Organization specification 6873) for dental gypsum products was embedded in a Dentoform with the machined lines positioned at the same level as the occlusal surface of the posterior teeth. A flat plate was used to ensure that the plane of occlusion for the die was at the same position as the posterior teeth. Forty polyvinyl siloxane impressions of the Dentoform were made and poured with vacuum-mixed improved Type IV dental stone. Each cast was inspected for the accurate reproduction of the lines. The base of the 2-stage pour was trimmed with a cast trimmer with water, and surface debris was removed by rinsing by hand under tap water for 10 seconds, by brushing the cast with a soft toothbrush for 10 seconds, or by resoaking the cast and using a soft camel hair brush in slurry water for 10 seconds. The amount of debris was evaluated on a scale of 1 to 4, and the quality of the 20-μm line was evaluated on a scale of 1 to 4 under ×15 magnification. The nonparametric Kruskal-Wallis ranks test was used to identify significant differences among the different cleaning methods (α=.05). Results of the Kruskal-Wallis and Kruskal-Wallis Z-value tests demonstrated that all cleaning methods produced cleaner casts than were observed for uncleansed controls (P<.001), but no differences in debris removal were found among the different cleaning methods (.065≤P≤.901). The ability to see the quality of a 20-μm line (P=.974) was not statistically different among the groups. Rinsing the cast under flowing tap water and brushing, or hand washing under flowing tap water, or using a soft camel hair brush in slurry water for 10 seconds had no noticeable effects on the quality of a 20-μm line, and all 3 methods resulted in a clean cast. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Huang, Zhuoli; Zhang, Lu; Zhu, Jingwei; Zhang, Xiuyin
2015-06-01
Selective laser melting (SLM) technology has been introduced to fabricate dental restorations. However, the fit of these restorations still needs further study. The purpose of this in vivo investigation was to compare the marginal and internal fit of SLM metal ceramic crowns with 2 lost-wax cast metal ceramic crowns and to evaluate the influence of tooth type on the marginal and internal fit of these crowns. A total of 330 metal ceramic crowns were evaluated. The metal copings were fabricated with SLM Co-Cr, cast Au-Pt, and cast Co-Cr alloy (n=110). The marginal and internal gaps of crowns were recorded by using a replica technique. The anterior and premolar replicas were sectioned 2 times, and molar replicas were sectioned 4 times. The marginal and internal gap width of each cross section was examined by stereomicroscope at ×30 magnification. Two-way analysis of variance was performed to identify the statistical difference among the groups. The marginal fit of the SLM Co-Cr group (75.6 ±32.6 μm) was not different from the cast Au-Pt group (76.8 ±32.1 μm) (P>.05) but was better than the cast Co-Cr group (91.0 ±36.3 μm) (P<.01). No significant difference was found among the SLM Co-Cr group (127.3 ±45.8 μm), cast Au-Pt group (129.9 ±61.1 μm). and cast Co-Cr group (142.5 ±63.7 μm) (P>.05). The mean occlusal gap width of the SLM Co-Cr group (309.8 ±106.6 μm) was significantly higher than that of the cast Au-Pt group (254.6 ±109.6 μm) and the cast Co-Cr group (249.6 ±110.4 μm) (P<.005). No significant difference was found in the marginal fit among the anterior group (84.4 ±35.1 μm), the premolar group (80.6 ±26.3 μm), and the molar group (82.7 ±38.0 μm) (P>.05). Also, no significant difference was found in the axial fit among the anterior group (138.3 ±52.5 μm), the premolar group (132.9 ±50.4 μm), and the molar group (134.4 ±52.5 μm) (P>.05). The anterior group (267.6 ±110.2 μm) did not differ from the premolar group (270.2 ±112.8 μm) and the molar group (268.6 ±110.5 μm) in occlusal fit (P>.05). The marginal fit of SLM Co-Cr metal ceramic crowns was similar to that of the cast Au-Pt metal ceramic crowns and was better than that of the cast Co-Cr metal ceramic crowns. The SLM Co-Cr metal ceramic crowns were not significantly different from the 2 cast metal ceramic crowns in axial fit but were less accurate in occlusal fit. Tooth type did not influence the marginal and internal fit of the metal ceramic crowns. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Influence of the implant abutment types and the dynamic loading on initial screw loosening
Kim, Eun-Sook
2013-01-01
PURPOSE This study examined the effects of the abutment types and dynamic loading on the stability of implant prostheses with three types of implant abutments prepared using different fabrication methods by measuring removal torque both before and after dynamic loading. MATERIALS AND METHODS Three groups of abutments were produced using different types of fabrication methods; stock abutment, gold cast abutment, and CAD/CAM custom abutment. A customized jig was fabricated to apply the load at 30° to the long axis. The implant fixtures were fixed to the jig, and connected to the abutments with a 30 Ncm tightening torque. A sine curved dynamic load was applied for 105 cycles between 25 and 250 N at 14 Hz. Removal torque before loading and after loading were evaluated. The SPSS was used for statistical analysis of the results. A Kruskal-Wallis test was performed to compare screw loosening between the abutment systems. A Wilcoxon signed-rank test was performed to compare screw loosening between before and after loading in each group (α=0.05). RESULTS Removal torque value before loading and after loading was the highest in stock abutment, which was then followed by gold cast abutment and CAD/CAM custom abutment, but there were no significant differences. CONCLUSION The abutment types did not have a significant influence on short term screw loosening. On the other hand, after 105 cycles dynamic loading, CAD/CAM custom abutment affected the initial screw loosening, but stock abutment and gold cast abutment did not. PMID:23509006
Characterization of a 12-pdr wrought-iron cannonball from the Akko 1 shipwreck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cvikel, D.; Ashkenazi, D., E-mail: dana@eng.tau.ac.il; Stern, A.
2013-09-15
The Akko 1 shipwreck, discovered in Akko harbor, Israel, is the remains of an eastern Mediterranean brig built at the beginning of the 19th century. Among other finds, eleven cannonballs were found in the shipwreck and three of them were retrieved. Two of the cannonballs, the 9- and 24-pdrs, have been studied previously. The present study of the 12-pdr cannonball included γ-rays radiographic testing, XRF analysis, density measurements, optical microscopy and SEM-EDS observation, OES analysis and microhardness tests. The investigation included characterization of the composition, microstructure and slag analysis. The results revealed a quite homogenous microstructure of α-ferrite phase, withmore » glassy, wüstite and fayalite slags, as typical for a wrought-iron—annealed product, a more complicated and an earlier technology, compared to the 9- and 24-pdr that were made of cast-iron. Ferritic cannonballs are extremely rare, especially in the 19th century, when cannonballs were manufactured of cast iron by the sand casting process. The different manufacturing methods may indicate a different place of fabrication, and an apparently earlier production date for the 12-pdr, which might have even been used as ballast. - Highlights: • Three cannonballs were retrieved from the 19th century Akko 1 shipwreck. • The 12-pdr differs from the 9- and 24-pdr cannonballs previously studied. • The 12-pdr was made of high quality annealed wrought-iron, not of cast-iron. • The technology used indicates a date earlier than the middle of the 19th century. • Perhaps the 12-pdr belonged to another navy than the other two or used as ballast.« less
Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy
Watanabe, Ikuya; Wallace, Cameron
2008-01-01
The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (P<0.05) in fracture load between Type II control and that welded to Co-Cr. Higher elongations were obtained for Type II in all conditions, whereas the lowest elongation occurred for low-gold welded to Co-Cr. This study indicated that, of the three gold alloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr. PMID:19088892
Automatic casting surface defect recognition and classification
NASA Astrophysics Data System (ADS)
Wong, Boon K.; Elliot, M. P.; Rapley, C. W.
1995-03-01
High integrity castings require surfaces free from defects to reduce, if not eliminate, vulnerability to component failure from such as physical or thermal fatigue or corrosion attack. Previous studies have shown that defects on casting surfaces can be optically enhanced from the surrounding randomly textured surface by liquid penetrants, magnetic particle and other methods. However, very little has been reported on recognition and classification of the defects. The basic problem is one of shape recognition and classification, where the shape can vary in size and orientation as well as in actual shape generally within an envelope that classifies it as a particular defect. The initial work done towards this has focused on recognizing and classifying standard shapes such as the circle, square, rectangle and triangle. Various approaches were tried and this led eventually to a series of fuzzy logic based algorithms from which very good results were obtained. From this work fuzzy logic memberships were generated for the detection of defects found on casting surfaces. Simulated model shapes of such as the quench crack, mechanical crack and hole have been used to test the generated algorithm and the results for recognition and classification are very encouraging.
Foucaud, J; Estoup, A; Loiseau, A; Rey, O; Orivel, J
2010-08-01
Previous studies indicate that some populations of the little fire ant, Wasmannia auropunctata, display an unusual reproduction system polymorphism. Although some populations have a classical haplodiploid reproduction system, in other populations queens are produced by thelytokous parthenogenesis, males are produced by a male clonality system and workers are produced sexually. An atypical genetic caste determination system was also suggested. However, these conclusions were indirectly inferred from genetic studies on field population samples. Here we set up experimental laboratory nests that allow the control of the parental relationships between individuals. The queens heading those nests originated from either putatively clonal or sexual populations. We characterized the male, queen and worker offspring they produced at 12 microsatellite loci. Our results unambiguously confirm the unique reproduction system polymorphism mentioned above and that male clonality is strictly associated with thelytokous parthenogenesis. We also observed direct evidence of the rare production of sexual gynes and arrhenotokous males in clonal populations. Finally, we obtained evidence of a genetic basis for caste determination. The evolutionary significance of the reproduction system polymorphism and genetic caste determination as well as future research opportunities are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCollum, L.B.; Buchanan, J.P.; McCollum, M.B.
The Antler orogeny is a textbook example of a Paleozoic mountain building and crustal shortening event in western North America. A relatively complex geologic history of the type Antler at Battle Mountain, Nevada, is interpreted as distinct thrust plates of Lower Cambrian Scott Canyon Formation, Upper Cambrian Harmony Sandstone, and Ordovician Valmy Formation, overlain unconformably by the Middle Pennsylvanian Battle Formation. Mississippian crustal deformation and emplacement of the Roberts Mountain thrust have previously been thought to characterize the Antler orogen. Detailed sedimentology studies of the Scott Canyon and Harmony, and the relationship with the overlying Battle Formation at the typemore » section of the Antler orogeny, cast doubt on the previously accepted geologic history. The Scott Canyon is an interbedded sequence of pillow basalts, Late Devonian radiolarian cherts, and mudstone debris flows with numerous limestone olistoliths, many containing undescribed archaeocyathid fauna. The contact of the Harmony with the Battle Formation appears channeled, but otherwise conformable, and the Battle has been interpreted as an alluvial fan facies. The paleoenvironmental interpretation of these sediments is that the Scott Canyon was deposited upon a Late Devonian active continental margin setting, with prograding fan deposits of the Harmony Sandstone, overlain by Middle Pennsylvanian fanglomerates of the Battle Formation. This conformable sequence appears to preclude any major uplift within the type Antler orogen.« less
Oyagüe, Raquel Castillo; Sánchez-Turrión, Andrés; López-Lozano, José Francisco; Suárez-García, M Jesús
2012-02-01
This study aimed to evaluate the vertical misfit and microleakage of laser-sintered and vacuum-cast cement-retained implant-supported frameworks. Three-unit implant-fixed structures were constructed with: (1) laser-sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Pd-Au (CP). Every framework was luted onto 2 prefabricated abutments under constant seating pressure. Each alloy group was randomly divided into three subgroups (n=10) according to the cement used: (1) Ketac Cem Plus (KC); (2) Panavia F 2.0 (PF); and (3) RelyX Unicem 2 Automix (RXU). After 30 days of water ageing, vertical discrepancy was measured by SEM, and marginal microleakage was scored using a digital microscope. Three-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, FDP retainer, and cement type on vertical misfit. Data for marginal microleakage were analysed with Kruskal-Wallis and Dunn's tests (α=0.05). Vertical discrepancy was affected by alloy/manufacturing technique and cement type (p<0.001). Despite the luting agent, LS structures showed the best marginal adaptation, followed by CP, and CC. Within each alloy group, KC provided the best fit, whilst the use of PF or RXU resulted in no significant differences. Regardless of the framework alloy, KC exhibited the highest microleakage scores, whilst PF and RXU showed values that were comparable to each other. Laser-sintered Co-Cr structures achieved the best fit in the study. Notwithstanding the framework alloy, resin-modified glass-ionomer demonstrated better marginal fit but greater microleakage than did MDP-based and self-adhesive dual-cure resin cements. All groups were within the clinically acceptable misfit range. Laser-sintered Co-Cr may be an alternative to cast base metal and noble alloys to obtain passive-fitting structures. Despite showing higher discrepancies, resin cements displayed lower microleakage than resin-modified glass-ionomer. Further research is necessary to determine whether low microleakage scores may guarantee a suitable seal that could compensate for misfit. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Josan, A.; Pinca Bretotean, C.
2015-06-01
The paper presents the possibility of using special additions to the execution of moulding mixtures for steel castings, drive wheel type. Critical analysis of moulding technology leads to the idea that most defects appear due to using improper moulding mixture. Using a improper moulding mixture leads to penetration of steel in moulding mixture, resulting in the formation of adherences, due to inadequate refractarity of the mould and core mixtures. Using only the unique mixture to the moulding leads to increasing consumption of new sand, respectively to the increase of price of piece. Acording to the dates registered in the industrial practice is necessary to use the special additions to obtain the moulding mixtures, carbonaceous materials respectively.
NASA Astrophysics Data System (ADS)
Wu, Hao-Di; Wang, Feng-Xia; Zhang, Meng; Pan, Ge-Bo
2015-07-01
Coronene.TCNQ cocrystal microrods, coronene microrods, and TCNQ microsheets were constructed by a drop-casting method. Prototype devices were fabricated and their field-effect-transistor (FET) performances were investigated. It is found that coronene.TCNQ microrods had exhibited an n-type characteristic and showed better FET performances than TCNQ microsheets.Coronene.TCNQ cocrystal microrods, coronene microrods, and TCNQ microsheets were constructed by a drop-casting method. Prototype devices were fabricated and their field-effect-transistor (FET) performances were investigated. It is found that coronene.TCNQ microrods had exhibited an n-type characteristic and showed better FET performances than TCNQ microsheets. Electronic supplementary information (ESI) available: Device fabrication and measurements
Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells
NASA Astrophysics Data System (ADS)
Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho
2018-03-01
Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.
The erosion resistance of tool alloys in foundry melt the Zamak 4 - 1
NASA Astrophysics Data System (ADS)
Muhametzyanova, GF; Kolesnikov, M. S.; Muhametzyanov, I. R.
2016-06-01
The paper considers the resistance against erosion dissolution in the melt of foundry Zamak 4 - 1 die steels used for press machine parts manufacturing for injection molding, and hard alloys system WC - Co. It is established that the solubility in the melt Zamak - 4 - 1 steel of 4H5MFS and DI - 22 are promising for the parts fabrication of metal-wire casting machines of CLT and IDRA types. A significant reserve to increase the resistance of metal wires is the use of cast steel, as well as in electroslag and electro-beam remelting options. Metal-ceramic alloy doped with chromium VK25H may be recommended for reinforcement of heavily loaded parts of the press-nodes of hot casting machines under pressure.
Klopfenstein Bregger, Micaël D; Fürst, Anton E; Kircher, Patrick R; Kluge, Katharina; Kummer, Martin
2016-05-18
To describe minimally-invasive lag screw osteosynthesis combined with external coaptation for the treatment of Salter-Harris type II third metacarpal and third metatarsal bone fractures. Three foals aged two weeks to four months with a Salter-Harris type II third metacarpal or third metatarsal fracture. Surgery was carried out under general anaesthesia in lateral recumbency. After fracture reduction, the metaphyseal fragment was stabilized with two cortical screws placed in lag fashion under fluoroscopic control. A cast was applied for at least two weeks. All foals had a good outcome with complete fracture healing and return to complete soundness without any angular limb deformity. All foals had moderate transient digital hyperextension after cast removal. Internal fixation of Salter-Harris type II third metacarpal or third metatarsal fractures with two cortical screws in lag fashion, combined with external coaptation provided good stabilization and preserved the longitudinal growth potential of the injured physis.
Accuracy of a new elastomeric impression material for complete-arch dental implant impressions.
Baig, Mirza R; Buzayan, Muaiyed M; Yunus, Norsiah
2018-05-01
The aim of the present study was to assess the accuracy of multi-unit dental implant casts obtained from two elastomeric impression materials, vinyl polyether silicone (VPES) and polyether (PE), and to test the effect of splinting of impression copings on the accuracy of implant casts. Forty direct impressions of a mandibular reference model fitted with six dental implants and multibase abutments were made using VPES and PE, and implant casts were poured (N = 20). The VPES and PE groups were split into four subgroups of five each, based on splinting type: (a) no splinting; (b) bite registration polyether; (c) bite registration addition silicone; and (d) autopolymerizing acrylic resin. The accuracy of implant-abutment replica positions was calculated on the experimental casts, in terms of interimplant distances in the x, y, and z-axes, using a coordinate measuring machine; values were compared with those measured on the reference model. Data were analyzed using non-parametrical Kruskal-Wallis and Mann-Whitney tests at α = .05. The differences between the two impression materials, VPES and PE, regardless of splinting type, were not statistically significant (P>.05). Non-splinting and splinting groups were also not significantly different for both PE and VPES (P>.05). The accuracy of VPES impression material seemed comparable with PE for multi-implant abutment-level impressions. Splinting had no effect on the accuracy of implant impressions. © 2018 John Wiley & Sons Australia, Ltd.
NASA Astrophysics Data System (ADS)
Blaes, Carly
In the continuous casting of steel, many complex phenomena in the meniscus region of the mold are responsible for the formation of oscillation marks. Oscillation marks are depressions found around the perimeter of continuously cast steel slabs, which if too large can lead to cracking in steel slabs. Therefore, knowledge on how to minimize the size of oscillation marks is very valuable. A computational model was created of the meniscus region, which includes transient multiphase fluid flow of slag and steel, with low-Reynolds turbulence, heat transfer in the mold, slag, and steel, steel shell solidification, mold oscillation, and temperature-dependent properties. This model was first validated using previous experimental and plant data. The model was then used to study the impact of varying casting parameters, including oscillation frequency, stroke, modification ratio, casting speed, molten steel level fluctuations, and temperature-dependent slag properties and surface tension on the oscillation mark shape, and other aspects of thermal-flow behavior during each oscillation cycle, including heat flux profile, slag consumption and mold friction. The first half of oscillation marks were formed during negative strip time as the slag rim pushed molten steel away from the mold wall and that the second half of oscillation marks were formed during positive strip time as the molten steel is drawn near the mold wall due to the upstroke of the mold. Oscillation mark depth was found to decrease with increasing frequency, modification ratio, casting speed, and slag viscosity, while oscillation mark depth was found to increase with increasing stroke. Oscillation mark width was only found to increase due to increases in pitch, which can be contributed to decreasing frequency or increasing casting speed. While many observations were made in this study, in general, oscillation mark depth and total slag consumption increase with increasing negative strip time, while the average heat flux and average mold friction decrease with increasing negative strip time.
Experimental Study On Flexural Behaviour Of Beams Reinforced With GFRP Rebars
NASA Astrophysics Data System (ADS)
Naveen Kumar, G.; Sundaravadivelu, Karthik
2017-07-01
In saline, moisture and cold conditions corrosion of steel is inevitable and the lot of economy is used for rehabilitation works. Corrosion of steel is nothing but oxidation of iron in moisture conditions and this corrosion leads to the spalling of concrete which intern reduces the strength of the structure. To reduce this corrosion effects, new materials with resistance against corrosion have to be introduced. Many experiments are going on using Glass Fiber Reinforced Polymer (GFRP) as alternate material for steel due to its non-corrosive nature, weight of GFRP is nearly one third of steel and ultimate tensile strength is higher than steel. In this paper, six beams are casted in which three beams are casted with steel as main and shear reinforcement and another three beams are casted with GFRP as main reinforcement with steel as shear reinforcing material. All beams casted are of same dimensions with variation in reinforcement percentage. The size of the beams casted is of length 1200 mm, breadth 100 mm and depth 200 mm. The clear cover of 25 mm is provided on top and bottom of the beam. Beams are tested under two-point loading with constant aspect ratio (a/d) and comparing the flexural strength, load deflection curves and types of failures of beams reinforced with GFRP as main reinforcement and beams reinforced with conventional steel. The final experimental results are compared with numerical results. M30 grade concrete with Conplast as a superplasticizer is used for casting beams.
Heterofunctional nanosheet controlling cell adhesion properties by collagen coating.
Niwa, Daisuke; Fujie, Toshinori; Lang, Thorsten; Goda, Nobuhito; Takeoka, Shinji
2012-08-01
Recently, biomaterials have been widely used in a variety of medical applications. We previously reported that a poly-l-lactic acid (PLLA) nanosheet shows anti-adhesive properties and constitutes a useful biomaterial for preventing unwanted wound adhesion in surgical operations. In this article, we examine whether the PLLA nanosheet can be specifically modified with biomacromolecules on one surface only. Such an approach would endow each side of the nanosheet with discrete functions, that is anti-adhesive and pro-healing properties. We fabricated two distinct PLLA nanosheets: (i) collagen cast on the surface of a PLLA nanosheet (Col-Cast-PLLA) and (ii) collagen spin-coated on the nanosheet (Col-Spin-PLLA). In the Col-Spin-PLLA nanosheet, the collagen layer had a thickness of 5-10 nm on the PLLA surface and displayed increased hydrophilicity compared to both PLLA and Col-Cast-PLLA nanosheets. In addition, atomic force microscopy showed disorganized collagen fibril formation on the PLLA layer when covered using the spin-coating method, while apparent bundle formations of collagen were formed in the Col-Cast-PLLA nanosheet. The Col-Spin-PLLA nanosheet provided a microenvironment for cells to adhere and spread. By contrast, the Col-Cast-PLLA nanosheet displayed reduced cell adhesion compared to the Col-Spin-PLLA nanosheet. Consistent with these findings, immunocytochemical analysis clearly showed fine networks of actin filaments in cells cultured on the Col-Spin-PLLA, but not the Col-Cast-PLLA nanosheet. Therefore, the Col-Spin-PLLA nanosheet was shown to be more suitable for acting as a scaffold. In conclusion, we have succeeded in developing a heterofunctional nanosheet comprising a collagen modified side, which has the ability to rapidly adhere cells, and an unmodified side, which acts as an adhesion barrier, by using a spin-coating technique.
Arunkumar, Ganeshprasad; Soria-Hernanz, David F; Kavitha, Valampuri John; Arun, Varatharajan Santhakumari; Syama, Adhikarla; Ashokan, Kumaran Samy; Gandhirajan, Kavandanpatti Thangaraj; Vijayakumar, Koothapuli; Narayanan, Muthuswamy; Jayalakshmi, Mariakuttikan; Ziegle, Janet S; Royyuru, Ajay K; Parida, Laxmi; Wells, R Spencer; Renfrew, Colin; Schurr, Theodore G; Smith, Chris Tyler; Platt, Daniel E; Pitchappan, Ramasamy
2012-01-01
Previous studies that pooled Indian populations from a wide variety of geographical locations, have obtained contradictory conclusions about the processes of the establishment of the Varna caste system and its genetic impact on the origins and demographic histories of Indian populations. To further investigate these questions we took advantage that both Y chromosome and caste designation are paternally inherited, and genotyped 1,680 Y chromosomes representing 12 tribal and 19 non-tribal (caste) endogamous populations from the predominantly Dravidian-speaking Tamil Nadu state in the southernmost part of India. Tribes and castes were both characterized by an overwhelming proportion of putatively Indian autochthonous Y-chromosomal haplogroups (H-M69, F-M89, R1a1-M17, L1-M27, R2-M124, and C5-M356; 81% combined) with a shared genetic heritage dating back to the late Pleistocene (10-30 Kya), suggesting that more recent Holocene migrations from western Eurasia contributed <20% of the male lineages. We found strong evidence for genetic structure, associated primarily with the current mode of subsistence. Coalescence analysis suggested that the social stratification was established 4-6 Kya and there was little admixture during the last 3 Kya, implying a minimal genetic impact of the Varna (caste) system from the historically-documented Brahmin migrations into the area. In contrast, the overall Y-chromosomal patterns, the time depth of population diversifications and the period of differentiation were best explained by the emergence of agricultural technology in South Asia. These results highlight the utility of detailed local genetic studies within India, without prior assumptions about the importance of Varna rank status for population grouping, to obtain new insights into the relative influences of past demographic events for the population structure of the whole of modern India.
Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangirala, Mani
The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynesmore » 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which demonstrated the importance of proper heat treat cycles for Homogenization, and Solutionizing parameters selection and implementation. 3) Step blocks casting of Nimonic 263: Carried out casting solidification simulation analysis, NDT inspection methods evaluation, detailed test matrix for Chemical, Tensile, LCF, stress rupture, CVN impact, hardness and J1C Fracture toughness section sensitivity data and were reported. 4) Centrifugal Casting of Haynes 282, weighing 1400 lbs. with hybrid mold (half Graphite and half Chromite sand) mold assembly was cast using compressor casing production tooling. This test provided Mold cooling rates influence on centrifugally cast microstructure and mechanical properties. Graphite mold section out performs sand mold across all temperatures for 0.2% YS; %Elongation, %RA, UTS at 1400°F. Both Stress-LMP and conditional Fracture toughness plots data were in the scatter band of the wrought alloy. 5) Fundamental Studies on Cooling rates and SDAS test program. Evaluated the influence of 6 mold materials Silica, Chromite, Alumina, Silica with Indirect Chills, Zircon and Graphite on casting solidification cooling rates. Actual Casting cooling rates through Liquidus to Solidus phase transition were measured with 3 different locations based thermocouples placed in each mold. Compared with solidification simulation cooling rates and measurement of SDAS, microstructure features were reported. The test results provided engineered casting potential methods, applicable for heavy section Haynes 282 castings for optimal properties, with foundry process methods and tools. 6) Large casting of Haynes 282 Drawings and Engineering FEM models and supplemental requirements with applicable specifications were provided to suppliers for the steam turbine proto type feature valve casing casting. Molding, melting and casting pouring completed per approved Manufacturing Process Plan during 2014 Q4. The partial valve casing was successfully cast after casting methods were validated with solidification simulation analysis and the casting met NDT inspection and acceptance criteria. Heat treated and sectioned to extract trepan samples at different locations comparing with cast on coupons test data. Material properties requisite for design, such as tensile, creep/rupture, LCF, Fracture Toughness, Charpy V-notch chemical analysis testing were carried out. The test results will be presented in the final report. The typical Haynes 282 large size Steam Turbine production casting from Order to Delivery foundry schedule with the activity break up is shown in Figures 107 and 108. • From Purchase Order placement to Casting pouring ~ 26 weeks. 1. Sales and commercial review 3 2. Engineering Drawings/models review 4 3. Pattern and core box manufacturing 6 4. Casting process engineering review 4 5. FEM and solidification simulation analysis 4 6. Gating & Feeder Attachments, Ceramic tiling 2 7. Molding and coremaking production scheduling 6 8. Melting planning and schedule 3 9. Pouring, cooling and shake out 2 • From Pouring to casting Delivery ~ 29 weeks 10. Shot blast and riser cutting, gates removal 3 11. Homogenizing , solutionizing HT furnace prep 4 12. Grinding, Fettling 2 13. Aging HT Cycle, cooling 2 14. VT and LPT NDT inspections 2 15. Radiographic inspection 4 16. Mechanical testing, Chemical analysis test certs 4 17. Casting weld repair upgrades and Aging PWHT 4 18. NDT after weld repairs and casting upgrades 3 19. Casting Final Inspection and test certifications 3 20. Package and delivery 2 Hence the Total Lead time from P.O to Casting delivery is approximately 55 weeks. The Task 4.2 and Task 4.3 activities and reporting completed.« less
Engineering scale demonstration of a prospective Cast Stone process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A.; Fowley, M.; Hansen, E.
2014-09-30
This report documents an engineering-scale demonstration with non-radioactive simulants that was performed at SRNL using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. Overmore » three days, the SCPF was used to fill a 1600 gallon container, staged outside the facility, with simulated Cast Stone grout. The container, staged outside the building approximately 60 ft from the SCPF, was instrumented with x-, y-, and z-axis thermocouples to monitor curing temperature. The container was also fitted with two formed core sampling vials. For the operation, the targeted grout production rate was 1.5 gpm. This required a salt solution flow rate of approximately 1 gpm and a premix feed rate of approximately 580 lb/h. During the final day of operation, the dry feed rate was increased to evaluate the ability of the system to handle increased throughput. Although non-steady state operational periods created free surface liquids, no bleed water was observed either before or after operations. The final surface slope at a fill height of 39.5 inches was 1-1.5 inches across the 8.5 foot diameter container, highest at the final fill point and lowest diametrically opposed to the fill point. During processing, grout was collected in cylindrical containers from both the mixer discharge and the discharge into the container. These samples were stored in a humid environment either in a closed box proximal to the container or inside the laboratory. Additional samples collected at these sampling points were analyzed for rheological properties and density. Both the rheological properties (plastic viscosity and yield strength) and density were consistent with previous and later SCPF runs.« less
Osteosarcoma following tibial plateau leveling osteotomy in dogs: 29 cases (1997-2011).
Selmic, Laura E; Ryan, Stewart D; Boston, Sarah E; Liptak, Julius M; Culp, William T N; Sartor, Angela J; Prpich, Cassandra Y; Withrow, Stephen J
2014-05-01
To determine the signalment, tibial plateau leveling osteotomy (TPLO) plate type, clinical staging information, treatment, and oncological outcome in dogs that developed osteosarcoma at the proximal aspect of the tibia following TPLO and to calculate the interval between TPLO and osteosarcoma diagnosis. Multi-institutional retrospective case series. 29 dogs. Medical records from 8 participating institutions were searched for dogs that developed osteosarcoma (confirmed through cytologic or histologic evaluation) at previous TPLO sites. Signalment, TPLO details, staging tests, treatment data, and outcome information were recorded. Descriptive statistics were calculated, and disease-free intervals and survival times were evaluated by means of Kaplan-Meier analysis. 29 dogs met the inclusion criteria. The mean age was 9.2 years and mean weight was 45.1 kg (99.2 lb) at the time of osteosarcoma diagnosis. Most dogs had swelling over the proximal aspect of the tibia (17/21) and lameness of the affected limb (28/29). The mean interval between TPLO and osteosarcoma diagnosis was 5.3 years. One type of cast stainless steel TPLO plate was used in most (18) dogs; the remaining dogs had received plates of wrought stainless steel (n = 4) or unrecorded type (7). Twenty-three of 29 dogs underwent treatment for osteosarcoma. Median survival time for 10 dogs that underwent amputation of the affected limb and received ≥ 1 chemotherapeutic treatment was 313 days. Results supported that osteosarcoma should be a differential diagnosis for dogs with a history of TPLO that later develop lameness and swelling at the previous surgical site. Oncological outcome following amputation and chemotherapy appeared to be similar to outcomes previously reported for dogs with appendicular osteosarcoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strong, J.C.; Swift, D.L.
In order to estimate accurately an effective dose equivalent for exposures to radon daughters, knowledge of their deposition in the lung is required. However, the nose and mouth are effective filters for removing aerosol particles, especially in the range of sizes of {open_quotes}unattached{close_quotes} radon daughters. Therefore, it is equally important to have reliable data on deposition in this region of the respiratory tract. We will describe our work in studying nasal and oral deposition of {open_quotes}unattached{close_quotes} radon daughters in casts of these airways. Several hollow casts of adult and child nasal and oral airways were fabricated at The John Hopkinsmore » University from layers of Perspect{trademark} (an acrylic plastic). The shapes of the airway passages were obtained from nuclear magnetic resonance sectional images of healthy subjects. The casts were exposed to radon gas and daughters produced by flushing filtered air through a commercially available {sup 226}Ra source. The gas stream was drawn through a 1.4-L cylindrical tube to allow measurable growth of {sup 218}Po activity before it was passed through casts of both nasal passages or the oral cavity. The deposition of {open_quotes}unattached{close_quotes} {sup 218}Po was measured by comparing the activity collected on filters mounted in series and in parallel with a cast. Measurements were made at various flow rates (Q; 4 to 20 L min{sup -1}). The diffusion coefficient (D) of {sup 218}Po was measured each time the flow rate was changed, by replacing the cast with a stainless steel gauze screen and measuring the activity penetrating the screen. The measured diffusion coefficient ranged from 0.02 to 0.05 cm{sup 2} s{sup -1} and was found to vary with the residence time of {sup 218}Po in the growth tube. The deposition efficiency ({eta}) of {sup 218}Po measured in these casts ranged from 50 to 70%, and was similar to values we found previously, using casts of nasal and oral airways from cadavers.« less
FerriCast: a macrocyclic photocage for Fe3+.
Kennedy, Daniel P; Incarvito, Christopher D; Burdette, Shawn C
2010-02-01
The non-siderophoric Fe(3+) photocage FerriCast (4,5-dimethoxy-2-nitrophenyl)-[4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl] methanol (2) has been prepared in high yield using an optimized two-step reaction sequence that utilizes a trimethylsilyl trifluoromethanesulfonate (TMSOTf) assisted electrophilic aromatic substitution as the key synthetic step. Spectrophotometric assessment of Fe(3+) binding to FerriCast revealed a binding stoichiometry and metal ion affinity dependent on the nature of the counterion. Exposure of FerriCast to 350 nm light initiates a photoreaction that converts FerriCast into FerriUnc (4,5-dimethoxy-2-nitrosophenyl)-[4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl]-methanone), which binds Fe(3+) less strongly owing to resonance delocalization of the anilino lone pair into the benzophenone pi-system. The release of Fe(3+) upon photolysis of FerriCast also was evaluated using a previously reported turn-on fluorescent sensor that utilizes the same macrocyclic ligand (4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl, AT(2)12C4). In contrast to the original reports on AT(2)12C4-based Fe(3+) sensors, FerriCast does not interact with ferric iron in aqueous solution. Introduction of oxygen containing solvents (MeOH, H(2)O, DMSO, MES, and phosphate buffers) to CH(3)CN solutions of metalated FerriCast lead to rapid decomplexation as measured by UV-visible spectroscopy. Further investigations contradicted the published conclusions on the aqueous coordination chemistry of AT(2)12C4, but also confirmed the unique and unexpected selectivity of the macrocycle for Fe(3+) in nonaqueous solvents. The crystallographic analysis of [Cu(AT(2)12C4)Cl](+) provides a rare example of a bifurcated hydrogen bond, and evidence for redox chemistry with the ligand. Spectrophotometric analysis of the model ligand with redox active metal ions provide evidence for AT(2)12C4(*+), a quasi-stable species the presence of which suggests caution should be taken when evaluating the interaction of aniline-containing systems with redox active metal ions.
