Sample records for previously established algorithm

  1. An Improved Recovery Algorithm for Decayed AES Key Schedule Images

    NASA Astrophysics Data System (ADS)

    Tsow, Alex

    A practical algorithm that recovers AES key schedules from decayed memory images is presented. Halderman et al. [1] established this recovery capability, dubbed the cold-boot attack, as a serious vulnerability for several widespread software-based encryption packages. Our algorithm recovers AES-128 key schedules tens of millions of times faster than the original proof-of-concept release. In practice, it enables reliable recovery of key schedules at 70% decay, well over twice the decay capacity of previous methods. The algorithm is generalized to AES-256 and is empirically shown to recover 256-bit key schedules that have suffered 65% decay. When solutions are unique, the algorithm efficiently validates this property and outputs the solution for memory images decayed up to 60%.

  2. Teaching Non-Recursive Binary Searching: Establishing a Conceptual Framework.

    ERIC Educational Resources Information Center

    Magel, E. Terry

    1989-01-01

    Discusses problems associated with teaching non-recursive binary searching in computer language classes, and describes a teacher-directed dialog based on dictionary use that helps students use their previous searching experiences to conceptualize the binary search process. Algorithmic development is discussed and appropriate classroom discussion…

  3. Methodology for the Evaluation of the Algorithms for Text Line Segmentation Based on Extended Binary Classification

    NASA Astrophysics Data System (ADS)

    Brodic, D.

    2011-01-01

    Text line segmentation represents the key element in the optical character recognition process. Hence, testing of text line segmentation algorithms has substantial relevance. All previously proposed testing methods deal mainly with text database as a template. They are used for testing as well as for the evaluation of the text segmentation algorithm. In this manuscript, methodology for the evaluation of the algorithm for text segmentation based on extended binary classification is proposed. It is established on the various multiline text samples linked with text segmentation. Their results are distributed according to binary classification. Final result is obtained by comparative analysis of cross linked data. At the end, its suitability for different types of scripts represents its main advantage.

  4. Optimisation in radiotherapy. III: Stochastic optimisation algorithms and conclusions.

    PubMed

    Ebert, M

    1997-12-01

    This is the final article in a three part examination of optimisation in radiotherapy. Previous articles have established the bases and form of the radiotherapy optimisation problem, and examined certain types of optimisation algorithm, namely, those which perform some form of ordered search of the solution space (mathematical programming), and those which attempt to find the closest feasible solution to the inverse planning problem (deterministic inversion). The current paper examines algorithms which search the space of possible irradiation strategies by stochastic methods. The resulting iterative search methods move about the solution space by sampling random variates, which gradually become more constricted as the algorithm converges upon the optimal solution. This paper also discusses the implementation of optimisation in radiotherapy practice.

  5. Investigation into the efficiency of different bionic algorithm combinations for a COBRA meta-heuristic

    NASA Astrophysics Data System (ADS)

    Akhmedova, Sh; Semenkin, E.

    2017-02-01

    Previously, a meta-heuristic approach, called Co-Operation of Biology-Related Algorithms or COBRA, for solving real-parameter optimization problems was introduced and described. COBRA’s basic idea consists of a cooperative work of five well-known bionic algorithms such as Particle Swarm Optimization, the Wolf Pack Search, the Firefly Algorithm, the Cuckoo Search Algorithm and the Bat Algorithm, which were chosen due to the similarity of their schemes. The performance of this meta-heuristic was evaluated on a set of test functions and its workability was demonstrated. Thus it was established that the idea of the algorithms’ cooperative work is useful. However, it is unclear which bionic algorithms should be included in this cooperation and how many of them. Therefore, the five above-listed algorithms and additionally the Fish School Search algorithm were used for the development of five different modifications of COBRA by varying the number of component-algorithms. These modifications were tested on the same set of functions and the best of them was found. Ways of further improving the COBRA algorithm are then discussed.

  6. On the Local Convergence of Pattern Search

    NASA Technical Reports Server (NTRS)

    Dolan, Elizabeth D.; Lewis, Robert Michael; Torczon, Virginia; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    We examine the local convergence properties of pattern search methods, complementing the previously established global convergence properties for this class of algorithms. We show that the step-length control parameter which appears in the definition of pattern search algorithms provides a reliable asymptotic measure of first-order stationarity. This gives an analytical justification for a traditional stopping criterion for pattern search methods. Using this measure of first-order stationarity, we analyze the behavior of pattern search in the neighborhood of an isolated local minimizer. We show that a recognizable subsequence converges r-linearly to the minimizer.

  7. Generalization Performance of Regularized Ranking With Multiscale Kernels.

    PubMed

    Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin

    2016-05-01

    The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.

  8. Impact of pathogen-directed antimicrobial therapy for ventilator-associated pneumonia in trauma patients on charges and recurrence.

    PubMed

    Sharpe, John P; Magnotti, Louis J; Weinberg, Jordan A; Swanson, Joseph M; Wood, G Christopher; Fabian, Timothy C; Croce, Martin A

    2015-04-01

    Ventilator-associated pneumonia (VAP) represents one of the driving forces behind antibiotic use in the ICU. In a previous study, we established a defined algorithm for treatment of hospital-acquired VAP dictated by the causative pathogen. The purpose of the current study was to evaluate the impact of this algorithm for hospital-acquired VAP on recurrence and charges in trauma patients. Patients with VAP secondary to MRSA, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, or Enterobacteriaceae during 5 years subsequent to the previous study were evaluated. All VAP were diagnosed using quantitative cultures of the bronchoalveolar lavage effluent. Duration of antimicrobial therapy was dictated by the causative pathogen. If microbiologic resolution, defined as <10(3) colony-forming units/mL, was achieved, therapy was stopped by day 10. The remainder received 14 days of therapy. Recurrence was defined as >10(5) colony-forming units/mL on subsequent bronchoalveolar lavage performed within 2 weeks after completion of appropriate therapy. Five hundred and twenty-nine VAP episodes were identified in 381 patients. Overall recurrence was unchanged compared with the previous study (1.5% vs 2%; p = 0.3). There was a decrease in the number of bronchoalveolar lavages performed per patient compared with the previous study (1.6 vs 2.3; p = 0.24) and a reduction of 4.8 antibiotic days per VAP episode compared with the previous study. Both changes resulted in a cumulative reduction of $3,535.04 per patient, for a savings of $1.35 million during the study period. Hospital-acquired VAP can be managed effectively by a defined course of therapy dictated by the causative pathogen. Adherence to an established algorithm simplified the management of VAP and contributed to a cumulative reduction in patient charges without impacting recurrence. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  9. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.

    PubMed

    Yang, Xiaoxia; Wang, Jia; Sun, Jun; Liu, Rong

    2015-01-01

    Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder) by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.

  10. Bayesian inference of interaction properties of noisy dynamical systems with time-varying coupling: capabilities and limitations

    NASA Astrophysics Data System (ADS)

    Wilting, Jens; Lehnertz, Klaus

    2015-08-01

    We investigate a recently published analysis framework based on Bayesian inference for the time-resolved characterization of interaction properties of noisy, coupled dynamical systems. It promises wide applicability and a better time resolution than well-established methods. At the example of representative model systems, we show that the analysis framework has the same weaknesses as previous methods, particularly when investigating interacting, structurally different non-linear oscillators. We also inspect the tracking of time-varying interaction properties and propose a further modification of the algorithm, which improves the reliability of obtained results. We exemplarily investigate the suitability of this algorithm to infer strength and direction of interactions between various regions of the human brain during an epileptic seizure. Within the limitations of the applicability of this analysis tool, we show that the modified algorithm indeed allows a better time resolution through Bayesian inference when compared to previous methods based on least square fits.

  11. Data Mining for Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Biswas, Gautam; Mack, Daniel; Mylaraswamy, Dinkar; Bharadwaj, Raj

    2013-01-01

    The Vehicle Integrated Prognostics Reasoner (VIPR) program describes methods for enhanced diagnostics as well as a prognostic extension to current state of art Aircraft Diagnostic and Maintenance System (ADMS). VIPR introduced a new anomaly detection function for discovering previously undetected and undocumented situations, where there are clear deviations from nominal behavior. Once a baseline (nominal model of operations) is established, the detection and analysis is split between on-aircraft outlier generation and off-aircraft expert analysis to characterize and classify events that may not have been anticipated by individual system providers. Offline expert analysis is supported by data curation and data mining algorithms that can be applied in the contexts of supervised learning methods and unsupervised learning. In this report, we discuss efficient methods to implement the Kolmogorov complexity measure using compression algorithms, and run a systematic empirical analysis to determine the best compression measure. Our experiments established that the combination of the DZIP compression algorithm and CiDM distance measure provides the best results for capturing relevant properties of time series data encountered in aircraft operations. This combination was used as the basis for developing an unsupervised learning algorithm to define "nominal" flight segments using historical flight segments.

