Sample records for previously developed algorithm

  1. Derivation of a regional active-optical reflectance sensor corn algorithm

    USDA-ARS?s Scientific Manuscript database

    Active-optical reflectance sensor (AORS) algorithms developed for in-season corn (Zea mays L.) N management have traditionally been derived using sub-regional scale information. However, studies have shown these previously developed AORS algorithms are not consistently accurate when used on a region...

  2. A new algorithm for attitude-independent magnetometer calibration

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Shuster, Malcolm D.

    1994-01-01

    A new algorithm is developed for inflight magnetometer bias determination without knowledge of the attitude. This algorithm combines the fast convergence of a heuristic algorithm currently in use with the correct treatment of the statistics and without discarding data. The algorithm performance is examined using simulated data and compared with previous algorithms.

  3. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    PubMed

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  4. Probabilistic analysis algorithm for UA slope software program.

    DOT National Transportation Integrated Search

    2013-12-01

    A reliability-based computational algorithm for using a single row and equally spaced drilled shafts to : stabilize an unstable slope has been developed in this research. The Monte-Carlo simulation (MCS) : technique was used in the previously develop...

  5. Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions

    PubMed Central

    Patwary, Nurmohammed; Preza, Chrysanthe

    2015-01-01

    A depth-variant (DV) image restoration algorithm for wide field fluorescence microscopy, using an orthonormal basis decomposition of DV point-spread functions (PSFs), is investigated in this study. The efficient PSF representation is based on a previously developed principal component analysis (PCA), which is computationally intensive. We present an approach developed to reduce the number of DV PSFs required for the PCA computation, thereby making the PCA-based approach computationally tractable for thick samples. Restoration results from both synthetic and experimental images show consistency and that the proposed algorithm addresses efficiently depth-induced aberration using a small number of principal components. Comparison of the PCA-based algorithm with a previously-developed strata-based DV restoration algorithm demonstrates that the proposed method improves performance by 50% in terms of accuracy and simultaneously reduces the processing time by 64% using comparable computational resources. PMID:26504634

  6. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  7. Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1989-01-01

    The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.

  8. A comparison of kinematic algorithms to estimate gait events during overground running.

    PubMed

    Smith, Laura; Preece, Stephen; Mason, Duncan; Bramah, Christopher

    2015-01-01

    The gait cycle is frequently divided into two distinct phases, stance and swing, which can be accurately determined from ground reaction force data. In the absence of such data, kinematic algorithms can be used to estimate footstrike and toe-off. The performance of previously published algorithms is not consistent between studies. Furthermore, previous algorithms have not been tested at higher running speeds nor used to estimate ground contact times. Therefore the purpose of this study was to both develop a new, custom-designed, event detection algorithm and compare its performance with four previously tested algorithms at higher running speeds. Kinematic and force data were collected on twenty runners during overground running at 5.6m/s. The five algorithms were then implemented and estimated times for footstrike, toe-off and contact time were compared to ground reaction force data. There were large differences in the performance of each algorithm. The custom-designed algorithm provided the most accurate estimation of footstrike (True Error 1.2 ± 17.1 ms) and contact time (True Error 3.5 ± 18.2 ms). Compared to the other tested algorithms, the custom-designed algorithm provided an accurate estimation of footstrike and toe-off across different footstrike patterns. The custom-designed algorithm provides a simple but effective method to accurately estimate footstrike, toe-off and contact time from kinematic data. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Techniques for shuttle trajectory optimization

    NASA Technical Reports Server (NTRS)

    Edge, E. R.; Shieh, C. J.; Powers, W. F.

    1973-01-01

    The application of recently developed function-space Davidon-type techniques to the shuttle ascent trajectory optimization problem is discussed along with an investigation of the recently developed PRAXIS algorithm for parameter optimization. At the outset of this analysis, the major deficiency of the function-space algorithms was their potential storage problems. Since most previous analyses of the methods were with relatively low-dimension problems, no storage problems were encountered. However, in shuttle trajectory optimization, storage is a problem, and this problem was handled efficiently. Topics discussed include: the shuttle ascent model and the development of the particular optimization equations; the function-space algorithms; the operation of the algorithm and typical simulations; variable final-time problem considerations; and a modification of Powell's algorithm.

  10. Computational complexity of algorithms for sequence comparison, short-read assembly and genome alignment.

    PubMed

    Baichoo, Shakuntala; Ouzounis, Christos A

    A multitude of algorithms for sequence comparison, short-read assembly and whole-genome alignment have been developed in the general context of molecular biology, to support technology development for high-throughput sequencing, numerous applications in genome biology and fundamental research on comparative genomics. The computational complexity of these algorithms has been previously reported in original research papers, yet this often neglected property has not been reviewed previously in a systematic manner and for a wider audience. We provide a review of space and time complexity of key sequence analysis algorithms and highlight their properties in a comprehensive manner, in order to identify potential opportunities for further research in algorithm or data structure optimization. The complexity aspect is poised to become pivotal as we will be facing challenges related to the continuous increase of genomic data on unprecedented scales and complexity in the foreseeable future, when robust biological simulation at the cell level and above becomes a reality. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Research on Vehicle-Based Driver Status/Performance Monitoring, Part III

    DOT National Transportation Integrated Search

    1996-09-01

    A driver drowsiness detection/alarm/countermeasures system was specified, tested and evaluated, resulting in the development of revised algorithms for the detection of driver drowsiness. Previous algorithms were examined in a test and evaluation stud...

  12. Research On Vehicle-Based Driver Status/Performance Monitoring, Part I

    DOT National Transportation Integrated Search

    1996-09-01

    A driver drowsiness detection/alarm/countermeasures system was specified, tested and evaluated, resulting in the development of revised algorithms for the detection of driver drowsiness. Previous algorithms were examined in a test and evaluation stud...

  13. A study on the application of topic models to motif finding algorithms.

    PubMed

    Basha Gutierrez, Josep; Nakai, Kenta

    2016-12-22

    Topic models are statistical algorithms which try to discover the structure of a set of documents according to the abstract topics contained in them. Here we try to apply this approach to the discovery of the structure of the transcription factor binding sites (TFBS) contained in a set of biological sequences, which is a fundamental problem in molecular biology research for the understanding of transcriptional regulation. Here we present two methods that make use of topic models for motif finding. First, we developed an algorithm in which first a set of biological sequences are treated as text documents, and the k-mers contained in them as words, to then build a correlated topic model (CTM) and iteratively reduce its perplexity. We also used the perplexity measurement of CTMs to improve our previous algorithm based on a genetic algorithm and several statistical coefficients. The algorithms were tested with 56 data sets from four different species and compared to 14 other methods by the use of several coefficients both at nucleotide and site level. The results of our first approach showed a performance comparable to the other methods studied, especially at site level and in sensitivity scores, in which it scored better than any of the 14 existing tools. In the case of our previous algorithm, the new approach with the addition of the perplexity measurement clearly outperformed all of the other methods in sensitivity, both at nucleotide and site level, and in overall performance at site level. The statistics obtained show that the performance of a motif finding method based on the use of a CTM is satisfying enough to conclude that the application of topic models is a valid method for developing motif finding algorithms. Moreover, the addition of topic models to a previously developed method dramatically increased its performance, suggesting that this combined algorithm can be a useful tool to successfully predict motifs in different kinds of sets of DNA sequences.

  14. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2012-01-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  15. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2011-12-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  16. 3D Protein structure prediction with genetic tabu search algorithm

    PubMed Central

    2010-01-01

    Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively. PMID:20522256

  17. A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peyret, Thomas; Poulin, Patrick; Krishnan, Kannan, E-mail: kannan.krishnan@umontreal.ca

    The algorithms in the literature focusing to predict tissue:blood PC (P{sub tb}) for environmental chemicals and tissue:plasma PC based on total (K{sub p}) or unbound concentration (K{sub pu}) for drugs differ in their consideration of binding to hemoglobin, plasma proteins and charged phospholipids. The objective of the present study was to develop a unified algorithm such that P{sub tb}, K{sub p} and K{sub pu} for both drugs and environmental chemicals could be predicted. The development of the unified algorithm was accomplished by integrating all mechanistic algorithms previously published to compute the PCs. Furthermore, the algorithm was structured in such amore » way as to facilitate predictions of the distribution of organic compounds at the macro (i.e. whole tissue) and micro (i.e. cells and fluids) levels. The resulting unified algorithm was applied to compute the rat P{sub tb}, K{sub p} or K{sub pu} of muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons and ethers. The unified algorithm reproduced adequately the values predicted previously by the published algorithms for a total of 142 drugs and chemicals. The sensitivity analysis demonstrated the relative importance of the various compound properties reflective of specific mechanistic determinants relevant to prediction of PC values of drugs and environmental chemicals. Overall, the present unified algorithm uniquely facilitates the computation of macro and micro level PCs for developing organ and cellular-level PBPK models for both chemicals and drugs.« less

  18. Sensor failure detection for jet engines

    NASA Technical Reports Server (NTRS)

    Beattie, E. C.; Laprad, R. F.; Akhter, M. M.; Rock, S. M.

    1983-01-01

    Revisions to the advanced sensor failure detection, isolation, and accommodation (DIA) algorithm, developed under the sensor failure detection system program were studied to eliminate the steady state errors due to estimation filter biases. Three algorithm revisions were formulated and one revision for detailed evaluation was chosen. The selected version modifies the DIA algorithm to feedback the actual sensor outputs to the integral portion of the control for the nofailure case. In case of a failure, the estimates of the failed sensor output is fed back to the integral portion. The estimator outputs are fed back to the linear regulator portion of the control all the time. The revised algorithm is evaluated and compared to the baseline algorithm developed previously.

  19. Combined Dust Detection Algorithm by Using MODIS Infrared Channels over East Asia

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Jaehwa; Lee, Sukjo; Kim, Jeong Soo; Chang, Lim Seok; Ou, Steve

    2014-01-01

    A new dust detection algorithm is developed by combining the results of multiple dust detectionmethods using IR channels onboard the MODerate resolution Imaging Spectroradiometer (MODIS). Brightness Temperature Difference (BTD) between two wavelength channels has been used widely in previous dust detection methods. However, BTDmethods have limitations in identifying the offset values of the BTDto discriminate clear-sky areas. The current algorithm overcomes the disadvantages of previous dust detection methods by considering the Brightness Temperature Ratio (BTR) values of the dual wavelength channels with 30-day composite, the optical properties of the dust particles, the variability of surface properties, and the cloud contamination. Therefore, the current algorithm shows improvements in detecting the dust loaded region over land during daytime. Finally, the confidence index of the current dust algorithm is shown in 10 × 10 pixels of the MODIS observations. From January to June, 2006, the results of the current algorithm are within 64 to 81% of those found using the fine mode fraction (FMF) and aerosol index (AI) from the MODIS and Ozone Monitoring Instrument (OMI). The agreement between the results of the current algorithm and the OMI AI over the non-polluted land also ranges from 60 to 67% to avoid errors due to the anthropogenic aerosol. In addition, the developed algorithm shows statistically significant results at four AErosol RObotic NETwork (AERONET) sites in East Asia.

  20. Runtime support for parallelizing data mining algorithms

    NASA Astrophysics Data System (ADS)

    Jin, Ruoming; Agrawal, Gagan

    2002-03-01

    With recent technological advances, shared memory parallel machines have become more scalable, and offer large main memories and high bus bandwidths. They are emerging as good platforms for data warehousing and data mining. In this paper, we focus on shared memory parallelization of data mining algorithms. We have developed a series of techniques for parallelization of data mining algorithms, including full replication, full locking, fixed locking, optimized full locking, and cache-sensitive locking. Unlike previous work on shared memory parallelization of specific data mining algorithms, all of our techniques apply to a large number of common data mining algorithms. In addition, we propose a reduction-object based interface for specifying a data mining algorithm. We show how our runtime system can apply any of the technique we have developed starting from a common specification of the algorithm.

  1. Method and Excel VBA Algorithm for Modeling Master Recession Curve Using Trigonometry Approach.

    PubMed

    Posavec, Kristijan; Giacopetti, Marco; Materazzi, Marco; Birk, Steffen

    2017-11-01

    A new method was developed and implemented into an Excel Visual Basic for Applications (VBAs) algorithm utilizing trigonometry laws in an innovative way to overlap recession segments of time series and create master recession curves (MRCs). Based on a trigonometry approach, the algorithm horizontally translates succeeding recession segments of time series, placing their vertex, that is, the highest recorded value of each recession segment, directly onto the appropriate connection line defined by measurement points of a preceding recession segment. The new method and algorithm continues the development of methods and algorithms for the generation of MRC, where the first published method was based on a multiple linear/nonlinear regression model approach (Posavec et al. 2006). The newly developed trigonometry-based method was tested on real case study examples and compared with the previously published multiple linear/nonlinear regression model-based method. The results show that in some cases, that is, for some time series, the trigonometry-based method creates narrower overlaps of the recession segments, resulting in higher coefficients of determination R 2 , while in other cases the multiple linear/nonlinear regression model-based method remains superior. The Excel VBA algorithm for modeling MRC using the trigonometry approach is implemented into a spreadsheet tool (MRCTools v3.0 written by and available from Kristijan Posavec, Zagreb, Croatia) containing the previously published VBA algorithms for MRC generation and separation. All algorithms within the MRCTools v3.0 are open access and available free of charge, supporting the idea of running science on available, open, and free of charge software. © 2017, National Ground Water Association.

  2. Development and Evaluation of Algorithms for Breath Alcohol Screening.

    PubMed

    Ljungblad, Jonas; Hök, Bertil; Ekström, Mikael

    2016-04-01

    Breath alcohol screening is important for traffic safety, access control and other areas of health promotion. A family of sensor devices useful for these purposes is being developed and evaluated. This paper is focusing on algorithms for the determination of breath alcohol concentration in diluted breath samples using carbon dioxide to compensate for the dilution. The examined algorithms make use of signal averaging, weighting and personalization to reduce estimation errors. Evaluation has been performed by using data from a previously conducted human study. It is concluded that these features in combination will significantly reduce the random error compared to the signal averaging algorithm taken alone.

  3. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    NASA Astrophysics Data System (ADS)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  4. The Search for Effective Algorithms for Recovery from Loss of Separation

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Munoz, Cesar A.; Narawicz, Anthony J.

    2012-01-01

    Our previous work presented an approach for developing high confidence algorithms for recovering aircraft from loss of separation situations. The correctness theorems for the algorithms relied on several key assumptions, namely that state data for all local aircraft is perfectly known, that resolution maneuvers can be achieved instantaneously, and that all aircraft compute resolutions using exactly the same data. Experiments showed that these assumptions were adequate in cases where the aircraft are far away from losing separation, but are insufficient when the aircraft have already lost separation. This paper describes the results of this experimentation and proposes a new criteria specification for loss of separation recovery that preserves the formal safety properties of the previous criteria while overcoming some key limitations. Candidate algorithms that satisfy the new criteria are presented.

  5. Theory and algorithms for image reconstruction on chords and within regions of interest

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Pan, Xiaochuan; Sidky, Emilâ Y.

    2005-11-01

    We introduce a formula for image reconstruction on a chord of a general source trajectory. We subsequently develop three algorithms for exact image reconstruction on a chord from data acquired with the general trajectory. Interestingly, two of the developed algorithms can accommodate data containing transverse truncations. The widely used helical trajectory and other trajectories discussed in literature can be interpreted as special cases of the general trajectory, and the developed theory and algorithms are thus directly applicable to reconstructing images exactly from data acquired with these trajectories. For instance, chords on a helical trajectory are equivalent to the n-PI-line segments. In this situation, the proposed algorithms become the algorithms that we proposed previously for image reconstruction on PI-line segments. We have performed preliminary numerical studies, which include the study on image reconstruction on chords of two-circle trajectory, which is nonsmooth, and on n-PI lines of a helical trajectory, which is smooth. Quantitative results of these studies verify and demonstrate the proposed theory and algorithms.

  6. Maximum Likelihood Estimation of Nonlinear Structural Equation Models.

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Zhu, Hong-Tu

    2002-01-01

    Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)

  7. An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method

    NASA Astrophysics Data System (ADS)

    Nouizi, F.; Erkol, H.; Luk, A.; Marks, M.; Unlu, M. B.; Gulsen, G.

    2016-10-01

    We previously introduced photo-magnetic imaging (PMI), an imaging technique that illuminates the medium under investigation with near-infrared light and measures the induced temperature increase using magnetic resonance thermometry (MRT). Using a multiphysics solver combining photon migration and heat diffusion, PMI models the spatiotemporal distribution of temperature variation and recovers high resolution optical absorption images using these temperature maps. In this paper, we present a new fast non-iterative reconstruction algorithm for PMI. This new algorithm uses analytic methods during the resolution of the forward problem and the assembly of the sensitivity matrix. We validate our new analytic-based algorithm with the first generation finite element method (FEM) based reconstruction algorithm previously developed by our team. The validation is performed using, first synthetic data and afterwards, real MRT measured temperature maps. Our new method accelerates the reconstruction process 30-fold when compared to a single iteration of the FEM-based algorithm.

  8. A real-time simulation evaluation of an advanced detection. Isolation and accommodation algorithm for sensor failures in turbine engines

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Delaat, J. C.

    1986-01-01

    An advanced sensor failure detection, isolation, and accommodation (ADIA) algorithm has been developed for use with an aircraft turbofan engine control system. In a previous paper the authors described the ADIA algorithm and its real-time implementation. Subsequent improvements made to the algorithm and implementation are discussed, and the results of an evaluation presented. The evaluation used a real-time, hybrid computer simulation of an F100 turbofan engine.

  9. Investigating prior probabilities in a multiple hypothesis test for use in space domain awareness

    NASA Astrophysics Data System (ADS)

    Hardy, Tyler J.; Cain, Stephen C.

    2016-05-01

    The goal of this research effort is to improve Space Domain Awareness (SDA) capabilities of current telescope systems through improved detection algorithms. Ground-based optical SDA telescopes are often spatially under-sampled, or aliased. This fact negatively impacts the detection performance of traditionally proposed binary and correlation-based detection algorithms. A Multiple Hypothesis Test (MHT) algorithm has been previously developed to mitigate the effects of spatial aliasing. This is done by testing potential Resident Space Objects (RSOs) against several sub-pixel shifted Point Spread Functions (PSFs). A MHT has been shown to increase detection performance for the same false alarm rate. In this paper, the assumption of a priori probability used in a MHT algorithm is investigated. First, an analysis of the pixel decision space is completed to determine alternate hypothesis prior probabilities. These probabilities are then implemented into a MHT algorithm, and the algorithm is then tested against previous MHT algorithms using simulated RSO data. Results are reported with Receiver Operating Characteristic (ROC) curves and probability of detection, Pd, analysis.

  10. A VLSI architecture for simplified arithmetic Fourier transform algorithm

    NASA Technical Reports Server (NTRS)

    Reed, Irving S.; Shih, Ming-Tang; Truong, T. K.; Hendon, E.; Tufts, D. W.

    1992-01-01

    The arithmetic Fourier transform (AFT) is a number-theoretic approach to Fourier analysis which has been shown to perform competitively with the classical FFT in terms of accuracy, complexity, and speed. Theorems developed in a previous paper for the AFT algorithm are used here to derive the original AFT algorithm which Bruns found in 1903. This is shown to yield an algorithm of less complexity and of improved performance over certain recent AFT algorithms. A VLSI architecture is suggested for this simplified AFT algorithm. This architecture uses a butterfly structure which reduces the number of additions by 25 percent of that used in the direct method.

  11. Motion artifact removal algorithm by ICA for e-bra: a women ECG measurement system

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.

    2013-04-01

    Wearable ECG(ElectroCardioGram) measurement systems have increasingly been developing for people who suffer from CVD(CardioVascular Disease) and have very active lifestyles. Especially, in the case of female CVD patients, several abnormal CVD symptoms are accompanied with CVDs. Therefore, monitoring women's ECG signal is a significant diagnostic method to prevent from sudden heart attack. The E-bra ECG measurement system from our previous work provides more convenient option for women than Holter monitor system. The e-bra system was developed with a motion artifact removal algorithm by using an adaptive filter with LMS(least mean square) and a wandering noise baseline detection algorithm. In this paper, ICA(independent component analysis) algorithms are suggested to remove motion artifact factor for the e-bra system. Firstly, the ICA algorithms are developed with two kinds of statistical theories: Kurtosis, Endropy and evaluated by performing simulations with a ECG signal created by sgolayfilt function of MATLAB, a noise signal including 0.4Hz, 1.1Hz and 1.9Hz, and a weighed vector W estimated by kurtosis or entropy. A correlation value is shown as the degree of similarity between the created ECG signal and the estimated new ECG signal. In the real time E-Bra system, two pseudo signals are extracted by multiplying with a random weighted vector W, the measured ECG signal from E-bra system, and the noise component signal by noise extraction algorithm from our previous work. The suggested ICA algorithm basing on kurtosis or entropy is used to estimate the new ECG signal Y without noise component.

  12. Simplified Syndrome Decoding of (n, 1) Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1983-01-01

    A new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck is presented. The new algorithm uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). This set of Diophantine solutions is a coset of the CC space. A recursive or Viterbi-like algorithm is developed to find the minimum weight error vector cirumflex E(D) in this error coset. An example illustrating the new decoding algorithm is given for the binary nonsymmetric (2,1)CC.

  13. GOSAT CO2 retrieval results using TANSO-CAI aerosol information over East Asia

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, W.; Jung, Y.; Lee, S.; Kim, J.; Lee, H.; Boesch, H.; Goo, T. Y.

    2015-12-01

    In the satellite remote sensing of CO2, incorrect aerosol information could induce large errors as previous studies suggested. Many factors, such as, aerosol type, wavelength dependency of AOD, aerosol polarization effect and etc. have been main error sources. Due to these aerosol effects, large number of data retrieved are screened out in quality control, or retrieval errors tend to increase if not screened out, especially in East Asia where aerosol concentrations are fairly high. To reduce these aerosol induced errors, a CO2 retrieval algorithm using the simultaneous TANSO-CAI aerosol information is developed. This algorithm adopts AOD and aerosol type information as a priori information from the CAI aerosol retrieval algorithm. The CO2 retrieval algorithm based on optimal estimation method and VLIDORT, a vector discrete ordinate radiative transfer model. The CO2 algorithm, developed with various state vectors to find accurate CO2 concentration, shows reasonable results when compared with other dataset. This study concentrates on the validation of retrieved results with the ground-based TCCON measurements in East Asia and the comparison with the previous retrieval from ACOS, NIES, and UoL. Although, the retrieved CO2 concentration is lower than previous results by ppm's, it shows similar trend and high correlation with previous results. Retrieved data and TCCON measurements data are compared at three stations of Tsukuba, Saga, Anmyeondo in East Asia, with the collocation criteria of ±2°in latitude/longitude and ±1 hours of GOSAT passing time. Compared results also show similar trend with good correlation. Based on the TCCON comparison results, bias correction equation is calculated and applied to the East Asia data.

  14. Pressure algorithm for elliptic flow calculations with the PDF method

    NASA Technical Reports Server (NTRS)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  15. Development of model reference adaptive control theory for electric power plant control applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mabius, L.E.

    1982-09-15

    The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis.more » An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.« less

  16. Semi-blind sparse image reconstruction with application to MRFM.

    PubMed

    Park, Se Un; Dobigeon, Nicolas; Hero, Alfred O

    2012-09-01

    We propose a solution to the image deconvolution problem where the convolution kernel or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the PSF uncertainty in a high-dimensional space. Unlike recent developments on blind deconvolution of natural images, we assume the image is sparse in the pixel basis, a natural sparsity arising in magnetic resonance force microscopy (MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of our Bayesian semi-blind algorithm for sparse images is superior to previously proposed semi-blind algorithms such as the alternating minimization algorithm and blind algorithms developed for natural images. We illustrate our myopic algorithm on real MRFM tobacco virus data.

  17. An evaluation of the NQF Quality Data Model for representing Electronic Health Record driven phenotyping algorithms.

    PubMed

    Thompson, William K; Rasmussen, Luke V; Pacheco, Jennifer A; Peissig, Peggy L; Denny, Joshua C; Kho, Abel N; Miller, Aaron; Pathak, Jyotishman

    2012-01-01

    The development of Electronic Health Record (EHR)-based phenotype selection algorithms is a non-trivial and highly iterative process involving domain experts and informaticians. To make it easier to port algorithms across institutions, it is desirable to represent them using an unambiguous formal specification language. For this purpose we evaluated the recently developed National Quality Forum (NQF) information model designed for EHR-based quality measures: the Quality Data Model (QDM). We selected 9 phenotyping algorithms that had been previously developed as part of the eMERGE consortium and translated them into QDM format. Our study concluded that the QDM contains several core elements that make it a promising format for EHR-driven phenotyping algorithms for clinical research. However, we also found areas in which the QDM could be usefully extended, such as representing information extracted from clinical text, and the ability to handle algorithms that do not consist of Boolean combinations of criteria.

  18. Technical Note: A novel leaf sequencing optimization algorithm which considers previous underdose and overdose events for MLC tracking radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisotzky, Eric, E-mail: eric.wisotzky@charite.de, E-mail: eric.wisotzky@ipk.fraunhofer.de; O’Brien, Ricky; Keall, Paul J., E-mail: paul.keall@sydney.edu.au

    2016-01-15

    Purpose: Multileaf collimator (MLC) tracking radiotherapy is complex as the beam pattern needs to be modified due to the planned intensity modulation as well as the real-time target motion. The target motion cannot be planned; therefore, the modified beam pattern differs from the original plan and the MLC sequence needs to be recomputed online. Current MLC tracking algorithms use a greedy heuristic in that they optimize for a given time, but ignore past errors. To overcome this problem, the authors have developed and improved an algorithm that minimizes large underdose and overdose regions. Additionally, previous underdose and overdose events aremore » taken into account to avoid regions with high quantity of dose events. Methods: The authors improved the existing MLC motion control algorithm by introducing a cumulative underdose/overdose map. This map represents the actual projection of the planned tumor shape and logs occurring dose events at each specific regions. These events have an impact on the dose cost calculation and reduce recurrence of dose events at each region. The authors studied the improvement of the new temporal optimization algorithm in terms of the L1-norm minimization of the sum of overdose and underdose compared to not accounting for previous dose events. For evaluation, the authors simulated the delivery of 5 conformal and 14 intensity-modulated radiotherapy (IMRT)-plans with 7 3D patient measured tumor motion traces. Results: Simulations with conformal shapes showed an improvement of L1-norm up to 8.5% after 100 MLC modification steps. Experiments showed comparable improvements with the same type of treatment plans. Conclusions: A novel leaf sequencing optimization algorithm which considers previous dose events for MLC tracking radiotherapy has been developed and investigated. Reductions in underdose/overdose are observed for conformal and IMRT delivery.« less

  19. System for Anomaly and Failure Detection (SAFD) system development

    NASA Technical Reports Server (NTRS)

    Oreilly, D.

    1992-01-01

    This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition.

  20. Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation

    DOE PAGES

    Ryan, Kevin; Rajan, Deepak; Ahmed, Shabbir

    2016-05-01

    We recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In our work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous and asynchronous algorithm are proposed. We also test the results on well known stochastic 0-1 programs from the SIPLIB test library and is able to solve one previously unsolved instance from the test set.

  1. A homotopy algorithm for digital optimal projection control GASD-HADOC

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.

    1993-01-01

    The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.

  2. Detections of Propellers in Saturn's Rings using Machine Learning: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Gordon, Mitchell K.; Showalter, Mark R.; Odess, Jennifer; Del Villar, Ambi; LaMora, Andy; Paik, Jin; Lakhani, Karim; Sergeev, Rinat; Erickson, Kristen; Galica, Carol; Grayzeck, Edwin; Morgan, Thomas; Knopf, William

    2015-11-01

    We report on the initial analysis of the output of a tool designed to identify persistent, non-axisymmetric features in the rings of Saturn. This project introduces a new paradigm for scientific software development. The preliminary results include what appear to be new detections of propellers in the rings of Saturn.The Planetary Data System (PDS), working with the NASA Tournament Lab (NTL), Crowd Innovation Lab at Harvard University, and the Topcoder community at Appirio, Inc., under the umbrella “Cassini Rings Challenge”, sponsored a set of competitions employing crowd sourcing and machine learning to develop a tool which could be made available to the community at large. The Challenge was tackled by running a series of separate contests to solve individual tasks prior to the major machine learning challenge. Each contest was comprised of a set of requirements, a timeline, one or more prizes, and other incentives, and was posted by Appirio to the Topcoder Community. In the case of the machine learning challenge (a “Marathon Challenge” on the Topcoder platform), members competed against each other by submitting solutions that were scored in real time and posted to a public leader-board by a scoring algorithm developed by Appirio for this contest.The current version of the algorithm was run against ~30,000 of the highest resolution Cassini ISS images. That set included 668 images with a total of 786 features previously identified as propellers in the main rings. The tool identified 81% of those previously identified propellers. In a preliminary, close examination of 130 detections identified by the tool, we determined that of the 130 detections, 11 were previously identified propeller detections, 5 appear to be new detections of known propellers, and 4 appear to be detections of propellers which have not been seen previously. A total of 20 valid detections from 130 candidates implies a relatively high false positive rate which we hope to reduce by further algorithm development. The machine learning aspect of the algorithm means that as our set of verified detections increases so does the pool of “ground-truth” data used to train the algorithm for future use.

  3. Analysis of modal behavior at frequency cross-over

    NASA Astrophysics Data System (ADS)

    Costa, Robert N., Jr.

    1994-11-01

    The existence of the mode crossing condition is detected and analyzed in the Active Control of Space Structures Model 4 (ACOSS4). The condition is studied for its contribution to the inability of previous algorithms to successfully optimize the structure and converge to a feasible solution. A new algorithm is developed to detect and correct for mode crossings. The existence of the mode crossing condition is verified in ACOSS4 and found not to have appreciably affected the solution. The structure is then successfully optimized using new analytic methods based on modal expansion. An unrelated error in the optimization algorithm previously used is verified and corrected, thereby equipping the optimization algorithm with a second analytic method for eigenvector differentiation based on Nelson's Method. The second structure is the Control of Flexible Structures (COFS). The COFS structure is successfully reproduced and an initial eigenanalysis completed.

  4. Semiannual Report, April 1, 1989 through September 30, 1989 (Institute for Computer Applications in Science and Engineering)

    DTIC Science & Technology

    1990-02-01

    noise. Tobias B. Orloff Work began on developing a high quality rendering algorithm based on the radiosity method. The algorithm is similar to...previous progressive radiosity algorithms except for the following improvements: 1. At each iteration vertex radiosities are computed using a modified scan...line approach, thus eliminating the quadratic cost associated with a ray tracing computation of vortex radiosities . 2. At each iteration the scene is

  5. New syndrome decoder for (n, 1) convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1983-01-01

    The letter presents a new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck. The new technique uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). A recursive, Viterbi-like, algorithm is developed to find the minimum weight error vector E(D). An example is given for the binary nonsystematic (2, 1) CC.

  6. New syndrome decoding techniques for the (n, k) convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1984-01-01

    This paper presents a new syndrome decoding algorithm for the (n, k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3, 1)CC. Previously announced in STAR as N83-34964

  7. New algorithms for identifying the flavour of [Formula: see text] mesons using pions and protons.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S

    2017-01-01

    Two new algorithms for use in the analysis of [Formula: see text] collision are developed to identify the flavour of [Formula: see text] mesons at production using pions and protons from the hadronization process. The algorithms are optimized and calibrated on data, using [Formula: see text] decays from [Formula: see text] collision data collected by LHCb at centre-of-mass energies of 7 and 8 TeV . The tagging power of the new pion algorithm is 60% greater than the previously available one; the algorithm using protons to identify the flavour of a [Formula: see text] meson is the first of its kind.

  8. Experimental investigation of the velocity field in buoyant diffusion flames using PIV and TPIV algorithm

    Treesearch

    L. Sun; X. Zhou; S.M. Mahalingam; D.R. Weise

    2005-01-01

    We investigated a simultaneous temporally and spatially resolved 2-D velocity field above a burning circular pan of alcohol using particle image velocimetry (PIV). The results obtained from PIV were used to assess a thermal particle image velocimetry (TPIV) algorithm previously developed to approximate the velocity field using the temperature field, simultaneously...

  9. Designing algorithm visualization on mobile platform: The proposed guidelines

    NASA Astrophysics Data System (ADS)

    Supli, A. A.; Shiratuddin, N.

    2017-09-01

    This paper entails an ongoing study about the design guidelines of algorithm visualization (AV) on mobile platform, helping students learning data structures and algorithm (DSA) subject effectively. Our previous review indicated that design guidelines of AV on mobile platform are still few. Mostly, previous guidelines of AV are developed for AV on desktop and website platform. In fact, mobile learning has been proved to enhance engagement in learning circumstances, and thus effect student's performance. In addition, the researchers highly recommend including UI design and Interactivity in designing effective AV system. However, the discussions of these two aspects in previous AV design guidelines are not comprehensive. The UI design in this paper describes the arrangement of AV features in mobile environment, whereas interactivity is about the active learning strategy features based on learning experiences (how to engage learners). Thus, this study main objective is to propose design guidelines of AV on mobile platform (AVOMP) that entails comprehensively UI design and interactivity aspects. These guidelines are developed through content analysis and comparative analysis from various related studies. These guidelines are useful for AV designers to help them constructing AVOMP for various topics on DSA.

  10. DNA Microarray Data Analysis: A Novel Biclustering Algorithm Approach

    NASA Astrophysics Data System (ADS)

    Tchagang, Alain B.; Tewfik, Ahmed H.

    2006-12-01

    Biclustering algorithms refer to a distinct class of clustering algorithms that perform simultaneous row-column clustering. Biclustering problems arise in DNA microarray data analysis, collaborative filtering, market research, information retrieval, text mining, electoral trends, exchange analysis, and so forth. When dealing with DNA microarray experimental data for example, the goal of biclustering algorithms is to find submatrices, that is, subgroups of genes and subgroups of conditions, where the genes exhibit highly correlated activities for every condition. In this study, we develop novel biclustering algorithms using basic linear algebra and arithmetic tools. The proposed biclustering algorithms can be used to search for all biclusters with constant values, biclusters with constant values on rows, biclusters with constant values on columns, and biclusters with coherent values from a set of data in a timely manner and without solving any optimization problem. We also show how one of the proposed biclustering algorithms can be adapted to identify biclusters with coherent evolution. The algorithms developed in this study discover all valid biclusters of each type, while almost all previous biclustering approaches will miss some.

  11. Intra Frame Coding In Advanced Video Coding Standard (H.264) to Obtain Consistent PSNR and Reduce Bit Rate for Diagonal Down Left Mode Using Gaussian Pulse

    NASA Astrophysics Data System (ADS)

    Manjanaik, N.; Parameshachari, B. D.; Hanumanthappa, S. N.; Banu, Reshma

    2017-08-01

    Intra prediction process of H.264 video coding standard used to code first frame i.e. Intra frame of video to obtain good coding efficiency compare to previous video coding standard series. More benefit of intra frame coding is to reduce spatial pixel redundancy with in current frame, reduces computational complexity and provides better rate distortion performance. To code Intra frame it use existing process Rate Distortion Optimization (RDO) method. This method increases computational complexity, increases in bit rate and reduces picture quality so it is difficult to implement in real time applications, so the many researcher has been developed fast mode decision algorithm for coding of intra frame. The previous work carried on Intra frame coding in H.264 standard using fast decision mode intra prediction algorithm based on different techniques was achieved increased in bit rate, degradation of picture quality(PSNR) for different quantization parameters. Many previous approaches of fast mode decision algorithms on intra frame coding achieved only reduction of computational complexity or it save encoding time and limitation was increase in bit rate with loss of quality of picture. In order to avoid increase in bit rate and loss of picture quality a better approach was developed. In this paper developed a better approach i.e. Gaussian pulse for Intra frame coding using diagonal down left intra prediction mode to achieve higher coding efficiency in terms of PSNR and bitrate. In proposed method Gaussian pulse is multiplied with each 4x4 frequency domain coefficients of 4x4 sub macro block of macro block of current frame before quantization process. Multiplication of Gaussian pulse for each 4x4 integer transformed coefficients at macro block levels scales the information of the coefficients in a reversible manner. The resulting signal would turn abstract. Frequency samples are abstract in a known and controllable manner without intermixing of coefficients, it avoids picture getting bad hit for higher values of quantization parameters. The proposed work was implemented using MATLAB and JM 18.6 reference software. The proposed work measure the performance parameters PSNR, bit rate and compression of intra frame of yuv video sequences in QCIF resolution under different values of quantization parameter with Gaussian value for diagonal down left intra prediction mode. The simulation results of proposed algorithm are tabulated and compared with previous algorithm i.e. Tian et al method. The proposed algorithm achieved reduced in bit rate averagely 30.98% and maintain consistent picture quality for QCIF sequences compared to previous algorithm i.e. Tian et al method.

  12. Automated discovery of local search heuristics for satisfiability testing.

    PubMed

    Fukunaga, Alex S

    2008-01-01

    The development of successful metaheuristic algorithms such as local search for a difficult problem such as satisfiability testing (SAT) is a challenging task. We investigate an evolutionary approach to automating the discovery of new local search heuristics for SAT. We show that several well-known SAT local search algorithms such as Walksat and Novelty are composite heuristics that are derived from novel combinations of a set of building blocks. Based on this observation, we developed CLASS, a genetic programming system that uses a simple composition operator to automatically discover SAT local search heuristics. New heuristics discovered by CLASS are shown to be competitive with the best Walksat variants, including Novelty+. Evolutionary algorithms have previously been applied to directly evolve a solution for a particular SAT instance. We show that the heuristics discovered by CLASS are also competitive with these previous, direct evolutionary approaches for SAT. We also analyze the local search behavior of the learned heuristics using the depth, mobility, and coverage metrics proposed by Schuurmans and Southey.

  13. Multicore and GPU algorithms for Nussinov RNA folding

    PubMed Central

    2014-01-01

    Background One segment of a RNA sequence might be paired with another segment of the same RNA sequence due to the force of hydrogen bonds. This two-dimensional structure is called the RNA sequence's secondary structure. Several algorithms have been proposed to predict an RNA sequence's secondary structure. These algorithms are referred to as RNA folding algorithms. Results We develop cache efficient, multicore, and GPU algorithms for RNA folding using Nussinov's algorithm. Conclusions Our cache efficient algorithm provides a speedup between 1.6 and 3.0 relative to a naive straightforward single core code. The multicore version of the cache efficient single core algorithm provides a speedup, relative to the naive single core algorithm, between 7.5 and 14.0 on a 6 core hyperthreaded CPU. Our GPU algorithm for the NVIDIA C2050 is up to 1582 times as fast as the naive single core algorithm and between 5.1 and 11.2 times as fast as the fastest previously known GPU algorithm for Nussinov RNA folding. PMID:25082539

  14. Simple Algorithms for Distributed Leader Election in Anonymous Synchronous Rings and Complete Networks Inspired by Neural Development in Fruit Flies.

    PubMed

    Xu, Lei; Jeavons, Peter

    2015-11-01

    Leader election in anonymous rings and complete networks is a very practical problem in distributed computing. Previous algorithms for this problem are generally designed for a classical message passing model where complex messages are exchanged. However, the need to send and receive complex messages makes such algorithms less practical for some real applications. We present some simple synchronous algorithms for distributed leader election in anonymous rings and complete networks that are inspired by the development of the neural system of the fruit fly. Our leader election algorithms all assume that only one-bit messages are broadcast by nodes in the network and processors are only able to distinguish between silence and the arrival of one or more messages. These restrictions allow implementations to use a simpler message-passing architecture. Even with these harsh restrictions our algorithms are shown to achieve good time and message complexity both analytically and experimentally.

  15. Retrieval of volcanic ash height from satellite-based infrared measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Li, Jun; Zhao, Yingying; Gong, He; Li, Wenjie

    2017-05-01

    A new algorithm for retrieving volcanic ash cloud height from satellite-based measurements is presented. This algorithm, which was developed in preparation for China's next-generation meteorological satellite (FY-4), is based on volcanic ash microphysical property simulation and statistical optimal estimation theory. The MSG satellite's main payload, a 12-channel Spinning Enhanced Visible and Infrared Imager, was used as proxy data to test this new algorithm. A series of eruptions of Iceland's Eyjafjallajökull volcano during April to May 2010 and the Puyehue-Cordón Caulle volcanic complex eruption in the Chilean Andes on 16 June 2011 were selected as two typical cases for evaluating the algorithm under various meteorological backgrounds. Independent volcanic ash simulation training samples and satellite-based Cloud-Aerosol Lidar with Orthogonal Polarization data were used as validation data. It is demonstrated that the statistically based volcanic ash height algorithm is able to rapidly retrieve volcanic ash heights, globally. The retrieved ash heights show comparable accuracy with both independent training data and the lidar measurements, which is consistent with previous studies. However, under complicated background, with multilayers in vertical scale, underlying stratus clouds tend to have detrimental effects on the final retrieval accuracy. This is an unresolved problem, like many other previously published methods using passive satellite sensors. Compared with previous studies, the FY-4 ash height algorithm is independent of simultaneous atmospheric profiles, providing a flexible way to estimate volcanic ash height using passive satellite infrared measurements.

  16. Approximate Algorithms for Computing Spatial Distance Histograms with Accuracy Guarantees

    PubMed Central

    Grupcev, Vladimir; Yuan, Yongke; Tu, Yi-Cheng; Huang, Jin; Chen, Shaoping; Pandit, Sagar; Weng, Michael

    2014-01-01

    Particle simulation has become an important research tool in many scientific and engineering fields. Data generated by such simulations impose great challenges to database storage and query processing. One of the queries against particle simulation data, the spatial distance histogram (SDH) query, is the building block of many high-level analytics, and requires quadratic time to compute using a straightforward algorithm. Previous work has developed efficient algorithms that compute exact SDHs. While beating the naive solution, such algorithms are still not practical in processing SDH queries against large-scale simulation data. In this paper, we take a different path to tackle this problem by focusing on approximate algorithms with provable error bounds. We first present a solution derived from the aforementioned exact SDH algorithm, and this solution has running time that is unrelated to the system size N. We also develop a mathematical model to analyze the mechanism that leads to errors in the basic approximate algorithm. Our model provides insights on how the algorithm can be improved to achieve higher accuracy and efficiency. Such insights give rise to a new approximate algorithm with improved time/accuracy tradeoff. Experimental results confirm our analysis. PMID:24693210

  17. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    PubMed

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  18. Broadband continuous wave source localization via pair-wise, cochleagram processing

    NASA Astrophysics Data System (ADS)

    Nosal, Eva-Marie; Frazer, L. Neil

    2005-04-01

    A pair-wise processor has been developed for the passive localization of broadband continuous-wave underwater sources. The algorithm uses sparse hydrophone arrays and does not require previous knowledge of the source signature. It is applicable in multiple source situations. A spectrogram/cochleagram version of the algorithm has been developed in order to utilize higher frequencies at longer ranges where signal incoherence, and limited computational resources, preclude the use of full waveforms. Simulations demonstrating the robustness of the algorithm with respect to noise and environmental mismatch will be presented, together with initial results from the analysis of humpback whale song recorded at the Pacific Missile Range Facility off Kauai. [Work supported by MHPCC and ONR.

  19. A Two-Dimensional Linear Bicharacteristic FDTD Method

    NASA Technical Reports Server (NTRS)

    Beggs, John H.

    2002-01-01

    The linear bicharacteristic scheme (LBS) was originally developed to improve unsteady solutions in computational acoustics and aeroacoustics. The LBS has previously been extended to treat lossy materials for one-dimensional problems. It is a classical leapfrog algorithm, but is combined with upwind bias in the spatial derivatives. This approach preserves the time-reversibility of the leapfrog algorithm, which results in no dissipation, and it permits more flexibility by the ability to adopt a characteristic based method. The use of characteristic variables allows the LBS to include the Perfectly Matched Layer boundary condition with no added storage or complexity. The LBS offers a central storage approach with lower dispersion than the Yee algorithm, plus it generalizes much easier to nonuniform grids. It has previously been applied to two and three-dimensional free-space electromagnetic propagation and scattering problems. This paper extends the LBS to the two-dimensional case. Results are presented for point source radiation problems, and the FDTD algorithm is chosen as a convenient reference for comparison.

  20. Model reference adaptive control of robots

    NASA Technical Reports Server (NTRS)

    Steinvorth, Rodrigo

    1991-01-01

    This project presents the results of controlling two types of robots using new Command Generator Tracker (CGT) based Direct Model Reference Adaptive Control (MRAC) algorithms. Two mathematical models were used to represent a single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were then controlled in simulation using different MRAC algorithms. Special attention was given to the performance of the algorithms in the presence of sudden changes in the robot load. Previously used CGT based MRAC algorithms had several problems. The original algorithm that was developed guaranteed asymptotic stability only for almost strictly positive real (ASPR) plants. This condition is very restrictive, since most systems do not satisfy this assumption. Further developments to the algorithm led to an expansion of the number of plants that could be controlled, however, a steady state error was introduced in the response. These problems led to the introduction of some modifications to the algorithms so that they would be able to control a wider class of plants and at the same time would asymptotically track the reference model. This project presents the development of two algorithms that achieve the desired results and simulates the control of the two robots mentioned before. The results of the simulations are satisfactory and show that the problems stated above have been corrected in the new algorithms. In addition, the responses obtained show that the adaptively controlled processes are resistant to sudden changes in the load.

  1. Reversible Data Hiding Based on DNA Computing

    PubMed Central

    Xie, Yingjie

    2017-01-01

    Biocomputing, especially DNA, computing has got great development. It is widely used in information security. In this paper, a novel algorithm of reversible data hiding based on DNA computing is proposed. Inspired by the algorithm of histogram modification, which is a classical algorithm for reversible data hiding, we combine it with DNA computing to realize this algorithm based on biological technology. Compared with previous results, our experimental results have significantly improved the ER (Embedding Rate). Furthermore, some PSNR (peak signal-to-noise ratios) of test images are also improved. Experimental results show that it is suitable for protecting the copyright of cover image in DNA-based information security. PMID:28280504

  2. The Cyborg Astrobiologist: testing a novelty detection algorithm on two mobile exploration systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Gross, C.; Wendt, L.; Bonnici, A.; Souza-Egipsy, V.; Ormö, J.; Díaz-Martínez, E.; Foing, B. H.; Bose, R.; Walter, S.; Oesker, M.; Ontrup, J.; Haschke, R.; Ritter, H.

    2010-01-01

    In previous work, a platform was developed for testing computer-vision algorithms for robotic planetary exploration. This platform consisted of a digital video camera connected to a wearable computer for real-time processing of images at geological and astrobiological field sites. The real-time processing included image segmentation and the generation of interest points based upon uncommonness in the segmentation maps. Also in previous work, this platform for testing computer-vision algorithms has been ported to a more ergonomic alternative platform, consisting of a phone camera connected via the Global System for Mobile Communications (GSM) network to a remote-server computer. The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon colour, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colours to test this algorithm. The algorithm robustly recognized previously observed units by their colour, while requiring only a single image or a few images to learn colours as familiar, demonstrating its fast learning capability.

  3. Models of performance of evolutionary program induction algorithms based on indicators of problem difficulty.

    PubMed

    Graff, Mario; Poli, Riccardo; Flores, Juan J

    2013-01-01

    Modeling the behavior of algorithms is the realm of evolutionary algorithm theory. From a practitioner's point of view, theory must provide some guidelines regarding which algorithm/parameters to use in order to solve a particular problem. Unfortunately, most theoretical models of evolutionary algorithms are difficult to apply to realistic situations. However, in recent work (Graff and Poli, 2008, 2010), where we developed a method to practically estimate the performance of evolutionary program-induction algorithms (EPAs), we started addressing this issue. The method was quite general; however, it suffered from some limitations: it required the identification of a set of reference problems, it required hand picking a distance measure in each particular domain, and the resulting models were opaque, typically being linear combinations of 100 features or more. In this paper, we propose a significant improvement of this technique that overcomes the three limitations of our previous method. We achieve this through the use of a novel set of features for assessing problem difficulty for EPAs which are very general, essentially based on the notion of finite difference. To show the capabilities or our technique and to compare it with our previous performance models, we create models for the same two important classes of problems-symbolic regression on rational functions and Boolean function induction-used in our previous work. We model a variety of EPAs. The comparison showed that for the majority of the algorithms and problem classes, the new method produced much simpler and more accurate models than before. To further illustrate the practicality of the technique and its generality (beyond EPAs), we have also used it to predict the performance of both autoregressive models and EPAs on the problem of wind speed forecasting, obtaining simpler and more accurate models that outperform in all cases our previous performance models.

  4. Neural network-based run-to-run controller using exposure and resist thickness adjustment

    NASA Astrophysics Data System (ADS)

    Geary, Shane; Barry, Ronan

    2003-06-01

    This paper describes the development of a run-to-run control algorithm using a feedforward neural network, trained using the backpropagation training method. The algorithm is used to predict the critical dimension of the next lot using previous lot information. It is compared to a common prediction algorithm - the exponentially weighted moving average (EWMA) and is shown to give superior prediction performance in simulations. The manufacturing implementation of the final neural network showed significantly improved process capability when compared to the case where no run-to-run control was utilised.

  5. A proof of the DBRF-MEGN method, an algorithm for deducing minimum equivalent gene networks

    PubMed Central

    2011-01-01

    Background We previously developed the DBRF-MEGN (difference-based regulation finding-minimum equivalent gene network) method, which deduces the most parsimonious signed directed graphs (SDGs) consistent with expression profiles of single-gene deletion mutants. However, until the present study, we have not presented the details of the method's algorithm or a proof of the algorithm. Results We describe in detail the algorithm of the DBRF-MEGN method and prove that the algorithm deduces all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants. Conclusions The DBRF-MEGN method provides all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants. PMID:21699737

  6. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Bilin, B.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; Damiao, D. De Jesus; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Thomas-wilsker, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Wang, Y.; Avila, C.; Cabrera, A.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M., Jr.; Carrera Jarrin, E.; El-khateeb, E.; Elgammal, S.; Ellithi Kamel, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Blanco, J. Martin; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Teroerde, M.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Anuar, A. A. Bin; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Defranchis, M. M.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; El Morabit, K.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Ravera, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Ali, M. A. B. Md; Mohamad Idris, F.; Abdullah, W. A. T. Wan; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza; R; Ramirez-Sanchez; G.; Duran-Osuna; C., M.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo; I., R.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Silva, C. Beirão Da Cruz E.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Baginyan, A.; Golunov, A.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kashunin, I.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Trofimov, V.; Yuldashev, B. S.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bat, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Köseoglu, I.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Sevilla, M. Franco; Golf, F.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2018-05-01

    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated bar t events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The b jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV).

  7. Improved Atmospheric Soundings and Error Estimates from Analysis of AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2007-01-01

    The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave C02 channel observations in the spectral region 700 cm-' to 750 cm-' are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm-' to 2395 cm-' are used for temperature sounding purposes. The new methodology for improved error estimates and their use in quality control is described briefly and results are shown indicative of their accuracy. Results are also shown of forecast impact experiments assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System using different quality control thresholds.

  8. Stochastic control approaches for sensor management in search and exploitation

    NASA Astrophysics Data System (ADS)

    Hitchings, Darin Chester

    Recent improvements in the capabilities of autonomous vehicles have motivated their increased use in such applications as defense, homeland security, environmental monitoring, and surveillance. To enhance performance in these applications, new algorithms are required to control teams of robots autonomously and through limited interactions with human operators. In this dissertation we develop new algorithms for control of robots performing information-seeking missions in unknown environments. These missions require robots to control their sensors in order to discover the presence of objects, keep track of the objects, and learn what these objects are, given a fixed sensing budget. Initially, we investigate control of multiple sensors, with a finite set of sensing options and finite-valued measurements, to locate and classify objects given a limited resource budget. The control problem is formulated as a Partially Observed Markov Decision Problem (POMDP), but its exact solution requires excessive computation. Under the assumption that sensor error statistics are independent and time-invariant, we develop a class of algorithms using Lagrangian Relaxation techniques to obtain optimal mixed strategies using performance bounds developed in previous research. We investigate alternative Receding Horizon (RH) controllers to convert the mixed strategies to feasible adaptive-sensing strategies and evaluate the relative performance of these controllers in simulation. The resulting controllers provide superior performance to alternative algorithms proposed in the literature and obtain solutions to large-scale POMDP problems several orders of magnitude faster than optimal Dynamic Programming (DP) approaches with comparable performance quality. We extend our results for finite action, finite measurement sensor control to scenarios with moving objects. We use Hidden Markov Models (HMMs) for the evolution of objects, according to the dynamics of a birth-death process. We develop a new lower bound on the performance of adaptive controllers in these scenarios, develop algorithms for computing solutions to this lower bound, and use these algorithms as part of a RH controller for sensor allocation in the presence of moving objects We also consider an adaptive Search problem where sensing actions are continuous and the underlying measurement space is also continuous. We extend our previous hierarchical decomposition approach based on performance bounds to this problem and develop novel implementations of Stochastic Dynamic Programming (SDP) techniques to solve this problem. Our algorithms are nearly two orders of magnitude faster than previously proposed approaches and yield solutions of comparable quality. For supervisory control, we discuss how human operators can work with and augment robotic teams performing these tasks. Our focus is on how tasks are partitioned among teams of robots and how a human operator can make intelligent decisions for task partitioning. We explore these questions through the design of a game that involves robot automata controlled by our algorithms and a human supervisor that partitions tasks based on different levels of support information. This game can be used with human subject experiments to explore the effect of information on quality of supervisory control.

  9. Greedy Algorithms for Nonnegativity-Constrained Simultaneous Sparse Recovery

    PubMed Central

    Kim, Daeun; Haldar, Justin P.

    2016-01-01

    This work proposes a family of greedy algorithms to jointly reconstruct a set of vectors that are (i) nonnegative and (ii) simultaneously sparse with a shared support set. The proposed algorithms generalize previous approaches that were designed to impose these constraints individually. Similar to previous greedy algorithms for sparse recovery, the proposed algorithms iteratively identify promising support indices. In contrast to previous approaches, the support index selection procedure has been adapted to prioritize indices that are consistent with both the nonnegativity and shared support constraints. Empirical results demonstrate for the first time that the combined use of simultaneous sparsity and nonnegativity constraints can substantially improve recovery performance relative to existing greedy algorithms that impose less signal structure. PMID:26973368

  10. Fast Multiscale Algorithms for Information Representation and Fusion

    DTIC Science & Technology

    2011-07-01

    We are also developing convenient command-line invocation tools in addition to the previously developed APIs . Various real-world data sets...This knowledge is important in geolocation applications where knowing whether a received signal is line-of-sight or not is necessary for the

  11. Behavioral-Based Predictors of Workplace Violence in the Army STARRS

    DTIC Science & Technology

    2014-10-01

    Dawes RM, Faust D, Meehl PE. Clinical versus actuarial judgment. Science . 1989;243(4899): 1668-1674. 46. Grove WM, Zald DH, Lebow BS, Snitz BE, Nelson...develop an actuarial risk algorithm predicting suicide in the 12 months after US Army soldier inpatient treatment of a psychiatric disorder to target...generate an actuarial post- hospitalization suicide risk algorithm. Previous research has revealed that actuarial suicide prediction is much more

  12. Improving Simulated Annealing by Recasting it as a Non-Cooperative Game

    NASA Technical Reports Server (NTRS)

    Wolpert, David; Bandari, Esfandiar; Tumer, Kagan

    2001-01-01

    The game-theoretic field of COllective INtelligence (COIN) concerns the design of computer-based players engaged in a non-cooperative game so that as those players pursue their self-interests, a pre-specified global goal for the collective computational system is achieved "as a side-effect". Previous implementations of COIN algorithms have outperformed conventional techniques by up to several orders of magnitude, on domains ranging from telecommunications control to optimization in congestion problems. Recent mathematical developments have revealed that these previously developed game-theory-motivated algorithms were based on only two of the three factors determining performance. Consideration of only the third factor would instead lead to conventional optimization techniques like simulated annealing that have little to do with non-cooperative games. In this paper we present an algorithm based on all three terms at once. This algorithm can be viewed as a way to modify simulated annealing by recasting it as a non-cooperative game, with each variable replaced by a player. This recasting allows us to leverage the intelligent behavior of the individual players to substantially improve the exploration step of the simulated annealing. Experiments are presented demonstrating that this recasting improves simulated annealing by several orders of magnitude for spin glass relaxation and bin-packing.

  13. Autonomous dynamic obstacle avoidance for bacteria-powered microrobots (BPMs) with modified vector field histogram

    PubMed Central

    Kim, Hoyeon; Cheang, U. Kei

    2017-01-01

    In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles. PMID:29020016

  14. A computer-aided detection (CAD) system with a 3D algorithm for small acute intracranial hemorrhage

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Fernandez, James; Deshpande, Ruchi; Lee, Joon K.; Chan, Tao; Liu, Brent

    2012-02-01

    Acute Intracranial hemorrhage (AIH) requires urgent diagnosis in the emergency setting to mitigate eventual sequelae. However, experienced radiologists may not always be available to make a timely diagnosis. This is especially true for small AIH, defined as lesion smaller than 10 mm in size. A computer-aided detection (CAD) system for the detection of small AIH would facilitate timely diagnosis. A previously developed 2D algorithm shows high false positive rates in the evaluation based on LAC/USC cases, due to the limitation of setting up correct coordinate system for the knowledge-based classification system. To achieve a higher sensitivity and specificity, a new 3D algorithm is developed. The algorithm utilizes a top-hat transformation and dynamic threshold map to detect small AIH lesions. Several key structures of brain are detected and are used to set up a 3D anatomical coordinate system. A rule-based classification of the lesion detected is applied based on the anatomical coordinate system. For convenient evaluation in clinical environment, the CAD module is integrated with a stand-alone system. The CAD is evaluated by small AIH cases and matched normal collected in LAC/USC. The result of 3D CAD and the previous 2D CAD has been compared.

  15. Autonomous dynamic obstacle avoidance for bacteria-powered microrobots (BPMs) with modified vector field histogram.

    PubMed

    Kim, Hoyeon; Cheang, U Kei; Kim, Min Jun

    2017-01-01

    In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles.