An Information Framework for Facility Operators
1991-01-01
and replacement products. Type: Type is used to decompose the building into smaller categories called arrangements, assemblies, parts, joints , and forro...are organized into crews and shops consisting of tradepersons responsible for building materials (concrete, masonry, metals, drywall , paint, etc...Comp Type (pre-cast, CIP) AS I Curing compound , sealant tyDe A S 04--- Masonry Comp Type (CMU, stone, glazed) A S I Manufacturer, style no., color no
Optimization of permeability for quality improvement by using factorial design
NASA Astrophysics Data System (ADS)
Said, Rahaini Mohd; Miswan, Nor Hamizah; Juan, Ng Shu; Hussin, Nor Hafizah; Ahmad, Aminah; Kamal, Mohamad Ridzuan Mohamad
2017-05-01
Sand castings are used worldwide by the manufacturing process in Metal Casting Industry, whereby the green sand are the commonly used sand mould type in the industry of sand casting. The defects on the surface of casting product is one of the problems in the industry of sand casting. The problems that relates to the defect composition of green sand are such as blowholes, pinholes shrinkage and porosity. Our objective is to optimize the best composition of green sand in order to minimize the occurrence of defects. Sand specimen of difference parameters (Bentonite, Green Sand, Cold dust and water) were design and prepared to undergo permeability test. The 24 factorial design experiment with four factors at difference composition were runs, and the total of 16 runs experiment were conducted. The developed models based on the experimental design necessary models were obtained. The model with a high coefficient of determination (R2=0.9841) and model for predicted and actual fitted well with the experimental data. Using the Analysis of Design Expert software, we identified that bentonite and water are the main interaction effect in the experiments. The optimal settings for green sand composition are 100g silica sand, 21g bentonite, 6.5 g water and 6g coal dust. This composition gives an effect of permeability number 598.3GP.
Effects of recasting on the biocompatibility of a Ni-Cr alloy.
Zhang, Chang Yuan; Cheng, Hui; Lin, Dong Hong; Zheng, Ming; Ozcan, Mutlu; Zhao, Wei; Yu, Hao
2012-01-01
To evaluate the effects of recasting on the biocompatibility of a commercially available Ni-Cr alloy. The alloy tested was cast and subsequently recast four more times. For each cast condition, 24 disk shaped specimens were fabricated (5 mm in diameter, 0.5 mm in thickness). All the recasting was performed without adding new alloy. After the first cast and following each recast, the surface composition and microstructure of the alloy were determined using an X-ray fluorescence spectrometer and optical microscope, respectively. The in vitro cytotoxicity and in vivo mucous irritation potential of the cast and recast Ni-Cr alloy were investigated. The results were statistically analysed at the significance level of 0.05. Recasting neither yielded to cytotoxicity or to changes in the surface composition of the Ni-Cr alloy tested. However, an increase in impurities and porosity of the surface structure was observed with recasting. Also, the segregation of the impurities to grain boundaries was evident after multiple castings. After the fourth recast, the alloys showed significantly greater mucosal irritation than the control. After fourth recast, the alloy of this type may contribute to mucosal inflammation. Furthermore, there is a need for diverse methods addressing different biological endpoints for the evaluation of dental alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Americo, Jeffrey L.; Sood, Cindy L.; Cotter, Catherine A.
Classical inbred mice are extensively used for virus research. However, we recently found that some wild-derived inbred mouse strains are more susceptible than classical strains to monkeypox virus. Experiments described here indicated that the 50% lethal dose of vaccinia virus (VACV) and cowpox virus (CPXV) were two logs lower in wild-derived inbred CAST/Ei mice than classical inbred BALB/c mice, whereas there was little difference in the susceptibility of the mouse strains to herpes simplex virus. Live bioluminescence imaging was used to follow spread of pathogenic and attenuated VACV strains and CPXV virus from nasal passages to organs in the chestmore » and abdomen of CAST/Ei mice. Luminescence increased first in the head and then simultaneously in the chest and abdomen in a dose-dependent manner. The spreading kinetics was more rapid with VACV than CPXV although the peak photon flux was similar. These data suggest advantages of CAST/Ei mice for orthopoxvirus studies. - Highlights: • Wild-derived inbred CAST/Ei mice are susceptible to vaccinia virus and cowpox virus. • Morbidity and mortality from orthopoxviruses are greater in CAST/Ei than BALB/c mice. • Morbidity and mortality from herpes simplex virus type 1 are similar in both mice. • Imaging shows virus spread from nose to lungs, abdominal organs and brain. • Vaccinia virus spreads more rapidly than cowpox virus.« less
Reproduction and caste ratios under stress in trematode colonies with a division of labour.
Lloyd, Melanie M; Poulin, Robert
2013-06-01
Trematodes form clonal colonies in their first intermediate host. Individuals are, depending on species, rediae or sporocysts (which asexually reproduce) and cercariae (which develop within rediae or sporocysts and infect the next host). Some species use a division of labour within colonies, with 2 distinct redial morphs: small rediae (non-reproducing) and large rediae (individuals which produce cercariae). The theory of optimal caste ratio predicts that the ratio of caste members (small to large rediae) responds to environmental variability. This was tested in Philophthalmus sp. colonies exposed to host starvation and competition with the trematode, Maritrema novaezealandensis. Philophthalmus sp. infected snails, with and without M. novaezealandensis, were subjected to food treatments. Reproductive output, number of rediae, and the ratio of small to large rediae were compared among treatments. Philophthalmus sp. colonies responded to host starvation and competition; reproductive output was higher in well-fed snails of both infection types compared with snails in lower food treatments and well-fed, single infected snails compared with well-fed double infected snails. Furthermore, the caste ratio in Philophthalmus sp. colonies was altered in response to competition. This is the first study showing caste ratio responses to environmental pressures in trematodes with a division of labour.
Accuracy of Multiple Pour Cast from Various Elastomer Impression Methods
Saad Toman, Majed; Ali Al-Shahrani, Abdullah; Ali Al-Qarni, Abdullah
2016-01-01
The accurate duplicate cast obtained from a single impression reduces the profession clinical time, patient inconvenience, and extra material cost. The stainless steel working cast model assembly consisting of two abutments and one pontic area was fabricated. Two sets of six each custom aluminum trays were fabricated, with five mm spacer and two mm spacer. The impression methods evaluated during the study were additional silicone putty reline (two steps), heavy-light body (one step), monophase (one step), and polyether (one step). Type IV gypsum casts were poured at the interval of one hour, 12 hours, 24 hours, and 48 hours. The resultant cast was measured with traveling microscope for the comparative dimensional accuracy. The data obtained were subjected to Analysis of Variance test at significance level <0.05. The die obtained from two-step putty reline impression techniques had the percentage of variation for the height −0.36 to −0.97%, while diameter was increased by 0.40–0.90%. The values for one-step heavy-light body impression dies, additional silicone monophase impressions, and polyether were −0.73 to −1.21%, −1.34%, and −1.46% for the height and 0.50–0.80%, 1.20%, and −1.30% for the width, respectively. PMID:28096815
Zhang, Zutai; Tamaki, Yukimichi; Hotta, Yasuhiro; Miyazaki, Takashi
2006-07-01
For titanium casting, most commercial investments for titanium recommend casting at a low mold temperature to reduce oxidation. However, the thermal expansion values of the molds at low casting temperatures may be insufficient. The purpose of the current study was to investigate the possibility of obtaining accurate titanium crown casts using wax pattern fabricated by a CAD/CAM system with a non-expanded mold. Three types of experimental magnesia-based investments (A, B and C) were made and their properties were evaluated for dental use. Two kinds of wax patterns for full-coverage coping crowns (S-0: cement space of 0 microm; S-20: cement space of 20 microm) were fabricated using a commercial CAD/CAM system. A traditional method (TM) using inlay wax was performed for comparison. The investment for titanium casting was decided from the fundamental data of experimental investments. Titanium crowns were replaced on the stone die and the thickness of the cement layer was evaluated. There were no significant differences for the setting time and setting expansion among the experimental investments, but the aluminous cement content played a role in hardening and contracting the mold. The fit of the titanium crowns differed significantly between the TM and the CAD/CAM system. The ranges of thickness obtained from the TM, S-0 and S-20 were 20.78-357.88 microm, 25.12-107.46 microm and 17.84-58.92 microm, respectively. High quality titanium crown casting was obtained using a combination of wax patterns fabricated by a CAD/CAM system and a non-expanded MgO-based investment.
Lightweight Advertising and Scalable Discovery of Services, Datasets, and Events Using Feedcasts
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Ramachandran, R.; Movva, S.
2010-12-01
Broadcast feeds (Atom or RSS) are a mechanism for advertising the existence of new data objects on the web, with metadata and links to further information. Users then subscribe to the feed to receive updates. This concept has already been used to advertise the new granules of science data as they are produced (datacasting), with browse images and metadata, and to advertise bundles of web services (service casting). Structured metadata is introduced into the XML feed format by embedding new XML tags (in defined namespaces), using typed links, and reusing built-in Atom feed elements. This “infocasting” concept can be extended to include many other science artifacts, including data collections, workflow documents, topical geophysical events (hurricanes, forest fires, etc.), natural hazard warnings, and short articles describing a new science result. The common theme is that each infocast contains machine-readable, structured metadata describing the object and enabling further manipulation. For example, service casts contain type links pointing to the service interface description (e.g., WSDL for SOAP services), service endpoint, and human-readable documentation. Our Infocasting project has three main goals: (1) define and evangelize micro-formats (metadata standards) so that providers can easily advertise their web services, datasets, and topical geophysical events by adding structured information to broadcast feeds; (2) develop authoring tools so that anyone can easily author such service advertisements, data casts, and event descriptions; and (3) provide a one-stop, Google-like search box in the browser that allows discovery of service, data and event casts visible on the web, and services & data registered in the GEOSS repository and other NASA repositories (GCMD & ECHO). To demonstrate the event casting idea, a series of micro-articles—with accompanying event casts containing links to relevant datasets, web services, and science analysis workflows--will be authored for several kinds of geophysical events, such as hurricanes, smoke plume events, tsunamis, etc. The talk will describe our progress so far, and some of the issues with leveraging existing metadata standards to define lightweight micro-formats.
Raedel, Michael; Fiedler, Cliff; Jacoby, Stephan; Boening, Klaus W
2015-07-01
Scientific data about the long-term survival of teeth treated with cast post and cores are scarce. Retrospective studies often use different target events for their analyses. A comparison is therefore complicated. For associated tooth-, jaw-, and patient-related factors little evidence exists as to their effect on survival. The purpose of this study was to extend the knowledge on the survival of teeth treated with cast post and cores for observation periods of more than 10 years. A decrease or increase in survival times according to the presence or absence of associated parameters needs to be evaluated. A retrospective evaluation was conducted of all cast post and cores inserted in 1 university clinic between January 1992 and June 2011. A Kaplan-Meier survival analysis was carried out by using extraction as the target event. The survival curves for different tooth types, the presence or absence of adjacent teeth, and the prosthetic restoration of the respective jaws were compared by using the log-rank test (α=.05). A Cox regression model was calculated for multivariate analyses. A total of 717 cast post and cores for 343 patients were recorded. The mean survival time was 13.5 years. A statistically significant decrease in survival times was found for canines (11.9 years) and premolars (13.4 years) versus molars (14.1 years), no adjacent teeth (10.6 years) versus at least 1 adjacent tooth (13.8 years), and the restoration with removable dental prostheses (12.5 years) versus fixed dental prostheses and single crowns (13.9 years). The largest reduction in survival time was found for teeth being used as an abutment for a double crown-retained removable partial dental prosthesis (telescopic denture) (9.8 years). Tooth type and adjacent tooth status remained as significant variables within the multivariate Cox regression model. Cast post and cores have an acceptable long-term survival time. Because different factors may influence survival, considering these factors in treatment planning may increase the long-term success of these restorations. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Gupta, Sonam; Balakrishnan, Dhanasekar
2017-01-01
Purpose. For a precise fit of multiple implant framework, having an accurate definitive cast is imperative. The present study evaluated dimensional accuracy of master casts obtained using different impression trays and materials with open tray impression technique. Materials and Methods. A machined aluminum reference model with four parallel implant analogues was fabricated. Forty implant level impressions were made. Eight groups (n = 5) were tested using impression materials (polyether and vinylsiloxanether) and four types of impression trays, two being custom (self-cure acrylic and light cure acrylic) and two being stock (plastic and metal). The interimplant distances were measured on master casts using a coordinate measuring machine. The collected data was compared with a standard reference model and was statistically analyzed using two-way ANOVA. Results. Statistically significant difference (p < 0.05) was found between the two impression materials. However, the difference seen was small (36 μm) irrespective of the tray type used. No significant difference (p > 0.05) was observed between varied stock and custom trays. Conclusions. The polyether impression material proved to be more accurate than vinylsiloxanether impression material. The rigid nonperforated stock trays, both plastic and metal, could be an alternative for custom trays for multi-implant impressions when used with medium viscosity impression materials. PMID:28348595
Kohlmann, Rebekka; Gatermann, Sören G
2016-01-01
Many clinical microbiology laboratories report on cumulative antimicrobial susceptibility testing (cAST) data on a regular basis. Criteria for generation of cAST reports, however, are often obscure and inconsistent. Whereas the CLSI has published a guideline for analysis and presentation of cAST data, national guidelines directed at clinical microbiology laboratories are not available in Europe. Thus, we sought to describe the influence of different parameters in the process of cAST data analysis in the setting of a German routine clinical microbiology laboratory during 2 consecutive years. We developed various program scripts to assess the consequences ensuing from different algorithms for calculation of cumulative antibiograms from the data collected in our clinical microbiology laboratory in 2013 and 2014. One of the most pronounced effects was caused by exclusion of screening cultures for multi-drug resistant organisms which decreased the MRSA rate in some cases to one third. Dependent on the handling of duplicate isolates, i.e. isolates of the same species recovered from successive cultures on the same patient during the time period analyzed, we recorded differences in resistance rates of up to 5 percentage points for S. aureus, E. coli and K. pneumoniae and up to 10 percentage points for P. aeruginosa. Stratification by site of care and specimen type, testing of antimicrobials selectively on resistant isolates, change of interpretation rules and analysis at genus level instead of species level resulted in further changes of calculated antimicrobial resistance rates. The choice of parameters for cAST data analysis may have a substantial influence on calculated antimicrobial resistance rates. Consequently, comparability of cAST reports from different clinical microbiology laboratories may be limited. We suggest that laboratories communicate the strategy used for cAST data analysis as long as national guidelines for standardized cAST data analysis and reporting do not exist in Europe.
Astrology for Physics Teachers
ERIC Educational Resources Information Center
Steckline, Vincent S.
1975-01-01
Presents a brief history of astrology and its relation to astronomy. Describes the different types of astrologers, horoscope casting, and horoscope interpretation. Presents reasons for the author's disbelief in astrology. (GS)
Conditions Influencing Faculty Voting in Collective Bargaining Elections.
ERIC Educational Resources Information Center
Bornheimer, Deane G.
1985-01-01
The factors that influenced voting behavior in two faculty union defeats at New York University are examined. The importance of the swing votes cast in a run-off election by the members of a previously defeated third party is discussed. (Author/MLW)
NASA Astrophysics Data System (ADS)
Mortensen, Dag
1999-02-01
A finite-element method model for the time-dependent heat and fluid flows that develop during direct-chill (DC) semicontinuous casting of aluminium ingots is presented. Thermal convection and turbulence are included in the model formulation and, in the mushy zone, the momentum equations are modified with a Darcy-type source term dependent on the liquid fraction. The boundary conditions involve calculations of the air gap along the mold wall as well as the heat transfer to the falling water film with forced convection, nucleate boiling, and film boiling. The mold wall and the starting block are included in the computational domain. In the start-up period of the casting, the ingot domain expands over the starting-block level. The numerical method applies a fractional-step method for the dynamic Navier-Stokes equations and the “streamline upwind Petrov-Galerkin” (SUPG) method for mixed diffusion and convection in the momentum and energy equations. The modeling of the start-up period of the casting is demonstrated and compared to temperature measurements in an AA1050 200×600 mm sheet ingot.
Mrazek, F.C.; Smaga, J.A.; Battles, J.E.
1981-01-19
A positive electrode for a secondary electrochemical cell is described wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.
Toutain, Pierre-Louis; Bousquet-Mélou, Alain; Damborg, Peter; Ferran, Aude A; Mevius, Dik; Pelligand, Ludovic; Veldman, Kees T; Lees, Peter
2017-01-01
VetCAST is the EUCAST sub-committee for Veterinary Antimicrobial Susceptibility Testing. Its remit is to define clinical breakpoints (CBPs) for antimicrobial drugs (AMDs) used in veterinary medicine in Europe. This position paper outlines the procedures and reviews scientific options to solve challenges for the determination of specific CBPs for animal species, drug substances and disease conditions. VetCAST will adopt EUCAST approaches: the initial step will be data assessment; then procedures for decisions on the CBP; and finally the release of recommendations for CBP implementation. The principal challenges anticipated by VetCAST are those associated with the differing modalities of AMD administration, including mass medication, specific long-acting product formulations or local administration. Specific challenges comprise mastitis treatment in dairy cattle, the range of species and within species breed considerations and several other variable factors not relevant to human medicine. Each CBP will be based on consideration of: (i) an epidemiological cut-off value (ECOFF) - the highest MIC that defines the upper end of the wild-type MIC distribution; (ii) a PK/PD breakpoint obtained from pre-clinical pharmacokinetic data [this PK/PD break-point is the highest possible MIC for which a given percentage of animals in the target population achieves a critical value for the selected PK/PD index ( f AUC/MIC or f T > MIC)] and (iii) when possible, a clinical cut-off, that is the relationship between MIC and clinical cure. For the latter, VetCAST acknowledges the paucity of such data in veterinary medicine. When a CBP cannot be established, VetCAST will recommend use of ECOFF as surrogate. For decision steps, VetCAST will follow EUCAST procedures involving transparency, consensus and independence. VetCAST will ensure freely available dissemination of information, concerning standards, guidelines, ECOFF, PK/PD breakpoints, CBPs and other relevant information for AST implementation. Finally, after establishing a CBP, VetCAST will promulgate expert comments and/or recommendations associated with CBPs to facilitate their sound implementation in a clinical setting.
Toutain, Pierre-Louis; Bousquet-Mélou, Alain; Damborg, Peter; Ferran, Aude A.; Mevius, Dik; Pelligand, Ludovic; Veldman, Kees T.; Lees, Peter
2017-01-01
VetCAST is the EUCAST sub-committee for Veterinary Antimicrobial Susceptibility Testing. Its remit is to define clinical breakpoints (CBPs) for antimicrobial drugs (AMDs) used in veterinary medicine in Europe. This position paper outlines the procedures and reviews scientific options to solve challenges for the determination of specific CBPs for animal species, drug substances and disease conditions. VetCAST will adopt EUCAST approaches: the initial step will be data assessment; then procedures for decisions on the CBP; and finally the release of recommendations for CBP implementation. The principal challenges anticipated by VetCAST are those associated with the differing modalities of AMD administration, including mass medication, specific long-acting product formulations or local administration. Specific challenges comprise mastitis treatment in dairy cattle, the range of species and within species breed considerations and several other variable factors not relevant to human medicine. Each CBP will be based on consideration of: (i) an epidemiological cut-off value (ECOFF) – the highest MIC that defines the upper end of the wild-type MIC distribution; (ii) a PK/PD breakpoint obtained from pre-clinical pharmacokinetic data [this PK/PD break-point is the highest possible MIC for which a given percentage of animals in the target population achieves a critical value for the selected PK/PD index (fAUC/MIC or fT > MIC)] and (iii) when possible, a clinical cut-off, that is the relationship between MIC and clinical cure. For the latter, VetCAST acknowledges the paucity of such data in veterinary medicine. When a CBP cannot be established, VetCAST will recommend use of ECOFF as surrogate. For decision steps, VetCAST will follow EUCAST procedures involving transparency, consensus and independence. VetCAST will ensure freely available dissemination of information, concerning standards, guidelines, ECOFF, PK/PD breakpoints, CBPs and other relevant information for AST implementation. Finally, after establishing a CBP, VetCAST will promulgate expert comments and/or recommendations associated with CBPs to facilitate their sound implementation in a clinical setting. PMID:29326661
Modeling the investment casting of a titanium crown.
Atwood, R C; Lee, P D; Curtis, R V; Maijer, D M
2007-01-01
The objective of this study was to apply computational modeling tools to assist in the design of titanium dental castings. The tools developed should incorporate state-of-the-art micromodels to predict the depth to which the mechanical properties of the crown are affected by contamination from the mold. The model should also be validated by comparison of macro- and micro-defects found in a typical investment cast titanium tooth crown. Crowns were hand-waxed and investment cast in commercial purity grade 1 (CP-1) titanium by a commercial dental laboratory. The castings were analyzed using X-ray microtomography (XMT). Following sectioning, analysis continued with optical and scanning electron microscopy, and microhardness testing. An in-house cellular-automata solidification and finite-difference diffusion program was coupled with a commercial casting program to model the investment casting process. A three-dimensional (3D) digital image generated by X-ray tomography was used to generate an accurate geometric representation of a molar crown casting. Previously reported work was significantly expanded upon by including transport of dissolved oxygen and impurity sources upon the arbitrarily shaped surface of the crown, and improved coupling of micro- and macro-scale simulations. Macroscale modeling was found to be sufficient to accurately predict the location of the large internal porosity. These are shrinkage pores located in the thick sections of the cusp. The model was used to determine the influence of sprue design on the size and location of these pores. Combining microscale with macroscale modeling allowed the microstructure and depth of contamination to be predicted qualitatively. This combined model predicted a surprising result--the dissolution of silicon from the mold into the molten titanium is sufficient to depress the freezing point of the liquid metal such that the crown solidifies the subsurface. Solidification then progresses inwards and back out to the surface through the silicon-enriched near-surface layer. The microstructure and compositional analysis of the near-surface region are consistent with this prediction. A multiscale model was developed and validated, which can be used to design CP-Ti dental castings to minimize both macro- and micro-defects, including shrinkage porosity, grain size and the extent of surface contamination due to reaction with the mold material. The model predicted the surprising result that the extent of Si contamination from the mold was sufficient to suppress the liquidus temperature to the extent that the surface (to a depth of approximately 100 microm) of the casting solidifies after the bulk. This significantly increases the oxygen pickup, thereby increasing the depth of formation of alpha casing. The trend towards mold materials with reduced Si in order to produce easier-to-finish titanium castings is a correct approach.
Damage Resistance of Titanium Aluminide Evaluated
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Draper, Susan L.; Baaklini, George Y.; Pereira, J. Michael; Austin, Curt
2000-01-01
As part of the aviation safety goal to reduce the aircraft accident rate, NASA has undertaken studies to develop durable engine component materials. One of these materials, g-TiAl, has superior high-temperature material properties. Its low density provides improved specific strength and creep resistance in comparison to currently used titanium alloys. However, this intermetallic is inherently brittle, and long life durability is a potential problem. Of particular concern is the material s sensitivity to defects, which may form during the manufacturing process or in service. To determine the sensitivity of TiAl to defects, a team consisting of GE Aircraft Engines, Precision Cast Parts, and NASA was formed. The work at the NASA Glenn Research Center at Lewis Field has concentrated on the fatigue response to specimens containing defects. The overall objective of this work is to determine the influence of defects on the high cycle fatigue life of TiAl-simulated low-pressure turbine blades. Two types of defects have been introduced into the specimens: cracking from impact damage and casting porosity. For both types of defects, the cast-to-size fatigue specimens were fatigue tested at 650 C and 100 Hz until failure.
The machinability of cast titanium and Ti-6Al-4V.
Ohkubo, C; Watanabe, I; Ford, J P; Nakajima, H; Hosoi, T; Okabe, T
2000-02-01
This study investigated the machinability (ease of metal removal) of commercially pure (CP) titanium and Ti-6Al-4V alloy. Both CP Ti and Ti-6Al-4V were cast into magnesia molds. Two types of specimens (with alpha-case and without alpha-case) were made for CP Ti and Ti-6Al-4V. Machinability (n = 5) was evaluated as volume loss (mm3) by cutting/grinding the 3.0 mm surface using fissure burs and silicon carbide (SiC) under two machining conditions: (1) two machining forces (100 or 300 gf) at two rotational speeds (15000 or 30000 rpm) for 1 min, and (2) constant machining force of 100 gf and rotational speed of 15000 rpm for 1, 2, 5, 10, and 30 min. As controls, conventionally cast Co-Cr and Type IV gold alloys were evaluated in the same manner as the titanium. When fissure burs were used, there was a significant difference in the machinability between CP titanium with alpha-case and without alpha-case. On the other hand, there was no appreciable difference in the amount of metal removed for each tested metal when using the SiC points.
Aluminium alloys in municipal solid waste incineration bottom ash.
Hu, Yanjun; Rem, Peter
2009-05-01
With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.
Grieco, E M
1998-01-01
"This article focuses on how migration auspices affect the formation of migrant networks and ethnic communities. Using ethnographic data and migration histories to focus on caste ¿reformation' in the subcommunities of the Indians of Fiji, the ability to reestablish and maintain subcaste group ¿extensions' in Fiji is shown as directly related to the migration auspices that originally established the community. By determining the characteristics of migrants, the reason for migrating, and the magnitude and duration of migration streams, migration auspices define a migration type. This migration type affects the strength and density of social ties present in migration streams. It also affects the strength and density of network ties that members of a migrant community can establish in a receiving society." excerpt
Palgi, Yuval; Ben-Ezra, Menachem; Shrira, Amit
2012-01-01
Two studies examined peritraumatic symptoms due to war-related stress among hospital personnel with different affect types. In Study 1, we examined 80 Israeli hospital personnel during the period they were exposed to frequent missile attacks in the Second Lebanon War. In Study 2, we examined 67 and 74 Israeli hospital personnel during the time they were exposed and were not exposed, respectively, to missile attacks in the Gaza "Cast Lead" operation. In both studies, hospital personnel completed measures of posttraumatic stress disorder symptoms as well as of positive- and negative-affect items (PA and NA, respectively). Exposed personnel with a positive congruent (high PA and low NA) or a deflated incongruent (low PA and low NA) affective types had a lower level of peritraumatic symptoms compared to those with a negative congruent (low PA and high NA) or an inflated incongruent (high PA and NA) affective types. Study 2 further showed that among non-exposed personnel, only personnel with a negative congruent affective type had a higher level of peritraumatic symptoms compared to personnel with other affective types. Clinical implications and required future studies are discussed.
Microstructural characterization of as-cast biocompatible Co-Cr-Mo alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacchi, J.V., E-mail: jgiacchi@exa.unicen.edu.ar; Instituto de Fisica de Materiales Tandil; Morando, C.N.
2011-01-15
The microstructure of a cobalt-base alloy (Co-Cr-Mo) obtained by the investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants because of its high strength, good corrosion resistance and excellent biocompatibility properties. This work focuses on the resulting microstructures arising from samples poured under industrial environment conditions, of three different Co-Cr-Mo alloys. For this purpose, we used: 1) an alloy built up from commercial purity constituents, 2) a remelted alloy and 3) a certified alloy for comparison. The characterization of the samples was achieved by using opticalmore » microscopy (OM) with a colorant etchant to identify the present phases and scanning electron microscopy (SE-SEM) and energy dispersion spectrometry (EDS) techniques for a better identification. In general the as-cast microstructure is a Co-fcc dendritic matrix with the presence of a secondary phase, such as the M{sub 23}C{sub 6} carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloys. Other minority phases were also reported and their presence could be linked to the cooling rate and the manufacturing process variables and environment. - Research Highlights: {yields}The solidification microstructure of an ASTM-F75 type alloy were studied. {yields}The alloys were poured under an industrial environment. {yields}Carbides and sigma phase identified by color metallography and scanning microscopy (SEM and EDS). {yields}Two carbide morphologies were detected 'blocky type' and 'pearlite type'. {yields}Minority phases were also detected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824
The slip activity and slip interaction in tensile deformation of peak-aged cast and extruded Mg-10Gd-3Y-0.5Zr (wt.%) at 250 °C was investigated using in-situ scanning electron microscopy. Basal slip was the most likely system to be activated during the tensile deformation, while prismatic < a > and pyramidal < c + a > slip also contributed to the deformation. No twinning was observed. The number of non-basal slip systems accounted for ~ 36% of the total active slip systems for the cast alloy, while non-basal slip accounted for 12–17% of the total deformation observations in the extruded alloy. Multiple-slip was observedmore » within grains, and the basal/prismatic pairing type dominated the multiple-slip observations. Slip transfer occurred across grain boundaries and most of the slip transfer observations showed basal-basal type. The involved slip systems of slip transfer pairs were always associated with the same < a > direction. The slip transfer occurred more easily at low angle boundaries (LABs) and boundaries with misorientations greater than 75°. - Highlights: • Slip deformation of a Mg-RE alloy at 250 °C was investigated using in-situ SEM. • The extruded-T5 GW103 alloy did not exhibit a high anisotropic behavior. • Multiple-slip was observed within grains, and basal/prismatic type dominated. • Slip transfer occurred and most of the observations showed basal-basal type. • Slip transfer occurred more easily at LABs and boundaries with misorientations > 75°.« less
NASA Astrophysics Data System (ADS)
Jin, Kai; Vanka, Surya P.; Thomas, Brian G.
2018-02-01
In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.
NASA Astrophysics Data System (ADS)
Jin, Kai; Vanka, Surya P.; Thomas, Brian G.
2018-06-01
In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.;
2001-01-01
Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and fibers) Aluminum MMC. To this end, a revolutionary tool-less pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part, properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub-element tests will be presented.
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.;
2001-01-01
Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and Fibers) Aluminum MMC. To this end, a revolutionary tool-less pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub element tests will be presented.
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Lee, Jonathan; Bhat, Biliyar; Wells, Doug; Gregg, Wayne; Marsh, Matthew; Genge, Gary; Forbes, John; Salvi, Alex; Cornie, James A.;
2002-01-01
Metal matrix composites (MMC) offer relatively higher specific strength, specific stiffness, lower coefficient of thermal expansion (CTE) and lower density as compared with conventional alloys. These unique properties make them very attractive for aerospace turbomachinery applications where there is ever increasing emphasis to reduce weight and cost, and to increase engine performance. Through a joint effort between NASA and Metal Matrix Cast Composites, Inc., a complex liquid oxygen (LOX) compatible turbopump housing is being redesigned and manufactured from hybrid (particulate and fibers) Aluminum MMC. To this end, a revolutionary toolless pressure infiltration casting technology is being perfected. Ceramic preforms for the composite are 3-dimensionally printed using a stereolithography file, acquired from a CAD model. The preforms are then invested into a refractory material and pressure infiltrated with liquid metal. After casting, the refractory material is washed away leaving behind a near net-shape composite part. Benefits of this process include increased composite uniformity, no mold machining, short time from design to part, properties matching traditional methods, ability to make previously impossible to manufacture parts and no size limitations with a newly developed joining technology. The results of materials, manufacturing and design optimizations, preform joining, and sub-element tests will be presented.
Differentiating high priority pathway-based toxicity from non ...
The ToxCast chemical screening approach enables the rapid assessment of large numbers of chemicals for biological effects, primarily at the molecular level. Adverse outcome pathways (AOPs) offer a means to link biomolecular effects with potential adverse outcomes at the level of the individual or population, thus enhancing the utility of the ToxCast effort for hazard assessment. Thus, efforts are underway to develop AOPs relevant to the pathway perturbations detected in ToxCast assays. However, activity (?‘hits’) determined for chemical-assay pairs may reflect target-specific activity relevant to a molecular initiating event of an AOP, or more generalized cell stress and cytotoxicity-mediated effects. Previous work identified a ?‘cytotoxic burst’ phenomenon wherein large numbers of assays begin to respond at or near concentrations that elicit cytotoxicity. The concentration range at which the “burst” occurs is definable, statistically. Consequently, in order to focus AOP development on the ToxCast assay targetswhich are most sensitive and relevant to pathway-specific effects, we conducted a meta-analysis to identify which assays were frequently responding at concentrations well below the cytotoxic burst. Assays were ranked by the fraction of chemical hits below the burst concentration range compared to the number of chemicals tested, resulting in a preliminary list of potentially important, target-specific assays. After eliminating cytotoxicity a
Dobata, Shigeto
2012-12-01
Policing against selfishness is now regarded as the main force maintaining cooperation, by reducing costly conflict in complex social systems. Although policing has been studied extensively in social insect colonies, its coevolution against selfishness has not been fully captured by previous theories. In this study, I developed a two-trait quantitative genetic model of the conflict between selfish immature females (usually larvae) and policing workers in eusocial Hymenoptera over the immatures' propensity to develop into new queens. This model allows for the analysis of coevolution between genomes expressed in immatures and workers that collectively determine the immatures' queen caste fate. The main prediction of the model is that a higher level of polyandry leads to a smaller fraction of queens produced among new females through caste fate policing. The other main prediction of the present model is that, as a result of arms race, caste fate policing by workers coevolves with exaggerated selfishness of the immatures achieving maximum potential to develop into queens. Moreover, the model can incorporate genetic correlation between traits, which has been largely unexplored in social evolution theory. This study highlights the importance of understanding social traits as influenced by the coevolution of conflicting genomes. © 2012 The Author. Evolution© 2012 The Society for the Study of Evolution.
Interactive high-resolution isosurface ray casting on multicore processors.