  12. Detecting perceptual groupings in textures by continuity considerations

    NASA Technical Reports Server (NTRS)

    Greene, Richard J.

    1990-01-01

    A generalization is presented for the second derivative of a Gaussian D(sup 2)G operator to apply to problems of perceptual organization involving textures. Extensions to other problems of perceptual organization are evident and a new research direction can be established. The technique presented is theoretically pleasing since it has the potential of unifying the entire area of image segmentation under the mathematical notion of continuity and presents a single algorithm to form perceptual groupings where many algorithms existed previously. The eventual impact on both the approach and technique of image processing segmentation operations could be significant.

  13. Improved Spectral Calculations for Discrete Schrődinger Operators

    NASA Astrophysics Data System (ADS)

    Puelz, Charles

    This work details an O(n2) algorithm for computing spectra of discrete Schrődinger operators with periodic potentials. Spectra of these objects enhance our understanding of fundamental aperiodic physical systems and contain rich theoretical structure of interest to the mathematical community. Previous work on the Harper model led to an O(n2) algorithm relying on properties not satisfied by other aperiodic operators. Physicists working with the Fibonacci Hamiltonian, a popular quasicrystal model, have instead used a problematic dynamical map approach or a sluggish O(n3) procedure for their calculations. The algorithm presented in this work, a blend of well-established eigenvalue/vector algorithms, provides researchers with a more robust computational tool of general utility. Application to the Fibonacci Hamiltonian in the sparsely studied intermediate coupling regime reveals structure in canonical coverings of the spectrum that will prove useful in motivating conjectures regarding band combinatorics and fractal dimensions.

  14. Neural and Decision Theoretic Approaches for the Automated Segmentation of Radiodense Tissue in Digitized Mammograms

    NASA Astrophysics Data System (ADS)

    Eckert, R.; Neyhart, J. T.; Burd, L.; Polikar, R.; Mandayam, S. A.; Tseng, M.

    2003-03-01

    Mammography is the best method available as a non-invasive technique for the early detection of breast cancer. The radiographic appearance of the female breast consists of radiolucent (dark) regions due to fat and radiodense (light) regions due to connective and epithelial tissue. The amount of radiodense tissue can be used as a marker for predicting breast cancer risk. Previously, we have shown that the use of statistical models is a reliable technique for segmenting radiodense tissue. This paper presents improvements in the model that allow for further development of an automated system for segmentation of radiodense tissue. The segmentation algorithm employs a two-step process. In the first step, segmentation of tissue and non-tissue regions of a digitized X-ray mammogram image are identified using a radial basis function neural network. The second step uses a constrained Neyman-Pearson algorithm, developed especially for this research work, to determine the amount of radiodense tissue. Results obtained using the algorithm have been validated by comparing with estimates provided by a radiologist employing previously established methods.

  15. Algorithms for Maneuvering Spacecraft Around Small Bodies

    NASA Technical Reports Server (NTRS)

    Acikmese, A. Bechet; Bayard, David

    2006-01-01

    A document describes mathematical derivations and applications of autonomous guidance algorithms for maneuvering spacecraft in the vicinities of small astronomical bodies like comets or asteroids. These algorithms compute fuel- or energy-optimal trajectories for typical maneuvers by solving the associated optimal-control problems with relevant control and state constraints. In the derivations, these problems are converted from their original continuous (infinite-dimensional) forms to finite-dimensional forms through (1) discretization of the time axis and (2) spectral discretization of control inputs via a finite number of Chebyshev basis functions. In these doubly discretized problems, the Chebyshev coefficients are the variables. These problems are, variously, either convex programming problems or programming problems that can be convexified. The resulting discrete problems are convex parameter-optimization problems; this is desirable because one can take advantage of very efficient and robust algorithms that have been developed previously and are well established for solving such problems. These algorithms are fast, do not require initial guesses, and always converge to global optima. Following the derivations, the algorithms are demonstrated by applying them to numerical examples of flyby, descent-to-hover, and ascent-from-hover maneuvers.

  16. THRESHOLD LOGIC.

    DTIC Science & Technology

    synthesis procedures; a ’best’ method is definitely established. (2) ’Symmetry Types for Threshold Logic’ is a tutorial expositon including a careful...development of the Goto-Takahasi self-dual type ideas. (3) ’Best Threshold Gate Decisions’ reports a comparison, on the 2470 7-argument threshold ...interpretation is shown best. (4) ’ Threshold Gate Networks’ reviews the previously discussed 2-algorithm in geometric terms, describes our FORTRAN

  17. Rational application of adenosine deaminase activity in cerebrospinal fluid for the diagnosis of tuberculous meningitis.

    PubMed

    Parra-Ruiz, Jorge; Ramos, V; Dueñas, C; Coronado-Álvarez, N M; Cabo-Magadán, R; Portillo-Tuñón, V; Vinuesa, D; Muñoz-Medina, L; Hernández-Quero, J

    2015-10-01

    Tuberculous meningitis (TBM) is one of the most serious and difficult to diagnose manifestations of TB. An ADA value >9.5 IU/L has great sensitivity and specificity. However, all available studies have been conducted in areas of high endemicity, so we sought to determine the accuracy of ADA in a low endemicity area. This retrospective study included 190 patients (105 men) who had ADA tested in CSF for some reason. Patients were classified as probable/certain TBM or non-TBM based on clinical and Thwaite's criteria. Optimal ADA cutoff was established by ROC curves and a predictive algorithm based on ADA and other CSF biochemical parameters was generated. Eleven patients were classified as probable/certain TBM. In a low endemicity area, the best ADA cutoff was 11.5 IU/L with 91 % sensitivity and 77.7 % specificity. We also developed a predictive algorithm based on the combination of ADA (>11.5 IU/L), glucose (<65 mg/dL) and leukocytes (≥13.5 cell/mm(3)) with increased accuracy (Se: 91 % Sp: 88 %). Optimal ADA cutoff value in areas of low TB endemicity is higher than previously reported. Our algorithm is more accurate than ADA activity alone with better sensitivity and specificity than previously reported algorithms.

  18. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.

    PubMed

    Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan

    2013-09-01

    Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.

  19. Stochastic Evolutionary Algorithms for Planning Robot Paths

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard

    2006-01-01

    A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.

  20. The theory of variational hybrid quantum-classical algorithms

    NASA Astrophysics Data System (ADS)

    McClean, Jarrod R.; Romero, Jonathan; Babbush, Ryan; Aspuru-Guzik, Alán

    2016-02-01

    Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as ‘the quantum variational eigensolver’ was developed (Peruzzo et al 2014 Nat. Commun. 5 4213) with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through a relaxation of exponential operator splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this procedure. Finally, we show how the use of modern derivative free optimization techniques can offer dramatic computational savings of up to three orders of magnitude over previously used optimization techniques.

  1. ConvNetQuake: Convolutional Neural Network for Earthquake Detection and Location

    NASA Astrophysics Data System (ADS)

    Denolle, M.; Perol, T.; Gharbi, M.

    2017-12-01

    Over the last decades, the volume of seismic data has increased exponentially, creating a need for efficient algorithms to reliably detect and locate earthquakes. Today's most elaborate methods scan through the plethora of continuous seismic records, searching for repeating seismic signals. In this work, we leverage the recent advances in artificial intelligence and present ConvNetQuake, a highly scalable convolutional neural network for probabilistic earthquake detection and location from single stations. We apply our technique to study two years of induced seismicity in Oklahoma (USA). We detect 20 times more earthquakes than previously cataloged by the Oklahoma Geological Survey. Our algorithm detection performances are at least one order of magnitude faster than other established methods.