  16. Efficient sequential and parallel algorithms for record linkage.

    PubMed

    Mamun, Abdullah-Al; Mi, Tian; Aseltine, Robert; Rajasekaran, Sanguthevar

    2014-01-01

    Integrating data from multiple sources is a crucial and challenging problem. Even though there exist numerous algorithms for record linkage or deduplication, they suffer from either large time needs or restrictions on the number of datasets that they can integrate. In this paper we report efficient sequential and parallel algorithms for record linkage which handle any number of datasets and outperform previous algorithms. Our algorithms employ hierarchical clustering algorithms as the basis. A key idea that we use is radix sorting on certain attributes to eliminate identical records before any further processing. Another novel idea is to form a graph that links similar records and find the connected components. Our sequential and parallel algorithms have been tested on a real dataset of 1,083,878 records and synthetic datasets ranging in size from 50,000 to 9,000,000 records. Our sequential algorithm runs at least two times faster, for any dataset, than the previous best-known algorithm, the two-phase algorithm using faster computation of the edit distance (TPA (FCED)). The speedups obtained by our parallel algorithm are almost linear. For example, we get a speedup of 7.5 with 8 cores (residing in a single node), 14.1 with 16 cores (residing in two nodes), and 26.4 with 32 cores (residing in four nodes). We have compared the performance of our sequential algorithm with TPA (FCED) and found that our algorithm outperforms the previous one. The accuracy is the same as that of this previous best-known algorithm.

  17. Neural and Decision Theoretic Approaches for the Automated Segmentation of Radiodense Tissue in Digitized Mammograms

    NASA Astrophysics Data System (ADS)

    Eckert, R.; Neyhart, J. T.; Burd, L.; Polikar, R.; Mandayam, S. A.; Tseng, M.

    2003-03-01

    Mammography is the best method available as a non-invasive technique for the early detection of breast cancer. The radiographic appearance of the female breast consists of radiolucent (dark) regions due to fat and radiodense (light) regions due to connective and epithelial tissue. The amount of radiodense tissue can be used as a marker for predicting breast cancer risk. Previously, we have shown that the use of statistical models is a reliable technique for segmenting radiodense tissue. This paper presents improvements in the model that allow for further development of an automated system for segmentation of radiodense tissue. The segmentation algorithm employs a two-step process. In the first step, segmentation of tissue and non-tissue regions of a digitized X-ray mammogram image are identified using a radial basis function neural network. The second step uses a constrained Neyman-Pearson algorithm, developed especially for this research work, to determine the amount of radiodense tissue. Results obtained using the algorithm have been validated by comparing with estimates provided by a radiologist employing previously established methods.

  18. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    NASA Technical Reports Server (NTRS)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar; McCulloch, Richard Chet James

    In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the mostmore » improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.« less

  20. Community-based benchmarking improves spike rate inference from two-photon calcium imaging data.

    PubMed

    Berens, Philipp; Freeman, Jeremy; Deneux, Thomas; Chenkov, Nikolay; McColgan, Thomas; Speiser, Artur; Macke, Jakob H; Turaga, Srinivas C; Mineault, Patrick; Rupprecht, Peter; Gerhard, Stephan; Friedrich, Rainer W; Friedrich, Johannes; Paninski, Liam; Pachitariu, Marius; Harris, Kenneth D; Bolte, Ben; Machado, Timothy A; Ringach, Dario; Stone, Jasmine; Rogerson, Luke E; Sofroniew, Nicolas J; Reimer, Jacob; Froudarakis, Emmanouil; Euler, Thomas; Román Rosón, Miroslav; Theis, Lucas; Tolias, Andreas S; Bethge, Matthias

    2018-05-01

    In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike rate inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.

  1. Robust control algorithms for Mars aerobraking

    NASA Technical Reports Server (NTRS)

    Shipley, Buford W., Jr.; Ward, Donald T.

    1992-01-01

    Four atmospheric guidance concepts have been adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. The first two offer improvements to the Analytic Predictor Corrector (APC) to increase its robustness to density variations. The second two are variations of a new Liapunov tracking exit phase algorithm, developed to guide the vehicle along a reference trajectory. These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. MARSGRAM is used to develop realistic atmospheres for the study. When square wave density pulses perturb the atmosphere all four controllers are successful. The algorithms are tested against atmospheres where the inbound and outbound density functions are different. Square wave density pulses are again used, but only for the outbound leg of the trajectory. Additionally, sine waves are used to perturb the density function. The new algorithms are found to be more robust than any previously tested and a Liapunov controller is selected as the most robust control algorithm overall examined.

  2. A Recommendation Algorithm for Automating Corollary Order Generation

    PubMed Central

    Klann, Jeffrey; Schadow, Gunther; McCoy, JM

    2009-01-01

    Manual development and maintenance of decision support content is time-consuming and expensive. We explore recommendation algorithms, e-commerce data-mining tools that use collective order history to suggest purchases, to assist with this. In particular, previous work shows corollary order suggestions are amenable to automated data-mining techniques. Here, an item-based collaborative filtering algorithm augmented with association rule interestingness measures mined suggestions from 866,445 orders made in an inpatient hospital in 2007, generating 584 potential corollary orders. Our expert physician panel evaluated the top 92 and agreed 75.3% were clinically meaningful. Also, at least one felt 47.9% would be directly relevant in guideline development. This automated generation of a rough-cut of corollary orders confirms prior indications about automated tools in building decision support content. It is an important step toward computerized augmentation to decision support development, which could increase development efficiency and content quality while automatically capturing local standards. PMID:20351875

  3. A recommendation algorithm for automating corollary order generation.

    PubMed

    Klann, Jeffrey; Schadow, Gunther; McCoy, J M

    2009-11-14

    Manual development and maintenance of decision support content is time-consuming and expensive. We explore recommendation algorithms, e-commerce data-mining tools that use collective order history to suggest purchases, to assist with this. In particular, previous work shows corollary order suggestions are amenable to automated data-mining techniques. Here, an item-based collaborative filtering algorithm augmented with association rule interestingness measures mined suggestions from 866,445 orders made in an inpatient hospital in 2007, generating 584 potential corollary orders. Our expert physician panel evaluated the top 92 and agreed 75.3% were clinically meaningful. Also, at least one felt 47.9% would be directly relevant in guideline development. This automated generation of a rough-cut of corollary orders confirms prior indications about automated tools in building decision support content. It is an important step toward computerized augmentation to decision support development, which could increase development efficiency and content quality while automatically capturing local standards.

  4. Optimized Algorithms for Prediction Within Robotic Tele-Operative Interfaces

    NASA Technical Reports Server (NTRS)

    Martin, Rodney A.; Wheeler, Kevin R.; Allan, Mark B.; SunSpiral, Vytas

    2010-01-01

    Robonaut, the humanoid robot developed at the Dexterous Robotics Labo ratory at NASA Johnson Space Center serves as a testbed for human-rob ot collaboration research and development efforts. One of the recent efforts investigates how adjustable autonomy can provide for a safe a nd more effective completion of manipulation-based tasks. A predictiv e algorithm developed in previous work was deployed as part of a soft ware interface that can be used for long-distance tele-operation. In this work, Hidden Markov Models (HMM?s) were trained on data recorded during tele-operation of basic tasks. In this paper we provide the d etails of this algorithm, how to improve upon the methods via optimization, and also present viable alternatives to the original algorithmi c approach. We show that all of the algorithms presented can be optim ized to meet the specifications of the metrics shown as being useful for measuring the performance of the predictive methods. 1

  5. Adaptive Wiener filter super-resolution of color filter array images.

    PubMed

    Karch, Barry K; Hardie, Russell C

    2013-08-12

    Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.

  6. PCM-SABRE: a platform for benchmarking and comparing outcome prediction methods in precision cancer medicine.

    PubMed

    Eyal-Altman, Noah; Last, Mark; Rubin, Eitan

    2017-01-17

    Numerous publications attempt to predict cancer survival outcome from gene expression data using machine-learning methods. A direct comparison of these works is challenging for the following reasons: (1) inconsistent measures used to evaluate the performance of different models, and (2) incomplete specification of critical stages in the process of knowledge discovery. There is a need for a platform that would allow researchers to replicate previous works and to test the impact of changes in the knowledge discovery process on the accuracy of the induced models. We developed the PCM-SABRE platform, which supports the entire knowledge discovery process for cancer outcome analysis. PCM-SABRE was developed using KNIME. By using PCM-SABRE to reproduce the results of previously published works on breast cancer survival, we define a baseline for evaluating future attempts to predict cancer outcome with machine learning. We used PCM-SABRE to replicate previous work that describe predictive models of breast cancer recurrence, and tested the performance of all possible combinations of feature selection methods and data mining algorithms that was used in either of the works. We reconstructed the work of Chou et al. observing similar trends - superior performance of Probabilistic Neural Network (PNN) and logistic regression (LR) algorithms and inconclusive impact of feature pre-selection with the decision tree algorithm on subsequent analysis. PCM-SABRE is a software tool that provides an intuitive environment for rapid development of predictive models in cancer precision medicine.

  7. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  8. New approaches for measuring changes in the cortical surface using an automatic reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Pham, Dzung L.; Han, Xiao; Rettmann, Maryam E.; Xu, Chenyang; Tosun, Duygu; Resnick, Susan; Prince, Jerry L.

    2002-05-01

    In previous work, the authors presented a multi-stage procedure for the semi-automatic reconstruction of the cerebral cortex from magnetic resonance images. This method suffered from several disadvantages. First, the tissue classification algorithm used can be sensitive to noise within the image. Second, manual interaction was required for masking out undesired regions of the brain image, such as the ventricles and putamen. Third, iterated median filters were used to perform a topology correction on the initial cortical surface, resulting in an overly smoothed initial surface. Finally, the deformable surface used to converge to the cortex had difficulty capturing narrow gyri. In this work, all four disadvantages of the procedure have been addressed. A more robust tissue classification algorithm is employed and the manual masking step is replaced by an automatic method involving level set deformable models. Instead of iterated median filters, an algorithm developed specifically for topology correction is used. The last disadvantage is addressed using an algorithm that artificially separates adjacent sulcal banks. The new procedure is more automated but also more accurate than the previous one. Its utility is demonstrated by performing a preliminary study on data from the Baltimore Longitudinal Study of Aging.

  9. [Optimization of the parameters of microcirculatory structural adaptation model based on improved quantum-behaved particle swarm optimization algorithm].

    PubMed

    Pan, Qing; Yao, Jialiang; Wang, Ruofan; Cao, Ping; Ning, Gangmin; Fang, Luping

    2017-08-01

    The vessels in the microcirculation keep adjusting their structure to meet the functional requirements of the different tissues. A previously developed theoretical model can reproduce the process of vascular structural adaptation to help the study of the microcirculatory physiology. However, until now, such model lacks the appropriate methods for its parameter settings with subsequent limitation of further applications. This study proposed an improved quantum-behaved particle swarm optimization (QPSO) algorithm for setting the parameter values in this model. The optimization was performed on a real mesenteric microvascular network of rat. The results showed that the improved QPSO was superior to the standard particle swarm optimization, the standard QPSO and the previously reported Downhill algorithm. We conclude that the improved QPSO leads to a better agreement between mathematical simulation and animal experiment, rendering the model more reliable in future physiological studies.

  10. Investigation into the efficiency of different bionic algorithm combinations for a COBRA meta-heuristic

    NASA Astrophysics Data System (ADS)

    Akhmedova, Sh; Semenkin, E.

    2017-02-01

    Previously, a meta-heuristic approach, called Co-Operation of Biology-Related Algorithms or COBRA, for solving real-parameter optimization problems was introduced and described. COBRA’s basic idea consists of a cooperative work of five well-known bionic algorithms such as Particle Swarm Optimization, the Wolf Pack Search, the Firefly Algorithm, the Cuckoo Search Algorithm and the Bat Algorithm, which were chosen due to the similarity of their schemes. The performance of this meta-heuristic was evaluated on a set of test functions and its workability was demonstrated. Thus it was established that the idea of the algorithms’ cooperative work is useful. However, it is unclear which bionic algorithms should be included in this cooperation and how many of them. Therefore, the five above-listed algorithms and additionally the Fish School Search algorithm were used for the development of five different modifications of COBRA by varying the number of component-algorithms. These modifications were tested on the same set of functions and the best of them was found. Ways of further improving the COBRA algorithm are then discussed.

  11. Identification of observer/Kalman filter Markov parameters: Theory and experiments

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh; Horta, Lucas G.; Longman, Richard W.

    1991-01-01

    An algorithm to compute Markov parameters of an observer or Kalman filter from experimental input and output data is discussed. The Markov parameters can then be used for identification of a state space representation, with associated Kalman gain or observer gain, for the purpose of controller design. The algorithm is a non-recursive matrix version of two recursive algorithms developed in previous works for different purposes. The relationship between these other algorithms is developed. The new matrix formulation here gives insight into the existence and uniqueness of solutions of certain equations and gives bounds on the proper choice of observer order. It is shown that if one uses data containing noise, and seeks the fastest possible deterministic observer, the deadbeat observer, one instead obtains the Kalman filter, which is the fastest possible observer in the stochastic environment. Results are demonstrated in numerical studies and in experiments on an ten-bay truss structure.

  12. Clinical algorithms to aid osteoarthritis guideline dissemination.

    PubMed

    Meneses, S R F; Goode, A P; Nelson, A E; Lin, J; Jordan, J M; Allen, K D; Bennell, K L; Lohmander, L S; Fernandes, L; Hochberg, M C; Underwood, M; Conaghan, P G; Liu, S; McAlindon, T E; Golightly, Y M; Hunter, D J

    2016-09-01

    Numerous scientific organisations have developed evidence-based recommendations aiming to optimise the management of osteoarthritis (OA). Uptake, however, has been suboptimal. The purpose of this exercise was to harmonize the recent recommendations and develop a user-friendly treatment algorithm to facilitate translation of evidence into practice. We updated a previous systematic review on clinical practice guidelines (CPGs) for OA management. The guidelines were assessed using the Appraisal of Guidelines for Research and Evaluation for quality and the standards for developing trustworthy CPGs as established by the National Academy of Medicine (NAM). Four case scenarios and algorithms were developed by consensus of a multidisciplinary panel. Sixteen guidelines were included in the systematic review. Most recommendations were directed toward physicians and allied health professionals, and most had multi-disciplinary input. Analysis for trustworthiness suggests that many guidelines still present a lack of transparency. A treatment algorithm was developed for each case scenario advised by recommendations from guidelines and based on panel consensus. Strategies to facilitate the implementation of guidelines in clinical practice are necessary. The algorithms proposed are examples of how to apply recommendations in the clinical context, helping the clinician to visualise the patient flow and timing of different treatment modalities. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Image processing meta-algorithm development via genetic manipulation of existing algorithm graphs

    NASA Astrophysics Data System (ADS)

    Schalkoff, Robert J.; Shaaban, Khaled M.

    1999-07-01

    Automatic algorithm generation for image processing applications is not a new idea, however previous work is either restricted to morphological operates or impractical. In this paper, we show recent research result in the development and use of meta-algorithms, i.e. algorithms which lead to new algorithms. Although the concept is generally applicable, the application domain in this work is restricted to image processing. The meta-algorithm concept described in this paper is based upon out work in dynamic algorithm. The paper first present the concept of dynamic algorithms which, on the basis of training and archived algorithmic experience embedded in an algorithm graph (AG), dynamically adjust the sequence of operations applied to the input image data. Each node in the tree-based representation of a dynamic algorithm with out degree greater than 2 is a decision node. At these nodes, the algorithm examines the input data and determines which path will most likely achieve the desired results. This is currently done using nearest-neighbor classification. The details of this implementation are shown. The constrained perturbation of existing algorithm graphs, coupled with a suitable search strategy, is one mechanism to achieve meta-algorithm an doffers rich potential for the discovery of new algorithms. In our work, a meta-algorithm autonomously generates new dynamic algorithm graphs via genetic recombination of existing algorithm graphs. The AG representation is well suited to this genetic-like perturbation, using a commonly- employed technique in artificial neural network synthesis, namely the blueprint representation of graphs. A number of exam. One of the principal limitations of our current approach is the need for significant human input in the learning phase. Efforts to overcome this limitation are discussed. Future research directions are indicated.

  14. Parallel algorithms for placement and routing in VLSI design. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Brouwer, Randall Jay

    1991-01-01

    The computational requirements for high quality synthesis, analysis, and verification of very large scale integration (VLSI) designs have rapidly increased with the fast growing complexity of these designs. Research in the past has focused on the development of heuristic algorithms, special purpose hardware accelerators, or parallel algorithms for the numerous design tasks to decrease the time required for solution. Two new parallel algorithms are proposed for two VLSI synthesis tasks, standard cell placement and global routing. The first algorithm, a parallel algorithm for global routing, uses hierarchical techniques to decompose the routing problem into independent routing subproblems that are solved in parallel. Results are then presented which compare the routing quality to the results of other published global routers and which evaluate the speedups attained. The second algorithm, a parallel algorithm for cell placement and global routing, hierarchically integrates a quadrisection placement algorithm, a bisection placement algorithm, and the previous global routing algorithm. Unique partitioning techniques are used to decompose the various stages of the algorithm into independent tasks which can be evaluated in parallel. Finally, results are presented which evaluate the various algorithm alternatives and compare the algorithm performance to other placement programs. Measurements are presented on the parallel speedups available.

  15. AveBoost2: Boosting for Noisy Data

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.

    2004-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the pre- vious base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. In previous work, we developed an algorithm, AveBoost, that constructed distributions orthogonal to the mistake vectors of all the previous models, and then averaged them to create the next base model s distribution. Our experiments demonstrated the superior accuracy of our approach. In this paper, we slightly revise our algorithm to allow us to obtain non-trivial theoretical results: bounds on the training error and generalization error (difference between training and test error). Our averaging process has a regularizing effect which, as expected, leads us to a worse training error bound for our algorithm than for AdaBoost but a superior generalization error bound. For this paper, we experimented with the data that we used in both as originally supplied and with added label noise-a small fraction of the data has its original label changed. Noisy data are notoriously difficult for AdaBoost to learn. Our algorithm's performance improvement over AdaBoost is even greater on the noisy data than the original data.

  16. Stochastic Local Search for Core Membership Checking in Hedonic Games

    NASA Astrophysics Data System (ADS)

    Keinänen, Helena

    Hedonic games have emerged as an important tool in economics and show promise as a useful formalism to model multi-agent coalition formation in AI as well as group formation in social networks. We consider a coNP-complete problem of core membership checking in hedonic coalition formation games. No previous algorithms to tackle the problem have been presented. In this work, we overcome this by developing two stochastic local search algorithms for core membership checking in hedonic games. We demonstrate the usefulness of the algorithms by showing experimentally that they find solutions efficiently, particularly for large agent societies.

  17. Real-time implementation of logo detection on open source BeagleBoard

    NASA Astrophysics Data System (ADS)

    George, M.; Kehtarnavaz, N.; Estevez, L.

    2011-03-01

    This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.

  18. Efficient sequential and parallel algorithms for record linkage

    PubMed Central

    Mamun, Abdullah-Al; Mi, Tian; Aseltine, Robert; Rajasekaran, Sanguthevar

    2014-01-01

    Background and objective Integrating data from multiple sources is a crucial and challenging problem. Even though there exist numerous algorithms for record linkage or deduplication, they suffer from either large time needs or restrictions on the number of datasets that they can integrate. In this paper we report efficient sequential and parallel algorithms for record linkage which handle any number of datasets and outperform previous algorithms. Methods Our algorithms employ hierarchical clustering algorithms as the basis. A key idea that we use is radix sorting on certain attributes to eliminate identical records before any further processing. Another novel idea is to form a graph that links similar records and find the connected components. Results Our sequential and parallel algorithms have been tested on a real dataset of 1 083 878 records and synthetic datasets ranging in size from 50 000 to 9 000 000 records. Our sequential algorithm runs at least two times faster, for any dataset, than the previous best-known algorithm, the two-phase algorithm using faster computation of the edit distance (TPA (FCED)). The speedups obtained by our parallel algorithm are almost linear. For example, we get a speedup of 7.5 with 8 cores (residing in a single node), 14.1 with 16 cores (residing in two nodes), and 26.4 with 32 cores (residing in four nodes). Conclusions We have compared the performance of our sequential algorithm with TPA (FCED) and found that our algorithm outperforms the previous one. The accuracy is the same as that of this previous best-known algorithm. PMID:24154837

  19. Novel and efficient tag SNPs selection algorithms.

    PubMed

    Chen, Wen-Pei; Hung, Che-Lun; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2014-01-01

    SNPs are the most abundant forms of genetic variations amongst species; the association studies between complex diseases and SNPs or haplotypes have received great attention. However, these studies are restricted by the cost of genotyping all SNPs; thus, it is necessary to find smaller subsets, or tag SNPs, representing the rest of the SNPs. In fact, the existing tag SNP selection algorithms are notoriously time-consuming. An efficient algorithm for tag SNP selection was presented, which was applied to analyze the HapMap YRI data. The experimental results show that the proposed algorithm can achieve better performance than the existing tag SNP selection algorithms; in most cases, this proposed algorithm is at least ten times faster than the existing methods. In many cases, when the redundant ratio of the block is high, the proposed algorithm can even be thousands times faster than the previously known methods. Tools and web services for haplotype block analysis integrated by hadoop MapReduce framework are also developed using the proposed algorithm as computation kernels.

  20. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulatedmore » $$\\mathrm{t}\\overline{\\mathrm{t}}$$ events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. In conclusion, the heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV).« less

  1. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-05-08

    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulatedmore » $$\\mathrm{t}\\overline{\\mathrm{t}}$$ events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. In conclusion, the heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV).« less

  2. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    2018-05-08

    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulatedmore » $$\\mathrm{t}\\overline{\\mathrm{t}}$$ events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV).« less

  3. A novel acenocoumarol pharmacogenomic dosing algorithm for the Greek population of EU-PACT trial.

    PubMed

    Ragia, Georgia; Kolovou, Vana; Kolovou, Genovefa; Konstantinides, Stavros; Maltezos, Efstratios; Tavridou, Anna; Tziakas, Dimitrios; Maitland-van der Zee, Anke H; Manolopoulos, Vangelis G

    2017-01-01

    To generate and validate a pharmacogenomic-guided (PG) dosing algorithm for acenocoumarol in the Greek population. To compare its performance with other PG algorithms developed for the Greek population. A total of 140 Greek patients participants of the EU-PACT trial for acenocoumarol, a randomized clinical trial that prospectively compared the effect of a PG dosing algorithm with a clinical dosing algorithm on the percentage of time within INR therapeutic range, who reached acenocoumarol stable dose were included in the study. CYP2C9 and VKORC1 genotypes, age and weight affected acenocoumarol dose and predicted 53.9% of its variability. EU-PACT PG algorithm overestimated acenocoumarol dose across all different CYP2C9/VKORC1 functional phenotype bins (predicted dose vs stable dose in normal responders 2.31 vs 2.00 mg/day, p = 0.028, in sensitive responders 1.72 vs 1.50 mg/day, p = 0.003, in highly sensitive responders 1.39 vs 1.00 mg/day, p = 0.029). The PG algorithm previously developed for the Greek population overestimated the dose in normal responders (2.51 vs 2.00 mg/day, p < 0.001). Ethnic-specific dosing algorithm is suggested for better prediction of acenocoumarol dosage requirements in patients of Greek origin.

  4. A Novel User Classification Method for Femtocell Network by Using Affinity Propagation Algorithm and Artificial Neural Network

    PubMed Central

    Ahmed, Afaz Uddin; Tariqul Islam, Mohammad; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina

    2014-01-01

    An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation. PMID:25133214

  5. A novel user classification method for femtocell network by using affinity propagation algorithm and artificial neural network.

    PubMed

    Ahmed, Afaz Uddin; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina

    2014-01-01

    An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation.

  6. Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework

    PubMed Central

    Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.

    2016-01-01

    Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of TOF scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (Direct Image Reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias vs. variance performance to iterative TOF reconstruction with a matched resolution model. PMID:27032968

  7. Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework

    NASA Astrophysics Data System (ADS)

    Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.

    2016-05-01

    Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of time-of-flight (TOF) scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (DIRECT: direct image reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias versus variance performance to iterative TOF reconstruction with a matched resolution model.

  8. Extended capture range for focus-diverse phase retrieval in segmented aperture systems using geometrical optics.

    PubMed

    Jurling, Alden S; Fienup, James R

    2014-03-01

    Extending previous work by Thurman on wavefront sensing for segmented-aperture systems, we developed an algorithm for estimating segment tips and tilts from multiple point spread functions in different defocused planes. We also developed methods for overcoming two common modes for stagnation in nonlinear optimization-based phase retrieval algorithms for segmented systems. We showed that when used together, these methods largely solve the capture range problem in focus-diverse phase retrieval for segmented systems with large tips and tilts. Monte Carlo simulations produced a rate of success better than 98% for the combined approach.

  9. Designing synthetic networks in silico: a generalised evolutionary algorithm approach.

    PubMed

    Smith, Robert W; van Sluijs, Bob; Fleck, Christian

    2017-12-02

    Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.

  10. Genomes as documents of evolutionary history: a probabilistic macrosynteny model for the reconstruction of ancestral genomes

    PubMed Central

    Nakatani, Yoichiro; McLysaght, Aoife

    2017-01-01

    Abstract Motivation: It has been argued that whole-genome duplication (WGD) exerted a profound influence on the course of evolution. For the purpose of fully understanding the impact of WGD, several formal algorithms have been developed for reconstructing pre-WGD gene order in yeast and plant. However, to the best of our knowledge, those algorithms have never been successfully applied to WGD events in teleost and vertebrate, impeded by extensive gene shuffling and gene losses. Results: Here, we present a probabilistic model of macrosynteny (i.e. conserved linkage or chromosome-scale distribution of orthologs), develop a variational Bayes algorithm for inferring the structure of pre-WGD genomes, and study estimation accuracy by simulation. Then, by applying the method to the teleost WGD, we demonstrate effectiveness of the algorithm in a situation where gene-order reconstruction algorithms perform relatively poorly due to a high rate of rearrangement and extensive gene losses. Our high-resolution reconstruction reveals previously overlooked small-scale rearrangements, necessitating a revision to previous views on genome structure evolution in teleost and vertebrate. Conclusions: We have reconstructed the structure of a pre-WGD genome by employing a variational Bayes approach that was originally developed for inferring topics from millions of text documents. Interestingly, comparison of the macrosynteny and topic model algorithms suggests that macrosynteny can be regarded as documents on ancestral genome structure. From this perspective, the present study would seem to provide a textbook example of the prevalent metaphor that genomes are documents of evolutionary history. Availability and implementation: The analysis data are available for download at http://www.gen.tcd.ie/molevol/supp_data/MacrosyntenyTGD.zip, and the software written in Java is available upon request. Contact: yoichiro.nakatani@tcd.ie or aoife.mclysaght@tcd.ie Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881993

  11. Genomes as documents of evolutionary history: a probabilistic macrosynteny model for the reconstruction of ancestral genomes.

    PubMed

    Nakatani, Yoichiro; McLysaght, Aoife

    2017-07-15

    It has been argued that whole-genome duplication (WGD) exerted a profound influence on the course of evolution. For the purpose of fully understanding the impact of WGD, several formal algorithms have been developed for reconstructing pre-WGD gene order in yeast and plant. However, to the best of our knowledge, those algorithms have never been successfully applied to WGD events in teleost and vertebrate, impeded by extensive gene shuffling and gene losses. Here, we present a probabilistic model of macrosynteny (i.e. conserved linkage or chromosome-scale distribution of orthologs), develop a variational Bayes algorithm for inferring the structure of pre-WGD genomes, and study estimation accuracy by simulation. Then, by applying the method to the teleost WGD, we demonstrate effectiveness of the algorithm in a situation where gene-order reconstruction algorithms perform relatively poorly due to a high rate of rearrangement and extensive gene losses. Our high-resolution reconstruction reveals previously overlooked small-scale rearrangements, necessitating a revision to previous views on genome structure evolution in teleost and vertebrate. We have reconstructed the structure of a pre-WGD genome by employing a variational Bayes approach that was originally developed for inferring topics from millions of text documents. Interestingly, comparison of the macrosynteny and topic model algorithms suggests that macrosynteny can be regarded as documents on ancestral genome structure. From this perspective, the present study would seem to provide a textbook example of the prevalent metaphor that genomes are documents of evolutionary history. The analysis data are available for download at http://www.gen.tcd.ie/molevol/supp_data/MacrosyntenyTGD.zip , and the software written in Java is available upon request. yoichiro.nakatani@tcd.ie or aoife.mclysaght@tcd.ie. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. Self calibrating monocular camera measurement of traffic parameters.

    DOT National Transportation Integrated Search

    2009-12-01

    This proposed project will extend the work of previous projects that have developed algorithms and software : to measure traffic speed under adverse conditions using un-calibrated cameras. The present implementation : uses the WSDOT CCTV cameras moun...

  13. Reliable Detection and Smart Deletion of Malassez Counting Chamber Grid in Microscopic White Light Images for Microbiological Applications.

    PubMed

    Denimal, Emmanuel; Marin, Ambroise; Guyot, Stéphane; Journaux, Ludovic; Molin, Paul

    2015-08-01

    In biology, hemocytometers such as Malassez slides are widely used and are effective tools for counting cells manually. In a previous work, a robust algorithm was developed for grid extraction in Malassez slide images. This algorithm was evaluated on a set of 135 images and grids were accurately detected in most cases, but there remained failures for the most difficult images. In this work, we present an optimization of this algorithm that allows for 100% grid detection and a 25% improvement in grid positioning accuracy. These improvements make the algorithm fully reliable for grid detection. This optimization also allows complete erasing of the grid without altering the cells, which eases their segmentation.

  14. Analysis and an image recovery algorithm for ultrasonic tomography system

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1994-01-01

    The problem of an ultrasonic reflectivity tomography is similar to that of a spotlight-mode aircraft Synthetic Aperture Radar (SAR) system. The analysis for a circular path spotlight mode SAR in this paper leads to the insight of the system characteristics. It indicates that such a system when operated in a wide bandwidth is capable of achieving the ultimate resolution; one quarter of the wavelength of the carrier frequency. An efficient processing algorithm based on the exact two dimensional spectrum is presented. The results of simulation indicate that the impulse responses meet the predicted resolution performance. Compared to an algorithm previously developed for the ultrasonic reflectivity tomography, the throughput rate of this algorithm is about ten times higher.

  15. Score-Level Fusion of Phase-Based and Feature-Based Fingerprint Matching Algorithms

    NASA Astrophysics Data System (ADS)

    Ito, Koichi; Morita, Ayumi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo

    This paper proposes an efficient fingerprint recognition algorithm combining phase-based image matching and feature-based matching. In our previous work, we have already proposed an efficient fingerprint recognition algorithm using Phase-Only Correlation (POC), and developed commercial fingerprint verification units for access control applications. The use of Fourier phase information of fingerprint images makes it possible to achieve robust recognition for weakly impressed, low-quality fingerprint images. This paper presents an idea of improving the performance of POC-based fingerprint matching by combining it with feature-based matching, where feature-based matching is introduced in order to improve recognition efficiency for images with nonlinear distortion. Experimental evaluation using two different types of fingerprint image databases demonstrates efficient recognition performance of the combination of the POC-based algorithm and the feature-based algorithm.

  16. Meta-heuristic algorithms as tools for hydrological science

    NASA Astrophysics Data System (ADS)

    Yoo, Do Guen; Kim, Joong Hoon

    2014-12-01

    In this paper, meta-heuristic optimization techniques are introduced and their applications to water resources engineering, particularly in hydrological science are introduced. In recent years, meta-heuristic optimization techniques have been introduced that can overcome the problems inherent in iterative simulations. These methods are able to find good solutions and require limited computation time and memory use without requiring complex derivatives. Simulation-based meta-heuristic methods such as Genetic algorithms (GAs) and Harmony Search (HS) have powerful searching abilities, which can occasionally overcome the several drawbacks of traditional mathematical methods. For example, HS algorithms can be conceptualized from a musical performance process and used to achieve better harmony; such optimization algorithms seek a near global optimum determined by the value of an objective function, providing a more robust determination of musical performance than can be achieved through typical aesthetic estimation. In this paper, meta-heuristic algorithms and their applications (focus on GAs and HS) in hydrological science are discussed by subject, including a review of existing literature in the field. Then, recent trends in optimization are presented and a relatively new technique such as Smallest Small World Cellular Harmony Search (SSWCHS) is briefly introduced, with a summary of promising results obtained in previous studies. As a result, previous studies have demonstrated that meta-heuristic algorithms are effective tools for the development of hydrological models and the management of water resources.

  17. Global linear gyrokinetic particle-in-cell simulations including electromagnetic effects in shaped plasmas

    NASA Astrophysics Data System (ADS)

    Mishchenko, A.; Borchardt, M.; Cole, M.; Hatzky, R.; Fehér, T.; Kleiber, R.; Könies, A.; Zocco, A.

    2015-05-01

    We give an overview of recent developments in electromagnetic simulations based on the gyrokinetic particle-in-cell codes GYGLES and EUTERPE. We present the gyrokinetic electromagnetic models implemented in the codes and discuss further improvements of the numerical algorithm, in particular the so-called pullback mitigation of the cancellation problem. The improved algorithm is employed to simulate linear electromagnetic instabilities in shaped tokamak and stellarator plasmas, which was previously impossible for the parameters considered.

  18. Improving Simulated Annealing by Replacing Its Variables with Game-Theoretic Utility Maximizers

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Bandari, Esfandiar; Tumer, Kagan

    2001-01-01

    The game-theory field of Collective INtelligence (COIN) concerns the design of computer-based players engaged in a non-cooperative game so that as those players pursue their self-interests, a pre-specified global goal for the collective computational system is achieved as a side-effect. Previous implementations of COIN algorithms have outperformed conventional techniques by up to several orders of magnitude, on domains ranging from telecommunications control to optimization in congestion problems. Recent mathematical developments have revealed that these previously developed algorithms were based on only two of the three factors determining performance. Consideration of only the third factor would instead lead to conventional optimization techniques like simulated annealing that have little to do with non-cooperative games. In this paper we present an algorithm based on all three terms at once. This algorithm can be viewed as a way to modify simulated annealing by recasting it as a non-cooperative game, with each variable replaced by a player. This recasting allows us to leverage the intelligent behavior of the individual players to substantially improve the exploration step of the simulated annealing. Experiments are presented demonstrating that this recasting significantly improves simulated annealing for a model of an economic process run over an underlying small-worlds topology. Furthermore, these experiments reveal novel small-worlds phenomena, and highlight the shortcomings of conventional mechanism design in bounded rationality domains.

  19. Clustering analysis of moving target signatures

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto

    2010-04-01

    Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.

  20. Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma

    PubMed Central

    Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K

    2015-01-01

    Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (p<0.001) and integrated discrimination improvement (p=0.04). The HALT-C model had a c-statistic of 0.60 (95%CI 0.50-0.70) in the validation cohort and was outperformed by the machine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273

  1. SU-F-T-685: Evaluation of Tumor Hypoxic Fraction Using Serial Volumetric Imaging During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A

    Purpose: To develop a tumor response model which could be uses to compute tumor hypoxic fraction using serial volumetric tumor imaging. This algorithm may be used for treatment response assessment and also for guidance of more expensive PET imaging of hypoxia. Methods: Previously developed two-level cell population tumor response model was modified to include a third cell level describing hypoxic and necrotic cells. This third level was considered constant value during radiotherapy treatment; therefore, inclusion additional parameter did not compromise stability of model fitting to imaging data. Fitting the model to serial volumetric imaging data was performed using a leastmore » squares objective function and simulated annealing algorithm. The problem of reconstruction of radiobiological parameters from serial imaging data was considered as inverse ill-posed problem described by the Fredholm integral equation of the first kind. Variational regularization was used to stabilize solutions. Results: To evaluate performance of the algorithm, we used a set of serial CT imaging data on tumor-volume for 14 head and neck cancer patients. The hypoxic fractions were reconstructed for each patient and the distribution of hypoxic fractions was compared to the distribution of initial hypoxic fractions previously measured using histograph. The measured and reconstructed from imaging data distributions of hypoxic fractions are in good agreement. The reconstructed distribution of cell surviving fraction was also in better agreement with in vitro data than previously obtained using the two-level cell population model. Conclusion: Our results indicate that it is possible to evaluate the initial hypoxic tumor fraction using serial volumetric imaging and a tumor response model. This algorithm can be used for treatment response assessment and guidance of more expensive PET imaging.« less

  2. Morphology vs morphokinetics: a retrospective comparison of inter-observer and intra-observer agreement between embryologists on blastocysts with known implantation outcome.

    PubMed

    Adolfsson, Emma; Andershed, Anna Nowosad

    2018-06-18

    Our primary aim was to compare the morphology and morphokinetics on inter- and intra-observer agreement for blastocyst with known implantation outcome. Our secondary aim was to validate the morphokinetic parameters' ability to predict pregnancy using a previous published selection algorithm, and to compare this to standard morphology assessments. Two embryologists made independent blinded annotations on two occasions using time-lapse images and morphology evaluations using the Gardner Schoolcraft criteria of 99 blastocysts with known implantation outcome. Inter- and intra-observer agreement was calculated and compared using the two methods. The embryos were grouped based on their morphological score, and on their morphokinetic class using a previous published selection algorithm. The implantation rates for each group was calculated and compared. There was moderate agreement for morphology, with agreement on the same embryo score in 55 of 99 cases. The highest agreement rate was found for expansion grade, followed by trophectoderm and inner cell mass. Correlation with pregnancy was inconclusive. For morphokinetics, almost perfect agreement was found for early and late embryo development events, and strong agreement for day-2 and day-3 events. When applying the selection algorithm, the embryo distributions were uneven, and correlation to pregnancy was inconclusive. Time-lapse annotation is consistent and accurate, but our external validation of a previously published selection algorithm was unsuccessful.

  3. Identification of genes related to proliferative diabetic retinopathy through RWR algorithm based on protein-protein interaction network.

    PubMed

    Zhang, Jian; Suo, Yan; Liu, Min; Xu, Xun

    2018-06-01

    Proliferative diabetic retinopathy (PDR) is one of the most common complications of diabetes and can lead to blindness. Proteomic studies have provided insight into the pathogenesis of PDR and a series of PDR-related genes has been identified but are far from fully characterized because the experimental methods are expensive and time consuming. In our previous study, we successfully identified 35 candidate PDR-related genes through the shortest-path algorithm. In the current study, we developed a computational method using the random walk with restart (RWR) algorithm and the protein-protein interaction (PPI) network to identify potential PDR-related genes. After some possible genes were obtained by the RWR algorithm, a three-stage filtration strategy, which includes the permutation test, interaction test and enrichment test, was applied to exclude potential false positives caused by the structure of PPI network, the poor interaction strength, and the limited similarity on gene ontology (GO) terms and biological pathways. As a result, 36 candidate genes were discovered by the method which was different from the 35 genes reported in our previous study. A literature review showed that 21 of these 36 genes are supported by previous experiments. These findings suggest the robustness and complementary effects of both our efforts using different computational methods, thus providing an alternative method to study PDR pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mechanistic design data from ODOT instrumented pavement sites : phase II report.

    DOT National Transportation Integrated Search

    2017-03-01

    This investigation examined data obtained from three previously-instrumented pavement test sites in Oregon. Data processing algorithms and templates were developed for each test site that facilitated full processing of all the data to build databases...

  5. Mechanistic design data from ODOT instrumented pavement sites : phase 1 report.

    DOT National Transportation Integrated Search

    2017-03-01

    This investigation examined data obtained from three previously-instrumented pavement test sites in Oregon. Data processing algorithms and templates were developed for each test site that facilitated full processing of all the data to build databases...

  6. UltraTrack: Software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images.

    PubMed

    Farris, Dominic James; Lichtwark, Glen A

    2016-05-01

    Dynamic measurements of human muscle fascicle length from sequences of B-mode ultrasound images have become increasingly prevalent in biomedical research. Manual digitisation of these images is time consuming and algorithms for automating the process have been developed. Here we present a freely available software implementation of a previously validated algorithm for semi-automated tracking of muscle fascicle length in dynamic ultrasound image recordings, "UltraTrack". UltraTrack implements an affine extension to an optic flow algorithm to track movement of the muscle fascicle end-points throughout dynamically recorded sequences of images. The underlying algorithm has been previously described and its reliability tested, but here we present the software implementation with features for: tracking multiple fascicles in multiple muscles simultaneously; correcting temporal drift in measurements; manually adjusting tracking results; saving and re-loading of tracking results and loading a range of file formats. Two example runs of the software are presented detailing the tracking of fascicles from several lower limb muscles during a squatting and walking activity. We have presented a software implementation of a validated fascicle-tracking algorithm and made the source code and standalone versions freely available for download. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Algorithmic Bricks: A Tangible Robot Programming Tool for Elementary School Students

    ERIC Educational Resources Information Center

    Kwon, D.-Y.; Kim, H.-S.; Shim, J.-K.; Lee, W.-G.

    2012-01-01

    Tangible programming tools enable children to easily learn the programming process, previously considered to be difficult for them. While various tangible programming tools have been developed, there is still a lack of available tools to help students experience the general programming process. This study therefore developed a tool called…

  8. An Improved Elastic and Nonelastic Neutron Transport Algorithm for Space Radiation

    NASA Technical Reports Server (NTRS)

    Clowdsley, Martha S.; Wilson, John W.; Heinbockel, John H.; Tripathi, R. K.; Singleterry, Robert C., Jr.; Shinn, Judy L.

    2000-01-01

    A neutron transport algorithm including both elastic and nonelastic particle interaction processes for use in space radiation protection for arbitrary shield material is developed. The algorithm is based upon a multiple energy grouping and analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. The algorithm is then coupled to the Langley HZETRN code through a bidirectional neutron evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for an aluminum water shield-target configuration is then compared with MCNPX and LAHET Monte Carlo calculations for the same shield-target configuration. With the Monte Carlo calculation as a benchmark, the algorithm developed in this paper showed a great improvement in results over the unmodified HZETRN solution. In addition, a high-energy bidirectional neutron source based on a formula by Ranft showed even further improvement of the fluence results over previous results near the front of the water target where diffusion out the front surface is important. Effects of improved interaction cross sections are modest compared with the addition of the high-energy bidirectional source terms.

  9. The theory of variational hybrid quantum-classical algorithms

    NASA Astrophysics Data System (ADS)

    McClean, Jarrod R.; Romero, Jonathan; Babbush, Ryan; Aspuru-Guzik, Alán

    2016-02-01

    Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as ‘the quantum variational eigensolver’ was developed (Peruzzo et al 2014 Nat. Commun. 5 4213) with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through a relaxation of exponential operator splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this procedure. Finally, we show how the use of modern derivative free optimization techniques can offer dramatic computational savings of up to three orders of magnitude over previously used optimization techniques.

  10. A single chip VLSI Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Shao, H. M.; Truong, T. K.; Hsu, I. S.; Deutsch, L. J.; Reed, I. S.

    1986-01-01

    A new VLSI design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous design is replaced by a time domain algorithm. A new architecture that implements such an algorithm permits efficient pipeline processing with minimum circuitry. A systolic array is also developed to perform erasure corrections in the new design. A modified form of Euclid's algorithm is implemented by a new architecture that maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and a significant reduction in silicon area, therefore making it possible to build a pipeline (31,15)RS decoder on a single VLSI chip.

  11. Early Results from the Global Precipitation Measurement (GPM) Mission in Japan

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Kubota, Takuji; Masaki, Takeshi; Kaneko, Yuki; Kanemaru, Kaya; Oki, Riko; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2015-04-01

    The Global Precipitation Measurement (GPM) mission is an international collaboration to achieve highly accurate and highly frequent global precipitation observations. The GPM mission consists of the GPM Core Observatory jointly developed by U.S. and Japan and Constellation Satellites that carry microwave radiometers and provided by the GPM partner agencies. The Dual-frequency Precipitation Radar (DPR) was developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and installed on the GPM Core Observatory. The GPM Core Observatory chooses a non-sun-synchronous orbit to carry on diurnal cycle observations of rainfall from the Tropical Rainfall Measuring Mission (TRMM) satellite and was successfully launched at 3:37 a.m. on February 28, 2014 (JST), while the Constellation Satellites, including JAXA's Global Change Observation Mission (GCOM) - Water (GCOM-W1) or "SHIZUKU," are launched by each partner agency sometime around 2014 and contribute to expand observation coverage and increase observation frequency JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map (GPM-GSMaP) algorithm, which is a latest version of the Global Satellite Mapping of Precipitation (GSMaP), as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. Major improvements in the GPM-GSMaP algorithm is; 1) improvements in microwave imager algorithm based on AMSR2 precipitation standard algorithm, including new land algorithm, new coast detection scheme; 2) Development of orographic rainfall correction method for warm rainfall in coastal area (Taniguchi et al., 2012); 3) Update of database, including rainfall detection over land and land surface emission database; 4) Development of microwave sounder algorithm over land (Kida et al., 2012); and 5) Development of gauge-calibrated GSMaP algorithm (Ushio et al., 2013). In addition to those improvements in the algorithms number of passive microwave imagers and/or sounders used in the GPM-GSMaP was increased compared to the previous version. After the early calibration and validation of the products and evaluation that all products achieved the release criteria, all GPM standard products and the GPM-GSMaP product has been released to the public since September 2014. The GPM products can be downloaded via the internet through the JAXA G-Portal (https://www.gportal.jaxa.jp).

  12. The Psychopharmacology Algorithm Project at the Harvard South Shore Program: An Algorithm for Generalized Anxiety Disorder.

    PubMed

    Abejuela, Harmony Raylen; Osser, David N

    2016-01-01

    This revision of previous algorithms for the pharmacotherapy of generalized anxiety disorder was developed by the Psychopharmacology Algorithm Project at the Harvard South Shore Program. Algorithms from 1999 and 2010 and associated references were reevaluated. Newer studies and reviews published from 2008-14 were obtained from PubMed and analyzed with a focus on their potential to justify changes in the recommendations. Exceptions to the main algorithm for special patient populations, such as women of childbearing potential, pregnant women, the elderly, and those with common medical and psychiatric comorbidities, were considered. Selective serotonin reuptake inhibitors (SSRIs) are still the basic first-line medication. Early alternatives include duloxetine, buspirone, hydroxyzine, pregabalin, or bupropion, in that order. If response is inadequate, then the second recommendation is to try a different SSRI. Additional alternatives now include benzodiazepines, venlafaxine, kava, and agomelatine. If the response to the second SSRI is unsatisfactory, then the recommendation is to try a serotonin-norepinephrine reuptake inhibitor (SNRI). Other alternatives to SSRIs and SNRIs for treatment-resistant or treatment-intolerant patients include tricyclic antidepressants, second-generation antipsychotics, and valproate. This revision of the GAD algorithm responds to issues raised by new treatments under development (such as pregabalin) and organizes the evidence systematically for practical clinical application.

  13. I/O efficient algorithms and applications in geographic information systems

    NASA Astrophysics Data System (ADS)

    Danner, Andrew

    Modern remote sensing methods such a laser altimetry (lidar) and Interferometric Synthetic Aperture Radar (IfSAR) produce georeferenced elevation data at unprecedented rates. Many Geographic Information System (GIS) algorithms designed for terrain modelling applications cannot process these massive data sets. The primary problem is that these data sets are too large to fit in the main internal memory of modern computers and must therefore reside on larger, but considerably slower disks. In these applications, the transfer of data between disk and main memory, or I/O, becomes the primary bottleneck. Working in a theoretical model that more accurately represents this two level memory hierarchy, we can develop algorithms that are I/O-efficient and reduce the amount of disk I/O needed to solve a problem. In this thesis we aim to modernize GIS algorithms and develop a number of I/O-efficient algorithms for processing geographic data derived from massive elevation data sets. For each application, we convert a geographic question to an algorithmic question, develop an I/O-efficient algorithm that is theoretically efficient, implement our approach and verify its performance using real-world data. The applications we consider include constructing a gridded digital elevation model (DEM) from an irregularly spaced point cloud, removing topological noise from a DEM, modeling surface water flow over a terrain, extracting river networks and watershed hierarchies from the terrain, and locating polygons containing query points in a planar subdivision. We initially developed solutions to each of these applications individually. However, we also show how to combine individual solutions to form a scalable geo-processing pipeline that seamlessly solves a sequence of sub-problems with little or no manual intervention. We present experimental results that demonstrate orders of magnitude improvement over previously known algorithms.

  14. Efficient Parallel Kernel Solvers for Computational Fluid Dynamics Applications

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He

    1997-01-01

    Distributed-memory parallel computers dominate today's parallel computing arena. These machines, such as Intel Paragon, IBM SP2, and Cray Origin2OO, have successfully delivered high performance computing power for solving some of the so-called "grand-challenge" problems. Despite initial success, parallel machines have not been widely accepted in production engineering environments due to the complexity of parallel programming. On a parallel computing system, a task has to be partitioned and distributed appropriately among processors to reduce communication cost and to attain load balance. More importantly, even with careful partitioning and mapping, the performance of an algorithm may still be unsatisfactory, since conventional sequential algorithms may be serial in nature and may not be implemented efficiently on parallel machines. In many cases, new algorithms have to be introduced to increase parallel performance. In order to achieve optimal performance, in addition to partitioning and mapping, a careful performance study should be conducted for a given application to find a good algorithm-machine combination. This process, however, is usually painful and elusive. The goal of this project is to design and develop efficient parallel algorithms for highly accurate Computational Fluid Dynamics (CFD) simulations and other engineering applications. The work plan is 1) developing highly accurate parallel numerical algorithms, 2) conduct preliminary testing to verify the effectiveness and potential of these algorithms, 3) incorporate newly developed algorithms into actual simulation packages. The work plan has well achieved. Two highly accurate, efficient Poisson solvers have been developed and tested based on two different approaches: (1) Adopting a mathematical geometry which has a better capacity to describe the fluid, (2) Using compact scheme to gain high order accuracy in numerical discretization. The previously developed Parallel Diagonal Dominant (PDD) algorithm and Reduced Parallel Diagonal Dominant (RPDD) algorithm have been carefully studied on different parallel platforms for different applications, and a NASA simulation code developed by Man M. Rai and his colleagues has been parallelized and implemented based on data dependency analysis. These achievements are addressed in detail in the paper.

  15. Wood industrial application for quality control using image processing

    NASA Astrophysics Data System (ADS)

    Ferreira, M. J. O.; Neves, J. A. C.

    1994-11-01

    This paper describes an application of image processing for the furniture industry. It uses an input data, images acquired directly from wood planks where defects were previously marked by an operator. A set of image processing algorithms separates and codes each defect and detects a polygonal approach of the line representing them. For such a purpose we developed a pattern classification algorithm and a new technique of segmenting defects by carving the convex hull of the binary shape representing each isolated defect.

  16. Generalized Detectability for Discrete Event Systems

    PubMed Central

    Shu, Shaolong; Lin, Feng

    2011-01-01

    In our previous work, we investigated detectability of discrete event systems, which is defined as the ability to determine the current and subsequent states of a system based on observation. For different applications, we defined four types of detectabilities: (weak) detectability, strong detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we extend our results in three aspects. (1) We extend detectability from deterministic systems to nondeterministic systems. Such a generalization is necessary because there are many systems that need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial algorithms to check strong detectability. The previous algorithms are based on observer whose construction is of exponential complexity, while the new algorithms are based on a new automaton called detector. (3) We extend detectability to D-detectability. While detectability requires determining the exact state of a system, D-detectability relaxes this requirement by asking only to distinguish certain pairs of states. With these extensions, the theory on detectability of discrete event systems becomes more applicable in solving many practical problems. PMID:21691432

  17. Experimental Validation of Advanced Dispersed Fringe Sensing (ADFS) Algorithm Using Advanced Wavefront Sensing and Correction Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver

    2012-01-01

    Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.

  18. Algorithm Engineering: Concepts and Practice

    NASA Astrophysics Data System (ADS)

    Chimani, Markus; Klein, Karsten

    Over the last years the term algorithm engineering has become wide spread synonym for experimental evaluation in the context of algorithm development. Yet it implies even more. We discuss the major weaknesses of traditional "pen and paper" algorithmics and the ever-growing gap between theory and practice in the context of modern computer hardware and real-world problem instances. We present the key ideas and concepts of the central algorithm engineering cycle that is based on a full feedback loop: It starts with the design of the algorithm, followed by the analysis, implementation, and experimental evaluation. The results of the latter can then be reused for modifications to the algorithmic design, stronger or input-specific theoretic performance guarantees, etc. We describe the individual steps of the cycle, explaining the rationale behind them and giving examples of how to conduct these steps thoughtfully. Thereby we give an introduction to current algorithmic key issues like I/O-efficient or parallel algorithms, succinct data structures, hardware-aware implementations, and others. We conclude with two especially insightful success stories—shortest path problems and text search—where the application of algorithm engineering techniques led to tremendous performance improvements compared with previous state-of-the-art approaches.

  19. PCTFPeval: a web tool for benchmarking newly developed algorithms for predicting cooperative transcription factor pairs in yeast.

    PubMed

    Lai, Fu-Jou; Chang, Hong-Tsun; Wu, Wei-Sheng

    2015-01-01

    Computational identification of cooperative transcription factor (TF) pairs helps understand the combinatorial regulation of gene expression in eukaryotic cells. Many advanced algorithms have been proposed to predict cooperative TF pairs in yeast. However, it is still difficult to conduct a comprehensive and objective performance comparison of different algorithms because of lacking sufficient performance indices and adequate overall performance scores. To solve this problem, in our previous study (published in BMC Systems Biology 2014), we adopted/proposed eight performance indices and designed two overall performance scores to compare the performance of 14 existing algorithms for predicting cooperative TF pairs in yeast. Most importantly, our performance comparison framework can be applied to comprehensively and objectively evaluate the performance of a newly developed algorithm. However, to use our framework, researchers have to put a lot of effort to construct it first. To save researchers time and effort, here we develop a web tool to implement our performance comparison framework, featuring fast data processing, a comprehensive performance comparison and an easy-to-use web interface. The developed tool is called PCTFPeval (Predicted Cooperative TF Pair evaluator), written in PHP and Python programming languages. The friendly web interface allows users to input a list of predicted cooperative TF pairs from their algorithm and select (i) the compared algorithms among the 15 existing algorithms, (ii) the performance indices among the eight existing indices, and (iii) the overall performance scores from two possible choices. The comprehensive performance comparison results are then generated in tens of seconds and shown as both bar charts and tables. The original comparison results of each compared algorithm and each selected performance index can be downloaded as text files for further analyses. Allowing users to select eight existing performance indices and 15 existing algorithms for comparison, our web tool benefits researchers who are eager to comprehensively and objectively evaluate the performance of their newly developed algorithm. Thus, our tool greatly expedites the progress in the research of computational identification of cooperative TF pairs.

  20. PCTFPeval: a web tool for benchmarking newly developed algorithms for predicting cooperative transcription factor pairs in yeast

    PubMed Central

    2015-01-01

    Background Computational identification of cooperative transcription factor (TF) pairs helps understand the combinatorial regulation of gene expression in eukaryotic cells. Many advanced algorithms have been proposed to predict cooperative TF pairs in yeast. However, it is still difficult to conduct a comprehensive and objective performance comparison of different algorithms because of lacking sufficient performance indices and adequate overall performance scores. To solve this problem, in our previous study (published in BMC Systems Biology 2014), we adopted/proposed eight performance indices and designed two overall performance scores to compare the performance of 14 existing algorithms for predicting cooperative TF pairs in yeast. Most importantly, our performance comparison framework can be applied to comprehensively and objectively evaluate the performance of a newly developed algorithm. However, to use our framework, researchers have to put a lot of effort to construct it first. To save researchers time and effort, here we develop a web tool to implement our performance comparison framework, featuring fast data processing, a comprehensive performance comparison and an easy-to-use web interface. Results The developed tool is called PCTFPeval (Predicted Cooperative TF Pair evaluator), written in PHP and Python programming languages. The friendly web interface allows users to input a list of predicted cooperative TF pairs from their algorithm and select (i) the compared algorithms among the 15 existing algorithms, (ii) the performance indices among the eight existing indices, and (iii) the overall performance scores from two possible choices. The comprehensive performance comparison results are then generated in tens of seconds and shown as both bar charts and tables. The original comparison results of each compared algorithm and each selected performance index can be downloaded as text files for further analyses. Conclusions Allowing users to select eight existing performance indices and 15 existing algorithms for comparison, our web tool benefits researchers who are eager to comprehensively and objectively evaluate the performance of their newly developed algorithm. Thus, our tool greatly expedites the progress in the research of computational identification of cooperative TF pairs. PMID:26677932

  1. Increasing feasibility of the field-programmable gate array implementation of an iterative image registration using a kernel-warping algorithm

    NASA Astrophysics Data System (ADS)

    Nguyen, An Hung; Guillemette, Thomas; Lambert, Andrew J.; Pickering, Mark R.; Garratt, Matthew A.

    2017-09-01

    Image registration is a fundamental image processing technique. It is used to spatially align two or more images that have been captured at different times, from different sensors, or from different viewpoints. There have been many algorithms proposed for this task. The most common of these being the well-known Lucas-Kanade (LK) and Horn-Schunck approaches. However, the main limitation of these approaches is the computational complexity required to implement the large number of iterations necessary for successful alignment of the images. Previously, a multi-pass image interpolation algorithm (MP-I2A) was developed to considerably reduce the number of iterations required for successful registration compared with the LK algorithm. This paper develops a kernel-warping algorithm (KWA), a modified version of the MP-I2A, which requires fewer iterations to successfully register two images and less memory space for the field-programmable gate array (FPGA) implementation than the MP-I2A. These reductions increase feasibility of the implementation of the proposed algorithm on FPGAs with very limited memory space and other hardware resources. A two-FPGA system rather than single FPGA system is successfully developed to implement the KWA in order to compensate insufficiency of hardware resources supported by one FPGA, and increase parallel processing ability and scalability of the system.

  2. Comparison of trend analyses for Umkehr data using new and previous inversion algorithms

    NASA Technical Reports Server (NTRS)

    Reinsel, Gregory C.; Tam, Wing-Kuen; Ying, Lisa H.

    1994-01-01

    Ozone vertical profile Umkehr data for layers 3-9 obtained from 12 stations, using both previous and new inversion algorithms, were analyzed for trends. The trends estimated for the Umkehr data from the two algorithms were compared using two data periods, 1968-1991 and 1977-1991. Both nonseasonal and seasonal trend models were fitted. The overall annual trends are found to be significantly negative, of the order of -5% per decade, for layers 7 and 8 using both inversion algorithms. The largest negative trends occur in these layers under the new algorithm, whereas in the previous algorithm the most negative trend occurs in layer 9. The trend estimates, both annual and seasonal, are substantially different between the two algorithms mainly for layers 3, 4, and 9, where trends from the new algorithm data are about 2% per decade less negative, with less appreciable differences in layers 7 and 8. The trend results from the two data periods are similar, except for layer 3 where trends become more negative, by about -2% per decade, for 1977-1991.