Wang, Qin; JaJa, Joseph
2008-01-01
We present a new method for the interactive rendering of isosurfaces using ray casting on multi-core processors. This method consists of a combination of an object-order traversal that coarsely identifies possible candidate 3D data blocks for each small set of contiguous pixels, and an isosurface ray casting strategy tailored for the resulting limited-size lists of candidate 3D data blocks. While static screen partitioning is widely used in the literature, our scheme performs dynamic allocation of groups of ray casting tasks to ensure almost equal loads among the different threads running on multi-cores while maintaining spatial locality. We also make careful use of memory management environment commonly present in multi-core processors. We test our system on a two-processor Clovertown platform, each consisting of a Quad-Core 1.86-GHz Intel Xeon Processor, for a number of widely different benchmarks. The detailed experimental results show that our system is efficient and scalable, and achieves high cache performance and excellent load balancing, resulting in an overall performance that is superior to any of the previous algorithms. In fact, we achieve an interactive isosurface rendering on a 1024(2) screen for all the datasets tested up to the maximum size of the main memory of our platform.
Bourguignon, Thomas; Sobotník, Jan; Hanus, Robert; Roisin, Yves
2009-01-01
The onset of a specialized ("true") worker caste is a crucial step in the evolution of termite societies. Such workers, permanently excluded from wing development, repeatedly evolved from totipotent immatures, called "false" workers or pseudergates. In the family Rhinotermitidae, the presence of true workers and the level of specialization of this caste are highly variable, and key taxa illustrate transitional situations providing clues about worker evolution. Here we focused on the status of working immatures of Glossotermes oculatus, from the family Serritermitidae, now thought to represent either the sister-group of the Rhinotermitidae or a basal lineage nested within them. Contrary to previous assumptions, we show that the apterous immatures performing worker tasks in G. oculatus are the source of the single wing-budded nymphal instar preceding the alate. Consequently, they qualify as pseudergates rather than true workers. However, the sex ratio is strongly male biased in pseudergates and soldiers, which is a trait usually restricted to termites with true workers. We therefore argue that pseudergates of G. oculatus are close to a point where the species could easily shift toward the differentiation of a true worker caste, and that G. oculatus pinpoints a new possible route for the evolution of true workers from pseudergates.
Simultaneous atelectasis in human bocavirus infected monozygotic twins: was it plastic bronchitis?
Rüegger, Christoph M; Bär, Walter; Iseli, Peter
2013-12-18
Plastic bronchitis is an extremely rare disease characterized by the formation of tracheobronchial airway casts, which are composed of a fibrinous exudate with rubber-like consistency and cause respiratory distress as a result of severe airflow obstruction. Bronchial casts may be associated with congenital and acquired cardiopathies, bronchopulmonary diseases leading to mucus hypersecretion, and pulmonary lymphatic abnormalities. In recent years, however, there is growing evidence that plastic bronchitis can also be triggered by common respiratory tract infections and thereby cause atelectasis even in otherwise healthy children. We report on 22-month-old monozygotic twins presenting with atelectasis triggered by a simple respiratory tract infection. The clinical, laboratory, and radiographic findings given, bronchial cast formation was suspected in both infants but could only be confirmed after bronchoscopy in the first case. Real-time polymerase chain reaction of the removed cast as well as nasal lavage fluid of both infants demonstrated strong positivity for human bocavirus. Our case report is the first to describe two simultaneously affected monozygotic twins and substantiates the hypothesis of a contributing genetic factor in the pathophysiology of this disease. In this second report related to human bocavirus, we show additional evidence that this condition can be triggered by a simple respiratory tract infection in previously healthy infants.
Simultaneous atelectasis in human bocavirus infected monozygotic twins: was it plastic bronchitis?
2013-01-01
Background Plastic bronchitis is an extremely rare disease characterized by the formation of tracheobronchial airway casts, which are composed of a fibrinous exudate with rubber-like consistency and cause respiratory distress as a result of severe airflow obstruction. Bronchial casts may be associated with congenital and acquired cardiopathies, bronchopulmonary diseases leading to mucus hypersecretion, and pulmonary lymphatic abnormalities. In recent years, however, there is growing evidence that plastic bronchitis can also be triggered by common respiratory tract infections and thereby cause atelectasis even in otherwise healthy children. Case presentation We report on 22-month-old monozygotic twins presenting with atelectasis triggered by a simple respiratory tract infection. The clinical, laboratory, and radiographic findings given, bronchial cast formation was suspected in both infants but could only be confirmed after bronchoscopy in the first case. Real-time polymerase chain reaction of the removed cast as well as nasal lavage fluid of both infants demonstrated strong positivity for human bocavirus. Conclusion Our case report is the first to describe two simultaneously affected monozygotic twins and substantiates the hypothesis of a contributing genetic factor in the pathophysiology of this disease. In this second report related to human bocavirus, we show additional evidence that this condition can be triggered by a simple respiratory tract infection in previously healthy infants. PMID:24344641
Mohamed, Lamiaa Z; Ghanem, Wafaa A; El Kady, Omayma A; Lotfy, Mohamed M; Ahmed, Hafiz A; Elrefaie, Fawzi A
2017-11-01
The oxidation behavior of two types of inhomogeneous nickel was investigated in air at 1273 K for a total oxidation time of 100 h. The two types were porous sintered-nickel and microstructurally inhomogeneous cast-nickel. The porous-nickel samples were fabricated by compacting Ni powder followed by sintering in vacuum at 1473 K for 2 h. The oxidation kinetics of the samples was determined gravimetrically. The topography and the cross-section microstructure of each oxidized sample were observed using optical and scanning electron microscopy. X-ray diffractometry and X-ray energy dispersive analysis were used to determine the nature of the formed oxide phases. The kinetic results revealed that the porous-nickel samples had higher trend for irreproducibility. The average oxidation rate for porous- and cast-nickel samples was initially rapid, and then decreased gradually to become linear. Linear rate constants were 5.5 × 10 -8 g/cm 2 s and 3.4 × 10 -8 g/cm 2 s for the porous- and cast-nickel samples, respectively. Initially a single-porous non-adherent NiO layer was noticed on the porous- and cast-nickel samples. After a longer time of oxidation, a non-adherent duplex NiO scale was formed. The two layers of the duplex scales were different in color. NiO particles were observed in most of the pores of the porous-nickel samples. Finally, the linear oxidation kinetics and the formation of porous non-adherent duplex oxide scales on the inhomogeneous nickel substrates demonstrated that the addition of new layers of NiO occurred at the scale/metal interface due to the thermodynamically possible reaction between Ni and the molecular oxygen migrating inwardly.
A comparative study of gold UCLA-type and CAD/CAM titanium implant abutments
Park, Ji-Man; Lee, Jai-Bong; Heo, Seong-Joo
2014-01-01
PURPOSE The aim of this study was to evaluate the interface accuracy of computer-assisted designed and manufactured (CAD/CAM) titanium abutments and implant fixture compared to gold-cast UCLA abutments. MATERIALS AND METHODS An external connection implant system (Mark III, n=10) and an internal connection implant system (Replace Select, n=10) were used, 5 of each group were connected to milled titanium abutment and the rest were connected to the gold-cast UCLA abutments. The implant fixture and abutment were tightened to torque of 35 Ncm using a digital torque gauge, and initial detorque values were measured 10 minutes after tightening. To mimic the mastication, a cyclic loading was applied at 14 Hz for one million cycles, with the stress amplitude range being within 0 N to 100 N. After the cyclic loading, detorque values were measured again. The fixture-abutment gaps were measured under a microscope and recorded with an accuracy of ±0.1 µm at 50 points. RESULTS Initial detorque values of milled abutment were significantly higher than those of cast abutment (P<.05). Detorque values after one million dynamic cyclic loadings were not significantly different (P>.05). After cyclic loading, detorque values of cast abutment increased, but those of milled abutment decreased (P<.05). There was no significant difference of gap dimension between the milled abutment group and the cast abutment group after cyclic loading. CONCLUSION In conclusion, CAD/CAM milled titanium abutment can be fabricated with sufficient accuracy to permit screw joint stability between abutment and fixture comparable to that of the traditional gold cast UCLA abutment. PMID:24605206
Prabhakar, Alisha; Lynch, Amy P; Ahearne, Mark
2016-04-01
Cartilage defects resulting from osteoarthritis (OA) or physical injury can severely reduce the quality of life for sufferers. Current treatment options are costly and not always effective in producing stable hyaline cartilage. Here we investigated a new treatment option that could potentially repair and regenerate damaged cartilage tissue. This novel approach involves the application of infrapatellar fat-pad derived chondroprogenitor cells onto a mechanically stable biodegradable polymer film that can be easily implanted into a defect site. Poly-ε-caprolactone (PCL) films were fabricated via solvent casting in either acetone or chloroform. The hydrophobicity, mechanical properties, and surface morphology of the films were examined. Progenitor cells from infrapatellar fat-pad were isolated, expanded, and then seeded onto the films. The cells were allowed to self-assemble on films, and these were then cultured in a chemically defined chondrogenic media for 28 days. The self-assembled tissue was characterized via histological staining, gene expression analysis, immunohistochemistry, and biochemical analysis. Chondrogenic differentiation was induced to generate a cartilaginous matrix upon the films. Despite differences between in the appearance, surface morphology, and mechanical properties of the films cast in chloroform or acetone, both methods produced tissues rich in sulfated glycosaminoglycan and collagen, although the extracellular matrix produced on chloroform-cast films appeared to contain more collagen type II and less collagen type I than acetone-cast films. These self-assembled constructs have the potential to be implanted into defect sites as a potential treatment for cartilage defect regeneration. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Ahmed, Khaled E; Whitters, John; Ju, Xiangyang; Pierce, S Gareth; MacLeod, Charles N; Murray, Colin A
2016-01-01
The aim of this study was to detail and assess the capability of a novel methodology to 3D-quantify tooth wear progression in a patient over a period of 12 months. A calibrated stainless steel model was used to identify the accuracy of the scanning system by assessing the accuracy and precision of the contact scanner and the dimensional accuracy and stability of casts fabricated from three different types of impression materials. Thereafter, the overall accuracy of the 3D scanning system (scanner and casts) was ascertained. Clinically, polyether impressions were made of the patient's dentition at the initial examination and at the 12-month review, then poured in type IV dental stone to assess the tooth wear. The anterior teeth on the resultant casts were scanned, and images were analyzed using 3D matching software to detect dimensional variations between the patient's impressions. The accuracy of the 3D scanning system was established to be 33 μm. 3D clinical analysis demonstrated localized wear on the incisal and palatal surfaces of the patient's maxillary central incisors. The identified wear extended to a depth of 500 μm with a distribution of 4% to 7% of affected tooth surfaces. The newly developed 3D scanning methodology was found to be capable of assessing and accounting for the various factors affecting tooth wear scanning. Initial clinical evaluation of the methodology demonstrates successful monitoring of tooth wear progression. However, further clinical assessment is needed.
Cardoso-Júnior, Carlos A.M.; Fujimura, Patrícia Tieme; Santos-Júnior, Célio Dias; Borges, Naiara Araújo; Ueira-Vieira, Carlos; Hartfelder, Klaus; Goulart, Luiz Ricardo; Bonetti, Ana Maria
2017-01-01
Abstract Stingless bees of the genus Melipona, have long been considered an enigmatic case among social insects for their mode of caste determination, where in addition to larval food type and quantity, the genotype also has a saying, as proposed over 50 years ago by Warwick E. Kerr. Several attempts have since tried to test his Mendelian two-loci/two-alleles segregation hypothesis, but only recently a single gene crucial for sex determination in bees was evidenced to be sex-specifically spliced and also caste-specifically expressed in a Melipona species. Since alternative splicing is frequently associated with epigenetic marks, and the epigenetic status plays a major role in setting the caste phenotype in the honey bee, we investigated here epigenetic chromatin modification in the stingless bee Melipona scutellaris. We used an ELISA-based methodology to quantify global methylation status and western blot assays to reveal histone modifications. The results evidenced DNA methylation/demethylation events in larvae and pupae, and significant differences in histone methylation and phosphorylation between newly emerged adult queens and workers. The epigenetic dynamics seen in this stingless bee species represent a new facet in the caste determination process in Melipona bees and suggest a possible mechanism that is likely to link a genotype component to the larval diet and adult social behavior of these bees. PMID:28257527
Cardoso-Júnior, Carlos A M; Fujimura, Patrícia Tieme; Santos-Júnior, Célio Dias; Borges, Naiara Araújo; Ueira-Vieira, Carlos; Hartfelder, Klaus; Goulart, Luiz Ricardo; Bonetti, Ana Maria
2017-01-01
Stingless bees of the genus Melipona, have long been considered an enigmatic case among social insects for their mode of caste determination, where in addition to larval food type and quantity, the genotype also has a saying, as proposed over 50 years ago by Warwick E. Kerr. Several attempts have since tried to test his Mendelian two-loci/two-alleles segregation hypothesis, but only recently a single gene crucial for sex determination in bees was evidenced to be sex-specifically spliced and also caste-specifically expressed in a Melipona species. Since alternative splicing is frequently associated with epigenetic marks, and the epigenetic status plays a major role in setting the caste phenotype in the honey bee, we investigated here epigenetic chromatin modification in the stingless bee Melipona scutellaris. We used an ELISA-based methodology to quantify global methylation status and western blot assays to reveal histone modifications. The results evidenced DNA methylation/demethylation events in larvae and pupae, and significant differences in histone methylation and phosphorylation between newly emerged adult queens and workers. The epigenetic dynamics seen in this stingless bee species represent a new facet in the caste determination process in Melipona bees and suggest a possible mechanism that is likely to link a genotype component to the larval diet and adult social behavior of these bees.
Yang, Jie; Xiong, Liu; Li, Man; Sun, Qingjie
2018-06-20
The pursuit of sustainable functional materials requires the development of materials based on renewable resources and efficient fabrication methods. Here, we first fabricated chitosan-sodium phytate films via one-step-stripping and layer-by-layer-casting technologies. The proposed film-fabrication methods are general, facile, environmentally benign, cost-effective, and easy to scale up. The resultant one-step-stripped film was thin (9 ± 1 μm), soft, transparent, and strong, whereas the thickness of the layer-by-layer-cast film was 70 ± 3 μm. FTIR analysis of the films indicated the formation of interactions between the phosphoric groups in sodium phytate and the amino groups in chitosan. More importantly, the water-vapor-permeability values of the one-step-stripped and cast films were 4-5 orders of magnitude lower than chitosan films reported before. Layer-by-layer-cast films in particular exhibited high tensile strength (49.21 ± 1.12 MPa) and were more than three times stronger than other polyelectrolyte multilayer films. Both types of films remained stable in an acidic environment. Furthermore, the layer-by-layer-assembled films presented greater antimicrobial activity than the stripped films. The developed chitosan-sodium phytate films can enhance several biomedical and environmental applications, such as packaging, drug delivery, diagnostics, microfluidics, and biosensing.
Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Jon T.; Wang, Gerry; Luo, Alan
The purpose of this project was to develop a process and product which would utilize magnesium die casting and result in energy savings when compared to the baseline steel product. The specific product chosen was a side door inner panel for a mid-size car. The scope of the project included: re-design of major structural parts of the door, design and build of the tooling required to make the parts, making of parts, assembly of doors, and testing (both physical and simulation) of doors. Additional work was done on alloy development, vacuum die casting, and overcasting, all in order to improvemore » the performance of the doors and reduce cost. The project achieved the following objectives: 1. Demonstrated ability to design a large thin-wall magnesium die casting. 2. Demonstrated ability to manufacture a large thin-wall magnesium die casting in AM60 alloy. 3. Tested via simulations and/or physical tests the mechanical behavior and corrosion behavior of magnesium die castings and/or lightweight experimental automotive side doors which incorporate a large, thin-wall, powder coated, magnesium die casting. Under some load cases, the results revealed cracking of the casting, which can be addressed with re-design and better material models for CAE analysis. No corrosion of the magnesium panel was observed. 4. Using life cycle analysis models, compared the energy consumption and global warming potential of the lightweight door with those of a conventional steel door, both during manufacture and in service. Compared to a steel door, the lightweight door requires more energy to manufacture but less energy during operation (i.e., fuel consumption when driving vehicle). Similarly, compared to a steel door, the lightweight door has higher global warming potential (GWP) during manufacture, but lower GWP during operation. 5. Compared the conventional magnesium die casting process with the “super-vacuum” die casting process. Results achieved with cast tensile bars suggest some improvement in tensile properties with vacuum casting. Plant trials with large castings revealed cavity fill issues attributed to cooling and partial solidification of metal in the shot sleeve while waiting for vacuum to be established in the die cavity. 6. Developed age-hardenable Mg-based alloys as potential alternatives to the AM60 and AZ91 alloys typically used in automotive applications. Mg-7%Al-based alloys having Sn or Sn+Si additions exhibited significant age hardening, but more work is needed to demonstrate significant improvement in tensile properties. Corrosion behavior of these alloys is between those of AM60 and AZ91 alloys. 7. Evaluated the die casting of magnesium directly onto either steel or aluminum tubes as a potential process to make large lightweight subassemblies. Samples were free of gross defects, but additional work is needed to increase the interfacial shear strength. Overall, the project demonstrated that an automotive door-in-white design incorporating a die cast magnesium inner panel and a stamped aluminum outer panel can achieve approximately 50% mass reduction compared to the stamped steel baseline door-in-white. This leads to reduced energy consumption when driving the vehicle, which should more than offset the increased embedded energy of manufacture associated with the lighter metals. However, additional design work would be needed in order to meet the mechanical performance required of a door. Development of high-strength, high-ductility magnesium alloy castings would help make this technology more attractive for potential use in the side doors on automobiles. Also, increased use of recycled magnesium and aluminum would reduce the embedded energy and greenhouse gas emissions associated with the manufacture of this type of lightweight door. Commercialization planning of the type of lightweight door technology addressed in this project would be contingent upon the doors meeting all technical performance requirements of the car maker. The specific lightweight door developed in this project didn’t meet some of those requirements, but a preliminary business case study was conducted anyhow. This study considered the ratio of cost increase to mass decrease when the lightweight door is compared to a baseline steel door. The ratio was found to be in an acceptable range for some vehicle programs, especially if the number of such vehicles to be produced is equal to or slightly less than the estimated 250,000-shot life of the die set. This would allow for the investment in the dies to be spread across many parts and thereby help minimize the cost increase.« less
Palanichamy, Malliya Gounder; Mitra, Bikash; Zhang, Cai-Ling; Debnath, Monojit; Li, Gui-Mei; Wang, Hua-Wei; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping
2015-06-01
There is no indication from the previous mtDNA studies that west Eurasian-specific subclades have evolved within India and played a role in the spread of languages and the origins of the caste system. To address these issues, we have screened 14,198 individuals (4208 from this study) and analyzed 112 mitogenomes (41 new sequences) to trace west Eurasian maternal ancestry. This has led to the identification of two autochthonous subhaplogroups--HV14a1 and U1a1a4, which are likely to have originated in the Dravidian-speaking populations approximately 10.5-17.9 thousand years ago (kya). The carriers of these maternal lineages might have settled in South India during the time of the spread of the Dravidian language. In addition to this, we have identified several subsets of autochthonous U7 lineages, including U7a1, U7a2b, U7a3, U7a6, U7a7, and U7c, which seem to have originated particularly in the higher-ranked caste populations in relatively recent times (2.6-8.0 kya with an average of 5.7 kya). These lineages have provided crucial clues to the differentiation of the caste system that has occurred during the recent past and possibly, this might have been influenced by the Indo-Aryan migration. The remaining west Eurasian lineages observed in the higher-ranked caste groups, like the Brahmins, were found to cluster with populations who possibly arrived from west Asia during more recent times.
Ti–Ag–Pd alloy with good mechanical properties and high potential for biological applications
Zadorozhnyy, V. Yu.; Shi, X.; Gorshenkov, M. V.; Kozak, D. S.; Wada, T.; Louzguine-Luzgin, D. V.; Inoue, A.; Kato, H.
2016-01-01
Ti-based alloys containing Ag were produced by tilt-casting method and their properties were studied. Even in its as-cast state, Ti94Ag3Pd3 showed relatively high tensile properties, good electrochemical behavior, and good biocompatibility. The relatively good mechanical properties of the as-cast α-Ti-type Ti94Ag3Pd3 alloy (tensile strength up to 850 MPa and elongation of ~10%) can be explained by its severely deformed, fine crystalline structure. The high biocompatibility of Ti94Ag3Pd3 can be explained by the Ag–Pd interaction, which inhibits the release of Ag ions from the surface. Ag, in combination with Pd has no toxic effects and demonstrates useful antimicrobial properties. The Ti94Ag3Pd3 alloy shows a good potential to be applied as a biomedical implant alloy. PMID:27122177
NASA Astrophysics Data System (ADS)
Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao
2017-07-01
A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.
Optical flip-flops in a polarization-encoded optical shadow-casting scheme.
Rizvi, R A; Zubairy, M S
1994-06-10
We propose a novel scheme that optically implements various types of binary sequential logic elements. This is based on a polarization-encoded optical shadow-casting system. The proposed system architecture is capable of implementing synchronous as well as asynchronous sequential circuits owing to the inherent structural flexibility of optical shadow casting. By employing the proposed system, we present the design and implementation schemes of a J-K flip-flop and clocked R-S and D latches. The main feature of these flip-flops is that the propagation of the signal from the input plane to the output (i.e., processing) and from the output plane to the source plane (i.e., feedback) is all optical. Consequently the efficiency of these elements in terms of speed is increased. The only electronic part in the system is the detection of the outputs and the switching of the source plane.
Phased Array Ultrasonic Sound Field Mapping in Cast Austenitic Stainless Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.
2014-05-31
This study maps the phased array-generated acoustic sound fields through three types of CASS microstructure in four specimens to quantitatively assess the beam formation effectiveness in these materials.
[Comparison of magnetic resonance imaging artifacts of five common dental materials].
Xu, Yisheng; Yu, Risheng
2015-06-01
To compare five materials commonly used in dentistry, including three types of metals and two types of ceramics, by using different sequences of three magnetic resonance imaging (MRI) field strengths (0.35, 1.5, and 3.0 T). Three types of metals and two types of ceramics that were fabricated into the same size and thickness as an incisor crown were placed in a plastic tank filled with saline. The crowns were scanned using an magnetic resonance (MR) machine at 0.35, 1.5, and 3.0 T field strengths. The TlWI and T2WI images were obtained. The differences of various materials in different artifacts of field MR scans were determined. The zirconia crown presented no significant artifacts when scanned under the three types of MRI field strengths. The artifacts of casting ceramic were minimal. All dental precious metal alloys, nickel-chromium alloy dental porcelain, and cobalt-chromium ceramic alloy showed varying degrees of artifacts under the three MRI field strengths. Zirconia and casting ceramics present almost no or faint artifacts. By contrast, precious metal alloys, nickel-chromium alloy dental porcelain and cobalt-chromium ceramic alloy display MRI artifacts. The artifact area increase with increasing magnetic field.
Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes
NASA Astrophysics Data System (ADS)
Buchanan, Karl G.; Kral, Milo V.
2012-06-01
The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.
NASA Astrophysics Data System (ADS)
Criss, Robert Randolph, Jr.
The effect of the pre-exposure bake and the choice of casting solvent on the sensitivity and contrast of PMMA has been documented to an extent not previously reported in the literature. PMMA films were spin cast onto clean silicon substrates from chlorobenzene and tri-chloroethylene solutions. The temperature of the pre-bake was varied over the range of 59^circ to 170^circC using a convection oven with pre-bake times ranging from 30 to 90 minutes. At the end of the designated bake time, the films were removed from the oven and allowed to cool in a temperature and humidity controlled environment. They were promptly exposed to a 15 KeV electron beam, then developed, with mild agitation, in a 1:1 mixture of MIBK and IPA at 22.5^ circC. Film thickness profiles were determined with an alpha-step profilometer. Films baked at temperatures below T_{rm glass} (the temperature which marks the onset of long-range, coordinated molecular motion), exhibited improved sensitivity and poorer contrast when compared to those baked above T_{rm glass }. Unique to this work is the finding that the lithographic performance depends on the choice of casting solvent, even at pre-bake temperatures significantly above T_{rm glass}. The relative concentrations of the casting solvents remaining in the baked films was determined from UV absorption spectra. The dissolution rates of exposed films were also measured and compared to the fragmented molecular weight model of development. Energy depositions were calculated from the empirical model of Everhart and Hoff. Cross-correlation of these results indicate that the pre-bake temperature more strongly correlates with the observed improvement in sensitivity than the presence of residual casting solvent. Residual casting solvent changes the density of the film, thus changing the energy deposition and dissolution behavior. Calculations based on the aforementioned models indicate that the observed lithographic and dissolution behavior can not be accounted for by this change in density. Arguments are presented to support the conclusion that the observed behavior is associated with film morphology. Comparison of results from films cast from TCE and chlorobenzene and baked above T_{rm glass} further support this conclusion.
NASA Technical Reports Server (NTRS)
Dengler, R. P.
1975-01-01
Experiences with integrally-cast compressor and turbine components during fabrication and testing of four engine assemblies of a small (29 cm (11 1/2 in.) maximum diameter) experimental turbojet engine design for an expendable application are discussed. Various operations such as metal removal, welding, and re-shaping of these components were performed in preparation of full-scale engine tests. Engines with these components were operated for a total of 157 hours at engine speeds as high as 38,000 rpm and at turbine inlet temperatures as high as 1256 K (1800 F).
[The induction current, an ideal resource for the smelting of dental alloys].
Ionescu, G; Chiper, C; Teofănescu, L; Brezulianu, C
1996-01-01
The authors present an electrical furnace for melting dental alloys, made by the German company BEGO. This furnace uses electrical current of high frequency. The advantages of this melting method are the possibility of controlling the adequate melting temperature for a specific type of alloy, the fusion in a protective environment of rare gas and casting by associating the centrifugation with the vacuum. This leads to exact castings without any defects. The authors describe as a personal contribution an external cooling system capable of maintaining the furnace's parameters even when the water pressure is low.
Overexpression of ZDHHC14 promotes migration and invasion of scirrhous type gastric cancer.
Oo, Htoo Zarni; Sentani, Kazuhiro; Sakamoto, Naoya; Anami, Katsuhiro; Naito, Yutaka; Uraoka, Naohiro; Oshima, Takashi; Yanagihara, Kazuyoshi; Oue, Naohide; Yasui, Wataru
2014-07-01
Scirrhous type gastric cancer is highly aggressive and has a poorer prognosis than many other types of gastric carcinoma, due to its characteristic rapid cancer cell infiltration and proliferation, extensive stromal fibrosis, and frequent peritoneal dissemination. The aim of the present study was to identify novel prognostic markers or therapeutic targets for scirrhous type gastric cancer. We reviewed a list of genes with upregulated expression in scirrhous type gastric cancer and compared their expression with that in normal stomach from our previous Escherichia coli (E. coli) ampicillin secretion-trap (CAST) analysis. We focused on the ZDHHC14 gene, which encodes zinc finger, DHHC-type containing 14 protein. qRT-PCR analysis of ZDHHC14 in 41 gastric cancer cases revealed that compared to mRNA levels in normal non-neoplastic gastric mucosa, ZDHHC14 mRNA was overexpressed in 27% of gastric cancer tissue samples. The overexpression of ZDHHC14 was significantly associated with depth of tumor invasion, undifferentiated histology and scirrhous pattern. The invasiveness of ZDHHC14-knockdown HSC-44PE and 44As3 gastric cancer cells was decreased in comparison with that of the negative control siRNA-transfected cells, together with downregulation of MMP-17 mRNA. Integrins α5 and β1 were also downregulated in ZDHHC14-knockdown 44As3 cells. Forced expression of ZDHHC14 activated gastric cancer cell migration and invasion in vitro. These results indicate that ZDHHC14 is involved in tumor progression in patients with scirrhous type gastric cancer.
A Foot in the Door of an Uncertain Future
ERIC Educational Resources Information Center
Jones, Bill
2010-01-01
The infamous equivalent or lower qualifications (ELQs) regulation--the withdrawal of funding from students who have previously gained a higher education qualification--has cast a long shadow over adult continuing education in English higher education since its introduction in 2007. Together with the attack on funded adult provision in local…
Laboratory Experiments for Network Security Instruction
ERIC Educational Resources Information Center
Brustoloni, Jose Carlos
2006-01-01
We describe a sequence of five experiments on network security that cast students successively in the roles of computer user, programmer, and system administrator. Unlike experiments described in several previous papers, these experiments avoid placing students in the role of attacker. Each experiment starts with an in-class demonstration of an…
NASA Astrophysics Data System (ADS)
Chen, Qiang; Chen, Gang; Han, Fei; Xia, Xiangsheng; Wu, Yang
2017-07-01
Near-net shaping of Mg-RE alloy matrix composites has received increasing attention. In this work, stir casting followed by extrusion was adopted to fabricate Mg-RE alloy (WE43) matrix composites reinforced by micron-sized SiC particles. The microstructural evolutions of SiCp/WE43 composites partially remelted from as-cast and extruded states were studied. Furthermore, the thixoformability of SiCp/WE43 composites in different states was evaluated by thixoextruding a type of double-cup component. The microstructures of as-cast SiCp/WE43 composites were optimized under the comprehensive effects of SiC particles and RE elements. The SiCp/WE43 composite was fully recrystallized during hot extrusion, and the α-Mg matrix consisted of fine equiaxed grains. Although the as-cast SiCp/WE43 composite consisted of satisfactory structures and can be successfully thixoextruded into the final component with good surface quality and no evidence of internal defects, the microstructures, Vickers hardness, tensile mechanical properties, and wear resistance were still inferior to those of the component thixoextruded from extruded composite. Moreover, the thixoextrusion process was analyzed schematically, and an ideal thixoforming process that should contain two stages was proposed.
Microstructure, Texture, and Mechanical Behavior of As-cast Ni-Fe-W Matrix Alloy
NASA Astrophysics Data System (ADS)
Rao, A. Sambasiva; Manda, Premkumar; Mohan, M. K.; Nandy, T. K.; Singh, A. K.
2018-04-01
This article describes the tensile properties, flow, and work-hardening behavior of an experimental alloy 53Ni-29Fe-18W in as-cast condition. The microstructure of the alloy 53Ni-29Fe-18W displays single phase (fcc) in as-cast condition along with typical dendritic features. The bulk texture of the as-cast alloy reveals the triclinic sample symmetry and characteristic nature of coarse-grained materials. The alloy exhibits maximum strength ( σ YS and σ UTS) values along the transverse direction. The elongation values are maximum and minimum along the transverse and longitudinal directions, respectively. Tensile fracture surfaces of both the longitudinal and transverse samples display complete ductile fracture features. Two types of slip lines, namely, planar and intersecting, are observed in deformed specimens and the density of slip lines increases with increasing the amount of deformation. The alloy displays moderate in-plane anisotropy ( A IP) and reasonably low anisotropic index ( δ) values, respectively. The instantaneous or work-hardening rate curves portray three typical stages (I through III) along both the longitudinal and transverse directions. The alloy exhibits dislocation-controlled strain hardening during tensile testing, and slip is the predominant deformation mechanism.
Die Soldering in Aluminium Die Casting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Q.; Kenik, E.A.; Viswanathan, S.
2000-03-15
Two types of tests, dipping tests and dip-coating tests were carried out on small steel cylinders using pure aluminum and 380 alloy to investigate the mechanism of die soldering during aluminum die casting. Optical and scanning electron microscopy were used to study the morphology and composition of the phases formed during soldering. A soldering mechanism is postulated based on experimental observations. A soldering critical temperature is postulated at which iron begins to react with aluminum to form an aluminum-rich liquid phase and solid intermetallic compounds. When the temperature at the die surface is higher than this critical temperature, the aluminum-richmore » phase is liquid and joins the die with the casting during the subsequent solidification. The paper discusses the mechanism of soldering for the case of pure aluminum and 380 alloy casting in a steel mold, the factors that promote soldering, and the strength of the bond formed when soldering occurs. conditions, an aluminum-rich soldering layer may also form over the intermetallic layer. Although a significant amount of research has been conducted on the nature of these intermetallics, little is known about the conditions under which soldering occurs.« less
Consani, Rafael Leonardo Xediek; Domitti, Saide Sarckis; Consani, Simonides
2002-09-01
The pressure of final closure may be released when the flask is removed from the mechanical or pneumatic press and placed in the spring clamp. This release in pressure may result in dimensional changes that distort the denture base. The purpose of this study was to investigate differences between the dimensional stability of standardized simulated denture bases processed by traditional moist heat-polymerization and those processed by use of a new tension system. A metal master die was fabricated to simulate an edentulous maxillary arch without irregularities in the alveolar ridge walls. A silicone mold of this metallic die was prepared, and 40 stone casts were formed from the mold with type III dental stone. The casts were randomly assigned to 4 test groups (A-D) of 10 specimens each. A uniform denture base pattern was made on each stone cast with a 1.5-mm thickness of base-plate wax, measured with a caliper. The patterns were invested for traditional hot water processing. A polymethyl methacrylate dough was prepared and packed for processing. The flasks in groups A and B were closed with the traditional pressure technique and placed in spring clamps after final closure. The flasks in groups C and D were pressed between the metallic plates of the new tension system after the final closure. The group A and C flasks were immediately immersed in the water processing unit at room temperature (25 degrees +/- 2 degrees C). The unit was programmed to raise the temperature to 74 degrees C over 1 hour, and then maintained the temperature at 74 degrees C for 8 hours. The group B and D flasks were bench stored at room temperature (25 degrees +/- 2 degrees C) for 6 hours and were then subjected to the same moist heat polymerization conditions as groups A and C. All processed dentures were bench cooled for 3 hours. After recovery from the flasks, the base-cast sets were transversally sectioned into 3 parts (corresponding to 3 zones): (1) distal of the canines, (2) mesial of the first molars, and (3) mesial of the posterior palate). These areas had been previously established and standardized by use of a pattern denture in the sawing device to determine the sections in each base-cast set. Base-cast gaps were measured at 5 predetermined points on each section with an optical micrometer that had a tolerance of 0.001 mm. Collected data were analyzed with analysis of variance and Tukey's test. Denture bases processed with the new tension system exhibited significantly better base adaptation than those processed with traditional acrylic resin packing. Immediately after polymerization (Groups A and C), mean dimensional change values were 0.213 +/- 0.055 mm for the traditional packing technique and 0.173 +/- 0.050 mm for new tension system. After delayed polymerization (Groups B and D), the values were 0.216 +/- 0.074 mm for the traditional packing technique and 0.164 +/- 0.032 mm for new tension system. With both techniques, dimensional changes in the posterior palatal zone were greater (conventional = 0.286 +/- 0.038 mm; new system = 0.214 +/- 0.024 mm) than those elsewhere on the base-cast set. Within the limitations of this study, the new tension packing system was associated with decreased dimensional changes in the simulated maxillary denture bases processed with heat-polymerization.