  2. Entanglement-based Free Space Quantum Cryptography in Daylight

    NASA Astrophysics Data System (ADS)

    Gerhardt, Ilja; Peloso, Matthew P.; Ho, Caleb; Lamas-Linares, Antia; Kurtsiefer, Christian

    2009-05-01

    In quantum key distribution (QKD) two families of protocols are established: One, based on preparing and sending approximations of single photons, the other based on measurements on entangled photon pairs, which allow to establish a secret key using less assumptions on the size of a Hilbert space. The larger optical bandwidth of photon pairs in comparison with light used for the first family makes establishing a free space link challenging. We present a complete entanglement based QKD system following the BBM92 protocol, which generates a secure key continuously 24 hours a day between distant parties. Spectral, spatial and temporal filtering schemes were introduced to a previous setup, suppressing more than 30,B of background. We are able to establish the link during daytime, and have developed an algorithm to start and maintain time synchronization with simple crystal oscillators.

  3. Application of a distributed systems architecture for increased speed in image processing on an autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Wright, Adam A.; Momin, Orko; Shin, Young Ho; Shakya, Rahul; Nepal, Kumud; Ahlgren, David J.

    2010-01-01

    This paper presents the application of a distributed systems architecture to an autonomous ground vehicle, Q, that participates in both the autonomous and navigation challenges of the Intelligent Ground Vehicle Competition. In the autonomous challenge the vehicle is required to follow a course, while avoiding obstacles and staying within the course boundaries, which are marked by white lines. For the navigation challenge, the vehicle is required to reach a set of target destinations, known as way points, with given GPS coordinates and avoid obstacles that it encounters in the process. Previously the vehicle utilized a single laptop to execute all processing activities including image processing, sensor interfacing and data processing, path planning and navigation algorithms and motor control. National Instruments' (NI) LabVIEW served as the programming language for software implementation. As an upgrade to last year's design, a NI compact Reconfigurable Input/Output system (cRIO) was incorporated to the system architecture. The cRIO is NI's solution for rapid prototyping that is equipped with a real time processor, an FPGA and modular input/output. Under the current system, the real time processor handles the path planning and navigation algorithms, the FPGA gathers and processes sensor data. This setup leaves the laptop to focus on running the image processing algorithm. Image processing as previously presented by Nepal et. al. is a multi-step line extraction algorithm and constitutes the largest processor load. This distributed approach results in a faster image processing algorithm which was previously Q's bottleneck. Additionally, the path planning and navigation algorithms are executed more reliably on the real time processor due to the deterministic nature of operation. The implementation of this architecture required exploration of various inter-system communication techniques. Data transfer between the laptop and the real time processor using UDP packets was established as the most reliable protocol after testing various options. Improvement can be made to the system by migrating more algorithms to the hardware based FPGA to further speed up the operations of the vehicle.

  4. Design Criteria for Low Profile Flange Calculations

    NASA Technical Reports Server (NTRS)

    Leimbach, K. R.

    1973-01-01

    An analytical method and a design procedure to develop flanged separable pipe connectors are discussed. A previously established algorithm is the basis for calculating low profile flanges. The characteristics and advantages of the low profile flange are analyzed. The use of aluminum, titanium, and plastics for flange materials is described. Mathematical models are developed to show the mechanical properties of various flange configurations. A computer program for determining the structural stability of the flanges is described.

  5. Energy-based dosimetry of low-energy, photon-emitting brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Malin, Martha J.

    Model-based dose calculation algorithms (MBDCAs) for low-energy, photon-emitting brachytherapy sources have advanced to the point where the algorithms may be used in clinical practice. Before these algorithms can be used, a methodology must be established to verify the accuracy of the source models used by the algorithms. Additionally, the source strength metric for these algorithms must be established. This work explored the feasibility of verifying the source models used by MBDCAs by measuring the differential photon fluence emitted from the encapsulation of the source. The measured fluence could be compared to that modeled by the algorithm to validate the source model. This work examined how the differential photon fluence varied with position and angle of emission from the source, and the resolution that these measurements would require for dose computations to be accurate to within 1.5%. Both the spatial and angular resolution requirements were determined. The techniques used to determine the resolution required for measurements of the differential photon fluence were applied to determine why dose-rate constants determined using a spectroscopic technique disagreed with those computed using Monte Carlo techniques. The discrepancy between the two techniques had been previously published, but the cause of the discrepancy was not known. This work determined the impact that some of the assumptions used by the spectroscopic technique had on the accuracy of the calculation. The assumption of isotropic emission was found to cause the largest discrepancy in the spectroscopic dose-rate constant. Finally, this work improved the instrumentation used to measure the rate at which energy leaves the encapsulation of a brachytherapy source. This quantity is called emitted power (EP), and is presented as a possible source strength metric for MBDCAs. A calorimeter that measured EP was designed and built. The theoretical framework that the calorimeter relied upon to measure EP was established. Four clinically relevant 125I brachytherapy sources were measured with the instrument. The accuracy of the measured EP was compared to an air-kerma strength-derived EP to test the accuracy of the instrument. The instrument was accurate to within 10%, with three out of the four source measurements accurate to within 4%.

  6. Layout optimization using the homogenization method

    NASA Technical Reports Server (NTRS)

    Suzuki, Katsuyuki; Kikuchi, Noboru

    1993-01-01

    A generalized layout problem involving sizing, shape, and topology optimization is solved by using the homogenization method for three-dimensional linearly elastic shell structures in order to seek a possibility of establishment of an integrated design system of automotive car bodies, as an extension of the previous work by Bendsoe and Kikuchi. A formulation of a three-dimensional homogenized shell, a solution algorithm, and several examples of computing the optimum layout are presented in this first part of the two articles.

  7. MoleculeNet: a benchmark for molecular machine learning† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02664a

    PubMed Central

    Wu, Zhenqin; Ramsundar, Bharath; Feinberg, Evan N.; Gomes, Joseph; Geniesse, Caleb; Pappu, Aneesh S.; Leswing, Karl

    2017-01-01

    Molecular machine learning has been maturing rapidly over the last few years. Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem open source library). MoleculeNet benchmarks demonstrate that learnable representations are powerful tools for molecular machine learning and broadly offer the best performance. However, this result comes with caveats. Learnable representations still struggle to deal with complex tasks under data scarcity and highly imbalanced classification. For quantum mechanical and biophysical datasets, the use of physics-aware featurizations can be more important than choice of particular learning algorithm. PMID:29629118

  8. Clustering ENTLN sferics to improve TGF temporal analysis

    NASA Astrophysics Data System (ADS)

    Pradhan, E.; Briggs, M. S.; Stanbro, M.; Cramer, E.; Heckman, S.; Roberts, O.

    2017-12-01

    Using TGFs detected with Fermi Gamma-ray Burst Monitor (GBM) and simultaneous radio sferics detected by Earth Network Total Lightning Network (ENTLN), we establish a temporal co-relation between them. The first step is to find ENTLN strokes that that are closely associated to GBM TGFs. We then identify all the related strokes in the lightning flash that the TGF-associated-stroke belongs to. After trying several algorithms, we found out that the DBSCAN clustering algorithm was best for clustering related ENTLN strokes into flashes. The operation of DBSCAN was optimized using a single seperation measure that combined time and distance seperation. Previous analysis found that these strokes show three timescales with respect to the gamma-ray time. We will use the improved identification of flashes to research this.