  3. Basic properties of lattices of cubes, algorithms for their construction, and application capabilities in discrete optimization

    NASA Astrophysics Data System (ADS)

    Khachaturov, R. V.

    2015-01-01

    The basic properties of a new type of lattices—a lattice of cubes—are described. It is shown that, with a suitable choice of union and intersection operations, the set of all subcubes of an N-cube forms a lattice, which is called a lattice of cubes. Algorithms for constructing such lattices are described, and the results produced by these algorithms in the case of lattices of various dimensions are illustrated. It is proved that a lattice of cubes is a lattice with supplements, which makes it possible to minimize and maximize supermodular functions on it. Examples of such functions are given. The possibility of applying previously developed efficient optimization algorithms to the formulation and solution of new classes of problems on lattices of cubes.

  4. Anti-aliasing algorithm development

    NASA Astrophysics Data System (ADS)

    Bodrucki, F.; Davis, J.; Becker, J.; Cordell, J.

    2017-10-01

    In this paper, we discuss the testing image processing algorithms for mitigation of aliasing artifacts under pulsed illumination. Previously sensors were tested, one with a fixed frame rate and one with an adjustable frame rate, which results showed different degrees of operability when subjected to a Quantum Cascade Laser (QCL) laser pulsed at the frame rate of the fixe-rate sensor. We implemented algorithms to allow the adjustable frame-rate sensor to detect the presence of aliasing artifacts, and in response, to alter the frame rate of the sensor. The result was that the sensor output showed a varying laser intensity (beat note) as opposed to a fixed signal level. A MIRAGE Infrared Scene Projector (IRSP) was used to explore the efficiency of the new algorithms, introduction secondary elements into the sensor's field of view.

  5. A dynamic scheduling algorithm for singe-arm two-cluster tools with flexible processing times

    NASA Astrophysics Data System (ADS)

    Li, Xin; Fung, Richard Y. K.

    2018-02-01

    This article presents a dynamic algorithm for job scheduling in two-cluster tools producing multi-type wafers with flexible processing times. Flexible processing times mean that the actual times for processing wafers should be within given time intervals. The objective of the work is to minimize the completion time of the newly inserted wafer. To deal with this issue, a two-cluster tool is decomposed into three reduced single-cluster tools (RCTs) in a series based on a decomposition approach proposed in this article. For each single-cluster tool, a dynamic scheduling algorithm based on temporal constraints is developed to schedule the newly inserted wafer. Three experiments have been carried out to test the dynamic scheduling algorithm proposed, comparing with the results the 'earliest starting time' heuristic (EST) adopted in previous literature. The results show that the dynamic algorithm proposed in this article is effective and practical.

  6. FPGA implementation of Santos-Victor optical flow algorithm for real-time image processing: an useful attempt

    NASA Astrophysics Data System (ADS)

    Cobos Arribas, Pedro; Monasterio Huelin Macia, Felix

    2003-04-01

    A FPGA based hardware implementation of the Santos-Victor optical flow algorithm, useful in robot guidance applications, is described in this paper. The system used to do contains an ALTERA FPGA (20K100), an interface with a digital camera, three VRAM memories to contain the data input and some output memories (a VRAM and a EDO) to contain the results. The system have been used previously to develop and test other vision algorithms, such as image compression, optical flow calculation with differential and correlation methods. The designed system let connect the digital camera, or the FPGA output (results of algorithms) to a PC, throw its Firewire or USB port. The problems take place in this occasion have motivated to adopt another hardware structure for certain vision algorithms with special requirements, that need a very hard code intensive processing.

  7. Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions.

    PubMed

    Chen, Ke; Wang, Shihai

    2011-01-01

    Semi-supervised learning concerns the problem of learning in the presence of labeled and unlabeled data. Several boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of them takes all three semi-supervised assumptions, i.e., smoothness, cluster, and manifold assumptions, together into account during boosting learning. In this paper, we propose a novel cost functional consisting of the margin cost on labeled data and the regularization penalty on unlabeled data based on three fundamental semi-supervised assumptions. Thus, minimizing our proposed cost functional with a greedy yet stagewise functional optimization procedure leads to a generic boosting framework for semi-supervised learning. Extensive experiments demonstrate that our algorithm yields favorite results for benchmark and real-world classification tasks in comparison to state-of-the-art semi-supervised learning algorithms, including newly developed boosting algorithms. Finally, we discuss relevant issues and relate our algorithm to the previous work.

  8. Joint Services Electronics Program.

    DTIC Science & Technology

    1987-03-31

    58 (no previous unit) Unit 18 Adaptive Algorithms for Identification. Filtering. Control. and S ignal P rocessin g...two new faculty. Professors Arun and Wah. Finally. a total of six new faculty in the areas of adaptive and nonlinear systems. communication systems. and...previously), we observed an additional higher binding energy site at 2.6 eV The Sb coverage in the E, site increased ,xith ion dose and a model was developed

  9. Aerosol physical properties from satellite horizon inversion

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.

    1973-01-01

    The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.

  10. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-01

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  11. Application of the pessimistic pruning to increase the accuracy of C4.5 algorithm in diagnosing chronic kidney disease

    NASA Astrophysics Data System (ADS)

    Muslim, M. A.; Herowati, A. J.; Sugiharti, E.; Prasetiyo, B.

    2018-03-01

    A technique to dig valuable information buried or hidden in data collection which is so big to be found an interesting patterns that was previously unknown is called data mining. Data mining has been applied in the healthcare industry. One technique used data mining is classification. The decision tree included in the classification of data mining and algorithm developed by decision tree is C4.5 algorithm. A classifier is designed using applying pessimistic pruning in C4.5 algorithm in diagnosing chronic kidney disease. Pessimistic pruning use to identify and remove branches that are not needed, this is done to avoid overfitting the decision tree generated by the C4.5 algorithm. In this paper, the result obtained using these classifiers are presented and discussed. Using pessimistic pruning shows increase accuracy of C4.5 algorithm of 1.5% from 95% to 96.5% in diagnosing of chronic kidney disease.

  12. An improved algorithm of image processing technique for film thickness measurement in a horizontal stratified gas-liquid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuntoro, Hadiyan Yusuf; Hudaya, Akhmad Zidni; Dinaryanto, Okto; Majid, Akmal Irfan; Deendarlianto

    2016-06-01

    Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methods and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (hL) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.

  13. An improved algorithm of image processing technique for film thickness measurement in a horizontal stratified gas-liquid two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuntoro, Hadiyan Yusuf, E-mail: hadiyan.y.kuntoro@mail.ugm.ac.id; Majid, Akmal Irfan; Deendarlianto, E-mail: deendarlianto@ugm.ac.id

    Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methodsmore » and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (h{sub L}) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.« less

  14. Robust perception algorithms for road and track autonomous following

    NASA Astrophysics Data System (ADS)

    Marion, Vincent; Lecointe, Olivier; Lewandowski, Cecile; Morillon, Joel G.; Aufrere, Romuald; Marcotegui, Beatrix; Chapuis, Roland; Beucher, Serge

    2004-09-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales Airborne Systems as the prime contractor, focuses on about 15 robotic themes, which can provide an immediate "operational add-on value." The paper details the "road and track following" theme (named AUT2), which main purpose was to develop a vision based sub-system to automatically detect roadsides of an extended range of roads and tracks suitable to military missions. To achieve the goal, efforts focused on three main areas: (1) Improvement of images quality at algorithms inputs, thanks to the selection of adapted video cameras, and the development of a THALES patented algorithm: it removes in real time most of the disturbing shadows in images taken in natural environments, enhances contrast and lowers reflection effect due to films of water. (2) Selection and improvement of two complementary algorithms (one is segment oriented, the other region based) (3) Development of a fusion process between both algorithms, which feeds in real time a road model with the best available data. Each previous step has been developed so that the global perception process is reliable and safe: as an example, the process continuously evaluates itself and outputs confidence criteria qualifying roadside detection. The paper presents the processes in details, and the results got from passed military acceptance tests, which trigger the next step: autonomous track following (named AUT3).

  15. Early Examples from the Integrated Multi-Satellite Retrievals for GPM (IMERG)

    NASA Astrophysics Data System (ADS)

    Huffman, George; Bolvin, David; Braithwaite, Daniel; Hsu, Kuolin; Joyce, Robert; Kidd, Christopher; Sorooshian, Soroosh; Xie, Pingping

    2014-05-01

    The U.S. GPM Science Team's Day-1 algorithm for computing combined precipitation estimates as part of GPM is the Integrated Multi-satellitE Retrievals for GPM (IMERG). The goal is to compute the best time series of (nearly) global precipitation from "all" precipitation-relevant satellites and global surface precipitation gauge analyses. IMERG is being developed as a unified U.S. algorithm drawing on strengths in the three contributing groups, whose previous work includes: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA); 2) the CPC Morphing algorithm with Kalman Filtering (K-CMORPH); and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS). We review the IMERG design and development, plans for testing, and current status. Some of the lessons learned in running and reprocessing the previous data sets include the importance of quality-controlling input data sets, strategies for coping with transitions in the various input data sets, and practical approaches to retrospective analysis of multiple output products (namely the real- and post-real-time data streams). IMERG output will be illustrated using early test data, including the variety of supporting fields, such as the merged-microwave and infrared estimates, and the precipitation type. We end by considering recent changes in input data specifications, the transition from TRMM-based calibration to GPM-based, and further "Day 2" development.

  16. Improved algorithms for estimating Total Alkalinity in Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Devkota, M.; Dash, P.

    2017-12-01

    Ocean Acidification (OA) is one of the serious challenges that have significant impacts on ocean. About 25% of anthropologically generated CO2 is absorbed by the oceans which decreases average ocean pH. This change has critical impacts on marine species, ocean ecology, and associated economics. 35 years of observation concluded that the rate of alteration in OA parameters varies geographically with higher variations in the northern Gulf of Mexico (N-GoM). Several studies have suggested that the Mississippi River affects the carbon dynamics of the N-GoM coastal ecosystem significantly. Total Alkalinity (TA) algorithms developed for major ocean basins produce inaccurate estimations in this region. Hence, a local algorithm to estimate TA is the need for this region, which would incorporate the local effects of oceanographic processes and complex spatial influences. In situ data collected in N-GoM region during the GOMECC-I and II cruises, and GISR Cruises (G-1, 3, 5) from 2007 to 2013 were assimilated and used to calculate the efficiency of the existing TA algorithm that uses Sea Surface Temperature (SST) and Sea Surface Salinity (SSS) as explanatory variables. To improve this algorithm, firstly, statistical analyses were performed to improve the coefficients and the functional form of this algorithm. Then, chlorophyll a (Chl-a) was included as an additional explanatory variable in the multiple linear regression approach in addition to SST and SSS. Based on the average concentration of Chl-a for last 15 years, the N-GoM was divided into two regions, and two separate algorithms were developed for each region. Finally, to address spatial non-stationarity, a Geographically Weighted Regression (GWR) algorithm was developed. The existing TA algorithm resulted considerable algorithm bias with a larger bias in the coastal waters. Chl-a as an additional explanatory variable reduced the bias in the residuals and improved the algorithm efficiency. Chl-a worked as a proxy for addressing the organic pump's pronounced effects in the coastal waters. The GWR algorithm provided a raster surface of the coefficients with even more reliable algorithms to estimate TA with least error. The GWR algorithm addressed the spatial non-stationarity of OA in N-GoM, which apparently was not addressed in the previously developed algorithms.

  17. A New Augmentation Based Algorithm for Extracting Maximal Chordal Subgraphs.

    PubMed

    Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh

    2015-02-01

    A graph is chordal if every cycle of length greater than three contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms' parallelizability. In this paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. We experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.

  18. Digital SAR processing using a fast polynomial transform

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Lipes, R. G.; Butman, S. A.; Reed, I. S.; Rubin, A. L.

    1984-01-01

    A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network. Previously announced in STAR as N82-11295

  19. MVIAeval: a web tool for comprehensively evaluating the performance of a new missing value imputation algorithm.

    PubMed

    Wu, Wei-Sheng; Jhou, Meng-Jhun

    2017-01-13

    Missing value imputation is important for microarray data analyses because microarray data with missing values would significantly degrade the performance of the downstream analyses. Although many microarray missing value imputation algorithms have been developed, an objective and comprehensive performance comparison framework is still lacking. To solve this problem, we previously proposed a framework which can perform a comprehensive performance comparison of different existing algorithms. Also the performance of a new algorithm can be evaluated by our performance comparison framework. However, constructing our framework is not an easy task for the interested researchers. To save researchers' time and efforts, here we present an easy-to-use web tool named MVIAeval (Missing Value Imputation Algorithm evaluator) which implements our performance comparison framework. MVIAeval provides a user-friendly interface allowing users to upload the R code of their new algorithm and select (i) the test datasets among 20 benchmark microarray (time series and non-time series) datasets, (ii) the compared algorithms among 12 existing algorithms, (iii) the performance indices from three existing ones, (iv) the comprehensive performance scores from two possible choices, and (v) the number of simulation runs. The comprehensive performance comparison results are then generated and shown as both figures and tables. MVIAeval is a useful tool for researchers to easily conduct a comprehensive and objective performance evaluation of their newly developed missing value imputation algorithm for microarray data or any data which can be represented as a matrix form (e.g. NGS data or proteomics data). Thus, MVIAeval will greatly expedite the progress in the research of missing value imputation algorithms.

  20. The SIST-M: Predictive validity of a brief structured Clinical Dementia Rating interview

    PubMed Central

    Okereke, Olivia I.; Pantoja-Galicia, Norberto; Copeland, Maura; Hyman, Bradley T.; Wanggaard, Taylor; Albert, Marilyn S.; Betensky, Rebecca A.; Blacker, Deborah

    2011-01-01

    Background We previously established reliability and cross-sectional validity of the SIST-M (Structured Interview and Scoring Tool–Massachusetts Alzheimer's Disease Research Center), a shortened version of an instrument shown to predict progression to Alzheimer disease (AD), even among persons with very mild cognitive impairment (vMCI). Objective To test predictive validity of the SIST-M. Methods Participants were 342 community-dwelling, non-demented older adults in a longitudinal study. Baseline Clinical Dementia Rating (CDR) ratings were determined by either: 1) clinician interviews or 2) a previously developed computer algorithm based on 60 questions (of a possible 131) extracted from clinician interviews. We developed age+gender+education-adjusted Cox proportional hazards models using CDR-sum-of-boxes (CDR-SB) as the predictor, where CDR-SB was determined by either clinician interview or algorithm; models were run for the full sample (n=342) and among those jointly classified as vMCI using clinician- and algorithm-based CDR ratings (n=156). We directly compared predictive accuracy using time-dependent Receiver Operating Characteristic (ROC) curves. Results AD hazard ratios (HRs) were similar for clinician-based and algorithm-based CDR-SB: for a 1-point increment in CDR-SB, respective HRs (95% CI)=3.1 (2.5,3.9) and 2.8 (2.2,3.5); among those with vMCI, respective HRs (95% CI) were 2.2 (1.6,3.2) and 2.1 (1.5,3.0). Similarly high predictive accuracy was achieved: the concordance probability (weighted average of the area-under-the-ROC curves) over follow-up was 0.78 vs. 0.76 using clinician-based vs. algorithm-based CDR-SB. Conclusion CDR scores based on items from this shortened interview had high predictive ability for AD – comparable to that using a lengthy clinical interview. PMID:21986342

  1. Real-time estimation of ionospheric delay using GPS measurements

    NASA Astrophysics Data System (ADS)

    Lin, Lao-Sheng

    1997-12-01

    When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is able to estimate the sum of the satellite and receiver L1/L2 differential delay for each tracked GPS satellite. A 'UNSW grid-based algorithm' is proposed to improve the accuracy of real-time ionosphere modelling. The proposed algorithm is similar to the conventional grid-based algorithm. However, two modifications were made to the algorithm: (1) an 'exponential function' is adopted as the weighting function, and (2) the 'grid-based ionosphere model' estimated from the previous day is used to predict the ionospheric delay ratios between the grid point and reference points. (Abstract shortened by UMI.)

  2. Files synchronization from a large number of insertions and deletions

    NASA Astrophysics Data System (ADS)

    Ellappan, Vijayan; Kumari, Savera

    2017-11-01

    Synchronization between different versions of files is becoming a major issue that most of the applications are facing. To make the applications more efficient a economical algorithm is developed from the previously used algorithm of “File Loading Algorithm”. I am extending this algorithm in three ways: First, dealing with non-binary files, Second backup is generated for uploaded files and lastly each files are synchronized with insertions and deletions. User can reconstruct file from the former file with minimizing the error and also provides interactive communication by eliminating the frequency without any disturbance. The drawback of previous system is overcome by using synchronization, in which multiple copies of each file/record is created and stored in backup database and is efficiently restored in case of any unwanted deletion or loss of data. That is, to introduce a protocol that user B may use to reconstruct file X from file Y with suitably low probability of error. Synchronization algorithms find numerous areas of use, including data storage, file sharing, source code control systems, and cloud applications. For example, cloud storage services such as Drop box synchronize between local copies and cloud backups each time users make changes to local versions. Similarly, synchronization tools are necessary in mobile devices. Specialized synchronization algorithms are used for video and sound editing. Synchronization tools are also capable of performing data duplication.

  3. TRACON Aircraft Arrival Planning and Optimization Through Spatial Constraint Satisfaction

    NASA Technical Reports Server (NTRS)

    Bergh, Christopher P.; Krzeczowski, Kenneth J.; Davis, Thomas J.; Denery, Dallas G. (Technical Monitor)

    1995-01-01

    A new aircraft arrival planning and optimization algorithm has been incorporated into the Final Approach Spacing Tool (FAST) in the Center-TRACON Automation System (CTAS) developed at NASA-Ames Research Center. FAST simulations have been conducted over three years involving full-proficiency, level five air traffic controllers from around the United States. From these simulations an algorithm, called Spatial Constraint Satisfaction, has been designed, coded, undergone testing, and soon will begin field evaluation at the Dallas-Fort Worth and Denver International airport facilities. The purpose of this new design is an attempt to show that the generation of efficient and conflict free aircraft arrival plans at the runway does not guarantee an operationally acceptable arrival plan upstream from the runway -information encompassing the entire arrival airspace must be used in order to create an acceptable aircraft arrival plan. This new design includes functions available previously but additionally includes necessary representations of controller preferences and workload, operationally required amounts of extra separation, and integrates aircraft conflict resolution. As a result, the Spatial Constraint Satisfaction algorithm produces an optimized aircraft arrival plan that is more acceptable in terms of arrival procedures and air traffic controller workload. This paper discusses the current Air Traffic Control arrival planning procedures, previous work in this field, the design of the Spatial Constraint Satisfaction algorithm, and the results of recent evaluations of the algorithm.

  4. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Koeppen, W. C.; Pilger, E.; Wright, R.

    2011-07-01

    We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

  5. Developing an Automated Machine Learning Marine Oil Spill Detection System with Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Pinales, J. C.; Graber, H. C.; Hargrove, J. T.; Caruso, M. J.

    2016-02-01

    Previous studies have demonstrated the ability to detect and classify marine hydrocarbon films with spaceborne synthetic aperture radar (SAR) imagery. The dampening effects of hydrocarbon discharges on small surface capillary-gravity waves renders the ocean surface "radar dark" compared with the standard wind-borne ocean surfaces. Given the scope and impact of events like the Deepwater Horizon oil spill, the need for improved, automated and expedient monitoring of hydrocarbon-related marine anomalies has become a pressing and complex issue for governments and the extraction industry. The research presented here describes the development, training, and utilization of an algorithm that detects marine oil spills in an automated, semi-supervised manner, utilizing X-, C-, or L-band SAR data as the primary input. Ancillary datasets include related radar-borne variables (incidence angle, etc.), environmental data (wind speed, etc.) and textural descriptors. Shapefiles produced by an experienced human-analyst served as targets (validation) during the training portion of the investigation. Training and testing datasets were chosen for development and assessment of algorithm effectiveness as well as optimal conditions for oil detection in SAR data. The algorithm detects oil spills by following a 3-step methodology: object detection, feature extraction, and classification. Previous oil spill detection and classification methodologies such as machine learning algorithms, artificial neural networks (ANN), and multivariate classification methods like partial least squares-discriminant analysis (PLS-DA) are evaluated and compared. Statistical, transform, and model-based image texture techniques, commonly used for object mapping directly or as inputs for more complex methodologies, are explored to determine optimal textures for an oil spill detection system. The influence of the ancillary variables is explored, with a particular focus on the role of strong vs. weak wind forcing.

  6. Parallel digital forensics infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexicomore » Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.« less

  7. Development of a pharmacogenetic-guided warfarin dosing algorithm for Puerto Rican patients.

    PubMed

    Ramos, Alga S; Seip, Richard L; Rivera-Miranda, Giselle; Felici-Giovanini, Marcos E; Garcia-Berdecia, Rafael; Alejandro-Cowan, Yirelia; Kocherla, Mohan; Cruz, Iadelisse; Feliu, Juan F; Cadilla, Carmen L; Renta, Jessica Y; Gorowski, Krystyna; Vergara, Cunegundo; Ruaño, Gualberto; Duconge, Jorge

    2012-12-01

    This study was aimed at developing a pharmacogenetic-driven warfarin-dosing algorithm in 163 admixed Puerto Rican patients on stable warfarin therapy. A multiple linear-regression analysis was performed using log-transformed effective warfarin dose as the dependent variable, and combining CYP2C9 and VKORC1 genotyping with other relevant nongenetic clinical and demographic factors as independent predictors. The model explained more than two-thirds of the observed variance in the warfarin dose among Puerto Ricans, and also produced significantly better 'ideal dose' estimates than two pharmacogenetic models and clinical algorithms published previously, with the greatest benefit seen in patients ultimately requiring <7 mg/day. We also assessed the clinical validity of the model using an independent validation cohort of 55 Puerto Rican patients from Hartford, CT, USA (R(2) = 51%). Our findings provide the basis for planning prospective pharmacogenetic studies to demonstrate the clinical utility of genotyping warfarin-treated Puerto Rican patients.

  8. Modeling of video traffic in packet networks, low rate video compression, and the development of a lossy+lossless image compression algorithm

    NASA Technical Reports Server (NTRS)

    Sayood, K.; Chen, Y. C.; Wang, X.

    1992-01-01

    During this reporting period we have worked on three somewhat different problems. These are modeling of video traffic in packet networks, low rate video compression, and the development of a lossy + lossless image compression algorithm, which might have some application in browsing algorithms. The lossy + lossless scheme is an extension of work previously done under this grant. It provides a simple technique for incorporating browsing capability. The low rate coding scheme is also a simple variation on the standard discrete cosine transform (DCT) coding approach. In spite of its simplicity, the approach provides surprisingly high quality reconstructions. The modeling approach is borrowed from the speech recognition literature, and seems to be promising in that it provides a simple way of obtaining an idea about the second order behavior of a particular coding scheme. Details about these are presented.

  9. Profiling Arthritis Pain with a Decision Tree.

    PubMed

    Hung, Man; Bounsanga, Jerry; Liu, Fangzhou; Voss, Maren W

    2018-06-01

    Arthritis is the leading cause of work disability and contributes to lost productivity. Previous studies showed that various factors predict pain, but they were limited in sample size and scope from a data analytics perspective. The current study applied machine learning algorithms to identify predictors of pain associated with arthritis in a large national sample. Using data from the 2011 to 2012 Medical Expenditure Panel Survey, data mining was performed to develop algorithms to identify factors and patterns that contribute to risk of pain. The model incorporated over 200 variables within the algorithm development, including demographic data, medical claims, laboratory tests, patient-reported outcomes, and sociobehavioral characteristics. The developed algorithms to predict pain utilize variables readily available in patient medical records. Using the machine learning classification algorithm J48 with 50-fold cross-validations, we found that the model can significantly distinguish those with and without pain (c-statistics = 0.9108). The F measure was 0.856, accuracy rate was 85.68%, sensitivity was 0.862, specificity was 0.852, and precision was 0.849. Physical and mental function scores, the ability to climb stairs, and overall assessment of feeling were the most discriminative predictors from the 12 identified variables, predicting pain with 86% accuracy for individuals with arthritis. In this era of rapid expansion of big data application, the nature of healthcare research is moving from hypothesis-driven to data-driven solutions. The algorithms generated in this study offer new insights on individualized pain prediction, allowing the development of cost-effective care management programs for those experiencing arthritis pain. © 2017 World Institute of Pain.

  10. A new augmentation based algorithm for extracting maximal chordal subgraphs

    DOE PAGES

    Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh

    2014-10-18

    If every cycle of a graph is chordal length greater than three then it contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms’more » parallelizability. In our paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. Finally, we experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.« less

  11. Integrated Graphics Operations and Analysis Lab Development of Advanced Computer Graphics Algorithms

    NASA Technical Reports Server (NTRS)

    Wheaton, Ira M.

    2011-01-01

    The focus of this project is to aid the IGOAL in researching and implementing algorithms for advanced computer graphics. First, this project focused on porting the current International Space Station (ISS) Xbox experience to the web. Previously, the ISS interior fly-around education and outreach experience only ran on an Xbox 360. One of the desires was to take this experience and make it into something that can be put on NASA s educational site for anyone to be able to access. The current code works in the Unity game engine which does have cross platform capability but is not 100% compatible. The tasks for an intern to complete this portion consisted of gaining familiarity with Unity and the current ISS Xbox code, porting the Xbox code to the web as is, and modifying the code to work well as a web application. In addition, a procedurally generated cloud algorithm will be developed. Currently, the clouds used in AGEA animations and the Xbox experiences are a texture map. The desire is to create a procedurally generated cloud algorithm to provide dynamically generated clouds for both AGEA animations and the Xbox experiences. This task consists of gaining familiarity with AGEA and the plug-in interface, developing the algorithm, creating an AGEA plug-in to implement the algorithm inside AGEA, and creating a Unity script to implement the algorithm for the Xbox. This portion of the project was unable to be completed in the time frame of the internship; however, the IGOAL will continue to work on it in the future.

  12. Optimizing Approximate Weighted Matching on Nvidia Kepler K40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naim, Md; Manne, Fredrik; Halappanavar, Mahantesh

    Matching is a fundamental graph problem with numerous applications in science and engineering. While algorithms for computing optimal matchings are difficult to parallelize, approximation algorithms on the other hand generally compute high quality solutions and are amenable to parallelization. In this paper, we present efficient implementations of the current best algorithm for half-approximate weighted matching, the Suitor algorithm, on Nvidia Kepler K-40 platform. We develop four variants of the algorithm that exploit hardware features to address key challenges for a GPU implementation. We also experiment with different combinations of work assigned to a warp. Using an exhaustive set ofmore » $269$ inputs, we demonstrate that the new implementation outperforms the previous best GPU algorithm by $10$ to $$100\\times$$ for over $100$ instances, and from $100$ to $$1000\\times$$ for $15$ instances. We also demonstrate up to $$20\\times$$ speedup relative to $2$ threads, and up to $$5\\times$$ relative to $16$ threads on Intel Xeon platform with $16$ cores for the same algorithm. The new algorithms and implementations provided in this paper will have a direct impact on several applications that repeatedly use matching as a key compute kernel. Further, algorithm designs and insights provided in this paper will benefit other researchers implementing graph algorithms on modern GPU architectures.« less

  13. Clinical effectiveness of a Bayesian algorithm for the diagnosis and management of heparin-induced thrombocytopenia.

    PubMed

    Raschke, R A; Gallo, T; Curry, S C; Whiting, T; Padilla-Jones, A; Warkentin, T E; Puri, A

    2017-08-01

    Essentials We previously published a diagnostic algorithm for heparin-induced thrombocytopenia (HIT). In this study, we validated the algorithm in an independent large healthcare system. The accuracy was 98%, sensitivity 82% and specificity 99%. The algorithm has potential to improve accuracy and efficiency in the diagnosis of HIT. Background Heparin-induced thrombocytopenia (HIT) is a life-threatening drug reaction caused by antiplatelet factor 4/heparin (anti-PF4/H) antibodies. Commercial tests to detect these antibodies have suboptimal operating characteristics. We previously developed a diagnostic algorithm for HIT that incorporated 'four Ts' (4Ts) scoring and a stratified interpretation of an anti-PF4/H enzyme-linked immunosorbent assay (ELISA) and yielded a discriminant accuracy of 0.97 (95% confidence interval [CI], 0.93-1.00). Objectives The purpose of this study was to validate the algorithm in an independent patient population and quantitate effects that algorithm adherence could have on clinical care. Methods A retrospective cohort comprised patients who had undergone anti-PF4/H ELISA and serotonin release assay (SRA) testing in our healthcare system from 2010 to 2014. We determined the algorithm recommendation for each patient, compared recommendations with the clinical care received, and enumerated consequences of discrepancies. Operating characteristics were calculated for algorithm recommendations using SRA as the reference standard. Results Analysis was performed on 181 patients, 10 of whom were ruled in for HIT. The algorithm accurately stratified 98% of patients (95% CI, 95-99%), ruling out HIT in 158, ruling in HIT in 10 and recommending an SRA in 13 patients. Algorithm adherence would have obviated 165 SRAs and prevented 30 courses of unnecessary antithrombotic therapy for HIT. Diagnostic sensitivity was 0.82 (95% CI, 0.48-0.98), specificity 0.99 (95% CI, 0.97-1.00), PPV 0.90 (95% CI, 0.56-0.99) and NPV 0.99 (95% CI, 0.96-1.00). Conclusions An algorithm incorporating 4Ts scoring and a stratified interpretation of the anti-PF4/H ELISA has good operating characteristics and the potential to improve management of suspected HIT patients. © 2017 International Society on Thrombosis and Haemostasis.

  14. Teaching Non-Recursive Binary Searching: Establishing a Conceptual Framework.

    ERIC Educational Resources Information Center

    Magel, E. Terry

    1989-01-01

    Discusses problems associated with teaching non-recursive binary searching in computer language classes, and describes a teacher-directed dialog based on dictionary use that helps students use their previous searching experiences to conceptualize the binary search process. Algorithmic development is discussed and appropriate classroom discussion…

  15. Space shuttle propulsion estimation development verification, volume 1

    NASA Technical Reports Server (NTRS)

    Rogers, Robert M.

    1989-01-01

    The results of the Propulsion Estimation Development Verification are summarized. A computer program developed under a previous contract (NAS8-35324) was modified to include improved models for the Solid Rocket Booster (SRB) internal ballistics, the Space Shuttle Main Engine (SSME) power coefficient model, the vehicle dynamics using quaternions, and an improved Kalman filter algorithm based on the U-D factorized algorithm. As additional output, the estimated propulsion performances, for each device are computed with the associated 1-sigma bounds. The outputs of the estimation program are provided in graphical plots. An additional effort was expended to examine the use of the estimation approach to evaluate single engine test data. In addition to the propulsion estimation program PFILTER, a program was developed to produce a best estimate of trajectory (BET). The program LFILTER, also uses the U-D factorized algorithm form of the Kalman filter as in the propulsion estimation program PFILTER. The necessary definitions and equations explaining the Kalman filtering approach for the PFILTER program, the models used for this application for dynamics and measurements, program description, and program operation are presented.

  16. A parallel row-based algorithm with error control for standard-cell replacement on a hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Sargent, Jeff Scott

    1988-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.

  17. Improving graph-based OCT segmentation for severe pathology in retinitis pigmentosa patients

    NASA Astrophysics Data System (ADS)

    Lang, Andrew; Carass, Aaron; Bittner, Ava K.; Ying, Howard S.; Prince, Jerry L.

    2017-03-01

    Three dimensional segmentation of macular optical coherence tomography (OCT) data of subjects with retinitis pigmentosa (RP) is a challenging problem due to the disappearance of the photoreceptor layers, which causes algorithms developed for segmentation of healthy data to perform poorly on RP patients. In this work, we present enhancements to a previously developed graph-based OCT segmentation pipeline to enable processing of RP data. The algorithm segments eight retinal layers in RP data by relaxing constraints on the thickness and smoothness of each layer learned from healthy data. Following from prior work, a random forest classifier is first trained on the RP data to estimate boundary probabilities, which are used by a graph search algorithm to find the optimal set of nine surfaces that fit the data. Due to the intensity disparity between normal layers of healthy controls and layers in various stages of degeneration in RP patients, an additional intensity normalization step is introduced. Leave-one-out validation on data acquired from nine subjects showed an average overall boundary error of 4.22 μm as compared to 6.02 μm using the original algorithm.

  18. A convex optimization method for self-organization in dynamic (FSO/RF) wireless networks

    NASA Astrophysics Data System (ADS)

    Llorca, Jaime; Davis, Christopher C.; Milner, Stuart D.

    2008-08-01

    Next generation communication networks are becoming increasingly complex systems. Previously, we presented a novel physics-based approach to model dynamic wireless networks as physical systems which react to local forces exerted on network nodes. We showed that under clear atmospheric conditions the network communication energy can be modeled as the potential energy of an analogous spring system and presented a distributed mobility control algorithm where nodes react to local forces driving the network to energy minimizing configurations. This paper extends our previous work by including the effects of atmospheric attenuation and transmitted power constraints in the optimization problem. We show how our new formulation still results in a convex energy minimization problem. Accordingly, an updated force-driven mobility control algorithm is presented. Forces on mobile backbone nodes are computed as the negative gradient of the new energy function. Results show how in the presence of atmospheric obscuration stronger forces are exerted on network nodes that make them move closer to each other, avoiding loss of connectivity. We show results in terms of network coverage and backbone connectivity and compare the developed algorithms for different scenarios.

  19. LBP-based penalized weighted least-squares approach to low-dose cone-beam computed tomography reconstruction

    NASA Astrophysics Data System (ADS)

    Ma, Ming; Wang, Huafeng; Liu, Yan; Zhang, Hao; Gu, Xianfeng; Liang, Zhengrong

    2014-03-01

    Cone-beam computed tomography (CBCT) has attracted growing interest of researchers in image reconstruction. The mAs level of the X-ray tube current, in practical application of CBCT, is mitigated in order to reduce the CBCT dose. The lowering of the X-ray tube current, however, results in the degradation of image quality. Thus, low-dose CBCT image reconstruction is in effect a noise problem. To acquire clinically acceptable quality of image, and keep the X-ray tube current as low as achievable in the meanwhile, some penalized weighted least-squares (PWLS)-based image reconstruction algorithms have been developed. One representative strategy in previous work is to model the prior information for solution regularization using an anisotropic penalty term. To enhance the edge preserving and noise suppressing in a finer scale, a novel algorithm combining the local binary pattern (LBP) with penalized weighted leastsquares (PWLS), called LBP-PWLS-based image reconstruction algorithm, is proposed in this work. The proposed LBP-PWLS-based algorithm adaptively encourages strong diffusion on the local spot/flat region around a voxel and less diffusion on edge/corner ones by adjusting the penalty for cost function, after the LBP is utilized to detect the region around the voxel as spot, flat and edge ones. The LBP-PWLS-based reconstruction algorithm was evaluated using the sinogram data acquired by a clinical CT scanner from the CatPhan® 600 phantom. Experimental results on the noiseresolution tradeoff measurement and other quantitative measurements demonstrated its feasibility and effectiveness in edge preserving and noise suppressing in comparison with a previous PWLS reconstruction algorithm.

  20. Rational application of adenosine deaminase activity in cerebrospinal fluid for the diagnosis of tuberculous meningitis.

    PubMed

    Parra-Ruiz, Jorge; Ramos, V; Dueñas, C; Coronado-Álvarez, N M; Cabo-Magadán, R; Portillo-Tuñón, V; Vinuesa, D; Muñoz-Medina, L; Hernández-Quero, J

    2015-10-01

    Tuberculous meningitis (TBM) is one of the most serious and difficult to diagnose manifestations of TB. An ADA value >9.5 IU/L has great sensitivity and specificity. However, all available studies have been conducted in areas of high endemicity, so we sought to determine the accuracy of ADA in a low endemicity area. This retrospective study included 190 patients (105 men) who had ADA tested in CSF for some reason. Patients were classified as probable/certain TBM or non-TBM based on clinical and Thwaite's criteria. Optimal ADA cutoff was established by ROC curves and a predictive algorithm based on ADA and other CSF biochemical parameters was generated. Eleven patients were classified as probable/certain TBM. In a low endemicity area, the best ADA cutoff was 11.5 IU/L with 91 % sensitivity and 77.7 % specificity. We also developed a predictive algorithm based on the combination of ADA (>11.5 IU/L), glucose (<65 mg/dL) and leukocytes (≥13.5 cell/mm(3)) with increased accuracy (Se: 91 % Sp: 88 %). Optimal ADA cutoff value in areas of low TB endemicity is higher than previously reported. Our algorithm is more accurate than ADA activity alone with better sensitivity and specificity than previously reported algorithms.

  1. MPLNET V3 Cloud and Planetary Boundary Layer Detection

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.

    2016-01-01

    The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.

  2. On-Board Cryospheric Change Detection By The Autonomous Sciencecraft Experiment

    NASA Astrophysics Data System (ADS)

    Doggett, T.; Greeley, R.; Castano, R.; Cichy, B.; Chien, S.; Davies, A.; Baker, V.; Dohm, J.; Ip, F.

    2004-12-01

    The Autonomous Sciencecraft Experiment (ASE) is operating on-board Earth Observing - 1 (EO-1) with the Hyperion hyper-spectral visible/near-IR spectrometer. ASE science activities include autonomous monitoring of cryopsheric changes, triggering the collection of additional data when change is detected and filtering of null data such as no change or cloud cover. This would have application to the study of cryospheres on Earth, Mars and the icy moons of the outer solar system. A cryosphere classification algorithm, in combination with a previously developed cloud algorithm [1] has been tested on-board ten times from March through August 2004. The cloud algorithm correctly screened out three scenes with total cloud cover, while the cryosphere algorithm detected alpine snow cover in the Rocky Mountains, lake thaw near Madison, Wisconsin, and the presence and subsequent break-up of sea ice in the Barrow Strait of the Canadian Arctic. Hyperion has 220 bands ranging from 400 to 2400 nm, with a spatial resolution of 30 m/pixel and a spectral resolution of 10 nm. Limited on-board memory and processing speed imposed the constraint that only partially processed Level 0.5 data with dark image subtraction and gain factors applied, but not full radiometric calibration. In addition, a maximum of 12 bands could be used for any stacked sequence of algorithms run for a scene on-board. The cryosphere algorithm was developed to classify snow, water, ice and land, using six Hyperion bands at 427, 559, 661, 864, 1245 and 1649 nm. Of these, only 427 nm does overlap with the cloud algorithm. The cloud algorithm was developed with Level 1 data, which introduces complications because of the incomplete calibration of SWIR in Level 0.5 data, including a high level of noise in the 1377 nm band used by the cloud algorithm. Development of a more robust cryosphere classifier, including cloud classification specifically adapted to Level 0.5, is in progress for deployment on EO-1 as part of continued ASE operations. [1] Griffin, M.K. et al., Cloud Cover Detection Algorithm For EO-1 Hyperion Imagery, SPIE 17, 2003.

  3. Evaluation of a computer-aided detection algorithm for timely diagnosis of small acute intracranial hemorrhage on computed tomography in a critical care environment

    NASA Astrophysics Data System (ADS)

    Lee, Joon K.; Chan, Tao; Liu, Brent J.; Huang, H. K.

    2009-02-01

    Detection of acute intracranial hemorrhage (AIH) is a primary task in the interpretation of computed tomography (CT) brain scans of patients suffering from acute neurological disturbances or after head trauma. Interpretation can be difficult especially when the lesion is inconspicuous or the reader is inexperienced. We have previously developed a computeraided detection (CAD) algorithm to detect small AIH. One hundred and thirty five small AIH CT studies from the Los Angeles County (LAC) + USC Hospital were identified and matched by age and sex with one hundred and thirty five normal studies. These cases were then processed using our AIH CAD system to evaluate the efficacy and constraints of the algorithm.

  4. Towards a computational- and algorithmic-level account of concept blending using analogies and amalgams

    NASA Astrophysics Data System (ADS)

    Besold, Tarek R.; Kühnberger, Kai-Uwe; Plaza, Enric

    2017-10-01

    Concept blending - a cognitive process which allows for the combination of certain elements (and their relations) from originally distinct conceptual spaces into a new unified space combining these previously separate elements, and enables reasoning and inference over the combination - is taken as a key element of creative thought and combinatorial creativity. In this article, we summarise our work towards the development of a computational-level and algorithmic-level account of concept blending, combining approaches from computational analogy-making and case-based reasoning (CBR). We present the theoretical background, as well as an algorithmic proposal integrating higher-order anti-unification matching and generalisation from analogy with amalgams from CBR. The feasibility of the approach is then exemplified in two case studies.

  5. Terminal iterative learning control based station stop control of a train

    NASA Astrophysics Data System (ADS)

    Hou, Zhongsheng; Wang, Yi; Yin, Chenkun; Tang, Tao

    2011-07-01

    The terminal iterative learning control (TILC) method is introduced for the first time into the field of train station stop control and three TILC-based algorithms are proposed in this study. The TILC-based train station stop control approach utilises the terminal stop position error in previous braking process to update the current control profile. The initial braking position, or the braking force, or their combination is chosen as the control input, and corresponding learning law is developed. The terminal stop position error of each algorithm is guaranteed to converge to a small region related with the initial offset of braking position with rigorous analysis. The validity of the proposed algorithms is verified by illustrative numerical examples.

  6. Crisis management during anaesthesia: the development of an anaesthetic crisis management manual

    PubMed Central

    Runciman, W; Kluger, M; Morris, R; Paix, A; Watterson, L; Webb, R

    2005-01-01

    Background: All anaesthetists have to handle life threatening crises with little or no warning. However, some cognitive strategies and work practices that are appropriate for speed and efficiency under normal circumstances may become maladaptive in a crisis. It was judged in a previous study that the use of a structured "core" algorithm (based on the mnemonic COVER ABCD–A SWIFT CHECK) would diagnose and correct the problem in 60% of cases and provide a functional diagnosis in virtually all of the remaining 40%. It was recommended that specific sub-algorithms be developed for managing the problems underlying the remaining 40% of crises and assembled in an easy-to-use manual. Sub-algorithms were therefore developed for these problems so that they could be checked for applicability and validity against the first 4000 anaesthesia incidents reported to the Australian Incident Monitoring Study (AIMS). Methods: The need for 24 specific sub-algorithms was identified. Teams of practising anaesthetists were assembled and sets of incidents relevant to each sub-algorithm were identified from the first 4000 reported to AIMS. Based largely on successful strategies identified in these reports, a set of 24 specific sub-algorithms was developed for trial against the 4000 AIMS reports and assembled into an easy-to-use manual. A process was developed for applying each component of the core algorithm COVER at one of four levels (scan-check-alert/ready-emergency) according to the degree of perceived urgency, and incorporated into the manual. The manual was disseminated at a World Congress and feedback was obtained. Results: Each of the 24 specific crisis management sub-algorithms was tested against the relevant incidents among the first 4000 reported to AIMS and compared with the actual management by the anaesthetist at the time. It was judged that, if the core algorithm had been correctly applied, the appropriate sub-algorithm would have been resolved better and/or faster in one in eight of all incidents, and would have been unlikely to have caused harm to any patient. The descriptions of the validation of each of the 24 sub-algorithms constitute the remaining 24 papers in this set. Feedback from five meetings each attended by 60–100 anaesthetists was then collated and is included. Conclusion: The 24 sub-algorithms developed form the basis for developing a rational evidence-based approach to crisis management during anaesthesia. The COVER component has been found to be satisfactory in real life resuscitation situations and the sub-algorithms have been used successfully for several years. It would now be desirable for carefully designed simulator based studies, using naive trainees at the start of their training, to systematically examine the merits and demerits of various aspects of the sub-algorithms. It would seem prudent that these sub-algorithms be regarded, for the moment, as decision aids to support and back up clinicians' natural responses to a crisis when all is not progressing as expected. PMID:15933282

  7. Crisis management during anaesthesia: the development of an anaesthetic crisis management manual.

    PubMed

    Runciman, W B; Kluger, M T; Morris, R W; Paix, A D; Watterson, L M; Webb, R K

    2005-06-01

    All anaesthetists have to handle life threatening crises with little or no warning. However, some cognitive strategies and work practices that are appropriate for speed and efficiency under normal circumstances may become maladaptive in a crisis. It was judged in a previous study that the use of a structured "core" algorithm (based on the mnemonic COVER ABCD-A SWIFT CHECK) would diagnose and correct the problem in 60% of cases and provide a functional diagnosis in virtually all of the remaining 40%. It was recommended that specific sub-algorithms be developed for managing the problems underlying the remaining 40% of crises and assembled in an easy-to-use manual. Sub-algorithms were therefore developed for these problems so that they could be checked for applicability and validity against the first 4000 anaesthesia incidents reported to the Australian Incident Monitoring Study (AIMS). The need for 24 specific sub-algorithms was identified. Teams of practising anaesthetists were assembled and sets of incidents relevant to each sub-algorithm were identified from the first 4000 reported to AIMS. Based largely on successful strategies identified in these reports, a set of 24 specific sub-algorithms was developed for trial against the 4000 AIMS reports and assembled into an easy-to-use manual. A process was developed for applying each component of the core algorithm COVER at one of four levels (scan-check-alert/ready-emergency) according to the degree of perceived urgency, and incorporated into the manual. The manual was disseminated at a World Congress and feedback was obtained. Each of the 24 specific crisis management sub-algorithms was tested against the relevant incidents among the first 4000 reported to AIMS and compared with the actual management by the anaesthetist at the time. It was judged that, if the core algorithm had been correctly applied, the appropriate sub-algorithm would have been resolved better and/or faster in one in eight of all incidents, and would have been unlikely to have caused harm to any patient. The descriptions of the validation of each of the 24 sub-algorithms constitute the remaining 24 papers in this set. Feedback from five meetings each attended by 60-100 anaesthetists was then collated and is included. The 24 sub-algorithms developed form the basis for developing a rational evidence-based approach to crisis management during anaesthesia. The COVER component has been found to be satisfactory in real life resuscitation situations and the sub-algorithms have been used successfully for several years. It would now be desirable for carefully designed simulator based studies, using naive trainees at the start of their training, to systematically examine the merits and demerits of various aspects of the sub-algorithms. It would seem prudent that these sub-algorithms be regarded, for the moment, as decision aids to support and back up clinicians' natural responses to a crisis when all is not progressing as expected.

  8. Performance improvement of an active vibration absorber subsystem for an aircraft model using a bees algorithm based on multi-objective intelligent optimization

    NASA Astrophysics Data System (ADS)

    Zarchi, Milad; Attaran, Behrooz

    2017-11-01

    This study develops a mathematical model to investigate the behaviour of adaptable shock absorber dynamics for the six-degree-of-freedom aircraft model in the taxiing phase. The purpose of this research is to design a proportional-integral-derivative technique for control of an active vibration absorber system using a hydraulic nonlinear actuator based on the bees algorithm. This optimization algorithm is inspired by the natural intelligent foraging behaviour of honey bees. The neighbourhood search strategy is used to find better solutions around the previous one. The parameters of the controller are adjusted by minimizing the aircraft's acceleration and impact force as the multi-objective function. The major advantages of this algorithm over other optimization algorithms are its simplicity, flexibility and robustness. The results of the numerical simulation indicate that the active suspension increases the comfort of the ride for passengers and the fatigue life of the structure. This is achieved by decreasing the impact force, displacement and acceleration significantly.

  9. Collision detection for spacecraft proximity operations

    NASA Technical Reports Server (NTRS)

    Vaughan, Robin M.; Bergmann, Edward V.; Walker, Bruce K.

    1991-01-01

    A new collision detection algorithm has been developed for use when two spacecraft are operating in the same vicinity. The two spacecraft are modeled as unions of convex polyhedra, where the resulting polyhedron many be either convex or nonconvex. The relative motion of the two spacecraft is assumed to be such that one vehicle is moving with constant linear and angular velocity with respect to the other. Contacts between the vertices, faces, and edges of the polyhedra representing the two spacecraft are shown to occur when the value of one or more of a set of functions is zero. The collision detection algorithm is then formulated as a search for the zeros (roots) of these functions. Special properties of the functions for the assumed relative trajectory are exploited to expedite the zero search. The new algorithm is the first algorithm that can solve the collision detection problem exactly for relative motion with constant angular velocity. This is a significant improvement over models of rotational motion used in previous collision detection algorithms.

  10. An efficient parallel-processing method for transposing large matrices in place.

    PubMed

    Portnoff, M R

    1999-01-01

    We have developed an efficient algorithm for transposing large matrices in place. The algorithm is efficient because data are accessed either sequentially in blocks or randomly within blocks small enough to fit in cache, and because the same indexing calculations are shared among identical procedures operating on independent subsets of the data. This inherent parallelism makes the method well suited for a multiprocessor computing environment. The algorithm is easy to implement because the same two procedures are applied to the data in various groupings to carry out the complete transpose operation. Using only a single processor, we have demonstrated nearly an order of magnitude increase in speed over the previously published algorithm by Gate and Twigg for transposing a large rectangular matrix in place. With multiple processors operating in parallel, the processing speed increases almost linearly with the number of processors. A simplified version of the algorithm for square matrices is presented as well as an extension for matrices large enough to require virtual memory.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stassi, D.; Ma, H.; Schmidt, T. G., E-mail: taly.gilat-schmidt@marquette.edu

    Purpose: Reconstructing a low-motion cardiac phase is expected to improve coronary artery visualization in coronary computed tomography angiography (CCTA) exams. This study developed an automated algorithm for selecting the optimal cardiac phase for CCTA reconstruction. The algorithm uses prospectively gated, single-beat, multiphase data made possible by wide cone-beam imaging. The proposed algorithm differs from previous approaches because the optimal phase is identified based on vessel image quality (IQ) directly, compared to previous approaches that included motion estimation and interphase processing. Because there is no processing of interphase information, the algorithm can be applied to any sampling of image phases, makingmore » it suited for prospectively gated studies where only a subset of phases are available. Methods: An automated algorithm was developed to select the optimal phase based on quantitative IQ metrics. For each reconstructed slice at each reconstructed phase, an image quality metric was calculated based on measures of circularity and edge strength of through-plane vessels. The image quality metric was aggregated across slices, while a metric of vessel-location consistency was used to ignore slices that did not contain through-plane vessels. The algorithm performance was evaluated using two observer studies. Fourteen single-beat cardiac CT exams (Revolution CT, GE Healthcare, Chalfont St. Giles, UK) reconstructed at 2% intervals were evaluated for best systolic (1), diastolic (6), or systolic and diastolic phases (7) by three readers and the algorithm. Pairwise inter-reader and reader-algorithm agreement was evaluated using the mean absolute difference (MAD) and concordance correlation coefficient (CCC) between the reader and algorithm-selected phases. A reader-consensus best phase was determined and compared to the algorithm selected phase. In cases where the algorithm and consensus best phases differed by more than 2%, IQ was scored by three readers using a five point Likert scale. Results: There was no statistically significant difference between inter-reader and reader-algorithm agreement for either MAD or CCC metrics (p > 0.1). The algorithm phase was within 2% of the consensus phase in 15/21 of cases. The average absolute difference between consensus and algorithm best phases was 2.29% ± 2.47%, with a maximum difference of 8%. Average image quality scores for the algorithm chosen best phase were 4.01 ± 0.65 overall, 3.33 ± 1.27 for right coronary artery (RCA), 4.50 ± 0.35 for left anterior descending (LAD) artery, and 4.50 ± 0.35 for left circumflex artery (LCX). Average image quality scores for the consensus best phase were 4.11 ± 0.54 overall, 3.44 ± 1.03 for RCA, 4.39 ± 0.39 for LAD, and 4.50 ± 0.18 for LCX. There was no statistically significant difference (p > 0.1) between the image quality scores of the algorithm phase and the consensus phase. Conclusions: The proposed algorithm was statistically equivalent to a reader in selecting an optimal cardiac phase for CCTA exams. When reader and algorithm phases differed by >2%, image quality as rated by blinded readers was statistically equivalent. By detecting the optimal phase for CCTA reconstruction, the proposed algorithm is expected to improve coronary artery visualization in CCTA exams.« less

  12. REQUEST: A Recursive QUEST Algorithm for Sequential Attitude Determination

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.

    1996-01-01

    In order to find the attitude of a spacecraft with respect to a reference coordinate system, vector measurements are taken. The vectors are pairs of measurements of the same generalized vector, taken in the spacecraft body coordinates, as well as in the reference coordinate system. We are interested in finding the best estimate of the transformation between these coordinate system.s The algorithm called QUEST yields that estimate where attitude is expressed by a quarternion. Quest is an efficient algorithm which provides a least squares fit of the quaternion of rotation to the vector measurements. Quest however, is a single time point (single frame) batch algorithm, thus measurements that were taken at previous time points are discarded. The algorithm presented in this work provides a recursive routine which considers all past measurements. The algorithm is based on on the fact that the, so called, K matrix, one of whose eigenvectors is the sought quaternion, is linerly related to the measured pairs, and on the ability to propagate K. The extraction of the appropriate eigenvector is done according to the classical QUEST algorithm. This stage, however, can be eliminated, and the computation simplified, if a standard eigenvalue-eigenvector solver algorithm is used. The development of the recursive algorithm is presented and illustrated via a numerical example.

  13. 77 FR 4002 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ... the methodological research previously included in the original System of Record Notice (SORN). This... methodological research on improving various aspects of surveys authorized by Title 13, U.S.C. 8(b), 182, and 196, such as: survey sampling frame design; sample selection algorithms; questionnaire development, design...

  14. Development and Evaluation of a New Air Exchange Rate Algorithm for the Stochastic Human Exposure and Dose Simulation Model (ISES Presentation)

    EPA Science Inventory

    Previous exposure assessment panel studies have observed considerable seasonal, between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or air exchange rates (AER). The Stochastic Human Exposure ...

  15. Efficient Record Linkage Algorithms Using Complete Linkage Clustering.

    PubMed

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times.

  16. Efficient Record Linkage Algorithms Using Complete Linkage Clustering

    PubMed Central

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times. PMID:27124604

  17. Electrical conductivity imaging using gradient B, decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT).

    PubMed

    Park, Chunjae; Kwon, Ohin; Woo, Eung Je; Seo, Jin Keun

    2004-03-01

    In magnetic resonance electrical impedance tomography (MREIT), we try to visualize cross-sectional conductivity (or resistivity) images of a subject. We inject electrical currents into the subject through surface electrodes and measure the z component Bz of the induced internal magnetic flux density using an MRI scanner. Here, z is the direction of the main magnetic field of the MRI scanner. We formulate the conductivity image reconstruction problem in MREIT from a careful analysis of the relationship between the injection current and the induced magnetic flux density Bz. Based on the novel mathematical formulation, we propose the gradient Bz decomposition algorithm to reconstruct conductivity images. This new algorithm needs to differentiate Bz only once in contrast to the previously developed harmonic Bz algorithm where the numerical computation of (inverted delta)2Bz is required. The new algorithm, therefore, has the important advantage of much improved noise tolerance. Numerical simulations with added random noise of realistic amounts show the feasibility of the algorithm in practical applications and also its robustness against measurement noise.

  18. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1991-01-01

    A streamwise upwind algorithm for solving the unsteady 3-D Navier-Stokes equations was extended to handle the moving grid system. It is noted that the finite volume concept is essential to extend the algorithm. The resulting algorithm is conservative for any motion of the coordinate system. Two extensions to an implicit method were considered and the implicit extension that makes the algorithm computationally efficient is implemented into Ames's aeroelasticity code, ENSAERO. The new flow solver has been validated through the solution of test problems. Test cases include three-dimensional problems with fixed and moving grids. The first test case shown is an unsteady viscous flow over an F-5 wing, while the second test considers the motion of the leading edge vortex as well as the motion of the shock wave for a clipped delta wing. The resulting algorithm has been implemented into ENSAERO. The upwind version leads to higher accuracy in both steady and unsteady computations than the previously used central-difference method does, while the increase in the computational time is small.

  19. Algorithms for Maneuvering Spacecraft Around Small Bodies

    NASA Technical Reports Server (NTRS)

    Acikmese, A. Bechet; Bayard, David

    2006-01-01

    A document describes mathematical derivations and applications of autonomous guidance algorithms for maneuvering spacecraft in the vicinities of small astronomical bodies like comets or asteroids. These algorithms compute fuel- or energy-optimal trajectories for typical maneuvers by solving the associated optimal-control problems with relevant control and state constraints. In the derivations, these problems are converted from their original continuous (infinite-dimensional) forms to finite-dimensional forms through (1) discretization of the time axis and (2) spectral discretization of control inputs via a finite number of Chebyshev basis functions. In these doubly discretized problems, the Chebyshev coefficients are the variables. These problems are, variously, either convex programming problems or programming problems that can be convexified. The resulting discrete problems are convex parameter-optimization problems; this is desirable because one can take advantage of very efficient and robust algorithms that have been developed previously and are well established for solving such problems. These algorithms are fast, do not require initial guesses, and always converge to global optima. Following the derivations, the algorithms are demonstrated by applying them to numerical examples of flyby, descent-to-hover, and ascent-from-hover maneuvers.

  20. Neutral ion sources in precision manufacturing

    NASA Technical Reports Server (NTRS)

    Fawcett, Steven C.; Drueding, Thomas W.

    1994-01-01

    Ion figuring of optical components is a relatively new technology that can alleviate some of the problems associated with traditional contact polishing. Because the technique is non contacting, edge distortions and rib structure print through do not occur. This initial investigation was aimed at determining the effect of ion figuring on surface roughness of previously polished or ductile ground ceramic optical samples. This is the first step in research directed toward the combination of a pre-finishing process (ductile grinding or polishing) with ion figuring to produce finished ceramic mirrors. The second phase of the project is focusing on the development of mathematical algorithms that will deconvolve the ion beam profile from the surface figure errors so that these errors can be successfully removed from the optical components. In the initial phase of the project, multiple, chemical vapor deposited silicon carbide (CVD SiC) samples were polished or ductile ground to specular or near-specular roughness. These samples were then characterized to determine topographic surface information. The surface evaluation consisted of stylus profilometry, interferometry, and optical and scanning electron microscopy. The surfaces, were ion machined to depths from 0-5 microns. The finished surfaces were characterized to evaluate the effects of the ion machining process with respect to the previous processing methods and the pre-existing subsurface damage. The development of the control algorithms for figuring optical components has been completed. These algorithms have been validated with simulations and future experiments have been planned to verify the methods. This paper will present the results of the initial surface finish experiments and the control algorithms simulations.

  1. Chemodynamical Clustering Applied to APOGEE Data: Rediscovering Globular Clusters

    NASA Astrophysics Data System (ADS)

    Chen, Boquan; D’Onghia, Elena; Pardy, Stephen A.; Pasquali, Anna; Bertelli Motta, Clio; Hanlon, Bret; Grebel, Eva K.