Wang, Hongmei; Feng, Qing; Li, Ning; Xu, Sheng
2016-12-01
Limited information is available regarding the metal-ceramic bond strength of dental Co-Cr alloys fabricated by casting (CAST), computer numerical control (CNC) milling, and selective laser melting (SLM). The purpose of this in vitro study was to evaluate the metal-ceramic bond characteristics of 3 dental Co-Cr alloys fabricated by casting, computer numerical control milling, and selective laser melting techniques using the 3-point bend test (International Organization for Standardization [ISO] standard 9693). Forty-five specimens (25×3×0.5 mm) made of dental Co-Cr alloys were prepared by CAST, CNC milling, and SLM techniques. The morphology of the oxidation surface of metal specimens was evaluated by scanning electron microscopy (SEM). After porcelain application, the interfacial characterization was evaluated by SEM equipped with energy-dispersive spectrometry (EDS) analysis, and the metal-ceramic bond strength was assessed with the 3-point bend test. Failure type and elemental composition on the debonding interface were assessed by SEM/EDS. The bond strength was statistically analyzed by 1-way ANOVA and Tukey honest significant difference test (α=.05). The oxidation surfaces of the CAST, CNC, and SLM groups were different. They were porous in the CAST group but compact and irregular in the CNC and SLM groups. The metal-ceramic interfaces of the SLM and CNC groups showed excellent combination compared with those of the CAST group. The bond strength was 37.7 ±6.5 MPa for CAST, 43.3 ±9.2 MPa for CNC, and 46.8 ±5.1 MPa for the SLM group. Statistically significant differences were found among the 3 groups tested (P=.028). The debonding surfaces of all specimens exhibited cohesive failure mode. The oxidation surface morphologies and thicknesses of dental Co-Cr alloys are dependent on the different fabrication techniques used. The bond strength of all 3 groups exceed the minimum acceptable value of 25 MPa recommended by ISO 9693; hence, dental Co-Cr alloy fabricated with the SLM techniques could be a promising alternative for metal ceramic restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.
2017-05-01
The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for maximal response. For the calculation of the regression coefficients, dispersion and correlation coefficients, the software Matlab was used.
Calpastatin inhibits motor neuron death and increases survival of hSOD1(G93A) mice.
Rao, Mala V; Campbell, Jabbar; Palaniappan, Arti; Kumar, Asok; Nixon, Ralph A
2016-04-01
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease with a poorly understood cause and no effective treatment. Given that calpains mediate neurodegeneration in other pathological states and are abnormally activated in ALS, we investigated the possible ameliorative effects of inhibiting calpain over-activation in hSOD1(G93A) transgenic (Tg) mice in vivo by neuron-specific over-expression of calpastatin (CAST), the highly selective endogenous inhibitor of calpains. Our data indicate that over-expression of CAST in hSOD1(G93A) mice, which lowered calpain activation to levels comparable to wild-type mice, inhibited the abnormal breakdown of cytoskeletal proteins (spectrin, MAP2 and neurofilaments), and ameliorated motor axon loss. Disease onset in hSOD1(G93A) /CAST mice compared to littermate hSOD1(G93A) mice is delayed, which accounts for their longer time of survival. We also find that neuronal over-expression of CAST in hSOD1(G93A) transgenic mice inhibited production of putative neurotoxic caspase-cleaved tau and activation of Cdk5, which have been implicated in neurodegeneration in ALS models, and also reduced the formation of SOD1 oligomers. Our data indicate that inhibition of calpain with CAST is neuroprotective in an ALS mouse model. CAST (encoding calpastatin) inhibits hyperactivated calpain to prevent motor neuron disease operating through a cascade of events as indicated in the schematic, with relevance to amyotrophic lateral sclerosis (ALS). We propose that over-expression of CAST in motor neurons of hSOD1(G93A) mice inhibits activation of CDK5, breakdown of cytoskeletal proteins (NFs, MAP2 and Tau) and regulatory molecules (Cam Kinase IV, Calcineurin A), and disease-causing proteins (TDP-43, α-Synuclein and Huntingtin) to prevent neuronal loss and delay neurological deficits. In our experiments, CAST could also inhibit cleavage of Bid, Bax, AIF to prevent mitochondrial, ER and lysosome-mediated cell death mechanisms. Similarly, CAST over-expression in neurons attenuated pathological effects of TDP-43, α-synuclein and Huntingtin. These results suggest a potential value of specific small molecule inhibitors of calpains in delaying the development of ALS. Read the Editorial Highlight for this article on page 140. © 2016 International Society for Neurochemistry.
Development of Al2O3 fiber-reinforced Al2O3-based ceramics.
Tanimoto, Yasuhiro; Nemoto, Kimiya
2004-09-01
The purpose of this study was to use a tape casting technique to develop an Al2O3 fiber-reinforced Al2O3-based ceramic material (Al2O3-fiber/Al2O3 composite) into a new type of dental ceramic. The Al2O3-based ceramic used a matrix consisting of 60 wt% Al2O3 powder and 40 wt% SiO2-B2O3 powder. The prepreg sheets of Al2O3-fiber/Al2O3 composite (in which uniaxially aligned Al2O3 fibers were infiltrated with the Al2O3-based matrix) were fabricated continuously using tape casting technique with a doctor blade system. Multilayer preforms of Al2O3-fiber/Al2O3 composite sheets were then sintered at a maximum temperature of 1000 degrees C under an atmospheric pressure in a furnace. The results showed that the shrinkage and bending properties of Al2O3-fiber/Al2O3 composite exceeded those of unreinforced Al2O3--hence demonstrating the positive effects of fiber reinforcement. In conclusion, the tape casting technique has been utilized to successfully develop a new type of dental ceramic material.
Arun, Varatharajan Santhakumari; Syama, Adhikarla; Ashokan, Kumaran Samy; Gandhirajan, Kavandanpatti Thangaraj; Vijayakumar, Koothapuli; Narayanan, Muthuswamy; Jayalakshmi, Mariakuttikan; Ziegle, Janet S.; Royyuru, Ajay K.; Parida, Laxmi; Wells, R. Spencer; Renfrew, Colin; Schurr, Theodore G.; Smith, Chris Tyler; Platt, Daniel E.; Pitchappan, Ramasamy
2012-01-01
Previous studies that pooled Indian populations from a wide variety of geographical locations, have obtained contradictory conclusions about the processes of the establishment of the Varna caste system and its genetic impact on the origins and demographic histories of Indian populations. To further investigate these questions we took advantage that both Y chromosome and caste designation are paternally inherited, and genotyped 1,680 Y chromosomes representing 12 tribal and 19 non-tribal (caste) endogamous populations from the predominantly Dravidian-speaking Tamil Nadu state in the southernmost part of India. Tribes and castes were both characterized by an overwhelming proportion of putatively Indian autochthonous Y-chromosomal haplogroups (H-M69, F-M89, R1a1-M17, L1-M27, R2-M124, and C5-M356; 81% combined) with a shared genetic heritage dating back to the late Pleistocene (10–30 Kya), suggesting that more recent Holocene migrations from western Eurasia contributed <20% of the male lineages. We found strong evidence for genetic structure, associated primarily with the current mode of subsistence. Coalescence analysis suggested that the social stratification was established 4–6 Kya and there was little admixture during the last 3 Kya, implying a minimal genetic impact of the Varna (caste) system from the historically-documented Brahmin migrations into the area. In contrast, the overall Y-chromosomal patterns, the time depth of population diversifications and the period of differentiation were best explained by the emergence of agricultural technology in South Asia. These results highlight the utility of detailed local genetic studies within India, without prior assumptions about the importance of Varna rank status for population grouping, to obtain new insights into the relative influences of past demographic events for the population structure of the whole of modern India. PMID:23209694
A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee.
Grüter, Christoph; Menezes, Cristiano; Imperatriz-Fonseca, Vera L; Ratnieks, Francis L W
2012-01-24
Division of labor among workers is common in insect societies and is thought to be important in their ecological success. In most species, division of labor is based on age (temporal castes), but workers in some ants and termites show morphological specialization for particular tasks (physical castes). Large-headed soldier ants and termites are well-known examples of this specialization. However, until now there has been no equivalent example of physical worker subcastes in social bees or wasps. Here we provide evidence for a physical soldier subcaste in a bee. In the neotropical stingless bee Tetragonisca angustula, nest defense is performed by two groups of guards, one hovering near the nest entrance and the other standing on the wax entrance tube. We show that both types of guards are 30% heavier than foragers and of different shape; foragers have relatively larger heads, whereas guards have larger legs. Low variation within each subcaste results in negligible size overlap between guards and foragers, further indicating that they are distinct physical castes. In addition, workers that remove garbage from the nest are of intermediate size, suggesting that they might represent another unrecognized caste. Guards or soldiers are reared in low but sufficient numbers (1-2% of emerging workers), considering that <1% usually perform this task. When challenged by the obligate robber bee Lestrimelitta limao, an important natural enemy, larger workers were able to fight for longer before being defeated by the much larger robber. This discovery opens up opportunities for the comparative study of physical castes in social insects, including the question of why soldiers appear to be so much rarer in bees than in ants or termites.
Retention of cast crown copings cemented to implant abutments.
Dudley, J E; Richards, L C; Abbott, J R
2008-12-01
The cementation of crowns to dental implant abutments is an accepted form of crown retention that requires consideration of the properties of available cements within the applied clinical context. Dental luting agents are exposed to a number of stressors that may reduce crown retention in vivo, not the least of which is occlusal loading. This study investigated the influence of compressive cyclic loading on the physical retention of cast crown copings cemented to implant abutments. Cast crown copings were cemented to Straumann synOcta titanium implant abutments with three different readily used and available cements. Specimens were placed in a humidifier, thermocycled and subjected to one of four quantities of compressive cyclic loading. The uniaxial tensile force required to remove the cast crown copings was then recorded. The mean retention values for crown copings cemented with Panavia-F cement were statistically significantly greater than both KetacCem and TempBond non-eugenol cements at each compressive cyclic loading quantity. KetacCem and TempBond non-eugenol cements produced relatively low mean retention values that were not statistically significantly different at each quantity of compressive cyclic loading. Compressive cyclic loading had a statistically significant effect on Panavia-F specimens alone, but increased loading quantities produced no further statistically significant difference in mean retention. Within the limitations of the current in vitro conditions employed in this study, the retention of cast crown copings cemented to Straumann synOcta implant abutments with a resin, glass ionomer and temporary cement was significantly affected by cement type but not compressive cyclic loading. Resin cement is the cement of choice for the definitive non-retrievable cementation of cast crown copings to Straumann synOcta implant abutments out of the three cements tested.
NASA Technical Reports Server (NTRS)
Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.
1999-01-01
Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.
Three-year clinical performance of cast gold vs ceramic partial crowns.
Federlin, M; Wagner, J; Männer, T; Hiller, K-A; Schmalz, G
2007-12-01
Cast gold partial crowns (CGPC) and partial ceramic crowns (PCC) are both accepted for restoring posterior teeth with extended lesions today. However, as esthetics in dentistry becomes increasingly important, CGPC are being progressively replaced by PCC. The aim of the present prospective split-mouth study was the comparison of the clinical performance of PCC and CGPC after 3 years of clinical service. Twenty-eight patients (11 men and 17 women) participated in the 3-year recall with a total of 56 restorations. In each patient, one CGPC (Degulor C) and one PCC (Vita Mark II ceramic/Cerec III) had been inserted at baseline. CGPC were placed using a zinc phosphate cement (Harvard); PCC were adhesively luted (Variolink II/Excite). All restorations were clinically assessed using modified US Public Health Service (USPHS) criteria at baseline, 1 year, 2 years, and 3 years after insertion. Twenty-eight CGPC and 14 PCC were placed in molars, and 14 PCC were placed in premolars. Early data were reported previously under the same study design. After 3 years, the evaluation according to USPHS criteria revealed no statistically significant differences between both types of restorations with the exception of marginal adaptation and marginal discoloration: A statistically significant difference within the PCC group (baseline/3 years) was determined for the criterion marginal adaptation. For the 3-year recall period, overall failure was 0% for CGPC and 6.9% for PCC. At 3 years, PCC meet American Dental Association Acceptance Guidelines criteria for tooth-colored restorative materials for posterior teeth.
Ohyama, Tomoko; Jovanic, Tihana; Denisov, Gennady; Dang, Tam C.; Hoffmann, Dominik; Kerr, Rex A.; Zlatic, Marta
2013-01-01
All organisms react to noxious and mechanical stimuli but we still lack a complete understanding of cellular and molecular mechanisms by which somatosensory information is transformed into appropriate motor outputs. The small number of neurons and excellent genetic tools make Drosophila larva an especially tractable model system in which to address this problem. We developed high throughput assays with which we can simultaneously expose more than 1,000 larvae per man-hour to precisely timed noxious heat, vibration, air current, or optogenetic stimuli. Using this hardware in combination with custom software we characterized larval reactions to somatosensory stimuli in far greater detail than possible previously. Each stimulus evoked a distinctive escape strategy that consisted of multiple actions. The escape strategy was context-dependent. Using our system we confirmed that the nociceptive class IV multidendritic neurons were involved in the reactions to noxious heat. Chordotonal (ch) neurons were necessary for normal modulation of head casting, crawling and hunching, in response to mechanical stimuli. Consistent with this we observed increases in calcium transients in response to vibration in ch neurons. Optogenetic activation of ch neurons was sufficient to evoke head casting and crawling. These studies significantly increase our understanding of the functional roles of larval ch neurons. More generally, our system and the detailed description of wild type reactions to somatosensory stimuli provide a basis for systematic identification of neurons and genes underlying these behaviors. PMID:23977118
EPA DSSTox and ToxCast Project Updates: Generating New ...
EPA’s National Center for Computational Toxicology is generating data and capabilities to support a new paradigm for toxicity screening and prediction. The DSSTox project is improving public access to quality structure-annotated chemical toxicity information in less summarized forms than traditionally employed in SAR modeling, and in ways that facilitate data-mining and data read-across. The DSSTox Structure-Browser provides structure searchability across the full published DSSTox toxicity-related inventory, enables linkages to and from previously isolated toxicity data resources (soon to include public microarray resources GEO, ArrayExpress, and CEBS), and provides link-outs to cross-indexed public resources such as PubChem, ChemSpider, and ACToR. The published DSSTox inventory and bioassay information also have been integrated into PubChem allowing a user to take full advantage of PubChem structure-activity and bioassay clustering features. Phase I of the ToxCastTM project has generated high-throughput screening (HTS) data from several hundred biochemical and cell-based assays for a set of 320 chemicals, mostly pesticide actives, with rich toxicology profiles. DSSTox and ACToR are providing the primary cheminformatics support for ToxCastTM and collaborative efforts with the National Toxicology Program’s HTS Program and the NIH Chemical Genomics Center. DSSTox will also be a primary vehicle for publishing ToxCastTM ToxRef summarized bioassay data for use
Low-cost directionally-solidified turbine blades, volume 1
NASA Technical Reports Server (NTRS)
Sink, L. W.; Hoppin, G. S., III; Fujii, M.
1979-01-01
A low cost process of manufacturing high stress rupture strength directionally-solidified high pressure turbine blades was successfully developed for the TFE731-3 Turbofan Engine. The basic processing parameters were established using MAR-M 247 and employing the exothermic directional-solidification process in trial castings of turbine blades. Nickel-based alloys were evaluated as directionally-solidified cast blades. A new turbine blade, disk, and associated components were then designed using previously determined material properties. Engine tests were run and the results were analyzed and compared to the originally established goals. The results showed that the stress rupture strength of exothermically heated, directionally-solidified MAR-M 247 turbine blades exceeded program objectives and that the performance and cost reduction goals were achieved.
Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso
2006-01-01
Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. Objectives: To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. Methods: After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected prosthetic components. Five specimens were one-piece cast in titanium and five in cobalt-chromium alloy. On each specimen, tests were conducted with hexagonal titanium and slotted gold screws separately, performing a total of thirty tested screws. Measurements at the interfaces were performed using an optical microscope with 5 μm accuracy. After sectioning, specimens were laser welded and new measurements were obtained. Data were submitted to a four-way ANOVA and Tukey's multiple comparisons test (α =0.05). Results: Slotted and hexagonal screws did not present significant differences regarding to the fit of cylinders cast in titanium, either in one-piece casting framework or after laser welding. When slotted and hexagonal screws were tested on the cobalt-chromium specimens, statistically significant differences were found for the one-piece casting condition, with the slotted screws presenting better fit (24.13μm) than the hexagonal screws (27.93 μm). Besides, no statistically significant differences were found after laser welding. Conclusions: 1) The use of different metal alloys do exert influence on the marginal fit, 2) The slotted and hexagonal screws play the exclusive role of fixing the prosthesis, and did not improve the fit of cylinders, and 3) cylinder position did not affect marginal fit values. PMID:19089035
Soares, Carlos José; Raposo, Luís Henrique Araújo; Soares, Paulo Vinícius; Santos-Filho, Paulo César Freitas; Menezes, Murilo Sousa; Soares, Priscilla Barbosa Ferreira; Magalhães, Denildo
2010-02-01
To test the hypothesis that the type of cement used for fixation of cast dowel-and-cores might influence fracture resistance, fracture mode, and stress distribution of single-rooted teeth restored with this class of metallic dowels. The coronal portion was removed from 40 bovine incisors, leaving a 15 mm root. After endodontic treatment and standardized root canal relief at 10 mm, specimens were embedded in polystyrene resin, and the periodontal ligament was simulated with polyether impression material. The specimens were randomly divided into four groups (n = 10), and restored with Cu-Al cast dowel-and-cores cemented with one of four options: conventional glass ionomer cement (GI); resin-modified glass ionomer cement (GR); dual-cure resin cement (RC); or zinc-phosphate cement (ZP). Sequentially, fracture resistance of the specimens was tested with a tangential load at a 135 degrees angle with a 0.5 mm/min crosshead speed. Data were analyzed using one-way analysis of variance (ANOVA) and the Fisher test. Two-dimensional finite element analysis (2D-FEA) was then performed with representative models of each group simulating a 100 microm cement layer. Results were analyzed based on von Mises stress distribution criteria. The mean fracture resistance values were (in N): RC, 838.2 +/- 135.9; GI, 772.4 +/- 169.8; GR, 613.4 +/- 157.5; ZP, 643.6 +/- 106.7. FEA revealed that RC and GR presented lower stress values than ZP and GI. The higher stress concentration was coincident with more catastrophic failures, and consequently, with lower fracture resistance values. The type of cement influenced fracture resistance, failure mode, and stress distribution on teeth restored with cast dowel-and-cores.
Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso
2006-04-01
Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected prosthetic components. Five specimens were one-piece cast in titanium and five in cobalt-chromium alloy. On each specimen, tests were conducted with hexagonal titanium and slotted gold screws separately, performing a total of thirty tested screws. Measurements at the interfaces were performed using an optical microscope with 5mm accuracy. After sectioning, specimens were laser welded and new measurements were obtained. Data were submitted to a four-way ANOVA and Tukey's multiple comparisons test (alpha=0.05). Slotted and hexagonal screws did not present significant differences regarding to the fit of cylinders cast in titanium, either in one-piece casting framework or after laser welding. When slotted and hexagonal screws were tested on the cobalt-chromium specimens, statistically significant differences were found for the one-piece casting condition, with the slotted screws presenting better fit (24.13 microm) than the hexagonal screws (27.93 microm). Besides, no statistically significant differences were found after laser welding. 1) The use of different metal alloys do exert influence on the marginal fit, 2) The slotted and hexagonal screws play the exclusive role of fixing the prosthesis, and did not improve the fit of cylinders, and 3) cylinder position did not affect marginal fit values.
Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar
2013-01-01
Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.
Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility
NASA Astrophysics Data System (ADS)
Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner
2015-03-01
Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.
Rapid bridge construction technology : precast elements for substructures.
DOT National Transportation Integrated Search
2011-06-01
The goal of this research was to propose an alternate system of precast bridge substructures which can : substitute for conventional cast in place systems in Wisconsin to achieve accelerated construction. : Three types of abutment modules (hollow wal...
Fabrication, properties, and applications of porous metals with directional pores
NAKAJIMA, Hideo
2010-01-01
Lotus-type porous metals with aligned long cylindrical pores are fabricated by unidirectional solidification from the melt with a dissolved gas such as hydrogen, nitrogen, or oxygen. The gas atoms can be dissolved into the melt via a pressurized gas atmosphere or thermal decomposition of gaseous compounds. Three types of solidification techniques have been developed: mold casting, continuous zone melting, and continuous casting techniques. The last method is superior from the viewpoint of mass production of lotus metals. The observed anisotropic behaviors of the mechanical properties, sound absorption, and thermal conductivity are inherent to the anisotropic porous structure. In particular, the remarkable anisotropy in the mechanical strength is attributed to the stress concentration around the pores aligned perpendicular to the loading direction. Heat sinks are a promising application of lotus metals due to the high cooling performance with a large heat transfer. PMID:21084772
Fabrication, properties, and applications of porous metals with directional pores.
Nakajima, Hideo
2010-01-01
Lotus-type porous metals with aligned long cylindrical pores are fabricated by unidirectional solidification from the melt with a dissolved gas such as hydrogen, nitrogen, or oxygen. The gas atoms can be dissolved into the melt via a pressurized gas atmosphere or thermal decomposition of gaseous compounds. Three types of solidification techniques have been developed: mold casting, continuous zone melting, and continuous casting techniques. The last method is superior from the viewpoint of mass production of lotus metals. The observed anisotropic behaviors of the mechanical properties, sound absorption, and thermal conductivity are inherent to the anisotropic porous structure. In particular, the remarkable anisotropy in the mechanical strength is attributed to the stress concentration around the pores aligned perpendicular to the loading direction. Heat sinks are a promising application of lotus metals due to the high cooling performance with a large heat transfer.
[Preparation of carbon fiber reinforced fluid type resin denture (author's transl)].
Kasuga, H; Sato, H; Nakabayashi, N
1980-01-01
Transverse strength of cured fluid resins is weaker than that of the heat cured. We have studied to improve the mechanical strength of self-cured acrylic resin by application of carbon fibers as reinforcement and simple methods which must be acceptable for technicians are proposed. A cloth type carbon fiber was the best reinforcement among studied carbon fibers such as chopped or mat. The chopped fibers were difficult to mix homogeneously with fluid resins and effectiveness of the reinforcement was low. Breaking often occurred at the interface between the reinforcement and resin in the cases of mat which gave defects to the test specimens. To prepare reinforced denture, the cloth was trimmed on the master cast after removal of wax and the prepreg was formed with the alginate impression on the cast by Palapress and the cloth. Other steps were same as the usual fluid resin.
Sreedevi, S; Sanjeev, R; Raghavan, Rekha; Abraham, Anna; Rajamani, T; Govind, Girish Kumar
2015-08-01
Endodontically treated teeth have significantly different physical and mechanical properties compared to vital teeth and are more prone to fracture. The study aims to compare the fracture resistance of endodontically treated teeth with and without post reinforcement, custom cast post-core and prefabricated post with glass ionomer core and to evaluate the ferrule effect on endodontically treated teeth restored with custom cast post-core. A total of 40 human maxillary central incisors with similar dimensions devoid of any root caries, restorations, previous endodontic treatment or cracks were selected from a collection of stored extracted teeth. An initial silicone index of each tooth was made. They were treated endodontically and divided into four groups of ten specimens each. Their apical seal was maintained with 4 mm of gutta-percha. Root canal preparation was done and then post core fabrication was done. The prepared specimens were subjected to load testing using a computer coordinated UTM. The fracture load results were then statistically analyzed. One-way ANOVA was followed by paired t-test. 1. Reinforcement of endodontically treated maxillary central incisors with post and core, improved their fracture resistance to be at par with that of endodontically treated maxillary central incisor, with natural crown. 2. The fracture resistance of endodontically treated maxillary central incisors is significantly increased when restored with custom cast post-core and 2 mm ferrule. With 2 mm ferrule, teeth restored with custom cast post-core had a significantly higher fracture resistance than teeth restored with custom cast post-core or prefabricated post and glass ionomer core without ferrule.
Sforza, Chiarella; De Menezes, Marcio; Bresciani, Elena; Cerón-Zapata, Ana M; López-Palacio, Ana M; Rodriguez-Ardila, Myriam J; Berrio-Gutiérrez, Lina M
2012-07-01
To assess a three-dimensional stereophotogrammetric method for palatal cast digitization of children with unilateral cleft lip and palate. As part of a collaboration between the University of Milan (Italy) and the University CES of Medellin (Colombia), 96 palatal cast models obtained from neonatal patients with unilateral cleft lip and palate were obtained and digitized using a three-dimensional stereophotogrammetric imaging system. Three-dimensional measurements (cleft width, depth, length) were made separately for the longer and shorter cleft segments on the digital dental cast surface between landmarks, previously marked. Seven linear measurements were computed. Systematic and random errors between operators' tracings, and accuracy on geometric objects of known size were calculated. In addition, mean measurements from three-dimensional stereophotographs were compared statistically with those from direct anthropometry. The three-dimensional method presented good accuracy error (<0.9%) on measuring geometric objects. No systematic errors between operators' measurements were found (p > .05). Statistically significant differences (p < 5%) were noted for different methods (caliper versus stereophotogrammetry) for almost all distances analyzed, with mean absolute difference values ranging between 0.22 and 3.41 mm. Therefore, rates for the technical error of measurement and relative error magnitude were scored as moderate for Ag-Am and poor for Ag-Pg and Am-Pm distances. Generally, caliper values were larger than three-dimensional stereophotogrammetric values. Three-dimensional stereophotogrammetric systems have some advantages over direct anthropometry, and therefore the method could be sufficiently precise and accurate on palatal cast digitization with unilateral cleft lip and palate. This would be useful for clinical analyses in maxillofacial, plastic, and aesthetic surgery.
The Behaviour of Bifilm Defects in Cast Al-7Si-Mg Alloy.
El-Sayed, Mahmoud Ahmed
2016-01-01
Double oxide films (bifilms) are significant defects in the casting of light alloys, and have been shown to decrease tensile and fatigue properties, and also to increase their scatter, making casting properties unreproducible and unreliable. A bifilm consists of doubled-over oxide films containing a gas-filled crevice and is formed due to surface turbulence of the liquid metal during handling and/or pouring. Previous studies has shown that the nature of oxide film defects may change with time, as the atmosphere inside the bifilm could be consumed by reaction with the surrounding melt, which may enhance the mechanical properties of Al alloy castings. As a proxy for a bifilm, an air bubble was trapped within an Al-7wt.%Si-0.3wt.%Mg (2L99) alloy melt, subjected to stirring. The effect of different parameters such as the holding time, stirring velocity and melt temperature on the change in gas composition of the bubble was investigated, using a design of experiments (DoE) approach. Also, the solid species inside the bubbles solidified in the melt were examined using SEM. The results suggested that both oxygen and nitrogen inside the bifilm would be consumed by reaction with the surrounding melt producing MgAl2O4 and AlN, respectively. Also, hydrogen was suggested to consistently diffuse into the defect. The reaction rates and the rate of H diffusion were shown to increase upon increasing the holding time and temperature, and stirring velocity. Such significant effect of the process parameters studied on the gaseous content of the bubble suggesting that a careful control of such parameters might lead to the deactivation of bifilm defects, or at least elimination of their deteriorous effect in light alloy castings.
The Behaviour of Bifilm Defects in Cast Al-7Si-Mg Alloy
2016-01-01
Double oxide films (bifilms) are significant defects in the casting of light alloys, and have been shown to decrease tensile and fatigue properties, and also to increase their scatter, making casting properties unreproducible and unreliable. A bifilm consists of doubled-over oxide films containing a gas-filled crevice and is formed due to surface turbulence of the liquid metal during handling and/or pouring. Previous studies has shown that the nature of oxide film defects may change with time, as the atmosphere inside the bifilm could be consumed by reaction with the surrounding melt, which may enhance the mechanical properties of Al alloy castings. As a proxy for a bifilm, an air bubble was trapped within an Al-7wt.%Si-0.3wt.%Mg (2L99) alloy melt, subjected to stirring. The effect of different parameters such as the holding time, stirring velocity and melt temperature on the change in gas composition of the bubble was investigated, using a design of experiments (DoE) approach. Also, the solid species inside the bubbles solidified in the melt were examined using SEM. The results suggested that both oxygen and nitrogen inside the bifilm would be consumed by reaction with the surrounding melt producing MgAl2O4 and AlN, respectively. Also, hydrogen was suggested to consistently diffuse into the defect. The reaction rates and the rate of H diffusion were shown to increase upon increasing the holding time and temperature, and stirring velocity. Such significant effect of the process parameters studied on the gaseous content of the bubble suggesting that a careful control of such parameters might lead to the deactivation of bifilm defects, or at least elimination of their deteriorous effect in light alloy castings. PMID:27529350
Fay, Kellie A; Villeneuve, Daniel L; Swintek, Joe; Edwards, Stephen W; Nelms, Mark D; Blackwell, Brett R; Ankley, Gerald T
2018-06-01
The U.S. Environmental Protection Agency's ToxCast program has screened thousands of chemicals for biological activity, primarily using high-throughput in vitro bioassays. Adverse outcome pathways (AOPs) offer a means to link pathway-specific biological activities with potential apical effects relevant to risk assessors. Thus, efforts are underway to develop AOPs relevant to pathway-specific perturbations detected in ToxCast assays. Previous work identified a "cytotoxic burst" (CTB) phenomenon wherein large numbers of the ToxCast assays begin to respond at or near test chemical concentrations that elicit cytotoxicity, and a statistical approach to defining the bounds of the CTB was developed. To focus AOP development on the molecular targets corresponding to ToxCast assays indicating pathway-specific effects, we conducted a meta-analysis to identify which assays most frequently respond at concentrations below the CTB. A preliminary list of potentially important, target-specific assays was determined by ranking assays by the fraction of chemical hits below the CTB compared with the number of chemicals tested. Additional priority assays were identified using a diagnostic-odds-ratio approach which gives greater ranking to assays with high specificity but low responsivity. Combined, the two prioritization methods identified several novel targets (e.g., peripheral benzodiazepine and progesterone receptors) to prioritize for AOP development, and affirmed the importance of a number of existing AOPs aligned with ToxCast targets (e.g., thyroperoxidase, estrogen receptor, aromatase). The prioritization approaches did not appear to be influenced by inter-assay differences in chemical bioavailability. Furthermore, the outcomes were robust based on a variety of different parameters used to define the CTB.
Standage, Daniel S; Berens, Ali J; Glastad, Karl M; Severin, Andrew J; Brendel, Volker P; Toth, Amy L
2016-04-01
Comparative genomics of social insects has been intensely pursued in recent years with the goal of providing insights into the evolution of social behaviour and its underlying genomic and epigenomic basis. However, the comparative approach has been hampered by a paucity of data on some of the most informative social forms (e.g. incipiently and primitively social) and taxa (especially members of the wasp family Vespidae) for studying social evolution. Here, we provide a draft genome of the primitively eusocial model insect Polistes dominula, accompanied by analysis of caste-related transcriptome and methylome sequence data for adult queens and workers. Polistes dominula possesses a fairly typical hymenopteran genome, but shows very low genomewide GC content and some evidence of reduced genome size. We found numerous caste-related differences in gene expression, with evidence that both conserved and novel genes are related to caste differences. Most strikingly, these -omics data reveal a major reduction in one of the major epigenetic mechanisms that has been previously suggested to be important for caste differences in social insects: DNA methylation. Along with a conspicuous loss of a key gene associated with environmentally responsive DNA methylation (the de novo DNA methyltransferase Dnmt3), these wasps have greatly reduced genomewide methylation to almost zero. In addition to providing a valuable resource for comparative analysis of social insect evolution, our integrative -omics data for this important behavioural and evolutionary model system call into question the general importance of DNA methylation in caste differences and evolution in social insects. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Post-Conflict Slowing Effects in Monolingual and Bilingual Children
ERIC Educational Resources Information Center
Grundy, John G.; Keyvani Chahi, Aram
2017-01-01
Previous research has shown that bilingual children outperform their monolingual peers on a wide variety of tasks measuring executive functions (EF). However, recent failures to replicate this finding have cast doubt on the idea that the bilingual experience leads to domain-general cognitive benefits. The present study explored the role of…
A predictive model of reproductive toxicity, as observed in rat multigeneration reproductive (MGR) studies, was previously developed using high throughput screening (HTS) data from 36 in vitro assays mapped to 8 genes or gene-sets from Phase I of USEPA ToxCast research program, t...
Is Game Behavior Related to Behavior in Any Other Situation?
ERIC Educational Resources Information Center
McTavish, Jeanne
This paper begins by reviewing previous research concerning the external validity of mixed-motive games as models of international conflict, interpersonal behavior, and behavior in large-scale social dilemmas. Two further experiments are then described, both of which cast further doubt upon the usefulness of such games as models of any real-world…
Domain-Specific QSAR Models for Identifying Potential Estrogenic Activity of Phenols (FutureTox III)
Computational tools can be used for efficient evaluation of untested chemicals for their ability to disrupt the endocrine system. We have employed previously developed global QSAR models that were trained and validated on the ToxCast/Tox21 ER assay data for virtual screening of a...