  9. Convolutional neural network for earthquake detection and location

    PubMed Central

    Perol, Thibaut; Gharbi, Michaël; Denolle, Marine

    2018-01-01

    The recent evolution of induced seismicity in Central United States calls for exhaustive catalogs to improve seismic hazard assessment. Over the last decades, the volume of seismic data has increased exponentially, creating a need for efficient algorithms to reliably detect and locate earthquakes. Today’s most elaborate methods scan through the plethora of continuous seismic records, searching for repeating seismic signals. We leverage the recent advances in artificial intelligence and present ConvNetQuake, a highly scalable convolutional neural network for earthquake detection and location from a single waveform. We apply our technique to study the induced seismicity in Oklahoma, USA. We detect more than 17 times more earthquakes than previously cataloged by the Oklahoma Geological Survey. Our algorithm is orders of magnitude faster than established methods. PMID:29487899

  10. The SIST-M: Predictive validity of a brief structured Clinical Dementia Rating interview

    PubMed Central

    Okereke, Olivia I.; Pantoja-Galicia, Norberto; Copeland, Maura; Hyman, Bradley T.; Wanggaard, Taylor; Albert, Marilyn S.; Betensky, Rebecca A.; Blacker, Deborah

    2011-01-01

    Background We previously established reliability and cross-sectional validity of the SIST-M (Structured Interview and Scoring Tool–Massachusetts Alzheimer's Disease Research Center), a shortened version of an instrument shown to predict progression to Alzheimer disease (AD), even among persons with very mild cognitive impairment (vMCI). Objective To test predictive validity of the SIST-M. Methods Participants were 342 community-dwelling, non-demented older adults in a longitudinal study. Baseline Clinical Dementia Rating (CDR) ratings were determined by either: 1) clinician interviews or 2) a previously developed computer algorithm based on 60 questions (of a possible 131) extracted from clinician interviews. We developed age+gender+education-adjusted Cox proportional hazards models using CDR-sum-of-boxes (CDR-SB) as the predictor, where CDR-SB was determined by either clinician interview or algorithm; models were run for the full sample (n=342) and among those jointly classified as vMCI using clinician- and algorithm-based CDR ratings (n=156). We directly compared predictive accuracy using time-dependent Receiver Operating Characteristic (ROC) curves. Results AD hazard ratios (HRs) were similar for clinician-based and algorithm-based CDR-SB: for a 1-point increment in CDR-SB, respective HRs (95% CI)=3.1 (2.5,3.9) and 2.8 (2.2,3.5); among those with vMCI, respective HRs (95% CI) were 2.2 (1.6,3.2) and 2.1 (1.5,3.0). Similarly high predictive accuracy was achieved: the concordance probability (weighted average of the area-under-the-ROC curves) over follow-up was 0.78 vs. 0.76 using clinician-based vs. algorithm-based CDR-SB. Conclusion CDR scores based on items from this shortened interview had high predictive ability for AD – comparable to that using a lengthy clinical interview. PMID:21986342

  11. Polarimetric Remote Sensing of Atmospheric Particulate Pollutants

    NASA Astrophysics Data System (ADS)

    Li, Z.; Zhang, Y.; Hong, J.

    2018-04-01

    Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  12. An Improved Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation

    PubMed Central

    Wang, Jun; Zhou, Bihua; Zhou, Shudao

    2016-01-01

    This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874

  13. Comparison of neural network applications for channel assignment in cellular TDMA networks and dynamically sectored PCS networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1997-04-01

    The use of artificial neural networks (NNs) to address the channel assignment problem (CAP) for cellular time-division multiple access and code-division multiple access networks has previously been investigated by this author and many others. The investigations to date have been based on a hexagonal cell structure established by omnidirectional antennas at the base stations. No account was taken of the use of spatial isolation enabled by directional antennas to reduce interference between mobiles. Any reduction in interference translates into increased capacity and consequently alters the performance of the NNs. Previous studies have sought to improve the performance of Hopfield- Tank network algorithms and self-organizing feature map algorithms applied primarily to static channel assignment (SCA) for cellular networks that handle uniformly distributed, stationary traffic in each cell for a single type of service. The resulting algorithms minimize energy functions representing interference constraint and ad hoc conditions that promote convergence to optimal solutions. While the structures of the derived neural network algorithms (NNAs) offer the potential advantages of inherent parallelism and adaptability to changing system conditions, this potential has yet to be fulfilled the CAP for emerging mobile networks. The next-generation communication infrastructures must accommodate dynamic operating conditions. Macrocell topologies are being refined to microcells and picocells that can be dynamically sectored by adaptively controlled, directional antennas and programmable transceivers. These networks must support the time-varying demands for personal communication services (PCS) that simultaneously carry voice, data and video and, thus, require new dynamic channel assignment (DCA) algorithms. This paper examines the impact of dynamic cell sectoring and geometric conditioning on NNAs developed for SCA in omnicell networks with stationary traffic to improve the metrics of convergence rate and call blocking. Genetic algorithms (GAs) are also considered in PCS networks as a means to overcome the known weakness of Hopfield NNAs in determining global minima. The resulting GAs for DCA in PCS networks are compared to improved DCA algorithms based on Hopfield NNs for stationary cellular networks. Algorithm performance is compared on the basis of rate of convergence, blocking probability, analytic complexity, and parametric sensitivity to transient traffic demands and channel interference.

  14. Clinical algorithms to aid osteoarthritis guideline dissemination.

    PubMed

    Meneses, S R F; Goode, A P; Nelson, A E; Lin, J; Jordan, J M; Allen, K D; Bennell, K L; Lohmander, L S; Fernandes, L; Hochberg, M C; Underwood, M; Conaghan, P G; Liu, S; McAlindon, T E; Golightly, Y M; Hunter, D J

    2016-09-01

    Numerous scientific organisations have developed evidence-based recommendations aiming to optimise the management of osteoarthritis (OA). Uptake, however, has been suboptimal. The purpose of this exercise was to harmonize the recent recommendations and develop a user-friendly treatment algorithm to facilitate translation of evidence into practice. We updated a previous systematic review on clinical practice guidelines (CPGs) for OA management. The guidelines were assessed using the Appraisal of Guidelines for Research and Evaluation for quality and the standards for developing trustworthy CPGs as established by the National Academy of Medicine (NAM). Four case scenarios and algorithms were developed by consensus of a multidisciplinary panel. Sixteen guidelines were included in the systematic review. Most recommendations were directed toward physicians and allied health professionals, and most had multi-disciplinary input. Analysis for trustworthiness suggests that many guidelines still present a lack of transparency. A treatment algorithm was developed for each case scenario advised by recommendations from guidelines and based on panel consensus. Strategies to facilitate the implementation of guidelines in clinical practice are necessary. The algorithms proposed are examples of how to apply recommendations in the clinical context, helping the clinician to visualise the patient flow and timing of different treatment modalities. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Greedy Algorithms for Nonnegativity-Constrained Simultaneous Sparse Recovery

    PubMed Central

    Kim, Daeun; Haldar, Justin P.

    2016-01-01

    This work proposes a family of greedy algorithms to jointly reconstruct a set of vectors that are (i) nonnegative and (ii) simultaneously sparse with a shared support set. The proposed algorithms generalize previous approaches that were designed to impose these constraints individually. Similar to previous greedy algorithms for sparse recovery, the proposed algorithms iteratively identify promising support indices. In contrast to previous approaches, the support index selection procedure has been adapted to prioritize indices that are consistent with both the nonnegativity and shared support constraints. Empirical results demonstrate for the first time that the combined use of simultaneous sparsity and nonnegativity constraints can substantially improve recovery performance relative to existing greedy algorithms that impose less signal structure. PMID:26973368

  16. A Dependable Localization Algorithm for Survivable Belt-Type Sensor Networks.

    PubMed

    Zhu, Mingqiang; Song, Fei; Xu, Lei; Seo, Jung Taek; You, Ilsun

    2017-11-29

    As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks' survivability, in terms of anti-interference, network energy saving, etc.

  17. A Dependable Localization Algorithm for Survivable Belt-Type Sensor Networks

    PubMed Central

    Zhu, Mingqiang; Song, Fei; Xu, Lei; Seo, Jung Taek

    2017-01-01

    As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks’ survivability, in terms of anti-interference, network energy saving, etc. PMID:29186072

  18. Etracker: A Mobile Gaze-Tracking System with Near-Eye Display Based on a Combined Gaze-Tracking Algorithm.

    PubMed

    Li, Bin; Fu, Hong; Wen, Desheng; Lo, WaiLun

    2018-05-19

    Eye tracking technology has become increasingly important for psychological analysis, medical diagnosis, driver assistance systems, and many other applications. Various gaze-tracking models have been established by previous researchers. However, there is currently no near-eye display system with accurate gaze-tracking performance and a convenient user experience. In this paper, we constructed a complete prototype of the mobile gaze-tracking system ' Etracker ' with a near-eye viewing device for human gaze tracking. We proposed a combined gaze-tracking algorithm. In this algorithm, the convolutional neural network is used to remove blinking images and predict coarse gaze position, and then a geometric model is defined for accurate human gaze tracking. Moreover, we proposed using the mean value of gazes to resolve pupil center changes caused by nystagmus in calibration algorithms, so that an individual user only needs to calibrate it the first time, which makes our system more convenient. The experiments on gaze data from 26 participants show that the eye center detection accuracy is 98% and Etracker can provide an average gaze accuracy of 0.53° at a rate of 30⁻60 Hz.