    2018-06-01

    We have developed a novel technique based on a clustering algorithm that searches for kinematically and chemically clustered stars in the APOGEE DR12 Cannon data. As compared to classical chemical tagging, the kinematic information included in our methodology allows us to identify stars that are members of known globular clusters with greater confidence. We apply our algorithm to the entire APOGEE catalog of 150,615 stars whose chemical abundances are derived by the Cannon. Our methodology found anticorrelations between the elements Al and Mg, Na and O, and C and N previously identified in the optical spectra in globular clusters, even though we omit these elements in our algorithm. Our algorithm identifies globular clusters without a priori knowledge of their locations in the sky. Thus, not only does this technique promise to discover new globular clusters, but it also allows us to identify candidate streams of kinematically and chemically clustered stars in the Milky Way.

  2. Demosaicking algorithm for the Kodak-RGBW color filter array

    NASA Astrophysics Data System (ADS)

    Rafinazari, M.; Dubois, E.

    2015-01-01

    Digital cameras capture images through different Color Filter Arrays and then reconstruct the full color image. Each CFA pixel only captures one primary color component; the other primary components will be estimated using information from neighboring pixels. During the demosaicking algorithm, the two unknown color components will be estimated at each pixel location. Most of the demosaicking algorithms use the RGB Bayer CFA pattern with Red, Green and Blue filters. The least-Squares Luma-Chroma demultiplexing method is a state of the art demosaicking method for the Bayer CFA. In this paper we develop a new demosaicking algorithm using the Kodak-RGBW CFA. This particular CFA reduces noise and improves the quality of the reconstructed images by adding white pixels. We have applied non-adaptive and adaptive demosaicking method using the Kodak-RGBW CFA on the standard Kodak image dataset and the results have been compared with previous work.

  3. A Linear Bicharacteristic FDTD Method

    NASA Technical Reports Server (NTRS)

    Beggs, John H.

    2001-01-01

    The linear bicharacteristic scheme (LBS) was originally developed to improve unsteady solutions in computational acoustics and aeroacoustics [1]-[7]. It is a classical leapfrog algorithm, but is combined with upwind bias in the spatial derivatives. This approach preserves the time-reversibility of the leapfrog algorithm, which results in no dissipation, and it permits more flexibility by the ability to adopt a characteristic based method. The use of characteristic variables allows the LBS to treat the outer computational boundaries naturally using the exact compatibility equations. The LBS offers a central storage approach with lower dispersion than the Yee algorithm, plus it generalizes much easier to nonuniform grids. It has previously been applied to two and three-dimensional freespace electromagnetic propagation and scattering problems [3], [6], [7]. This paper extends the LBS to model lossy dielectric and magnetic materials. Results are presented for several one-dimensional model problems, and the FDTD algorithm is chosen as a convenient reference for comparison.

  4. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    NASA Astrophysics Data System (ADS)

    Park, Byeolteo; Myung, Hyun

    2014-12-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.

  5. A Coherent VLSI Environment

    DTIC Science & Technology

    1987-03-31

    processors . The symmetry-breaking algorithms give efficient ways to convert probabilistic algorithms to deterministic algorithms. Some of the...techniques have been applied to construct several efficient linear- processor algorithms for graph problems, including an O(lg* n)-time algorithm for (A + 1...On n-node graphs, the algorithm works in O(log 2 n) time using only n processors , in contrast to the previous best algorithm which used about n3

  6. Identification of informative features for predicting proinflammatory potentials of engine exhausts.

    PubMed

    Wang, Chia-Chi; Lin, Ying-Chi; Lin, Yuan-Chung; Jhang, Syu-Ruei; Tung, Chun-Wei

    2017-08-18

    The immunotoxicity of engine exhausts is of high concern to human health due to the increasing prevalence of immune-related diseases. However, the evaluation of immunotoxicity of engine exhausts is currently based on expensive and time-consuming experiments. It is desirable to develop efficient methods for immunotoxicity assessment. To accelerate the development of safe alternative fuels, this study proposed a computational method for identifying informative features for predicting proinflammatory potentials of engine exhausts. A principal component regression (PCR) algorithm was applied to develop prediction models. The informative features were identified by a sequential backward feature elimination (SBFE) algorithm. A total of 19 informative chemical and biological features were successfully identified by SBFE algorithm. The informative features were utilized to develop a computational method named FS-CBM for predicting proinflammatory potentials of engine exhausts. FS-CBM model achieved a high performance with correlation coefficient values of 0.997 and 0.943 obtained from training and independent test sets, respectively. The FS-CBM model was developed for predicting proinflammatory potentials of engine exhausts with a large improvement on prediction performance compared with our previous CBM model. The proposed method could be further applied to construct models for bioactivities of mixtures.

  7. Fast flow-based algorithm for creating density-equalizing map projections

    PubMed Central

    Gastner, Michael T.; Seguy, Vivien; More, Pratyush

    2018-01-01

    Cartograms are maps that rescale geographic regions (e.g., countries, districts) such that their areas are proportional to quantitative demographic data (e.g., population size, gross domestic product). Unlike conventional bar or pie charts, cartograms can represent correctly which regions share common borders, resulting in insightful visualizations that can be the basis for further spatial statistical analysis. Computer programs can assist data scientists in preparing cartograms, but developing an algorithm that can quickly transform every coordinate on the map (including points that are not exactly on a border) while generating recognizable images has remained a challenge. Methods that translate the cartographic deformations into physics-inspired equations of motion have become popular, but solving these equations with sufficient accuracy can still take several minutes on current hardware. Here we introduce a flow-based algorithm whose equations of motion are numerically easier to solve compared with previous methods. The equations allow straightforward parallelization so that the calculation takes only a few seconds even for complex and detailed input. Despite the speedup, the proposed algorithm still keeps the advantages of previous techniques: With comparable quantitative measures of shape distortion, it accurately scales all areas, correctly fits the regions together, and generates a map projection for every point. We demonstrate the use of our algorithm with applications to the 2016 US election results, the gross domestic products of Indian states and Chinese provinces, and the spatial distribution of deaths in the London borough of Kensington and Chelsea between 2011 and 2014. PMID:29463721

  8. Adaptive-weighted Total Variation Minimization for Sparse Data toward Low-dose X-ray Computed Tomography Image Reconstruction

    PubMed Central

    Liu, Yan; Ma, Jianhua; Fan, Yi; Liang, Zhengrong

    2012-01-01

    Previous studies have shown that by minimizing the total variation (TV) of the to-be-estimated image with some data and other constraints, a piecewise-smooth X-ray computed tomography (CT) can be reconstructed from sparse-view projection data without introducing noticeable artifacts. However, due to the piecewise constant assumption for the image, a conventional TV minimization algorithm often suffers from over-smoothness on the edges of the resulting image. To mitigate this drawback, we present an adaptive-weighted TV (AwTV) minimization algorithm in this paper. The presented AwTV model is derived by considering the anisotropic edge property among neighboring image voxels, where the associated weights are expressed as an exponential function and can be adaptively adjusted by the local image-intensity gradient for the purpose of preserving the edge details. Inspired by the previously-reported TV-POCS (projection onto convex sets) implementation, a similar AwTV-POCS implementation was developed to minimize the AwTV subject to data and other constraints for the purpose of sparse-view low-dose CT image reconstruction. To evaluate the presented AwTV-POCS algorithm, both qualitative and quantitative studies were performed by computer simulations and phantom experiments. The results show that the presented AwTV-POCS algorithm can yield images with several noticeable gains, in terms of noise-resolution tradeoff plots and full width at half maximum values, as compared to the corresponding conventional TV-POCS algorithm. PMID:23154621

  9. Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction.

    PubMed

    Liu, Yan; Ma, Jianhua; Fan, Yi; Liang, Zhengrong

    2012-12-07

    Previous studies have shown that by minimizing the total variation (TV) of the to-be-estimated image with some data and other constraints, piecewise-smooth x-ray computed tomography (CT) can be reconstructed from sparse-view projection data without introducing notable artifacts. However, due to the piecewise constant assumption for the image, a conventional TV minimization algorithm often suffers from over-smoothness on the edges of the resulting image. To mitigate this drawback, we present an adaptive-weighted TV (AwTV) minimization algorithm in this paper. The presented AwTV model is derived by considering the anisotropic edge property among neighboring image voxels, where the associated weights are expressed as an exponential function and can be adaptively adjusted by the local image-intensity gradient for the purpose of preserving the edge details. Inspired by the previously reported TV-POCS (projection onto convex sets) implementation, a similar AwTV-POCS implementation was developed to minimize the AwTV subject to data and other constraints for the purpose of sparse-view low-dose CT image reconstruction. To evaluate the presented AwTV-POCS algorithm, both qualitative and quantitative studies were performed by computer simulations and phantom experiments. The results show that the presented AwTV-POCS algorithm can yield images with several notable gains, in terms of noise-resolution tradeoff plots and full-width at half-maximum values, as compared to the corresponding conventional TV-POCS algorithm.

  10. Binary mesh partitioning for cache-efficient visualization.

    PubMed

    Tchiboukdjian, Marc; Danjean, Vincent; Raffin, Bruno

    2010-01-01

    One important bottleneck when visualizing large data sets is the data transfer between processor and memory. Cache-aware (CA) and cache-oblivious (CO) algorithms take into consideration the memory hierarchy to design cache efficient algorithms. CO approaches have the advantage to adapt to unknown and varying memory hierarchies. Recent CA and CO algorithms developed for 3D mesh layouts significantly improve performance of previous approaches, but they lack of theoretical performance guarantees. We present in this paper a {\\schmi O}(N\\log N) algorithm to compute a CO layout for unstructured but well shaped meshes. We prove that a coherent traversal of a N-size mesh in dimension d induces less than N/B+{\\schmi O}(N/M;{1/d}) cache-misses where B and M are the block size and the cache size, respectively. Experiments show that our layout computation is faster and significantly less memory consuming than the best known CO algorithm. Performance is comparable to this algorithm for classical visualization algorithm access patterns, or better when the BSP tree produced while computing the layout is used as an acceleration data structure adjusted to the layout. We also show that cache oblivious approaches lead to significant performance increases on recent GPU architectures.

  11. Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan

    1997-01-01

    A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.

  12. Enhanced clinical pharmacy service targeting tools: risk-predictive algorithms.

    PubMed

    El Hajji, Feras W D; Scullin, Claire; Scott, Michael G; McElnay, James C

    2015-04-01

    This study aimed to determine the value of using a mix of clinical pharmacy data and routine hospital admission spell data in the development of predictive algorithms. Exploration of risk factors in hospitalized patients, together with the targeting strategies devised, will enable the prioritization of clinical pharmacy services to optimize patient outcomes. Predictive algorithms were developed using a number of detailed steps using a 75% sample of integrated medicines management (IMM) patients, and validated using the remaining 25%. IMM patients receive targeted clinical pharmacy input throughout their hospital stay. The algorithms were applied to the validation sample, and predicted risk probability was generated for each patient from the coefficients. Risk threshold for the algorithms were determined by identifying the cut-off points of risk scores at which the algorithm would have the highest discriminative performance. Clinical pharmacy staffing levels were obtained from the pharmacy department staffing database. Numbers of previous emergency admissions and admission medicines together with age-adjusted co-morbidity and diuretic receipt formed a 12-month post-discharge and/or readmission risk algorithm. Age-adjusted co-morbidity proved to be the best index to predict mortality. Increased numbers of clinical pharmacy staff at ward level was correlated with a reduction in risk-adjusted mortality index (RAMI). Algorithms created were valid in predicting risk of in-hospital and post-discharge mortality and risk of hospital readmission 3, 6 and 12 months post-discharge. The provision of ward-based clinical pharmacy services is a key component to reducing RAMI and enabling the full benefits of pharmacy input to patient care to be realized. © 2014 John Wiley & Sons, Ltd.

  13. Methods for investigating the local spatial anisotropy and the preferred orientation of cones in adaptive optics retinal images

    PubMed Central

    Cooper, Robert F.; Lombardo, Marco; Carroll, Joseph; Sloan, Kenneth R.; Lombardo, Giuseppe

    2016-01-01

    The ability to non-invasively image the cone photoreceptor mosaic holds significant potential as a diagnostic for retinal disease. Central to the realization of this potential is the development of sensitive metrics for characterizing the organization of the mosaic. Here we evaluated previously-described (Pum et al., 1990) and newly-developed (Fourier- and Radon-based) methods of measuring cone orientation in both simulated and real images of the parafoveal cone mosaic. The proposed algorithms correlated well across both simulated and real mosaics, suggesting that each algorithm would provide an accurate description of individual photoreceptor orientation. Despite the high agreement between algorithms, each performed differently in response to image intensity variation and cone coordinate jitter. The integration property of the Fourier transform allowed the Fourier-based method to be resistant to cone coordinate jitter and perform the most robustly of all three algorithms. Conversely, when there is good image quality but unreliable cone identification, the Radon algorithm performed best. Finally, in cases where both the image and cone coordinate reliability was excellent, the method of Pum et al. (1990) performed best. These descriptors are complementary to conventional descriptive metrics of the cone mosaic, such as cell density and spacing, and have the potential to aid in the detection of photoreceptor pathology. PMID:27484961

  14. Discovering the Unknown: Improving Detection of Novel Species and Genera from Short Reads

    DOE PAGES

    Rosen, Gail L.; Polikar, Robi; Caseiro, Diamantino A.; ...

    2011-01-01

    High-throughput sequencing technologies enable metagenome profiling, simultaneous sequencing of multiple microbial species present within an environmental sample. Since metagenomic data includes sequence fragments (“reads”) from organisms that are absent from any database, new algorithms must be developed for the identification and annotation of novel sequence fragments. Homology-based techniques have been modified to detect novel species and genera, but, composition-based methods, have not been adapted. We develop a detection technique that can discriminate between “known” and “unknown” taxa, which can be used with composition-based methods, as well as a hybrid method. Unlike previous studies, we rigorously evaluate all algorithms for theirmore » ability to detect novel taxa. First, we show that the integration of a detector with a composition-based method performs significantly better than homology-based methods for the detection of novel species and genera, with best performance at finer taxonomic resolutions. Most importantly, we evaluate all the algorithms by introducing an “unknown” class and show that the modified version of PhymmBL has similar or better overall classification performance than the other modified algorithms, especially for the species-level and ultrashort reads. Finally, we evaluate theperformance of several algorithms on a real acid mine drainage dataset.« less

  15. Physiological Parameter Monitoring from Optical Recordings with a Mobile Phone

    PubMed Central

    Scully, Christopher G.; Lee, Jinseok; Meyer, Joseph; Gorbach, Alexander M.; Granquist-Fraser, Domhnull; Mendelson, Yitzhak

    2012-01-01

    We show that a mobile phone can serve as an accurate monitor for several physiological variables, based on its ability to record and analyze the varying color signals of a fingertip placed in contact with its optical sensor. We confirm the accuracy of measurements of breathing rate, cardiac R-R intervals, and blood oxygen saturation, by comparisons to standard methods for making such measurements (respiration belts, ECGs, and pulse-oximeters, respectively). Measurement of respiratory rate uses a previously reported algorithm developed for use with a pulse-oximeter, based on amplitude and frequency modulation sequences within the light signal. We note that this technology can also be used with recently developed algorithms for detection of atrial fibrillation or blood loss. PMID:21803676

  16. Parameter-tolerant design of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Chevallier, Christyves; Fressengeas, Nicolas; Jacquet, Joel; Almuneau, Guilhem; Laaroussi, Youness; Gauthier-Lafaye, Olivier; Cerutti, Laurent; Genty, Frédéric

    2015-02-01

    This work is devoted to the design of high contrast grating mirrors taking into account the technological constraints and tolerance of fabrication. First, a global optimization algorithm has been combined to a numerical analysis of grating structures (RCWA) to automatically design HCG mirrors. Then, the tolerances of the grating dimensions have been precisely studied to develop a robust optimization algorithm with which high contrast gratings, exhibiting not only a high efficiency but also large tolerance values, could be designed. Finally, several structures integrating previously designed HCGs has been simulated to validate and illustrate the interest of such gratings.

  17. COBE ground segment gyro calibration

    NASA Technical Reports Server (NTRS)

    Freedman, I.; Kumar, V. K.; Rae, A.; Venkataraman, R.; Patt, F. S.; Wright, E. L.

    1991-01-01

    Discussed here is the calibration of the scale factors and rate biases for the Cosmic Background Explorer (COBE) spacecraft gyroscopes, with the emphasis on the adaptation for COBE of an algorithm previously developed for the Solar Maximum Mission. Detailed choice of parameters, convergence, verification, and use of the algorithm in an environment where the reference attitudes are determined form the Sun, Earth, and star observations (via the Diffuse Infrared Background Experiment (DIRBE) are considered. Results of some recent experiments are given. These include tests where the gyro rate data are corrected for the effect of the gyro baseplate temperature on the spacecraft electronics.

  18. Algorithmic tools for interpreting vital signs.

    PubMed

    Rathbun, Melina C; Ruth-Sahd, Lisa A

    2009-07-01

    Today's complex world of nursing practice challenges nurse educators to develop teaching methods that promote critical thinking skills and foster quick problem solving in the novice nurse. Traditional pedagogies previously used in the classroom and clinical setting are no longer adequate to prepare nursing students for entry into practice. In addition, educators have expressed frustration when encouraging students to apply newly learned theoretical content to direct the care of assigned patients in the clinical setting. This article presents algorithms as an innovative teaching strategy to guide novice student nurses in the interpretation and decision making related to vital sign assessment in an acute care setting.

  19. Development of a new ion mobility time-of-flight mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Yehia M.; Baker, Erin S.; Danielson, William F.

    2015-02-01

    Complex samples require multidimensional measurements with high resolution for full characterization of biological and environmental systems. To address this challenge, we developed a drift tube-based ion mobility spectrometry-Orbitrap mass spectrometry (IMS-Orbitrap MS) platform. To circumvent the timing difference between the fast IMS separation and the slow Orbitrap MS acquisition, we utilized a dual gate and pseudorandom sequence to multiplex ions into the drift tube and Orbitrap. The instrument was designed to operate in signal averaging (SA), single multiplexing (SM) and double multiplexing (DM) IMS modes to fully optimize the signal-to-ratio of the measurements. For the SM measurements, a previously developedmore » algorithm was used to reconstruct the IMS data, while a new algorithm was developed for the DM analyses. The new algorithm is a two-step process that first recovers the SM data from the encoded DM data and then decoded the SM data. The algorithm also performs multiple refining procedures in order to minimize the demultiplexing artifacts traditionally observed in such scheme. The new IMS-Orbitrap MS platform was demonstrated for the analysis of proteomic and petroleum samples, where the integration of IMS and high mass resolution proved essential for accurate assignment of molecular formulae.« less

  20. Separation of irradiance and reflectance from observed color images by logarithmical nonlinear diffusion process

    NASA Astrophysics Data System (ADS)

    Saito, Takahiro; Takahashi, Hiromi; Komatsu, Takashi

    2006-02-01

    The Retinex theory was first proposed by Land, and deals with separation of irradiance from reflectance in an observed image. The separation problem is an ill-posed problem. Land and others proposed various Retinex separation algorithms. Recently, Kimmel and others proposed a variational framework that unifies the previous Retinex algorithms such as the Poisson-equation-type Retinex algorithms developed by Horn and others, and presented a Retinex separation algorithm with the time-evolution of a linear diffusion process. However, the Kimmel's separation algorithm cannot achieve physically rational separation, if true irradiance varies among color channels. To cope with this problem, we introduce a nonlinear diffusion process into the time-evolution. Moreover, as to its extension to color images, we present two approaches to treat color channels: the independent approach to treat each color channel separately and the collective approach to treat all color channels collectively. The latter approach outperforms the former. Furthermore, we apply our separation algorithm to a high quality chroma key in which before combining a foreground frame and a background frame into an output image a color of each pixel in the foreground frame are spatially adaptively corrected through transformation of the separated irradiance. Experiments demonstrate superiority of our separation algorithm over the Kimmel's separation algorithm.

  1. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.

    PubMed

    Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan

    2013-09-01

    Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Yehia M.; Garimella, Sandilya V. B.; Prost, Spencer A.

    Complex samples benefit from multidimensional measurements where higher resolution enables more complete characterization of biological and environmental systems. To address this challenge, we developed a drift tube-based ion mobility spectrometry-Orbitrap mass spectrometer (IMS-Orbitrap MS) platform. To circumvent the time scale disparity between the fast IMS separation and the much slower Orbitrap MS acquisition, we utilized a dual gate and pseudorandom sequences to multiplexed injection of ions and allowing operation in signal averaging (SA), single multiplexing (SM) and double multiplexing (DM) IMS modes to optimize the signal-to-noise ratio of the measurements. For the SM measurements, a previously developed algorithm was usedmore » to reconstruct the IMS data. A new algorithm was developed for the DM analyses involving a two-step process that first recovers the SM data and then decodes the SM data. The algorithm also performs multiple refining procedures in order to minimize demultiplexing artifacts. The new IMS-Orbitrap MS platform was demonstrated by the analysis of proteomic and petroleum samples, where the integration of IMS and high mass resolution proved essential for accurate assignment of molecular formulae.« less

  3. Algorithm Optimally Orders Forward-Chaining Inference Rules

    NASA Technical Reports Server (NTRS)

    James, Mark

    2008-01-01

    People typically develop knowledge bases in a somewhat ad hoc manner by incrementally adding rules with no specific organization. This often results in a very inefficient execution of those rules since they are so often order sensitive. This is relevant to tasks like Deep Space Network in that it allows the knowledge base to be incrementally developed and have it automatically ordered for efficiency. Although data flow analysis was first developed for use in compilers for producing optimal code sequences, its usefulness is now recognized in many software systems including knowledge-based systems. However, this approach for exhaustively computing data-flow information cannot directly be applied to inference systems because of the ubiquitous execution of the rules. An algorithm is presented that efficiently performs a complete producer/consumer analysis for each antecedent and consequence clause in a knowledge base to optimally order the rules to minimize inference cycles. An algorithm was developed that optimally orders a knowledge base composed of forwarding chaining inference rules such that independent inference cycle executions are minimized, thus, resulting in significantly faster execution. This algorithm was integrated into the JPL tool Spacecraft Health Inference Engine (SHINE) for verification and it resulted in a significant reduction in inference cycles for what was previously considered an ordered knowledge base. For a knowledge base that is completely unordered, then the improvement is much greater.

  4. Asteroid mass estimation with Markov-chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Siltala, L.; Granvik, M.

    2017-09-01

    We have developed a new Markov-chain Monte Carlo-based algorithm for asteroid mass estimation based on mutual encounters and tested it for several different asteroids. Our results are in line with previous literature values but suggest that uncertainties of prior estimates may be misleading as a consequence of using linearized methods.

  5. GraphStore: A Distributed Graph Storage System for Big Data Networks

    ERIC Educational Resources Information Center

    Martha, VenkataSwamy

    2013-01-01

    Networks, such as social networks, are a universal solution for modeling complex problems in real time, especially in the Big Data community. While previous studies have attempted to enhance network processing algorithms, none have paved a path for the development of a persistent storage system. The proposed solution, GraphStore, provides an…

  6. Inferring Gene Regulatory Networks by Singular Value Decomposition and Gravitation Field Algorithm

    PubMed Central

    Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms. PMID:23226565

  7. Computational algebraic geometry for statistical modeling FY09Q2 progress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David C.; Rojas, Joseph Maurice; Pebay, Philippe Pierre

    2009-03-01

    This is a progress report on polynomial system solving for statistical modeling. This is a progress report on polynomial system solving for statistical modeling. This quarter we have developed our first model of shock response data and an algorithm for identifying the chamber cone containing a polynomial system in n variables with n+k terms within polynomial time - a significant improvement over previous algorithms, all having exponential worst-case complexity. We have implemented and verified the chamber cone algorithm for n+3 and are working to extend the implementation to handle arbitrary k. Later sections of this report explain chamber cones inmore » more detail; the next section provides an overview of the project and how the current progress fits into it.« less

  8. Self-tuning regulators for multicyclic control of helicopter vibration

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1982-01-01

    A class of algorithms for the multicyclic control of helicopter vibration and loads is derived and discussed. This class is characterized by a linear, quasi-static, frequency-domain model of the helicopter response to control; identification of the helicopter model by least-squared-error or Kalman filter methods; and a minimum variance or quadratic performance function controller. Previous research on such controllers is reviewed. The derivations and discussions cover the helicopter model; the identification problem, including both off-line and on-line (recursive) algorithms; the control problem, including both open-loop and closed-loop feedback; and the various regulator configurations possible within this class. Conclusions from analysis and numerical simulations of the regulators provide guidance in the design and selection of algorithms for further development, including wind tunnel and flight tests.

  9. Structural factoring approach for analyzing stochastic networks

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Shier, Douglas R.

    1991-01-01

    The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.

  10. Active semi-supervised learning method with hybrid deep belief networks.

    PubMed

    Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong

    2014-01-01

    In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.

  11. A high dynamic range pulse counting detection system for mass spectrometry.

    PubMed

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Efficient Geometric Probabilities of Multi-transiting Systems, Circumbinary Planets, and Exoplanet Mutual Events

    NASA Astrophysics Data System (ADS)

    Brakensiek, Joshua; Ragozzine, D.

    2012-10-01

    The transit method for discovering extra-solar planets relies on detecting regular diminutions of light from stars due to the shadows of planets passing in between the star and the observer. NASA's Kepler Mission has successfully discovered thousands of exoplanet candidates using this technique, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, our research concerns the efficient calculation of geometric probabilities for detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods (e.g., Ragozzine & Holman 2010, Tremaine & Dong 2011), we have constructed an efficient, analytical algorithm which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets are transiting. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere (see Ragozzine & Holman 2010). The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparison with Monte Carlo simulations. Expanding this work, we have also developed semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability two planets will transit each other (Planet-Planet Occultation) and the probability that this transit occurs simultaneously as they transit their star (Overlapping Double Transits; see Ragozzine & Holman 2010). The latter algorithm can also be applied to calculating the probability of observing transiting circumbinary planets (Doyle et al. 2011, Welsh et al. 2012). All of these algorithms have been coded in C and will be made publicly available. We will present and advertise these codes and illustrate their value for studying exoplanetary systems.

  13. A physarum-inspired prize-collecting steiner tree approach to identify subnetworks for drug repositioning.

    PubMed

    Sun, Yahui; Hameed, Pathima Nusrath; Verspoor, Karin; Halgamuge, Saman

    2016-12-05

    Drug repositioning can reduce the time, costs and risks of drug development by identifying new therapeutic effects for known drugs. It is challenging to reposition drugs as pharmacological data is large and complex. Subnetwork identification has already been used to simplify the visualization and interpretation of biological data, but it has not been applied to drug repositioning so far. In this paper, we fill this gap by proposing a new Physarum-inspired Prize-Collecting Steiner Tree algorithm to identify subnetworks for drug repositioning. Drug Similarity Networks (DSN) are generated using the chemical, therapeutic, protein, and phenotype features of drugs. In DSNs, vertex prizes and edge costs represent the similarities and dissimilarities between drugs respectively, and terminals represent drugs in the cardiovascular class, as defined in the Anatomical Therapeutic Chemical classification system. A new Physarum-inspired Prize-Collecting Steiner Tree algorithm is proposed in this paper to identify subnetworks. We apply both the proposed algorithm and the widely-used GW algorithm to identify subnetworks in our 18 generated DSNs. In these DSNs, our proposed algorithm identifies subnetworks with an average Rand Index of 81.1%, while the GW algorithm can only identify subnetworks with an average Rand Index of 64.1%. We select 9 subnetworks with high Rand Index to find drug repositioning opportunities. 10 frequently occurring drugs in these subnetworks are identified as candidates to be repositioned for cardiovascular diseases. We find evidence to support previous discoveries that nitroglycerin, theophylline and acarbose may be able to be repositioned for cardiovascular diseases. Moreover, we identify seven previously unknown drug candidates that also may interact with the biological cardiovascular system. These discoveries show our proposed Prize-Collecting Steiner Tree approach as a promising strategy for drug repositioning.

  14. Parallel Computational Protein Design.

    PubMed

    Zhou, Yichao; Donald, Bruce R; Zeng, Jianyang

    2017-01-01

    Computational structure-based protein design (CSPD) is an important problem in computational biology, which aims to design or improve a prescribed protein function based on a protein structure template. It provides a practical tool for real-world protein engineering applications. A popular CSPD method that guarantees to find the global minimum energy solution (GMEC) is to combine both dead-end elimination (DEE) and A* tree search algorithms. However, in this framework, the A* search algorithm can run in exponential time in the worst case, which may become the computation bottleneck of large-scale computational protein design process. To address this issue, we extend and add a new module to the OSPREY program that was previously developed in the Donald lab (Gainza et al., Methods Enzymol 523:87, 2013) to implement a GPU-based massively parallel A* algorithm for improving protein design pipeline. By exploiting the modern GPU computational framework and optimizing the computation of the heuristic function for A* search, our new program, called gOSPREY, can provide up to four orders of magnitude speedups in large protein design cases with a small memory overhead comparing to the traditional A* search algorithm implementation, while still guaranteeing the optimality. In addition, gOSPREY can be configured to run in a bounded-memory mode to tackle the problems in which the conformation space is too large and the global optimal solution cannot be computed previously. Furthermore, the GPU-based A* algorithm implemented in the gOSPREY program can be combined with the state-of-the-art rotamer pruning algorithms such as iMinDEE (Gainza et al., PLoS Comput Biol 8:e1002335, 2012) and DEEPer (Hallen et al., Proteins 81:18-39, 2013) to also consider continuous backbone and side-chain flexibility.

  15. Robot tracking system improvements and visual calibration of orbiter position for radiator inspection

    NASA Technical Reports Server (NTRS)

    Tonkay, Gregory

    1990-01-01

    The following separate topics are addressed: (1) improving a robotic tracking system; and (2) providing insights into orbiter position calibration for radiator inspection. The objective of the tracking system project was to provide the capability to track moving targets more accurately by adjusting parameters in the control system and implementing a predictive algorithm. A computer model was developed to emulate the tracking system. Using this model as a test bed, a self-tuning algorithm was developed to tune the system gains. The model yielded important findings concerning factors that affect the gains. The self-tuning algorithms will provide the concepts to write a program to automatically tune the gains in the real system. The section concerning orbiter position calibration provides a comparison to previous work that had been performed for plant growth. It provided the conceptualized routines required to visually determine the orbiter position and orientation. Furthermore, it identified the types of information which are required to flow between the robot controller and the vision system.

  16. Development of a pharmacogenetic-guided warfarin dosing algorithm for Puerto Rican patients

    PubMed Central

    Ramos, Alga S; Seip, Richard L; Rivera-Miranda, Giselle; Felici-Giovanini, Marcos E; Garcia-Berdecia, Rafael; Alejandro-Cowan, Yirelia; Kocherla, Mohan; Cruz, Iadelisse; Feliu, Juan F; Cadilla, Carmen L; Renta, Jessica Y; Gorowski, Krystyna; Vergara, Cunegundo; Ruaño, Gualberto; Duconge, Jorge

    2012-01-01

    Aim This study was aimed at developing a pharmacogenetic-driven warfarin-dosing algorithm in 163 admixed Puerto Rican patients on stable warfarin therapy. Patients & methods A multiple linear-regression analysis was performed using log-transformed effective warfarin dose as the dependent variable, and combining CYP2C9 and VKORC1 genotyping with other relevant nongenetic clinical and demographic factors as independent predictors. Results The model explained more than two-thirds of the observed variance in the warfarin dose among Puerto Ricans, and also produced significantly better ‘ideal dose’ estimates than two pharmacogenetic models and clinical algorithms published previously, with the greatest benefit seen in patients ultimately requiring <7 mg/day. We also assessed the clinical validity of the model using an independent validation cohort of 55 Puerto Rican patients from Hartford, CT, USA (R2 = 51%). Conclusion Our findings provide the basis for planning prospective pharmacogenetic studies to demonstrate the clinical utility of genotyping warfarin-treated Puerto Rican patients. PMID:23215886

  17. Computing approximate random Delta v magnitude probability densities. [for spacecraft trajectory correction

    NASA Technical Reports Server (NTRS)

    Chadwick, C.

    1984-01-01

    This paper describes the development and use of an algorithm to compute approximate statistics of the magnitude of a single random trajectory correction maneuver (TCM) Delta v vector. The TCM Delta v vector is modeled as a three component Cartesian vector each of whose components is a random variable having a normal (Gaussian) distribution with zero mean and possibly unequal standard deviations. The algorithm uses these standard deviations as input to produce approximations to (1) the mean and standard deviation of the magnitude of Delta v, (2) points of the probability density function of the magnitude of Delta v, and (3) points of the cumulative and inverse cumulative distribution functions of Delta v. The approximates are based on Monte Carlo techniques developed in a previous paper by the author and extended here. The algorithm described is expected to be useful in both pre-flight planning and in-flight analysis of maneuver propellant requirements for space missions.

  18. An algorithm for modeling entrainment and naturally and chemically dispersed oil droplet size distribution under surface breaking wave conditions.

    PubMed

    Li, Zhengkai; Spaulding, Malcolm L; French-McCay, Deborah

    2017-06-15

    A surface oil entrainment model and droplet size model have been developed to estimate the flux of oil under surface breaking waves. Both equations are expressed in dimensionless Weber number (We) and Ohnesorge number (Oh, which explicitly accounts for the oil viscosity, density, and oil-water interfacial tension). Data from controlled lab studies, large-scale wave tank tests, and field observations have been used to calibrate the constants of the two independent equations. Predictions using the new algorithm compared well with the observed amount of oil removed from the surface and the sizes of the oil droplets entrained in the water column. Simulations with the new algorithm, implemented in a comprehensive spill model, show that entrainment rates increase more rapidly with wind speed than previously predicted based on the existing Delvigne and Sweeney's (1988) model, and a quasi-stable droplet size distribution (d<~50μm) is developed in the near surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Automatic discrimination of fine roots in minirhizotron images.

    PubMed

    Zeng, Guang; Birchfield, Stanley T; Wells, Christina E

    2008-01-01

    Minirhizotrons provide detailed information on the production, life history and mortality of fine roots. However, manual processing of minirhizotron images is time-consuming, limiting the number and size of experiments that can reasonably be analysed. Previously, an algorithm was developed to automatically detect and measure individual roots in minirhizotron images. Here, species-specific root classifiers were developed to discriminate detected roots from bright background artifacts. Classifiers were developed from training images of peach (Prunus persica), freeman maple (Acer x freemanii) and sweetbay magnolia (Magnolia virginiana) using the Adaboost algorithm. True- and false-positive rates for classifiers were estimated using receiver operating characteristic curves. Classifiers gave true positive rates of 89-94% and false positive rates of 3-7% when applied to nontraining images of the species for which they were developed. The application of a classifier trained on one species to images from another species resulted in little or no reduction in accuracy. These results suggest that a single root classifier can be used to distinguish roots from background objects across multiple minirhizotron experiments. By incorporating root detection and discrimination algorithms into an open-source minirhizotron image analysis application, many analysis tasks that are currently performed by hand can be automated.

  20. Automated selection of the optimal cardiac phase for single-beat coronary CT angiography reconstruction.

    PubMed

    Stassi, D; Dutta, S; Ma, H; Soderman, A; Pazzani, D; Gros, E; Okerlund, D; Schmidt, T G

    2016-01-01

    Reconstructing a low-motion cardiac phase is expected to improve coronary artery visualization in coronary computed tomography angiography (CCTA) exams. This study developed an automated algorithm for selecting the optimal cardiac phase for CCTA reconstruction. The algorithm uses prospectively gated, single-beat, multiphase data made possible by wide cone-beam imaging. The proposed algorithm differs from previous approaches because the optimal phase is identified based on vessel image quality (IQ) directly, compared to previous approaches that included motion estimation and interphase processing. Because there is no processing of interphase information, the algorithm can be applied to any sampling of image phases, making it suited for prospectively gated studies where only a subset of phases are available. An automated algorithm was developed to select the optimal phase based on quantitative IQ metrics. For each reconstructed slice at each reconstructed phase, an image quality metric was calculated based on measures of circularity and edge strength of through-plane vessels. The image quality metric was aggregated across slices, while a metric of vessel-location consistency was used to ignore slices that did not contain through-plane vessels. The algorithm performance was evaluated using two observer studies. Fourteen single-beat cardiac CT exams (Revolution CT, GE Healthcare, Chalfont St. Giles, UK) reconstructed at 2% intervals were evaluated for best systolic (1), diastolic (6), or systolic and diastolic phases (7) by three readers and the algorithm. Pairwise inter-reader and reader-algorithm agreement was evaluated using the mean absolute difference (MAD) and concordance correlation coefficient (CCC) between the reader and algorithm-selected phases. A reader-consensus best phase was determined and compared to the algorithm selected phase. In cases where the algorithm and consensus best phases differed by more than 2%, IQ was scored by three readers using a five point Likert scale. There was no statistically significant difference between inter-reader and reader-algorithm agreement for either MAD or CCC metrics (p > 0.1). The algorithm phase was within 2% of the consensus phase in 15/21 of cases. The average absolute difference between consensus and algorithm best phases was 2.29% ± 2.47%, with a maximum difference of 8%. Average image quality scores for the algorithm chosen best phase were 4.01 ± 0.65 overall, 3.33 ± 1.27 for right coronary artery (RCA), 4.50 ± 0.35 for left anterior descending (LAD) artery, and 4.50 ± 0.35 for left circumflex artery (LCX). Average image quality scores for the consensus best phase were 4.11 ± 0.54 overall, 3.44 ± 1.03 for RCA, 4.39 ± 0.39 for LAD, and 4.50 ± 0.18 for LCX. There was no statistically significant difference (p > 0.1) between the image quality scores of the algorithm phase and the consensus phase. The proposed algorithm was statistically equivalent to a reader in selecting an optimal cardiac phase for CCTA exams. When reader and algorithm phases differed by >2%, image quality as rated by blinded readers was statistically equivalent. By detecting the optimal phase for CCTA reconstruction, the proposed algorithm is expected to improve coronary artery visualization in CCTA exams.

  1. On Channel-Discontinuity-Constraint Routing in Wireless Networks☆

    PubMed Central

    Sankararaman, Swaminathan; Efrat, Alon; Ramasubramanian, Srinivasan; Agarwal, Pankaj K.

    2011-01-01

    Multi-channel wireless networks are increasingly deployed as infrastructure networks, e.g. in metro areas. Network nodes frequently employ directional antennas to improve spatial throughput. In such networks, between two nodes, it is of interest to compute a path with a channel assignment for the links such that the path and link bandwidths are the same. This is achieved when any two consecutive links are assigned different channels, termed as “Channel-Discontinuity-Constraint” (CDC). CDC-paths are also useful in TDMA systems, where, preferably, consecutive links are assigned different time-slots. In the first part of this paper, we develop a t-spanner for CDC-paths using spatial properties; a sub-network containing O(n/θ) links, for any θ > 0, such that CDC-paths increase in cost by at most a factor t = (1−2 sin (θ/2))−2. We propose a novel distributed algorithm to compute the spanner using an expected number of O(n log n) fixed-size messages. In the second part, we present a distributed algorithm to find minimum-cost CDC-paths between two nodes using O(n2) fixed-size messages, by developing an extension of Edmonds’ algorithm for minimum-cost perfect matching. In a centralized implementation, our algorithm runs in O(n2) time improving the previous best algorithm which requires O(n3) running time. Moreover, this running time improves to O(n/θ) when used in conjunction with the spanner developed. PMID:24443646

  2. New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO-Cloud and Aerosol Imager

    NASA Astrophysics Data System (ADS)

    Fukuda, Satoru; Nakajima, Teruyuki; Takenaka, Hideaki; Higurashi, Akiko; Kikuchi, Nobuyuki; Nakajima, Takashi Y.; Ishida, Haruma

    2013-12-01

    satellite aerosol retrieval algorithm was developed to utilize a near-ultraviolet band of the Greenhouse gases Observing SATellite/Thermal And Near infrared Sensor for carbon Observation (GOSAT/TANSO)-Cloud and Aerosol Imager (CAI). At near-ultraviolet wavelengths, the surface reflectance over land is smaller than that at visible wavelengths. Therefore, it is thought possible to reduce retrieval error by using the near-ultraviolet spectral region. In the present study, we first developed a cloud shadow detection algorithm that uses first and second minimum reflectances of 380 nm and 680 nm based on the difference in Rayleigh scattering contribution for these two bands. Then, we developed a new surface reflectance correction algorithm, the modified Kaufman method, which uses minimum reflectance data at 680 nm and the NDVI to estimate the surface reflectance at 380 nm. This algorithm was found to be particularly effective at reducing the aerosol effect remaining in the 380 nm minimum reflectance; this effect has previously proven difficult to remove owing to the infrequent sampling rate associated with the three-day recursion period of GOSAT and the narrow CAI swath of 1000 km. Finally, we applied these two algorithms to retrieve aerosol optical thicknesses over a land area. Our results exhibited better agreement with sun-sky radiometer observations than results obtained using a simple surface reflectance correction technique using minimum radiances.

  3. The Malaria System MicroApp: A New, Mobile Device-Based Tool for Malaria Diagnosis.

    PubMed

    Oliveira, Allisson Dantas; Prats, Clara; Espasa, Mateu; Zarzuela Serrat, Francesc; Montañola Sales, Cristina; Silgado, Aroa; Codina, Daniel Lopez; Arruda, Mercia Eliane; I Prat, Jordi Gomez; Albuquerque, Jones

    2017-04-25

    Malaria is a public health problem that affects remote areas worldwide. Climate change has contributed to the problem by allowing for the survival of Anopheles in previously uninhabited areas. As such, several groups have made developing news systems for the automated diagnosis of malaria a priority. The objective of this study was to develop a new, automated, mobile device-based diagnostic system for malaria. The system uses Giemsa-stained peripheral blood samples combined with light microscopy to identify the Plasmodium falciparum species in the ring stage of development. The system uses image processing and artificial intelligence techniques as well as a known face detection algorithm to identify Plasmodium parasites. The algorithm is based on integral image and haar-like features concepts, and makes use of weak classifiers with adaptive boosting learning. The search scope of the learning algorithm is reduced in the preprocessing step by removing the background around blood cells. As a proof of concept experiment, the tool was used on 555 malaria-positive and 777 malaria-negative previously-made slides. The accuracy of the system was, on average, 91%, meaning that for every 100 parasite-infected samples, 91 were identified correctly. Accessibility barriers of low-resource countries can be addressed with low-cost diagnostic tools. Our system, developed for mobile devices (mobile phones and tablets), addresses this by enabling access to health centers in remote communities, and importantly, not depending on extensive malaria expertise or expensive diagnostic detection equipment. ©Allisson Dantas Oliveira, Clara Prats, Mateu Espasa, Francesc Zarzuela Serrat, Cristina Montañola Sales, Aroa Silgado, Daniel Lopez Codina, Mercia Eliane Arruda, Jordi Gomez i Prat, Jones Albuquerque. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 25.04.2017.

  4. Solution and reasoning reuse in space planning and scheduling applications

    NASA Technical Reports Server (NTRS)

    Verfaillie, Gerard; Schiex, Thomas

    1994-01-01

    In the space domain, as in other domains, the CSP (Constraint Satisfaction Problems) techniques are increasingly used to represent and solve planning and scheduling problems. But these techniques have been developed to solve CSP's which are composed of fixed sets of variables and constraints, whereas many planning and scheduling problems are dynamic. It is therefore important to develop methods which allow a new solution to be rapidly found, as close as possible to the previous one, when some variables or constraints are added or removed. After presenting some existing approaches, this paper proposes a simple and efficient method, which has been developed on the basis of the dynamic backtracking algorithm. This method allows previous solution and reasoning to be reused in the framework of a CSP which is close to the previous one. Some experimental results on general random CSPs and on operation scheduling problems for remote sensing satellites are given.

  5. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study.

    PubMed

    Zhang, Xiaoyong; Homma, Noriyasu; Ichiji, Kei; Takai, Yoshihiro; Yoshizawa, Makoto

    2015-05-01

    To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the tracking result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. For the 4-D phantom image sequence, the CLE is 0.23 ± 0.20 mm, and VOI is 95.6% ± 0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11 ± 0.08 mm and 96.7% ± 0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32 ± 0.77 mm in the CLE and 72.1% ± 5.5% in the VOI. These results demonstrate the effectiveness of the authors' proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors' algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.

  6. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoyong, E-mail: xiaoyong@ieee.org; Homma, Noriyasu, E-mail: homma@ieee.org; Ichiji, Kei, E-mail: ichiji@yoshizawa.ecei.tohoku.ac.jp

    2015-05-15

    Purpose: To develop a markerless tracking algorithm to track the tumor boundary in megavoltage (MV)-electronic portal imaging device (EPID) images for image-guided radiation therapy. Methods: A level set method (LSM)-based algorithm is developed to track tumor boundary in EPID image sequences. Given an EPID image sequence, an initial curve is manually specified in the first frame. Driven by a region-scalable energy fitting function, the initial curve automatically evolves toward the tumor boundary and stops on the desired boundary while the energy function reaches its minimum. For the subsequent frames, the tracking algorithm updates the initial curve by using the trackingmore » result in the previous frame and reuses the LSM to detect the tumor boundary in the subsequent frame so that the tracking processing can be continued without user intervention. The tracking algorithm is tested on three image datasets, including a 4-D phantom EPID image sequence, four digitally deformable phantom image sequences with different noise levels, and four clinical EPID image sequences acquired in lung cancer treatment. The tracking accuracy is evaluated based on two metrics: centroid localization error (CLE) and volume overlap index (VOI) between the tracking result and the ground truth. Results: For the 4-D phantom image sequence, the CLE is 0.23 ± 0.20 mm, and VOI is 95.6% ± 0.2%. For the digital phantom image sequences, the total CLE and VOI are 0.11 ± 0.08 mm and 96.7% ± 0.7%, respectively. In addition, for the clinical EPID image sequences, the proposed algorithm achieves 0.32 ± 0.77 mm in the CLE and 72.1% ± 5.5% in the VOI. These results demonstrate the effectiveness of the authors’ proposed method both in tumor localization and boundary tracking in EPID images. In addition, compared with two existing tracking algorithms, the proposed method achieves a higher accuracy in tumor localization. Conclusions: In this paper, the authors presented a feasibility study of tracking tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors’ algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation.« less

  7. Visual difference metric for realistic image synthesis

    NASA Astrophysics Data System (ADS)

    Bolin, Mark R.; Meyer, Gary W.

    1999-05-01

    An accurate and efficient model of human perception has been developed to control the placement of sample in a realistic image synthesis algorithm. Previous sampling techniques have sought to spread the error equally across the image plane. However, this approach neglects the fact that the renderings are intended to be displayed for a human observer. The human visual system has a varying sensitivity to error that is based upon the viewing context. This means that equivalent optical discrepancies can be very obvious in one situation and imperceptible in another. It is ultimately the perceptibility of this error that governs image quality and should be used as the basis of a sampling algorithm. This paper focuses on a simplified version of the Lubin Visual Discrimination Metric (VDM) that was developed for insertion into an image synthesis algorithm. The sampling VDM makes use of a Haar wavelet basis for the cortical transform and a less severe spatial pooling operation. The model was extended for color including the effects of chromatic aberration. Comparisons are made between the execution time and visual difference map for the original Lubin and simplified visual difference metrics. Results for the realistic image synthesis algorithm are also presented.

  8. RANdom SAmple Consensus (RANSAC) algorithm for material-informatics: application to photovoltaic solar cells.

    PubMed

    Kaspi, Omer; Yosipof, Abraham; Senderowitz, Hanoch

    2017-06-06

    An important aspect of chemoinformatics and material-informatics is the usage of machine learning algorithms to build Quantitative Structure Activity Relationship (QSAR) models. The RANdom SAmple Consensus (RANSAC) algorithm is a predictive modeling tool widely used in the image processing field for cleaning datasets from noise. RANSAC could be used as a "one stop shop" algorithm for developing and validating QSAR models, performing outlier removal, descriptors selection, model development and predictions for test set samples using applicability domain. For "future" predictions (i.e., for samples not included in the original test set) RANSAC provides a statistical estimate for the probability of obtaining reliable predictions, i.e., predictions within a pre-defined number of standard deviations from the true values. In this work we describe the first application of RNASAC in material informatics, focusing on the analysis of solar cells. We demonstrate that for three datasets representing different metal oxide (MO) based solar cell libraries RANSAC-derived models select descriptors previously shown to correlate with key photovoltaic properties and lead to good predictive statistics for these properties. These models were subsequently used to predict the properties of virtual solar cells libraries highlighting interesting dependencies of PV properties on MO compositions.

  9. An improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling

    NASA Astrophysics Data System (ADS)

    Dao, Son Duy; Abhary, Kazem; Marian, Romeo

    2017-06-01

    Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial, NP-hard problem, for which no polynomial time algorithm is known to produce an optimal result on a random graph. In this paper, the further development of Genetic Algorithm (GA) for this integrated optimization is presented. Because of the dynamic nature of the problem, the size of its solution is variable. To deal with this variability and find an optimal solution to the problem, GA with new features in chromosome encoding, crossover, mutation, selection as well as algorithm structure is developed herein. With the proposed structure, the proposed GA is able to "learn" from its experience. Robustness of the proposed GA is demonstrated by a complex numerical example in which performance of the proposed GA is compared with those of three commercial optimization solvers.

  10. Mathematical Foundation for Plane Covering Using Hexagons

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    1999-01-01

    This work is to indicate the development and mathematical underpinnings of the algorithms previously developed for covering the plane and the addressing of the elements of the covering. The algorithms are of interest in that they provides a simple systematic way of increasing or decreasing resolution, in the sense that if we have the covering in place and there is an image superimposed upon the covering, then we may view the image in a rough form or in a very detailed form with minimal effort. Such ability allows for quick searches of crude forms to determine a class in which to make a detailed search. In addition, the addressing algorithms provide an efficient way to process large data sets that have related subsets. The algorithms produced were based in part upon the work of D. Lucas "A Multiplication in N Space" which suggested a set of three vectors, any two of which would serve as a bases for the plane and also that the hexagon is the natural geometric object to be used in a covering with a suggested bases. The second portion is a refinement of the eyeball vision system, the globular viewer.

  11. TH-E-BRE-04: An Online Replanning Algorithm for VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahunbay, E; Li, X; Moreau, M

    2014-06-15

    Purpose: To develop a fast replanning algorithm based on segment aperture morphing (SAM) for online replanning of volumetric modulated arc therapy (VMAT) with flattening filtered (FF) and flattening filter free (FFF) beams. Methods: A software tool was developed to interface with a VMAT planning system ((Monaco, Elekta), enabling the output of detailed beam/machine parameters of original VMAT plans generated based on planning CTs for FF or FFF beams. A SAM algorithm, previously developed for fixed-beam IMRT, was modified to allow the algorithm to correct for interfractional variations (e.g., setup error, organ motion and deformation) by morphing apertures based on themore » geometric relationship between the beam's eye view of the anatomy from the planning CT and that from the daily CT for each control point. The algorithm was tested using daily CTs acquired using an in-room CT during daily IGRT for representative prostate cancer cases along with their planning CTs. The algorithm allows for restricted MLC leaf travel distance between control points of the VMAT delivery to prevent SAM from increasing leaf travel, and therefore treatment delivery time. Results: The VMAT plans adapted to the daily CT by SAM were found to improve the dosimetry relative to the IGRT repositioning plans for both FF and FFF beams. For the adaptive plans, the changes in leaf travel distance between control points were < 1cm for 80% of the control points with no restriction. When restricted to the original plans' maximum travel distance, the dosimetric effect was minimal. The adaptive plans were delivered successfully with similar delivery times as the original plans. The execution of the SAM algorithm was < 10 seconds. Conclusion: The SAM algorithm can quickly generate deliverable online-adaptive VMAT plans based on the anatomy of the day for both FF and FFF beams.« less

  12. A new effective operator for the hybrid algorithm for solving global optimisation problems

    NASA Astrophysics Data System (ADS)

    Duc, Le Anh; Li, Kenli; Nguyen, Tien Trong; Yen, Vu Minh; Truong, Tung Khac

    2018-04-01

    Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms.

  13. Task scheduling in dataflow computer architectures

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1994-01-01

    Dataflow computers provide a platform for the solution of a large class of computational problems, which includes digital signal processing and image processing. Many typical applications are represented by a set of tasks which can be repetitively executed in parallel as specified by an associated dataflow graph. Research in this area aims to model these architectures, develop scheduling procedures, and predict the transient and steady state performance. Researchers at NASA have created a model and developed associated software tools which are capable of analyzing a dataflow graph and predicting its runtime performance under various resource and timing constraints. These models and tools were extended and used in this work. Experiments using these tools revealed certain properties of such graphs that require further study. Specifically, the transient behavior at the beginning of the execution of a graph can have a significant effect on the steady state performance. Transformation and retiming of the application algorithm and its initial conditions can produce a different transient behavior and consequently different steady state performance. The effect of such transformations on the resource requirements or under resource constraints requires extensive study. Task scheduling to obtain maximum performance (based on user-defined criteria), or to satisfy a set of resource constraints, can also be significantly affected by a transformation of the application algorithm. Since task scheduling is performed by heuristic algorithms, further research is needed to determine if new scheduling heuristics can be developed that can exploit such transformations. This work has provided the initial development for further long-term research efforts. A simulation tool was completed to provide insight into the transient and steady state execution of a dataflow graph. A set of scheduling algorithms was completed which can operate in conjunction with the modeling and performance tools previously developed. Initial studies on the performance of these algorithms were done to examine the effects of application algorithm transformations as measured by such quantities as number of processors, time between outputs, time between input and output, communication time, and memory size.

  14. Color analysis and image rendering of woodblock prints with oil-based ink

    NASA Astrophysics Data System (ADS)

    Horiuchi, Takahiko; Tanimoto, Tetsushi; Tominaga, Shoji

    2012-01-01

    This paper proposes a method for analyzing the color characteristics of woodblock prints having oil-based ink and rendering realistic images based on camera data. The analysis results of woodblock prints show some characteristic features in comparison with oil paintings: 1) A woodblock print can be divided into several cluster areas, each with similar surface spectral reflectance; and 2) strong specular reflection from the influence of overlapping paints arises only in specific cluster areas. By considering these properties, we develop an effective rendering algorithm by modifying our previous algorithm for oil paintings. A set of surface spectral reflectances of a woodblock print is represented by using only a small number of average surface spectral reflectances and the registered scaling coefficients, whereas the previous algorithm for oil paintings required surface spectral reflectances of high dimension at all pixels. In the rendering process, in order to reproduce the strong specular reflection in specific cluster areas, we use two sets of parameters in the Torrance-Sparrow model for cluster areas with or without strong specular reflection. An experiment on a woodblock printing with oil-based ink was performed to demonstrate the feasibility of the proposed method.

  15. Symbolic Computation of Strongly Connected Components Using Saturation

    NASA Technical Reports Server (NTRS)

    Zhao, Yang; Ciardo, Gianfranco

    2010-01-01

    Finding strongly connected components (SCCs) in the state-space of discrete-state models is a critical task in formal verification of LTL and fair CTL properties, but the potentially huge number of reachable states and SCCs constitutes a formidable challenge. This paper is concerned with computing the sets of states in SCCs or terminal SCCs of asynchronous systems. Because of its advantages in many applications, we employ saturation on two previously proposed approaches: the Xie-Beerel algorithm and transitive closure. First, saturation speeds up state-space exploration when computing each SCC in the Xie-Beerel algorithm. Then, our main contribution is a novel algorithm to compute the transitive closure using saturation. Experimental results indicate that our improved algorithms achieve a clear speedup over previous algorithms in some cases. With the help of the new transitive closure computation algorithm, up to 10(exp 150) SCCs can be explored within a few seconds.

  16. An advanced algorithm for fetal heart rate estimation from non-invasive low electrode density recordings.

    PubMed

    Dessì, Alessia; Pani, Danilo; Raffo, Luigi

    2014-08-01

    Non-invasive fetal electrocardiography is still an open research issue. The recent publication of an annotated dataset on Physionet providing four-channel non-invasive abdominal ECG traces promoted an international challenge on the topic. Starting from that dataset, an algorithm for the identification of the fetal QRS complexes from a reduced number of electrodes and without any a priori information about the electrode positioning has been developed, entering into the top ten best-performing open-source algorithms presented at the challenge.In this paper, an improved version of that algorithm is presented and evaluated exploiting the same challenge metrics. It is mainly based on the subtraction of the maternal QRS complexes in every lead, obtained by synchronized averaging of morphologically similar complexes, the filtering of the maternal P and T waves and the enhancement of the fetal QRS through independent component analysis (ICA) applied on the processed signals before a final fetal QRS detection stage. The RR time series of both the mother and the fetus are analyzed to enhance pseudoperiodicity with the aim of correcting wrong annotations. The algorithm has been designed and extensively evaluated on the open dataset A (N = 75), and finally evaluated on datasets B (N = 100) and C (N = 272) to have the mean scores over data not used during the algorithm development. Compared to the results achieved by the previous version of the algorithm, the current version would mark the 5th and 4th position in the final ranking related to the events 1 and 2, reserved to the open-source challenge entries, taking into account both official and unofficial entrants. On dataset A, the algorithm achieves 0.982 median sensitivity and 0.976 median positive predictivity.

  17. A robust multilevel simultaneous eigenvalue solver

    NASA Technical Reports Server (NTRS)

    Costiner, Sorin; Taasan, Shlomo

    1993-01-01

    Multilevel (ML) algorithms for eigenvalue problems are often faced with several types of difficulties such as: the mixing of approximated eigenvectors by the solution process, the approximation of incomplete clusters of eigenvectors, the poor representation of solution on coarse levels, and the existence of close or equal eigenvalues. Algorithms that do not treat appropriately these difficulties usually fail, or their performance degrades when facing them. These issues motivated the development of a robust adaptive ML algorithm which treats these difficulties, for the calculation of a few eigenvectors and their corresponding eigenvalues. The main techniques used in the new algorithm include: the adaptive completion and separation of the relevant clusters on different levels, the simultaneous treatment of solutions within each cluster, and the robustness tests which monitor the algorithm's efficiency and convergence. The eigenvectors' separation efficiency is based on a new ML projection technique generalizing the Rayleigh Ritz projection, combined with a technique, the backrotations. These separation techniques, when combined with an FMG formulation, in many cases lead to algorithms of O(qN) complexity, for q eigenvectors of size N on the finest level. Previously developed ML algorithms are less focused on the mentioned difficulties. Moreover, algorithms which employ fine level separation techniques are of O(q(sub 2)N) complexity and usually do not overcome all these difficulties. Computational examples are presented where Schrodinger type eigenvalue problems in 2-D and 3-D, having equal and closely clustered eigenvalues, are solved with the efficiency of the Poisson multigrid solver. A second order approximation is obtained in O(qN) work, where the total computational work is equivalent to only a few fine level relaxations per eigenvector.