Why Teach? A Project-Ive Life-World Approach to Understanding What Teaching Means for Teachers
ERIC Educational Resources Information Center
Landrum, Brittany; Guilbeau, Catherine; Garza, Gilbert
2017-01-01
Previous literature has examined teachers' motivations to teach in terms of intrinsic and extrinsic motives, personality dimensions, and teacher burnout. These findings have been cast in the rubric of differences between teachers and non-teachers and the linear relations between these measures among teachers. Utilizing a phenomenological approach…
A New Literary Metaphor for the Genome or Proteome
ERIC Educational Resources Information Center
Pappas, Gus
2005-01-01
Previously, the idea of a blueprint has been used to explain the genome. The concept of a play's cast of characters, the Dramatis Personae, is a more fluid metaphor that allows for mutations and time-dependent phenomena to be taken into account. It also provides an educational and mnemonic exercise for students.
Image analysis of oronasal fistulas in cleft palate patients acquired with an intraoral camera.
Murphy, Tania C; Willmot, Derrick R
2005-01-01
The aim of this study was to examine the clinical technique of using an intraoral camera to monitor the size of residual oronasal fistulas in cleft lip-cleft palate patients, to assess its repeatability on study casts and patients, and to compare its use with other methods. Seventeen plaster study casts of cleft palate patients with oronasal fistulas obtained from a 5-year series of 160 patients were used. For the clinical study, 13 patients presenting in a clinic prospectively over a 1-year period were imaged twice by the camera. The area of each fistula on each study cast was measured in the laboratory first using a previously described graph paper and caliper technique and second with the intraoral camera. Images were imported into a computer and subjected to image enhancement and area measurement. The camera was calibrated by imaging a standard periodontal probe within the fistula area. The measurements were repeated using a double-blind technique on randomly renumbered casts to assess the repeatability of measurement of the methods. The clinical images were randomly and blindly numbered and subjected to image enhancement and processing in the same way as for the study casts. Area measurements were computed. Statistical analysis of repeatability of measurement using a paired sample t test showed no significant difference between measurements, indicating a lack of systematic error. An intraclass correlation coefficient of 0.97 for the graph paper and 0.84 for the camera method showed acceptable random error between the repeated records for each of the two methods. The graph paper method remained slightly more repeatable. The mean fistula area of the study casts between each method was not statistically different when compared with a paired samples t test (p = 0.08). The methods were compared using the limits of agreement technique, which showed clinically acceptable repeatability. The clinical study of repeated measures showed no systematic differences when subjected to a t test (p = 0.109) and little random error with an intraclass correlation coefficient of 0.98. The fistula size seen in the clinical study ranged from 18.54 to 271.55 mm. Direct measurements subsequently taken on 13 patients in the clinic without study models showed a wide variation in the size of residual fistulas presenting in a multidisciplinary clinic. It was concluded that an intraoral camera method could be used in place of the previous graph paper method and could be developed for clinical and scientific purposes. This technique may offer advantages over the graph paper method, as it facilitates easy visualization of oronasal fistulas and objective fistulas size determination and permits easy storage of data in clinical records.
Costa, Vania; Tu, Hong Anh; Wells, David; Weir, Mark; Holubowich, Corinne; Walter, Melissa
2017-01-01
Background Diabetic neuropathic foot ulcers are a risk factor for lower leg amputation. Many experts recommend offloading with fibreglass total contact casting, removable cast walkers, and irremovable cast walkers as a way to treat these ulcers. Methods We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences for offloading devices. We performed a systematic literature search on August 17, 2016, to identify randomized controlled trials that compared fibreglass total contact casting, removable cast walkers, and irremovable cast walkers with other treatments (offloading or non-offloading) in patients with diabetic neuropathic foot ulcers. We developed a decision-analytic model to assess the cost-effectiveness of fibreglass total contact casting, removable cast walkers, and irremovable cast walkers, and we conducted a 5-year budget impact analysis. Finally, we interviewed people with diabetes who had lived experience with foot ulcers, asking them about the different offloading devices and the factors that influenced their treatment choices. Results We identified 13 randomized controlled trials. The evidence suggests that total contact casting, removable cast walkers, and irremovable cast walkers are beneficial in the treatment of neuropathic, noninfected foot ulcers in patients with diabetes but without severe peripheral arterial disease. Compared to removable cast walkers, ulcer healing was improved with total contact casting (moderate quality evidence; risk difference 0.17 [95% confidence interval 0.00–0.33]) and irremovable cast walkers (low quality evidence; risk difference 0.21 [95% confidence interval 0.01–0.40]). We found no difference in ulcer healing between total contact casting and irremovable cast walkers (low quality evidence; risk difference 0.02 [95% confidence interval −0.11–0.14]). The economic analysis showed that total contact casting and irremovable cast walkers were less expensive and led to more health outcome gains (e.g., ulcers healed and quality-adjusted life-years) than removable cast walkers. Irremovable cast walkers were as effective as total contact casting and were associated with lower costs. The 5-year budget impact of funding total contact casting, removable cast walkers, and irremovable cast walkers (device costs only at 100% access) would be $17 to $20 million per year. The patients we interviewed felt that wound healing was improved with total contact casting than with removable cast walkers, but that removable cast walkers were more convenient and came with a lower cost burden. They reported no experience or familiarity with irremovable cast walkers. Conclusions Ulcer healing improved with total contact casting, irremovable cast walkers, and removable cast walkers, but total contact casting and irremovable cast walkers had higher rates of ulcer healing than removable cast walkers. Increased access to offloading devices could result in cost savings for the health system because of fewer amputations. Patients with diabetic foot ulcers reported a preference for total contact casting over removable cast walkers, largely because they perceived wound healing to be improved with total contact casting. However, cost, comfort, and convenience are concerns for patients. PMID:28989556
2017-01-01
Diabetic neuropathic foot ulcers are a risk factor for lower leg amputation. Many experts recommend offloading with fibreglass total contact casting, removable cast walkers, and irremovable cast walkers as a way to treat these ulcers. We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences for offloading devices. We performed a systematic literature search on August 17, 2016, to identify randomized controlled trials that compared fibreglass total contact casting, removable cast walkers, and irremovable cast walkers with other treatments (offloading or non-offloading) in patients with diabetic neuropathic foot ulcers. We developed a decision-analytic model to assess the cost-effectiveness of fibreglass total contact casting, removable cast walkers, and irremovable cast walkers, and we conducted a 5-year budget impact analysis. Finally, we interviewed people with diabetes who had lived experience with foot ulcers, asking them about the different offloading devices and the factors that influenced their treatment choices. We identified 13 randomized controlled trials. The evidence suggests that total contact casting, removable cast walkers, and irremovable cast walkers are beneficial in the treatment of neuropathic, noninfected foot ulcers in patients with diabetes but without severe peripheral arterial disease. Compared to removable cast walkers, ulcer healing was improved with total contact casting (moderate quality evidence; risk difference 0.17 [95% confidence interval 0.00-0.33]) and irremovable cast walkers (low quality evidence; risk difference 0.21 [95% confidence interval 0.01-0.40]). We found no difference in ulcer healing between total contact casting and irremovable cast walkers (low quality evidence; risk difference 0.02 [95% confidence interval -0.11-0.14]). The economic analysis showed that total contact casting and irremovable cast walkers were less expensive and led to more health outcome gains (e.g., ulcers healed and quality-adjusted life-years) than removable cast walkers. Irremovable cast walkers were as effective as total contact casting and were associated with lower costs. The 5-year budget impact of funding total contact casting, removable cast walkers, and irremovable cast walkers (device costs only at 100% access) would be $17 to $20 million per year. The patients we interviewed felt that wound healing was improved with total contact casting than with removable cast walkers, but that removable cast walkers were more convenient and came with a lower cost burden. They reported no experience or familiarity with irremovable cast walkers. Ulcer healing improved with total contact casting, irremovable cast walkers, and removable cast walkers, but total contact casting and irremovable cast walkers had higher rates of ulcer healing than removable cast walkers. Increased access to offloading devices could result in cost savings for the health system because of fewer amputations. Patients with diabetic foot ulcers reported a preference for total contact casting over removable cast walkers, largely because they perceived wound healing to be improved with total contact casting. However, cost, comfort, and convenience are concerns for patients.
NASA Astrophysics Data System (ADS)
Bojarevičs, Andris; Kaldre, Imants; Milgrāvis, Mikus; Beinerts, Toms
2018-05-01
Direct chill casting is one of the methods used in industry to obtain good microstructure and properties of aluminium alloys. Nevertheless, for some alloys grain structure is not optimal. In this study, we offer the use of electromagnetic interaction to modify melt convection near the solidification interface. Solidification under various electromagnetic interactions has been widely studied, but usually at low solidification velocity and high thermal gradient. This type of interaction may succeed fragmentation of dendrite arms and transport of solidification nuclei thus leading to improved material structure and properties. Realization of experimental small-scale crystallizer and electromagnetic system has been described in this article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zieger, H.
1961-10-01
The as-cast structure of d.c.-cast aluminum ingots sometimes shows feather-like crystals. The influence of this type of crystals on the earing behavior and on the surface markings after anodizing was investigated on Al 99.5- sheets of 2 mm thickness. Feather-like crystals gave rise to more irregular and higher earings in all cases. Hot and afterwards cold rolled sheets showed markings on the anodized surface, which were intensified by feather-like crystals in the ingot. Extruding prior to hot rolling suppressed these markings completely, but did not affect the earing behavior. (auth)
Quantification of dental prostheses on cone‐beam CT images by the Taguchi method
Kuo, Rong‐Fu; Fang, Kwang‐Ming; TY, Wong
2016-01-01
The gray values accuracy of dental cone‐beam computed tomography (CBCT) is affected by dental metal prostheses. The distortion of dental CBCT gray values could lead to inaccuracies of orthodontic and implant treatment. The aim of this study was to quantify the effect of scanning parameters and dental metal prostheses on the accuracy of dental cone‐beam computed tomography (CBCT) gray values using the Taguchi method. Eight dental model casts of an upper jaw including prostheses, and a ninth prosthesis‐free dental model cast, were scanned by two dental CBCT devices. The mean gray value of the selected circular regions of interest (ROIs) were measured using dental CBCT images of eight dental model casts and were compared with those measured from CBCT images of the prosthesis‐free dental model cast. For each image set, four consecutive slices of gingiva were selected. The seven factors (CBCTs, occlusal plane canting, implant connection, prosthesis position, coping material, coping thickness, and types of dental restoration) were used to evaluate scanning parameter and dental prostheses effects. Statistical methods of signal to noise ratio (S/N) and analysis of variance (ANOVA) with 95% confidence were applied to quantify the effects of scanning parameters and dental prostheses on dental CBCT gray values accuracy. For ROIs surrounding dental prostheses, the accuracy of CBCT gray values were affected primarily by implant connection (42%), followed by type of restoration (29%), prostheses position (19%), coping material (4%), and coping thickness (4%). For a single crown prosthesis (without support of implants) placed in dental model casts, gray value differences for ROIs 1–9 were below 12% and gray value differences for ROIs 13–18 away from prostheses were below 10%. We found the gray value differences set to be between 7% and 8% for regions next to a single implant‐supported titanium prosthesis, and between 46% and 59% for regions between double implant‐supported, nickel‐chromium alloys (Ni‐Cr) prostheses. Quantification of the effect of prostheses and scanning parameters on dental CBCT gray values was assessed. PACS numbers: 87.59.bd, 87.57Q PMID:26894354
Soft cast versus rigid cast for treatment of distal radius buckle fractures in children.
Witney-Lagen, Caroline; Smith, Christine; Walsh, Graham
2013-04-01
Buckle fractures are extremely common and their optimum management is still under debate. This study aimed to ascertain whether buckle fractures of the distal radius can be safely and effectively treated in soft cast with only a single orthopaedic outpatient clinic appointment. A total of 232 children with buckle fractures of the distal radius were included in the study. 111 children with 112 distal radius fractures were treated in full rigid cast and 121 children with 123 fractures were treated with soft cast. The rigid cast children attended outpatient clinic for removal of cast at 3 weeks. Soft casts were removed by parents unwinding the cast at home after 3 weeks. Follow-up was conducted prospectively by telephone questionnaire at an average of 6 weeks post-injury. Outcome data were available for 117 children treated in soft cast and for 102 children treated in rigid cast. The most common mechanism of injury was a fall sustained from standing or running, followed by falls from bikes and then trampoline accidents. Overall, both groups recovered well. Overall satisfaction with the outcome of treatment was 97.4% in soft cast and 95.2% in rigid cast. Casts were reported as comfortable by 95.7% in soft cast and 93.3% in rigid cast. Cast changes were required for 6.8% of soft casts and 11.5% of rigid casts. The most frequent cause for changing rigid casts was getting the cast wet. None of the improved scores seen in the soft cast group were statistically significant. No re-fractures were seen in either group. Nearly all (94.9%) children in soft cast did bathe, shower or swim in their cast. Parents of both groups preferred treatment with soft cast (p < 0.001). Reasons given for preferring the soft cast included the ability to get the cast wet, avoidance of the plaster saw and not having to take time off work to attend a follow-up visit for cast removal. Buckle fractures of the distal radius can be safely and effectively treated in soft cast with only a single orthopaedic outpatient clinic appointment. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, T.; Griffiths, W. D.; Chen, J.
2017-11-01
The Maximum Likelihood method and the Linear Least Squares (LLS) method have been widely used to estimate Weibull parameters for reliability of brittle and metal materials. In the last 30 years, many researchers focused on the bias of Weibull modulus estimation, and some improvements have been achieved, especially in the case of the LLS method. However, there is a shortcoming in these methods for a specific type of data, where the lower tail deviates dramatically from the well-known linear fit in a classic LLS Weibull analysis. This deviation can be commonly found from the measured properties of materials, and previous applications of the LLS method on this kind of dataset present an unreliable linear regression. This deviation was previously thought to be due to physical flaws ( i.e., defects) contained in materials. However, this paper demonstrates that this deviation can also be caused by the linear transformation of the Weibull function, occurring in the traditional LLS method. Accordingly, it may not be appropriate to carry out a Weibull analysis according to the linearized Weibull function, and the Non-linear Least Squares method (Non-LS) is instead recommended for the Weibull modulus estimation of casting properties.
Ma, Ting-ting; Yi, Yuan-fu; Shao, Long-quan; Tian, Jie-mo; Hou, Kang-lin; Zhang, Wei-wei; Wen, Ning; Deng, Bin
2010-10-01
To investigate the effect of three types of veneering porcelain on the bending strength of KAVO Y-TZP/porcelain layered structure. KAVO zirconia ceramics were used as the substructure. To form Y-TZP/porcelain bilayered structure, a leucite-based veneering porcelain was fired on the zirconia substructures by slip-casting technique with dentin washbake, and two nano-fluorapatite-based veneering porcelains were fired on the zirconia substructures by either slip-casting or pressed-on technique with or without liner coverage. The bending strength was tested according to ISO 6872 standard, and the veneered surfaces of the fracture samples were analyzed by scanning electron microscopy (SEM). For covering KAVO zirconia core material, the conventional veneering slurry-porcelain combined with liner or wash firing had significant higher bending strength than pressed-on porcelain. SEM showed that the main failure type at the interface was adhesive failure. Thin layer sintering using washbake program or liner on KAVO zirconia surface increases the surface wettability, and this procedure may be indispensable when veneering on the surface of dental zirconia.
A Comparison of the Behaviour of AlTiB and AlTiC Grain Refiners
NASA Astrophysics Data System (ADS)
Schneider, W.; Kearns, M. A.; McGarry, M. J.; Whitehead, A. J.
AlTiC master alloys present a new alternative to AlTiB grain refiners which have enjoyed pre-eminence in cast houses for several decades. Recent investigations have shown that, under defined casting conditions, AlTiC is a more efficient grain refiner than AlTiB, is less prone to agglomeration and is more resistant to poisoning by Zr, Cr. Moreover it is observed that there are differences in the mechanism of grain refinement for the different alloys. This paper describes the influence of melt temperature and addition rate on the performance of both types of grain refiner in DC casting tests on different wrought alloys. Furthermore the effects of combined additions of the grain refiners and the recycling behaviour of the treated alloys are presented. Results are compared with laboratory test data. Finally, mechanisms of grain refinement are discussed which are consistent with the observed differences in behaviour with AlTiC and AlTiB.
Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S. M.; Xiao, X.; Faber, K. T.
Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys,more » and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.« less
Aluminum Alloy and Article Cast Therefrom
NASA Technical Reports Server (NTRS)
Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)
2003-01-01
A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.
The Wettability of LaRC Colorless Polyimide Resins on Casting Surfaces
NASA Technical Reports Server (NTRS)
Miner, Gilda A.; Stoakley, Diane M.; St.Clair, Anne K.; Gierow, Paul A.; Bates, Kevin
1997-01-01
Two colorless polyimides developed at NASA Langley Research Center, LaRC -CP1 and LaRC -CP2, are noted for being optically transparent, resistant to radiation, and soluble in the imide form. These materials may be used to make transparent, thin polymer films for building large space reflector/collector inflatable antennas, solar arrays, radiometers, etc. Structures such as these require large area, seamless films produced via spin casting or spray coating the soluble imide on a variety of substrates. The ability of the soluble imide to wet and spread over the mandrel or casting substrate is needed information for processing these structures with minimum waste and reprocessing, thereby, reducing the production costs. The wettability of a liquid is reported as the contact angle of the solid/liquid system. This fairly simple measurement is complicated by the porosity and the amount of contamination of the solid substrate. This work investigates the effect of inherent viscosity, concentration of polyimide solids, and solvent type on the wettability of various curing surfaces.
Curaua and eucalyptus nanofibers films by continuous casting: Mechanical and thermal properties.
Claro, Pedro Ivo Cunha; Corrêa, Ana Carolina; de Campos, Adriana; Rodrigues, Vanessa Bolzan; Luchesi, Bruno Ribeiro; Silva, Luiz Eduardo; Mattoso, Luiz Henrique Capparelli; Marconcini, José Manoel
2018-02-01
A wide variety of new green materials such as curaua leaf fibers (CLFs) has potential applications in nanotechnology. This study aims to investigate the thermomechanical properties and morphological structure of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) films obtained by continuous casting. The CNCs were obtained by acid hydrolysis and CNFs by mechanical shearing from bleached CLFs and eucalyptus pulp. The morphology after continuous casting resulted in oriented nanofibers, and as a consequence there was mechanical anisotropy. CNCs films showed the greatest values of tensile strength (36±4MPa) and the more effective fibrillation provided better mechanical strength of eucalyptus CNFs films than curaua CNFs films. Sulfur groups and mechanical shear degradation affected the stability of CNCs and CNFs films, respectively. Thus, the type of nanostructure, the way they interact to each other, the cellulose source and the process interfere significantly on the properties of the films. Copyright © 2017 Elsevier Ltd. All rights reserved.
Madhavan, Ranjith; George, Navia; Thummala, Niharika R; Ravi, S V; Nagpal, Ajay
2017-11-01
For the construction of any dental prosthesis, accurate impressions are necessary. Hence, we undertook the present study to evaluate and compare the surface hardness of gypsum casts poured from impressions made using conventional alginate and self-disinfecting alginate. A total of 30 impressions of stainless steel die were made, out of which 15 impressions were made with conventional alginate and 15 were made with self-disinfecting alginate and poured using Type III dental stone. Thirty stone specimens were subjected for hardness testing. Data were analyzed using independent samples t-test to compare the mean surface hardness. Difference in surface hardness was statistically insignificant (p > 0.05). Surface hardness of gypsum casts poured using impressions made from self-disinfecting alginate and conventional alginates were comparable. Self-disinfecting alginates may be employed in clinical practice as safe and effective materials to overcome the infection control issues without compromising on the properties of the material.
Grindability of dental magnetic alloys.
Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei
2005-06-01
In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.
Surface chemical structure for soft contact lenses as a function of polymer processing.
Grobe, G L; Valint, P L; Ammon, D M
1996-09-01
The surface chemistry and topography of cast-molded Etafilcon-A and doubled-sided lathed Etafilcon-A soft contact lenses were determined to be significantly different. The variations in surface chemical and morphologic structure between the two lenses were the result of contact lens manufacturing methods. The surface of the cast-molded Etafilcon-A had a consistently less rough surface compared to the doubled sided lathed Etafilcon-A as determined by atomic force microscopy. The surface of the doubled sided lathed Etafilcon-A contained primarily silicone and wax contamination in addition to minute amounts of HEMA. The cast-molded Etafilcon-A had an elemental and chemical content which was consistent with the polymer stoichiometry. Contact angle wettability profiles revealed inherent wettability differences between the two lenses types. The cast-molded Etafilcon-A had an inherently greater water wettability, polarity, and critical surface tension. This means that these two lenses cannot be compared as similar or identical lens materials in terms of surface composition. The manufacturing method used to produce a soft contact lens directly determines the surface elemental and chemical structure as well as the morphology of the finished lens material. These results suggest possible differences in the clinical comfort, spoilage, and lubricity felt during patient wear.
Desutter-Grandcolas, Laure; Cadena-Castañeda, Oscar J; Jaiswara, Ranjana; Anso, Jeremy
2014-02-24
We describe a new genus of grylline cricket, Zebragryllus Desutter-Grandcolas & Cadena-Casteñada n. gen., from the Neotropical Region, using characters of morphology and male genitalia; genitalic characters clearly show that Zebragryllus n. gen. is closely related to Anurogryllus Saussure, 1878. Six species are described as new to science, originating from western (Peru, Colombia) and eastern (French Guiana) Amazonia: Zebragryllus fuscus Desutter-Grandcolas, n. sp., Z. guianensis Desutter-Grandcolas, n. sp., Z. intermedius Desutter-Grandcolas, n. sp., Zebragryllus nauta Desutter-Grandcolas, n. sp., Zebragryllus nouragui Desutter-Grandcolas, n. sp., and Zebragryllus wittoto Desutter-Grandcolas and Cadena-Casteñada, n. sp., type species of the genus. They are characterized by their size, coloration (shining black, most often with white patterns of coloration, hence the genus name), and male and female genitalia. The calling songs of Z. guianensis Desutter-Grandcolas, n. sp., Z. intermedius Desutter-Grandcolas, n. sp., Z. nouragui Desutter-Grandcolas, n. sp., and Z. wittoto Desutter-Grandcolas and Cadena-Casteñada, n. sp. are described. An identification key is proposed for both males and females.
New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations
Romero, Luis; Jiménez, Mariano; Espinosa, María del Mar; Domínguez, Manuel
2015-01-01
Aim This study proposes the replacement of all the physical devices used in the manufacturing of conventional prostheses through the use of digital tools, such as 3D scanners, CAD design software, 3D implants files, rapid prototyping machines or reverse engineering software, in order to develop laboratory work models from which to finish coatings for dental prostheses. Different types of dental prosthetic structures are used, which were adjusted by a non-rotatory threaded fixing system. Method From a digital process, the relative positions of dental implants, soft tissue and adjacent teeth of edentulous or partially edentulous patients has been captured, and a maser working model which accurately replicates data relating to the patients oral cavity has been through treatment of three-dimensional digital data. Results Compared with the conventional master cast, the results show a significant cost savings in attachments, as well as an increase in the quality of reproduction and accuracy of the master cast, with the consequent reduction in the number of patient consultation visits. The combination of software and hardware three-dimensional tools allows the optimization of the planning of dental implant-supported rehabilitations protocol, improving the predictability of clinical treatments and the production cost savings of master casts for restorations upon implants. PMID:26696528
New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations.
Romero, Luis; Jiménez, Mariano; Espinosa, María Del Mar; Domínguez, Manuel
2015-01-01
This study proposes the replacement of all the physical devices used in the manufacturing of conventional prostheses through the use of digital tools, such as 3D scanners, CAD design software, 3D implants files, rapid prototyping machines or reverse engineering software, in order to develop laboratory work models from which to finish coatings for dental prostheses. Different types of dental prosthetic structures are used, which were adjusted by a non-rotatory threaded fixing system. From a digital process, the relative positions of dental implants, soft tissue and adjacent teeth of edentulous or partially edentulous patients has been captured, and a maser working model which accurately replicates data relating to the patients oral cavity has been through treatment of three-dimensional digital data. Compared with the conventional master cast, the results show a significant cost savings in attachments, as well as an increase in the quality of reproduction and accuracy of the master cast, with the consequent reduction in the number of patient consultation visits. The combination of software and hardware three-dimensional tools allows the optimization of the planning of dental implant-supported rehabilitations protocol, improving the predictability of clinical treatments and the production cost savings of master casts for restorations upon implants.
Difazio, Rachel L; Harris, Marie; Feldman, Lanna; Mahan, Susan T
2017-12-01
Cast immobilization remains the mainstay of pediatric orthopaedic care, yet little is known about the incidence of cast-related skin complications in children treated with cast immobilization. The purposes of this quality improvement project were to: (1) establish a baseline rate of cast-related skin complications in children treated with cast immobilization, (2) identify trends in children who experienced cast-related skin complications, (3) design an intervention aimed at decreasing the rate of cast-related skin complications, and (4) determine the effectiveness of the intervention. A prospective interrupted time-series design was used to determine the incidence of cast-related skin complications overtime and compare the rates of skin complications before and after an intervention designed to decrease the incidence of cast-related heel complications. All consecutive patients who were treated with cast immobilization from September 2012 to September 2014 were included. A cast-related skin complications data collection tool was used to capture all cast-related skin complications. A high rate of heel events was noted in our preliminary analysis and an intervention was designed to decrease the rate of cast-related skin complications, including the addition of padding during casting and respective provider education. The estimated cast-related skin events rate for all patients was 8.9 per 1000 casts applied. The rate for the total preintervention sample was 13.6 per 1000 casts which decreased to 6.6 in the postintervention sample. When examining the heel-only group, the rate was 17.1 per 1000 lower extremity casts applied in the preintervention group and 6.8 in the postintervention group. Incorporating padding to the heel of lower extremity cast was an effective intervention in decreasing the incidence of cast-related skin complications in patients treated with cast immobilization. Level II.
Sudarmadji, Novella; Chua, Chee Kai; Leong, Kah Fai
2012-01-01
Computer-aided system for tissue scaffolds (CASTS) is an in-house parametric library of polyhedral units that can be assembled into customized tissue scaffolds. Thirteen polyhedral configurations are available to select, depending on the biological and mechanical requirements of the target tissue/organ. Input parameters include the individual polyhedral units and overall scaffold block as well as the scaffold strut diameter. Taking advantage of its repeatability and reproducibility, the scaffold file is then converted into .STL file and fabricated using selective laser sintering, a rapid prototyping system. CASTS seeks to fulfill anatomical, biological, and mechanical requirements of the target tissue/organ. Customized anatomical scaffold shape is achieved through a Boolean operation between the scaffold block and the tissue defect image. Biological requirements, such as scaffold pore size and porosity, are unique for different type of cells. Matching mechanical properties, such as stiffness and strength, between the scaffold and target organ is very important, particularly in the regeneration of load-bearing organ, i.e., bone. This includes mimicking the compressive stiffness variation across the bone to prevent stress shielding and ensuring that the scaffold can withstand the load normally borne by the bone. The stiffness variation is tailored by adjusting the scaffold porosity based on the porosity-stiffness relationship of the CASTS scaffolds. Two types of functional gradients based on the gradient direction include radial and axial/linear gradient. Radial gradient is useful in the case of regenerating a section of long bones while the gradient in linear direction can be used in short or irregular bones. Stiffness gradient in the radial direction is achieved by using cylindrical unit cells arranged in a concentric manner, in which the porosity decreases from the center of the structure toward the outside radius, making the scaffold stiffer at the outer radius and more porous at the center of the scaffold. On the other hand, the linear gradient is accomplished by varying the strut diameter along the gradient direction. The parameters to vary in both gradient types are the strut diameter, the unit cell dimension, and the boundaries between two scaffold regions with different stiffness.
NASA Astrophysics Data System (ADS)
Lin, K.; Wald, D. J.
2007-12-01
ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users" facilities, sends notifications of potential damage to responsible parties, and generates facility damage maps and other Web-based products for emergency managers and responders. ShakeMap, a tool used to portray the extent of potentially damaging shaking following an earthquake, provides overall information regarding the affected areas. When a potentially damaging earthquake occurs, utility and other lifeline managers, emergency responders, and other critical users have an urgent need for information about the impact on their particular facilities so they can make appropriate decisions and take quick actions to ensure safety and restore system functionality. To this end, ShakeCast estimates the potential damage to a user's widely distributed facilities by comparing the complex shaking distribution with the potentially highly variable damageability of their inventory to provide a simple, hierarchical list and maps showing structures or facilities most likely impacted. All ShakeMap and ShakeCast files and products are non-propriety to simplify interfacing with existing users" response tools and to encourage user-made enhancement to the software. ShakeCast uses standard RSS and HTTP requests to communicate with the USGS Web servers that host ShakeMaps, which are widely-distributed and heavily mirrored. The RSS approach allows ShakeCast users to initiate and receive selected ShakeMap products and information on software updates. To assess facility damage estimates, ShakeCast users can combine measured or estimated ground motion parameters with damage relationships that can be pre-computed, use one of these ground motion parameters as input, and produce a multi-state discrete output of damage likelihood. Presently three common approaches are being used to provide users with an indication of damage: HAZUS-based, intensity-based, and customized damage functions. Intensity-based thresholds are for locations with poorly established damage relationships; custom damage levels are for advanced ShakeCast users such as Caltrans which produces its own set of damage functions that correspond to the specific details of each California bridge or overpass in its jurisdiction. For users whose portfolio of structures is comprised of common, standard designs, ShakeCast offers a simplified structural damage-state estimation capability adapted from the HAZUS-MH earthquake module (NIBS and FEMA, 2003). Currently the simplified fragility settings consist of 128 combinations of HAZUS model building types, construction materials, building heights, and building-code eras.
Response of rat hindlimb muscles to 12 hours recovery from tail-cast suspension
NASA Technical Reports Server (NTRS)
Tischler, M. E.; Henriksen, E. J.; Jacob, S.; Jaspers, S. R.
1985-01-01
Previous work has shown a number of biochemical changes which accompany atrophy or reduced muscle growth in hindlimb of tail-casted, suspended rats. These results clearly show that altered muscle growth was due to changes in protein turnover. Accordingly, the rise in soleus tyrosine following unloading reflects the more negative protein balance. Other major changes we found included slower synthesis of glutamine as indicated by lower ratios of glutamine/glutamate and reduced levels of aspartate which coincide with slower aspartate and ammonia metabolism in vitro. In conjunction with the study of SL-3 rats, which were subjected to 12 h of post-flight gravity, a study of the effects of 12 h eight bearing on metabolism of 6-day unloaded hindlimb muscles was carried out.
Social and behavioural aspects of venereal disease among resident male university students.
Babu, D S; Marwah, S M; Singh, G
1976-06-01
A study of 1500 male students at Banaras Hindu University, Varanasi, India was conducted to establish the prevalence and related social and behavioural aspects of venereal diseases. The prevalence was found to be 3.93 per cent. The majority of the students (86.4 per cent) belonged to the Hindu religion which is based on the caste system. Students from the Vaishya caste were more affected with venereal diseases. The social acceptability of having more than one wife had a definite impact on the incidence of venereal diseases. Students who practised masturbation and homosexuality were also more affected with venereal diseases. Prostitutes were the main source of infection. It was found that 28.8 per cent of these students had been infected on a previous occasion.
Single-crystal perovskite CH3NH3PbBr3 prepared by cast capping method for light-emitting diodes
NASA Astrophysics Data System (ADS)
Nguyen, Van-Cao; Katsuki, Hiroyuki; Sasaki, Fumio; Yanagi, Hisao
2018-04-01
In this study, electroluminescence from single crystals of CH3NH3PbBr3 perovskite is explored. The cast capping method was applied to fabricate simple devices with an ITO/CH3NH3PbBr3/ITO structure. The devices showed a low operation voltage of 2 V and a pure green luminescence with full width at half maximum of ∼20 nm. However, the emission occurring at the crystal edges demonstrated blinking with a subsecond time interval, which is similar to the previously reported photoluminescence behavior of nanocrystal perovskites. This electroluminescence blinking may provide new insight into the recombination processes depending on the carrier traps and defects of emission layers in perovskite light-emitting devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reigel, M.; Cozzi, A.; McCabe, D.
2017-09-08
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the primary off-gas system. This work examined three waste form formulations based on previous testing with related simulants: 8 wt% ordinary portland cement (OPC), 47 wt% blast furnace slag (BFS), 45 wt% fly ash (FA) known as Cast Stone formulation; 20 wt% Aquaset® II-GH and 80 wt% BFS; 20 wt% OPC and 80 wt% BFS. These tests successfully produced one waste form that set within five days (Cast Stone formulation); however the other twomore » formulations, Aquaset® II-GH/BFS and OPC/BFS, took approximately eight and fourteen days to set, respectively.« less
Al-Madi, Ebtissam M; Al-Saleh, Samar A; Al-Khudairy, Reem I; Aba-Hussein, Taibah W
2018-04-06
To determine the influence of iatrogenic gaps, type of cement, and time on microleakage of cast posts using spectrophotometer and glucose filtration measurements. Forty-eight single-rooted teeth were divided into eight groups of six teeth each. Teeth were instrumented and obturated, and a cast post was fabricated. In addition to two control groups (positive and negative), a total of six groups were prepared: In four groups, an artificial 2- to 3-mm gap was created between post and residual gutta percha (GP), and two groups were prepared with intimate contact between post and residual GP. Posts were cemented with either zinc phosphate cement or resin cement. Leakage through the post after 1, 8, 14, and 20 days was measured using a glucose penetration model with two different reading methods. Mixed analysis of variance tests were performed to analyze the data. The presence of a gap between the apical end of the post and the most coronal portion of the GP remaining in the root canal after post space preparation increased microleakage significantly. However, microleakage was significantly less when the gap was refilled with GP compared to no gap. There was no difference in leakage between luting cements used. It was concluded that none of the cements were able to prevent microleakage. However, the addition of GP to residual GP did increase the sealing ability.