  19. Efficient sequential and parallel algorithms for record linkage.

    PubMed

    Mamun, Abdullah-Al; Mi, Tian; Aseltine, Robert; Rajasekaran, Sanguthevar

    2014-01-01

    Integrating data from multiple sources is a crucial and challenging problem. Even though there exist numerous algorithms for record linkage or deduplication, they suffer from either large time needs or restrictions on the number of datasets that they can integrate. In this paper we report efficient sequential and parallel algorithms for record linkage which handle any number of datasets and outperform previous algorithms. Our algorithms employ hierarchical clustering algorithms as the basis. A key idea that we use is radix sorting on certain attributes to eliminate identical records before any further processing. Another novel idea is to form a graph that links similar records and find the connected components. Our sequential and parallel algorithms have been tested on a real dataset of 1,083,878 records and synthetic datasets ranging in size from 50,000 to 9,000,000 records. Our sequential algorithm runs at least two times faster, for any dataset, than the previous best-known algorithm, the two-phase algorithm using faster computation of the edit distance (TPA (FCED)). The speedups obtained by our parallel algorithm are almost linear. For example, we get a speedup of 7.5 with 8 cores (residing in a single node), 14.1 with 16 cores (residing in two nodes), and 26.4 with 32 cores (residing in four nodes). We have compared the performance of our sequential algorithm with TPA (FCED) and found that our algorithm outperforms the previous one. The accuracy is the same as that of this previous best-known algorithm.

  20. Vehicle Counting and Moving Direction Identification Based on Small-Aperture Microphone Array.

    PubMed

    Zu, Xingshui; Zhang, Shaojie; Guo, Feng; Zhao, Qin; Zhang, Xin; You, Xing; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2017-05-10

    The varying trend of a moving vehicle's angles provides much important intelligence for an unattended ground sensor (UGS) monitoring system. The present study investigates the capabilities of a small-aperture microphone array (SAMA) based system to identify the number and moving direction of vehicles travelling on a previously established route. In this paper, a SAMA-based acoustic monitoring system, including the system hardware architecture and algorithm mechanism, is designed as a single node sensor for the application of UGS. The algorithm is built on the varying trend of a vehicle's bearing angles around the closest point of approach (CPA). We demonstrate the effectiveness of our proposed method with our designed SAMA-based monitoring system in various experimental sites. The experimental results in harsh conditions validate the usefulness of our proposed UGS monitoring system.

  1. Estimating neural response functions from fMRI

    PubMed Central

    Kumar, Sukhbinder; Penny, William

    2014-01-01

    This paper proposes a methodology for estimating Neural Response Functions (NRFs) from fMRI data. These NRFs describe non-linear relationships between experimental stimuli and neuronal population responses. The method is based on a two-stage model comprising an NRF and a Hemodynamic Response Function (HRF) that are simultaneously fitted to fMRI data using a Bayesian optimization algorithm. This algorithm also produces a model evidence score, providing a formal model comparison method for evaluating alternative NRFs. The HRF is characterized using previously established “Balloon” and BOLD signal models. We illustrate the method with two example applications based on fMRI studies of the auditory system. In the first, we estimate the time constants of repetition suppression and facilitation, and in the second we estimate the parameters of population receptive fields in a tonotopic mapping study. PMID:24847246

  2. Efficient sequential and parallel algorithms for record linkage

    PubMed Central

    Mamun, Abdullah-Al; Mi, Tian; Aseltine, Robert; Rajasekaran, Sanguthevar

    2014-01-01

    Background and objective Integrating data from multiple sources is a crucial and challenging problem. Even though there exist numerous algorithms for record linkage or deduplication, they suffer from either large time needs or restrictions on the number of datasets that they can integrate. In this paper we report efficient sequential and parallel algorithms for record linkage which handle any number of datasets and outperform previous algorithms. Methods Our algorithms employ hierarchical clustering algorithms as the basis. A key idea that we use is radix sorting on certain attributes to eliminate identical records before any further processing. Another novel idea is to form a graph that links similar records and find the connected components. Results Our sequential and parallel algorithms have been tested on a real dataset of 1 083 878 records and synthetic datasets ranging in size from 50 000 to 9 000 000 records. Our sequential algorithm runs at least two times faster, for any dataset, than the previous best-known algorithm, the two-phase algorithm using faster computation of the edit distance (TPA (FCED)). The speedups obtained by our parallel algorithm are almost linear. For example, we get a speedup of 7.5 with 8 cores (residing in a single node), 14.1 with 16 cores (residing in two nodes), and 26.4 with 32 cores (residing in four nodes). Conclusions We have compared the performance of our sequential algorithm with TPA (FCED) and found that our algorithm outperforms the previous one. The accuracy is the same as that of this previous best-known algorithm. PMID:24154837

  3. Fast Construction of Near Parsimonious Hybridization Networks for Multiple Phylogenetic Trees.

    PubMed

    Mirzaei, Sajad; Wu, Yufeng

    2016-01-01

    Hybridization networks represent plausible evolutionary histories of species that are affected by reticulate evolutionary processes. An established computational problem on hybridization networks is constructing the most parsimonious hybridization network such that each of the given phylogenetic trees (called gene trees) is "displayed" in the network. There have been several previous approaches, including an exact method and several heuristics, for this NP-hard problem. However, the exact method is only applicable to a limited range of data, and heuristic methods can be less accurate and also slow sometimes. In this paper, we develop a new algorithm for constructing near parsimonious networks for multiple binary gene trees. This method is more efficient for large numbers of gene trees than previous heuristics. This new method also produces more parsimonious results on many simulated datasets as well as a real biological dataset than a previous method. We also show that our method produces topologically more accurate networks for many datasets.

  4. Exploiting periodicity to extract the atrial activity in atrial arrhythmias

    NASA Astrophysics Data System (ADS)

    Llinares, Raul; Igual, Jorge

    2011-12-01

    Atrial fibrillation disorders are one of the main arrhythmias of the elderly. The atrial and ventricular activities are decoupled during an atrial fibrillation episode, and very rapid and irregular waves replace the usual atrial P-wave in a normal sinus rhythm electrocardiogram (ECG). The estimation of these wavelets is a must for clinical analysis. We propose a new approach to this problem focused on the quasiperiodicity of these wavelets. Atrial activity is characterized by a main atrial rhythm in the interval 3-12 Hz. It enables us to establish the problem as the separation of the original sources from the instantaneous linear combination of them recorded in the ECG or the extraction of only the atrial component exploiting the quasiperiodic feature of the atrial signal. This methodology implies the previous estimation of such main atrial period. We present two algorithms that separate and extract the atrial rhythm starting from a prior estimation of the main atrial frequency. The first one is an algebraic method based on the maximization of a cost function that measures the periodicity. The other one is an adaptive algorithm that exploits the decorrelation of the atrial and other signals diagonalizing the correlation matrices at multiple lags of the period of atrial activity. The algorithms are applied successfully to synthetic and real data. In simulated ECGs, the average correlation index obtained was 0.811 and 0.847, respectively. In real ECGs, the accuracy of the results was validated using spectral and temporal parameters. The average peak frequency and spectral concentration obtained were 5.550 and 5.554 Hz and 56.3 and 54.4%, respectively, and the kurtosis was 0.266 and 0.695. For validation purposes, we compared the proposed algorithms with established methods, obtaining better results for simulated and real registers.

  5. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    PubMed

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  6. STAR Algorithm Integration Team - Facilitating operational algorithm development

    NASA Astrophysics Data System (ADS)

    Mikles, V. J.

    2015-12-01

    The NOAA/NESDIS Center for Satellite Research and Applications (STAR) provides technical support of the Joint Polar Satellite System (JPSS) algorithm development and integration tasks. Utilizing data from the S-NPP satellite, JPSS generates over thirty Environmental Data Records (EDRs) and Intermediate Products (IPs) spanning atmospheric, ocean, cryosphere, and land weather disciplines. The Algorithm Integration Team (AIT) brings technical expertise and support to product algorithms, specifically in testing and validating science algorithms in a pre-operational environment. The AIT verifies that new and updated algorithms function in the development environment, enforces established software development standards, and ensures that delivered packages are functional and complete. AIT facilitates the development of new JPSS-1 algorithms by implementing a review approach based on the Enterprise Product Lifecycle (EPL) process. Building on relationships established during the S-NPP algorithm development process and coordinating directly with science algorithm developers, the AIT has implemented structured reviews with self-contained document suites. The process has supported algorithm improvements for products such as ozone, active fire, vegetation index, and temperature and moisture profiles.