  18. Weighted graph cuts without eigenvectors a multilevel approach.

    PubMed

    Dhillon, Inderjit S; Guan, Yuqiang; Kulis, Brian

    2007-11-01

    A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods--in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast, high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods, such as Metis, have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis and gene network analysis.

  19. An algorithm for the detection and characterisation of volcanic plumes using thermal camera imagery

    NASA Astrophysics Data System (ADS)

    Bombrun, Maxime; Jessop, David; Harris, Andrew; Barra, Vincent

    2018-02-01

    Volcanic plumes are turbulent mixtures of particles and gas which are injected into the atmosphere during a volcanic eruption. Depending on the intensity of the eruption, plumes can rise from a few tens of metres up to many tens of kilometres above the vent and thus, present a major hazard for the surrounding population. Currently, however, few if any algorithms are available for automated plume tracking and assessment. Here, we present a new image processing algorithm for segmentation, tracking and parameters extraction of convective plume recorded with thermal cameras. We used thermal video of two volcanic eruptions and two plumes simulated in laboratory to develop and test an efficient technique for analysis of volcanic plumes. We validated our method by two different approaches. First, we compare our segmentation method to previously published algorithms. Next, we computed plume parameters, such as height, width and spreading angle at regular intervals of time. These parameters allowed us to calculate an entrainment coefficient and obtain information about the entrainment efficiency in Strombolian eruptions. Our proposed algorithm is rapid, automated while producing better visual outlines compared to the other segmentation algorithms, and provides output that is at least as accurate as manual measurements of plumes.

  20. Rapid Calculation of Max-Min Fair Rates for Multi-Commodity Flows in Fat-Tree Networks

    DOE PAGES

    Mollah, Md Atiqul; Yuan, Xin; Pakin, Scott; ...

    2017-08-29

    Max-min fairness is often used in the performance modeling of interconnection networks. Existing methods to compute max-min fair rates for multi-commodity flows have high complexity and are computationally infeasible for large networks. In this paper, we show that by considering topological features, this problem can be solved efficiently for the fat-tree topology that is widely used in data centers and high performance compute clusters. Several efficient new algorithms are developed for this problem, including a parallel algorithm that can take advantage of multi-core and shared-memory architectures. Using these algorithms, we demonstrate that it is possible to find the max-min fairmore » rate allocation for multi-commodity flows in fat-tree networks that support tens of thousands of nodes. We evaluate the run-time performance of the proposed algorithms and show improvement in orders of magnitude over the previously best known method. Finally, we further demonstrate a new application of max-min fair rate allocation that is only computationally feasible using our new algorithms.« less

  1. Rapid Calculation of Max-Min Fair Rates for Multi-Commodity Flows in Fat-Tree Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollah, Md Atiqul; Yuan, Xin; Pakin, Scott

    Max-min fairness is often used in the performance modeling of interconnection networks. Existing methods to compute max-min fair rates for multi-commodity flows have high complexity and are computationally infeasible for large networks. In this paper, we show that by considering topological features, this problem can be solved efficiently for the fat-tree topology that is widely used in data centers and high performance compute clusters. Several efficient new algorithms are developed for this problem, including a parallel algorithm that can take advantage of multi-core and shared-memory architectures. Using these algorithms, we demonstrate that it is possible to find the max-min fairmore » rate allocation for multi-commodity flows in fat-tree networks that support tens of thousands of nodes. We evaluate the run-time performance of the proposed algorithms and show improvement in orders of magnitude over the previously best known method. Finally, we further demonstrate a new application of max-min fair rate allocation that is only computationally feasible using our new algorithms.« less

  2. Diagnosing breast cancer using Raman spectroscopy: prospective analysis

    NASA Astrophysics Data System (ADS)

    Haka, Abigail S.; Volynskaya, Zoya; Gardecki, Joseph A.; Nazemi, Jon; Shenk, Robert; Wang, Nancy; Dasari, Ramachandra R.; Fitzmaurice, Maryann; Feld, Michael S.

    2009-09-01

    We present the first prospective test of Raman spectroscopy in diagnosing normal, benign, and malignant human breast tissues. Prospective testing of spectral diagnostic algorithms allows clinicians to accurately assess the diagnostic information contained in, and any bias of, the spectroscopic measurement. In previous work, we developed an accurate, internally validated algorithm for breast cancer diagnosis based on analysis of Raman spectra acquired from fresh-frozen in vitro tissue samples. We currently evaluate the performance of this algorithm prospectively on a large ex vivo clinical data set that closely mimics the in vivo environment. Spectroscopic data were collected from freshly excised surgical specimens, and 129 tissue sites from 21 patients were examined. Prospective application of the algorithm to the clinical data set resulted in a sensitivity of 83%, a specificity of 93%, a positive predictive value of 36%, and a negative predictive value of 99% for distinguishing cancerous from normal and benign tissues. The performance of the algorithm in different patient populations is discussed. Sources of bias in the in vitro calibration and ex vivo prospective data sets, including disease prevalence and disease spectrum, are examined and analytical methods for comparison provided.

  3. A multifaceted independent performance analysis of facial subspace recognition algorithms.

    PubMed

    Bajwa, Usama Ijaz; Taj, Imtiaz Ahmad; Anwar, Muhammad Waqas; Wang, Xuan

    2013-01-01

    Face recognition has emerged as the fastest growing biometric technology and has expanded a lot in the last few years. Many new algorithms and commercial systems have been proposed and developed. Most of them use Principal Component Analysis (PCA) as a base for their techniques. Different and even conflicting results have been reported by researchers comparing these algorithms. The purpose of this study is to have an independent comparative analysis considering both performance and computational complexity of six appearance based face recognition algorithms namely PCA, 2DPCA, A2DPCA, (2D)(2)PCA, LPP and 2DLPP under equal working conditions. This study was motivated due to the lack of unbiased comprehensive comparative analysis of some recent subspace methods with diverse distance metric combinations. For comparison with other studies, FERET, ORL and YALE databases have been used with evaluation criteria as of FERET evaluations which closely simulate real life scenarios. A comparison of results with previous studies is performed and anomalies are reported. An important contribution of this study is that it presents the suitable performance conditions for each of the algorithms under consideration.

  4. Lung partitioning for x-ray CAD applications

    NASA Astrophysics Data System (ADS)

    Annangi, Pavan; Raja, Anand

    2011-03-01

    Partitioning the inside region of lung into homogeneous regions becomes a crucial step in any computer-aided diagnosis applications based on chest X-ray. The ribs, air pockets and clavicle occupy major space inside the lung as seen in the chest x-ray PA image. Segmenting the ribs and clavicle to partition the lung into homogeneous regions forms a crucial step in any CAD application to better classify abnormalities. In this paper we present two separate algorithms to segment ribs and the clavicle bone in a completely automated way. The posterior ribs are segmented based on Phase congruency features and the clavicle is segmented using Mean curvature features followed by Radon transform. Both the algorithms work on the premise that the presentation of each of these anatomical structures inside the left and right lung has a specific orientation range within which they are confined to. The search space for both the algorithms is limited to the region inside the lung, which is obtained by an automated lung segmentation algorithm that was previously developed in our group. Both the algorithms were tested on 100 images of normal and patients affected with Pneumoconiosis.

  5. Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.

    PubMed

    Arslan, Salim; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2013-06-01

    More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms.

  6. Adapting sensory data for multiple robots performing spill cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storjohann, K.; Saltzen, E.

    1990-09-01

    This paper describes a possible method of converting a single performing robot algorithm into a multiple performing robot algorithm without the need to modify previously written codes. The algorithm to be converted involves spill detection and clean up by the HERMIES-III mobile robot. In order to achieve the goal of multiple performing robots with this algorithm, two steps are taken. First, the task is formally divided into two sub-tasks, spill detection and spill clean-up, the former of which is allocated to the added performing robot, HERMIES-IIB. Second, a inverse perspective mapping, is applied to the data acquired by the newmore » performing robot (HERMIES-IIB), allowing the data to be processed by the previously written algorithm without re-writing the code. 6 refs., 4 figs.« less

  7. Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.; Deo, R. C.; Carro-Calvo, L.; Saavedra-Moreno, B.

    2016-07-01

    Long-term air temperature prediction is of major importance in a large number of applications, including climate-related studies, energy, agricultural, or medical. This paper examines the performance of two Machine Learning algorithms (Support Vector Regression (SVR) and Multi-layer Perceptron (MLP)) in a problem of monthly mean air temperature prediction, from the previous measured values in observational stations of Australia and New Zealand, and climate indices of importance in the region. The performance of the two considered algorithms is discussed in the paper and compared to alternative approaches. The results indicate that the SVR algorithm is able to obtain the best prediction performance among all the algorithms compared in the paper. Moreover, the results obtained have shown that the mean absolute error made by the two algorithms considered is significantly larger for the last 20 years than in the previous decades, in what can be interpreted as a change in the relationship among the prediction variables involved in the training of the algorithms.

  8. A Numerical Method for the Simulation of Skew Brownian Motion and its Application to Diffusive Shock Acceleration of Charged Particles

    NASA Astrophysics Data System (ADS)

    McEvoy, Erica L.

    Stochastic differential equations are becoming a popular tool for modeling the transport and acceleration of cosmic rays in the heliosphere. In diffusive shock acceleration, cosmic rays diffuse across a region of discontinuity where the up- stream diffusion coefficient abruptly changes to the downstream value. Because the method of stochastic integration has not yet been developed to handle these types of discontinuities, I utilize methods and ideas from probability theory to develop a conceptual framework for the treatment of such discontinuities. Using this framework, I then produce some simple numerical algorithms that allow one to incorporate and simulate a variety of discontinuities (or boundary conditions) using stochastic integration. These algorithms were then modified to create a new algorithm which incorporates the discontinuous change in diffusion coefficient found in shock acceleration (known as Skew Brownian Motion). The originality of this algorithm lies in the fact that it is the first of its kind to be statistically exact, so that one obtains accuracy without the use of approximations (other than the machine precision error). I then apply this algorithm to model the problem of diffusive shock acceleration, modifying it to incorporate the additional effect of the discontinuous flow speed profile found at the shock. A steady-state solution is obtained that accurately simulates this phenomenon. This result represents a significant improvement over previous approximation algorithms, and will be useful for the simulation of discontinuous diffusion processes in other fields, such as biology and finance.

  9. RACER: Effective Race Detection Using AspectJ

    NASA Technical Reports Server (NTRS)

    Bodden, Eric; Havelund, Klaus

    2008-01-01

    The limits of coding with joint constraints on detected and undetected error rates Programming errors occur frequently in large software systems, and even more so if these systems are concurrent. In the past, researchers have developed specialized programs to aid programmers detecting concurrent programming errors such as deadlocks, livelocks, starvation and data races. In this work we propose a language extension to the aspect-oriented programming language AspectJ, in the form of three new built-in pointcuts, lock(), unlock() and may be Shared(), which allow programmers to monitor program events where locks are granted or handed back, and where values are accessed that may be shared amongst multiple Java threads. We decide thread-locality using a static thread-local objects analysis developed by others. Using the three new primitive pointcuts, researchers can directly implement efficient monitoring algorithms to detect concurrent programming errors online. As an example, we expose a new algorithm which we call RACER, an adoption of the well-known ERASER algorithm to the memory model of Java. We implemented the new pointcuts as an extension to the Aspect Bench Compiler, implemented the RACER algorithm using this language extension and then applied the algorithm to the NASA K9 Rover Executive. Our experiments proved our implementation very effective. In the Rover Executive RACER finds 70 data races. Only one of these races was previously known.We further applied the algorithm to two other multi-threaded programs written by Computer Science researchers, in which we found races as well.

  10. Design Criteria for Low Profile Flange Calculations

    NASA Technical Reports Server (NTRS)

    Leimbach, K. R.

    1973-01-01

    An analytical method and a design procedure to develop flanged separable pipe connectors are discussed. A previously established algorithm is the basis for calculating low profile flanges. The characteristics and advantages of the low profile flange are analyzed. The use of aluminum, titanium, and plastics for flange materials is described. Mathematical models are developed to show the mechanical properties of various flange configurations. A computer program for determining the structural stability of the flanges is described.

  11. DARIS (Deformation Analysis Using Recursive Interferometric Systems) A New Algorithm for Displacement Measurements Though SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Redavid, Antonio; Bovenga, Fabio

    2010-03-01

    In the present work we describe a new and alternative repeat-pass interferometry algorithm designed and developed with the aim to: i) increase the robustness wrt to noise by increasing the number of differential interferograms and consequently the information redundancy; ii) guarantee high performances in the detection of non linear deformation without the need of specifying in input a particular cinematic model.The starting point is a previous paper [4] dedicated to the optimization of the InSAR coregistration by finding an ad hoc path between the images which minimizes the expected total decorrelation as in the SABS-like approaches [3]. The main difference wrt the PS-like algorithms [1],[2] is the use of couples of images which potentially can show high spatial coherence and, which are neglected by the standard PSI processing.The present work presents a detailed description of the algorithm processing steps as well as the results obtained by processing simulated InSAR data with the aim to evaluate the algorithm performances. Moreover, the algorithm has been also applied on a real test case in Poland, to study the subsidence affecting the Wieliczka Salt Mine. A cross validation wrt SPINUA PSI-like algorithm [5] has been carried out by comparing the resultant displacement fields.

  12. An iterative sinogram gap-filling method with object- and scanner-dedicated discrete cosine transform (DCT)-domain filters for high resolution PET scanners.

    PubMed

    Kim, Kwangdon; Lee, Kisung; Lee, Hakjae; Joo, Sungkwan; Kang, Jungwon

    2018-01-01

    We aimed to develop a gap-filling algorithm, in particular the filter mask design method of the algorithm, which optimizes the filter to the imaging object by an adaptive and iterative process, rather than by manual means. Two numerical phantoms (Shepp-Logan and Jaszczak) were used for sinogram generation. The algorithm works iteratively, not only on the gap-filling iteration but also on the mask generation, to identify the object-dedicated low frequency area in the DCT-domain that is to be preserved. We redefine the low frequency preserving region of the filter mask at every gap-filling iteration, and the region verges on the property of the original image in the DCT domain. The previous DCT2 mask for each phantom case had been manually well optimized, and the results show little difference from the reference image and sinogram. We observed little or no difference between the results of the manually optimized DCT2 algorithm and those of the proposed algorithm. The proposed algorithm works well for various types of scanning object and shows results that compare to those of the manually optimized DCT2 algorithm without perfect or full information of the imaging object.

  13. 3D Kirchhoff depth migration algorithm: A new scalable approach for parallelization on multicore CPU based cluster

    NASA Astrophysics Data System (ADS)

    Rastogi, Richa; Londhe, Ashutosh; Srivastava, Abhishek; Sirasala, Kirannmayi M.; Khonde, Kiran

    2017-03-01

    In this article, a new scalable 3D Kirchhoff depth migration algorithm is presented on state of the art multicore CPU based cluster. Parallelization of 3D Kirchhoff depth migration is challenging due to its high demand of compute time, memory, storage and I/O along with the need of their effective management. The most resource intensive modules of the algorithm are traveltime calculations and migration summation which exhibit an inherent trade off between compute time and other resources. The parallelization strategy of the algorithm largely depends on the storage of calculated traveltimes and its feeding mechanism to the migration process. The presented work is an extension of our previous work, wherein a 3D Kirchhoff depth migration application for multicore CPU based parallel system had been developed. Recently, we have worked on improving parallel performance of this application by re-designing the parallelization approach. The new algorithm is capable to efficiently migrate both prestack and poststack 3D data. It exhibits flexibility for migrating large number of traces within the available node memory and with minimal requirement of storage, I/O and inter-node communication. The resultant application is tested using 3D Overthrust data on PARAM Yuva II, which is a Xeon E5-2670 based multicore CPU cluster with 16 cores/node and 64 GB shared memory. Parallel performance of the algorithm is studied using different numerical experiments and the scalability results show striking improvement over its previous version. An impressive 49.05X speedup with 76.64% efficiency is achieved for 3D prestack data and 32.00X speedup with 50.00% efficiency for 3D poststack data, using 64 nodes. The results also demonstrate the effectiveness and robustness of the improved algorithm with high scalability and efficiency on a multicore CPU cluster.

  14. Scalable Domain Decomposed Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    O'Brien, Matthew Joseph

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.

  15. ECG Sensor Card with Evolving RBP Algorithms for Human Verification.

    PubMed

    Tseng, Kuo-Kun; Huang, Huang-Nan; Zeng, Fufu; Tu, Shu-Yi

    2015-08-21

    It is known that cardiac and respiratory rhythms in electrocardiograms (ECGs) are highly nonlinear and non-stationary. As a result, most traditional time-domain algorithms are inadequate for characterizing the complex dynamics of the ECG. This paper proposes a new ECG sensor card and a statistical-based ECG algorithm, with the aid of a reduced binary pattern (RBP), with the aim of achieving faster ECG human identity recognition with high accuracy. The proposed algorithm has one advantage that previous ECG algorithms lack-the waveform complex information and de-noising preprocessing can be bypassed; therefore, it is more suitable for non-stationary ECG signals. Experimental results tested on two public ECG databases (MIT-BIH) from MIT University confirm that the proposed scheme is feasible with excellent accuracy, low complexity, and speedy processing. To be more specific, the advanced RBP algorithm achieves high accuracy in human identity recognition and is executed at least nine times faster than previous algorithms. Moreover, based on the test results from a long-term ECG database, the evolving RBP algorithm also demonstrates superior capability in handling long-term and non-stationary ECG signals.

  16. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT

    PubMed Central

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.; Pan, Xiaochuan

    2010-01-01

    Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack–Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories. PMID:20175463

  17. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT.

    PubMed

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A; Pan, Xiaochuan

    2010-01-01

    Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredback-projection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.

  18. Signal-Processing Algorithm Development for the ACLAIM Sensor

    NASA Technical Reports Server (NTRS)

    vonLaven, Scott

    1995-01-01

    Methods for further minimizing the risk by making use of previous lidar observations were investigated. EOFs are likely to play an important role in these methods, and a procedure for extracting EOFs from data has been implemented, The new processing methods involving EOFs could range from extrapolation, as discussed, to more complicated statistical procedures for maintaining low unstart risk.

  19. FT-mid-IR spectroscopic investigation of fiber maturity and crystallinity at single boll level and a comparison with XRD approach

    USDA-ARS?s Scientific Manuscript database

    In previous study, we have reported the development of simple algorithms for determining fiber maturity and crystallinity from Fourier transform (FT) -mid-infrared (IR) measurement. Due to its micro-sampling feature, we were able to assess the fiber maturity and crystallinity at different portions o...

  20. The MITLL NIST LRE 2015 Language Recognition system

    DTIC Science & Technology

    2016-02-05

    The MITLL NIST LRE 2015 Language Recognition System Pedro Torres-Carrasquillo, Najim Dehak*, Elizabeth Godoy, Douglas Reynolds, Fred Richardson...recent MIT Lincoln Laboratory language recognition system developed for the NIST 2015 Language Recognition Evaluation (LRE). The submission features a...National Institute of Science and Technology ( NIST ) has conducted formal evaluations of language detection algorithms since 1994. In previous

  1. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring.

    PubMed

    Boucher, Jonah; Weathers, Kathleen C; Norouzi, Hamid; Steele, Bethel

    2018-06-01

    Predicting algal blooms has become a priority for scientists, municipalities, businesses, and citizens. Remote sensing offers solutions to the spatial and temporal challenges facing existing lake research and monitoring programs that rely primarily on high-investment, in situ measurements. Techniques to remotely measure chlorophyll a (chl a) as a proxy for algal biomass have been limited to specific large water bodies in particular seasons and narrow chl a ranges. Thus, a first step toward prediction of algal blooms is generating regionally robust algorithms using in situ and remote sensing data. This study explores the relationship between in-lake measured chl a data from Maine and New Hampshire, USA lakes and remotely sensed chl a retrieval algorithm outputs. Landsat 8 images were obtained and then processed after required atmospheric and radiometric corrections. Six previously developed algorithms were tested on a regional scale on 11 scenes from 2013 to 2015 covering 192 lakes. The best performing algorithm across data from both states had a 0.16 correlation coefficient (R 2 ) and P ≤ 0.05 when Landsat 8 images within 5 d, and improved to R 2 of 0.25 when data from Maine only were used. The strength of the correlation varied with the specificity of the time window in relation to the in-situ sampling date, explaining up to 27% of the variation in the data across several scenes. Two previously published algorithms using Landsat 8's Bands 1-4 were best correlated with chl a, and for particular late-summer scenes, they accounted for up to 69% of the variation in in-situ measurements. A sensitivity analysis revealed that a longer time difference between in situ measurements and the satellite image increased uncertainty in the models, and an effect of the time of year on several indices was demonstrated. A regional model based on the best performing remote sensing algorithm was developed and was validated using independent in situ measurements and satellite images. These results suggest that, despite challenges including seasonal effects and low chl a thresholds, remote sensing could be an effective and accessible regional-scale tool for chl a monitoring programs in lakes. © 2018 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  2. Scalable Methods for Uncertainty Quantification, Data Assimilation and Target Accuracy Assessment for Multi-Physics Advanced Simulation of Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Khuwaileh, Bassam

    High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems. This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA). Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL) based algorithm previously developed to quantify the uncertainty for single physics models is extended for large scale multi-physics coupled problems with feedback effect. Moreover, a non-linear surrogate based UQ approach is developed, used and compared to performance of the KL approach and brute force Monte Carlo (MC) approach. On the other hand, an efficient Data Assimilation (DA) algorithm is developed to assess information about model's parameters: nuclear data cross-sections and thermal-hydraulics parameters. Two improvements are introduced in order to perform DA on the high dimensional problems. First, a goal-oriented surrogate model can be used to replace the original models in the depletion sequence (MPACT -- COBRA-TF - ORIGEN). Second, approximating the complex and high dimensional solution space with a lower dimensional subspace makes the sampling process necessary for DA possible for high dimensional problems. Moreover, safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. Accordingly, an inverse problem can be defined and solved to assess the contributions from sources of uncertainty; and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this dissertation a subspace-based gradient-free and nonlinear algorithm for inverse uncertainty quantification namely the Target Accuracy Assessment (TAA) has been developed and tested. The ideas proposed in this dissertation were first validated using lattice physics applications simulated using SCALE6.1 package (Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lattice models). Ultimately, the algorithms proposed her were applied to perform UQ and DA for assembly level (CASL progression problem number 6) and core wide problems representing Watts Bar Nuclear 1 (WBN1) for cycle 1 of depletion (CASL Progression Problem Number 9) modeled via simulated using VERA-CS which consists of several multi-physics coupled models. The analysis and algorithms developed in this dissertation were encoded and implemented in a newly developed tool kit algorithms for Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE).

  3. Developing Remote Sensing Products for Monitoring and Modeling Great Lakes Coastal Wetland Vulnerability to Climate Change and Land Use

    NASA Astrophysics Data System (ADS)

    Bourgeau-Chavez, L. L.; Miller, M. E.; Battaglia, M.; Banda, E.; Endres, S.; Currie, W. S.; Elgersma, K. J.; French, N. H. F.; Goldberg, D. E.; Hyndman, D. W.

    2014-12-01

    Spread of invasive plant species in the coastal wetlands of the Great Lakes is degrading wetland habitat, decreasing biodiversity, and decreasing ecosystem services. An understanding of the mechanisms of invasion is crucial to gaining control of this growing threat. To better understand the effects of land use and climatic drivers on the vulnerability of coastal zones to invasion, as well as to develop an understanding of the mechanisms of invasion, research is being conducted that integrates field studies, process-based ecosystem and hydrological models, and remote sensing. Spatial data from remote sensing is needed to parameterize the hydrological model and to test the outputs of the linked models. We will present several new remote sensing products that are providing important physiological, biochemical, and landscape information to parameterize and verify models. This includes a novel hybrid radar-optical technique to delineate stands of invasives, as well as natural wetland cover types; using radar to map seasonally inundated areas not hydrologically connected; and developing new algorithms to estimate leaf area index (LAI) using Landsat. A coastal map delineating wetland types including monocultures of the invaders (Typha spp. and Phragmites austrailis) was created using satellite radar (ALOS PALSAR, 20 m resolution) and optical data (Landsat 5, 30 m resolution) fusion from multiple dates in a Random Forests classifier. These maps provide verification of the integrated model showing areas at high risk of invasion. For parameterizing the hydrological model, maps of seasonal wetness are being developed using spring (wet) imagery and differencing that with summer (dry) imagery to detect the seasonally wet areas. Finally, development of LAI remote sensing high resolution algorithms for uplands and wetlands is underway. LAI algorithms for wetlands have not been previously developed due to the difficulty of a water background. These products are being used to improve the hydrological model through higher resolution products and parameterization of variables that have previously been largely unknown.

  4. Algorithm for Lossless Compression of Calibrated Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B.; Klimesh, Matthew A.

    2010-01-01

    A two-stage predictive method was developed for lossless compression of calibrated hyperspectral imagery. The first prediction stage uses a conventional linear predictor intended to exploit spatial and/or spectral dependencies in the data. The compressor tabulates counts of the past values of the difference between this initial prediction and the actual sample value. To form the ultimate predicted value, in the second stage, these counts are combined with an adaptively updated weight function intended to capture information about data regularities introduced by the calibration process. Finally, prediction residuals are losslessly encoded using adaptive arithmetic coding. Algorithms of this type are commonly tested on a readily available collection of images from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral imager. On the standard calibrated AVIRIS hyperspectral images that are most widely used for compression benchmarking, the new compressor provides more than 0.5 bits/sample improvement over the previous best compression results. The algorithm has been implemented in Mathematica. The compression algorithm was demonstrated as beneficial on 12-bit calibrated AVIRIS images.

  5. Test Results for Entry Guidance Methods for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.

    2004-01-01

    There are a number of approaches to advanced guidance and control that have the potential for achieving the goals of significantly increasing reusable launch vehicle (or any space vehicle that enters an atmosphere) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future vehicle concepts.

  6. Test Results for Entry Guidance Methods for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.

    2003-01-01

    There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies (ITAGCT) has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future reusable vehicle concepts.

  7. A simplified procedure for correcting both errors and erasures of a Reed-Solomon code using the Euclidean algorithm

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Hsu, I. S.; Eastman, W. L.; Reed, I. S.

    1987-01-01

    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation needed to decode a Reed-Solomon (RS) code. A simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained, simultaneously and simply, by the Euclidean algorithm only. With this improved technique the complexity of time domain RS decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code.

  8. Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points

    NASA Astrophysics Data System (ADS)

    Regis, Rommel G.

    2014-02-01

    This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.

  9. A fuzzy discrete harmony search algorithm applied to annual cost reduction in radial distribution systems

    NASA Astrophysics Data System (ADS)

    Ameli, Kazem; Alfi, Alireza; Aghaebrahimi, Mohammadreza

    2016-09-01

    Similarly to other optimization algorithms, harmony search (HS) is quite sensitive to the tuning parameters. Several variants of the HS algorithm have been developed to decrease the parameter-dependency character of HS. This article proposes a novel version of the discrete harmony search (DHS) algorithm, namely fuzzy discrete harmony search (FDHS), for optimizing capacitor placement in distribution systems. In the FDHS, a fuzzy system is employed to dynamically adjust two parameter values, i.e. harmony memory considering rate and pitch adjusting rate, with respect to normalized mean fitness of the harmony memory. The key aspect of FDHS is that it needs substantially fewer iterations to reach convergence in comparison with classical discrete harmony search (CDHS). To the authors' knowledge, this is the first application of DHS to specify appropriate capacitor locations and their best amounts in the distribution systems. Simulations are provided for 10-, 34-, 85- and 141-bus distribution systems using CDHS and FDHS. The results show the effectiveness of FDHS over previous related studies.

  10. Tensor hypercontracted ppRPA: Reducing the cost of the particle-particle random phase approximation from O(r {sup 6}) to O(r {sup 4})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shenvi, Neil; Yang, Yang; Yang, Weitao

    In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r{sup 6}), the THC-ppRPA algorithm scales asymptotically as only O(r{sup 4}), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditionalmore » ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations.« less

  11. Tensor hypercontracted ppRPA: Reducing the cost of the particle-particle random phase approximation from O(r 6) to O(r 4)

    NASA Astrophysics Data System (ADS)

    Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-07-01

    In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r6), the THC-ppRPA algorithm scales asymptotically as only O(r4), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditional ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations.

  12. Image reconstruction in cone-beam CT with a spherical detector using the BPF algorithm

    NASA Astrophysics Data System (ADS)

    Zuo, Nianming; Zou, Yu; Jiang, Tianzi; Pan, Xiaochuan

    2006-03-01

    Both flat-panel detectors and cylindrical detectors have been used in CT systems for data acquisition. The cylindrical detector generally offers a sampling of a transverse image plane more uniformly than does a flat-panel detector. However, in the longitudinal dimension, the cylindrical and flat-panel detectors offer similar sampling of the image space. In this work, we investigate a detector of spherical shape, which can yield uniform sampling of the 3D image space because the solid angle subtended by each individual detector bin remains unchanged. We have extended the backprojection-filtration (BPF) algorithm, which we have developed previously for cone-beam CT, to reconstruct images in cone-beam CT with a spherical detector. We also conduct computer-simulation studies to validate the extended BPF algorithm. Quantitative results in these numerical studies indicate that accurate images can be obtained from data acquired with a spherical detector by use of our extended BPF cone-beam algorithms.

  13. Respiration-rate estimation of a moving target using impulse-based ultra wideband radars.

    PubMed

    Sharafi, Azadeh; Baboli, Mehran; Eshghi, Mohammad; Ahmadian, Alireza

    2012-03-01

    Recently, Ultra-wide band signals have become attractive for their particular advantage of having high spatial resolution and good penetration ability which makes them suitable in medical applications. One of these applications is wireless detection of heart rate and respiration rate. Two hypothesis of static environment and fixed patient are considered in the method presented in previous literatures which are not valid for long term monitoring of ambulant patients. In this article, a new method to detect the respiration rate of a moving target is presented. The first algorithm is applied to the simulated and experimental data for detecting respiration rate of a fixed target. Then, the second algorithm is developed to detect respiration rate of a moving target. The proposed algorithm uses correlation for body movement cancellation, and then detects the respiration rate based on energy in frequency domain. The results of algorithm prove an accuracy of 98.4 and 97% in simulated and experimental data, respectively.

  14. Combinatorics of least-squares trees.

    PubMed

    Mihaescu, Radu; Pachter, Lior

    2008-09-09

    A recurring theme in the least-squares approach to phylogenetics has been the discovery of elegant combinatorial formulas for the least-squares estimates of edge lengths. These formulas have proved useful for the development of efficient algorithms, and have also been important for understanding connections among popular phylogeny algorithms. For example, the selection criterion of the neighbor-joining algorithm is now understood in terms of the combinatorial formulas of Pauplin for estimating tree length. We highlight a phylogenetically desirable property that weighted least-squares methods should satisfy, and provide a complete characterization of methods that satisfy the property. The necessary and sufficient condition is a multiplicative four-point condition that the variance matrix needs to satisfy. The proof is based on the observation that the Lagrange multipliers in the proof of the Gauss-Markov theorem are tree-additive. Our results generalize and complete previous work on ordinary least squares, balanced minimum evolution, and the taxon-weighted variance model. They also provide a time-optimal algorithm for computation.

  15. Formally Verified Practical Algorithms for Recovery from Loss of Separation

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Caesar A.

    2009-01-01

    In this paper, we develop and formally verify practical algorithms for recovery from loss of separation. The formal verification is performed in the context of a criteria-based framework. This framework provides rigorous definitions of horizontal and vertical maneuver correctness that guarantee divergence and achieve horizontal and vertical separation. The algorithms are shown to be independently correct, that is, separation is achieved when only one aircraft maneuvers, and implicitly coordinated, that is, separation is also achieved when both aircraft maneuver. In this paper we improve the horizontal criteria over our previous work. An important benefit of the criteria approach is that different aircraft can execute different algorithms and implicit coordination will still be achieved, as long as they all meet the explicit criteria of the framework. Towards this end we have sought to make the criteria as general as possible. The framework presented in this paper has been formalized and mechanically verified in the Prototype Verification System (PVS).

  16. Script-independent text line segmentation in freestyle handwritten documents.

    PubMed

    Li, Yi; Zheng, Yefeng; Doermann, David; Jaeger, Stefan; Li, Yi

    2008-08-01

    Text line segmentation in freestyle handwritten documents remains an open document analysis problem. Curvilinear text lines and small gaps between neighboring text lines present a challenge to algorithms developed for machine printed or hand-printed documents. In this paper, we propose a novel approach based on density estimation and a state-of-the-art image segmentation technique, the level set method. From an input document image, we estimate a probability map, where each element represents the probability that the underlying pixel belongs to a text line. The level set method is then exploited to determine the boundary of neighboring text lines by evolving an initial estimate. Unlike connected component based methods ( [1], [2] for example), the proposed algorithm does not use any script-specific knowledge. Extensive quantitative experiments on freestyle handwritten documents with diverse scripts, such as Arabic, Chinese, Korean, and Hindi, demonstrate that our algorithm consistently outperforms previous methods [1]-[3]. Further experiments show the proposed algorithm is robust to scale change, rotation, and noise.

  17. Reproducibility and Variability of I/O Performance on BG/Q: Lessons Learned from a Data Aggregation Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessier, Francois; Vishwanath, Venkatram

    2017-11-28

    Reading and writing data efficiently from different tiers of storage is necessary for most scientific simulations to achieve good performance at scale. Many software solutions have been developed to decrease the I/O bottleneck. One wellknown strategy, in the context of collective I/O operations, is the two-phase I/O scheme. This strategy consists of selecting a subset of processes to aggregate contiguous pieces of data before performing reads/writes. In our previous work, we implemented the two-phase I/O scheme with a MPI-based topology-aware algorithm. Our algorithm showed very good performance at scale compared to the standard I/O libraries such as POSIX I/O andmore » MPI I/O. However, the algorithm had several limitations hindering a satisfying reproducibility of our experiments. In this paper, we extend our work by 1) identifying the obstacles we face to reproduce our experiments and 2) discovering solutions that reduce the unpredictability of our results.« less

  18. Wiener filter preprocessing for OFDM systems in the presence of both nonstationary and stationary phase noises

    NASA Astrophysics Data System (ADS)

    Zhong, Ke; Lei, Xia; Li, Shaoqian

    2013-12-01

    Statistics-based intercarrier interference (ICI) mitigation algorithm is proposed for orthogonal frequency division multiplexing systems in presence of both nonstationary and stationary phase noises. By utilizing the statistics of phase noise, which can be obtained from measurements or data sheets, a Wiener filter preprocessing algorithm for ICI mitigation is proposed. The proposed algorithm can be regarded as a performance-improving technique for the previous researches on phase noise cancelation. Simulation results show that the proposed algorithm can effectively mitigate ICI and lower the error floor, and therefore significantly improve the performances of previous researches on phase noise cancelation, especially in the presence of severe phase noise.

  19. Toward an Objective Enhanced-V Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Brunner, Jason; Feltz, Wayne; Moses, John; Rabin, Robert; Ackerman, Steven

    2007-01-01

    The area of coldest cloud tops above thunderstorms sometimes has a distinct V or U shape. This pattern, often referred to as an "enhanced-V' signature, has been observed to occur during and preceding severe weather in previous studies. This study describes an algorithmic approach to objectively detect enhanced-V features with observations from the Geostationary Operational Environmental Satellite and Low Earth Orbit data. The methodology consists of cross correlation statistics of pixels and thresholds of enhanced-V quantitative parameters. The effectiveness of the enhanced-V detection method will be examined using Geostationary Operational Environmental Satellite, MODerate-resolution Imaging Spectroradiometer, and Advanced Very High Resolution Radiometer image data from case studies in the 2003-2006 seasons. The main goal of this study is to develop an objective enhanced-V detection algorithm for future implementation into operations with future sensors, such as GOES-R.

  20. Reasoning by analogy as an aid to heuristic theorem proving.

    NASA Technical Reports Server (NTRS)

    Kling, R. E.

    1972-01-01

    When heuristic problem-solving programs are faced with large data bases that contain numbers of facts far in excess of those needed to solve any particular problem, their performance rapidly deteriorates. In this paper, the correspondence between a new unsolved problem and a previously solved analogous problem is computed and invoked to tailor large data bases to manageable sizes. This paper outlines the design of an algorithm for generating and exploiting analogies between theorems posed to a resolution-logic system. These algorithms are believed to be the first computationally feasible development of reasoning by analogy to be applied to heuristic theorem proving.

  1. Statistical hadronization and microcanonical ensemble

    DOE PAGES

    Becattini, F.; Ferroni, L.

    2004-01-01

    We present a Monte Carlo calculation of the microcanonical ensemble of the of the ideal hadron-resonance gas including all known states up to a mass of 1. 8 GeV, taking into account quantum statistics. The computing method is a development of a previous one based on a Metropolis Monte Carlo algorithm, with a the grand-canonical limit of the multi-species multiplicity distribution as proposal matrix. The microcanonical average multiplicities of the various hadron species are found to converge to the canonical ones for moderately low values of the total energy. This algorithm opens the way for event generators based for themore » statistical hadronization model.« less

  2. Real time mitigation of atmospheric turbulence in long distance imaging using the lucky region fusion algorithm with FPGA and GPU hardware acceleration

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher Robert

    "Lucky-region" fusion (LRF) is a synthetic imaging technique that has proven successful in enhancing the quality of images distorted by atmospheric turbulence. The LRF algorithm selects sharp regions of an image obtained from a series of short exposure frames, and fuses the sharp regions into a final, improved image. In previous research, the LRF algorithm had been implemented on a PC using the C programming language. However, the PC did not have sufficient sequential processing power to handle real-time extraction, processing and reduction required when the LRF algorithm was applied to real-time video from fast, high-resolution image sensors. This thesis describes two hardware implementations of the LRF algorithm to achieve real-time image processing. The first was created with a VIRTEX-7 field programmable gate array (FPGA). The other developed using the graphics processing unit (GPU) of a NVIDIA GeForce GTX 690 video card. The novelty in the FPGA approach is the creation of a "black box" LRF video processing system with a general camera link input, a user controller interface, and a camera link video output. We also describe a custom hardware simulation environment we have built to test the FPGA LRF implementation. The advantage of the GPU approach is significantly improved development time, integration of image stabilization into the system, and comparable atmospheric turbulence mitigation.

  3. Parameter estimation by Differential Search Algorithm from horizontal loop electromagnetic (HLEM) data

    NASA Astrophysics Data System (ADS)

    Alkan, Hilal; Balkaya, Çağlayan

    2018-02-01

    We present an efficient inversion tool for parameter estimation from horizontal loop electromagnetic (HLEM) data using Differential Search Algorithm (DSA) which is a swarm-intelligence-based metaheuristic proposed recently. The depth, dip, and origin of a thin subsurface conductor causing the anomaly are the parameters estimated by the HLEM method commonly known as Slingram. The applicability of the developed scheme was firstly tested on two synthetically generated anomalies with and without noise content. Two control parameters affecting the convergence characteristic to the solution of the algorithm were tuned for the so-called anomalies including one and two conductive bodies, respectively. Tuned control parameters yielded more successful statistical results compared to widely used parameter couples in DSA applications. Two field anomalies measured over a dipping graphitic shale from Northern Australia were then considered, and the algorithm provided the depth estimations being in good agreement with those of previous studies and drilling information. Furthermore, the efficiency and reliability of the results obtained were investigated via probability density function. Considering the results obtained, we can conclude that DSA characterized by the simple algorithmic structure is an efficient and promising metaheuristic for the other relatively low-dimensional geophysical inverse problems. Finally, the researchers after being familiar with the content of developed scheme displaying an easy to use and flexible characteristic can easily modify and expand it for their scientific optimization problems.

  4. Biological network motif detection and evaluation

    PubMed Central

    2011-01-01

    Background Molecular level of biological data can be constructed into system level of data as biological networks. Network motifs are defined as over-represented small connected subgraphs in networks and they have been used for many biological applications. Since network motif discovery involves computationally challenging processes, previous algorithms have focused on computational efficiency. However, we believe that the biological quality of network motifs is also very important. Results We define biological network motifs as biologically significant subgraphs and traditional network motifs are differentiated as structural network motifs in this paper. We develop five algorithms, namely, EDGEGO-BNM, EDGEBETWEENNESS-BNM, NMF-BNM, NMFGO-BNM and VOLTAGE-BNM, for efficient detection of biological network motifs, and introduce several evaluation measures including motifs included in complex, motifs included in functional module and GO term clustering score in this paper. Experimental results show that EDGEGO-BNM and EDGEBETWEENNESS-BNM perform better than existing algorithms and all of our algorithms are applicable to find structural network motifs as well. Conclusion We provide new approaches to finding network motifs in biological networks. Our algorithms efficiently detect biological network motifs and further improve existing algorithms to find high quality structural network motifs, which would be impossible using existing algorithms. The performances of the algorithms are compared based on our new evaluation measures in biological contexts. We believe that our work gives some guidelines of network motifs research for the biological networks. PMID:22784624

  5. Multishaker modal testing

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.

    1985-01-01

    A component mode synthesis method for damped structures was developed and modal test methods were explored which could be employed to determine the relevant parameters required by the component mode synthesis method. Research was conducted on the following topics: (1) Development of a generalized time-domain component mode synthesis technique for damped systems; (2) Development of a frequency-domain component mode synthesis method for damped systems; and (3) Development of a system identification algorithm applicable to general damped systems. Abstracts are presented of the major publications which have been previously issued on these topics.

  6. Engineering platform and experimental protocol for design and evaluation of a neurally-controlled powered transfemoral prosthesis.

    PubMed

    Zhang, Fan; Liu, Ming; Harper, Stephen; Lee, Michael; Huang, He

    2014-07-22

    To enable intuitive operation of powered artificial legs, an interface between user and prosthesis that can recognize the user's movement intent is desired. A novel neural-machine interface (NMI) based on neuromuscular-mechanical fusion developed in our previous study has demonstrated a great potential to accurately identify the intended movement of transfemoral amputees. However, this interface has not yet been integrated with a powered prosthetic leg for true neural control. This study aimed to report (1) a flexible platform to implement and optimize neural control of powered lower limb prosthesis and (2) an experimental setup and protocol to evaluate neural prosthesis control on patients with lower limb amputations. First a platform based on a PC and a visual programming environment were developed to implement the prosthesis control algorithms, including NMI training algorithm, NMI online testing algorithm, and intrinsic control algorithm. To demonstrate the function of this platform, in this study the NMI based on neuromuscular-mechanical fusion was hierarchically integrated with intrinsic control of a prototypical transfemoral prosthesis. One patient with a unilateral transfemoral amputation was recruited to evaluate our implemented neural controller when performing activities, such as standing, level-ground walking, ramp ascent, and ramp descent continuously in the laboratory. A novel experimental setup and protocol were developed in order to test the new prosthesis control safely and efficiently. The presented proof-of-concept platform and experimental setup and protocol could aid the future development and application of neurally-controlled powered artificial legs.

  7. Conformational Space Annealing explained: A general optimization algorithm, with diverse applications

    NASA Astrophysics Data System (ADS)

    Joung, InSuk; Kim, Jong Yun; Gross, Steven P.; Joo, Keehyoung; Lee, Jooyoung

    2018-02-01

    Many problems in science and engineering can be formulated as optimization problems. One way to solve these problems is to develop tailored problem-specific approaches. As such development is challenging, an alternative is to develop good generally-applicable algorithms. Such algorithms are easy to apply, typically function robustly, and reduce development time. Here we provide a description for one such algorithm called Conformational Space Annealing (CSA) along with its python version, PyCSA. We previously applied it to many optimization problems including protein structure prediction and graph community detection. To demonstrate its utility, we have applied PyCSA to two continuous test functions, namely Ackley and Eggholder functions. In addition, in order to provide complete generality of PyCSA to any types of an objective function, we demonstrate the way PyCSA can be applied to a discrete objective function, namely a parameter optimization problem. Based on the benchmarking results of the three problems, the performance of CSA is shown to be better than or similar to the most popular optimization method, simulated annealing. For continuous objective functions, we found that, L-BFGS-B was the best performing local optimization method, while for a discrete objective function Nelder-Mead was the best. The current version of PyCSA can be run in parallel at the coarse grained level by calculating multiple independent local optimizations separately. The source code of PyCSA is available from http://lee.kias.re.kr.

  8. Implementation of Pilot Protection System for Large Scale Distribution System like The Future Renewable Electric Energy Distribution Management Project

    NASA Astrophysics Data System (ADS)

    Iigaya, Kiyohito

    A robust, fast and accurate protection system based on pilot protection concept was developed previously and a few alterations in that algorithm were made to make it faster and more reliable and then was applied to smart distribution grids to verify the results for it. The new 10 sample window method was adapted into the pilot protection program and its performance for the test bed system operation was tabulated. Following that the system comparison between the hardware results for the same algorithm and the simulation results were compared. The development of the dual slope percentage differential method, its comparison with the 10 sample average window pilot protection system and the effects of CT saturation on the pilot protection system are also shown in this thesis. The implementation of the 10 sample average window pilot protection system is done to multiple distribution grids like Green Hub v4.3, IEEE 34, LSSS loop and modified LSSS loop. Case studies of these multi-terminal model are presented, and the results are also shown in this thesis. The result obtained shows that the new algorithm for the previously proposed protection system successfully identifies fault on the test bed and the results for both hardware and software simulations match and the response time is approximately less than quarter of a cycle which is fast as compared to the present commercial protection system and satisfies the FREEDM system requirement.

  9. Respiratory rate estimation during triage of children in hospitals.

    PubMed

    Shah, Syed Ahmar; Fleming, Susannah; Thompson, Matthew; Tarassenko, Lionel

    2015-01-01

    Accurate assessment of a child's health is critical for appropriate allocation of medical resources and timely delivery of healthcare in Emergency Departments. The accurate measurement of vital signs is a key step in the determination of the severity of illness and respiratory rate is currently the most difficult vital sign to measure accurately. Several previous studies have attempted to extract respiratory rate from photoplethysmogram (PPG) recordings. However, the majority have been conducted in controlled settings using PPG recordings from healthy subjects. In many studies, manual selection of clean sections of PPG recordings was undertaken before assessing the accuracy of the signal processing algorithms developed. Such selection procedures are not appropriate in clinical settings. A major limitation of AR modelling, previously applied to respiratory rate estimation, is an appropriate selection of model order. This study developed a novel algorithm that automatically estimates respiratory rate from a median spectrum constructed applying multiple AR models to processed PPG segments acquired with pulse oximetry using a finger probe. Good-quality sections were identified using a dynamic template-matching technique to assess PPG signal quality. The algorithm was validated on 205 children presenting to the Emergency Department at the John Radcliffe Hospital, Oxford, UK, with reference respiratory rates up to 50 breaths per minute estimated by paediatric nurses. At the time of writing, the authors are not aware of any other study that has validated respiratory rate estimation using data collected from over 200 children in hospitals during routine triage.

  10. Automatic parameter selection for feature-based multi-sensor image registration

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen; Tom, Victor; Webb, Helen; Chao, Alan

    2006-05-01

    Accurate image registration is critical for applications such as precision targeting, geo-location, change-detection, surveillance, and remote sensing. However, the increasing volume of image data is exceeding the current capacity of human analysts to perform manual registration. This image data glut necessitates the development of automated approaches to image registration, including algorithm parameter value selection. Proper parameter value selection is crucial to the success of registration techniques. The appropriate algorithm parameters can be highly scene and sensor dependent. Therefore, robust algorithm parameter value selection approaches are a critical component of an end-to-end image registration algorithm. In previous work, we developed a general framework for multisensor image registration which includes feature-based registration approaches. In this work we examine the problem of automated parameter selection. We apply the automated parameter selection approach of Yitzhaky and Peli to select parameters for feature-based registration of multisensor image data. The approach consists of generating multiple feature-detected images by sweeping over parameter combinations and using these images to generate estimated ground truth. The feature-detected images are compared to the estimated ground truth images to generate ROC points associated with each parameter combination. We develop a strategy for selecting the optimal parameter set by choosing the parameter combination corresponding to the optimal ROC point. We present numerical results showing the effectiveness of the approach using registration of collected SAR data to reference EO data.

  11. Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.

    PubMed

    Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F

    2011-03-01

    This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.

  12. ECHO: A reference-free short-read error correction algorithm

    PubMed Central

    Kao, Wei-Chun; Chan, Andrew H.; Song, Yun S.

    2011-01-01

    Developing accurate, scalable algorithms to improve data quality is an important computational challenge associated with recent advances in high-throughput sequencing technology. In this study, a novel error-correction algorithm, called ECHO, is introduced for correcting base-call errors in short-reads, without the need of a reference genome. Unlike most previous methods, ECHO does not require the user to specify parameters of which optimal values are typically unknown a priori. ECHO automatically sets the parameters in the assumed model and estimates error characteristics specific to each sequencing run, while maintaining a running time that is within the range of practical use. ECHO is based on a probabilistic model and is able to assign a quality score to each corrected base. Furthermore, it explicitly models heterozygosity in diploid genomes and provides a reference-free method for detecting bases that originated from heterozygous sites. On both real and simulated data, ECHO is able to improve the accuracy of previous error-correction methods by several folds to an order of magnitude, depending on the sequence coverage depth and the position in the read. The improvement is most pronounced toward the end of the read, where previous methods become noticeably less effective. Using a whole-genome yeast data set, it is demonstrated here that ECHO is capable of coping with nonuniform coverage. Also, it is shown that using ECHO to perform error correction as a preprocessing step considerably facilitates de novo assembly, particularly in the case of low-to-moderate sequence coverage depth. PMID:21482625

  13. Using landscape topology to compare continuous metaheuristics: a framework and case study on EDAs and ridge structure.

    PubMed

    Morgan, R; Gallagher, M

    2012-01-01

    In this paper we extend a previously proposed randomized landscape generator in combination with a comparative experimental methodology to study the behavior of continuous metaheuristic optimization algorithms. In particular, we generate two-dimensional landscapes with parameterized, linear ridge structure, and perform pairwise comparisons of algorithms to gain insight into what kind of problems are easy and difficult for one algorithm instance relative to another. We apply this methodology to investigate the specific issue of explicit dependency modeling in simple continuous estimation of distribution algorithms. Experimental results reveal specific examples of landscapes (with certain identifiable features) where dependency modeling is useful, harmful, or has little impact on mean algorithm performance. Heat maps are used to compare algorithm performance over a large number of landscape instances and algorithm trials. Finally, we perform a meta-search in the landscape parameter space to find landscapes which maximize the performance between algorithms. The results are related to some previous intuition about the behavior of these algorithms, but at the same time lead to new insights into the relationship between dependency modeling in EDAs and the structure of the problem landscape. The landscape generator and overall methodology are quite general and extendable and can be used to examine specific features of other algorithms.

  14. A comparative intelligibility study of single-microphone noise reduction algorithms.

    PubMed

    Hu, Yi; Loizou, Philipos C

    2007-09-01

    The evaluation of intelligibility of noise reduction algorithms is reported. IEEE sentences and consonants were corrupted by four types of noise including babble, car, street and train at two signal-to-noise ratio levels (0 and 5 dB), and then processed by eight speech enhancement methods encompassing four classes of algorithms: spectral subtractive, sub-space, statistical model based and Wiener-type algorithms. The enhanced speech was presented to normal-hearing listeners for identification. With the exception of a single noise condition, no algorithm produced significant improvements in speech intelligibility. Information transmission analysis of the consonant confusion matrices indicated that no algorithm improved significantly the place feature score, significantly, which is critically important for speech recognition. The algorithms which were found in previous studies to perform the best in terms of overall quality, were not the same algorithms that performed the best in terms of speech intelligibility. The subspace algorithm, for instance, was previously found to perform the worst in terms of overall quality, but performed well in the present study in terms of preserving speech intelligibility. Overall, the analysis of consonant confusion matrices suggests that in order for noise reduction algorithms to improve speech intelligibility, they need to improve the place and manner feature scores.

  15. Improving recovery of ECG signal with deterministic guarantees using split signal for multiple supports of matching pursuit (SS-MSMP) algorithm.

    PubMed

    Tawfic, Israa Shaker; Kayhan, Sema Koc

    2017-02-01

    Compressed sensing (CS) is a new field used for signal acquisition and design of sensor that made a large drooping in the cost of acquiring sparse signals. In this paper, new algorithms are developed to improve the performance of the greedy algorithms. In this paper, a new greedy pursuit algorithm, SS-MSMP (Split Signal for Multiple Support of Matching Pursuit), is introduced and theoretical analyses are given. The SS-MSMP is suggested for sparse data acquisition, in order to reconstruct analog and efficient signals via a small set of general measurements. This paper proposes a new fast method which depends on a study of the behavior of the support indices through picking the best estimation of the corrosion between residual and measurement matrix. The term multiple supports originates from an algorithm; in each iteration, the best support indices are picked based on maximum quality created by discovering correlation for a particular length of support. We depend on this new algorithm upon our previous derivative of halting condition that we produce for Least Support Orthogonal Matching Pursuit (LS-OMP) for clear and noisy signal. For better reconstructed results, SS-MSMP algorithm provides the recovery of support set for long signals such as signals used in WBAN. Numerical experiments demonstrate that the new suggested algorithm performs well compared to existing algorithms in terms of many factors used for reconstruction performance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Using Patient Flow Information to Determine Risk of Hospital Presentation: Protocol for a Proof-of-Concept Study.

    PubMed

    Pearce, Christopher M; McLeod, Adam; Patrick, Jon; Boyle, Douglas; Shearer, Marianne; Eustace, Paula; Pearce, Mary Catherine

    2016-12-20

    Every day, patients are admitted to the hospital with conditions that could have been effectively managed in the primary care sector. These admissions are expensive and in many cases are possible to avoid if early intervention occurs. General practitioners are in the best position to identify those at risk of imminent hospital presentation and admission; however, it is not always possible for all the factors to be considered. A lack of shared information contributes significantly to the challenge of understanding a patient's full medical history. Some health care systems around the world use algorithms to analyze patient data in order to predict events such as emergency presentation; however, those responsible for the design and use of such systems readily admit that the algorithms can only be used to assess the populations used to design the algorithm in the first place. The United Kingdom health care system has contributed data toward algorithm development, which is possible through the unified health care system in place there. The lack of unified patient records in Australia has made building an algorithm for local use a significant challenge. Our objective is to use linked patient records to track patient flow through primary and secondary health care in order to develop a tool that can be applied in real time at the general practice level. This algorithm will allow the generation of reports for general practitioners that indicate the relative risk of patients presenting to an emergency department. A previously designed tool was used to deidentify the general practice and hospital records of approximately 100,000 patients. Records were pooled for patients who had attended emergency departments within the Eastern Health Network of hospitals and general practices within the Eastern Health Network catchment. The next phase will involve development of a model using a predictive analytic machine learning algorithm. The model will be developed iteratively, testing the combination of variables that will provide the best predictive model. Records of approximately 97,000 patients who have attended both a general practice and an emergency department have been identified within the database. These records are currently being used to develop the predictive model. Records from general practice and emergency department visits have been identified and pooled for development of the algorithm. The next phase in the project will see validation and live testing of the algorithm in a practice setting. The algorithm will underpin a clinical decision support tool for general practitioners which will be tested for face validity in this initial study into its efficacy. ©Christopher M Pearce, Adam McLeod, Jon Patrick, Douglas Boyle, Marianne Shearer, Paula Eustace, Mary Catherine Pearce. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 20.12.2016.

  17. Towards an accurate real-time locator of infrasonic sources

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Blom, P.; Polozov, A.; Marcillo, O.; Arrowsmith, S.; Hofstetter, A.

    2017-11-01

    Infrasonic signals propagate from an atmospheric source via media with stochastic and fast space-varying conditions. Hence, their travel time, the amplitude at sensor recordings and even manifestation in the so-called "shadow zones" are random. Therefore, the traditional least-squares technique for locating infrasonic sources is often not effective, and the problem for the best solution must be formulated in probabilistic terms. Recently, a series of papers has been published about Bayesian Infrasonic Source Localization (BISL) method based on the computation of the posterior probability density function (PPDF) of the source location, as a convolution of a priori probability distribution function (APDF) of the propagation model parameters with likelihood function (LF) of observations. The present study is devoted to the further development of BISL for higher accuracy and stability of the source location results and decreasing of computational load. We critically analyse previous algorithms and propose several new ones. First of all, we describe the general PPDF formulation and demonstrate that this relatively slow algorithm might be among the most accurate algorithms, provided the adequate APDF and LF are used. Then, we suggest using summation instead of integration in a general PPDF calculation for increased robustness, but this leads us to the 3D space-time optimization problem. Two different forms of APDF approximation are considered and applied for the PPDF calculation in our study. One of them is previously suggested, but not yet properly used is the so-called "celerity-range histograms" (CRHs). Another is the outcome from previous findings of linear mean travel time for the four first infrasonic phases in the overlapping consecutive distance ranges. This stochastic model is extended here to the regional distance of 1000 km, and the APDF introduced is the probabilistic form of the junction between this travel time model and range-dependent probability distributions of the phase arrival time picks. To illustrate the improvements in both computation time and location accuracy achieved, we compare location results for the new algorithms, previously published BISL-type algorithms and the least-squares location technique. This comparison is provided via a case study of different typical spatial data distributions and statistical experiment using the database of 36 ground-truth explosions from the Utah Test and Training Range (UTTR) recorded during the US summer season at USArray transportable seismic stations when they were near the site between 2006 and 2008.