NASA Astrophysics Data System (ADS)
Balout, Bahaa
Centrifugation is a casting technology that allows the production of cylindrical and graduated parts with different mechanical properties through the section. The need for materials with good quality and specific mechanical properties has been driven this technology in order to produce different types of materials such as zinc alloys and graduated metal matrix composites reinforced by hard and wear resistant particles. The goal of this research project is to study and model the eutectic macrosegregation, the solidification speed, and the speeds of solidification fronts during centrifugal casting of ZA8 zinc-aluminum alloy in order to improve the part quality and increase its strength and field reliability. Moreover, the segregation of the particles during centrifugal casting of an aluminum matrix composite reinforced by silicon carbide particles (A356/SiC) is also studied to improve and control the graduation of the parts. The cooling rate, the speed, acceleration/deceleration, displacement, and segregation of the particles across the section will be modeled by discretization of Stokes' law in time in order to take into consideration the change in the centrifugal radius and melt viscosity during cooling process. This study will allow the control of the graduation degree of particles across the section in order to improve the properties and wear resistance of the composite. This composite can be used in systems where friction is critical and load is high (reinforcements of parts for the cylinders of pneumatic systems). The results show that the maximum macrosegregation zone of the eutectic across the casting section corresponds to the last point of solidification. The eutectic macrosegregation produced during centrifugal casting of thin walled part is a normal segregation which varies depending on the solidification speed and the ratio between the speeds of solidification fronts. On the other hand, it was found that the position and volume fraction of the particles on the outer/inner casting surface and across the section varies whether the viscosity of the liquid metal used and the centrifugal radius are considered constant or variable during the modeling. Modeling the particles' segregation while discretizing, in time, the particles' velocities gives more consistent results compared to those obtained experimentally. Key-words: centrifugal casting, composite, macrosegregation, solidification.
Revilla-León, Marta; Gonzalez-Martín, Óscar; Pérez López, Javier; Sánchez-Rubio, José Luis; Özcan, Mutlu
2017-11-17
To compare the accuracy of implant analog positions on complete edentulous maxillary casts made of either dental stone or additive manufactured polymers using a coordinate measuring machine (CMM). A completely edentulous maxillary model of a patient with 7 implant analogs was obtained. From this model, two types of casts were duplicated, namely conventional dental stone (CDS) using a custom tray impression technique after splinting (N = 5) and polymer cast using additive manufacturing based on the STL file generated. Polymer casts (N = 20; n = 5 per group) were fabricated using 4 different additive manufacturing technologies (multijet printing-MJP1, direct light processing-DLP, stereolithography-SLA, multijet printing-MJP2). CMM was used to measure the correct position of each implant, and distortion was calculated for each system at x-, y-, and z-axes. Measurements were repeated 3 times per specimen in each axis yielding a total of 546 measurements. Data were analyzed using ANOVA, Sheffé tests, and Bonferroni correction (α = 0.05). Compared to CMM, the mean distortion (μm) ranged from 22.7 to 74.9, 23.4 to 49.1, and 11.0 to 85.8 in the x-, y-, and z-axes, respectively. CDS method (x-axis: 37.1; z-axis: 27.62) showed a significant difference compared to DLP on the x-axis (22.7) (p = 0.037) and to MJP1 on the z-axis (11.0) (p = 0.003). Regardless of the cast system, x-axes showed more distortion (42.6) compared to y- (34.6) and z-axes (35.97). Among additive manufacturing technologies, MJP2 presented the highest (64.3 ± 83.6), and MJP1 (21.57 ± 16.3) and DLP (27.07 ± 20.23) the lowest distortion, which was not significantly different from CDS (32.3 ± 22.73) (p > 0.05). For the fabrication of the definitive casts for implant prostheses, one of the multijet printing systems and direct light processing additive manufacturing technologies showed similar results to conventional dental stone. Conventional dental stone casts could be accurately duplicated using some of the additive manufacturing technologies tested. © 2017 by the American College of Prosthodontists.
Dimensional Stability of Grout-like Materials Used in Field-Cast Connections
DOT National Transportation Integrated Search
2016-12-01
The wide use of grouts and grout-like materials in the construction industry is seen in applications such as joint sealing, structural repair, and connections in prefabricated bridge elements (PBEs). Currently, different types of grouts are available...
Lightweight concrete modification factor for shear friction.
DOT National Transportation Integrated Search
2013-10-01
This report describes the results of a study initiated to examine the influence of concrete unit weight on the direct shear transfer across an interface of concretes cast at different times. This type of interface is common with structural precast co...
Accuracy of Gypsum Casts after Different Impression Techniques and Double Pouring
Silva, Stephania Caroline Rodolfo; Messias, Aion Mangino; Abi-Rached, Filipe de Oliveira; de Souza, Raphael Freitas; Reis, José Maurício dos Santos Nunes
2016-01-01
This study evaluated the accuracy of gypsum casts after different impression techniques and double pouring. Ten patients were selected and for each one it was obtained 5 partial putty/wash impressions with vinyl polysiloxane (VPS) material from teeth #13 to #16 with partial metal stock trays. The following techniques were performed: (1) one-step; two-step relief with: (2) PVC film; (3) slow-speed tungsten carbide bur and scalpel blade, (4) small movements of the tray and (5) without relief—negative control. The impressions were disinfected with 0.5% sodium hypochlorite for 10 minutes and stored during 110 and 230 minutes for the first and second pouring, respectively, with type IV gypsum. Three intra-oral lateral photographs of each patient were taken using a tripod and a customized radiographic positioner. The images were imported into ImageJ software and the total area of the buccal surface from teeth #13 to #16 was measured. A 4.0% coefficient of variance was criterion for using these measurements as Baseline values. The casts were photographed and analyzed using the same standardization for the clinical images. The area (mm2) obtained from the difference between the measurements of each gypsum cast and the Baseline value of the respective patient were calculated and analyzed by repeated-measures two way-ANOVA and Mauchly’s Sphericity test (α = 0.05). No significant effect was observed for Impression technique (P = 0.23), Second pouring (P = 0.99) and their interaction (P = 0.25). The impression techniques and double pouring did not influence the accuracy of the gypsum casts. PMID:27736967
NASA Astrophysics Data System (ADS)
Ghanaraja, S.; Gireesha, B. L.; Ravikumar, K. S.; Likith, P.
2018-04-01
During the past few years, material design has changed prominence to pursue light weight, environment friendliness, low cost, quality, higher service temperature, higher elastic modulus, improved wear resistance and performance. Straight monolithic materials have limitations in achieving the above decisive factors. To overcome these limitations and to convince the ever increasing demand of modern day technology, Attention has been shifted towards Metal Matrix Composites (MMC). Stir casting route is most hopeful for synthesizing discontinuous reinforcement aluminium matrix composites because of its relative simplicity and easy adaptability with all shape casting process used in metal casting industry. Hybridization of metal matrix composites is the introduction of more than one type/kind, size and shape of reinforcement during processing of composites. It is carried out to obtain synergistic properties of different reinforcements and matrix used, which may not be rea1ised in monolithic alloy or in conventional monocomposites. The present study involves synthesis of hybrid composites by addition of the desired amount of Silicon Carbide (SiC) and Rice Husk Ash (RHA) particles in to the molten Al 1100-Mg alloy through stir casting technique fallowed by hot forging of the cast composites. The influence of increasing in the wt% (3, 6, 9, 12 and 15 wt%) of SiC particles addition (3 wt% Rice husk ash kept constant) on evolution of microstructure is studied through XRD and SEM and their impact on the mechanical properties like hardness and tensile strength of the resulting forged hybrid composites has been investigated.
Depth perception from moving cast shadow in macaque monkey.
Mizutani, Saneyuki; Usui, Nobuo; Yokota, Takanori; Mizusawa, Hidehiro; Taira, Masato; Katsuyama, Narumi
2015-07-15
In the present study, we investigate whether the macaque monkey can perceive motion in depth using a moving cast shadow. To accomplish this, we conducted two experiments. In the first experiment, an adult Japanese monkey was trained in a motion discrimination task in depth by binocular disparity. A square was presented on the display so that it appeared with a binocular disparity of 0.12 degrees (initial position), and moved toward (approaching) or away from (receding) the monkey for 1s. The monkey was trained to discriminate the approaching and receding motion of the square by GO/delayed GO-type responses. The monkey showed a significantly high accuracy rate in the task, and the performance was maintained when the position, color, and shape of the moving object were changed. In the next experiment, the change in the disparity was gradually decreased in the motion discrimination task. The results showed that the performance of the monkey declined as the distance of the approaching and receding motion of the square decreased from the initial position. However, when a moving cast shadow was added to the stimulus, the monkey responded to the motion in depth induced by the cast shadow in the same way as by binocular disparity; the reward was delivered randomly or given in all trials to prevent the learning of the 2D motion of the shadow in the frontal plane. These results suggest that the macaque monkey can perceive motion in depth using a moving cast shadow as well as using binocular disparity. Copyright © 2015 Elsevier B.V. All rights reserved.
Accuracy of Gypsum Casts after Different Impression Techniques and Double Pouring.
Silva, Stephania Caroline Rodolfo; Messias, Aion Mangino; Abi-Rached, Filipe de Oliveira; de Souza, Raphael Freitas; Reis, José Maurício Dos Santos Nunes
2016-01-01
This study evaluated the accuracy of gypsum casts after different impression techniques and double pouring. Ten patients were selected and for each one it was obtained 5 partial putty/wash impressions with vinyl polysiloxane (VPS) material from teeth #13 to #16 with partial metal stock trays. The following techniques were performed: (1) one-step; two-step relief with: (2) PVC film; (3) slow-speed tungsten carbide bur and scalpel blade, (4) small movements of the tray and (5) without relief-negative control. The impressions were disinfected with 0.5% sodium hypochlorite for 10 minutes and stored during 110 and 230 minutes for the first and second pouring, respectively, with type IV gypsum. Three intra-oral lateral photographs of each patient were taken using a tripod and a customized radiographic positioner. The images were imported into ImageJ software and the total area of the buccal surface from teeth #13 to #16 was measured. A 4.0% coefficient of variance was criterion for using these measurements as Baseline values. The casts were photographed and analyzed using the same standardization for the clinical images. The area (mm2) obtained from the difference between the measurements of each gypsum cast and the Baseline value of the respective patient were calculated and analyzed by repeated-measures two way-ANOVA and Mauchly's Sphericity test (α = 0.05). No significant effect was observed for Impression technique (P = 0.23), Second pouring (P = 0.99) and their interaction (P = 0.25). The impression techniques and double pouring did not influence the accuracy of the gypsum casts.
Hribernik, Marija; Trotovšek, Blaž
2014-04-01
The aim of this study is to present the anatomical data about intrahepatic venous anastomoses found in normal human livers. The focus is on the middle hepatic vein (MHV) anastomoses, because their existence or non-existence could be of crucial importance in tumour resections as well as in split or living donor liver transplantations. The frequency of livers with intrahepatic venous anastomoses was determined on 164 corrosion casts and the diameter of each anastomosis was measured. Additionally, the type of connection and the position within the liver (liver segment) was determined for each MHV anastomosis. Intrahepatic venous anastomoses were found in 46 % (75/164), whereas MHV anastomoses were found in 28 % (44/164) of liver casts. Most commonly (39/44), MHV had anastomotic connections with the right hepatic vein (RHV), and also with the inferior RHV, the left hepatic vein and the short subhepatic vein. In more than three quarters of liver casts, MHV-RHV anastomoses were found in liver segment 8; in 45 % of cases, there was more than one anastomosis in this liver segment. The diameter of MHV-RHV anastomoses found in segment 8 was ≥1 mm in 90.6 % of cases. As MHV anastomoses were present in more than a quarter of all examined liver casts, we believe that detailed anatomical data presented in this article, together with up to date radiologic technics which enable even 3D reconstruction of venous anastomoses in the liver, could contribute to the clinician's decisions when planning surgical procedures.
The effect of juvenile hormone on Polistes wasp fertility varies with cooperative behavior.
Tibbetts, Elizabeth A; Sheehan, Michael J
2012-04-01
Social insects provide good models for studying how and why the mechanisms that underlie reproduction vary, as there is dramatic reproductive plasticity within and between species. Here, we test how the effect of juvenile hormone (JH) on fertility covaries with cooperative behavior in workers and nest-founding queens in the primitively eusocial wasp Polistes metricus. P. metricus foundresses and workers appear morphologically similar and both are capable of reproduction, though there is variation in the extent of social cooperation and the probability of reproduction across castes. Do the endocrine mechanisms that mediate reproduction co-vary with cooperative behavior? We found dramatic differences in the effect of JH on fertility across castes. In non-cooperative nest-founding queens, all individuals responded to JH by increasing their fertility. However, in cooperative workers, the effect of JH on fertility varies with body weight; large workers increase their fertility in response to JH while small workers do not. The variation in JH response may be an adaptation to facilitate resource allocation based on the probability of independent reproduction. This work contrasts with previous studies in closely related Polistes dominulus paper wasps, in which both foundresses and workers form cooperative associations and both castes show similar, condition-dependent JH response. The variation in JH responsiveness within and between species suggests that endocrine responsiveness and the factors influencing caste differentiation are surprisingly evolutionarily labile. Copyright © 2012 Elsevier Inc. All rights reserved.
Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants
NASA Astrophysics Data System (ADS)
Evison, Sophie Elizabeth Frances; Hughes, William O. H.
2011-08-01
Multiple mating by females with different males (polyandry) is difficult to explain in many taxa because it carries significant costs to females, yet benefits are often hard to identify. Polyandry is a derived trait in social insects, the evolutionary origins of which remain unclear. One of several leading hypotheses for its evolution is that it improves division of labour by increasing intra-colonial genetic diversity. Division of labour is a key player in the ecological success of social insects, and in many successful species of ants is based on morphologically distinct castes of workers, each with their own task specialisations. Atta leaf-cutting ants exhibit one of the most extreme and complicated forms of morphologically specialised worker castes and have been reported to be polyandrous but with relatively low mating frequencies (~2.5 on average). Here, we show for the first time that there is a significant genetic influence on worker size in Atta colombica leaf-cutting ants. We also provide the first estimate of the mating frequency of Atta cephalotes (four matings) and, by analysing much higher within-colony sample sizes, find that Atta are more polyandrous than previously thought (approximately six to seven matings). The results show that high polyandry and a genetic influence on worker caste are present in both genera of leaf-cutting ants and add weight to the hypothesis that division of labour is a potential driver of the evolution of polyandry in this clade of ants.
Taguchi, Y-H
2018-05-08
Even though coexistence of multiple phenotypes sharing the same genomic background is interesting, it remains incompletely understood. Epigenomic profiles may represent key factors, with unknown contributions to the development of multiple phenotypes, and social-insect castes are a good model for elucidation of the underlying mechanisms. Nonetheless, previous studies have failed to identify genes associated with aberrant gene expression and methylation profiles because of the lack of suitable methodology that can address this problem properly. A recently proposed principal component analysis (PCA)-based and tensor decomposition (TD)-based unsupervised feature extraction (FE) can solve this problem because these two approaches can deal with gene expression and methylation profiles even when a small number of samples is available. PCA-based and TD-based unsupervised FE methods were applied to the analysis of gene expression and methylation profiles in the brains of two social insects, Polistes canadensis and Dinoponera quadriceps. Genes associated with differential expression and methylation between castes were identified, and analysis of enrichment of Gene Ontology terms confirmed reliability of the obtained sets of genes from the biological standpoint. Biologically relevant genes, shown to be associated with significant differential gene expression and methylation between castes, were identified here for the first time. The identification of these genes may help understand the mechanisms underlying epigenetic control of development of multiple phenotypes under the same genomic conditions.
Mechanical Properties of Fibre-Reinforced Composites Tested under Superposed Hydrostatic Pressures
1975-11-01
The carbon fibres were Harwell Type II surface treated with a smn strength of 2240 K1v-2 and a noen diameter of 9.08 Pa. The glans fibres were Owens ... Corning type 810C. The fibres were pulled by means of a slteel cord cast, via a brasum scro, into the end of the 4 fibre b6ndles. The rods produced
USDA-ARS?s Scientific Manuscript database
Termites are eusocial insects that perform social interactions that facilitate chemical signaling. Previous research identified two cytochrome P450s that have homology to other insect p450s responsible for the production of juvenile hormone. Juvenile hormone is an important morphogenic hormone tha...
van der Lugt, Wilco; Euser, Sjoerd M; Bruin, Jacob P; Den Boer, Jeroen W; Walker, Jimmy T; Crespi, Sebastian
2017-11-01
Legionella continues to be a problem in water systems. This study investigated the influence of different shower mixer faucets, and the influence of the presence of cast iron rust from a drinking water system on the growth of Legionella. The research is conducted using a model of a household containing four drinking water systems. All four systems, which contained standard plumbing components including copper pipes and a water heater, were filled with unchlorinated drinking water. Furthermore, all systems had three different shower faucets: (A) a stainless-steel faucet, (B) a brass-ceramic faucet, and (C) a brass thermostatic faucet. System 1 was solely filled with drinking water. System 2 was filled with drinking water, and cast iron rust. System 3 was contaminated with Legionella, and system 4 was contaminated with a Legionella, and cast iron rust. During a period of 34 months, 450 cold water samples were taken from 15 sample points of the four drinking water systems, and tested for Legionella according to the Dutch Standard (NEN 6265). In system 4, with added cast iron rust, the stainless-steel mixer faucet (A) had the highest concentration of Legionella at >4.3log10CFU/l (>20,000CFU/l) and was positive in 46.4% of samples. In contrast, the stainless-steel mixer faucet (A) of system 3 without cast iron rust showed 14.3% positive samples with a maximum concentration of 3.9log10CFU/l (7600CFU/l) Legionella. Additionally, both contaminated systems (3 and 4), with the brass thermostatic faucet (C), tested positive for Legionella. System 3 in 85.7% of the samples, with a maximum concentration of 4.38log10CFU/l (24,200CFU/l), and system 4 in 64.3% of the samples with a maximum concentration of 4.13log10CFU/l (13.400CFU/l). These results suggest that both the type of faucet used in a drinking water system and the presence or absence of cast iron rust influence the growth of Legionella. Copyright © 2017 Elsevier GmbH. All rights reserved.
Psychoneuroimmunology and HIV-1.
ERIC Educational Resources Information Center
Antoni, Michael H.; And Others
1990-01-01
Presents evidence describing benefits of behavioral interventions such as aerobic exercise training on both psychological and immunological functioning among high risk human immunodeficiency virus-Type 1 (HIV-1) seronegative and very early stage seropositive homosexual men. HIV-1 infection is cast as chronic disease for which early…
Milder Etchant For Penetrant Inspection
NASA Technical Reports Server (NTRS)
O'Tousa, Joseph E.; Thomas, Clark S.
1990-01-01
New etching solution for chemical penetrant inspection of Inconel(R) 718 castings and weldments. Etchant does not introduce artifacts mistaken for defects. Applied by swabbing or by immersion. Used to detect unwanted residues of Nioro(R) (or equivalent) gold brazing alloy on type 347 stainless steel.
... away before the ligament is injured. Types of Sprains In young children, the ankle is the most commonly sprained joint, followed by ... A walking cast may be necessary if the ankle or foot injury has been severe. Most grade 1 sprains will heal within two weeks without subsequent complications. ...
Precast alternative for flat slab bridges : final report.
DOT National Transportation Integrated Search
2013-10-26
The cast-in-place (CIP) concrete slab bridge and the hollow core flat slab bridge are two very common bridge types utilized by the : South Carolina Department of Transportation (SCDOT). The CIP bridge is durable but has a long construction time while...
... tubular epithelial casts; Waxy casts; Casts in the urine; Fatty casts; Red blood cell casts; White blood ... The urine sample you provide may need to be from your first morning urine. The sample needs to be ...
ERIC Educational Resources Information Center
Wright, Michael D.; And Others
1992-01-01
Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)
Parabolic aircraft solidification experiments
NASA Technical Reports Server (NTRS)
Workman, Gary L. (Principal Investigator); Smith, Guy A.; OBrien, Susan
1996-01-01
A number of solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental environment which minimizes variables in solidification experiments. Two techniques of interest are directional solidification and isothermal casting. Because of the wide-spread use of these experimental techniques in space-based research, several MSAD experiments have been manifested for space flight. In addition to the microstructural analysis for interpretation of the experimental results from previous work with parabolic flights, it has become apparent that a better understanding of the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible. Our university has performed in several experimental studies such as this in recent years. The most recent was in visualizing the effect of convective flow phenomena on the KC-135 and prior to that were several successive contracts to perform directional solidification and isothermal casting experiments on the KC-135. Included in this work was the modification and utilization of the Convective Flow Analyzer (CFA), the Aircraft Isothermal Casting Furnace (ICF), and the Three-Zone Directional Solidification Furnace. These studies have contributed heavily to the mission of the Microgravity Science and Applications' Materials Science Program.
A Randomized Prospective Study Of The Use Of Ipads In Reducing Anxiety During Cast Room Procedures
Ko, Justine S.; Whiting, Zachariah; Nguyen, Cynthia; Liu, Raymond W; Gilmore, Allison
2016-01-01
Background Cast room procedures can be a source of anxiety for children. Various techniques, including music therapy, have been evaluated as a way to ease this anxiety. The use of iPads as a form of distraction during cast room procedures has not previously been evaluated and was the purpose of the current study. Methods 146 children and adolescents who underwent cast room procedures during June- August 2015 were randomly assigned to one of three groups: no-iPad, iPad with video, or iPad with game. Patient heart rates were measured using a pulse oximeter in the waiting room, before the procedure, during the procedure, and after the procedure. Mean values for each group were calculated at each time interval and compared both between groups and within groups over time. Results There were no significant differences in baseline (waiting room) heart rate between the no-iPad and iPad groups. When compared with the no-iPad group, there was a trend toward decreased heart rate in the video group (p=0.13) and a significant increase in heart rate in the game group (p=0.026) before the procedure. There were no significant decreases in heart rate within any of the groups when comparing the waiting room heart rates with the during procedure heart rates. There was a significant difference between the no-iPad and video groups (p=0.047) when comparing the change in heart rate from baseline to before the procedure, with a decreased heart rate observed in the video group. Conclusions The results of this study show a significant decrease in heart rate when transitioning from the waiting room to the cast room while watching videos on the iPad. iPad-based video delivery appears to decrease anxiety prior to cast room procedures. iPad-based game play is difficult to assess as elevations in heart rate prior to the procedure are presumed to be related to game play and confound the observed effect it may have on anxiety related to the procedure. PMID:27528849
NASA Astrophysics Data System (ADS)
Lucrezi, Serena; Schlacher, Thomas A.
2010-06-01
Recreational beach use with off-road vehicles is popular, but potentially harmful from an environmental perspective. Beaches are important habitats to invertebrates such as ghost crabs of the genus Ocyopde, which excavate extensive and elaborate burrows. Ghost crabs are sensitive to human pressures and changes in burrow architecture may thus be a consequence of disturbance by vehicles—the predictive hypothesis of this article. This was tested during the austral spring and summer by comparing 305 burrow casts between beaches open and closed to vehicles in Eastern Australia. Traffic influenced burrow architecture: there were smaller crabs on vehicle-impacted beaches, and after the peak traffic period (Christmas and New Year holidays), these crabs had tunnelled deeper into the sediment on shores rutted by cars. Crabs constructed all types of previously described burrows, but, significantly, smaller crabs from vehicle-impacted beaches simplified their shapes following heavy traffic disturbance from four (I, J, Y, M) to only two types (I, Y). These data support a model of active behavioural responses to disturbance from vehicles, extending the known effects of beach traffic to impacts on behavioural traits of the beach fauna.
NASA Astrophysics Data System (ADS)
Schmid, Markus; Merzbacher, Sarah; Brzoska, Nicola; Müller, Kerstin; Jesdinszki, Marius
2017-11-01
In the present study the effects of the addition of montmorillonite (MMT) nanoplatelets on whey protein isolate (WPI)-based nanocomposite films and coatings were investigated. The main objective was the development of WPI-based MMT-nanocomposites with enhanced barrier and mechanical properties. WPI-based nanocomposite cast-films and coatings were prepared by dispersing 0 % (reference sample), 3 %, 6 %, 9 % (w/w protein) MMT, or, depending on the protein concentration, also 12 % and 15 % (w/w protein) MMT into native WPI-based dispersions, followed by subsequent denaturation during the drying and curing process. The natural MMT nanofillers could be randomly dispersed into film-forming WPI-based nanodispersions, displaying good compatibility with the hydrophilic biopolymer matrix. As a result, by addition of 15 % (w/w protein) MMT into 10 % (w/w dispersion) WPI-based cast-films or coatings, the oxygen permeability (OP) was reduced by 91 % for glycerol-plasticized and 84 % for sorbitol-plasticized coatings, water vapor transmission rate (WVTR) was reduced by 58 % for sorbitol-plasticized cast-films. Due to the addition of MMT- nanofillers the Young’s modulus and tensile strength improved by 315 % and 129 %, respectively, whereas elongation at break declined by 77 % for glycerol-plasticized cast-films. In addition, comparison of plasticizer type revealed that sorbitol-plasticized cast-films were generally stiffer and stronger, but less flexible compared glycerol-plasticized cast-films. Viscosity measurements demonstrated good processability and suitability for up-scaled industrial processes of native WPI-based nanocomposite dispersions, even at high nanofiller-loadings. These results suggest that the addition of natural MMT- nanofillers into native WPI-based matrices to form nanocomposite films and coatings holds great potential to replace well-established, fossil-based packaging materials for at least certain applications such as oxygen barriers as part of multilayer flexible packaging films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, David; Purgert, Robert; Rhudy, Richard
1999-10-15
Some highlights are: (1) During this quarter's field trials, sand mold castings of parts and permanent mold tensile testing bars, K mold bars, and ingots were made from aluminum alloy-fly ash melts. (2) Another objective was met, i.e., to use class ''F'' type precipitator fly ash consisting of particle sizes less than 100 microns. It was possible to pour the composite melt into the sand mold through a filter. (3) Trials were run to determine the required amount of the wetting agent, magnesium, to ensure appropriate mixing of the aluminum alloy and fly ash. The magnesium content required to mixmore » ''F'' fly ash was much lower compared to that required to mix hybrid ''C-F'' fly ash in similar melts. Fly ash particles of less than 100 microns were mixed in aluminum melt. Large scale field trials were undertaken at Eck Industries with the goal of standardizing procedures for producing aluminum-fly ash composite melts and to analyze the structure and properties of the resulting material. Limited testing of tensile properties has been done on pressure die cast parts, and attempts are underway to improve the distribution of fly ash in both sand cast and pressure die cast samples. Eck Industries performed radiographic, heat treatment, and tensile tests on permanent mold cast tensile test bars. After fly ash mixing experiments, the Lanxide high speed-high shear mixer (originally designed for mixing Al-SiC melts) was employed in an attempt to avoid fly ash agglomeration. It led to demixing (instead of deagglomerating) of some fly ash. However, the permanent mold tensile bars poured after high shear mixing displayed good distribution of fly ash in castings. A modified impeller design is being considered for high speed-high shear mixing of aluminum-fly ash melts.« less
Mori, T; Yamane, M
1982-02-01
A fractographical study of dental cast gypsum was made in order to correlate the mechanical properties with the microstructure. Wet specimens fractured under tensile stress showed intercrystalline fracture and the tensile strength depended on the porosity present. Thus, it was assumed that tensile strength was dependent on the contact area between individual gypsum crystals and changes in porosity approximated to changes in contact area. Strength differences among specimens of a given W/P ratio, therefore, can be related to differences in intercrystalline contact areas. These theoretical considerations suggest that the classification of dental die stone and dental stone into high and low strength types based on strength properties only would be more practical and less confusing than at present.
Enhancing fire safety at Hydro plants with dry transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemen, D.M.
Hydroelectric plant owners and engineers can use dry-type transformers to reduce fire hazards in auxiliary power systems. The decision to replace a liquid-immersed transformer with a dry-type product has a price: higher unit cost and a need to be more vigilant in detailing transformer specifications. But, whether the change affects only one failed transformer or is part of a plant rehabilitation project, the benefits in safety can be worth it. Voltages on hydroelectric plant auxiliary power systems can range from a 20 kV medium-voltage system to the normal 480-208/120 V low-voltage system. Dry transformers typically are used in such systemsmore » to reduce the fire hazard present with liquid-filled transformers. For a hydro plant owner or engineer seeking alternatives to liquid-filled transformers, there are two main kinds of dry-type transformers to consider: vacuum pressure impregnated (VPI) and cast coil epoxy resin. VPI transformers normally are manufactured in sizes up to 6,000 kVA with primary voltage ratings up to 20 kV. Cast coil transformers can be made in sizes from 75 to 10,000 kVA, with primary voltage ratings up to 34,500 V. Although the same transformer theory applies to dry transformers as to liquid-filled units, the cooling medium, air, required different temperature rise ratings, dielectric tests, and construction techniques to ensure reliability. Consequently, the factory and field tests for dry units are established by a separate set of American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards. Cast coil transformers have several important advantages over VPI units.« less
NASA Astrophysics Data System (ADS)
Froede, Carl R., Jr.
2002-03-01
R. Fairbridge and F. Shepard proposed different sea-level curves for the late Holocene. South Florida, as a tectonically stable platform, provides a key locale from which late Quaternary sea-level measurements have been attempted. Previous studies supporting Holocene sea-level curves have focused on mangrove peat deposits, barrier ridges, and archaeological sites. However, in situ biological indicators provide the best evidence in support of varying sea-level positions during the late Holocene. The northeastern side of Key Biscayne, Florida, has two areas of rock reef where rhizoliths (i.e., fossilized root casts) are exposed within the intertidal zone. They have previously been interpreted as the fossilized roots of a former black mangrove (Avicennia germinans) forest. However, the morphology, size, orientation, and areal extent of the rhizoliths is best understood if they are interpreted as the former root casts of turtle grass (Thalassia testudinum). This interpretation would constitute in situ biological evidence of a late Holocene sea-level position at least 0.5 m higher than at present. Previously published 14C dating of the calcareous paste inside the rhizoliths suggests that they formed 1 2 k.y. before present. This corresponds to a higher than present sea-level highstand supported by independent evidence from other areas in south Florida.
Electronic gap sensor and method
Williams, R.S.; King, E.L.; Campbell, S.L.
1991-08-06
Disclosed are an apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. 5 figures.
Electronic gap sensor and method
Williams, Robert S.; King, Edward L.; Campbell, Steven L.
1991-01-01
An apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces.
Method of casting articles of a bulk-solidifying amorphous alloy
Lin, X.; Johnson, W.L.; Peker, A.
1998-08-25
A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast. 8 figs.
Method of casting articles of a bulk-solidifying amorphous alloy
Lin, Xianghong; Johnson, William L.; Peker, Atakan
1998-01-01
A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast.
Measured Behavior and Thermal Gradients in Innovative Bridge Piers.
DOT National Transportation Integrated Search
1999-02-24
Construction of the U.S. 183 elevated highway in Austin, Texas, provided a unique opportunity to investigate the behavior of two types of innovative concrete piers. Tied Y shape piers were used to support mainlane spans. They were cast in situ with s...
NASA Astrophysics Data System (ADS)
Mokhov, O. I.; Nutku, Y.
1994-10-01
By casting the Born-Infeld equation and the real hyperbolic Monge-Ampère equation into the form of equations of hydrodynamic type, we find that there exists an explicit transformation between them. This is Bianchi transformation.
Screening the ToxCast Phase 1 chemical library for inhibition of deiodinase type 1 activity
Thyroid hormone (TH) homeostasis is dependent upon coordination of multiple key events including iodide uptake, hormone synthesis, metabolism and elimination, to maintain proper TH signaling. Deiodinase enzymes catalyze iodide release from THs to interconvert THs between active a...
Screening the ToxCast Phase I Chemical Library for inhibition of Deiodinase Type I enzyme activity
Thyroid hormone (TH) signaling in vertebrates is dependent upon coordination of multiple key events including iodide uptake, hormone synthesis, metabolism and elimination, to maintain proper homeostasis of the hormones. Deiodinase enzymes interconvert THs between less active and...
MC carbide structures in M(lc2)ar-M247. M.S. Thesis - Final Report
NASA Technical Reports Server (NTRS)
Wawro, S. W.
1982-01-01
The morphologies and distribution of the MC carbides in Mar-M247 ingot stock and castings were investigated using metallographic, X-ray diffraction and energy-dispersive X-ray analysis techniques. The MC carbides were found to form script structures during solidification. The script structures were composed of three distinct parts. The central cores and elongated arms of the MC carbide script structures had compositions (Ti, Cr, Hf, Ta, W)C and lattice parameters of 4.39 A. The elongated script arms terminated in enlarged, angular "heads". The heads had compositions (Ti, Hf, Ta, W)C and lattice parameters of approximately 4.50 A. The heads had a higher Hf content than the cores and arms. The size of the script structures, as well as the relative amount of head-type to core and arm-type MC carbide, was found to be determined by solidification conditions. No carryover of the MC carbides from the ingot stock to the remelted and cast material was observed.
Magnetic studies of melt spun NdFeAl-C alloys
NASA Astrophysics Data System (ADS)
Rodríguez Torres, C. E.; Cabrera, A. F.; Sánchez, F. H.; Billoni, O. V.; Urreta, S. E.; Fabietti, L. M.
2004-12-01
Alloys with compositions Nd 60-xC xFe 30Al 10 ( x=0, 1, 5 and 10) were processed by melt spinning at a tangential speed of 5 m/s. The as-cast ribbons were characterized by X-ray diffraction, Mössbauer Effect spectroscopy and their room temperature hysteresis loops. The substitution of Nd by C is found to affect the phase selection, from mainly DHCP-Nd for x=0 to DHCP-Nd /FCC-Nd for the other ones. Mössbauer spectra of all the as-cast samples indicate that Fe is present in crystalline magnetic phases as well as in a paramagnetic one. The major crystalline phase was identified as a μ-type (or A1) metastable phase, which is reported to have a large anisotropy field and a relatively high saturation polarization. Interstitial C stabilizes the μ-type phase and improves its average hyperfine field. The magnetic measurements display an increase of coercivity and remanence with the C concentration.
Agrammatic Comprehension Caused by a Glioma in the Left Frontal Cortex
ERIC Educational Resources Information Center
Kinno, Ryuta; Muragaki, Yoshihiro; Hori, Tomokatsu; Maruyama, Takashi; Kawamura, Mitsuru; Sakai, Kuniyoshi L.