  7. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  8. A Comparison of Automated and Manual Crater Counting Techniques in Images of Elysium Planitia.

    NASA Astrophysics Data System (ADS)

    Plesko, C. S.; Brumby, S. P.; Asphaug, E.

    2004-11-01

    Surveys of impact craters yield a wealth of information about Martian geology, providing clues to the relative age, local composition and erosional history of the surface. Martian craters are also of intrinsic geophysical interest, given that the processes by which they form are not entirely clear, especially cratering in ice-saturated regoliths (Plesko et al. 2004, AGU) which appear common on Mars (Squyres and Carr 1986). However, the deluge of data over the last decade has made comprehensive manual counts prohibitive, except in select regions. Given that most small craters on Mars may be secondaries from a few very recent impact events (McEwen et al. in press, Icarus 2004), using select regions for age dating introduces considerable potential for sampling error. Automation is thus an enabling planetary science technology. In contrast to machine counts, human counts are prone to human decision making, thus not intrinsically reproducible. One can address human "noise" by averaging over many human counts (Kanefsky et al. 2001), but this multiplies the already laborious effort required. In this study, we test automated crater counting algorithms developed with the Los Alamos National Laboratory genetic programming suite GENIE (Harvey et al., 2002) against established manual counts of craters in Elysium Planitia, using MOC and THEMIS data. We intend to establish the validity of our method against well-regarded hand counts (Hartmann et al. 2000), and then apply it generally to larger regions of Mars. Previous work on automated crater counting used customized algorithms (Bierhaus et al. 2003, Burl et al.. 2001). Algorithms generated by genetic programming have the advantage of requiring little time or user effort to generate, so it is relatively easy to generate a suite of algorithms for varied terrain types, or to compare results from multiple algorithms for improved accuracy (Plesko et al. 2003).

  9. Agricultural mapping using Support Vector Machine-Based Endmember Extraction (SVM-BEE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibald, Richard K; Filippi, Anthony M; Bhaduri, Budhendra L

    Extracting endmembers from remotely sensed images of vegetated areas can present difficulties. In this research, we applied a recently developed endmember-extraction algorithm based on Support Vector Machines (SVMs) to the problem of semi-autonomous estimation of vegetation endmembers from a hyperspectral image. This algorithm, referred to as Support Vector Machine-Based Endmember Extraction (SVM-BEE), accurately and rapidly yields a computed representation of hyperspectral data that can accommodate multiple distributions. The number of distributions is identified without prior knowledge, based upon this representation. Prior work established that SVM-BEE is robustly noise-tolerant and can semi-automatically and effectively estimate endmembers; synthetic data and a geologicmore » scene were previously analyzed. Here we compared the efficacies of the SVM-BEE and N-FINDR algorithms in extracting endmembers from a predominantly agricultural scene. SVM-BEE was able to estimate vegetation and other endmembers for all classes in the image, which N-FINDR failed to do. Classifications based on SVM-BEE endmembers were markedly more accurate compared with those based on N-FINDR endmembers.« less

  10. QuickProbs 2: Towards rapid construction of high-quality alignments of large protein families

    PubMed Central

    Gudyś, Adam; Deorowicz, Sebastian

    2017-01-01

    The ever-increasing size of sequence databases caused by the development of high throughput sequencing, poses to multiple alignment algorithms one of the greatest challenges yet. As we show, well-established techniques employed for increasing alignment quality, i.e., refinement and consistency, are ineffective when large protein families are investigated. We present QuickProbs 2, an algorithm for multiple sequence alignment. Based on probabilistic models, equipped with novel column-oriented refinement and selective consistency, it offers outstanding accuracy. When analysing hundreds of sequences, Quick-Probs 2 is noticeably better than ClustalΩ and MAFFT, the previous leaders for processing numerous protein families. In the case of smaller sets, for which consistency-based methods are the best performing, QuickProbs 2 is also superior to the competitors. Due to low computational requirements of selective consistency and utilization of massively parallel architectures, presented algorithm has similar execution times to ClustalΩ, and is orders of magnitude faster than full consistency approaches, like MSAProbs or PicXAA. All these make QuickProbs 2 an excellent tool for aligning families ranging from few, to hundreds of proteins. PMID:28139687

  11. A bioinspired collision detection algorithm for VLSI implementation

    NASA Astrophysics Data System (ADS)

    Cuadri, J.; Linan, G.; Stafford, R.; Keil, M. S.; Roca, E.

    2005-06-01

    In this paper a bioinspired algorithm for collision detection is proposed, based on previous models of the locust (Locusta migratoria) visual system reported by F.C. Rind and her group, in the University of Newcastle-upon-Tyne. The algorithm is suitable for VLSI implementation in standard CMOS technologies as a system-on-chip for automotive applications. The working principle of the algorithm is to process a video stream that represents the current scenario, and to fire an alarm whenever an object approaches on a collision course. Moreover, it establishes a scale of warning states, from no danger to collision alarm, depending on the activity detected in the current scenario. In the worst case, the minimum time before collision at which the model fires the collision alarm is 40 msec (1 frame before, at 25 frames per second). Since the average time to successfully fire an airbag system is 2 msec, even in the worst case, this algorithm would be very helpful to more efficiently arm the airbag system, or even take some kind of collision avoidance countermeasures. Furthermore, two additional modules have been included: a "Topological Feature Estimator" and an "Attention Focusing Algorithm". The former takes into account the shape of the approaching object to decide whether it is a person, a road line or a car. This helps to take more adequate countermeasures and to filter false alarms. The latter centres the processing power into the most active zones of the input frame, thus saving memory and processing time resources.

  12. Uncertainty Footprint: Visualization of Nonuniform Behavior of Iterative Algorithms Applied to 4D Cell Tracking

    PubMed Central

    Wan, Y.; Hansen, C.

    2018-01-01

    Research on microscopy data from developing biological samples usually requires tracking individual cells over time. When cells are three-dimensionally and densely packed in a time-dependent scan of volumes, tracking results can become unreliable and uncertain. Not only are cell segmentation results often inaccurate to start with, but it also lacks a simple method to evaluate the tracking outcome. Previous cell tracking methods have been validated against benchmark data from real scans or artificial data, whose ground truth results are established by manual work or simulation. However, the wide variety of real-world data makes an exhaustive validation impossible. Established cell tracking tools often fail on new data, whose issues are also difficult to diagnose with only manual examinations. Therefore, data-independent tracking evaluation methods are desired for an explosion of microscopy data with increasing scale and resolution. In this paper, we propose the uncertainty footprint, an uncertainty quantification and visualization technique that examines nonuniformity at local convergence for an iterative evaluation process on a spatial domain supported by partially overlapping bases. We demonstrate that the patterns revealed by the uncertainty footprint indicate data processing quality in two algorithms from a typical cell tracking workflow – cell identification and association. A detailed analysis of the patterns further allows us to diagnose issues and design methods for improvements. A 4D cell tracking workflow equipped with the uncertainty footprint is capable of self diagnosis and correction for a higher accuracy than previous methods whose evaluation is limited by manual examinations. PMID:29456279

  13. A Dissimilarity Measure for Clustering High- and Infinite Dimensional Data that Satisfies the Triangle Inequality

    NASA Technical Reports Server (NTRS)

    Socolovsky, Eduardo A.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The cosine or correlation measures of similarity used to cluster high dimensional data are interpreted as projections, and the orthogonal components are used to define a complementary dissimilarity measure to form a similarity-dissimilarity measure pair. Using a geometrical approach, a number of properties of this pair is established. This approach is also extended to general inner-product spaces of any dimension. These properties include the triangle inequality for the defined dissimilarity measure, error estimates for the triangle inequality and bounds on both measures that can be obtained with a few floating-point operations from previously computed values of the measures. The bounds and error estimates for the similarity and dissimilarity measures can be used to reduce the computational complexity of clustering algorithms and enhance their scalability, and the triangle inequality allows the design of clustering algorithms for high dimensional distributed data.