  18. Comparison of neural network applications for channel assignment in cellular TDMA networks and dynamically sectored PCS networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1997-04-01

    The use of artificial neural networks (NNs) to address the channel assignment problem (CAP) for cellular time-division multiple access and code-division multiple access networks has previously been investigated by this author and many others. The investigations to date have been based on a hexagonal cell structure established by omnidirectional antennas at the base stations. No account was taken of the use of spatial isolation enabled by directional antennas to reduce interference between mobiles. Any reduction in interference translates into increased capacity and consequently alters the performance of the NNs. Previous studies have sought to improve the performance of Hopfield- Tank network algorithms and self-organizing feature map algorithms applied primarily to static channel assignment (SCA) for cellular networks that handle uniformly distributed, stationary traffic in each cell for a single type of service. The resulting algorithms minimize energy functions representing interference constraint and ad hoc conditions that promote convergence to optimal solutions. While the structures of the derived neural network algorithms (NNAs) offer the potential advantages of inherent parallelism and adaptability to changing system conditions, this potential has yet to be fulfilled the CAP for emerging mobile networks. The next-generation communication infrastructures must accommodate dynamic operating conditions. Macrocell topologies are being refined to microcells and picocells that can be dynamically sectored by adaptively controlled, directional antennas and programmable transceivers. These networks must support the time-varying demands for personal communication services (PCS) that simultaneously carry voice, data and video and, thus, require new dynamic channel assignment (DCA) algorithms. This paper examines the impact of dynamic cell sectoring and geometric conditioning on NNAs developed for SCA in omnicell networks with stationary traffic to improve the metrics of convergence rate and call blocking. Genetic algorithms (GAs) are also considered in PCS networks as a means to overcome the known weakness of Hopfield NNAs in determining global minima. The resulting GAs for DCA in PCS networks are compared to improved DCA algorithms based on Hopfield NNs for stationary cellular networks. Algorithm performance is compared on the basis of rate of convergence, blocking probability, analytic complexity, and parametric sensitivity to transient traffic demands and channel interference.

  19. Detection of QT prolongation using a novel electrocardiographic analysis algorithm applying intelligent automation: prospective blinded evaluation using the Cardiac Safety Research Consortium electrocardiographic database.

    PubMed

    Green, Cynthia L; Kligfield, Paul; George, Samuel; Gussak, Ihor; Vajdic, Branislav; Sager, Philip; Krucoff, Mitchell W

    2012-03-01

    The Cardiac Safety Research Consortium (CSRC) provides both "learning" and blinded "testing" digital electrocardiographic (ECG) data sets from thorough QT (TQT) studies annotated for submission to the US Food and Drug Administration (FDA) to developers of ECG analysis technologies. This article reports the first results from a blinded testing data set that examines developer reanalysis of original sponsor-reported core laboratory data. A total of 11,925 anonymized ECGs including both moxifloxacin and placebo arms of a parallel-group TQT in 181 subjects were blindly analyzed using a novel ECG analysis algorithm applying intelligent automation. Developer-measured ECG intervals were submitted to CSRC for unblinding, temporal reconstruction of the TQT exposures, and statistical comparison to core laboratory findings previously submitted to FDA by the pharmaceutical sponsor. Primary comparisons included baseline-adjusted interval measurements, baseline- and placebo-adjusted moxifloxacin QTcF changes (ddQTcF), and associated variability measures. Developer and sponsor-reported baseline-adjusted data were similar with average differences <1 ms for all intervals. Both developer- and sponsor-reported data demonstrated assay sensitivity with similar ddQTcF changes. Average within-subject SD for triplicate QTcF measurements was significantly lower for developer- than sponsor-reported data (5.4 and 7.2 ms, respectively; P < .001). The virtually automated ECG algorithm used for this analysis produced similar yet less variable TQT results compared with the sponsor-reported study, without the use of a manual core laboratory. These findings indicate that CSRC ECG data sets can be useful for evaluating novel methods and algorithms for determining drug-induced QT/QTc prolongation. Although the results should not constitute endorsement of specific algorithms by either CSRC or FDA, the value of a public domain digital ECG warehouse to provide prospective, blinded comparisons of ECG technologies applied for QT/QTc measurement is illustrated. Copyright © 2012 Mosby, Inc. All rights reserved.

  20. Detection of QT prolongation using a novel ECG analysis algorithm applying intelligent automation: Prospective blinded evaluation using the Cardiac Safety Research Consortium ECG database

    PubMed Central

    Green, Cynthia L.; Kligfield, Paul; George, Samuel; Gussak, Ihor; Vajdic, Branislav; Sager, Philip; Krucoff, Mitchell W.

    2013-01-01

    Background The Cardiac Safety Research Consortium (CSRC) provides both “learning” and blinded “testing” digital ECG datasets from thorough QT (TQT) studies annotated for submission to the US Food and Drug Administration (FDA) to developers of ECG analysis technologies. This manuscript reports the first results from a blinded “testing” dataset that examines Developer re-analysis of original Sponsor-reported core laboratory data. Methods 11,925 anonymized ECGs including both moxifloxacin and placebo arms of a parallel-group TQT in 191 subjects were blindly analyzed using a novel ECG analysis algorithm applying intelligent automation. Developer measured ECG intervals were submitted to CSRC for unblinding, temporal reconstruction of the TQT exposures, and statistical comparison to core laboratory findings previously submitted to FDA by the pharmaceutical sponsor. Primary comparisons included baseline-adjusted interval measurements, baseline- and placebo-adjusted moxifloxacin QTcF changes (ddQTcF), and associated variability measures. Results Developer and Sponsor-reported baseline-adjusted data were similar with average differences less than 1 millisecond (ms) for all intervals. Both Developer and Sponsor-reported data demonstrated assay sensitivity with similar ddQTcF changes. Average within-subject standard deviation for triplicate QTcF measurements was significantly lower for Developer than Sponsor-reported data (5.4 ms and 7.2 ms, respectively; p<0.001). Conclusion The virtually automated ECG algorithm used for this analysis produced similar yet less variable TQT results compared to the Sponsor-reported study, without the use of a manual core laboratory. These findings indicate CSRC ECG datasets can be useful for evaluating novel methods and algorithms for determining QT/QTc prolongation by drugs. While the results should not constitute endorsement of specific algorithms by either CSRC or FDA, the value of a public domain digital ECG warehouse to provide prospective, blinded comparisons of ECG technologies applied for QT/QTc measurement is illustrated. PMID:22424006

  1. Space Launch System Implementation of Adaptive Augmenting Control

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Wall, John H.; Orr, Jeb S.

    2014-01-01

    Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to robustly demonstrate stable and high performance flight. On its development path to preliminary design review (PDR), the stability of the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant dynamics. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an adaptive augmenting control (AAC) algorithm previously presented by Orr and VanZwieten, has been shown to extend the envelope of failures and flight anomalies for which the SLS control system can accommodate while maintaining a direct link to flight control stability criteria (e.g. gain & phase margin). In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the SLS digital 3-axis autopilot, including existing load-relief elements, and necessary steps for integration with the production flight software prototype have been implemented. Several updates to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

  2. A hybrid algorithm for speckle noise reduction of ultrasound images.

    PubMed

    Singh, Karamjeet; Ranade, Sukhjeet Kaur; Singh, Chandan

    2017-09-01

    Medical images are contaminated by multiplicative speckle noise which significantly reduce the contrast of ultrasound images and creates a negative effect on various image interpretation tasks. In this paper, we proposed a hybrid denoising approach which collaborate the both local and nonlocal information in an efficient manner. The proposed hybrid algorithm consist of three stages in which at first stage the use of local statistics in the form of guided filter is used to reduce the effect of speckle noise initially. Then, an improved speckle reducing bilateral filter (SRBF) is developed to further reduce the speckle noise from the medical images. Finally, to reconstruct the diffused edges we have used the efficient post-processing technique which jointly considered the advantages of both bilateral and nonlocal mean (NLM) filter for the attenuation of speckle noise efficiently. The performance of proposed hybrid algorithm is evaluated on synthetic, simulated and real ultrasound images. The experiments conducted on various test images demonstrate that our proposed hybrid approach outperforms the various traditional speckle reduction approaches included recently proposed NLM and optimized Bayesian-based NLM. The results of various quantitative, qualitative measures and by visual inspection of denoise synthetic and real ultrasound images demonstrate that the proposed hybrid algorithm have strong denoising capability and able to preserve the fine image details such as edge of a lesion better than previously developed methods for speckle noise reduction. The denoising and edge preserving capability of hybrid algorithm is far better than existing traditional and recently proposed speckle reduction (SR) filters. The success of proposed algorithm would help in building the lay foundation for inventing the hybrid algorithms for denoising of ultrasound images. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A NUMERICAL ALGORITHM FOR MODELING MULTIGROUP NEUTRINO-RADIATION HYDRODYNAMICS IN TWO SPATIAL DIMENSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swesty, F. Douglas; Myra, Eric S.

    It is now generally agreed that multidimensional, multigroup, neutrino-radiation hydrodynamics (RHD) is an indispensable element of any realistic model of stellar-core collapse, core-collapse supernovae, and proto-neutron star instabilities. We have developed a new, two-dimensional, multigroup algorithm that can model neutrino-RHD flows in core-collapse supernovae. Our algorithm uses an approach similar to the ZEUS family of algorithms, originally developed by Stone and Norman. However, this completely new implementation extends that previous work in three significant ways: first, we incorporate multispecies, multigroup RHD in a flux-limited-diffusion approximation. Our approach is capable of modeling pair-coupled neutrino-RHD, and includes effects of Pauli blocking inmore » the collision integrals. Blocking gives rise to nonlinearities in the discretized radiation-transport equations, which we evolve implicitly in time. We employ parallelized Newton-Krylov methods to obtain a solution of these nonlinear, implicit equations. Our second major extension to the ZEUS algorithm is the inclusion of an electron conservation equation that describes the evolution of electron-number density in the hydrodynamic flow. This permits calculating deleptonization of a stellar core. Our third extension modifies the hydrodynamics algorithm to accommodate realistic, complex equations of state, including those having nonconvex behavior. In this paper, we present a description of our complete algorithm, giving sufficient details to allow others to implement, reproduce, and extend our work. Finite-differencing details are presented in appendices. We also discuss implementation of this algorithm on state-of-the-art, parallel-computing architectures. Finally, we present results of verification tests that demonstrate the numerical accuracy of this algorithm on diverse hydrodynamic, gravitational, radiation-transport, and RHD sample problems. We believe our methods to be of general use in a variety of model settings where radiation transport or RHD is important. Extension of this work to three spatial dimensions is straightforward.« less

  4. A Performance Evaluation of Lightning-NO Algorithms in CMAQ

    EPA Science Inventory

    In the Community Multiscale Air Quality (CMAQv5.2) model, we have implemented two algorithms for lightning NO production; one algorithm is based on the hourly observed cloud-to-ground lightning strike data from National Lightning Detection Network (NLDN) to replace the previous m...

  5. Development and Tuning of a 3D Stochastic Inversion Methodology to the European Arctic

    DTIC Science & Technology

    2010-09-01

    from previous studies covering the region, in particular from Breivik et al. (2002). Our MCMC algorithm shown in Figure 3 has two major components...criteria, Geophys. J. Int., 156: 483–496, doi:10.1111/j.1365-246X.2004.570 02070.x. Breivik , A., R. Mjelde, P. Grogan, H. Shimamura, Y. Murai, Y

  6. Routine Discovery of Complex Genetic Models using Genetic Algorithms

    PubMed Central

    Moore, Jason H.; Hahn, Lance W.; Ritchie, Marylyn D.; Thornton, Tricia A.; White, Bill C.

    2010-01-01

    Simulation studies are useful in various disciplines for a number of reasons including the development and evaluation of new computational and statistical methods. This is particularly true in human genetics and genetic epidemiology where new analytical methods are needed for the detection and characterization of disease susceptibility genes whose effects are complex, nonlinear, and partially or solely dependent on the effects of other genes (i.e. epistasis or gene-gene interaction). Despite this need, the development of complex genetic models that can be used to simulate data is not always intuitive. In fact, only a few such models have been published. We have previously developed a genetic algorithm approach to discovering complex genetic models in which two single nucleotide polymorphisms (SNPs) influence disease risk solely through nonlinear interactions. In this paper, we extend this approach for the discovery of high-order epistasis models involving three to five SNPs. We demonstrate that the genetic algorithm is capable of routinely discovering interesting high-order epistasis models in which each SNP influences risk of disease only through interactions with the other SNPs in the model. This study opens the door for routine simulation of complex gene-gene interactions among SNPs for the development and evaluation of new statistical and computational approaches for identifying common, complex multifactorial disease susceptibility genes. PMID:20948983

  7. Prognostic validation of a 17-segment score derived from a 20-segment score for myocardial perfusion SPECT interpretation.

    PubMed

    Berman, Daniel S; Abidov, Aiden; Kang, Xingping; Hayes, Sean W; Friedman, John D; Sciammarella, Maria G; Cohen, Ishac; Gerlach, James; Waechter, Parker B; Germano, Guido; Hachamovitch, Rory

    2004-01-01

    Recently, a 17-segment model of the left ventricle has been recommended as an optimally weighted approach for interpreting myocardial perfusion single photon emission computed tomography (SPECT). Methods to convert databases from previous 20- to new 17-segment data and criteria for abnormality for the 17-segment scores are needed. Initially, for derivation of the conversion algorithm, 65 patients were studied (algorithm population) (pilot group, n = 28; validation group, n = 37). Three conversion algorithms were derived: algorithm 1, which used mid, distal, and apical scores; algorithm 2, which used distal and apical scores alone; and algorithm 3, which used maximal scores of the distal septal, lateral, and apical segments in the 20-segment model for 3 corresponding segments of the 17-segment model. The prognosis population comprised 16,020 consecutive patients (mean age, 65 +/- 12 years; 41% women) who had exercise or vasodilator stress technetium 99m sestamibi myocardial perfusion SPECT and were followed up for 2.1 +/- 0.8 years. In this population, 17-segment scores were derived from 20-segment scores by use of algorithm 2, which demonstrated the best agreement with expert 17-segment reading in the algorithm population. The prognostic value of the 20- and 17-segment scores was compared by converting the respective summed scores into percent myocardium abnormal. Conversion algorithm 2 was found to be highly concordant with expert visual analysis by the 17-segment model (r = 0.982; kappa = 0.866) in the algorithm population. In the prognosis population, 456 cardiac deaths occurred during follow-up. When the conversion algorithm was applied, extent and severity of perfusion defects were nearly identical by 20- and derived 17-segment scores. The receiver operating characteristic curve areas by 20- and 17-segment perfusion scores were identical for predicting cardiac death (both 0.77 +/- 0.02, P = not significant). The optimal prognostic cutoff value for either 20- or derived 17-segment models was confirmed to be 5% myocardium abnormal, corresponding to a summed stress score greater than 3. Of note, the 17-segment model demonstrated a trend toward fewer mildly abnormal scans and more normal and severely abnormal scans. An algorithm for conversion of 20-segment perfusion scores to 17-segment scores has been developed that is highly concordant with expert visual analysis by the 17-segment model and provides nearly identical prognostic information. This conversion model may provide a mechanism for comparison of studies analyzed by the 17-segment system with previous studies analyzed by the 20-segment approach.

  8. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters.

    PubMed

    Sela, Itamar; Ashkenazy, Haim; Katoh, Kazutaka; Pupko, Tal

    2015-07-01

    Inference of multiple sequence alignments (MSAs) is a critical part of phylogenetic and comparative genomics studies. However, from the same set of sequences different MSAs are often inferred, depending on the methodologies used and the assumed parameters. Much effort has recently been devoted to improving the ability to identify unreliable alignment regions. Detecting such unreliable regions was previously shown to be important for downstream analyses relying on MSAs, such as the detection of positive selection. Here we developed GUIDANCE2, a new integrative methodology that accounts for: (i) uncertainty in the process of indel formation, (ii) uncertainty in the assumed guide tree and (iii) co-optimal solutions in the pairwise alignments, used as building blocks in progressive alignment algorithms. We compared GUIDANCE2 with seven methodologies to detect unreliable MSA regions using extensive simulations and empirical benchmarks. We show that GUIDANCE2 outperforms all previously developed methodologies. Furthermore, GUIDANCE2 also provides a set of alternative MSAs which can be useful for downstream analyses. The novel algorithm is implemented as a web-server, available at: http://guidance.tau.ac.il. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy.

    PubMed

    Wernitznig, Stefan; Sele, Mariella; Urschler, Martin; Zankel, Armin; Pölt, Peter; Rind, F Claire; Leitinger, Gerd

    2016-05-01

    Elucidating the anatomy of neuronal circuits and localizing the synaptic connections between neurons, can give us important insights in how the neuronal circuits work. We are using serial block-face scanning electron microscopy (SBEM) to investigate the anatomy of a collision detection circuit including the Lobula Giant Movement Detector (LGMD) neuron in the locust, Locusta migratoria. For this, thousands of serial electron micrographs are produced that allow us to trace the neuronal branching pattern. The reconstruction of neurons was previously done manually by drawing cell outlines of each cell in each image separately. This approach was very time consuming and troublesome. To make the process more efficient a new interactive software was developed. It uses the contrast between the neuron under investigation and its surrounding for semi-automatic segmentation. For segmentation the user sets starting regions manually and the algorithm automatically selects a volume within the neuron until the edges corresponding to the neuronal outline are reached. Internally the algorithm optimizes a 3D active contour segmentation model formulated as a cost function taking the SEM image edges into account. This reduced the reconstruction time, while staying close to the manual reference segmentation result. Our algorithm is easy to use for a fast segmentation process, unlike previous methods it does not require image training nor an extended computing capacity. Our semi-automatic segmentation algorithm led to a dramatic reduction in processing time for the 3D-reconstruction of identified neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Stream Kriging: Incremental and recursive ordinary Kriging over spatiotemporal data streams

    NASA Astrophysics Data System (ADS)

    Zhong, Xu; Kealy, Allison; Duckham, Matt

    2016-05-01

    Ordinary Kriging is widely used for geospatial interpolation and estimation. Due to the O (n3) time complexity of solving the system of linear equations, ordinary Kriging for a large set of source points is computationally intensive. Conducting real-time Kriging interpolation over continuously varying spatiotemporal data streams can therefore be especially challenging. This paper develops and tests two new strategies for improving the performance of an ordinary Kriging interpolator adapted to a stream-processing environment. These strategies rely on the expectation that, over time, source data points will frequently refer to the same spatial locations (for example, where static sensor nodes are generating repeated observations of a dynamic field). First, an incremental strategy improves efficiency in cases where a relatively small proportion of previously processed spatial locations are absent from the source points at any given iteration. Second, a recursive strategy improves efficiency in cases where there is substantial set overlap between the sets of spatial locations of source points at the current and previous iterations. These two strategies are evaluated in terms of their computational efficiency in comparison to ordinary Kriging algorithm. The results show that these two strategies can reduce the time taken to perform the interpolation by up to 90%, and approach average-case time complexity of O (n2) when most but not all source points refer to the same locations over time. By combining the approaches developed in this paper with existing heuristic ordinary Kriging algorithms, the conclusions indicate how further efficiency gains could potentially be accrued. The work ultimately contributes to the development of online ordinary Kriging interpolation algorithms, capable of real-time spatial interpolation with large streaming data sets.

  11. On Super-Resolution and the MUSIC Algorithm,

    DTIC Science & Technology

    1985-05-01

    SUPER-RESOLUTION AND THE MUSIC ALGORITHM AUTHOR: G D de Villiers DATE: May 1985 SUMMARY Simulation results for phased array signal processing using...the MUSIC algorithm are presented. The model used is more realistic than previous ones and it gives an indication as to how the algorithm would perform...resolution ON SUPER-RESOLUTION AND THE MUSIC ALGORITHM 1. INTRODUCTION At present there is a considerable amount of interest in "high-resolution" b

  12. Four (Algorithms) in One (Bag): An Integrative Framework of Knowledge for Teaching the Standard Algorithms of the Basic Arithmetic Operations

    ERIC Educational Resources Information Center

    Raveh, Ira; Koichu, Boris; Peled, Irit; Zaslavsky, Orit

    2016-01-01

    In this article we present an integrative framework of knowledge for teaching the standard algorithms of the four basic arithmetic operations. The framework is based on a mathematical analysis of the algorithms, a connectionist perspective on teaching mathematics and an analogy with previous frameworks of knowledge for teaching arithmetic…

  13. An Intelligent Architecture Based on Field Programmable Gate Arrays Designed to Detect Moving Objects by Using Principal Component Analysis

    PubMed Central

    Bravo, Ignacio; Mazo, Manuel; Lázaro, José L.; Gardel, Alfredo; Jiménez, Pedro; Pizarro, Daniel

    2010-01-01

    This paper presents a complete implementation of the Principal Component Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to high rate background segmentation of images. The classical sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization has led to the specific development and implementation in hardware of the different stages of PCA, such as computation of the correlation matrix, matrix diagonalization using the Jacobi method and subspace projections of images. On the application side, the paper presents a motion detection algorithm, also entirely implemented on the FPGA, and based on the developed PCA core. This consists of dynamically thresholding the differences between the input image and the one obtained by expressing the input image using the PCA linear subspace previously obtained as a background model. The proposal achieves a high ratio of processed images (up to 120 frames per second) and high quality segmentation results, with a completely embedded and reliable hardware architecture based on commercial CMOS sensors and FPGA devices. PMID:22163406

  14. An intelligent architecture based on Field Programmable Gate Arrays designed to detect moving objects by using Principal Component Analysis.

    PubMed

    Bravo, Ignacio; Mazo, Manuel; Lázaro, José L; Gardel, Alfredo; Jiménez, Pedro; Pizarro, Daniel

    2010-01-01

    This paper presents a complete implementation of the Principal Component Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to high rate background segmentation of images. The classical sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization has led to the specific development and implementation in hardware of the different stages of PCA, such as computation of the correlation matrix, matrix diagonalization using the Jacobi method and subspace projections of images. On the application side, the paper presents a motion detection algorithm, also entirely implemented on the FPGA, and based on the developed PCA core. This consists of dynamically thresholding the differences between the input image and the one obtained by expressing the input image using the PCA linear subspace previously obtained as a background model. The proposal achieves a high ratio of processed images (up to 120 frames per second) and high quality segmentation results, with a completely embedded and reliable hardware architecture based on commercial CMOS sensors and FPGA devices.

  15. Indirect learning control for nonlinear dynamical systems

    NASA Technical Reports Server (NTRS)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  16. A Functional-Genetic Scheme for Seizure Forecasting in Canine Epilepsy.

    PubMed

    Bou Assi, Elie; Nguyen, Dang K; Rihana, Sandy; Sawan, Mohamad

    2018-06-01

    The objective of this work is the development of an accurate seizure forecasting algorithm that considers brain's functional connectivity for electrode selection. We start by proposing Kmeans-directed transfer function, an adaptive functional connectivity method intended for seizure onset zone localization in bilateral intracranial EEG recordings. Electrodes identified as seizure activity sources and sinks are then used to implement a seizure-forecasting algorithm on long-term continuous recordings in dogs with naturally-occurring epilepsy. A precision-recall genetic algorithm is proposed for feature selection in line with a probabilistic support vector machine classifier. Epileptic activity generators were focal in all dogs confirming the diagnosis of focal epilepsy in these animals while sinks spanned both hemispheres in 2 of 3 dogs. Seizure forecasting results show performance improvement compared to previous studies, achieving average sensitivity of 84.82% and time in warning of 0.1. Achieved performances highlight the feasibility of seizure forecasting in canine epilepsy. The ability to improve seizure forecasting provides promise for the development of EEG-triggered closed-loop seizure intervention systems for ambulatory implantation in patients with refractory epilepsy.

  17. An efficient and scalable graph modeling approach for capturing information at different levels in next generation sequencing reads

    PubMed Central

    2013-01-01

    Background Next generation sequencing technologies have greatly advanced many research areas of the biomedical sciences through their capability to generate massive amounts of genetic information at unprecedented rates. The advent of next generation sequencing has led to the development of numerous computational tools to analyze and assemble the millions to billions of short sequencing reads produced by these technologies. While these tools filled an important gap, current approaches for storing, processing, and analyzing short read datasets generally have remained simple and lack the complexity needed to efficiently model the produced reads and assemble them correctly. Results Previously, we presented an overlap graph coarsening scheme for modeling read overlap relationships on multiple levels. Most current read assembly and analysis approaches use a single graph or set of clusters to represent the relationships among a read dataset. Instead, we use a series of graphs to represent the reads and their overlap relationships across a spectrum of information granularity. At each information level our algorithm is capable of generating clusters of reads from the reduced graph, forming an integrated graph modeling and clustering approach for read analysis and assembly. Previously we applied our algorithm to simulated and real 454 datasets to assess its ability to efficiently model and cluster next generation sequencing data. In this paper we extend our algorithm to large simulated and real Illumina datasets to demonstrate that our algorithm is practical for both sequencing technologies. Conclusions Our overlap graph theoretic algorithm is able to model next generation sequencing reads at various levels of granularity through the process of graph coarsening. Additionally, our model allows for efficient representation of the read overlap relationships, is scalable for large datasets, and is practical for both Illumina and 454 sequencing technologies. PMID:24564333

  18. A robust algorithm for automated target recognition using precomputed radar cross sections

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.; Lanterman, Aaron D.

    2004-09-01

    Passive radar is an emerging technology that offers a number of unique benefits, including covert operation. Many such systems are already capable of detecting and tracking aircraft. The goal of this work is to develop a robust algorithm for adding automated target recognition (ATR) capabilities to existing passive radar systems. In previous papers, we proposed conducting ATR by comparing the precomputed RCS of known targets to that of detected targets. To make the precomputed RCS as accurate as possible, a coordinated flight model is used to estimate aircraft orientation. Once the aircraft's position and orientation are known, it is possible to determine the incident and observed angles on the aircraft, relative to the transmitter and receiver. This makes it possible to extract the appropriate radar cross section (RCS) from our simulated database. This RCS is then scaled to account for propagation losses and the receiver's antenna gain. A Rician likelihood model compares these expected signals from different targets to the received target profile. We have previously employed Monte Carlo runs to gauge the probability of error in the ATR algorithm; however, generation of a statistically significant set of Monte Carlo runs is computationally intensive. As an alternative to Monte Carlo runs, we derive the relative entropy (also known as Kullback-Liebler distance) between two Rician distributions. Since the probability of Type II error in our hypothesis testing problem can be expressed as a function of the relative entropy via Stein's Lemma, this provides us with a computationally efficient method for determining an upper bound on our algorithm's performance. It also provides great insight into the types of classification errors we can expect from our algorithm. This paper compares the numerically approximated probability of Type II error with the results obtained from a set of Monte Carlo runs.

  19. Optic disc segmentation for glaucoma screening system using fundus images.

    PubMed

    Almazroa, Ahmed; Sun, Weiwei; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2017-01-01

    Segmenting the optic disc (OD) is an important and essential step in creating a frame of reference for diagnosing optic nerve head pathologies such as glaucoma. Therefore, a reliable OD segmentation technique is necessary for automatic screening of optic nerve head abnormalities. The main contribution of this paper is in presenting a novel OD segmentation algorithm based on applying a level set method on a localized OD image. To prevent the blood vessels from interfering with the level set process, an inpainting technique was applied. As well an important contribution was to involve the variations in opinions among the ophthalmologists in detecting the disc boundaries and diagnosing the glaucoma. Most of the previous studies were trained and tested based on only one opinion, which can be assumed to be biased for the ophthalmologist. In addition, the accuracy was calculated based on the number of images that coincided with the ophthalmologists' agreed-upon images, and not only on the overlapping images as in previous studies. The ultimate goal of this project is to develop an automated image processing system for glaucoma screening. The disc algorithm is evaluated using a new retinal fundus image dataset called RIGA (retinal images for glaucoma analysis). In the case of low-quality images, a double level set was applied, in which the first level set was considered to be localization for the OD. Five hundred and fifty images are used to test the algorithm accuracy as well as the agreement among the manual markings of six ophthalmologists. The accuracy of the algorithm in marking the optic disc area and centroid was 83.9%, and the best agreement was observed between the results of the algorithm and manual markings in 379 images.

  20. Development of an algorithm to provide awareness in choosing study designs for inclusion in systematic reviews of healthcare interventions: a method study

    PubMed Central

    Peinemann, Frank; Kleijnen, Jos

    2015-01-01

    Objectives To develop an algorithm that aims to provide guidance and awareness for choosing multiple study designs in systematic reviews of healthcare interventions. Design Method study: (1) To summarise the literature base on the topic. (2) To apply the integration of various study types in systematic reviews. (3) To devise decision points and outline a pragmatic decision tree. (4) To check the plausibility of the algorithm by backtracking its pathways in four systematic reviews. Results (1) The results of our systematic review of the published literature have already been published. (2) We recaptured the experience from our four previously conducted systematic reviews that required the integration of various study types. (3) We chose length of follow-up (long, short), frequency of events (rare, frequent) and types of outcome as decision points (death, disease, discomfort, disability, dissatisfaction) and aligned the study design labels according to the Cochrane Handbook. We also considered practical or ethical concerns, and the problem of unavailable high-quality evidence. While applying the algorithm, disease-specific circumstances and aims of interventions should be considered. (4) We confirmed the plausibility of the pathways of the algorithm. Conclusions We propose that the algorithm can assist to bring seminal features of a systematic review with multiple study designs to the attention of anyone who is planning to conduct a systematic review. It aims to increase awareness and we think that it may reduce the time burden on review authors and may contribute to the production of a higher quality review. PMID:26289450

  1. SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria.

    PubMed

    Chevrette, Marc G; Aicheler, Fabian; Kohlbacher, Oliver; Currie, Cameron R; Medema, Marnix H

    2017-10-15

    Nonribosomally synthesized peptides (NRPs) are natural products with widespread applications in medicine and biotechnology. Many algorithms have been developed to predict the substrate specificities of nonribosomal peptide synthetase adenylation (A) domains from DNA sequences, which enables prioritization and dereplication, and integration with other data types in discovery efforts. However, insufficient training data and a lack of clarity regarding prediction quality have impeded optimal use. Here, we introduce prediCAT, a new phylogenetics-inspired algorithm, which quantitatively estimates the degree of predictability of each A-domain. We then systematically benchmarked all algorithms on a newly gathered, independent test set of 434 A-domain sequences, showing that active-site-motif-based algorithms outperform whole-domain-based methods. Subsequently, we developed SANDPUMA, a powerful ensemble algorithm, based on newly trained versions of all high-performing algorithms, which significantly outperforms individual methods. Finally, we deployed SANDPUMA in a systematic investigation of 7635 Actinobacteria genomes, suggesting that NRP chemical diversity is much higher than previously estimated. SANDPUMA has been integrated into the widely used antiSMASH biosynthetic gene cluster analysis pipeline and is also available as an open-source, standalone tool. SANDPUMA is freely available at https://bitbucket.org/chevrm/sandpuma and as a docker image at https://hub.docker.com/r/chevrm/sandpuma/ under the GNU Public License 3 (GPL3). chevrette@wisc.edu or marnix.medema@wur.nl. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. A geo-computational algorithm for exploring the structure of diffusion progression in time and space.

    PubMed

    Chin, Wei-Chien-Benny; Wen, Tzai-Hung; Sabel, Clive E; Wang, I-Hsiang

    2017-10-03

    A diffusion process can be considered as the movement of linked events through space and time. Therefore, space-time locations of events are key to identify any diffusion process. However, previous clustering analysis methods have focused only on space-time proximity characteristics, neglecting the temporal lag of the movement of events. We argue that the temporal lag between events is a key to understand the process of diffusion movement. Using the temporal lag could help to clarify the types of close relationships. This study aims to develop a data exploration algorithm, namely the TrAcking Progression In Time And Space (TaPiTaS) algorithm, for understanding diffusion processes. Based on the spatial distance and temporal interval between cases, TaPiTaS detects sub-clusters, a group of events that have high probability of having common sources, identifies progression links, the relationships between sub-clusters, and tracks progression chains, the connected components of sub-clusters. Dengue Fever cases data was used as an illustrative case study. The location and temporal range of sub-clusters are presented, along with the progression links. TaPiTaS algorithm contributes a more detailed and in-depth understanding of the development of progression chains, namely the geographic diffusion process.

  3. Applying graph partitioning methods in measurement-based dynamic load balancing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatele, Abhinav; Fourestier, Sebastien; Menon, Harshitha

    Load imbalance leads to an increasing waste of resources as an application is scaled to more and more processors. Achieving the best parallel efficiency for a program requires optimal load balancing which is a NP-hard problem. However, finding near-optimal solutions to this problem for complex computational science and engineering applications is becoming increasingly important. Charm++, a migratable objects based programming model, provides a measurement-based dynamic load balancing framework. This framework instruments and then migrates over-decomposed objects to balance computational load and communication at runtime. This paper explores the use of graph partitioning algorithms, traditionally used for partitioning physical domains/meshes, formore » measurement-based dynamic load balancing of parallel applications. In particular, we present repartitioning methods developed in a graph partitioning toolbox called SCOTCH that consider the previous mapping to minimize migration costs. We also discuss a new imbalance reduction algorithm for graphs with irregular load distributions. We compare several load balancing algorithms using microbenchmarks on Intrepid and Ranger and evaluate the effect of communication, number of cores and number of objects on the benefit achieved from load balancing. New algorithms developed in SCOTCH lead to better performance compared to the METIS partitioners for several cases, both in terms of the application execution time and fewer number of objects migrated.« less

  4. GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm.

    PubMed

    Xue, Yu; Liu, Zexian; Gao, Xinjiao; Jin, Changjiang; Wen, Longping; Yao, Xuebiao; Ren, Jian

    2010-06-24

    As one of the most important and ubiquitous post-translational modifications (PTMs) of proteins, S-nitrosylation plays important roles in a variety of biological processes, including the regulation of cellular dynamics and plasticity. Identification of S-nitrosylated substrates with their exact sites is crucial for understanding the molecular mechanisms of S-nitrosylation. In contrast with labor-intensive and time-consuming experimental approaches, prediction of S-nitrosylation sites using computational methods could provide convenience and increased speed. In this work, we developed a novel software of GPS-SNO 1.0 for the prediction of S-nitrosylation sites. We greatly improved our previously developed algorithm and released the GPS 3.0 algorithm for GPS-SNO. By comparison, the prediction performance of GPS 3.0 algorithm was better than other methods, with an accuracy of 75.80%, a sensitivity of 53.57% and a specificity of 80.14%. As an application of GPS-SNO 1.0, we predicted putative S-nitrosylation sites for hundreds of potentially S-nitrosylated substrates for which the exact S-nitrosylation sites had not been experimentally determined. In this regard, GPS-SNO 1.0 should prove to be a useful tool for experimentalists. The online service and local packages of GPS-SNO were implemented in JAVA and are freely available at: http://sno.biocuckoo.org/.

  5. A Microwave Technique for Mapping Ice Temperature in the Arctic Seasonal Sea Ice Zone

    NASA Technical Reports Server (NTRS)

    St.Germain, Karen M.; Cavalieri, Donald J.

    1997-01-01

    A technique for deriving ice temperature in the Arctic seasonal sea ice zone from passive microwave radiances has been developed. The algorithm operates on brightness temperatures derived from the Special Sensor Microwave/Imager (SSM/I) and uses ice concentration and type from a previously developed thin ice algorithm to estimate the surface emissivity. Comparisons of the microwave derived temperatures with estimates derived from infrared imagery of the Bering Strait yield a correlation coefficient of 0.93 and an RMS difference of 2.1 K when coastal and cloud contaminated pixels are removed. SSM/I temperatures were also compared with a time series of air temperature observations from Gambell on St. Lawrence Island and from Point Barrow, AK weather stations. These comparisons indicate that the relationship between the air temperature and the ice temperature depends on ice type.

  6. Simulation optimization of PSA-threshold based prostate cancer screening policies

    PubMed Central

    Zhang, Jingyu; Denton, Brian T.; Shah, Nilay D.; Inman, Brant A.

    2013-01-01

    We describe a simulation optimization method to design PSA screening policies based on expected quality adjusted life years (QALYs). Our method integrates a simulation model in a genetic algorithm which uses a probabilistic method for selection of the best policy. We present computational results about the efficiency of our algorithm. The best policy generated by our algorithm is compared to previously recommended screening policies. Using the policies determined by our model, we present evidence that patients should be screened more aggressively but for a shorter length of time than previously published guidelines recommend. PMID:22302420

  7. A class of least-squares filtering and identification algorithms with systolic array architectures

    NASA Technical Reports Server (NTRS)

    Kalson, Seth Z.; Yao, Kung

    1991-01-01

    A unified approach is presented for deriving a large class of new and previously known time- and order-recursive least-squares algorithms with systolic array architectures, suitable for high-throughput-rate and VLSI implementations of space-time filtering and system identification problems. The geometrical derivation given is unique in that no assumption is made concerning the rank of the sample data correlation matrix. This method utilizes and extends the concept of oblique projections, as used previously in the derivations of the least-squares lattice algorithms. Exponentially weighted least-squares criteria are considered for both sliding and growing memory.

  8. PDF text classification to leverage information extraction from publication reports.

    PubMed

    Bui, Duy Duc An; Del Fiol, Guilherme; Jonnalagadda, Siddhartha

    2016-06-01

    Data extraction from original study reports is a time-consuming, error-prone process in systematic review development. Information extraction (IE) systems have the potential to assist humans in the extraction task, however majority of IE systems were not designed to work on Portable Document Format (PDF) document, an important and common extraction source for systematic review. In a PDF document, narrative content is often mixed with publication metadata or semi-structured text, which add challenges to the underlining natural language processing algorithm. Our goal is to categorize PDF texts for strategic use by IE systems. We used an open-source tool to extract raw texts from a PDF document and developed a text classification algorithm that follows a multi-pass sieve framework to automatically classify PDF text snippets (for brevity, texts) into TITLE, ABSTRACT, BODYTEXT, SEMISTRUCTURE, and METADATA categories. To validate the algorithm, we developed a gold standard of PDF reports that were included in the development of previous systematic reviews by the Cochrane Collaboration. In a two-step procedure, we evaluated (1) classification performance, and compared it with machine learning classifier, and (2) the effects of the algorithm on an IE system that extracts clinical outcome mentions. The multi-pass sieve algorithm achieved an accuracy of 92.6%, which was 9.7% (p<0.001) higher than the best performing machine learning classifier that used a logistic regression algorithm. F-measure improvements were observed in the classification of TITLE (+15.6%), ABSTRACT (+54.2%), BODYTEXT (+3.7%), SEMISTRUCTURE (+34%), and MEDADATA (+14.2%). In addition, use of the algorithm to filter semi-structured texts and publication metadata improved performance of the outcome extraction system (F-measure +4.1%, p=0.002). It also reduced of number of sentences to be processed by 44.9% (p<0.001), which corresponds to a processing time reduction of 50% (p=0.005). The rule-based multi-pass sieve framework can be used effectively in categorizing texts extracted from PDF documents. Text classification is an important prerequisite step to leverage information extraction from PDF documents. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Uranus: a rapid prototyping tool for FPGA embedded computer vision

    NASA Astrophysics Data System (ADS)

    Rosales-Hernández, Victor; Castillo-Jimenez, Liz; Viveros-Velez, Gilberto; Zuñiga-Grajeda, Virgilio; Treviño Torres, Abel; Arias-Estrada, M.

    2007-01-01

    The starting point for all successful system development is the simulation. Performing high level simulation of a system can help to identify, insolate and fix design problems. This work presents Uranus, a software tool for simulation and evaluation of image processing algorithms with support to migrate them to an FPGA environment for algorithm acceleration and embedded processes purposes. The tool includes an integrated library of previous coded operators in software and provides the necessary support to read and display image sequences as well as video files. The user can use the previous compiled soft-operators in a high level process chain, and code his own operators. Additional to the prototyping tool, Uranus offers FPGA-based hardware architecture with the same organization as the software prototyping part. The hardware architecture contains a library of FPGA IP cores for image processing that are connected with a PowerPC based system. The Uranus environment is intended for rapid prototyping of machine vision and the migration to FPGA accelerator platform, and it is distributed for academic purposes.

  10. The study on the parallel processing based time series correlation analysis of RBC membrane flickering in quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Lee, Minsuk; Won, Youngjae; Park, Byungjun; Lee, Seungrag

    2017-02-01

    Not only static characteristics but also dynamic characteristics of the red blood cell (RBC) contains useful information for the blood diagnosis. Quantitative phase imaging (QPI) can capture sample images with subnanometer scale depth resolution and millisecond scale temporal resolution. Various researches have been used QPI for the RBC diagnosis, and recently many researches has been developed to decrease the process time of RBC information extraction using QPI by the parallel computing algorithm, however previous studies are interested in the static parameters such as morphology of the cells or simple dynamic parameters such as root mean square (RMS) of the membrane fluctuations. Previously, we presented a practical blood test method using the time series correlation analysis of RBC membrane flickering with QPI. However, this method has shown that there is a limit to the clinical application because of the long computation time. In this study, we present an accelerated time series correlation analysis of RBC membrane flickering using the parallel computing algorithm. This method showed consistent fractal scaling exponent results of the surrounding medium and the normal RBC with our previous research.

  11. Cloud Screening and Quality Control Algorithm for Star Photometer Data: Assessment with Lidar Measurements and with All-sky Images

    NASA Technical Reports Server (NTRS)

    Ramirez, Daniel Perez; Lyamani, H.; Olmo, F. J.; Whiteman, D. N.; Navas-Guzman, F.; Alados-Arboledas, L.

    2012-01-01

    This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, delta Ae(lambda), and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of delta Ae() and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable Ae(lambda) and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.

  12. POSE Algorithms for Automated Docking

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Howard, Richard T.

    2011-01-01

    POSE (relative position and attitude) can be computed in many different ways. Given a sensor that measures bearing to a finite number of spots corresponding to known features (such as a target) of a spacecraft, a number of different algorithms can be used to compute the POSE. NASA has sponsored the development of a flash LIDAR proximity sensor called the Vision Navigation Sensor (VNS) for use by the Orion capsule in future docking missions. This sensor generates data that can be used by a variety of algorithms to compute POSE solutions inside of 15 meters, including at the critical docking range of approximately 1-2 meters. Previously NASA participated in a DARPA program called Orbital Express that achieved the first automated docking for the American space program. During this mission a large set of high quality mated sensor data was obtained at what is essentially the docking distance. This data set is perhaps the most accurate truth data in existence for docking proximity sensors in orbit. In this paper, the flight data from Orbital Express is used to test POSE algorithms at 1.22 meters range. Two different POSE algorithms are tested for two different Fields-of-View (FOVs) and two different pixel noise levels. The results of the analysis are used to predict future performance of the POSE algorithms with VNS data.

  13. Noncontact Sleep Study by Multi-Modal Sensor Fusion.

    PubMed

    Chung, Ku-Young; Song, Kwangsub; Shin, Kangsoo; Sohn, Jinho; Cho, Seok Hyun; Chang, Joon-Hyuk

    2017-07-21

    Polysomnography (PSG) is considered as the gold standard for determining sleep stages, but due to the obtrusiveness of its sensor attachments, sleep stage classification algorithms using noninvasive sensors have been developed throughout the years. However, the previous studies have not yet been proven reliable. In addition, most of the products are designed for healthy customers rather than for patients with sleep disorder. We present a novel approach to classify sleep stages via low cost and noncontact multi-modal sensor fusion, which extracts sleep-related vital signals from radar signals and a sound-based context-awareness technique. This work is uniquely designed based on the PSG data of sleep disorder patients, which were received and certified by professionals at Hanyang University Hospital. The proposed algorithm further incorporates medical/statistical knowledge to determine personal-adjusted thresholds and devise post-processing. The efficiency of the proposed algorithm is highlighted by contrasting sleep stage classification performance between single sensor and sensor-fusion algorithms. To validate the possibility of commercializing this work, the classification results of this algorithm were compared with the commercialized sleep monitoring device, ResMed S+. The proposed algorithm was investigated with random patients following PSG examination, and results show a promising novel approach for determining sleep stages in a low cost and unobtrusive manner.

  14. Noncontact Sleep Study by Multi-Modal Sensor Fusion

    PubMed Central

    Chung, Ku-young; Song, Kwangsub; Shin, Kangsoo; Sohn, Jinho; Cho, Seok Hyun; Chang, Joon-Hyuk

    2017-01-01

    Polysomnography (PSG) is considered as the gold standard for determining sleep stages, but due to the obtrusiveness of its sensor attachments, sleep stage classification algorithms using noninvasive sensors have been developed throughout the years. However, the previous studies have not yet been proven reliable. In addition, most of the products are designed for healthy customers rather than for patients with sleep disorder. We present a novel approach to classify sleep stages via low cost and noncontact multi-modal sensor fusion, which extracts sleep-related vital signals from radar signals and a sound-based context-awareness technique. This work is uniquely designed based on the PSG data of sleep disorder patients, which were received and certified by professionals at Hanyang University Hospital. The proposed algorithm further incorporates medical/statistical knowledge to determine personal-adjusted thresholds and devise post-processing. The efficiency of the proposed algorithm is highlighted by contrasting sleep stage classification performance between single sensor and sensor-fusion algorithms. To validate the possibility of commercializing this work, the classification results of this algorithm were compared with the commercialized sleep monitoring device, ResMed S+. The proposed algorithm was investigated with random patients following PSG examination, and results show a promising novel approach for determining sleep stages in a low cost and unobtrusive manner. PMID:28753994

  15. Certification trails for data structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Gregory F.; Masson, Gerald M.

    1993-01-01

    Certification trails are a recently introduced and promising approach to fault detection and fault tolerance. The applicability of the certification trail technique is significantly generalized. Previously, certification trails had to be customized to each algorithm application; trails appropriate to wide classes of algorithms were developed. These certification trails are based on common data-structure operations such as those carried out using these sets of operations such as those carried out using balanced binary trees and heaps. Any algorithms using these sets of operations can therefore employ the certification trail method to achieve software fault tolerance. To exemplify the scope of the generalization of the certification trail technique provided, constructions of trails for abstract data types such as priority queues and union-find structures are given. These trails are applicable to any data-structure implementation of the abstract data type. It is also shown that these ideals lead naturally to monitors for data-structure operations.

  16. Optimisation of Combined Cycle Gas Turbine Power Plant in Intraday Market: Riga CHP-2 Example

    NASA Astrophysics Data System (ADS)

    Ivanova, P.; Grebesh, E.; Linkevics, O.

    2018-02-01

    In the research, the influence of optimised combined cycle gas turbine unit - according to the previously developed EM & OM approach with its use in the intraday market - is evaluated on the generation portfolio. It consists of the two combined cycle gas turbine units. The introduced evaluation algorithm saves the power and heat balance before and after the performance of EM & OM approach by making changes in the generation profile of units. The aim of this algorithm is profit maximisation of the generation portfolio. The evaluation algorithm is implemented in multi-paradigm numerical computing environment MATLab on the example of Riga CHP-2. The results show that the use of EM & OM approach in the intraday market can be profitable or unprofitable. It depends on the initial state of generation units in the intraday market and on the content of the generation portfolio.

  17. Generation algorithm of craniofacial structure contour in cephalometric images

    NASA Astrophysics Data System (ADS)

    Mondal, Tanmoy; Jain, Ashish; Sardana, H. K.

    2010-02-01

    Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Computerized cephalometric analysis involves both manual and automatic approaches. The manual approach is limited in accuracy and repeatability. In this paper we have attempted to develop and test a novel method for automatic localization of craniofacial structure based on the detected edges on the region of interest. According to the grey scale feature at the different region of the cephalometric images, an algorithm for obtaining tissue contour is put forward. Using edge detection with specific threshold an improved bidirectional contour tracing approach is proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.

  18. A vertical handoff decision algorithm based on ARMA prediction model

    NASA Astrophysics Data System (ADS)

    Li, Ru; Shen, Jiao; Chen, Jun; Liu, Qiuhuan

    2012-01-01

    With the development of computer technology and the increasing demand for mobile communications, the next generation wireless networks will be composed of various wireless networks (e.g., WiMAX and WiFi). Vertical handoff is a key technology of next generation wireless networks. During the vertical handoff procedure, handoff decision is a crucial issue for an efficient mobility. Based on auto regression moving average (ARMA) prediction model, we propose a vertical handoff decision algorithm, which aims to improve the performance of vertical handoff and avoid unnecessary handoff. Based on the current received signal strength (RSS) and the previous RSS, the proposed approach adopt ARMA model to predict the next RSS. And then according to the predicted RSS to determine whether trigger the link layer triggering event and complete vertical handoff. The simulation results indicate that the proposed algorithm outperforms the RSS-based scheme with a threshold in the performance of handoff and the number of handoff.

  19. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  20. Automatic mesh refinement and parallel load balancing for Fokker-Planck-DSMC algorithm

    NASA Astrophysics Data System (ADS)

    Küchlin, Stephan; Jenny, Patrick

    2018-06-01

    Recently, a parallel Fokker-Planck-DSMC algorithm for rarefied gas flow simulation in complex domains at all Knudsen numbers was developed by the authors. Fokker-Planck-DSMC (FP-DSMC) is an augmentation of the classical DSMC algorithm, which mitigates the near-continuum deficiencies in terms of computational cost of pure DSMC. At each time step, based on a local Knudsen number criterion, the discrete DSMC collision operator is dynamically switched to the Fokker-Planck operator, which is based on the integration of continuous stochastic processes in time, and has fixed computational cost per particle, rather than per collision. In this contribution, we present an extension of the previous implementation with automatic local mesh refinement and parallel load-balancing. In particular, we show how the properties of discrete approximations to space-filling curves enable an efficient implementation. Exemplary numerical studies highlight the capabilities of the new code.

  1. Offshore wind measurements using Doppler aerosol wind lidar (DAWN) at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-06-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  2. Probabilistic DHP adaptive critic for nonlinear stochastic control systems.

    PubMed

    Herzallah, Randa

    2013-06-01

    Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The comparison and analysis of extracting video key frame

    NASA Astrophysics Data System (ADS)

    Ouyang, S. Z.; Zhong, L.; Luo, R. Q.

    2018-05-01

    Video key frame extraction is an important part of the large data processing. Based on the previous work in key frame extraction, we summarized four important key frame extraction algorithms, and these methods are largely developed by comparing the differences between each of two frames. If the difference exceeds a threshold value, take the corresponding frame as two different keyframes. After the research, the key frame extraction based on the amount of mutual trust is proposed, the introduction of information entropy, by selecting the appropriate threshold values into the initial class, and finally take a similar mean mutual information as a candidate key frame. On this paper, several algorithms is used to extract the key frame of tunnel traffic videos. Then, with the analysis to the experimental results and comparisons between the pros and cons of these algorithms, the basis of practical applications is well provided.

  4. A systematic investigation of computation models for predicting Adverse Drug Reactions (ADRs).

    PubMed

    Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong

    2014-01-01

    Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms.

  5. A comparison of common programming languages used in bioinformatics.

    PubMed

    Fourment, Mathieu; Gillings, Michael R

    2008-02-05

    The performance of different programming languages has previously been benchmarked using abstract mathematical algorithms, but not using standard bioinformatics algorithms. We compared the memory usage and speed of execution for three standard bioinformatics methods, implemented in programs using one of six different programming languages. Programs for the Sellers algorithm, the Neighbor-Joining tree construction algorithm and an algorithm for parsing BLAST file outputs were implemented in C, C++, C#, Java, Perl and Python. Implementations in C and C++ were fastest and used the least memory. Programs in these languages generally contained more lines of code. Java and C# appeared to be a compromise between the flexibility of Perl and Python and the fast performance of C and C++. The relative performance of the tested languages did not change from Windows to Linux and no clear evidence of a faster operating system was found. Source code and additional information are available from http://www.bioinformatics.org/benchmark/. This benchmark provides a comparison of six commonly used programming languages under two different operating systems. The overall comparison shows that a developer should choose an appropriate language carefully, taking into account the performance expected and the library availability for each language.

  6. A comparison of common programming languages used in bioinformatics

    PubMed Central

    Fourment, Mathieu; Gillings, Michael R

    2008-01-01

    Background The performance of different programming languages has previously been benchmarked using abstract mathematical algorithms, but not using standard bioinformatics algorithms. We compared the memory usage and speed of execution for three standard bioinformatics methods, implemented in programs using one of six different programming languages. Programs for the Sellers algorithm, the Neighbor-Joining tree construction algorithm and an algorithm for parsing BLAST file outputs were implemented in C, C++, C#, Java, Perl and Python. Results Implementations in C and C++ were fastest and used the least memory. Programs in these languages generally contained more lines of code. Java and C# appeared to be a compromise between the flexibility of Perl and Python and the fast performance of C and C++. The relative performance of the tested languages did not change from Windows to Linux and no clear evidence of a faster operating system was found. Source code and additional information are available from Conclusion This benchmark provides a comparison of six commonly used programming languages under two different operating systems. The overall comparison shows that a developer should choose an appropriate language carefully, taking into account the performance expected and the library availability for each language. PMID:18251993

  7. Combined algorithmic and GPU acceleration for ultra-fast circular conebeam backprojection

    NASA Astrophysics Data System (ADS)

    Brokish, Jeffrey; Sack, Paul; Bresler, Yoram

    2010-04-01

    In this paper, we describe the first implementation and performance of a fast O(N3logN) hierarchical backprojection algorithm for cone beam CT with a circular trajectory1,developed on a modern Graphics Processing Unit (GPU). The resulting tomographic backprojection system for 3D cone beam geometry combines speedup through algorithmic improvements provided by the hierarchical backprojection algorithm with speedup from a massively parallel hardware accelerator. For data parameters typical in diagnostic CT and using a mid-range GPU card, we report reconstruction speeds of up to 360 frames per second, and relative speedup of almost 6x compared to conventional backprojection on the same hardware. The significance of these results is twofold. First, they demonstrate that the reduction in operation counts demonstrated previously for the FHBP algorithm can be translated to a comparable run-time improvement in a massively parallel hardware implementation, while preserving stringent diagnostic image quality. Second, the dramatic speedup and throughput numbers achieved indicate the feasibility of systems based on this technology, which achieve real-time 3D reconstruction for state-of-the art diagnostic CT scanners with small footprint, high-reliability, and affordable cost.

  8. A new warfarin dosing algorithm including VKORC1 3730 G > A polymorphism: comparison with results obtained by other published algorithms.

    PubMed

    Cini, Michela; Legnani, Cristina; Cosmi, Benilde; Guazzaloca, Giuliana; Valdrè, Lelia; Frascaro, Mirella; Palareti, Gualtiero

    2012-08-01

    Warfarin dosing is affected by clinical and genetic variants, but the contribution of the genotype associated with warfarin resistance in pharmacogenetic algorithms has not been well assessed yet. We developed a new dosing algorithm including polymorphisms associated both with warfarin sensitivity and resistance in the Italian population, and its performance was compared with those of eight previously published algorithms. Clinical and genetic data (CYP2C9*2, CYP2C9*3, VKORC1 -1639 G > A, and VKORC1 3730 G > A) were used to elaborate the new algorithm. Derivation and validation groups comprised 55 (58.2% men, mean age 69 years) and 40 (57.5% men, mean age 70 years) patients, respectively, who were on stable anticoagulation therapy for at least 3 months with different oral anticoagulation therapy (OAT) indications. Performance of the new algorithm, evaluated with mean absolute error (MAE) defined as the absolute value of the difference between observed daily maintenance dose and predicted daily dose, correlation with the observed dose and R(2) value, was comparable with or slightly lower than that obtained using the other algorithms. The new algorithm could correctly assign 53.3%, 50.0%, and 57.1% of patients to the low (≤25 mg/week), intermediate (26-44 mg/week) and high (≥ 45 mg/week) dosing range, respectively. Our data showed a significant increase in predictive accuracy among patients requiring high warfarin dose compared with the other algorithms (ranging from 0% to 28.6%). The algorithm including VKORC1 3730 G > A, associated with warfarin resistance, allowed a more accurate identification of resistant patients who require higher warfarin dosage.

  9. Testing of a long-term fall detection system incorporated into a custom vest for the elderly.

    PubMed

    Bourke, Alan K; van de Ven, Pepijn W J; Chaya, Amy E; OLaighin, Gearóid M; Nelson, John

    2008-01-01

    A fall detection system and algorithm, incorporated into a custom designed garment has been developed. The developed fall detection system uses a tri-axial accelerometer to detect impacts and monitor posture. This sensor is attached to a custom designed vest, designed to be worn by the elderly person under clothing. The fall detection algorithm was developed and incorporates both impact and posture detection capability. The vest and fall algorithm was tested by two teams of 5 elderly subjects who wore the sensor system in turn for 2 week each and were monitored for 8 hours a day. The system previously achieved sensitivity of >90% and a specificity of >99%, using young healthy subjects performing falls and normal activities of daily living (ADL). In this study, over 833 hours of monitoring was performed over the course of the four weeks from the elderly subjects, during normal daily activity. In this time no actual falls were recorded, however the system registered a total of the 42 fall-alerts however only 9 were received at the care taker site. A fall detection system incorporated into a custom designed garment has been developed which will help reduce the incidence of the long-lie, when falls occur in the elderly population. However further development is required to reduce the number of false-positives and improve the transmission of messages.

  10. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    PubMed Central

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028

  11. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    PubMed

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  12. Evaluation of 16 genotype-guided Warfarin Dosing Algorithms in 310 Korean Patients Receiving Warfarin Treatment: Poor Prediction Performance in VKORC1 1173C Carriers.

    PubMed

    Yang, Mina; Choi, Rihwa; Kim, June Soo; On, Young Keun; Bang, Oh Young; Cho, Hyun-Jung; Lee, Soo-Youn

    2016-12-01

    The purpose of this study was to evaluate the performance of 16 previously published warfarin dosing algorithms in Korean patients. The 16 algorithms were selected through a literature search and evaluated using a cohort of 310 Korean patients with atrial fibrillation or cerebral infarction who were receiving warfarin therapy. A large interindividual variation (up to 11-fold) in warfarin dose was observed (median, 25 mg/wk; range, 7-77 mg/wk). Estimated dose and actual maintenance dose correlated well overall (r range, 0.52-0.73). Mean absolute error (MAE) of the 16 algorithms ranged from -1.2 to -20.1 mg/wk. The percentage of patients whose estimated dose fell within 20% of the actual dose ranged from 1.0% to 49%. All algorithms showed poor accuracy with increased MAE in a higher dose range. Performance of the dosing algorithms was worse in patients with VKORC1 1173TC or CC than in total (r range, 0.38-0.61 vs 0.52-0.73; MAE range, -2.6 to -28.0 mg/wk vs -1.2 to -20.1 mg/wk). The algorithms had comparable prediction abilities but showed limited accuracy depending on ethnicity, warfarin dose, and VKORC1 genotype. Further studies are needed to develop genotype-guided warfarin dosing algorithms with greater accuracy in the Korean population. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  13. Superior Rhythm Discrimination With the SmartShock Technology Algorithm - Results of the Implantable Defibrillator With Enhanced Features and Settings for Reduction of Inaccurate Detection (DEFENSE) Trial.