2009-01-01
It has been known that lesions in the left inferior frontal gyrus (L. IFG) do not always cause Broca's aphasia, casting doubt upon the specificity of this region. We have previously devised a picture-sentence matching task for a functional magnetic resonance imaging (fMRI) study, and observed that both pars triangularis (L. F3t) of L. IFG…
NASA Astrophysics Data System (ADS)
Akopyan, T. K.; Padalko, A. G.; Belov, N. A.; Shurkin, P. K.
2016-07-01
The phase-transition temperatures of a high-strength cast AM5 aluminum alloy are determined at atmospheric pressure and an excess pressure of 100 MPa using differential barothermic analysis (DBA) and classical differential thermal analysis (DTA). An excess pressure of 100 MPa is shown to increase the critical temperatures of the alloy by 12-17°C (including an increase in the solidus temperature by 12°C), which makes it possible to increase the hot isostatic pressing (HIP) temperature above the temperature of heating for quenching. The following three barothermal treatment schedules at p = 100 MPa and τ = 3 h, which have different isothermal holding temperatures, are chosen to study the influence of HIP on the structure and the properties of alloy AM5 castings: HIP1 ( t 1 = 505 ± 2°C), HIP2 ( t 2 = 520 ± 2°C), and HIP3 ( t 3 = 540 ± 2°C). High-temperature HIP treatment is found to increase the casting density and improve the morphology of secondary phases additionally, which ensures an increase in the plasticity of the alloy. In particular, the plasticity of the alloy after heat treatment according to schedule HIP3 + T6 (T6 means artificial aging to achieve the maximum strength) increases by a factor of ˜1.5.
Prevalence of early childhood caries in a population of children with history of maltreatment.
Valencia-Rojas, Nancy; Lawrence, Herenia P; Goodman, Deborah
2008-01-01
The purpose of this study was to investigate the prevalence of early childhood caries (ECC) in a population of maltreated children in Toronto, Ontario, Canada. The sample consisted of preschool-aged children (2 to 6 years) admitted to the care of the Children's Aid Society of Toronto (CAST) between 1991 and 2004. Data were collected by reviewing the dental and social workers' records of CAST ECC was determined using the decayed, missing, and filled deciduous teeth (dmft) index. The type and severity of maltreatment were obtained from the Eligibility Spectrum. The study included 66 children: 37 (56 percent) boys and 29 (44 percent) girls, with an average age of 4.1 years [standard deviation (SD) = 1.2]. Four (6 percent) children had evidence of dental injury, and none had teeth filled or extracted as a result of decay ECC was observed in 58 percent of the abused children. Of these, the mean decayed teeth ("dt") value was 5.63 (SD = 4.17, n = 38) and 3.24 (SD= 4.21) for the whole sample (n = 66). The proportion of children with untreated caries was 57 percent among "neglected" children (n = 53) and 62 percent in physically/sexually abused cases (n = 13). Logistic regression revealed that children in permanent CAST care and those in its care more than once were significantly less likely to have experienced caries. Abused and neglected young children had higher levels of tooth decay than the general population of 5-year-olds in Toronto (30 percent prevalence, mean dt= 0.42, SD = 1.20, n = 3185). However, this study did not find any difference in ECC prevalence between children with different types of maltreatment. The study did find that CAST services had a protective effect on children's oral health, which supports the recommendation that child protection services should investigate possible dental neglect in physical/sexual abuse and neglect cases.
How to Avoid Cast Saw Complications.
Halanski, Matthew A
2016-06-01
As casts are routinely used in pediatric orthopaedics, casts saws are commonly used to remove such casts. Despite being a viewed as the "conservative" and therefore often assumed safest treatment modality, complications associated with the use of casts and cast saws occur. In this manuscript, we review the risk factors associated with cast saw injuries. Cast saw injuries are thermal or abrasive (or both) in nature. Thermal risk factors include: cast saw specifications (including a lack of attached vacuum), use of a dull blade, cutting in a concavity, too thin padding, and overly thick casting materials. Risk factors associated with abrasive injuries include: sharp blades, thin padding, and cutting over boney prominences. Because nearly all clinicians contact the skin with the blade during cast removal, appropriate "in-out technique" is critical. Such technique prevents a hot blade from remaining in contact with the skin for any significant time, diminishing the risk of burn. Similarly, using such technique prevents "dragging the blade" that may pull the skin taught, cutting it. It may be useful to teach proper technique as perforating a cast rather than cutting a cast.
[Manufacture and clinical application of 215 IPS-Empress casting ceramic restorations].
Zhao, Na; Zhou, Jian
2008-08-01
To explore the manufacture and clinical application of IPS-Empress casting ceramic restorations. The problems in manufacture and clinical operation of 215 casting ceramic restorations were analyzed. In 215 casting ceramic restorations, 12 (5.58%) casting ceramic restorations were affected by clinical design or application, 15 (6.98%) casting ceramic restorations were affected by some manufacture problems, and 14 (6.51%) casting ceramic restorations were affected by clinical try-in. Through 2-3 years' follow-up, the achievement ratio of 215 IPS-Empress casting ceramic restorations was 94.88%, and 11 casting ceramic restorations were affected by some problems. Beauty and simultaneous enamel wear are the characteristics of casting ceramic restorations. But because of its brittle, the indications should be strictly selected.
Rangel, Frits A; Chiu, Yu-Ting; Maal, Thomas J J; Bronkhorst, Ewald M; Bergé, Stefaan J; Kuijpers-Jagtman, Anne Marie
2016-08-01
The shiny vestibular surfaces of teeth make it difficult to match digital dental casts to 3D stereophotogrammetric images of patient teeth. This study tested whether reducing this shininess by coating the teeth with titanium-oxide powder might improve the accuracy of the matching procedure. Twenty patients participated in the study. For each patient, 3D stereophotogrammetric images were taken without and with a powder coating. Separately, digital dental casts were created. Next, the digital dental casts were fused with the 3D stereophotogrammetric images of either non-powdered or powdered dentition. Distance maps were created to evaluate the inter-surface distance between the digital dental cast and the 3D images. The matching accuracy was compared for dentition with and without powdering. Of all recorded distances between corresponding points, 95% was smaller than 0.84mm for the powdered dentition and smaller than 0.90mm for the non-powdered dentition. Although powdered dentition showed significantly better matching than non-powdered dentition, the difference was less than 0.1mm. Intra-observer statistics showed that five out of 24 repetitions gave significantly different results, but only for dentition that was not powdered. The patients did not have any major malocclusions. Severe malocclusions might cause greater difficulty in matching the dentition without powder. Only one type of powder was used, but it effectively reduced shininess. Powdering the dentition had a small, but significant, positive effect on matching. However, this effect was of minor clinical importance. Therefore, we do not recommend powdering the dentition for 3D stereophotogrammetric images used for matching procedures. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions
Muscolo, A.; Junker, A.; Klukas, C.; Weigelt-Fischer, K.; Riewe, D.; Altmann, T.
2015-01-01
Drought and salinity are among the major abiotic stresses which, often inter-relatedly, adversely affect plant growth and productivity. Plant stress responses depend on the type of stress, on its intensity, on the species, and also on the genotype. Different accessions of a species may have evolved different mechanisms to cope with stress and to complete their life cycles. This study is focused on lentil, an important Mediterranean legume with high quality protein for the human diet. The effects of salinity and drought on germination and early growth of Castelluccio di Norcia (CAST), Pantelleria (PAN), Ustica (UST), and Eston (EST) accessions were evaluated to identify metabolic and phenotypic traits related to drought and/or salinity stress tolerance. The results showed a relationship between imposed stresses and performance of the cultivars. According to germination frequencies, the accession ranking was as follows: NaCl resistant > susceptible, PAN > UST > CAST > EST; polyethylene glycol (PEG) resistant > susceptible, CAST > UST > EST > PAN. Seedling tolerance rankings were: NaCl resistant > susceptible, CAST ≈ UST > PAN ≈ EST; PEG resistant > susceptible, CAST > EST ≈ UST > PAN. Changes in the metabolite profiles, mainly quantitative rather than qualitative, were observed in the same cultivar in respect to the treatments, and among the cultivars under the same treatment. Metabolic differences in the stress tolerance of the different genotypes were related to a reduction in the levels of tricarboxylic acid (TCA) cycle intermediates. The relevant differences, between the most NaCl-tolerant genotype (PAN) and the most sensitive one (EST) were related to the decrease in the threonic acid level. Stress-specific metabolite indicators were also identified: ornithine and asparagine as markers of drought stress and alanine and homoserine as markers of salinity stress. PMID:25969553
Buzayan, Muaiyed; Baig, Mirza Rustum; Yunus, Norsiah
2013-01-01
This in vitro study evaluated the accuracy of multiple-unit dental implant casts obtained from splinted or nonsplinted direct impression techniques using various splinting materials by comparing the casts to the reference models. The effect of two different impression materials on the accuracy of the implant casts was also evaluated for abutment-level impressions. A reference model with six internal-connection implant replicas placed in the completely edentulous mandibular arch and connected to multi-base abutments was fabricated from heat-curing acrylic resin. Forty impressions of the reference model were made, 20 each with polyether (PE) and polyvinylsiloxane (PVS) impression materials using the open tray technique. The PE and PVS groups were further subdivided into four subgroups of five each on the bases of splinting type: no splinting, bite registration PE, bite registration addition silicone, or autopolymerizing acrylic resin. The positional accuracy of the implant replica heads was measured on the poured casts using a coordinate measuring machine to assess linear differences in interimplant distances in all three axes. The collected data (linear and three-dimensional [3D] displacement values) were compared with the measurements calculated on the reference resin model and analyzed with nonparametric tests (Kruskal-Wallis and Mann-Whitney). No significant differences were found between the various splinting groups for both PE and PVS impression materials in terms of linear and 3D distortions. However, small but significant differences were found between the two impression materials (PVS, 91 μm; PE, 103 μm) in terms of 3D discrepancies, irrespective of the splinting technique employed. Casts obtained from both impression materials exhibited differences from the reference model. The impression material influenced impression inaccuracy more than the splinting material for multiple-unit abutment-level impressions.
Czupryna, Krzysztof; Nowotny, Janusz
2012-01-01
Physiological human gait is characterized by tree-dimensional pelvis movements, which make that gait is smooth and does not require excessive energy expenditure. In children with cerebral palsy determinants of the pelvis may be affected, mainly due to pathological afferent synergisms. Therefore many specialists is looking for ways to improve this situation. The aim of this study was to verify whether the use of botulinium toxin or inhibitive casts affects the kinematic parameters of the pelvis during the gait of children with hemiparetic form of cerebral palsy. The study involved 34 hemiparetic children with cerebral palsy aged 7-14 years who reached the capacity of walking. All were improving by neurodevelop-mental treatment according to NDT-Bobath method. Two groups were created. In the first group inhibiting casting was used in 16 children. In the second group botulinium toxin was injected in 18 children. Gait analysis was performed before and after using those type of treatment. Ultrasonic CMS-HS system (Zebris) was used for three dimensional gait analysis. Despite of the characteristic for hemiplegic gait pattern asymmetry, various ab-normalities of pelvis kinematic parameters were observed. Gait symmetry was improved aafter the treatment. Using inhibiting casts also improved kinematic parameters of the pelvis, especially in those children who are found deficit of decreasing and rotation of the pelvis. 1) The use of Btx-A or inhibitive casts results in improving temporal- spatial parameters of gait of cerebral palsied children with hemiparesis. 2) The improvement of kinematic pelvis parameters are obtained through the use of inhibitive casts, while the use of Btx-A does not have a significant impact on them.
Aeolian transport of seagrass (Posidonia oceanica) beach-cast to terrestrial systems
NASA Astrophysics Data System (ADS)
Jiménez, Maria A.; Beltran, Rafel; Traveset, Anna; Calleja, Maria Ll; Delgado-Huertas, Antonio; Marbà, Núria
2017-09-01
The annual export of the Mediterranean seagrass (Posidonia oceanica) litter to adjacent beaches and coastal dunes was quantified by examining the fortnight evolution of seagrass beach-cast volume on two beaches in the NW Mediterranean (Son Real and Es Trenc, Mallorca Island, Spain) for two years and analyzing the wind speed and direction obtained from the closest Meteorological Spanish Agency surface weather stations. The decomposition stage of the deposits was examined by analyzing the total hydrolysable amino acids, its percentage distribution and derived degradation indexes. Prevalent winds exceeding 6 m s-1, the coastline morphology and type of terrestrial vegetation determine the annual dynamics of the seagrass beach-cast. In the most protected beach (Son Real) the seagrass beach-cast remained nearly stationary during the two studied years while it exhibited wide annual fluctuations in the less protected one (Es Trenc). The amounts of P. oceanica wrack washed on Son Real and Es Trenc beaches, respectively, were estimated at 309 kg DW m coastline-1 yr-1 and 1359 kg DW m coastline-1 yr-1. They supplied between 20 kg CaCO3 m coastline-1 yr-1 and 47 kg CaCO3 m coastline-1 yr-1. Between 54% (Son Real) and 70% (Es Trenc) of seagrass beach-cast, respectively accounting for 1.5 kg N m coastline-1 yr-1 and 8.6 kg N m coastline-1 yr-1, were annually exported from the beaches to adjacent dune systems. Our results reveal that Mediterranean seagrass meadows might be an important source of materials, including sand and nutrients, for adjacent terrestrial systems, able to support their functioning.
Comparison of implant-abutment interface misfits after casting and soldering procedures.
Neves, Flávio Domingues das; Elias, Gisele Araújo; da Silva-Neto, João Paulo; de Medeiros Dantas, Lucas Costa; da Mota, Adérito Soares; Neto, Alfredo Júlio Fernandes
2014-04-01
The aim of this study was to compare vertical and horizontal adjustments of castable abutments after conducting casting and soldering procedures. Twelve external hexagonal implants (3.75 × 10 mm) and their UCLA abutments were divided according their manufacturer and abutment type: PUN (plastic UCLA, Neodent), PUC (plastic UCLA, Conexão), PU3i (plastic UCLA, Biomet 3i), and PUTN (plastic UCLA with Tilite milled base, Neodent). Three infrastructures of a fixed partial implant-supported bridge with 3 elements were produced for each group. The measurements of vertical (VM) and horizontal (HM) misfits were obtained via scanning electron microscopy after completion of casting and soldering. The corresponding values were determined to be biomechanically acceptable to the system, and the results were rated as a percentage. Statistical analysis establishes differences between groups by chi-square after procedures, and McNeman's test was applied to analyze the influence of soldering over casting (α ≤ .05). For the values of VM and HM, respectively, when the casting process was complete, it was observed that 83.25% and 100% (PUTN), 33.3% and 27.75% (PUN), 33.3% and 88.8% (PUC), 33.3% and 94.35% (PU3i) represented acceptable values. After completing the requisite soldering, acceptable values were 50% and 94.35% (PUTN), 16.6% and 77.7% (PUN), 38.55% and 77.7% (PUC), and 27.75% and 94.35% (PU3i). Within the limitations of this study, it can be concluded that the premachined abutments presented more acceptable VM values. The HM values were within acceptable limits before and after the soldering procedure for most groups. Further, the soldering procedure resulted in an increase of VM in all groups.
Salvaged castings and methods of salvaging castings with defective cast cooling bumps
Johnson, Robert Alan; Schaeffer, Jon Conrad; Lee, Ching-Pang; Abuaf, Nesim; Hasz, Wayne Charles
2002-01-01
Castings for gas turbine parts exposed on one side to a high-temperature fluid medium have cast-in bumps on an opposite cooling surface side to enhance heat transfer. Areas on the cooling surface having defectively cast bumps, i.e., missing or partially formed bumps during casting, are coated with a braze alloy and cooling enhancement material to salvage the part.
NASA Astrophysics Data System (ADS)
Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil
2015-03-01
An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.
The Genetic Heritage of the Earliest Settlers Persists Both in Indian Tribal and Caste Populations
Kivisild, T.; Rootsi, S.; Metspalu, M.; Mastana, S.; Kaldma, K.; Parik, J.; Metspalu, E.; Adojaan, M.; Tolk, H.-V.; Stepanov, V.; Gölge, M.; Usanga, E.; Papiha, S. S.; Cinnioğlu, C.; King, R.; Cavalli-Sforza, L.; Underhill, P. A.; Villems, R.
2003-01-01
Two tribal groups from southern India—the Chenchus and Koyas—were analyzed for variation in mitochondrial DNA (mtDNA), the Y chromosome, and one autosomal locus and were compared with six caste groups from different parts of India, as well as with western and central Asians. In mtDNA phylogenetic analyses, the Chenchus and Koyas coalesce at Indian-specific branches of haplogroups M and N that cover populations of different social rank from all over the subcontinent. Coalescence times suggest early late Pleistocene settlement of southern Asia and suggest that there has not been total replacement of these settlers by later migrations. H, L, and R2 are the major Indian Y-chromosomal haplogroups that occur both in castes and in tribal populations and are rarely found outside the subcontinent. Haplogroup R1a, previously associated with the putative Indo-Aryan invasion, was found at its highest frequency in Punjab but also at a relatively high frequency (26%) in the Chenchu tribe. This finding, together with the higher R1a-associated short tandem repeat diversity in India and Iran compared with Europe and central Asia, suggests that southern and western Asia might be the source of this haplogroup. Haplotype frequencies of the MX1 locus of chromosome 21 distinguish Koyas and Chenchus, along with Indian caste groups, from European and eastern Asian populations. Taken together, these results show that Indian tribal and caste populations derive largely from the same genetic heritage of Pleistocene southern and western Asians and have received limited gene flow from external regions since the Holocene. The phylogeography of the primal mtDNA and Y-chromosome founders suggests that these southern Asian Pleistocene coastal settlers from Africa would have provided the inocula for the subsequent differentiation of the distinctive eastern and western Eurasian gene pools. PMID:12536373
NASA Astrophysics Data System (ADS)
Yadav, T. P.; Mukhopadhyay, Semanti; Mishra, S. S.; Mukhopadhyay, N. K.; Srivastava, O. N.
2017-12-01
The high-entropy Ti-Zr-V-Cr-Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema's approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength ( 3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.
Mazias, Philip J [Oak Ridge, TN; McGreevy, Tim [Morton, IL; Pollard, Michael James [East Peoria, IL; Siebenaler, Chad W [Peoria, IL; Swindeman, Robert W [Oak Ridge, TN
2007-08-14
A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.
Spencer, J.E.
1999-01-01
In the common type of industrial continuous casting, partially molten metal is extruded from a vessel through a shaped orifice called a mold in which the metal assumes the cross-sectional form of the mold as it cools and solidifies. Continuous casting can be sustained as long as molten metal is supplied and thermal conditions are maintained. I propose that a similar process produced parallel sets of grooves in three geologic settings, as follows: (1) corrugated metamorphic core complexes where mylonized mid-crustal rocks were exhumed by movement along low-angle normal faults known as detachment faults; (2) corrugated submarine surfaces where ultramafic and mafic rocks were exhumed by normal faulting within oceanic spreading centers; and (3) striated magma extrusions exemplified by the famous grooved outcrops at the Inca fortress of Sacsayhuaman in Peru. In each case, rocks inferred to have overlain the corrugated surface during corrugation genesis molded and shaped a plastic to partially molten rock mass as it was extruded from a moderate- to high-temperature reservoir.
Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties
Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak
2016-01-01
In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687
Krewerth, D; Weidner, A; Biermann, H
2013-12-01
The present paper illustrates the application of infrared thermal measurements for the investigation of crack initiation point and crack propagation in the high-cycle and the very high-cycle fatigue range of cast AlSi7Mg alloy (A356). The influence of casting defects, their location, size and amount was studied both by fractography and thermography. Besides internal and surface fatigue crack initiation as a further crack initiation type multiple fatigue crack initiation was observed via in situ thermography which can be well correlated with the results from fractography obtained by SEM investigations. In addition, crack propagation was studied by the development of the temperature measured via thermography. Moreover, the frequency influence on high-cycle fatigue behaviour was investigated. The presented results demonstrate well that the combination of fractography and thermography can give a significant contribution to the knowledge of crack initiation and propagation in the VHCF regime. Copyright © 2013 Elsevier B.V. All rights reserved.
Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.
Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak
2016-06-01
In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.
NASA Astrophysics Data System (ADS)
Szwaja, Małgorzata; Gębara, Piotr; Filipecki, Jacek; Pawlik, Katarzyna; Przybył, Anna; Pawlik, Piotr; Wysłocki, Jerzy J.; Filipecka, Katarzyna
2015-05-01
In present work, influence of Nb addition on vacancy defects and magnetic properties of nanocrystalline Nd-Fe-B permanent magnets, was investigated. Samples with composition (Nd,Fe,B)100-xNbx (where x=6,7,8) were studied in as-cast state and after annealing. Samples were prepared by arc-melting with high purity of constituent elements under Ar atmosphere. Ribbons were obtained by melt-spinning technique under low pressure of Ar. Ribbon samples in as-cast state had amorphous structure and soft magnetic properties. Positron annihilation lifetime spectroscopy PALS has been applied to detection of positron - trapping voids (vacancy defects). With increase of Nb in alloy increasing of vacancy defects concentration was observed. Heat treatment of the samples was carried out at various temperatures (from 923 K to 1023 K) for 5 min, in order to obtain nanocrystalline structure. The aim of present work was to determine the influence of Nb addition and annealing conditions on the vacancy defects and magnetic properties of the Nd-Fe-B- type alloys in as-cast state and after heat treatment.
Richter, Anna; Grieu, Fabienne; Carrello, Amerigo; Amanuel, Benhur; Namdarian, Kateh; Rynska, Aleksandra; Lucas, Amanda; Michael, Victoria; Bell, Anthony; Fox, Stephen B.; Hewitt, Chelsee A.; Do, Hongdo; McArthur, Grant A.; Wong, Stephen Q.; Dobrovic, Alexander; Iacopetta, Barry
2013-01-01
Melanoma patients with BRAF mutations respond to treatment with vemurafenib, thus creating a need for accurate testing of BRAF mutation status. We carried out a blinded study to evaluate various BRAF mutation testing methodologies in the clinical setting. Formalin-fixed, paraffin-embedded melanoma samples were macrodissected before screening for mutations using Sanger sequencing, single-strand conformation analysis (SSCA), high resolution melting analysis (HRM) and competitive allele-specific TaqMan® PCR (CAST-PCR). Concordance of 100% was observed between the Sanger sequencing, SSCA and HRM techniques. CAST-PCR gave rapid and accurate results for the common V600E and V600K mutations, however additional assays are required to detect rarer BRAF mutation types found in 3–4% of melanomas. HRM and SSCA followed by Sanger sequencing are effective two-step strategies for the detection of BRAF mutations in the clinical setting. CAST-PCR was useful for samples with low tumour purity and may also be a cost-effective and robust method for routine diagnostics. PMID:23584600
Dimensional control of die castings
NASA Astrophysics Data System (ADS)
Karve, Aniruddha Ajit
The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of this study will contribute to enhancement of dimensional quality and lead time compression in the die casting industry, thus making it competitive with other net shape manufacturing processes.
Novel ammonia sensor based on polyaniline/polylactic acid composite films
NASA Astrophysics Data System (ADS)
Sotirov, S.; Bodurov, I.; Marudova, M.
2017-01-01
We propose a new type of ammonia sensor based on composite film between polyaniline (emeraldine base) dissolved in dimethylformamide, and poly(DL-lactic) acid dissolved in chloroform. The two solutions were mixed in weight ratio of the components 1:1 and cast on Al2O3 substrate, on which silver electrodes were deposited previously. The active layer structure and morphology were examined by atomic force microscopy. The sensor resistance at constant humidity and different ammonia concentrations was measured. It was found that an increase in the ammonia concentration leads to resistance increase. This result is explained in the terms of ionic interactions between the polyaniline and the ammonia, which change the permittivity of the sensor active media. A response between 2% and 590% was shown depending on the ammonia concentration. The sensor is reversible and possesses response time of typically 100 s. Based on the changes of the sensor resistance, ammonia concentration from 10 ppm to 1000 ppm could be detected.
Riser Feeding Evaluation Method for Metal Castings Using Numerical Analysis
NASA Astrophysics Data System (ADS)
Ahmad, Nadiah
One of the design aspects that continues to create a challenge for casting designers is the optimum design of casting feeders (risers). As liquid metal solidifies, the metal shrinks and forms cavities inside the casting. In order to avoid shrinkage cavities, risers are added to the casting shape to supply additional molten metal when shrinkage occurs during solidification. The shrinkage cavities in the casting are compensated by controlling the cooling rate to promote directional solidification. This control can be achieved by designing the casting such that the cooling begins at the sections that are farthest away from the risers and ends at the risers. Therefore, the risers will solidify last and feed the casting with the molten metal. As a result, the shrinkage cavities formed during solidification are in the risers which are later removed from the casting. Since casting designers have to usually go through iterative processes of validating the casting designs which are very costly due to expensive simulation processes or manual trials and errors on actual casting processes, this study investigates more efficient methods that will help casting designers utilize their casting experiences systematically to develop good initial casting designs. The objective is to reduce the casting design method iterations; therefore, reducing the cost involved in that design processes. The aim of this research aims at finding a method that can help casting designers design effective risers used in sand casting process of aluminum-silicon alloys by utilizing the analysis of solidification simulation. The analysis focuses on studying the significance of pressure distribution of the liquid metal at the early stage of casting solidification, when heat transfer and convective fluid flow are taken into account in the solidification simulation. The mathematical model of casting solidification was solved using the finite volume method (FVM). This study focuses to improve our understanding of the feeding behavior in aluminum-silicon alloys and the effective feeding by considering the pressure gradient distribution of the molten metal at casting dendrite coherency point. For this study, we will identify the relationship between feeding efficiency, shrinkage behavior and how the change in riser size affects the pressure gradient in the casting. This understanding will be used to help in the design of effective risers.
The Role of Indian Caste Identity and Caste Inconsistent Norms on Status Representation
Sankaran, Sindhuja; Sekerdej, Maciek; von Hecker, Ulrich
2017-01-01
The Indian caste system is a complex social structure wherein social roles like one’s profession became ‘hereditary,’ resulting in restricted social mobility and fixed status hierarchies. Furthermore, we argue that the inherent property of caste heightens group identification with one’s caste. Highly identified group members would protect the identity of the group in situations when group norms are violated. In this paper, we were interested in examining the consequence of caste norm violation and how an individual’s status is mentally represented. High caste norms are associated with moral values while the lower caste norms are associated with immorality. We predicted a ‘black sheep effect,’ that is, when high caste individuals’ group identity (caste norm violation condition) is threatened their salient high caste identity would increase, thereby resulting in devaluing the status of their fellow in-group member if the latter is perceived as perpetrator. We presented participants with a social conflict situation of a victim and a perpetrator that is ‘Caste norm consistent’ (Lower caste individual as a perpetrator and higher caste individual as a victim) and vice versa ‘Caste norm inconsistent’ condition (higher caste individual as perpetrator and lower caste individual as a victim). Then, participants had to choose from nine pictorial depictions representing the protagonists in the story on a vertical line, with varying degrees of status distance. Results showed evidence for the black sheep effect and, furthermore, revealed that no other identity (religious, national, and regional) resulted in devaluing the status of fellow in-group member. These results help us understand the ‘black sheep’ effect in the context of moral norms and status representation and are discussed in the framework of the Indian society. PMID:28408896
The Role of Indian Caste Identity and Caste Inconsistent Norms on Status Representation.
Sankaran, Sindhuja; Sekerdej, Maciek; von Hecker, Ulrich
2017-01-01
The Indian caste system is a complex social structure wherein social roles like one's profession became 'hereditary,' resulting in restricted social mobility and fixed status hierarchies. Furthermore, we argue that the inherent property of caste heightens group identification with one's caste. Highly identified group members would protect the identity of the group in situations when group norms are violated. In this paper, we were interested in examining the consequence of caste norm violation and how an individual's status is mentally represented. High caste norms are associated with moral values while the lower caste norms are associated with immorality. We predicted a 'black sheep effect,' that is, when high caste individuals' group identity (caste norm violation condition) is threatened their salient high caste identity would increase, thereby resulting in devaluing the status of their fellow in-group member if the latter is perceived as perpetrator. We presented participants with a social conflict situation of a victim and a perpetrator that is ' Caste norm consistent' (Lower caste individual as a perpetrator and higher caste individual as a victim) and vice versa 'Caste norm inconsistent' condition (higher caste individual as perpetrator and lower caste individual as a victim). Then, participants had to choose from nine pictorial depictions representing the protagonists in the story on a vertical line, with varying degrees of status distance. Results showed evidence for the black sheep effect and, furthermore, revealed that no other identity (religious, national, and regional) resulted in devaluing the status of fellow in-group member. These results help us understand the 'black sheep' effect in the context of moral norms and status representation and are discussed in the framework of the Indian society.
Siljander, Sanna; Keinänen, Pasi; Räty, Anna; Ramakrishnan, Karthik Ram; Tuukkanen, Sampo; Kunnari, Vesa; Harlin, Ali; Vuorinen, Jyrki; Kanerva, Mikko
2018-06-20
We present a detailed study on the influence of sonication energy and surfactant type on the electrical conductivity of nanocellulose-carbon nanotube (NFC-CNT) nanocomposite films. The study was made using a minimum amount of processing steps, chemicals and materials, to optimize the conductivity properties of free-standing flexible nanocomposite films. In general, the NFC-CNT film preparation process is sensitive concerning the dispersing phase of CNTs into a solution with NFC. In our study, we used sonication to carry out the dispersing phase of processing in the presence of surfactant. In the final phase, the films were prepared from the dispersion using centrifugal cast molding. The solid films were analyzed regarding their electrical conductivity using a four-probe measuring technique. We also characterized how conductivity properties were enhanced when surfactant was removed from nanocomposite films; to our knowledge this has not been reported previously. The results of our study indicated that the optimization of the surfactant type clearly affected the formation of freestanding films. The effect of sonication energy was significant in terms of conductivity. Using a relatively low 16 wt. % concentration of multiwall carbon nanotubes we achieved the highest conductivity value of 8.4 S/cm for nanocellulose-CNT films ever published in the current literature. This was achieved by optimizing the surfactant type and sonication energy per dry mass. Additionally, to further increase the conductivity, we defined a preparation step to remove the used surfactant from the final nanocomposite structure.
Castine Report S-15 Project: Shipbuilding Standards
1976-01-01
Fixed Square Windows Ships” Extruded Aluminium Alloy Square Windows “ Ships” Foot Steps Ships* Wooden Hand Rail . Pilot Ladders Panama Canal Pilot...Platforms Aluminium Alloy Accommodation Ladders Mouth Pieces for Voice Tube Chain Drwe Type Telegraphs Fittings for Steam Whistle Llfeboats Radial Type...Cast Steel Angle Valves for Compressed Air F 8001-1957 F 8002-1967 F 8003.1975 F 8004.1975 F 8011 1966 F 8013.1969 F 8101.1969 F 8401.1970 F
Piping Inelastic Fracture Mechanics Analysis.
1980-06-30
LOCATIONd THERM4AL SLEEVE REPAIR WELD TYPE 310 STAINLESS TEL C FVICt AREA SPO PCE Fig. 3.1-Duane Arnold recirculation-inlet-nozzle safe end configuration...Environment The most commonly used materials in the LWR piping system are Types 304 and 316 austenitic stainless steel ( cast /wrought). However, for various...seismic and water hammering), the contribu- tion of the residual stress due to the welding plays a very important role in initiation and propagation
1944-08-02
sistanoe to penotration characteristics. However, it is one of the most important factors involved, and when the type of steel , its soundness and its...this test and not to use it in comparing radically differdnt types of plates, such as steel and Dural. Such a comparison can be made only by examining...in many oases, For this reason it became necessary to develop an additional test for the oharaoteristio in rolled armor ( steel "soundness) and cast
Matveev, V M; Dzaraev, Ch R; Persin, L S
2007-01-01
60 children with different types occlusion--normal, distal, mesial and transverse between the ages 7-15 years were selected. Using unique computer software programme and 3D digitizer MicroScribe-G2 (Company Immersion, USA) on the articulator with mounted casts, persuaded measuring the scores in different movements of mandible habitual occlusion, maximum forward movement and maximum lateral movements. Scores were calculated and results interpreted.
Casting fine grained, fully dense, strong inorganic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.
2015-11-24
Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.
Type 2 responses at the interface between immunity and fat metabolism.
Odegaard, Justin I; Chawla, Ajay
2015-10-01
Adipose tissue resident leukocytes are often cast solely as the effectors of obesity and its attendant pathologies; however, recent observations have demonstrated that these cells support and effect 'healthy' physiologic function as well as pathologic dysfunction. Importantly, these two disparate outcomes are underpinned by similarly disparate immune programs; type 2 responses instruct and promote metabolic normalcy, while type 1 responses drive tissue dysfunction. In this Review, we summarize the literature regarding type 2 immunity's role in adipose tissue physiology and allude to its potential therapeutic implications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wei, Wenping; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Li, Yun; Vankelecom, Ivo
2013-02-14
Polyvinylidene fluoride (PVDF) ultrafiltration membranes were investigated for the first time in vanadium redox flow battery (VFB) applications. Surprisingly, PVDF ultrafiltration membranes with hydrophobic pore walls and relatively large pore sizes of several tens of nanometers proved able to separate vanadium ions and protons efficiently, thus being suitable as a VFB separator. The ion selectivity of this new type of VFB membrane could be tuned readily by controlling the membrane morphology via changes in the composition of the membrane casting solution, and the casting thickness. The results showed that the PVDF membranes offered good performances and excellent stability in VFB applications, where it could, performance-wise, truly substitute Nafion in VFB applications, but at a much lower cost.
Closed loop steam cooled airfoil
Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.
2006-04-18
An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.
NASA Astrophysics Data System (ADS)
Wang, Fu; Ma, Dexin; Bührig-Polaczek, Andreas
2017-11-01
γ/ γ' eutectics' nucleation behavior during the solidification of a single-crystal superalloy with additional carbon was investigated by using directional solidification quenching method. The results show that the nucleation of the γ/ γ' eutectics can directly occur on the existing γ dendrites, directly in the remaining liquid, or on the primary MC-type carbides. The γ/γ' eutectics formed through the latter two mechanisms have different crystal orientations than that of the γ matrix. This suggests that the conventional Ni-based single-crystal superalloy castings with additional carbon only guarantee the monocrystallinity of the γ matrix and some γ/ γ' eutectics and, in addition to the carbides, there are other misoriented polycrystalline microstructures existing in macroscopically considered "single-crystal" superalloy castings.