  14. A Lightweight Hierarchical Activity Recognition Framework Using Smartphone Sensors

    PubMed Central

    Han, Manhyung; Bang, Jae Hun; Nugent, Chris; McClean, Sally; Lee, Sungyoung

    2014-01-01

    Activity recognition for the purposes of recognizing a user's intentions using multimodal sensors is becoming a widely researched topic largely based on the prevalence of the smartphone. Previous studies have reported the difficulty in recognizing life-logs by only using a smartphone due to the challenges with activity modeling and real-time recognition. In addition, recognizing life-logs is difficult due to the absence of an established framework which enables the use of different sources of sensor data. In this paper, we propose a smartphone-based Hierarchical Activity Recognition Framework which extends the Naïve Bayes approach for the processing of activity modeling and real-time activity recognition. The proposed algorithm demonstrates higher accuracy than the Naïve Bayes approach and also enables the recognition of a user's activities within a mobile environment. The proposed algorithm has the ability to classify fifteen activities with an average classification accuracy of 92.96%. PMID:25184486

  15. Parallel Algorithms for Computational Models of Geophysical Systems

    NASA Astrophysics Data System (ADS)

    Carrillo Ledesma, A.; Herrera, I.; de la Cruz, L. M.; Hernández, G.; Grupo de Modelacion Matematica y Computacional

    2013-05-01

    Mathematical models of many systems of interest, including very important continuous systems of Earth Sciences and Engineering, lead to a great variety of partial differential equations (PDEs) whose solution methods are based on the computational processing of large-scale algebraic systems. Furthermore, the incredible expansion experienced by the existing computational hardware and software has made amenable to effective treatment problems of an ever increasing diversity and complexity, posed by scientific and engineering applications. Parallel computing is outstanding among the new computational tools and, in order to effectively use the most advanced computers available today, massively parallel software is required. Domain decomposition methods (DDMs) have been developed precisely for effectively treating PDEs in paralle. Ideally, the main objective of domain decomposition research is to produce algorithms capable of 'obtaining the global solution by exclusively solving local problems', but up-to-now this has only been an aspiration; that is, a strong desire for achieving such a property and so we call it 'the DDM-paradigm'. In recent times, numerically competitive DDM-algorithms are non-overlapping, preconditioned and necessarily incorporate constraints which pose an additional challenge for achieving the DDM-paradigm. Recently a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm, was developed. To derive them a new discretization method, which uses a non-overlapping system of nodes (the derived-nodes), was introduced. This discretization procedure can be applied to any boundary-value problem, or system of such equations. In turn, the resulting system of discrete equations can be treated using any available DDM-algorithm. In particular, two of the four DVS-algorithms mentioned above were obtained by application of the well-known and very effective algorithms BDDC and FETI-DP; these will be referred to as the DVS-BDDC and DVS-FETI-DP algorithms. The other two, which will be referred to as the DVS-PRIMAL and DVS-DUAL algorithms, were obtained by application of two new algorithms that had not been previously reported in the literature. As said before, the four DVS-algorithms constitute a group of preconditioned and constrained algorithms that, for the first time, fulfill the DDM-paradigm. Both, BDDC and FETI-DP, are very well-known; and both are highly efficient. Recently, it was established that these two methods are closely related and its numerical performance is quite similar. On the other hand, through numerical experiments, we have established that the numerical performances of each one of the members of DVS-algorithms group (DVS-BDDC, DVS-FETI-DP, DVS-PRIMAL and DVS-DUAL) are very similar too. Furthermore, we have carried out comparisons of the performances of the standard versions of BDDC and FETI-DP with DVS-BDDC and DVS-FETI-DP, and in all such numerical experiments the DVS algorithms have performed significantly better.

  16. Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework

    PubMed Central

    Antonopoulos, Georgios C.; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available. PMID:26599984

  17. Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework.

    PubMed

    Antonopoulos, Georgios C; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.

  18. Development of Serum Marker Models to Increase Diagnostic Accuracy of Advanced Fibrosis in Nonalcoholic Fatty Liver Disease: The New LINKI Algorithm Compared with Established Algorithms.

    PubMed

    Lykiardopoulos, Byron; Hagström, Hannes; Fredrikson, Mats; Ignatova, Simone; Stål, Per; Hultcrantz, Rolf; Ekstedt, Mattias; Kechagias, Stergios

    2016-01-01

    Detection of advanced fibrosis (F3-F4) in nonalcoholic fatty liver disease (NAFLD) is important for ascertaining prognosis. Serum markers have been proposed as alternatives to biopsy. We attempted to develop a novel algorithm for detection of advanced fibrosis based on a more efficient combination of serological markers and to compare this with established algorithms. We included 158 patients with biopsy-proven NAFLD. Of these, 38 had advanced fibrosis. The following fibrosis algorithms were calculated: NAFLD fibrosis score, BARD, NIKEI, NASH-CRN regression score, APRI, FIB-4, King´s score, GUCI, Lok index, Forns score, and ELF. Study population was randomly divided in a training and a validation group. A multiple logistic regression analysis using bootstrapping methods was applied to the training group. Among many variables analyzed age, fasting glucose, hyaluronic acid and AST were included, and a model (LINKI-1) for predicting advanced fibrosis was created. Moreover, these variables were combined with platelet count in a mathematical way exaggerating the opposing effects, and alternative models (LINKI-2) were also created. Models were compared using area under the receiver operator characteristic curves (AUROC). Of established algorithms FIB-4 and King´s score had the best diagnostic accuracy with AUROCs 0.84 and 0.83, respectively. Higher accuracy was achieved with the novel LINKI algorithms. AUROCs in the total cohort for LINKI-1 was 0.91 and for LINKI-2 models 0.89. The LINKI algorithms for detection of advanced fibrosis in NAFLD showed better accuracy than established algorithms and should be validated in further studies including larger cohorts.

  19. A comparison between simplified and intensive dose-titration algorithms using AIR inhaled insulin for insulin-naive patients with type 2 diabetes in a randomized noninferiority trial.

    PubMed

    Mathieu, C; Cuddihy, R; Arakaki, R F; Belin, R M; Planquois, J-M; Lyons, J N; Heilmann, C R

    2009-09-01

    Insulin initiation and optimization is a challenge for patients with type 2 diabetes. Our objective was to determine whether safety and efficacy of AIR inhaled insulin (Eli Lilly and Co., Indianapolis, IN) (AIR is a registered trademark of Alkermes, Inc., Cambridge, MA) using a simplified regimen was noninferior to an intensive regimen. This was an open-label, randomized study in insulin-naive adults not optimally controlled by oral antihyperglycemic medications. Simplified titration included a 6 U per meal AIR insulin starting dose. Individual doses were adjusted at mealtime in 2-U increments from the previous day's four-point self-monitored blood glucose (SMBG) (total < or =6 U). Starting Air insulin doses for intensive titration were based on fasting blood glucose, gender, height, and weight. Patients conducted four-point SMBG daily for the study duration. Insulin doses were titrated based on the previous 3 days' mean SMBG (total < or =8 U). End point hemoglobin A1C (A1C) was 7.07 +/- 0.09% and 6.87 +/- 0.09% for simplified (n = 178) and intensive (n = 180) algorithms, respectively. Noninferiority between algorithms was not established. The fasting blood glucose (least squares mean +/- standard error) values for the simplified (137.27 +/- 3.42 mg/dL) and intensive (133.13 +/- 3.42 mg/dL) algorithms were comparable. Safety profiles were comparable. The hypoglycemic rate at 4, 8, 12, and 24 weeks was higher in patients receiving intensive titration (all P < .0001). The nocturnal hypoglycemic rate for patients receiving intensive titration was higher than for those receiving simplified titration at 8 (P < 0.015) and 12 weeks (P < 0.001). Noninferiority between the algorithms, as measured by A1C, was not demonstrated. This finding re-emphasizes the difficulty of identifying optimal, simplified insulin regimens for patients.

  20. Technical Note: A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition and diffusion-derived components

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Schulz-Hanke, M.; Garcia Alba, J.; Jurisch, N.; Hagemann, U.; Sachs, T.; Sommer, M.; Augustin, J.

    2015-08-01

    Processes driving the production, transformation and transport of methane (CH4) in wetland ecosystems are highly complex. Thus, serious challenges are constitutes in terms of the mechanistic process understanding, the identification of potential environmental drivers and the calculation of reliable CH4 emission estimates. We present a simple calculation algorithm to separate open-water CH4 fluxes measured with automatic chambers into diffusion- and ebullition-derived components, which helps facilitating the identification of underlying dynamics and potential environmental drivers. Flux separation is based on ebullition related sudden concentration changes during single measurements. A variable ebullition filter is applied, using the lower and upper quartile and the interquartile range (IQR). Automation of data processing is achieved by using an established R-script, adjusted for the purpose of CH4 flux calculation. The algorithm was tested using flux measurement data (July to September 2013) from a former fen grassland site, converted into a shallow lake as a result of rewetting ebullition and diffusion contributed 46 and 55 %, respectively, to total CH4 emissions, which is comparable to those previously reported by literature. Moreover, the separation algorithm revealed a concealed shift in the diurnal trend of diffusive fluxes throughout the measurement period.