    PubMed

    Oginosawa, Yasushi; Kohno, Ritsuko; Honda, Toshihiro; Kikuchi, Kan; Nozoe, Masatsugu; Uchida, Takayuki; Minamiguchi, Hitoshi; Sonoda, Koichiro; Ogawa, Masahiro; Ideguchi, Takeshi; Kizaki, Yoshihisa; Nakamura, Toshihiro; Oba, Kageyuki; Higa, Satoshi; Yoshida, Keiki; Tsunoda, Soichi; Fujino, Yoshihisa; Abe, Haruhiko

    2017-08-25

    Shocks delivered by implanted anti-tachyarrhythmia devices, even when appropriate, lower the quality of life and survival. The new SmartShock Technology ® (SST) discrimination algorithm was developed to prevent the delivery of inappropriate shock. This prospective, multicenter, observational study compared the rate of inaccurate detection of ventricular tachyarrhythmia using the SST vs. a conventional discrimination algorithm.Methods and Results:Recipients of implantable cardioverter defibrillators (ICD) or cardiac resynchronization therapy defibrillators (CRT-D) equipped with the SST algorithm were enrolled and followed up every 6 months. The tachycardia detection rate was set at ≥150 beats/min with the SST algorithm. The primary endpoint was the time to first inaccurate detection of ventricular tachycardia (VT) with conventional vs. the SST discrimination algorithm, up to 2 years of follow-up. Between March 2012 and September 2013, 185 patients (mean age, 64.0±14.9 years; men, 74%; secondary prevention indication, 49.5%) were enrolled at 14 Japanese medical centers. Inaccurate detection was observed in 32 patients (17.6%) with the conventional, vs. in 19 patients (10.4%) with the SST algorithm. SST significantly lowered the rate of inaccurate detection by dual chamber devices (HR, 0.50; 95% CI: 0.263-0.950; P=0.034). Compared with previous algorithms, the SST discrimination algorithm significantly lowered the rate of inaccurate detection of VT in recipients of dual-chamber ICD or CRT-D.

  14. Improving angular resolution with Scan-MUSIC algorithm for real complex targets using 35-GHz millimeter-wave radar

    NASA Astrophysics Data System (ADS)

    Ly, Canh

    2004-08-01

    Scan-MUSIC algorithm, developed by the U.S. Army Research Laboratory (ARL), improves angular resolution for target detection with the use of a single rotatable radar scanning the angular region of interest. This algorithm has been adapted and extended from the MUSIC algorithm that has been used for a linear sensor array. Previously, it was shown that the SMUSIC algorithm and a Millimeter Wave radar can be used to resolve two closely spaced point targets that exhibited constructive interference, but not for the targets that exhibited destructive interference. Therefore, there were some limitations of the algorithm for the point targets. In this paper, the SMUSIC algorithm is applied to a problem of resolving real complex scatterer-type targets, which is more useful and of greater practical interest, particular for the future Army radar system. The paper presents results of the angular resolution of the targets, an M60 tank and an M113 Armored Personnel Carrier (APC), that are within the mainlobe of a Κα-band radar antenna. In particular, we applied the algorithm to resolve centroids of the targets that were placed within the beamwidth of the antenna. The collected coherent data using the stepped-frequency radar were compute magnitudely for the SMUSIC calculation. Even though there were significantly different signal returns for different orientations and offsets of the two targets, we resolved those two target centroids when they were as close as about 1/3 of the antenna beamwidth.

  15. PI-line-based image reconstruction in helical cone-beam computed tomography with a variable pitch.

    PubMed

    Zou, Yu; Pan, Xiaochuan; Xia, Dan; Wang, Ge

    2005-08-01

    Current applications of helical cone-beam computed tomography (CT) involve primarily a constant pitch where the translating speed of the table and the rotation speed of the source-detector remain constant. However, situations do exist where it may be more desirable to use a helical scan with a variable translating speed of the table, leading a variable pitch. One of such applications could arise in helical cone-beam CT fluoroscopy for the determination of vascular structures through real-time imaging of contrast bolus arrival. Most of the existing reconstruction algorithms have been developed only for helical cone-beam CT with constant pitch, including the backprojection-filtration (BPF) and filtered-backprojection (FBP) algorithms that we proposed previously. It is possible to generalize some of these algorithms to reconstruct images exactly for helical cone-beam CT with a variable pitch. In this work, we generalize our BPF and FBP algorithms to reconstruct images directly from data acquired in helical cone-beam CT with a variable pitch. We have also performed a preliminary numerical study to demonstrate and verify the generalization of the two algorithms. The results of the study confirm that our generalized BPF and FBP algorithms can yield exact reconstruction in helical cone-beam CT with a variable pitch. It should be pointed out that our generalized BPF algorithm is the only algorithm that is capable of reconstructing exactly region-of-interest image from data containing transverse truncations.

  16. Efficient storage, computation, and exposure of computer-generated holograms by electron-beam lithography.

    PubMed

    Newman, D M; Hawley, R W; Goeckel, D L; Crawford, R D; Abraham, S; Gallagher, N C

    1993-05-10

    An efficient storage format was developed for computer-generated holograms for use in electron-beam lithography. This method employs run-length encoding and Lempel-Ziv-Welch compression and succeeds in exposing holograms that were previously infeasible owing to the hologram's tremendous pattern-data file size. These holograms also require significant computation; thus the algorithm was implemented on a parallel computer, which improved performance by 2 orders of magnitude. The decompression algorithm was integrated into the Cambridge electron-beam machine's front-end processor.Although this provides much-needed ability, some hardware enhancements will be required in the future to overcome inadequacies in the current front-end processor that result in a lengthy exposure time.

  17. Optimal Solution for an Engineering Applications Using Modified Artificial Immune System

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Chandrasekaran, M.; Ganesan, S.; patan, Mahamed Naveed Khan; Navakanth, Polina

    2017-03-01

    An Engineering optimization leads a essential role in several engineering application areas like process design, product design, re-engineering and new product development, etc. In engineering, an awfully best answer is achieved by comparison to some completely different solutions by utilization previous downside information. An optimization algorithms provide systematic associate degreed economical ways that within which of constructing and comparison new design solutions so on understand at best vogue, thus on best solution efficiency and acquire the foremost wonderful design impact. In this paper, a new evolutionary based Modified Artificial Immune System (MAIS) algorithm used to optimize an engineering application of gear drive design. The results are compared with existing design.

  18. Enforcing dust mass conservation in 3D simulations of tightly coupled grains with the PHANTOM SPH code

    NASA Astrophysics Data System (ADS)

    Ballabio, G.; Dipierro, G.; Veronesi, B.; Lodato, G.; Hutchison, M.; Laibe, G.; Price, D. J.

    2018-06-01

    We describe a new implementation of the one-fluid method in the SPH code PHANTOM to simulate the dynamics of dust grains in gas protoplanetary discs. We revise and extend previously developed algorithms by computing the evolution of a new fluid quantity that produces a more accurate and numerically controlled evolution of the dust dynamics. Moreover, by limiting the stopping time of uncoupled grains that violate the assumptions of the terminal velocity approximation, we avoid fatal numerical errors in mass conservation. We test and validate our new algorithm by running 3D SPH simulations of a large range of disc models with tightly and marginally coupled grains.

  19. Theoretical analysis of the electrical aspects of the basic electro-impulse problem in aircraft de-icing applications

    NASA Technical Reports Server (NTRS)

    Henderson, R. A.; Schrag, R. L.

    1986-01-01

    A summary of modeling the electrical system aspects of a coil and metal target configuration resembling a practical electro-impulse deicing (EIDI) installation, and a simple circuit for providing energy to the coil, was presented. The model was developed in sufficient theoretical detail to allow the generation of computer algorithms for the current in the coil, the magnetic induction on both surfaces of the target, the force between the coil and target, and the impulse delivered to the target. These algorithms were applied to a specific prototype EIDI test system for which the current, magnetic fields near the target surfaces, and impulse were previously measured.

  20. Probability of coding of a DNA sequence: an algorithm to predict translated reading frames from their thermodynamic characteristics.

    PubMed Central

    Tramontano, A; Macchiato, M F

    1986-01-01

    An algorithm to determine the probability that a reading frame codifies for a protein is presented. It is based on the results of our previous studies on the thermodynamic characteristics of a translated reading frame. We also develop a prediction procedure to distinguish between coding and non-coding reading frames. The procedure is based on the characteristics of the putative product of the DNA sequence and not on periodicity characteristics of the sequence, so the prediction is not biased by the presence of overlapping translated reading frames or by the presence of translated reading frames on the complementary DNA strand. PMID:3753761

  1. A Benchmark Problem for Development of Autonomous Structural Modal Identification

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Woodard, Stanley E.; Juang, Jer-Nan

    1996-01-01

    This paper summarizes modal identification results obtained using an autonomous version of the Eigensystem Realization Algorithm on a dynamically complex, laboratory structure. The benchmark problem uses 48 of 768 free-decay responses measured in a complete modal survey test. The true modal parameters of the structure are well known from two previous, independent investigations. Without user involvement, the autonomous data analysis identified 24 to 33 structural modes with good to excellent accuracy in 62 seconds of CPU time (on a DEC Alpha 4000 computer). The modal identification technique described in the paper is the baseline algorithm for NASA's Autonomous Dynamics Determination (ADD) experiment scheduled to fly on International Space Station assembly flights in 1997-1999.

  2. Tracking control of concentration profiles in a fed-batch bioreactor using a linear algebra methodology.

    PubMed

    Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan

    2015-07-01

    Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. An improved algorithm for evaluating trellis phase codes

    NASA Technical Reports Server (NTRS)

    Mulligan, M. G.; Wilson, S. G.

    1982-01-01

    A method is described for evaluating the minimum distance parameters of trellis phase codes, including CPFSK, partial response FM, and more importantly, coded CPM (continuous phase modulation) schemes. The algorithm provides dramatically faster execution times and lesser memory requirements than previous algorithms. Results of sample calculations and timing comparisons are included.

  4. An improved algorithm for evaluating trellis phase codes

    NASA Technical Reports Server (NTRS)

    Mulligan, M. G.; Wilson, S. G.

    1984-01-01

    A method is described for evaluating the minimum distance parameters of trellis phase codes, including CPFSK, partial response FM, and more importantly, coded CPM (continuous phase modulation) schemes. The algorithm provides dramatically faster execution times and lesser memory requirements than previous algorithms. Results of sample calculations and timing comparisons are included.

  5. Context Modeler for Wavelet Compression of Spectral Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron; Xie, Hua; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    A context-modeling sub-algorithm has been developed as part of an algorithm that effects three-dimensional (3D) wavelet-based compression of hyperspectral image data. The context-modeling subalgorithm, hereafter denoted the context modeler, provides estimates of probability distributions of wavelet-transformed data being encoded. These estimates are utilized by an entropy coding subalgorithm that is another major component of the compression algorithm. The estimates make it possible to compress the image data more effectively than would otherwise be possible. The following background discussion is prerequisite to a meaningful summary of the context modeler. This discussion is presented relative to ICER-3D, which is the name attached to a particular compression algorithm and the software that implements it. The ICER-3D software is summarized briefly in the preceding article, ICER-3D Hyperspectral Image Compression Software (NPO-43238). Some aspects of this algorithm were previously described, in a slightly more general context than the ICER-3D software, in "Improving 3D Wavelet-Based Compression of Hyperspectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. In turn, ICER-3D is a product of generalization of ICER, another previously reported algorithm and computer program that can perform both lossless and lossy wavelet-based compression and decompression of gray-scale-image data. In ICER-3D, hyperspectral image data are decomposed using a 3D discrete wavelet transform (DWT). Following wavelet decomposition, mean values are subtracted from spatial planes of spatially low-pass subbands prior to encoding. The resulting data are converted to sign-magnitude form and compressed. In ICER-3D, compression is progressive, in that compressed information is ordered so that as more of the compressed data stream is received, successive reconstructions of the hyperspectral image data are of successively higher overall fidelity.

  6. Data Mining of Determinants of Intrauterine Growth Retardation Revisited Using Novel Algorithms Generating Semantic Maps and Prototypical Discriminating Variable Profiles

    PubMed Central

    Buscema, Massimo; Grossi, Enzo; Montanini, Luisa; Street, Maria E.

    2015-01-01

    Objectives Intra-uterine growth retardation is often of unknown origin, and is of great interest as a “Fetal Origin of Adult Disease” has been now well recognized. We built a benchmark based upon a previously analysed data set related to Intrauterine Growth Retardation with 46 subjects described by 14 variables, related with the insulin-like growth factor system and pro-inflammatory cytokines, namely interleukin -6 and tumor necrosis factor -α. Design and Methods We used new algorithms for optimal information sorting based on the combination of two neural network algorithms: Auto-contractive Map and Activation and Competition System. Auto-Contractive Map spatializes the relationships among variables or records by constructing a suitable embedding space where ‘closeness’ among variables or records reflects accurately their associations. The Activation and Competition System algorithm instead works as a dynamic non linear associative memory on the weight matrices of other algorithms, and is able to produce a prototypical variable profile of a given target. Results Classical statistical analysis, proved to be unable to distinguish intrauterine growth retardation from appropriate-for-gestational age (AGA) subjects due to the high non-linearity of underlying functions. Auto-contractive map succeeded in clustering and differentiating completely the conditions under study, while Activation and Competition System allowed to develop the profile of variables which discriminated the two conditions under study better than any other previous form of attempt. In particular, Activation and Competition System showed that ppropriateness for gestational age was explained by IGF-2 relative gene expression, and by IGFBP-2 and TNF-α placental contents. IUGR instead was explained by IGF-I, IGFBP-1, IGFBP-2 and IL-6 gene expression in placenta. Conclusion This further analysis provided further insight into the placental key-players of fetal growth within the insulin-like growth factor and cytokine systems. Our previous published analysis could identify only which variables were predictive of fetal growth in general, and identified only some relationships. PMID:26158499

  7. GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.

    PubMed

    Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim

    2016-08-01

    In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.

  8. A SAT Based Effective Algorithm for the Directed Hamiltonian Cycle Problem

    NASA Astrophysics Data System (ADS)

    Jäger, Gerold; Zhang, Weixiong

    The Hamiltonian cycle problem (HCP) is an important combinatorial problem with applications in many areas. While thorough theoretical and experimental analyses have been made on the HCP in undirected graphs, little is known for the HCP in directed graphs (DHCP). The contribution of this work is an effective algorithm for the DHCP. Our algorithm explores and exploits the close relationship between the DHCP and the Assignment Problem (AP) and utilizes a technique based on Boolean satisfiability (SAT). By combining effective algorithms for the AP and SAT, our algorithm significantly outperforms previous exact DHCP algorithms including an algorithm based on the award-winning Concorde TSP algorithm.

  9. An algorithm for direct causal learning of influences on patient outcomes.

    PubMed

    Rathnam, Chandramouli; Lee, Sanghoon; Jiang, Xia

    2017-01-01

    This study aims at developing and introducing a new algorithm, called direct causal learner (DCL), for learning the direct causal influences of a single target. We applied it to both simulated and real clinical and genome wide association study (GWAS) datasets and compared its performance to classic causal learning algorithms. The DCL algorithm learns the causes of a single target from passive data using Bayesian-scoring, instead of using independence checks, and a novel deletion algorithm. We generate 14,400 simulated datasets and measure the number of datasets for which DCL correctly and partially predicts the direct causes. We then compare its performance with the constraint-based path consistency (PC) and conservative PC (CPC) algorithms, the Bayesian-score based fast greedy search (FGS) algorithm, and the partial ancestral graphs algorithm fast causal inference (FCI). In addition, we extend our comparison of all five algorithms to both a real GWAS dataset and real breast cancer datasets over various time-points in order to observe how effective they are at predicting the causal influences of Alzheimer's disease and breast cancer survival. DCL consistently outperforms FGS, PC, CPC, and FCI in discovering the parents of the target for the datasets simulated using a simple network. Overall, DCL predicts significantly more datasets correctly (McNemar's test significance: p<0.0001) than any of the other algorithms for these network types. For example, when assessing overall performance (simple and complex network results combined), DCL correctly predicts approximately 1400 more datasets than the top FGS method, 1600 more datasets than the top CPC method, 4500 more datasets than the top PC method, and 5600 more datasets than the top FCI method. Although FGS did correctly predict more datasets than DCL for the complex networks, and DCL correctly predicted only a few more datasets than CPC for these networks, there is no significant difference in performance between these three algorithms for this network type. However, when we use a more continuous measure of accuracy, we find that all the DCL methods are able to better partially predict more direct causes than FGS and CPC for the complex networks. In addition, DCL consistently had faster runtimes than the other algorithms. In the application to the real datasets, DCL identified rs6784615, located on the NISCH gene, and rs10824310, located on the PRKG1 gene, as direct causes of late onset Alzheimer's disease (LOAD) development. In addition, DCL identified ER category as a direct predictor of breast cancer mortality within 5 years, and HER2 status as a direct predictor of 10-year breast cancer mortality. These predictors have been identified in previous studies to have a direct causal relationship with their respective phenotypes, supporting the predictive power of DCL. When the other algorithms discovered predictors from the real datasets, these predictors were either also found by DCL or could not be supported by previous studies. Our results show that DCL outperforms FGS, PC, CPC, and FCI in almost every case, demonstrating its potential to advance causal learning. Furthermore, our DCL algorithm effectively identifies direct causes in the LOAD and Metabric GWAS datasets, which indicates its potential for clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Towards a robust framework for catchment classification

    NASA Astrophysics Data System (ADS)

    Deshmukh, A.; Samal, A.; Singh, R.

    2017-12-01

    Classification of catchments based on various measures of similarity has emerged as an important technique to understand regional scale hydrologic behavior. Classification of catchment characteristics and/or streamflow response has been used reveal which characteristics are more likely to explain the observed variability of hydrologic response. However, numerous algorithms for supervised or unsupervised classification are available, making it hard to identify the algorithm most suitable for the dataset at hand. Consequently, existing catchment classification studies vary significantly in the classification algorithms employed with no previous attempt at understanding the degree of uncertainty in classification due to this algorithmic choice. This hinders the generalizability of interpretations related to hydrologic behavior. Our goal is to develop a protocol that can be followed while classifying hydrologic datasets. We focus on a classification framework for unsupervised classification and provide a step-by-step classification procedure. The steps include testing the clusterabiltiy of original dataset prior to classification, feature selection, validation of clustered data, and quantification of similarity of two clusterings. We test several commonly available methods within this framework to understand the level of similarity of classification results across algorithms. We apply the proposed framework on recently developed datasets for India to analyze to what extent catchment properties can explain observed catchment response. Our testing dataset includes watershed characteristics for over 200 watersheds which comprise of both natural (physio-climatic) characteristics and socio-economic characteristics. This framework allows us to understand the controls on observed hydrologic variability across India.

  11. Neurient: An Algorithm for Automatic Tracing of Confluent Neuronal Images to Determine Alignment

    PubMed Central

    Mitchel, J.A.; Martin, I.S.

    2013-01-01

    A goal of neural tissue engineering is the development and evaluation of materials that guide neuronal growth and alignment. However, the methods available to quantitatively evaluate the response of neurons to guidance materials are limited and/or expensive, and may require manual tracing to be performed by the researcher. We have developed an open source, automated Matlab-based algorithm, building on previously published methods, to trace and quantify alignment of fluorescent images of neurons in culture. The algorithm is divided into three phases, including computation of a lookup table which contains directional information for each image, location of a set of seed points which may lie along neurite centerlines, and tracing neurites starting with each seed point and indexing into the lookup table. This method was used to obtain quantitative alignment data for complex images of densely cultured neurons. Complete automation of tracing allows for unsupervised processing of large numbers of images. Following image processing with our algorithm, available metrics to quantify neurite alignment include angular histograms, percent of neurite segments in a given direction, and mean neurite angle. The alignment information obtained from traced images can be used to compare the response of neurons to a range of conditions. This tracing algorithm is freely available to the scientific community under the name Neurient, and its implementation in Matlab allows a wide range of researchers to use a standardized, open source method to quantitatively evaluate the alignment of dense neuronal cultures. PMID:23384629

  12. Online learning algorithm for time series forecasting suitable for low cost wireless sensor networks nodes.

    PubMed

    Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma

    2015-04-21

    Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.

  13. Online Learning Algorithm for Time Series Forecasting Suitable for Low Cost Wireless Sensor Networks Nodes

    PubMed Central

    Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma

    2015-01-01

    Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources. PMID:25905698

  14. Model-based Bayesian signal extraction algorithm for peripheral nerves

    NASA Astrophysics Data System (ADS)

    Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.

    2017-10-01

    Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of controlling a prosthetic limb.

  15. An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements

    NASA Astrophysics Data System (ADS)

    Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh

    2016-05-01

    Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  16. Improved Surface Parameter Retrievals using AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John

    2008-01-01

    The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Two very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; and 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions. In this methodology, longwave C02 channel observations in the spectral region 700 cm(exp -1) to 750 cm(exp -1) are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm(exp -1) 2395 cm(exp -1) are used for temperature sounding purposes. This allows for accurate temperature soundings under more difficult cloud conditions. This paper further improves on the methodology used in Version 5 to derive surface skin temperature and surface spectral emissivity from AIRS/AMSU observations. Now, following the approach used to improve tropospheric temperature profiles, surface skin temperature is also derived using only shortwave window channels. This produces improved surface parameters, both day and night, compared to what was obtained in Version 5. These in turn result in improved boundary layer temperatures and retrieved total O3 burden.

  17. Relation Between Estimated Cardiorespiratory Fitness and Atrial Fibrillation (from the Reasons for Geographic and Racial Differences in Stroke Study).

    PubMed

    Bose, Abhishek; O'Neal, Wesley T; Bennett, Aleena; Judd, Suzanne E; Qureshi, Waqas T; Sui, Xuemei; Howard, Virginia J; Howard, George; Soliman, Elsayed Z

    2017-06-01

    Estimated cardiorespiratory fitness (e-CRF) based on readily available clinical and self-reported data is a promising alternative to the costly traditional assessment of CRF using exercise equipment, but its role as a predictor for incident atrial fibrillation (AF) is unclear. This study included 10,126 participants (54.5% women, 35% African-American, mean age 63.2 years) from the Reasons for Geographic and Racial Differences in Stroke study who were free of AF at baseline. Baseline (2003 to 2007) e-CRF was determined using a previously validated nonexercise algorithm. Incident AF cases were identified at a follow-up examination by electrocardiogram and self-reported medical history of previous physician diagnosis. After a median follow-up of 9.4 years, 906 participants (8.9%) developed AF. In a multivariable logistic regression model adjusted for sociodemographics and baseline cardiovascular disease risk factors as well as incident coronary heart disease, heart failure, and stroke, each 1-metabolic equivalent of task increase in e-CRF was associated with a 5% lower risk of AF development (odds ratio [95% CI] 0.95 [0.92 to 0.99]; p = 0.0129). This association was stronger in women (OR [95% CI] 0.85 (0.79, 0.92) than in men (OR (95% CI) 0.88 (0.84, 0.93), interaction p value = 0.05. No significant interactions by age, race, history of cardiovascular disease, or physical limitations were observed. In conclusion, e-CRF using a nonexercise algorithm is a useful predictor of incident AF, which is consistent with previous reports using traditional CRF. This suggests that e-CRF using nonexercise algorithms may serve as a useful alternative to CRF measured by costly and time-consuming exercise testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. THRESHOLD LOGIC.

    DTIC Science & Technology

    synthesis procedures; a ’best’ method is definitely established. (2) ’Symmetry Types for Threshold Logic’ is a tutorial expositon including a careful...development of the Goto-Takahasi self-dual type ideas. (3) ’Best Threshold Gate Decisions’ reports a comparison, on the 2470 7-argument threshold ...interpretation is shown best. (4) ’ Threshold Gate Networks’ reviews the previously discussed 2-algorithm in geometric terms, describes our FORTRAN

  19. A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields

    PubMed Central

    Semprini, Marianna; Mussa-Ivaldi, Ferdinando A.; Panzeri, Stefano

    2014-01-01

    We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop. PMID:24626393

  20. Preliminary Development and Evaluation of Lightning Jump Algorithms for the Real-Time Detection of Severe Weather

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Previous studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed "lightning jumps." Herein, we document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms were examined in this study, with 69 of the 107 thunderstorms falling into the category of non-severe, and 38 into the category of severe. From the dataset of 69 isolated non-severe thunderstorms, an average peak 1 minute flash rate of 10 flashes/min was determined. A variety of severe thunderstorm types were examined for this study including an MCS, MCV, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 non-severe, 38 severe) from the Tennessee Valley and Washington D.C tested 6 lightning jump algorithm configurations (Gatlin, Gatlin 45, 2(sigma), 3(sigma), Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2(sigma) lightning jump algorithm had a high probability of detection (POD; 87%), a modest false alarm rate (FAR; 33%), and a solid Heidke Skill Score (HSS; 0.75). A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 minutes and 20 minutes, respectively. The overall goal of this study is to advance the development of an operationally-applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the GOES-R Geostationary Lightning Mapper.

  1. Sensitive and specific peak detection for SELDI-TOF mass spectrometry using a wavelet/neural-network based approach.

    PubMed

    Emanuele, Vincent A; Panicker, Gitika; Gurbaxani, Brian M; Lin, Jin-Mann S; Unger, Elizabeth R

    2012-01-01

    SELDI-TOF mass spectrometer's compact size and automated, high throughput design have been attractive to clinical researchers, and the platform has seen steady-use in biomarker studies. Despite new algorithms and preprocessing pipelines that have been developed to address reproducibility issues, visual inspection of the results of SELDI spectra preprocessing by the best algorithms still shows miscalled peaks and systematic sources of error. This suggests that there continues to be problems with SELDI preprocessing. In this work, we study the preprocessing of SELDI in detail and introduce improvements. While many algorithms, including the vendor supplied software, can identify peak clusters of specific mass (or m/z) in groups of spectra with high specificity and low false discover rate (FDR), the algorithms tend to underperform estimating the exact prevalence and intensity of peaks in those clusters. Thus group differences that at first appear very strong are shown, after careful and laborious hand inspection of the spectra, to be less than significant. Here we introduce a wavelet/neural network based algorithm which mimics what a team of expert, human users would call for peaks in each of several hundred spectra in a typical SELDI clinical study. The wavelet denoising part of the algorithm optimally smoothes the signal in each spectrum according to an improved suite of signal processing algorithms previously reported (the LibSELDI toolbox under development). The neural network part of the algorithm combines those results with the raw signal and a training dataset of expertly called peaks, to call peaks in a test set of spectra with approximately 95% accuracy. The new method was applied to data collected from a study of cervical mucus for the early detection of cervical cancer in HPV infected women. The method shows promise in addressing the ongoing SELDI reproducibility issues.

  2. Probing the Cosmic Gamma-Ray Burst Rate with Trigger Simulations of the Swift Burst Alert Telescope

    NASA Technical Reports Server (NTRS)

    Lien, Amy; Sakamoto, Takanori; Gehrels, Neil; Palmer, David M.; Barthelmy, Scott D.; Graziani, Carlo; Cannizzo, John K.

    2013-01-01

    The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously own GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest bursts need to be dimmer than previously expected to avoid over-producing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star-formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4568 +825 -1429 GRBs per year that are beamed toward us in the whole universe.

  3. Advanced End-to-end Simulation for On-board Processing (AESOP)

    NASA Technical Reports Server (NTRS)

    Mazer, Alan S.

    1994-01-01

    Developers of data compression algorithms typically use their own software together with commercial packages to implement, evaluate and demonstrate their work. While convenient for an individual developer, this approach makes it difficult to build on or use another's work without intimate knowledge of each component. When several people or groups work on different parts of the same problem, the larger view can be lost. What's needed is a simple piece of software to stand in the gap and link together the efforts of different people, enabling them to build on each other's work, and providing a base for engineers and scientists to evaluate the parts as a cohesive whole and make design decisions. AESOP (Advanced End-to-end Simulation for On-board Processing) attempts to meet this need by providing a graphical interface to a developer-selected set of algorithms, interfacing with compiled code and standalone programs, as well as procedures written in the IDL and PV-Wave command languages. As a proof of concept, AESOP is outfitted with several data compression algorithms integrating previous work on different processors (AT&T DSP32C, TI TMS320C30, SPARC). The user can specify at run-time the processor on which individual parts of the compression should run. Compressed data is then fed through simulated transmission and uncompression to evaluate the effects of compression parameters, noise and error correction algorithms. The following sections describe AESOP in detail. Section 2 describes fundamental goals for usability. Section 3 describes the implementation. Sections 4 through 5 describe how to add new functionality to the system and present the existing data compression algorithms. Sections 6 and 7 discuss portability and future work.

  4. Using Active Learning for Speeding up Calibration in Simulation Models.

    PubMed

    Cevik, Mucahit; Ergun, Mehmet Ali; Stout, Natasha K; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan

    2016-07-01

    Most cancer simulation models include unobservable parameters that determine disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality, and their values are typically estimated via a lengthy calibration procedure, which involves evaluating a large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We developed an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs and therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using the previously developed University of Wisconsin breast cancer simulation model (UWBCS). In a recent study, calibration of the UWBCS required the evaluation of 378 000 input parameter combinations to build a race-specific model, and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378 000 combinations. Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. © The Author(s) 2015.

  5. Neural net classification of liver ultrasonogram for quantitative evaluation of diffuse liver disease

    NASA Astrophysics Data System (ADS)

    Lee, Dong Hyuk; Kim, JongHyo; Kim, Hee C.; Lee, Yong W.; Min, Byong Goo

    1997-04-01

    There have been a number of studies on the quantitative evaluation of diffuse liver disease by using texture analysis technique. However, the previous studies have been focused on the classification between only normal and abnormal pattern based on textural properties, resulting in lack of clinically useful information about the progressive status of liver disease. Considering our collaborative research experience with clinical experts, we judged that not only texture information but also several shape properties are necessary in order to successfully classify between various states of disease with liver ultrasonogram. Nine image parameters were selected experimentally. One of these was texture parameter and others were shape parameters measured as length, area and curvature. We have developed a neural-net algorithm that classifies liver ultrasonogram into 9 categories of liver disease: 3 main category and 3 sub-steps for each. Nine parameters were collected semi- automatically from the user by using graphical user interface tool, and then processed to give a grade for each parameter. Classifying algorithm consists of two steps. At the first step, each parameter was graded into pre-defined levels using neural network. in the next step, neural network classifier determined disease status using graded nine parameters. We implemented a PC based computer-assist diagnosis workstation and installed it in radiology department of Seoul National University Hospital. Using this workstation we collected 662 cases during 6 months. Some of these were used for training and others were used for evaluating accuracy of the developed algorithm. As a conclusion, a liver ultrasonogram classifying algorithm was developed using both texture and shape parameters and neural network classifier. Preliminary results indicate that the proposed algorithm is useful for evaluation of diffuse liver disease.

  6. Using Active Learning for Speeding up Calibration in Simulation Models

    PubMed Central

    Cevik, Mucahit; Ali Ergun, Mehmet; Stout, Natasha K.; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan

    2015-01-01

    Background Most cancer simulation models include unobservable parameters that determine the disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality and their values are typically estimated via lengthy calibration procedure, which involves evaluating large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Methods Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We develop an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs, therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using previously developed University of Wisconsin Breast Cancer Simulation Model (UWBCS). Results In a recent study, calibration of the UWBCS required the evaluation of 378,000 input parameter combinations to build a race-specific model and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378,000 combinations. Conclusion Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. PMID:26471190

  7. Software for Simulating a Complex Robot

    NASA Technical Reports Server (NTRS)

    Goza, S. Michael

    2003-01-01

    RoboSim (Robot Simulation) is a computer program that simulates the poses and motions of the Robonaut a developmental anthropomorphic robot that has a complex system of joints with 43 degrees of freedom and multiple modes of operation and control. RoboSim performs a full kinematic simulation of all degrees of freedom. It also includes interface components that duplicate the functionality of the real Robonaut interface with control software and human operators. Basically, users see no difference between the real Robonaut and the simulation. Consequently, new control algorithms can be tested by computational simulation, without risk to the Robonaut hardware, and without using excessive Robonaut-hardware experimental time, which is always at a premium. Previously developed software incorporated into RoboSim includes Enigma (for graphical displays), OSCAR (for kinematical computations), and NDDS (for communication between the Robonaut and external software). In addition, RoboSim incorporates unique inverse-kinematical algorithms for chains of joints that have fewer than six degrees of freedom (e.g., finger joints). In comparison with the algorithms of OSCAR, these algorithms are more readily adaptable and provide better results when using equivalent sets of data.

  8. An incremental DPMM-based method for trajectory clustering, modeling, and retrieval.

    PubMed

    Hu, Weiming; Li, Xi; Tian, Guodong; Maybank, Stephen; Zhang, Zhongfei

    2013-05-01

    Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.

  9. Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD

    NASA Astrophysics Data System (ADS)

    Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun

    2017-12-01

    This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.

  10. Design of Neural Networks for Fast Convergence and Accuracy

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1998-01-01

    A novel procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed to provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component spacecraft design changes and measures of its performance. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The design algorithm attempts to avoid the local minima phenomenon that hampers the traditional network training. A numerical example is performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  11. A fast algorithm for vertex-frequency representations of signals on graphs

    PubMed Central

    Jestrović, Iva; Coyle, James L.; Sejdić, Ervin

    2016-01-01

    The windowed Fourier transform (short time Fourier transform) and the S-transform are widely used signal processing tools for extracting frequency information from non-stationary signals. Previously, the windowed Fourier transform had been adopted for signals on graphs and has been shown to be very useful for extracting vertex-frequency information from graphs. However, high computational complexity makes these algorithms impractical. We sought to develop a fast windowed graph Fourier transform and a fast graph S-transform requiring significantly shorter computation time. The proposed schemes have been tested with synthetic test graph signals and real graph signals derived from electroencephalography recordings made during swallowing. The results showed that the proposed schemes provide significantly lower computation time in comparison with the standard windowed graph Fourier transform and the fast graph S-transform. Also, the results showed that noise has no effect on the results of the algorithm for the fast windowed graph Fourier transform or on the graph S-transform. Finally, we showed that graphs can be reconstructed from the vertex-frequency representations obtained with the proposed algorithms. PMID:28479645

  12. Reconstructing Spectral Scenes Using Statistical Estimation to Enhance Space Situational Awareness

    DTIC Science & Technology

    2006-12-01

    simultane- ously spatially and spectrally deblur the images collected from ASIS. The algorithms are based on proven estimation theories and do not...collected with any system using a filtering technology known as Electronic Tunable Filters (ETFs). Previous methods to deblur spectral images collected...spectrally deblurring then the previously investigated methods. This algorithm expands on a method used for increasing the spectral resolution in gamma-ray

  13. Torsional anharmonicity in the conformational thermodynamics of flexible molecules

    NASA Astrophysics Data System (ADS)

    Miller, Thomas F., III; Clary, David C.

    We present an algorithm for calculating the conformational thermodynamics of large, flexible molecules that combines ab initio electronic structure theory calculations with a torsional path integral Monte Carlo (TPIMC) simulation. The new algorithm overcomes the previous limitations of the TPIMC method by including the thermodynamic contributions of non-torsional vibrational modes and by affordably incorporating the ab initio calculation of conformer electronic energies, and it improves the conventional ab initio treatment of conformational thermodynamics by accounting for the anharmonicity of the torsional modes. Using previously published ab initio results and new TPIMC calculations, we apply the algorithm to the conformers of the adrenaline molecule.

  14. Real-time estimation of prostate tumor rotation and translation with a kV imaging system based on an iterative closest point algorithm.

    PubMed

    Tehrani, Joubin Nasehi; O'Brien, Ricky T; Poulsen, Per Rugaard; Keall, Paul

    2013-12-07

    Previous studies have shown that during cancer radiotherapy a small translation or rotation of the tumor can lead to errors in dose delivery. Current best practice in radiotherapy accounts for tumor translations, but is unable to address rotation due to a lack of a reliable real-time estimate. We have developed a method based on the iterative closest point (ICP) algorithm that can compute rotation from kilovoltage x-ray images acquired during radiation treatment delivery. A total of 11 748 kilovoltage (kV) images acquired from ten patients (one fraction for each patient) were used to evaluate our tumor rotation algorithm. For each kV image, the three dimensional coordinates of three fiducial markers inside the prostate were calculated. The three dimensional coordinates were used as input to the ICP algorithm to calculate the real-time tumor rotation and translation around three axes. The results show that the root mean square error was improved for real-time calculation of tumor displacement from a mean of 0.97 mm with the stand alone translation to a mean of 0.16 mm by adding real-time rotation and translation displacement with the ICP algorithm. The standard deviation (SD) of rotation for the ten patients was 2.3°, 0.89° and 0.72° for rotation around the right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively. The correlation between all six degrees of freedom showed that the highest correlation belonged to the AP and SI translation with a correlation of 0.67. The second highest correlation in our study was between the rotation around RL and rotation around AP, with a correlation of -0.33. Our real-time algorithm for calculation of rotation also confirms previous studies that have shown the maximum SD belongs to AP translation and rotation around RL. ICP is a reliable and fast algorithm for estimating real-time tumor rotation which could create a pathway to investigational clinical treatment studies requiring real-time measurement and adaptation to tumor rotation.

  15. Real-time estimation of prostate tumor rotation and translation with a kV imaging system based on an iterative closest point algorithm

    NASA Astrophysics Data System (ADS)

    Nasehi Tehrani, Joubin; O'Brien, Ricky T.; Rugaard Poulsen, Per; Keall, Paul

    2013-12-01

    Previous studies have shown that during cancer radiotherapy a small translation or rotation of the tumor can lead to errors in dose delivery. Current best practice in radiotherapy accounts for tumor translations, but is unable to address rotation due to a lack of a reliable real-time estimate. We have developed a method based on the iterative closest point (ICP) algorithm that can compute rotation from kilovoltage x-ray images acquired during radiation treatment delivery. A total of 11 748 kilovoltage (kV) images acquired from ten patients (one fraction for each patient) were used to evaluate our tumor rotation algorithm. For each kV image, the three dimensional coordinates of three fiducial markers inside the prostate were calculated. The three dimensional coordinates were used as input to the ICP algorithm to calculate the real-time tumor rotation and translation around three axes. The results show that the root mean square error was improved for real-time calculation of tumor displacement from a mean of 0.97 mm with the stand alone translation to a mean of 0.16 mm by adding real-time rotation and translation displacement with the ICP algorithm. The standard deviation (SD) of rotation for the ten patients was 2.3°, 0.89° and 0.72° for rotation around the right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively. The correlation between all six degrees of freedom showed that the highest correlation belonged to the AP and SI translation with a correlation of 0.67. The second highest correlation in our study was between the rotation around RL and rotation around AP, with a correlation of -0.33. Our real-time algorithm for calculation of rotation also confirms previous studies that have shown the maximum SD belongs to AP translation and rotation around RL. ICP is a reliable and fast algorithm for estimating real-time tumor rotation which could create a pathway to investigational clinical treatment studies requiring real-time measurement and adaptation to tumor rotation.

  16. Memory-Scalable GPU Spatial Hierarchy Construction.

    PubMed

    Qiming Hou; Xin Sun; Kun Zhou; Lauterbach, C; Manocha, D

    2011-04-01

    Recent GPU algorithms for constructing spatial hierarchies have achieved promising performance for moderately complex models by using the breadth-first search (BFS) construction order. While being able to exploit the massive parallelism on the GPU, the BFS order also consumes excessive GPU memory, which becomes a serious issue for interactive applications involving very complex models with more than a few million triangles. In this paper, we propose to use the partial breadth-first search (PBFS) construction order to control memory consumption while maximizing performance. We apply the PBFS order to two hierarchy construction algorithms. The first algorithm is for kd-trees that automatically balances between the level of parallelism and intermediate memory usage. With PBFS, peak memory consumption during construction can be efficiently controlled without costly CPU-GPU data transfer. We also develop memory allocation strategies to effectively limit memory fragmentation. The resulting algorithm scales well with GPU memory and constructs kd-trees of models with millions of triangles at interactive rates on GPUs with 1 GB memory. Compared with existing algorithms, our algorithm is an order of magnitude more scalable for a given GPU memory bound. The second algorithm is for out-of-core bounding volume hierarchy (BVH) construction for very large scenes based on the PBFS construction order. At each iteration, all constructed nodes are dumped to the CPU memory, and the GPU memory is freed for the next iteration's use. In this way, the algorithm is able to build trees that are too large to be stored in the GPU memory. Experiments show that our algorithm can construct BVHs for scenes with up to 20 M triangles, several times larger than previous GPU algorithms.

  17. Interleaved diffusion-weighted EPI improved by adaptive partial-Fourier and multi-band multiplexed sensitivity-encoding reconstruction

    PubMed Central

    Chang, Hing-Chiu; Guhaniyogi, Shayan; Chen, Nan-kuei

    2014-01-01

    Purpose We report a series of techniques to reliably eliminate artifacts in interleaved echo-planar imaging (EPI) based diffusion weighted imaging (DWI). Methods First, we integrate the previously reported multiplexed sensitivity encoding (MUSE) algorithm with a new adaptive Homodyne partial-Fourier reconstruction algorithm, so that images reconstructed from interleaved partial-Fourier DWI data are free from artifacts even in the presence of either a) motion-induced k-space energy peak displacement, or b) susceptibility field gradient induced fast phase changes. Second, we generalize the previously reported single-band MUSE framework to multi-band MUSE, so that both through-plane and in-plane aliasing artifacts in multi-band multi-shot interleaved DWI data can be effectively eliminated. Results The new adaptive Homodyne-MUSE reconstruction algorithm reliably produces high-quality and high-resolution DWI, eliminating residual artifacts in images reconstructed with previously reported methods. Furthermore, the generalized MUSE algorithm is compatible with multi-band and high-throughput DWI. Conclusion The integration of the multi-band and adaptive Homodyne-MUSE algorithms significantly improves the spatial-resolution, image quality, and scan throughput of interleaved DWI. We expect that the reported reconstruction framework will play an important role in enabling high-resolution DWI for both neuroscience research and clinical uses. PMID:24925000

  18. Deformable complex network for refining low-resolution X-ray structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chong; Wang, Qinghua; Ma, Jianpeng, E-mail: jpma@bcm.edu

    2015-10-27

    A new refinement algorithm called the deformable complex network that combines a novel angular network-based restraint with a deformable elastic network model in the target function has been developed to aid in structural refinement in macromolecular X-ray crystallography. In macromolecular X-ray crystallography, building more accurate atomic models based on lower resolution experimental diffraction data remains a great challenge. Previous studies have used a deformable elastic network (DEN) model to aid in low-resolution structural refinement. In this study, the development of a new refinement algorithm called the deformable complex network (DCN) is reported that combines a novel angular network-based restraint withmore » the DEN model in the target function. Testing of DCN on a wide range of low-resolution structures demonstrated that it constantly leads to significantly improved structural models as judged by multiple refinement criteria, thus representing a new effective refinement tool for low-resolution structural determination.« less

  19. Material point method of modelling and simulation of reacting flow of oxygen

    NASA Astrophysics Data System (ADS)

    Mason, Matthew; Chen, Kuan; Hu, Patrick G.

    2014-07-01

    Aerospace vehicles are continually being designed to sustain flight at higher speeds and higher altitudes than previously attainable. At hypersonic speeds, gases within a flow begin to chemically react and the fluid's physical properties are modified. It is desirable to model these effects within the Material Point Method (MPM). The MPM is a combined Eulerian-Lagrangian particle-based solver that calculates the physical properties of individual particles and uses a background grid for information storage and exchange. This study introduces chemically reacting flow modelling within the MPM numerical algorithm and illustrates a simple application using the AeroElastic Material Point Method (AEMPM) code. The governing equations of reacting flows are introduced and their direct application within an MPM code is discussed. A flow of 100% oxygen is illustrated and the results are compared with independently developed computational non-equilibrium algorithms. Observed trends agree well with results from an independently developed source.

  20. Transactive Control of Commercial Building HVAC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbin, Charles D.; Makhmalbaf, Atefe; Huang, Sen

    This document details the development and testing of market-based transactive controls for building heating, ventilating and air conditioning (HVAC) systems. These controls are intended to serve the purposes of reducing electricity use through conservation, reducing peak building electric demand, and providing demand flexibility to assist with power system operations. This report is the summary of the first year of work conducted under Phase 1 of the Clean Energy and Transactive Campus Project. The methods and techniques described here were first investigated in simulation, and then subsequently deployed to a physical testbed on the Pacific Northwest National Laboratory (PNNL) campus formore » validation. In this report, we describe the models and control algorithms we have developed, testing of the control algorithms in simulation, and deployment to a physical testbed. Results from physical experiments support previous simulation findings, and provide insights for further improvement.« less

  1. Image-Based Focusing

    NASA Astrophysics Data System (ADS)

    Selker, Ted

    1983-05-01

    Lens focusing using a hardware model of a retina (Reticon RL256 light sensitive array) with a low cost processor (8085 with 512 bytes of ROM and 512 bytes of RAM) was built. This system was developed and tested on a variety of visual stimuli to demonstrate that: a)an algorithm which moves a lens to maximize the sum of the difference of light level on adjacent light sensors will converge to best focus in all but contrived situations. This is a simpler algorithm than any previously suggested; b) it is feasible to use unmodified video sensor arrays with in-expensive processors to aid video camera use. In the future, software could be developed to extend the processor's usefulness, possibly to track an actor by panning and zooming to give a earners operator increased ease of framing; c) lateral inhibition is an adequate basis for determining best focus. This supports a simple anatomically motivated model of how our brain focuses our eyes.

  2. Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor

    NASA Technical Reports Server (NTRS)

    McLoughlin, Terence H.; Campbell, Mark

    2004-01-01

    Recent advances in formation keeping for large numbers of spacecraft using the Autonomous Formation Flying are presented. This sensor, currently under development at JPL, has been identified as a key component in future formation flying spacecraft missions. The sensor provides accurate range and bearing measurements between pairs of spacecraft using GPS technology. Previous theoretical work by the authors has focused on developing a decentralized scheduling algorithm to control the tasking of such a sensor between the relative range and bearing measurements to each node in the formation. The resulting algorithm has been modified to include switching constraints in the sensor. This paper also presents a testbed for real time validation of a sixteen-node formation based on the Stellar Imager mission. Key aspects of the simulation include minimum fuel maneuvers based on free-body dynamics and a three body propagator for simulating the formation at L2.

  3. An image analysis system for near-infrared (NIR) fluorescence lymph imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2011-03-01

    Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.

  4. Recommendations from the Spanish Oncology Genitourinary Group for the treatment of metastatic renal cancer.

    PubMed

    Bellmunt, Joaquim; Calvo, Emiliano; Castellano, Daniel; Climent, Miguel Angel; Esteban, Emilio; García del Muro, Xavier; González-Larriba, José Luis; Maroto, Pablo; Trigo, José Manuel

    2009-03-01

    For almost the last two decades, interleukin-2 and interferon-alpha have been the only systemic treatment options available for metastatic renal cell carcinoma. However, in recent years, five new targeted therapies namely sunitinib, sorafenib, temsirolimus, everolimus and bevacizumab have demonstrated clinical activity in these patients. With the availability of new targeted agents that are active in this disease, there is a need to continuously update the treatment algorithm of the disease. Due to the important advances obtained, the Spanish Oncology Genitourinary Group (SOGUG) has considered it would be useful to review the current status of the disease, including the genetic and molecular biology factors involved, the current predicting models for development of metastases as well as the role of surgery, radiotherapy and systemic therapies in the early- or late management of the disease. Based on this previous work, a treatment algorithm was developed.

  5. The Athena Astrophysical MHD Code in Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Skinner, M. A.; Ostriker, E. C.

    2011-10-01

    We have developed a method for implementing cylindrical coordinates in the Athena MHD code (Skinner & Ostriker 2010). The extension has been designed to alter the existing Cartesian-coordinates code (Stone et al. 2008) as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the eigensystems and Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we have developed a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web.

  6. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    PubMed

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  7. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.

    2010-01-15

    Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, amore » chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.« less

  8. Algorithms and data structures for automated change detection and classification of sidescan sonar imagery

    NASA Astrophysics Data System (ADS)

    Gendron, Marlin Lee

    During Mine Warfare (MIW) operations, MIW analysts perform change detection by visually comparing historical sidescan sonar imagery (SSI) collected by a sidescan sonar with recently collected SSI in an attempt to identify objects (which might be explosive mines) placed at sea since the last time the area was surveyed. This dissertation presents a data structure and three algorithms, developed by the author, that are part of an automated change detection and classification (ACDC) system. MIW analysts at the Naval Oceanographic Office, to reduce the amount of time to perform change detection, are currently using ACDC. The dissertation introductory chapter gives background information on change detection, ACDC, and describes how SSI is produced from raw sonar data. Chapter 2 presents the author's Geospatial Bitmap (GB) data structure, which is capable of storing information geographically and is utilized by the three algorithms. This chapter shows that a GB data structure used in a polygon-smoothing algorithm ran between 1.3--48.4x faster than a sparse matrix data structure. Chapter 3 describes the GB clustering algorithm, which is the author's repeatable, order-independent method for clustering. Results from tests performed in this chapter show that the time to cluster a set of points is not affected by the distribution or the order of the points. In Chapter 4, the author presents his real-time computer-aided detection (CAD) algorithm that automatically detects mine-like objects on the seafloor in SSI. The author ran his GB-based CAD algorithm on real SSI data, and results of these tests indicate that his real-time CAD algorithm performs comparably to or better than other non-real-time CAD algorithms. The author presents his computer-aided search (CAS) algorithm in Chapter 5. CAS helps MIW analysts locate mine-like features that are geospatially close to previously detected features. A comparison between the CAS and a great circle distance algorithm shows that the CAS performs geospatial searching 1.75x faster on large data sets. Finally, the concluding chapter of this dissertation gives important details on how the completed ACDC system will function, and discusses the author's future research to develop additional algorithms and data structures for ACDC.

  9. Unimolecular Reaction Pathways of a γ-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grambow, Colin A.; Jamal, Adeel; Li, Yi -Pei

    Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The presentmore » joint approach significantly outperforms previous manual and automated transition-state searches – 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Altogether, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).« less

  10. Unimolecular Reaction Pathways of a γ-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods

    DOE PAGES

    Grambow, Colin A.; Jamal, Adeel; Li, Yi -Pei; ...

    2017-12-22

    Ketohydroperoxides are important in liquid-phase autoxidation and in gas-phase partial oxidation and pre-ignition chemistry, but because of their low concentration, instability, and various analytical chemistry limitations, it has been challenging to experimentally determine their reactivity, and only a few pathways are known. In the present work, 75 elementary-step unimolecular reactions of the simplest γ-ketohydroperoxide, 3-hydroperoxypropanal, were discovered by a combination of density functional theory with several automated transition-state search algorithms: the Berny algorithm coupled with the freezing string method, single- and double-ended growing string methods, the heuristic KinBot algorithm, and the single-component artificial force induced reaction method (SC-AFIR). The presentmore » joint approach significantly outperforms previous manual and automated transition-state searches – 68 of the reactions of γ-ketohydroperoxide discovered here were previously unknown and completely unexpected. All of the methods found the lowest-energy transition state, which corresponds to the first step of the Korcek mechanism, but each algorithm except for SC-AFIR detected several reactions not found by any of the other methods. We show that the low-barrier chemical reactions involve promising new chemistry that may be relevant in atmospheric and combustion systems. Our study highlights the complexity of chemical space exploration and the advantage of combined application of several approaches. Altogether, the present work demonstrates both the power and the weaknesses of existing fully automated approaches for reaction discovery which suggest possible directions for further method development and assessment in order to enable reliable discovery of all important reactions of any specified reactant(s).« less

  11. 3D landmarking in multiexpression face analysis: a preliminary study on eyebrows and mouth.

    PubMed

    Vezzetti, Enrico; Marcolin, Federica

    2014-08-01

    The application of three-dimensional (3D) facial analysis and landmarking algorithms in the field of maxillofacial surgery and other medical applications, such as diagnosis of diseases by facial anomalies and dysmorphism, has gained a lot of attention. In a previous work, we used a geometric approach to automatically extract some 3D facial key points, called landmarks, working in the differential geometry domain, through the coefficients of fundamental forms, principal curvatures, mean and Gaussian curvatures, derivatives, shape and curvedness indexes, and tangent map. In this article we describe the extension of our previous landmarking algorithm, which is now able to extract eyebrows and mouth landmarks using both old and new meshes. The algorithm has been tested on our face database and on the public Bosphorus 3D database. We chose to work on the mouth and eyebrows as a separate study because of the role that these parts play in facial expressions. In fact, since the mouth is the part of the face that moves the most and affects mainly facial expressions, extracting mouth landmarks from various facial poses means that the newly developed algorithm is pose-independent. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .

  12. An algorithm to identify rheumatoid arthritis in primary care: a Clinical Practice Research Datalink study

    PubMed Central

    Muller, Sara; Hider, Samantha L; Raza, Karim; Stack, Rebecca J; Hayward, Richard A; Mallen, Christian D

    2015-01-01

    Objective Rheumatoid arthritis (RA) is a multisystem, inflammatory disorder associated with increased levels of morbidity and mortality. While much research into the condition is conducted in the secondary care setting, routinely collected primary care databases provide an important source of research data. This study aimed to update an algorithm to define RA that was previously developed and validated in the General Practice Research Database (GPRD). Methods The original algorithm consisted of two criteria. Individuals meeting at least one were considered to have RA. Criterion 1: ≥1 RA Read code and a disease modifying antirheumatic drug (DMARD) without an alternative indication. Criterion 2: ≥2 RA Read codes, with at least one ‘strong’ code and no alternative diagnoses. Lists of codes for consultations and prescriptions were obtained from the authors of the original algorithm where these were available, or compiled based on the original description and clinical knowledge. 4161 people with a first Read code for RA between 1 January 2010 and 31 December 2012 were selected from the Clinical Practice Research Datalink (CPRD, successor to the GPRD), and the criteria applied. Results Code lists were updated for the introduction of new Read codes and biological DMARDs. 3577/4161 (86%) of people met the updated algorithm for RA, compared to 61% in the original development study. 62.8% of people fulfilled both Criterion 1 and Criterion 2. Conclusions Those wishing to define RA in the CPRD, should consider using this updated algorithm, rather than a single RA code, if they wish to identify only those who are most likely to have RA. PMID:26700281

  13. Novel search algorithms for a mid-infrared spectral library of cotton contaminants.

    PubMed

    Loudermilk, J Brian; Himmelsbach, David S; Barton, Franklin E; de Haseth, James A

    2008-06-01

    During harvest, a variety of plant based contaminants are collected along with cotton lint. The USDA previously created a mid-infrared, attenuated total reflection (ATR), Fourier transform infrared (FT-IR) spectral library of cotton contaminants for contaminant identification as the contaminants have negative impacts on yarn quality. This library has shown impressive identification rates for extremely similar cellulose based contaminants in cases where the library was representative of the samples searched. When spectra of contaminant samples from crops grown in different geographic locations, seasons, and conditions and measured with a different spectrometer and accessories were searched, identification rates for standard search algorithms decreased significantly. Six standard algorithms were examined: dot product, correlation, sum of absolute values of differences, sum of the square root of the absolute values of differences, sum of absolute values of differences of derivatives, and sum of squared differences of derivatives. Four categories of contaminants derived from cotton plants were considered: leaf, stem, seed coat, and hull. Experiments revealed that the performance of the standard search algorithms depended upon the category of sample being searched and that different algorithms provided complementary information about sample identity. These results indicated that choosing a single standard algorithm to search the library was not possible. Three voting scheme algorithms based on result frequency, result rank, category frequency, or a combination of these factors for the results returned by the standard algorithms were developed and tested for their capability to overcome the unpredictability of the standard algorithms' performances. The group voting scheme search was based on the number of spectra from each category of samples represented in the library returned in the top ten results of the standard algorithms. This group algorithm was able to identify correctly as many test spectra as the best standard algorithm without relying on human choice to select a standard algorithm to perform the searches.

  14. Modelling soil water retention using support vector machines with genetic algorithm optimisation.

    PubMed

    Lamorski, Krzysztof; Sławiński, Cezary; Moreno, Felix; Barna, Gyöngyi; Skierucha, Wojciech; Arrue, José L

    2014-01-01

    This work presents point pedotransfer function (PTF) models of the soil water retention curve. The developed models allowed for estimation of the soil water content for the specified soil water potentials: -0.98, -3.10, -9.81, -31.02, -491.66, and -1554.78 kPa, based on the following soil characteristics: soil granulometric composition, total porosity, and bulk density. Support Vector Machines (SVM) methodology was used for model development. A new methodology for elaboration of retention function models is proposed. Alternative to previous attempts known from literature, the ν-SVM method was used for model development and the results were compared with the formerly used the C-SVM method. For the purpose of models' parameters search, genetic algorithms were used as an optimisation framework. A new form of the aim function used for models parameters search is proposed which allowed for development of models with better prediction capabilities. This new aim function avoids overestimation of models which is typically encountered when root mean squared error is used as an aim function. Elaborated models showed good agreement with measured soil water retention data. Achieved coefficients of determination values were in the range 0.67-0.92. Studies demonstrated usability of ν-SVM methodology together with genetic algorithm optimisation for retention modelling which gave better performing models than other tested approaches.

  15. Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed

    NASA Technical Reports Server (NTRS)

    Tian, Ye; Song, Qi; Cattafesta, Louis

    2005-01-01

    This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.

  16. Boosting with Averaged Weight Vectors

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the previous base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. Some researchers have pointed out the intuition that it is probably better to construct a distribution that is orthogonal to the mistake vectors of all the previous base models, but that this is not always possible. We present an algorithm that attempts to come as close as possible to this goal in an efficient manner. We present experimental results demonstrating significant improvement over AdaBoost and the Totally Corrective boosting algorithm, which also attempts to satisfy this goal.