Solidification and Microstructure of Ni-Containing Al-Si-Cu Alloy
NASA Astrophysics Data System (ADS)
Fang, Li; Ren, Luyang; Geng, Xinyu; Hu, Henry; Nie, Xueyuan; Tjong, Jimi
2018-01-01
2 wt. % nickel (Ni) addition was introduced into a conventional cast aluminum alloy A380. The influence of transition alloying element nickel on the solidification behavior of cast aluminum alloy A380 was investigated via thermal analyses based on temperature measurements recorded on cooling curves. The corresponding first and second derivatives of the cooling curves were derived to reveal the details of phase changes during solidification. The nucleation of the primary α-Al phase and eutectic phases were analyzed. The microstructure analyses by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) indicate that different types and amount of eutectic phases are present in the tested two alloys. The introduction of Ni forms the complex Ni-containing intermetallic phases with Cu and Al.
Synthesis of porous Cu from Al-Cu-Co decagonal quasicrystalline alloys
NASA Astrophysics Data System (ADS)
Kalai Vani, V.; Kwon, O. J.; Hong, S. M.; Fleury, E.
2011-07-01
The formation of a porous Cu structure from cast Al-Cu-Co decagonal quasicrystalline alloys has been studied using a selective corrosion technique. Two alkaline solutions were selected based on the electrochemical properties of the constituent elements. Selective corrosion of Al and Co was achieved by chemical immersion of the cast Al-Cu-Co alloy in both 5 M NaOH and 0.5 M Na2CO3 solutions; values for BET surface-to-weight ratio of up to 30 m2/g could be reached. Microstructural analyses indicated that the architecture of the resulting porous structures was composed of a needle-type phase, remaining from the decagonal phase, in addition to Cu and Cu-Co phases.
Liang, Qin-ye; Wu, Xia-yi; Lin, Xue-feng
2012-04-01
To investigate the surface roughness property of the titanium castings cast in a new investment for titanium casting. Six wax patterns (20 mm × 20 mm × 0.5 mm) were invested using two investments: three in a new titanium investment material and three in the control material (Rematitan Plus). Six titanium specimens were obtained by conventional casting. After casting, surface roughness of the specimens were evaluated with a surface profilometer. The surface roughness of the specimens cast in new titanium investment material was (1.72 ± 0.08) µm, which was much smaller than that from Rematitan Plus [(1.91 ± 0.15) µm, P < 0.05]. The surfaces of titanium cast using these two investment materials are both smooth enough to fulfill the demand of the titanium precision-casting for prosthodontic clinical use.
Alex, Deepa; Shetty, Y Bharath; Miranda, Glynis Anita; Prabhu, M Bharath; Karkera, Reshma
2015-01-01
Conventional investing and casting techniques are time-consuming and usually requires 2-4 h for completion. Accelerated nonstandard, casting techniques have been reported to achieve similar quality results in significantly less time, namely, in 30-40 min. During casting, it is essential to achieve compensation for the shrinkage of solidifying alloy by investment expansion. The metal casting ring restricts the thermal expansion of investment because the thermal expansion of the ring is lesser than that of the investment. The use of casting ring was challenged with the introduction of the ringless technique. A total of 40 test samples of nickel chromium (Ni-Cr) cast copings were obtained from the patterns fabricated using inlay casting wax. The 20 wax patterns were invested using metal ring and 20 wax patterns were invested using the ringless investment system. Of both the groups, 10 samples underwent conventional casting, and the other 10 underwent accelerated casting. The patterns were casted using the induction casting technique. All the test samples of cast copings were evaluated for vertical marginal gaps at four points on the die employing a stereo optical microscope. The vertical marginal discrepancy data obtained were tabulated. Mean and standard deviations were obtained. Vertical discrepancies were analyzed using analysis of variance and Tukey honestly significantly different. The data obtained were found to be very highly significant (P < 0.001). Mean vertical gap was the maximum for Group II (53.64 μm) followed by Group IV (47.62 μm), Group I (44.83 μm) and Group III (35.35 μm). The Ni-Cr cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study.
Braithwaite, Irene; Mackintosh, Stephen; Buchanan, Samantha; Schwarzenlander, Kerstin; De Ruyter, Bernadette
2017-02-01
We investigated popliteal venous haemodynamics of the VenaJet Jet Impulse Technology system within a below-knee fibreglass cast. Randomized controlled trial. Twenty-four healthy participants aged 18-54 had both feet placed within the Jet Impulse Technology system and were randomised for one or other leg to be within a below-knee fibreglass cast. Pacific Radiology, Lower Hutt, Wellington. The primary outcome variable was peak systolic velocity (cm/s) compared between legs with and without the cast at 60 min (after 10 min Jet Impulse Technology activation), using a mixed linear model and a non-inferiority bound of 4.8 cm/s. Secondary outcome variables were the difference in peak systolic velocity between the casted limb and the non-casted limb at baseline and 40 min after casting, and the difference in mean flow velocity (cm/s), vein diameter (mm), and total volume flow (L/min) between the casted limb and the non-casted limb at baseline, 40 and 60 min. The mean (standard deviation) peak systolic velocity was 4.6(1.5), 4.8(1.1), 28.8(16.1), and 4.3(1.2), 4.8(1.4) and 29.3(19.0) cm/s at baseline, 40 and 60 min in the casted and non-casted leg, respectively. The difference (95% confidence interval) between cast and no-cast at 60 min was -0.8 (-6.5 to 4.9) cm/s, P = 0.78. The peak systolic velocity, flow velocity and total volume flow at 40 min were not statistically significantly different from baseline for both casted and non-casted limb. In healthy volunteers, the popliteal venous haemodynamics of the Jet Impulse Technology system was similar between the legs with and without a below-knee fibreglass cast. In-cast Jet Impulse Technology may provide a non-pharmacological option for venous thromboembolism prophylaxis for lower-limb cast-immobility.
Florence Nightingale: her personality type.
Dossey, Barbara M
2010-03-01
This article casts new and refreshing light on Florence Nightingale's life and work by examining her personality type. Using the theory-based Myers-Briggs Type Indicator (MBTI), the author examines Nightingale's personality type and reveals that she was an introverted-intuitive-thinking-judging type. The merit of using the MBTI is that it allows us to more clearly understand three major areas of Nightingale's life that have been partially unacknowledged or misunderstood: her spiritual development as a practicing mystic, her management of her chronic illness to maintain her prodigious work output, and her chosen strategies to transform her visionary ideas into new health care and social realities.
Performing Memorable Monologues.
ERIC Educational Resources Information Center
Ratliff, Gerald Lee
From the director's point of view, a "memorable monologue" is one in which the actor exhibits imagination and invention in role-playing. Memorable audition monologues require a measured degree of "risk taking" and uninhibited abandon--the first task is to select monologues that suit the type of script and the role being cast.…
Pervaporation Separation of Water-Ethanol Mixtures Using Organic-Inorganic Nanocomposite Membranes
Preyssler type heteropolyacid viz., H14[NaP5W30O110] incorporated chitosan nanocomposite membranes (NCMs) were prepared by solution casting, characterized using a variety of techniques and employed in the pervaporation separation of water-ethanol mixtures as a function of feed wa...
Fishing. Unit 1, Colorado Division of Wildlife.
ERIC Educational Resources Information Center
Hetzel, George K.; Smith, Dwight R.
This booklet on fishing is part of a series developed to encourage youth to pursue outdoor projects. Fish anatomy, equipment, casting techniques, knot and leader tying, hooks, fishing areas, cleaning and cooking fish, types of bait, lures, and regulations are discussed and illustrated. Suggested activities and field trips are listed. (MR)
Code of Federal Regulations, 2011 CFR
2011-10-01
... accessary equipment shall be of a type suitable for use with chlorine and shall be made of metal, corrosion-resistant to chlorine in either the gas or liquid phase. Cast or malleable iron shall not be used. Valves... joints. (2) Corrosion-resistant metallic pipe (equivalent to Schedule 80) not subject to deterioration by...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., Assembly and Erection § 56.70-1 General. (a) The following generally applies to all types of welding, such as stud welding, casting repair welding and all processes of fabrication welding. Where the detailed requirements are not appropriate to a particular process, alternatives must be approved by the Marine Safety...
A study of postgraduate students' endogamous preference in mate selection.
Saroja, K; Surendra, H S
1991-01-01
Researchers distributed questionnaires to 395 21-28 year old postgraduate students at the University of Agricultural Sciences and Dharwad and Karnataka University both in Dharwad, India, to determine their endogamous preferences in selecting a mate and to examine the relationship between these preferences and their sex, desired type of marriage, and discipline of postgraduate studies. 64.3% preferred limited mate selection within their caste. Specifically, 32.4% favored subcaste endogamy, 19.5% caste endogamy, and 12.4% kinship endogamy. 24.1% wanted to marry someone from another caste but someone of the same religion. 11.6% wished to marry someone of another religion. Female students were more likely to prefer caste endogamy than male students (76.0% vs. 53.5%; p .01): kinship endogamy (14.8% vs. 10.3%), subcaste endogamy (38.5% vs. 27.2%), and caste endogamy (23.6% vs. 16%) than male students. Male students were more likely to prefer a mate from either the same or different religion than female students (29.6% vs. 17.6% and 16.9% vs. 5.5%, respectively; p .01). Even though most students (58%) preferred arranged marriages, a considerable percentage (42%) preferred to marry for love. 41.6% of those who preferred love marriages wanted to marry someone from another caste compared with only 11.4% of those who preferred arranged marriage (p .01). Students who wanted to marry for love were 3 times more likely to want to marry someone from another religion than were those who preferred arranged marriage (18.6% vs. 6.5%; p .01). 45.4% of students who preferred arranged marriage wanted to choose their mate from the same subcaste compared with only 14.5% of those who wanted a love marriage (p .01). 41.2% of applied science students preferred to marry someone of the same religion compared with 21.7% for basic science students and 16.3% for humanities students (p .01). 50% of applied science students, 75.2% of basic science students, and 66.3% of humanities students preferred to select a mate from the same caste. Students older than 23 years were more likely to prefer intermarriage than intramarriage (p .01). Overall, 35.7% preferred intermarriages (intercaste and interreligious marriage).
1988-06-30
casting. 68 Figure 1-9: Line printer representation of roll solidification. 69 Figure I1-1: Test casting model. 76 Figure 11-2: Division of test casting...writing new casting analysis and design routines. The new routines would take advantage of advanced criteria for predicting casting soundness and cast...properties and technical advances in computer hardware and software. 11 2. CONCLUSIONS UPCAST, a comprehensive software package, has been developed for
Determination of the molar extinction coefficient for the ferric reducing/antioxidant power assay.
Hayes, William A; Mills, Daniel S; Neville, Rachel F; Kiddie, Jenna; Collins, Lisa M
2011-09-15
The FRAP reagent contains 2,4,6-tris(2-pyridyl)-s-triazine, which forms a blue-violet complex ion in the presence of ferrous ions. Although the FRAP (ferric reducing/antioxidant power) assay is popular and has been in use for many years, the correct molar extinction coefficient of this complex ion under FRAP assay conditions has never been published, casting doubt on the validity of previous calibrations. A previously reported value of 19,800 is an underestimate. We determined that the molar extinction coefficient was 21,140. The value of the molar extinction coefficient was also shown to depend on the type of assay and was found to be 22,230 under iron assay conditions, in good agreement with published data. Redox titration indicated that the ferrous sulfate heptahydrate calibrator recommended by Benzie and Strain, the FRAP assay inventors, is prone to efflorescence and, therefore, is unreliable. Ferrous ammonium sulfate hexahydrate in dilute sulfuric acid was a more stable alternative. Few authors publish their calibration data, and this makes comparative analyses impossible. A critical examination of the limited number of examples of calibration data in the published literature reveals only that Benzie and Strain obtained a satisfactory calibration using their method. Copyright © 2011 Elsevier Inc. All rights reserved.
Determining and Forecasting Savings from Competing Previously Sole Source/Noncompetitive Contracts
1978-10-01
SUMMARY A. BACKGROUND. Within the defense market , It is difficult to isolate, identify and quantify the impact of competition on acquisition costs...63 C. F04iCASTING METhODOLOGY .................. . 7 0. COMPETITION INDEX . . . . . . . . . . . . . . . . . . .. . 77 E . USE AS A FORECASTING TOOL...program is still active. e . From this projection, calculate the actual total contract price coiencing with the buy-out competition by multiplying the
ERIC Educational Resources Information Center
Anthony, W. S.
1983-01-01
Results of analysis of correlations collected by Cookson, following Eysenck and Cookson's study of personality and ability in young people, confirm the finding from previous Cattellian test data that the more intelligent children decline in relative extraversion scores and cast doubt on Eysenck's suggestion that introverts gradually show higher…
ERIC Educational Resources Information Center
Mangubhai, Francis; Marland, Perc; Dashwood, Ann; Son, Jeong-Bae
2005-01-01
This study seeks to document teachers' conceptions of communicative language teaching (CLT) and to compare their conceptions with a composite view of CLT assembled, in part, from researchers' accounts of the distinctive features of CLT. The research was prompted by a review of the relevant research literature showing that, though previous studies…
Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology
Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy
2016-05-10
A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.
Watkins, WS; Thara, R; Mowry, BJ; Zhang, Y; Witherspoon, DJ; Tolpinrud, W; Bamshad, MJ; Tirupati, S; Padmavati, R; Smith, H; Nancarrow, D; Filippich, C; Jorde, LB
2008-01-01
Background Major population movements, social structure, and caste endogamy have influenced the genetic structure of Indian populations. An understanding of these influences is increasingly important as gene mapping and case-control studies are initiated in South Indian populations. Results We report new data on 155 individuals from four Tamil caste populations of South India and perform comparative analyses with caste populations from the neighboring state of Andhra Pradesh. Genetic differentiation among Tamil castes is low (RST = 0.96% for 45 autosomal short tandem repeat (STR) markers), reflecting a largely common origin. Nonetheless, caste- and continent-specific patterns are evident. For 32 lineage-defining Y-chromosome SNPs, Tamil castes show higher affinity to Europeans than to eastern Asians, and genetic distance estimates to the Europeans are ordered by caste rank. For 32 lineage-defining mitochondrial SNPs and hypervariable sequence (HVS) 1, Tamil castes have higher affinity to eastern Asians than to Europeans. For 45 autosomal STRs, upper and middle rank castes show higher affinity to Europeans than do lower rank castes from either Tamil Nadu or Andhra Pradesh. Local between-caste variation (Tamil Nadu RST = 0.96%, Andhra Pradesh RST = 0.77%) exceeds the estimate of variation between these geographically separated groups (RST = 0.12%). Low, but statistically significant, correlations between caste rank distance and genetic distance are demonstrated for Tamil castes using Y-chromosome, mtDNA, and autosomal data. Conclusion Genetic data from Y-chromosome, mtDNA, and autosomal STRs are in accord with historical accounts of northwest to southeast population movements in India. The influence of ancient and historical population movements and caste social structure can be detected and replicated in South Indian caste populations from two different geographic regions. PMID:19077280
Dykes, Charles D.; Daniel, Sabah S.; Wood, J. F. Barry
1990-02-20
In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.
Kalavathi, M; Sachin, Bhuvana; Prasanna, B G; Shreeharsha, T V; Praveen, B; Ragher, Mallikarjuna
2016-02-01
The thermal expansion of the investment can be restricted by the metal casting ring because the thermal expansion of the ring is less than that of the investment. The ringless casting procedure is in use in clinical dentistry, though there is little scientific data to support its use in fixed partial dentures. In this study, marginal discrepancy of castings produced with the ringless casting technique and the conventional technique using the metal rings were compared. A total of 30 wax patterns were fabricated directly on a metal die. Optical stereomicroscope was used to measure the marginal discrepancy between the metal die and wax patterns. A total of 15 castings were invested using Bellavest T phosphate-bonded investment with the ringless technique and 15 were invested with the same investment with a metal ring; 30 castings were produced using a nickel-chromium ceramo-metal alloy. The internal surface of the castings was not modified and seated with finger pressure. The vertical marginal discrepancy was measured using an optical stereomicroscope at a magnification of 100x. The data obtained were statistically analyzed using students t-test (paired t-test and unpaired t-test). The castings of the ringless technique provided less vertical marginal discrepancy (240.56 ± 45.81 μ) than the castings produced with the conventional metal ring technique (281.98± 53.05 μ). The difference was statistically significant. The ringless casting technique had produced better marginal accuracy compared with conventional casting technique. Ringless casting system can be used routinely for clinical purpose.
A gradiometric version of contactless inductive flow tomography: theory and first applications
Wondrak, Thomas; Stefani, Frank
2016-01-01
The contactless inductive flow tomography (CIFT) is a measurement technique that allows reconstructing the flow of electrically conducting fluids by measuring the flow-induced perturbations of one or various applied magnetic fields and solving the underlying inverse problem. One of the most promising application fields of CIFT is the continuous casting of steel, for which the online monitoring of the flow in the mould would be highly desirable. In previous experiments at a small-scale model of continuous casting, CIFT has been applied to various industrially relevant problems, including the sudden changes of flow structures in case of argon injection and the influence of a magnetic stirrer at the submerged entry nozzle. The application of CIFT in the presence of electromagnetic brakes, which are widely used to stabilize the flow in the mould, has turned out to be more challenging due to the extreme dynamic range between the strong applied brake field and the weak flow-induced perturbations of the measuring field. In this paper, we present a gradiometric version of CIFT, relying on gradiometric field measurements, that is capable to overcome those problems and which seems, therefore, a promising candidate for applying CIFT in the steel casting industry. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185963
MicroRNAs in Honey Bee Caste Determination
Ashby, Regan; Forêt, Sylvain; Searle, Iain; Maleszka, Ryszard
2016-01-01
The cellular mechanisms employed by some organisms to produce contrasting morphological and reproductive phenotypes from the same genome remains one of the key unresolved issues in biology. Honeybees (Apis mellifera) use differential feeding and a haplodiploid sex determination system to generate three distinct organismal outcomes from the same genome. Here we investigate the honeybee female and male caste-specific microRNA and transcriptomic molecular signatures during a critical time of larval development. Both previously undetected and novel miRNAs have been discovered, expanding the inventory of these genomic regulators in invertebrates. We show significant differences in the microRNA and transcriptional profiles of diploid females relative to haploid drone males as well as between reproductively distinct females (queens and workers). Queens and drones show gene enrichment in physio-metabolic pathways, whereas workers show enrichment in processes associated with neuronal development, cell signalling and caste biased structural differences. Interestingly, predicted miRNA targets are primarily associated with non-physio-metabolic genes, especially neuronal targets, suggesting a mechanistic disjunction from DNA methylation that regulates physio-metabolic processes. Accordingly, miRNA targets are under-represented in methylated genes. Our data show how a common set of genetic elements are differentially harnessed by an organism, which may provide the remarkable level of developmental flexibility required. PMID:26739502
Accelerating Adverse Outcome Pathway (AOP) development ...
The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. However, the conventional process for assembly of these AOPs is time and resource intensive, and has been a rate limiting step for AOP use and development. Therefore computational approaches to accelerate the process need to be developed. We previously developed a method for generating computationally predicted AOPs (cpAOPs) by association mining and integration of data from publicly available databases. In this work, a cpAOP network of ~21,000 associations was established between 105 phenotypes from TG-GATEs rat liver data from different time points (including microarray, pathological effects and clinical chemistry data), 994 REACTOME pathways, 688 High-throughput assays from ToxCast and 194 chemicals. A second network of 128,536 associations was generated by connecting 255 biological target genes from ToxCast to 4,980 diseases from CTD using either HT screening activity from ToxCast for 286 chemicals or CTD gene expression changes in response to 2,330 chemicals. Both networks were separately evaluated through manual extraction of disease-specific cpAOPs and comparison with expert curation of the relevant literature. By employing data integration strategies that involve the weighting of n
As-Cast Icosashedral Quasicrystals in Ti-Zr-Ni Alloys
NASA Astrophysics Data System (ADS)
Lee, Geun Woo; Gangopadhyay, Anup K.; Kelton, Kenneth F.
2002-03-01
Most Ti-based icosahedral quasicrystals (i-phase) obtained by rapid quenching from the melt are metastable and disordered. In contrast, the Ti-Zr-Ni i-phase prepared by low temperature annealing is stable and better ordered. This i-phase is formed by a solid-state transformation from C14 Laves phase and α (Ti/Zr) solid-solution phase. It has not been possible previously to grow this i-phase directly from the liquid. Here, the nucleation and growth of the i-phase from the liquid in as-cast Ti-Zr-Ni alloys is reported. Pentagonal growth ledges in as-cast Ti-Zr-Ni ingots are clearly observed. Transmission electron microscopy and x-ray diffraction studies confirm the phase identity. Differential scanning calorimetry measurements show an endothermic transformation from the i-phase to a phase mixture of the C14 Laves and solid-solution phases, demonstrating that this i-phase is also stable. The short time that the liquid remains in the Laves phase-forming-field and the higher nucleation rate of the i-phase, owing to the presumed similarity between the local atomic structures of the i-phase and liquid, allows the i-phase to nucleate and grow directly from the liquid. Container-less solidification studies using electrostatic levitation (ESL) techniques support this conclusion.
NASA Astrophysics Data System (ADS)
Yang, Yong; Chen, Yiren; Huang, Yina; Allen, Todd; Rao, Appajosula
Reactor internal components are subjected to neutron irradiation in light water reactors, and with the aging of nuclear power plants around the world, irradiation-induced material degradations are of concern for reactor internals. Irradiation-induced defects resulting from displacement damage are critical for understanding degradation in structural materials. In the present work, microstructural changes due to irradiation in austenitic stainless steels and cast steels were characterized using transmission electron microscopy. The specimens were irradiated in the BOR-60 reactor, a fast breeder reactor, up to 40 dpa at 320°C. The dose rate was approximately 9.4x10-7 dpa/s. Void swelling and irradiation defects were analyzed for these specimens. A high density of faulted loops dominated the irradiated-altered microstructures. Along with previous TEM results, a dose dependence of the defect structure was established at 320°C.
46 CFR 56.60-10 - Cast iron and malleable iron.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and... avoided. Cast iron and malleable iron components shall not be used at temperatures above 450 °F. Cast iron...
Mahan, Susan T; Harris, Marie S; Lierhaus, Anneliese M; Miller, Patricia E; DiFazio, Rachel L
Noise reduction headphones decrease the sound during cast removal. Their effectiveness in decreasing anxiety has not been studied. Compare pediatric patients' anxiety levels during cast removal with and without utilization of noise reduction headphones combined with use of a personal electronic device. Quality improvement project. Patients randomly assigned to noise reduction headphone group or standard care group during cast removal. Faces, Legs, Activity, Cry, and Consolability Scale and heart rate were evaluated prior to, during, and after cast removal. Data were compared across groups. Fifty patients were included; 25 per group. No difference detected between the 2 groups in Faces, Legs, Activity, Cry, and Consolability Scale score prior to (p = .05) or after cast removal (p = .30). During cast removal, the headphone group had lower FLACC Scale scores (p = .03). Baseline heart rate was lower in the headphone group prior to (p = .02) and after (p = .005) cast removal with no difference during cast removal (p = .24). Utilizing noise reduction headphones and a personal electronic device during the cast removal process decreases patient anxiety.
[Variables effecting casting accuracy of quick heating casting investments].
Takahashi, H; Nakamura, H; Iwasaki, N; Morita, N; Habu, N; Nishimura, F
1994-06-01
Recently, several new products of investments for "quick heating" have been put on the Japanese market. The total casting procedure time for this quick heating method involves only one hour; 30-minutes waiting after the start of mixing before placing the mold directly into the 700 degrees C furnace and 30-minutes heating in the furnace. The purpose of this study was to evaluate two variables effecting casting accuracy using these new investments. The effect of thickness of the casting liner inside the casting ring and the effect of waiting time before placing the mold into the 700 degrees C furnace were evaluated. A stainless-steel die with a convergence angle of 8 degrees was employed. Marginal discrepancies of the crown between the wax patterns and castings were measured. The size of the cast crown became larger when the thickness of the ring liner was thick and when the waiting time before placing the mold into the furnace was long. These results suggest that these new investments have the advantage of providing sound castings using short-time casting procedures. However, it is necessary to pay careful attention to the casting conditions for obtaining reproducible castings.
Distal limb cast sores in horses: risk factors and early detection using thermography.
Levet, T; Martens, A; Devisscher, L; Duchateau, L; Bogaert, L; Vlaminck, L
2009-01-01
There is a lack of evidence-based data on the prevalence, outcome and risk factors of distal limb cast sores, and no objective tool has been described for the early detection of cast sores. To investigate the prevalence, location, outcome and risk factors of cast sores after application of a distal limb cast and to determine whether static thermography of the cast is a valuable tool for the assessment of sores. A prospective study was conducted on horses treated with a distal limb cast. At each cast removal, cast sores were graded as superficial sores (SS), deep dermal sores (DS) or full thickness skin ulcerations (FS). In several cases, a thermographic evaluation of the cast was performed immediately prior to removal and differences in temperature (AT) between the coolest point of the cast and 2 cast regions predisposed for sore development (dorsoproximal mc/mtIII and palmar/plantar fetlock) were calculated. Mean +/- s.d. total casting time of 70 horses was 31 +/- 18 days. Overall, 57 legs (81%) developed at least SS. Twenty-four legs (34%) ultimately developed DS and one horse had an FS. Multivariable analysis showed that the severity of sores was positively associated with increasing age (OR: 1.111, P = 0.028), a normal (vs. swollen) limb (OR: 3387, P = 0.023) and an increase in total casting time (OR per week: 1.363, P = 0.002). The thermographic evaluation (35 casts) revealed that the severity of sores was positively associated with increasing deltaT (OR: 2.100, P = 0.0005). The optimal cut-off values for the presence of SS and DS were set at, respectively, deltaT = 23 and 43 degrees C. Distal limb cast is a safe coaptation technique with increasing risk of developing sores with time. Thermography is a valuable and rapid clinical tool to monitor the development of cast sores.
Development and Implementation of the Casting of Rods Made of Refractory Cast Alloys
NASA Astrophysics Data System (ADS)
Kabanov, I. V.; Urin, S. L.; Ivanyuk, A. S.; Nesterov, A. N.; Bogdanov, S. V.
2017-12-01
The problems of the production of a so-called casting rod blank made of a refractory casting alloy in the vacuum induction furnaces of AO Metallurgical Plant Electrostal are considered. A unique technology of casting and subsequent treatment of as-cast rod blanks made of refractory alloys is developed, tested, and optimized. As a result of the developed and performed measures for the production of metal products in the Consarc furnace, the ingot-to-product yield increases by 15% as compared to metal casting in an ISV-1.0 furnace. As a result, we have widened the range of cast alloy grades and are going to cast metals for the manufacture of blanks of other sizes and ranges of alloy an steel grades.
Mackintosh, Stephen; Buchanan, Samantha; Schwarzenlander, Kerstin; De Ruyter, Bernadette
2017-01-01
Objectives We investigated popliteal venous haemodynamics of the VenaJet Jet Impulse Technology system within a below-knee fibreglass cast. Design Randomized controlled trial. Participants Twenty-four healthy participants aged 18–54 had both feet placed within the Jet Impulse Technology system and were randomised for one or other leg to be within a below-knee fibreglass cast. Setting Pacific Radiology, Lower Hutt, Wellington Main outcome measures The primary outcome variable was peak systolic velocity (cm/s) compared between legs with and without the cast at 60 min (after 10 min Jet Impulse Technology activation), using a mixed linear model and a non-inferiority bound of 4.8 cm/s. Secondary outcome variables were the difference in peak systolic velocity between the casted limb and the non-casted limb at baseline and 40 min after casting, and the difference in mean flow velocity (cm/s), vein diameter (mm), and total volume flow (L/min) between the casted limb and the non-casted limb at baseline, 40 and 60 min. Results The mean (standard deviation) peak systolic velocity was 4.6(1.5), 4.8(1.1), 28.8(16.1), and 4.3(1.2), 4.8(1.4) and 29.3(19.0) cm/s at baseline, 40 and 60 min in the casted and non-casted leg, respectively. The difference (95% confidence interval) between cast and no-cast at 60 min was −0.8 (−6.5 to 4.9) cm/s, P = 0.78. The peak systolic velocity, flow velocity and total volume flow at 40 min were not statistically significantly different from baseline for both casted and non-casted limb. Conclusion In healthy volunteers, the popliteal venous haemodynamics of the Jet Impulse Technology system was similar between the legs with and without a below-knee fibreglass cast. In-cast Jet Impulse Technology may provide a non-pharmacological option for venous thromboembolism prophylaxis for lower-limb cast-immobility. PMID:28203384
Alex, Deepa; Shetty, Y. Bharath; Miranda, Glynis Anita; Prabhu, M. Bharath; Karkera, Reshma
2015-01-01
Background: Conventional investing and casting techniques are time-consuming and usually requires 2–4 h for completion. Accelerated nonstandard, casting techniques have been reported to achieve similar quality results in significantly less time, namely, in 30–40 min. During casting, it is essential to achieve compensation for the shrinkage of solidifying alloy by investment expansion. The metal casting ring restricts the thermal expansion of investment because the thermal expansion of the ring is lesser than that of the investment. The use of casting ring was challenged with the introduction of the ringless technique. Materials and Methods: A total of 40 test samples of nickel chromium (Ni-Cr) cast copings were obtained from the patterns fabricated using inlay casting wax. The 20 wax patterns were invested using metal ring and 20 wax patterns were invested using the ringless investment system. Of both the groups, 10 samples underwent conventional casting, and the other 10 underwent accelerated casting. The patterns were casted using the induction casting technique. All the test samples of cast copings were evaluated for vertical marginal gaps at four points on the die employing a stereo optical microscope. Results: The vertical marginal discrepancy data obtained were tabulated. Mean and standard deviations were obtained. Vertical discrepancies were analyzed using analysis of variance and Tukey honestly significantly different. The data obtained were found to be very highly significant (P < 0.001). Mean vertical gap was the maximum for Group II (53.64 μm) followed by Group IV (47.62 μm), Group I (44.83 μm) and Group III (35.35 μm). Conclusion: The Ni-Cr cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study. PMID:26929488
Non-rigid Reconstruction of Casting Process with Temperature Feature
NASA Astrophysics Data System (ADS)
Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Ying; Wang, Lu
2017-09-01
Off-line reconstruction of rigid scene has made a great progress in the past decade. However, the on-line reconstruction of non-rigid scene is still a very challenging task. The casting process is a non-rigid reconstruction problem, it is a high-dynamic molding process lacking of geometric features. In order to reconstruct the casting process robustly, an on-line fusion strategy is proposed for dynamic reconstruction of casting process. Firstly, the geometric and flowing feature of casting are parameterized in manner of TSDF (truncated signed distance field) which is a volumetric block, parameterized casting guarantees real-time tracking and optimal deformation of casting process. Secondly, data structure of the volume grid is extended to have temperature value, the temperature interpolation function is build to generate the temperature of each voxel. This data structure allows for dynamic tracking of temperature of casting during deformation stages. Then, the sparse RGB features is extracted from casting scene to search correspondence between geometric representation and depth constraint. The extracted color data guarantees robust tracking of flowing motion of casting. Finally, the optimal deformation of the target space is transformed into a nonlinear regular variational optimization problem. This optimization step achieves smooth and optimal deformation of casting process. The experimental results show that the proposed method can reconstruct the casting process robustly and reduce drift in the process of non-rigid reconstruction of casting.
Characterization of Ni-Cr alloys using different casting techniques and molds.
Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng
2014-02-01
This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. Copyright © 2013 Elsevier B.V. All rights reserved.
Ramírez, Norman; Flynn, John M; Fernández, Samuel; Seda, Wallace; Macchiavelli, Raul E
2011-09-01
Idiopathic talipes equinovarus is the most common congenital defect characterized by the presence of a congenital dysplasia of all musculoskeletal tissues distal to the knee. For many years, the treatment has been based on extensive surgery after manipulation and cast trial. Owing to poor surgical results, Ponseti developed a new treatment protocol consisting of manipulation with cast and an Achilles tenotomy. The new technique requires 4 years of orthotic management to guarantee good results. The most recent studies have emphasized how difficult it is to comply with the orthotic posttreatment protocol. Poor compliance has been attributed to parent's low educational and low income level. The purpose of the study is to evaluate if poor compliance is due to the complexity of the orthotic use or if it is related to family education, cultural, or income factors. Fifty-three patients with 73 idiopathic talipes equinovarus feet were treated with the Ponseti technique and followed for 48 months after completing the cast treatment. There was a male predominance (72%). The mean age at presentation was 1 month (range: 1 wk to 7 mo). Twenty patients (38%) had bilateral involvement, 17 patients (32%) had right side affected, and 16 patients (30%) had the left side involved. The mean time of manipulation and casting treatment was 6 weeks (range: 4 to 10 wk). Thirty-eight patients (72%) required Achilles tenotomy as stipulated by the protocol. Recurrence was considered if there was a deterioration of the Dimeglio severity score requiring remanipulation and casting. Twenty-four out of 73 feet treated by our service showed the evidence of recurrence (33%). Sex, age at presentation, cast treatment duration, unilateral or bilateral, severity score, the necessity of Achilles tenotomy, family educational, or income level did not reveal any significant correlation with the recurrence risk. Noncompliance with the orthotic use showed a significant correlation with the recurrence rate. The noncompliance rate did not show any correlation with the patient demographic data or parent's education level, insurance, or cultural factors as proposed previously. The use of the brace is extremely relevant with the Ponseti technique outcome (recurrence) in the treatment of idiopathic talipes equinovarus. Noncompliance is not related to family education, cultural, or income level. The Ponseti postcasting orthotic protocol needs to be reevaluated to a less demanding option to improve outcome and brace compliance.
40 CFR 464.30 - Applicability; description of the ferrous casting subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ferrous casting subcategory. 464.30 Section 464.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Ferrous Casting Subcategory § 464.30 Applicability; description of the ferrous casting subcategory. The...