  17. A semi-learning algorithm for noise rejection: an fNIRS study on ADHD children

    NASA Astrophysics Data System (ADS)

    Sutoko, Stephanie; Funane, Tsukasa; Katura, Takusige; Sato, Hiroki; Kiguchi, Masashi; Maki, Atsushi; Monden, Yukifumi; Nagashima, Masako; Yamagata, Takanori; Dan, Ippeita

    2017-02-01

    In pediatrics studies, the quality of functional near infrared spectroscopy (fNIRS) signals is often reduced by motion artifacts. These artifacts likely mislead brain functionality analysis, causing false discoveries. While noise correction methods and their performance have been investigated, these methods require several parameter assumptions that apparently result in noise overfitting. In contrast, the rejection of noisy signals serves as a preferable method because it maintains the originality of the signal waveform. Here, we describe a semi-learning algorithm to detect and eliminate noisy signals. The algorithm dynamically adjusts noise detection according to the predetermined noise criteria, which are spikes, unusual activation values (averaged amplitude signals within the brain activation period), and high activation variances (among trials). Criteria were sequentially organized in the algorithm and orderly assessed signals based on each criterion. By initially setting an acceptable rejection rate, particular criteria causing excessive data rejections are neglected, whereas others with tolerable rejections practically eliminate noises. fNIRS data measured during the attention response paradigm (oddball task) in children with attention deficit/hyperactivity disorder (ADHD) were utilized to evaluate and optimize the algorithm's performance. This algorithm successfully substituted the visual noise identification done in the previous studies and consistently found significantly lower activation of the right prefrontal and parietal cortices in ADHD patients than in typical developing children. Thus, we conclude that the semi-learning algorithm confers more objective and standardized judgment for noise rejection and presents a promising alternative to visual noise rejection

  18. Abbreviation definition identification based on automatic precision estimates.

    PubMed

    Sohn, Sunghwan; Comeau, Donald C; Kim, Won; Wilbur, W John

    2008-09-25

    The rapid growth of biomedical literature presents challenges for automatic text processing, and one of the challenges is abbreviation identification. The presence of unrecognized abbreviations in text hinders indexing algorithms and adversely affects information retrieval and extraction. Automatic abbreviation definition identification can help resolve these issues. However, abbreviations and their definitions identified by an automatic process are of uncertain validity. Due to the size of databases such as MEDLINE only a small fraction of abbreviation-definition pairs can be examined manually. An automatic way to estimate the accuracy of abbreviation-definition pairs extracted from text is needed. In this paper we propose an abbreviation definition identification algorithm that employs a variety of strategies to identify the most probable abbreviation definition. In addition our algorithm produces an accuracy estimate, pseudo-precision, for each strategy without using a human-judged gold standard. The pseudo-precisions determine the order in which the algorithm applies the strategies in seeking to identify the definition of an abbreviation. On the Medstract corpus our algorithm produced 97% precision and 85% recall which is higher than previously reported results. We also annotated 1250 randomly selected MEDLINE records as a gold standard. On this set we achieved 96.5% precision and 83.2% recall. This compares favourably with the well known Schwartz and Hearst algorithm. We developed an algorithm for abbreviation identification that uses a variety of strategies to identify the most probable definition for an abbreviation and also produces an estimated accuracy of the result. This process is purely automatic.

  19. A Systematic Investigation of Computation Models for Predicting Adverse Drug Reactions (ADRs)

    PubMed Central

    Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong

    2014-01-01

    Background Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. Principal Findings In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Conclusion Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms. PMID:25180585

  20. Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data

    NASA Technical Reports Server (NTRS)

    Carpenter, P. K.

    2005-01-01

    Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors.

  1. Hazardous Traffic Event Detection Using Markov Blanket and Sequential Minimal Optimization (MB-SMO)

    PubMed Central

    Yan, Lixin; Zhang, Yishi; He, Yi; Gao, Song; Zhu, Dunyao; Ran, Bin; Wu, Qing

    2016-01-01

    The ability to identify hazardous traffic events is already considered as one of the most effective solutions for reducing the occurrence of crashes. Only certain particular hazardous traffic events have been studied in previous studies, which were mainly based on dedicated video stream data and GPS data. The objective of this study is twofold: (1) the Markov blanket (MB) algorithm is employed to extract the main factors associated with hazardous traffic events; (2) a model is developed to identify hazardous traffic event using driving characteristics, vehicle trajectory, and vehicle position data. Twenty-two licensed drivers were recruited to carry out a natural driving experiment in Wuhan, China, and multi-sensor information data were collected for different types of traffic events. The results indicated that a vehicle’s speed, the standard deviation of speed, the standard deviation of skin conductance, the standard deviation of brake pressure, turn signal, the acceleration of steering, the standard deviation of acceleration, and the acceleration in Z (G) have significant influences on hazardous traffic events. The sequential minimal optimization (SMO) algorithm was adopted to build the identification model, and the accuracy of prediction was higher than 86%. Moreover, compared with other detection algorithms, the MB-SMO algorithm was ranked best in terms of the prediction accuracy. The conclusions can provide reference evidence for the development of dangerous situation warning products and the design of intelligent vehicles. PMID:27420073

  2. Hazardous Traffic Event Detection Using Markov Blanket and Sequential Minimal Optimization (MB-SMO).

    PubMed

    Yan, Lixin; Zhang, Yishi; He, Yi; Gao, Song; Zhu, Dunyao; Ran, Bin; Wu, Qing

    2016-07-13

    The ability to identify hazardous traffic events is already considered as one of the most effective solutions for reducing the occurrence of crashes. Only certain particular hazardous traffic events have been studied in previous studies, which were mainly based on dedicated video stream data and GPS data. The objective of this study is twofold: (1) the Markov blanket (MB) algorithm is employed to extract the main factors associated with hazardous traffic events; (2) a model is developed to identify hazardous traffic event using driving characteristics, vehicle trajectory, and vehicle position data. Twenty-two licensed drivers were recruited to carry out a natural driving experiment in Wuhan, China, and multi-sensor information data were collected for different types of traffic events. The results indicated that a vehicle's speed, the standard deviation of speed, the standard deviation of skin conductance, the standard deviation of brake pressure, turn signal, the acceleration of steering, the standard deviation of acceleration, and the acceleration in Z (G) have significant influences on hazardous traffic events. The sequential minimal optimization (SMO) algorithm was adopted to build the identification model, and the accuracy of prediction was higher than 86%. Moreover, compared with other detection algorithms, the MB-SMO algorithm was ranked best in terms of the prediction accuracy. The conclusions can provide reference evidence for the development of dangerous situation warning products and the design of intelligent vehicles.

  3. Development of an acquisition protocol and a segmentation algortihm for wounds of cutaneous Leishmaniasis in digital images

    NASA Astrophysics Data System (ADS)

    Diaz, Kristians; Castañeda, Benjamín; Miranda, César; Lavarello, Roberto; Llanos, Alejandro

    2010-03-01

    We developed a protocol for the acquisition of digital images and an algorithm for a color-based automatic segmentation of cutaneous lesions of Leishmaniasis. The protocol for image acquisition provides control over the working environment to manipulate brightness, lighting and undesirable shadows on the injury using indirect lighting. Also, this protocol was used to accurately calculate the area of the lesion expressed in mm2 even in curved surfaces by combining the information from two consecutive images. Different color spaces were analyzed and compared using ROC curves in order to determine the color layer with the highest contrast between the background and the wound. The proposed algorithm is composed of three stages: (1) Location of the wound determined by threshold and mathematical morphology techniques to the H layer of the HSV color space, (2) Determination of the boundaries of the wound by analyzing the color characteristics in the YIQ space based on masks (for the wound and the background) estimated from the first stage, and (3) Refinement of the calculations obtained on the previous stages by using the discrete dynamic contours algorithm. The segmented regions obtained with the algorithm were compared with manual segmentations made by a medical specialist. Broadly speaking, our results support that color provides useful information during segmentation and measurement of wounds of cutaneous Leishmaniasis. Results from ten images showed 99% specificity, 89% sensitivity, and 98% accuracy.

  4. Integration of Irma tactical scene generator into directed-energy weapon system simulation

    NASA Astrophysics Data System (ADS)

    Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.

    2003-08-01

    Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.

  5. Unsupervised classification of variable stars

    NASA Astrophysics Data System (ADS)

    Valenzuela, Lucas; Pichara, Karim

    2018-03-01

    During the past 10 years, a considerable amount of effort has been made to develop algorithms for automatic classification of variable stars. That has been primarily achieved by applying machine learning methods to photometric data sets where objects are represented as light curves. Classifiers require training sets to learn the underlying patterns that allow the separation among classes. Unfortunately, building training sets is an expensive process that demands a lot of human efforts. Every time data come from new surveys; the only available training instances are the ones that have a cross-match with previously labelled objects, consequently generating insufficient training sets compared with the large amounts of unlabelled sources. In this work, we present an algorithm that performs unsupervised classification of variable stars, relying only on the similarity among light curves. We tackle the unsupervised classification problem by proposing an untraditional approach. Instead of trying to match classes of stars with clusters found by a clustering algorithm, we propose a query-based method where astronomers can find groups of variable stars ranked by similarity. We also develop a fast similarity function specific for light curves, based on a novel data structure that allows scaling the search over the entire data set of unlabelled objects. Experiments show that our unsupervised model achieves high accuracy in the classification of different types of variable stars and that the proposed algorithm scales up to massive amounts of light curves.

  6. Predictive Cache Modeling and Analysis

    DTIC Science & Technology

    2011-11-01

    metaheuristic /bin-packing algorithm to optimize task placement based on task communication characterization. Our previous work on task allocation showed...Cache Miss Minimization Technology To efficiently explore combinations and discover nearly-optimal task-assignment algorithms , we extended to our...it was possible to use our algorithmic techniques to decrease network bandwidth consumption by ~25%. In this effort, we adapted these existing

  7. Space Shuttle propulsion parameter estimation using optimal estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This fourth monthly progress report again contains corrections and additions to the previously submitted reports. The additions include a simplified SRB model that is directly incorporated into the estimation algorithm and provides the required partial derivatives. The resulting partial derivatives are analytical rather than numerical as would be the case using the SOBER routines. The filter and smoother routine developments have continued. These routines are being checked out.

  8. An Investigation of Run-Time Operations in a Heterogeneous Desktop Grid Environment: The Texas Tech University Desktop Grid Case Study

    ERIC Educational Resources Information Center

    Perez, Jerry F.

    2013-01-01

    The goal of the dissertation study was to evaluate the existing DG scheduling algorithm. The evaluation was developed through previously explored simulated analyses of DGs performed by researchers in the field of DG scheduling optimization and to improve the current RT framework of the DG at TTU. The author analyzed the RT of an actual DG, thereby…

  9. The symbolic computation of series solutions to ordinary differential equations using trees (extended abstract)

    NASA Technical Reports Server (NTRS)

    Grossman, Robert

    1991-01-01

    Algorithms previously developed by the author give formulas which can be used for the efficient symbolic computation of series expansions to solutions of nonlinear systems of ordinary differential equations. As a by product of this analysis, formulas are derived which relate to trees to the coefficients of the series expansions, similar to the work of Leroux and Viennot, and Lamnabhi, Leroux and Viennot.

  10. A Fast, Automatic Segmentation Algorithm for Locating and Delineating Touching Cell Boundaries in Imaged Histopathology

    PubMed Central

    Qi, Xin; Xing, Fuyong; Foran, David J.; Yang, Lin

    2013-01-01

    Summary Background Automated analysis of imaged histopathology specimens could potentially provide support for improved reliability in detection and classification in a range of investigative and clinical cancer applications. Automated segmentation of cells in the digitized tissue microarray (TMA) is often the prerequisite for quantitative analysis. However overlapping cells usually bring significant challenges for traditional segmentation algorithms. Objectives In this paper, we propose a novel, automatic algorithm to separate overlapping cells in stained histology specimens acquired using bright-field RGB imaging. Methods It starts by systematically identifying salient regions of interest throughout the image based upon their underlying visual content. The segmentation algorithm subsequently performs a quick, voting based seed detection. Finally, the contour of each cell is obtained using a repulsive level set deformable model using the seeds generated in the previous step. We compared the experimental results with the most current literature, and the pixel wise accuracy between human experts' annotation and those generated using the automatic segmentation algorithm. Results The method is tested with 100 image patches which contain more than 1000 overlapping cells. The overall precision and recall of the developed algorithm is 90% and 78%, respectively. We also implement the algorithm on GPU. The parallel implementation is 22 times faster than its C/C++ sequential implementation. Conclusion The proposed overlapping cell segmentation algorithm can accurately detect the center of each overlapping cell and effectively separate each of the overlapping cells. GPU is proven to be an efficient parallel platform for overlapping cell segmentation. PMID:22526139

  11. Flight Evaluation of an Aircraft with Side and Center Stick Controllers and Rate-Limited Ailerons

    NASA Technical Reports Server (NTRS)

    Deppe, P. R.; Chalk, C. R.; Shafer, M. F.

    1996-01-01

    As part of an ongoing government and industry effort to study the flying qualities of aircraft with rate-limited control surface actuators, two studies were previously flown to examine an algorithm developed to reduce the tendency for pilot-induced oscillation when rate limiting occurs. This algorithm, when working properly, greatly improved the performance of the aircraft in the first study. In the second study, however, the algorithm did not initially offer as much improvement. The differences between the two studies caused concern. The study detailed in this paper was performed to determine whether the performance of the algorithm was affected by the characteristics of the cockpit controllers. Time delay and flight control system noise were also briefly evaluated. An in-flight simulator, the Calspan Learjet 25, was programmed with a low roll actuator rate limit, and the algorithm was programmed into the flight control system. Side- and center-stick controllers, force and position command signals, a rate-limited feel system, a low-frequency feel system, and a feel system damper were evaluated. The flight program consisted of four flights and 38 evaluations of test configurations. Performance of the algorithm was determined to be unaffected by using side- or center-stick controllers or force or position command signals. The rate-limited feel system performed as well as the rate-limiting algorithm but was disliked by the pilots. The low-frequency feel system and the feel system damper were ineffective. Time delay and noise were determined to degrade the performance of the algorithm.

  12. Reference set design for relational modeling of fuzzy systems

    NASA Astrophysics Data System (ADS)

    Lapohos, Tibor; Buchal, Ralph O.

    1994-10-01

    One of the keys to the successful relational modeling of fuzzy systems is the proper design of fuzzy reference sets. This has been discussed throughout the literature. In the frame of modeling a stochastic system, we analyze the problem numerically. First, we briefly describe the relational model and present the performance of the modeling in the most trivial case: the reference sets are triangle shaped. Next, we present a known fuzzy reference set generator algorithm (FRSGA) which is based on the fuzzy c-means (Fc-M) clustering algorithm. In the second section of this chapter we improve the previous FRSGA by adding a constraint to the Fc-M algorithm (modified Fc-M or MFc-M): two cluster centers are forced to coincide with the domain limits. This is needed to obtain properly shaped extreme linguistic reference values. We apply this algorithm to uniformly discretized domains of the variables involved. The fuzziness of the reference sets produced by both Fc-M and MFc-M is determined by a parameter, which in our experiments is modified iteratively. Each time, a new model is created and its performance analyzed. For certain algorithm parameter values both of these two algorithms have shortcomings. To eliminate the drawbacks of these two approaches, we develop a completely new generator algorithm for reference sets which we call Polyline. This algorithm and its performance are described in the last section. In all three cases, the modeling is performed for a variety of operators used in the inference engine and two defuzzification methods. Therefore our results depend neither on the system model order nor the experimental setup.

  13. A semianalytical MERIS green-red band algorithm for identifying phytoplankton bloom types in the East China Sea

    NASA Astrophysics Data System (ADS)

    Tao, Bangyi; Mao, Zhihua; Lei, Hui; Pan, Delu; Bai, Yan; Zhu, Qiankun; Zhang, Zhenglong

    2017-03-01

    A new bio-optical algorithm based on the green and red bands of the Medium Resolution Imaging Spectrometer (MERIS) is developed to differentiate the harmful algal blooms of Prorocentrum donghaiense Lu (P. donghaiense) from diatom blooms in the East China Sea (ECS). Specifically, a novel green-red index (GRI), actually an indicator for a(510) of bloom waters, is retrieved from a semianalytical bio-optical model based on the green and red bands of phytoplankton-absorption and backscattering spectra. In addition, a MERIS-based diatom index (DIMERIS) is derived by adjusting a Moderate Resolution Imaging Spectroradiometer (MODIS) diatom index algorithm to the MERIS bands. Finally, bloom types are effectively differentiated in the feature spaces of the green-red index and DIMERIS. Compared with three previous MERIS-based quasi-analytical algorithm (QAA) algorithms and three existing classification methods, the proposed GRI and classification method have the best discrimination performance when using the MERIS data. Further validations of the algorithm by using several MERIS image series and near-concurrent in situ observations indicate that our algorithm yields the best classification accuracy and thus can be used to reliably detect and classify P. donghaiense and diatom blooms in the ECS. This is the first time that the MERIS data have been used to identify bloom types in the ECS. Our algorithm can also be used for the successor of the MERIS, the Ocean and Land Color Instrument, which will aid the long-term observation of species succession in the ECS.

  14. Mining Peripheral Arterial Disease Cases from Narrative Clinical Notes Using Natural Language Processing

    PubMed Central

    Afzal, Naveed; Sohn, Sunghwan; Abram, Sara; Scott, Christopher G.; Chaudhry, Rajeev; Liu, Hongfang; Kullo, Iftikhar J.; Arruda-Olson, Adelaide M.

    2016-01-01

    Objective Lower extremity peripheral arterial disease (PAD) is highly prevalent and affects millions of individuals worldwide. We developed a natural language processing (NLP) system for automated ascertainment of PAD cases from clinical narrative notes and compared the performance of the NLP algorithm to billing code algorithms, using ankle-brachial index (ABI) test results as the gold standard. Methods We compared the performance of the NLP algorithm to 1) results of gold standard ABI; 2) previously validated algorithms based on relevant ICD-9 diagnostic codes (simple model) and 3) a combination of ICD-9 codes with procedural codes (full model). A dataset of 1,569 PAD patients and controls was randomly divided into training (n= 935) and testing (n= 634) subsets. Results We iteratively refined the NLP algorithm in the training set including narrative note sections, note types and service types, to maximize its accuracy. In the testing dataset, when compared with both simple and full models, the NLP algorithm had better accuracy (NLP: 91.8%, full model: 81.8%, simple model: 83%, P<.001), PPV (NLP: 92.9%, full model: 74.3%, simple model: 79.9%, P<.001), and specificity (NLP: 92.5%, full model: 64.2%, simple model: 75.9%, P<.001). Conclusions A knowledge-driven NLP algorithm for automatic ascertainment of PAD cases from clinical notes had greater accuracy than billing code algorithms. Our findings highlight the potential of NLP tools for rapid and efficient ascertainment of PAD cases from electronic health records to facilitate clinical investigation and eventually improve care by clinical decision support. PMID:28189359

  15. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  16. Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study.

    PubMed

    Alday, Erick A Perez; Colman, Michael A; Langley, Philip; Zhang, Henggui

    2017-03-01

    Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electrical activity in the atria, generally associated with erratic excitation underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiological studies have shown an increase in AF prevalence in the developed world associated with an ageing society, highlighting the need for effective treatment options. Catheter ablation therapy, commonly used in the treatment of AF, requires spatial information on atrial electrical excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal associated with atrial activation compared to sinus rhythm, but has limitations in providing specific spatial information. There is therefore a pressing need to develop novel methods to identify and locate the origin of arrhythmic excitation. Invasive methods provide direct information on atrial activity, but may induce clinical complications. Non-invasive methods avoid such complications, but their development presents a greater challenge due to the non-direct nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In this study, we used a biophysically detailed model of the human atria and torso to investigate the correlation between the morphology of the ECG signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then constructed from this correlation. The algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm, respectively. The general approach allows its application to any multi-lead ECG system. This represents a significant extension to our previously developed algorithms to predict the AF origins in association with focal activities.

  17. Comparison of two matrix data structures for advanced CSM testbed applications

    NASA Technical Reports Server (NTRS)

    Regelbrugge, M. E.; Brogan, F. A.; Nour-Omid, B.; Rankin, C. C.; Wright, M. A.

    1989-01-01

    The first section describes data storage schemes presently used by the Computational Structural Mechanics (CSM) testbed sparse matrix facilities and similar skyline (profile) matrix facilities. The second section contains a discussion of certain features required for the implementation of particular advanced CSM algorithms, and how these features might be incorporated into the data storage schemes described previously. The third section presents recommendations, based on the discussions of the prior sections, for directing future CSM testbed development to provide necessary matrix facilities for advanced algorithm implementation and use. The objective is to lend insight into the matrix structures discussed and to help explain the process of evaluating alternative matrix data structures and utilities for subsequent use in the CSM testbed.

  18. Research and Development of Automated Eddy Current Testing for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Carver, Kyle L.; Saulsberry, Regor L.; Nichols, Charles T.; Spencer, Paul R.; Lucero, Ralph E.

    2012-01-01

    Eddy current testing (ET) was used to scan bare metallic liners used in the fabrication of composite overwrapped pressure vessels (COPVs) for flaws which could result in premature failure of the vessel. The main goal of the project was to make improvements in the areas of scan signal to noise ratio, sensitivity of flaw detection, and estimation of flaw dimensions. Scan settings were optimized resulting in an increased signal to noise ratio. Previously undiscovered flaw indications were observed and investigated. Threshold criteria were determined for the system software's flaw report and estimation of flaw dimensions were brought to an acceptable level of accuracy. Computer algorithms were written to import data for filtering and a numerical derivative filtering algorithm was evaluated.

  19. Wavelet transform fast inverse light scattering analysis for size determination of spherical scatterers

    PubMed Central

    Ho, Derek; Kim, Sanghoon; Drake, Tyler K.; Eldridge, Will J.; Wax, Adam

    2014-01-01

    We present a fast approach for size determination of spherical scatterers using the continuous wavelet transform of the angular light scattering profile to address the computational limitations of previously developed sizing techniques. The potential accuracy, speed, and robustness of the algorithm were determined in simulated models of scattering by polystyrene beads and cells. The algorithm was tested experimentally on angular light scattering data from polystyrene bead phantoms and MCF-7 breast cancer cells using a 2D a/LCI system. Theoretical sizing of simulated profiles of beads and cells produced strong fits between calculated and actual size (r2 = 0.9969 and r2 = 0.9979 respectively), and experimental size determinations were accurate to within one micron. PMID:25360350

  20. Intermediary Variables and Algorithm Parameters for an Electronic Algorithm for Intravenous Insulin Infusion

    PubMed Central

    Braithwaite, Susan S.; Godara, Hemant; Song, Julie; Cairns, Bruce A.; Jones, Samuel W.; Umpierrez, Guillermo E.

    2009-01-01

    Background Algorithms for intravenous insulin infusion may assign the infusion rate (IR) by a two-step process. First, the previous insulin infusion rate (IRprevious) and the rate of change of blood glucose (BG) from the previous iteration of the algorithm are used to estimate the maintenance rate (MR) of insulin infusion. Second, the insulin IR for the next iteration (IRnext) is assigned to be commensurate with the MR and the distance of the current blood glucose (BGcurrent) from target. With use of a specific set of algorithm parameter values, a family of iso-MR curves is created, each giving IR as a function of MR and BG. Method To test the feasibility of estimating MR from the IRprevious and the previous rate of change of BG, historical hyperglycemic data points were used to compute the “maintenance rate cross step next estimate” (MRcsne). Historical cases had been treated with intravenous insulin infusion using a tabular protocol that estimated MR according to column-change rules. The mean IR on historical stable intervals (MRtrue), an estimate of the biologic value of MR, was compared to MRcsne during the hyperglycemic iteration immediately preceding the stable interval. Hypothetically calculated MRcsne-dependent IRnext was compared to IRnext assigned historically. An expanded theory of an algorithm is developed mathematically. Practical recommendations for computerization are proposed. Results The MRtrue determined on each of 30 stable intervals and the MRcsne during the immediately preceding hyperglycemic iteration differed, having medians with interquartile ranges 2.7 (1.2–3.7) and 3.2 (1.5–4.6) units/h, respectively. However, these estimates of MR were strongly correlated (R2 = 0.88). During hyperglycemia at 941 time points the IRnext assigned historically and the hypothetically calculated MRcsne-dependent IRnext differed, having medians with interquartile ranges 4.0 (3.0–6.0) and 4.6 (3.0–6.8) units/h, respectively, but these paired values again were correlated (R2 = 0.87). This article describes a programmable algorithm for intravenous insulin infusion. The fundamental equation of the algorithm gives the relationship among IR; the biologic parameter MR; and two variables expressing an instantaneous rate of change of BG, one of which must be zero at any given point in time and the other positive, negative, or zero, namely the rate of change of BG from below target (rate of ascent) and the rate of change of BG from above target (rate of descent). In addition to user-definable parameters, three special algorithm parameters discoverable in nature are described: the maximum rate of the spontaneous ascent of blood glucose during nonhypoglycemia, the glucose per daily dose of insulin exogenously mediated, and the MR at given patient time points. User-assignable parameters will facilitate adaptation to different patient populations. Conclusions An algorithm is described that estimates MR prior to the attainment of euglycemia and computes MR-dependent values for IRnext. Design features address glycemic variability, promote safety with respect to hypoglycemia, and define a method for specifying glycemic targets that are allowed to differ according to patient condition. PMID:20144334

  1. Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria

    PubMed Central

    Farasat, Iman; Kushwaha, Manish; Collens, Jason; Easterbrook, Michael; Guido, Matthew; Salis, Howard M

    2014-01-01

    Developing predictive models of multi-protein genetic systems to understand and optimize their behavior remains a combinatorial challenge, particularly when measurement throughput is limited. We developed a computational approach to build predictive models and identify optimal sequences and expression levels, while circumventing combinatorial explosion. Maximally informative genetic system variants were first designed by the RBS Library Calculator, an algorithm to design sequences for efficiently searching a multi-protein expression space across a > 10,000-fold range with tailored search parameters and well-predicted translation rates. We validated the algorithm's predictions by characterizing 646 genetic system variants, encoded in plasmids and genomes, expressed in six gram-positive and gram-negative bacterial hosts. We then combined the search algorithm with system-level kinetic modeling, requiring the construction and characterization of 73 variants to build a sequence-expression-activity map (SEAMAP) for a biosynthesis pathway. Using model predictions, we designed and characterized 47 additional pathway variants to navigate its activity space, find optimal expression regions with desired activity response curves, and relieve rate-limiting steps in metabolism. Creating sequence-expression-activity maps accelerates the optimization of many protein systems and allows previous measurements to quantitatively inform future designs. PMID:24952589

  2. Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data.

    PubMed

    Kroenke, Candyce H; Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J

    2016-03-01

    The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women's Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms-one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV-using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this "triangulation." Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. A Nonlinear, Human-Centered Approach to Motion Cueing with a Neurocomputing Solver

    NASA Technical Reports Server (NTRS)

    Telban, Robert J.; Cardullo, Frank M.; Houck, Jacob A.

    2002-01-01

    This paper discusses the continuation of research into the development of new motion cueing algorithms first reported in 1999. In this earlier work, two viable approaches to motion cueing were identified: the coordinated adaptive washout algorithm or 'adaptive algorithm', and the 'optimal algorithm'. In this study, a novel approach to motion cueing is discussed that would combine features of both algorithms. The new algorithm is formulated as a linear optimal control problem, incorporating improved vestibular models and an integrated visual-vestibular motion perception model previously reported. A control law is generated from the motion platform states, resulting in a set of nonlinear cueing filters. The time-varying control law requires the matrix Riccati equation to be solved in real time. Therefore, in order to meet the real time requirement, a neurocomputing approach is used to solve this computationally challenging problem. Single degree-of-freedom responses for the nonlinear algorithm were generated and compared to the adaptive and optimal algorithms. Results for the heave mode show the nonlinear algorithm producing a motion cue with a time-varying washout, sustaining small cues for a longer duration and washing out larger cues more quickly. The addition of the optokinetic influence from the integrated perception model was shown to improve the response to a surge input, producing a specific force response with no steady-state washout. Improved cues are also observed for responses to a sway input. Yaw mode responses reveal that the nonlinear algorithm improves the motion cues by reducing the magnitude of negative cues. The effectiveness of the nonlinear algorithm as compared to the adaptive and linear optimal algorithms will be evaluated on a motion platform, the NASA Langley Research Center Visual Motion Simulator (VMS), and ultimately the Cockpit Motion Facility (CMF) with a series of pilot controlled maneuvers. A proposed experimental procedure is discussed. The results of this evaluation will be used to assess motion cueing performance.

  4. Cooperative organic mine avoidance path planning

    NASA Astrophysics Data System (ADS)

    McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David

    2005-06-01

    The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.

  5. Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles

    PubMed Central

    Thaden, Joshua T; Mogno, Ilaria; Wierzbowski, Jamey; Cottarel, Guillaume; Kasif, Simon; Collins, James J; Gardner, Timothy S

    2007-01-01

    Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data. PMID:17214507

  6. Automated identification of basalt spectra in Clementine lunar data

    NASA Astrophysics Data System (ADS)

    Antonenko, I.; Osinski, G. R.

    2011-06-01

    The identification of fresh basalt spectra plays an important role in lunar stratigraphic studies; however, the process can be time consuming and labor intensive. Thus motivated, we developed an empirically derived algorithm for the automated identification of fresh basalt spectra from Clememtine UVVIS data. This algorithm has the following four parameters and limits: BC Ratio=3(R950-R900)/(R900-R750)<1.1, CD Delta=(R1000-R950)/R750-1.09(R950-R900)/R750>0.003 and <0.06, B Slope=(R900-R750)/(3R750)<-0.012, and Band Depth=(R750-R950)/(R750-R415)>0.1, where R750 represents the unnormalized reflectance of the 750 nm Clementine band, and so on. Algorithm results were found to be accurate to within an error of 4.5% with respect to visual classification, though olivine spectra may be under-represented. Overall, fresh basalts identified by the algorithm are consistent with expectations and previous work in the Mare Humorum area, though accuracy in other areas has not yet been tested. Great potential exists in using this algorithm for identifying craters that have excavated basalts, estimating the thickness of mare and cryptomare deposits, and other applications.

  7. Proposing a new iterative learning control algorithm based on a non-linear least square formulation - Minimising draw-in errors

    NASA Astrophysics Data System (ADS)

    Endelt, B.

    2017-09-01

    Forming operation are subject to external disturbances and changing operating conditions e.g. new material batch, increasing tool temperature due to plastic work, material properties and lubrication is sensitive to tool temperature. It is generally accepted that forming operations are not stable over time and it is not uncommon to adjust the process parameters during the first half hour production, indicating that process instability is gradually developing over time. Thus, in-process feedback control scheme might not-be necessary to stabilize the process and an alternative approach is to apply an iterative learning algorithm, which can learn from previously produced parts i.e. a self learning system which gradually reduces error based on historical process information. What is proposed in the paper is a simple algorithm which can be applied to a wide range of sheet-metal forming processes. The input to the algorithm is the final flange edge geometry and the basic idea is to reduce the least-square error between the current flange geometry and a reference geometry using a non-linear least square algorithm. The ILC scheme is applied to a square deep-drawing and the Numisheet’08 S-rail benchmark problem, the numerical tests shows that the proposed control scheme is able control and stabilise both processes.

  8. Ensemble candidate classification for the LOTAAS pulsar survey

    NASA Astrophysics Data System (ADS)

    Tan, C. M.; Lyon, R. J.; Stappers, B. W.; Cooper, S.; Hessels, J. W. T.; Kondratiev, V. I.; Michilli, D.; Sanidas, S.

    2018-03-01

    One of the biggest challenges arising from modern large-scale pulsar surveys is the number of candidates generated. Here, we implemented several improvements to the machine learning (ML) classifier previously used by the LOFAR Tied-Array All-Sky Survey (LOTAAS) to look for new pulsars via filtering the candidates obtained during periodicity searches. To assist the ML algorithm, we have introduced new features which capture the frequency and time evolution of the signal and improved the signal-to-noise calculation accounting for broad profiles. We enhanced the ML classifier by including a third class characterizing RFI instances, allowing candidates arising from RFI to be isolated, reducing the false positive return rate. We also introduced a new training data set used by the ML algorithm that includes a large sample of pulsars misclassified by the previous classifier. Lastly, we developed an ensemble classifier comprised of five different Decision Trees. Taken together these updates improve the pulsar recall rate by 2.5 per cent, while also improving the ability to identify pulsars with wide pulse profiles, often misclassified by the previous classifier. The new ensemble classifier is also able to reduce the percentage of false positive candidates identified from each LOTAAS pointing from 2.5 per cent (˜500 candidates) to 1.1 per cent (˜220 candidates).

  9. Usage of the Jess Engine, Rules and Ontology to Query a Relational Database

    NASA Astrophysics Data System (ADS)

    Bak, Jaroslaw; Jedrzejek, Czeslaw; Falkowski, Maciej

    We present a prototypical implementation of a library tool, the Semantic Data Library (SDL), which integrates the Jess (Java Expert System Shell) engine, rules and ontology to query a relational database. The tool extends functionalities of previous OWL2Jess with SWRL implementations and takes full advantage of the Jess engine, by separating forward and backward reasoning. The optimization of integration of all these technologies is an advancement over previous tools. We discuss the complexity of the query algorithm. As a demonstration of capability of the SDL library, we execute queries using crime ontology which is being developed in the Polish PPBW project.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Tianyu; Xu, Hongyi; Chen, Wei

    Fiber-reinforced polymer composites are strong candidates for structural materials to replace steel and light alloys in lightweight vehicle design because of their low density and relatively high strength. In the integrated computational materials engineering (ICME) development of carbon fiber composites, microstructure reconstruction algorithms are needed to generate material microstructure representative volume element (RVE) based on the material processing information. The microstructure RVE reconstruction enables the material property prediction by finite element analysis (FEA)This paper presents an algorithm to reconstruct the microstructure of a chopped carbon fiber/epoxy laminate material system produced by compression molding, normally known as sheet molding compounds (SMC).more » The algorithm takes the result from material’s manufacturing process as inputs, such as the orientation tensor of fibers, the chopped fiber sheet geometry, and the fiber volume fraction. The chopped fiber sheets are treated as deformable rectangle chips and a random packing algorithm is developed to pack these chips into a square plate. The RVE is built in a layer-by-layer fashion until the desired number of lamina is reached, then a fine tuning process is applied to finalize the reconstruction. Compared to the previous methods, this new approach has the ability to model bended fibers by allowing limited amount of overlaps of rectangle chips. Furthermore, the method does not need SMC microstructure images, for which the image-based characterization techniques have not been mature enough, as inputs. Case studies are performed and the results show that the statistics of the reconstructed microstructures generated by the algorithm matches well with the target input parameters from processing.« less

  11. Effects of magnetometer calibration and maneuvers on accuracies of magnetometer-only attitude-and-rate determination

    NASA Technical Reports Server (NTRS)

    Challa, M.; Natanson, G.

    1998-01-01

    Two different algorithms - a deterministic magnetic-field-only algorithm and a Kalman filter for gyroless spacecraft - are used to estimate the attitude and rates of the Rossi X-Ray Timing Explorer (RXTE) using only measurements from a three-axis magnetometer. The performance of these algorithms is examined using in-flight data from various scenarios. In particular, significant enhancements in accuracies are observed when' the telemetered magnetometer data are accurately calibrated using a recently developed calibration algorithm. Interesting features observed in these studies of the inertial-pointing RXTE include a remarkable sensitivity of the filter to the numerical values of the noise parameters and relatively long convergence time spans. By analogy, the accuracy of the deterministic scheme is noticeably lower as a result of reduced rates of change of the body-fixed geomagnetic field. Preliminary results show the filter-per-axis attitude accuracies ranging between 0.1 and 0.5 deg and rate accuracies between 0.001 deg/sec and 0.005 deg./sec, whereas the deterministic method needs a more sophisticated techniques for smoothing time derivatives of the measured geomagnetic field to clearly distinguish both attitude and rate solutions from the numerical noise. Also included is a new theoretical development in the deterministic algorithm: the transformation of a transcendental equation in the original theory into an 8th-order polynomial equation. It is shown that this 8th-order polynomial reduces to quadratic equations in the two limiting cases-infinitely high wheel momentum, and constant rates-discussed in previous publications.

  12. Automated general temperature correction method for dielectric soil moisture sensors

    NASA Astrophysics Data System (ADS)

    Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao

    2017-08-01

    An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a significant error factor comparable to ±1% manufacturer's accuracy.

  13. Application of Raman spectroscopy for cervical dysplasia diagnosis

    PubMed Central

    Kanter, Elizabeth M.; Vargis, Elizabeth; Majumder, Shovan; Keller, Matthew D.; Woeste, Emily; Rao, Gautam G.; Mahadevan-Jansen, Anita

    2014-01-01

    Cervical cancer is the second most common malignancy among women worldwide, with over 490000 cases diagnosed and 274000 deaths each year. Although current screening methods have dramatically reduced cervical cancer incidence and mortality in developed countries, a “See and Treat” method would be preferred, especially in developing countries. Results from our previous work have suggested that Raman spectroscopy can be used to detect cervical precancers; however, with a classification accuracy of 88%, it was not clinically applicable. In this paper, we describe how incorporating a woman's hormonal status, particularly the point in menstrual cycle and menopausal state, into our previously developed classification algorithm improves the accuracy of our method to 94%. The results of this paper bring Raman spectroscopy one step closer to being utilized in a clinical setting to diagnose cervical dysplasia. Posterior probabilities of class membership, as determined by MRDF-SMLR, for patients regardless of menopausal status, and for pre-menopausal patients only PMID:19343687

  14. Optimizing the Learning Order of Chinese Characters Using a Novel Topological Sort Algorithm

    PubMed Central

    Wang, Jinzhao

    2016-01-01

    We present a novel algorithm for optimizing the order in which Chinese characters are learned, one that incorporates the benefits of learning them in order of usage frequency and in order of their hierarchal structural relationships. We show that our work outperforms previously published orders and algorithms. Our algorithm is applicable to any scheduling task where nodes have intrinsic differences in importance and must be visited in topological order. PMID:27706234

  15. Tail Biting Trellis Representation of Codes: Decoding and Construction

    NASA Technical Reports Server (NTRS)

    Shao. Rose Y.; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents two new iterative algorithms for decoding linear codes based on their tail biting trellises, one is unidirectional and the other is bidirectional. Both algorithms are computationally efficient and achieves virtually optimum error performance with a small number of decoding iterations. They outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding delay. Also presented in the paper is a method for constructing tail biting trellises for linear block codes.

  16. An Algorithm for Timely Transmission of Solicitation Messages in RPL for Energy-Efficient Node Mobility.

    PubMed

    Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok

    2017-04-19

    The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms.

  17. An Algorithm for Timely Transmission of Solicitation Messages in RPL for Energy-Efficient Node Mobility

    PubMed Central

    Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok

    2017-01-01

    The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms. PMID:28422084

  18. Multi-scale graph-cut algorithm for efficient water-fat separation.

    PubMed

    Berglund, Johan; Skorpil, Mikael

    2017-09-01

    To improve the accuracy and robustness to noise in water-fat separation by unifying the multiscale and graph cut based approaches to B 0 -correction. A previously proposed water-fat separation algorithm that corrects for B 0 field inhomogeneity in 3D by a single quadratic pseudo-Boolean optimization (QPBO) graph cut was incorporated into a multi-scale framework, where field map solutions are propagated from coarse to fine scales for voxels that are not resolved by the graph cut. The accuracy of the single-scale and multi-scale QPBO algorithms was evaluated against benchmark reference datasets. The robustness to noise was evaluated by adding noise to the input data prior to water-fat separation. Both algorithms achieved the highest accuracy when compared with seven previously published methods, while computation times were acceptable for implementation in clinical routine. The multi-scale algorithm was more robust to noise than the single-scale algorithm, while causing only a small increase (+10%) of the reconstruction time. The proposed 3D multi-scale QPBO algorithm offers accurate water-fat separation, robustness to noise, and fast reconstruction. The software implementation is freely available to the research community. Magn Reson Med 78:941-949, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Evaluation of a new neutron energy spectrum unfolding code based on an Adaptive Neuro-Fuzzy Inference System (ANFIS).

    PubMed

    Hosseini, Seyed Abolfazl; Esmaili Paeen Afrakoti, Iman

    2018-01-17

    The purpose of the present study was to reconstruct the energy spectrum of a poly-energetic neutron source using an algorithm developed based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is a kind of artificial neural network based on the Takagi-Sugeno fuzzy inference system. The ANFIS algorithm uses the advantages of both fuzzy inference systems and artificial neural networks to improve the effectiveness of algorithms in various applications such as modeling, control and classification. The neutron pulse height distributions used as input data in the training procedure for the ANFIS algorithm were obtained from the simulations performed by MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). Taking into account the normalization condition of each energy spectrum, 4300 neutron energy spectra were generated randomly. (The value in each bin was generated randomly, and finally a normalization of each generated energy spectrum was performed). The randomly generated neutron energy spectra were considered as output data of the developed ANFIS computational code in the training step. To calculate the neutron energy spectrum using conventional methods, an inverse problem with an approximately singular response matrix (with the determinant of the matrix close to zero) should be solved. The solution of the inverse problem using the conventional methods unfold neutron energy spectrum with low accuracy. Application of the iterative algorithms in the solution of such a problem, or utilizing the intelligent algorithms (in which there is no need to solve the problem), is usually preferred for unfolding of the energy spectrum. Therefore, the main reason for development of intelligent algorithms like ANFIS for unfolding of neutron energy spectra is to avoid solving the inverse problem. In the present study, the unfolded neutron energy spectra of 252Cf and 241Am-9Be neutron sources using the developed computational code were found to have excellent agreement with the reference data. Also, the unfolded energy spectra of the neutron sources as obtained using ANFIS were more accurate than the results reported from calculations performed using artificial neural networks in previously published papers. © The Author(s) 2018. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. The validation of the Yonsei CArbon Retrieval algorithm with improved aerosol information using GOSAT measurements

    NASA Astrophysics Data System (ADS)

    Jung, Yeonjin; Kim, Jhoon; Kim, Woogyung; Boesch, Hartmut; Goo, Tae-Young; Cho, Chunho

    2017-04-01

    Although several CO2 retrieval algorithms have been developed to improve our understanding about carbon cycle, limitations in spatial coverage and uncertainties due to aerosols and thin cirrus clouds are still remained as a problem for monitoring CO2 concentration globally. Based on an optimal estimation method, the Yonsei CArbon Retrieval (YCAR) algorithm was developed to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) using the Greenhouse Gases Observing SATellite (GOSAT) measurements with optimized a priori CO2 profiles and aerosol models over East Asia. In previous studies, the aerosol optical properties (AOP) are the most important factors in CO2 retrievals since AOPs are assumed as fixed parameters during retrieval process, resulting in significant XCO2 retrieval error up to 2.5 ppm. In this study, to reduce these errors caused by inaccurate aerosol optical information, the YCAR algorithm improved with taking into account aerosol optical properties as well as aerosol vertical distribution simultaneously. The CO2 retrievals with two difference aerosol approaches have been analyzed using the GOSAT spectra and have been evaluated throughout the comparison with collocated ground-based observations at several Total Carbon Column Observing Network (TCCON) sites. The improved YCAR algorithm has biases of 0.59±0.48 ppm and 2.16±0.87 ppm at Saga and Tsukuba sites, respectively, with smaller biases and higher correlation coefficients compared to the GOSAT operational algorithm. In addition, the XCO2 retrievals will be validated at other TCCON sites and error analysis will be evaluated. These results reveal that considering better aerosol information can improve the accuracy of CO2 retrieval algorithm and provide more useful XCO2 information with reduced uncertainties. This study would be expected to provide useful information in estimating carbon sources and sinks.

  1. A new tool for supervised classification of satellite images available on web servers: Google Maps as a case study

    NASA Astrophysics Data System (ADS)

    García-Flores, Agustín.; Paz-Gallardo, Abel; Plaza, Antonio; Li, Jun

    2016-10-01

    This paper describes a new web platform dedicated to the classification of satellite images called Hypergim. The current implementation of this platform enables users to perform classification of satellite images from any part of the world thanks to the worldwide maps provided by Google Maps. To perform this classification, Hypergim uses unsupervised algorithms like Isodata and K-means. Here, we present an extension of the original platform in which we adapt Hypergim in order to use supervised algorithms to improve the classification results. This involves a significant modification of the user interface, providing the user with a way to obtain samples of classes present in the images to use in the training phase of the classification process. Another main goal of this development is to improve the runtime of the image classification process. To achieve this goal, we use a parallel implementation of the Random Forest classification algorithm. This implementation is a modification of the well-known CURFIL software package. The use of this type of algorithms to perform image classification is widespread today thanks to its precision and ease of training. The actual implementation of Random Forest was developed using CUDA platform, which enables us to exploit the potential of several models of NVIDIA graphics processing units using them to execute general purpose computing tasks as image classification algorithms. As well as CUDA, we use other parallel libraries as Intel Boost, taking advantage of the multithreading capabilities of modern CPUs. To ensure the best possible results, the platform is deployed in a cluster of commodity graphics processing units (GPUs), so that multiple users can use the tool in a concurrent way. The experimental results indicate that this new algorithm widely outperform the previous unsupervised algorithms implemented in Hypergim, both in runtime as well as precision of the actual classification of the images.

  2. Optimal cost design of water distribution networks using a decomposition approach

    NASA Astrophysics Data System (ADS)

    Lee, Ho Min; Yoo, Do Guen; Sadollah, Ali; Kim, Joong Hoon

    2016-12-01

    Water distribution network decomposition, which is an engineering approach, is adopted to increase the efficiency of obtaining the optimal cost design of a water distribution network using an optimization algorithm. This study applied the source tracing tool in EPANET, which is a hydraulic and water quality analysis model, to the decomposition of a network to improve the efficiency of the optimal design process. The proposed approach was tested by carrying out the optimal cost design of two water distribution networks, and the results were compared with other optimal cost designs derived from previously proposed optimization algorithms. The proposed decomposition approach using the source tracing technique enables the efficient decomposition of an actual large-scale network, and the results can be combined with the optimal cost design process using an optimization algorithm. This proves that the final design in this study is better than those obtained with other previously proposed optimization algorithms.

  3. Multi-class computational evolution: development, benchmark evaluation and application to RNA-Seq biomarker discovery.

    PubMed

    Crabtree, Nathaniel M; Moore, Jason H; Bowyer, John F; George, Nysia I

    2017-01-01

    A computational evolution system (CES) is a knowledge discovery engine that can identify subtle, synergistic relationships in large datasets. Pareto optimization allows CESs to balance accuracy with model complexity when evolving classifiers. Using Pareto optimization, a CES is able to identify a very small number of features while maintaining high classification accuracy. A CES can be designed for various types of data, and the user can exploit expert knowledge about the classification problem in order to improve discrimination between classes. These characteristics give CES an advantage over other classification and feature selection algorithms, particularly when the goal is to identify a small number of highly relevant, non-redundant biomarkers. Previously, CESs have been developed only for binary class datasets. In this study, we developed a multi-class CES. The multi-class CES was compared to three common feature selection and classification algorithms: support vector machine (SVM), random k-nearest neighbor (RKNN), and random forest (RF). The algorithms were evaluated on three distinct multi-class RNA sequencing datasets. The comparison criteria were run-time, classification accuracy, number of selected features, and stability of selected feature set (as measured by the Tanimoto distance). The performance of each algorithm was data-dependent. CES performed best on the dataset with the smallest sample size, indicating that CES has a unique advantage since the accuracy of most classification methods suffer when sample size is small. The multi-class extension of CES increases the appeal of its application to complex, multi-class datasets in order to identify important biomarkers and features.

  4. BLESS 2: accurate, memory-efficient and fast error correction method.

    PubMed

    Heo, Yun; Ramachandran, Anand; Hwu, Wen-Mei; Ma, Jian; Chen, Deming

    2016-08-01

    The most important features of error correction tools for sequencing data are accuracy, memory efficiency and fast runtime. The previous version of BLESS was highly memory-efficient and accurate, but it was too slow to handle reads from large genomes. We have developed a new version of BLESS to improve runtime and accuracy while maintaining a small memory usage. The new version, called BLESS 2, has an error correction algorithm that is more accurate than BLESS, and the algorithm has been parallelized using hybrid MPI and OpenMP programming. BLESS 2 was compared with five top-performing tools, and it was found to be the fastest when it was executed on two computing nodes using MPI, with each node containing twelve cores. Also, BLESS 2 showed at least 11% higher gain while retaining the memory efficiency of the previous version for large genomes. Freely available at https://sourceforge.net/projects/bless-ec dchen@illinois.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. An advancing front Delaunay triangulation algorithm designed for robustness

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field.

  6. A comparison between physicians and computer algorithms for form CMS-2728 data reporting.

    PubMed

    Malas, Mohammed Said; Wish, Jay; Moorthi, Ranjani; Grannis, Shaun; Dexter, Paul; Duke, Jon; Moe, Sharon

    2017-01-01

    CMS-2728 form (Medical Evidence Report) assesses 23 comorbidities chosen to reflect poor outcomes and increased mortality risk. Previous studies questioned the validity of physician reporting on forms CMS-2728. We hypothesize that reporting of comorbidities by computer algorithms identifies more comorbidities than physician completion, and, therefore, is more reflective of underlying disease burden. We collected data from CMS-2728 forms for all 296 patients who had incident ESRD diagnosis and received chronic dialysis from 2005 through 2014 at Indiana University outpatient dialysis centers. We analyzed patients' data from electronic medical records systems that collated information from multiple health care sources. Previously utilized algorithms or natural language processing was used to extract data on 10 comorbidities for a period of up to 10 years prior to ESRD incidence. These algorithms incorporate billing codes, prescriptions, and other relevant elements. We compared the presence or unchecked status of these comorbidities on the forms to the presence or absence according to the algorithms. Computer algorithms had higher reporting of comorbidities compared to forms completion by physicians. This remained true when decreasing data span to one year and using only a single health center source. The algorithms determination was well accepted by a physician panel. Importantly, algorithms use significantly increased the expected deaths and lowered the standardized mortality ratios. Using computer algorithms showed superior identification of comorbidities for form CMS-2728 and altered standardized mortality ratios. Adapting similar algorithms in available EMR systems may offer more thorough evaluation of comorbidities and improve quality reporting. © 2016 International Society for Hemodialysis.

  7. An administrative data validation study of the accuracy of algorithms for identifying rheumatoid arthritis: the influence of the reference standard on algorithm performance.

    PubMed

    Widdifield, Jessica; Bombardier, Claire; Bernatsky, Sasha; Paterson, J Michael; Green, Diane; Young, Jacqueline; Ivers, Noah; Butt, Debra A; Jaakkimainen, R Liisa; Thorne, J Carter; Tu, Karen

    2014-06-23

    We have previously validated administrative data algorithms to identify patients with rheumatoid arthritis (RA) using rheumatology clinic records as the reference standard. Here we reassessed the accuracy of the algorithms using primary care records as the reference standard. We performed a retrospective chart abstraction study using a random sample of 7500 adult patients under the care of 83 family physicians contributing to the Electronic Medical Record Administrative data Linked Database (EMRALD) in Ontario, Canada. Using physician-reported diagnoses as the reference standard, we computed and compared the sensitivity, specificity, and predictive values for over 100 administrative data algorithms for RA case ascertainment. We identified 69 patients with RA for a lifetime RA prevalence of 0.9%. All algorithms had excellent specificity (>97%). However, sensitivity varied (75-90%) among physician billing algorithms. Despite the low prevalence of RA, most algorithms had adequate positive predictive value (PPV; 51-83%). The algorithm of "[1 hospitalization RA diagnosis code] or [3 physician RA diagnosis codes with ≥1 by a specialist over 2 years]" had a sensitivity of 78% (95% CI 69-88), specificity of 100% (95% CI 100-100), PPV of 78% (95% CI 69-88) and NPV of 100% (95% CI 100-100). Administrative data algorithms for detecting RA patients achieved a high degree of accuracy amongst the general population. However, results varied slightly from our previous report, which can be attributed to differences in the reference standards with respect to disease prevalence, spectrum of disease, and type of comparator group.

  8. An improved semi-implicit method for structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Park, K. C.

    1982-01-01

    A semi-implicit algorithm is presented for direct time integration of the structural dynamics equations. The algorithm avoids the factoring of the implicit difference solution matrix and mitigates the unacceptable accuracy losses which plagued previous semi-implicit algorithms. This substantial accuracy improvement is achieved by augmenting the solution matrix with two simple diagonal matrices of the order of the integration truncation error.

  9. Symmetry compression method for discovering network motifs.

    PubMed

    Wang, Jianxin; Huang, Yuannan; Wu, Fang-Xiang; Pan, Yi

    2012-01-01

    Discovering network motifs could provide a significant insight into systems biology. Interestingly, many biological networks have been found to have a high degree of symmetry (automorphism), which is inherent in biological network topologies. The symmetry due to the large number of basic symmetric subgraphs (BSSs) causes a certain redundant calculation in discovering network motifs. Therefore, we compress all basic symmetric subgraphs before extracting compressed subgraphs and propose an efficient decompression algorithm to decompress all compressed subgraphs without loss of any information. In contrast to previous approaches, the novel Symmetry Compression method for Motif Detection, named as SCMD, eliminates most redundant calculations caused by widespread symmetry of biological networks. We use SCMD to improve three notable exact algorithms and two efficient sampling algorithms. Results of all exact algorithms with SCMD are the same as those of the original algorithms, since SCMD is a lossless method. The sampling results show that the use of SCMD almost does not affect the quality of sampling results. For highly symmetric networks, we find that SCMD used in both exact and sampling algorithms can help get a remarkable speedup. Furthermore, SCMD enables us to find larger motifs in biological networks with notable symmetry than previously possible.

  10. Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.

    PubMed

    Huson, Daniel H; Linz, Simone

    2018-01-01

    A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.

  11. Preliminary application of a novel algorithm to monitor changes in pre-flight total peripheral resistance for prediction of post-flight orthostatic intolerance in astronauts

    NASA Astrophysics Data System (ADS)

    Arai, Tatsuya; Lee, Kichang; Stenger, Michael B.; Platts, Steven H.; Meck, Janice V.; Cohen, Richard J.

    2011-04-01

    Orthostatic intolerance (OI) is a significant challenge for astronauts after long-duration spaceflight. Depending on flight duration, 20-80% of astronauts suffer from post-flight OI, which is associated with reduced vascular resistance. This paper introduces a novel algorithm for continuously monitoring changes in total peripheral resistance (TPR) by processing the peripheral arterial blood pressure (ABP). To validate, we applied our novel mathematical algorithm to the pre-flight ABP data previously recorded from twelve astronauts ten days before launch. The TPR changes were calculated by our algorithm and compared with the TPR value estimated using cardiac output/heart rate before and after phenylephrine administration. The astronauts in the post-flight presyncopal group had lower pre-flight TPR changes (1.66 times) than those in the non-presyncopal group (2.15 times). The trend in TPR changes calculated with our algorithm agreed with the TPR trend calculated using measured cardiac output in the previous study. Further data collection and algorithm refinement are needed for pre-flight detection of OI and monitoring of continuous TPR by analysis of peripheral arterial blood pressure.

  12. An efficient algorithm for function optimization: modified stem cells algorithm

    NASA Astrophysics Data System (ADS)

    Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad Hadi

    2013-03-01

    In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).

  13. A biomechanical modeling guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2017-03-01

    Four-dimensional (4D) cone-beam computed tomography (CBCT) enables motion tracking of anatomical structures and removes artifacts introduced by motion. However, the imaging time/dose of 4D-CBCT is substantially longer/higher than traditional 3D-CBCT. We previously developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, to reconstruct high-quality 4D-CBCT from limited number of projections to reduce the imaging time/dose. However, the accuracy of SMEIR is limited in reconstructing low-contrast regions with fine structure details. In this study, we incorporate biomechanical modeling into the SMEIR algorithm (SMEIR-Bio), to improve the reconstruction accuracy at low-contrast regions with fine details. The efficacy of SMEIR-Bio is evaluated using 11 lung patient cases and compared to that of the original SMEIR algorithm. Qualitative and quantitative comparisons showed that SMEIR-Bio greatly enhances the accuracy of reconstructed 4D-CBCT volume in low-contrast regions, which can potentially benefit multiple clinical applications including the treatment outcome analysis.

  14. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.

    PubMed

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O'Connor, Mary; Shapiro, Bruce A

    2008-10-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.

  15. Polarimetric Remote Sensing of Atmospheric Particulate Pollutants

    NASA Astrophysics Data System (ADS)

    Li, Z.; Zhang, Y.; Hong, J.

    2018-04-01

    Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  16. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler☆

    PubMed Central

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O’Connor, Mary; Shapiro, Bruce A.

    2013-01-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes. PMID:18838281

  17. Matching Real and Synthetic Panoramic Images Using a Variant of Geometric Hashing

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2017-05-01

    This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers) or the object's texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.

  18. Real-time deblurring of handshake blurred images on smartphones

    NASA Astrophysics Data System (ADS)

    Pourreza-Shahri, Reza; Chang, Chih-Hsiang; Kehtarnavaz, Nasser

    2015-02-01

    This paper discusses an Android app for the purpose of removing blur that is introduced as a result of handshakes when taking images via a smartphone. This algorithm utilizes two images to achieve deblurring in a computationally efficient manner without suffering from artifacts associated with deconvolution deblurring algorithms. The first image is the normal or auto-exposure image and the second image is a short-exposure image that is automatically captured immediately before or after the auto-exposure image is taken. A low rank approximation image is obtained by applying singular value decomposition to the auto-exposure image which may appear blurred due to handshakes. This approximation image does not suffer from blurring while incorporating the image brightness and contrast information. The eigenvalues extracted from the low rank approximation image are then combined with those from the shortexposure image. It is shown that this deblurring app is computationally more efficient than the adaptive tonal correction algorithm which was previously developed for the same purpose.

  19. Deriving flow directions for coarse-resolution (1-4 km) gridded hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Reed, Seann M.

    2003-09-01

    The National Weather Service Hydrology Laboratory (NWS-HL) is currently testing a grid-based distributed hydrologic model at a resolution (4 km) commensurate with operational, radar-based precipitation products. To implement distributed routing algorithms in this framework, a flow direction must be assigned to each model cell. A new algorithm, referred to as cell outlet tracing with an area threshold (COTAT) has been developed to automatically, accurately, and efficiently assign flow directions to any coarse-resolution grid cells using information from any higher-resolution digital elevation model. Although similar to previously published algorithms, this approach offers some advantages. Use of an area threshold allows more control over the tendency for producing diagonal flow directions. Analyses of results at different output resolutions ranging from 300 m to 4000 m indicate that it is possible to choose an area threshold that will produce minimal differences in average network flow lengths across this range of scales. Flow direction grids at a 4 km resolution have been produced for the conterminous United States.

  20. Benchmarking database performance for genomic data.

    PubMed

    Khushi, Matloob

    2015-06-01

    Genomic regions represent features such as gene annotations, transcription factor binding sites and epigenetic modifications. Performing various genomic operations such as identifying overlapping/non-overlapping regions or nearest gene annotations are common research needs. The data can be saved in a database system for easy management, however, there is no comprehensive database built-in algorithm at present to identify overlapping regions. Therefore I have developed a novel region-mapping (RegMap) SQL-based algorithm to perform genomic operations and have benchmarked the performance of different databases. Benchmarking identified that PostgreSQL extracts overlapping regions much faster than MySQL. Insertion and data uploads in PostgreSQL were also better, although general searching capability of both databases was almost equivalent. In addition, using the algorithm pair-wise, overlaps of >1000 datasets of transcription factor binding sites and histone marks, collected from previous publications, were reported and it was found that HNF4G significantly co-locates with cohesin subunit STAG1 (SA1).Inc. © 2015 Wiley Periodicals, Inc.

Top