  1. Electric Power Engineering Cost Predicting Model Based on the PCA-GA-BP

    NASA Astrophysics Data System (ADS)

    Wen, Lei; Yu, Jiake; Zhao, Xin

    2017-10-01

    In this paper a hybrid prediction algorithm: PCA-GA-BP model is proposed. PCA algorithm is established to reduce the correlation between indicators of original data and decrease difficulty of BP neural network in complex dimensional calculation. The BP neural network is established to estimate the cost of power transmission project. The results show that PCA-GA-BP algorithm can improve result of prediction of electric power engineering cost.

  2. Model based estimation of image depth and displacement

    NASA Technical Reports Server (NTRS)

    Damour, Kevin T.

    1992-01-01

    Passive depth and displacement map determinations have become an important part of computer vision processing. Applications that make use of this type of information include autonomous navigation, robotic assembly, image sequence compression, structure identification, and 3-D motion estimation. With the reliance of such systems on visual image characteristics, a need to overcome image degradations, such as random image-capture noise, motion, and quantization effects, is clearly necessary. Many depth and displacement estimation algorithms also introduce additional distortions due to the gradient operations performed on the noisy intensity images. These degradations can limit the accuracy and reliability of the displacement or depth information extracted from such sequences. Recognizing the previously stated conditions, a new method to model and estimate a restored depth or displacement field is presented. Once a model has been established, the field can be filtered using currently established multidimensional algorithms. In particular, the reduced order model Kalman filter (ROMKF), which has been shown to be an effective tool in the reduction of image intensity distortions, was applied to the computed displacement fields. Results of the application of this model show significant improvements on the restored field. Previous attempts at restoring the depth or displacement fields assumed homogeneous characteristics which resulted in the smoothing of discontinuities. In these situations, edges were lost. An adaptive model parameter selection method is provided that maintains sharp edge boundaries in the restored field. This has been successfully applied to images representative of robotic scenarios. In order to accommodate image sequences, the standard 2-D ROMKF model is extended into 3-D by the incorporation of a deterministic component based on previously restored fields. The inclusion of past depth and displacement fields allows a means of incorporating the temporal information into the restoration process. A summary on the conditions that indicate which type of filtering should be applied to a field is provided.

  3. Comparison of trend analyses for Umkehr data using new and previous inversion algorithms

    NASA Technical Reports Server (NTRS)

    Reinsel, Gregory C.; Tam, Wing-Kuen; Ying, Lisa H.

    1994-01-01

    Ozone vertical profile Umkehr data for layers 3-9 obtained from 12 stations, using both previous and new inversion algorithms, were analyzed for trends. The trends estimated for the Umkehr data from the two algorithms were compared using two data periods, 1968-1991 and 1977-1991. Both nonseasonal and seasonal trend models were fitted. The overall annual trends are found to be significantly negative, of the order of -5% per decade, for layers 7 and 8 using both inversion algorithms. The largest negative trends occur in these layers under the new algorithm, whereas in the previous algorithm the most negative trend occurs in layer 9. The trend estimates, both annual and seasonal, are substantially different between the two algorithms mainly for layers 3, 4, and 9, where trends from the new algorithm data are about 2% per decade less negative, with less appreciable differences in layers 7 and 8. The trend results from the two data periods are similar, except for layer 3 where trends become more negative, by about -2% per decade, for 1977-1991.

  4. Empirical Methods for Detecting Regional Trends and Other Spatial Expressions in Antrim Shale Gas Productivity, with Implications for Improving Resource Projections Using Local Nonparametric Estimation Techniques

    USGS Publications Warehouse

    Coburn, T.C.; Freeman, P.A.; Attanasi, E.D.

    2012-01-01

    The primary objectives of this research were to (1) investigate empirical methods for establishing regional trends in unconventional gas resources as exhibited by historical production data and (2) determine whether or not incorporating additional knowledge of a regional trend in a suite of previously established local nonparametric resource prediction algorithms influences assessment results. Three different trend detection methods were applied to publicly available production data (well EUR aggregated to 80-acre cells) from the Devonian Antrim Shale gas play in the Michigan Basin. This effort led to the identification of a southeast-northwest trend in cell EUR values across the play that, in a very general sense, conforms to the primary fracture and structural orientations of the province. However, including this trend in the resource prediction algorithms did not lead to improved results. Further analysis indicated the existence of clustering among cell EUR values that likely dampens the contribution of the regional trend. The reason for the clustering, a somewhat unexpected result, is not completely understood, although the geological literature provides some possible explanations. With appropriate data, a better understanding of this clustering phenomenon may lead to important information about the factors and their interactions that control Antrim Shale gas production, which may, in turn, help establish a more general protocol for better estimating resources in this and other shale gas plays. ?? 2011 International Association for Mathematical Geology (outside the USA).

  5. A comparison of kinematic algorithms to estimate gait events during overground running.

    PubMed

    Smith, Laura; Preece, Stephen; Mason, Duncan; Bramah, Christopher

    2015-01-01

    The gait cycle is frequently divided into two distinct phases, stance and swing, which can be accurately determined from ground reaction force data. In the absence of such data, kinematic algorithms can be used to estimate footstrike and toe-off. The performance of previously published algorithms is not consistent between studies. Furthermore, previous algorithms have not been tested at higher running speeds nor used to estimate ground contact times. Therefore the purpose of this study was to both develop a new, custom-designed, event detection algorithm and compare its performance with four previously tested algorithms at higher running speeds. Kinematic and force data were collected on twenty runners during overground running at 5.6m/s. The five algorithms were then implemented and estimated times for footstrike, toe-off and contact time were compared to ground reaction force data. There were large differences in the performance of each algorithm. The custom-designed algorithm provided the most accurate estimation of footstrike (True Error 1.2 ± 17.1 ms) and contact time (True Error 3.5 ± 18.2 ms). Compared to the other tested algorithms, the custom-designed algorithm provided an accurate estimation of footstrike and toe-off across different footstrike patterns. The custom-designed algorithm provides a simple but effective method to accurately estimate footstrike, toe-off and contact time from kinematic data. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. [Effect of algorithms for calibration set selection on quantitatively determining asiaticoside content in Centella total glucosides by near infrared spectroscopy].

    PubMed

    Zhan, Xue-yan; Zhao, Na; Lin, Zhao-zhou; Wu, Zhi-sheng; Yuan, Rui-juan; Qiao, Yan-jiang

    2014-12-01

    The appropriate algorithm for calibration set selection was one of the key technologies for a good NIR quantitative model. There are different algorithms for calibration set selection, such as Random Sampling (RS) algorithm, Conventional Selection (CS) algorithm, Kennard-Stone(KS) algorithm and Sample set Portioning based on joint x-y distance (SPXY) algorithm, et al. However, there lack systematic comparisons between two algorithms of the above algorithms. The NIR quantitative models to determine the asiaticoside content in Centella total glucosides were established in the present paper, of which 7 indexes were classified and selected, and the effects of CS algorithm, KS algorithm and SPXY algorithm for calibration set selection on the accuracy and robustness of NIR quantitative models were investigated. The accuracy indexes of NIR quantitative models with calibration set selected by SPXY algorithm were significantly different from that with calibration set selected by CS algorithm or KS algorithm, while the robustness indexes, such as RMSECV and |RMSEP-RMSEC|, were not significantly different. Therefore, SPXY algorithm for calibration set selection could improve the predicative accuracy of NIR quantitative models to determine asiaticoside content in Centella total glucosides, and have no significant effect on the robustness of the models, which provides a reference to determine the appropriate algorithm for calibration set selection when NIR quantitative models are established for the solid system of traditional Chinese medcine.

  7. Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Shou-ping; Xin, Xiao-kang

    2017-07-01

    Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.

  8. Mathematics of the total alkalinity-pH equation - pathway to robust and universal solution algorithms: the SolveSAPHE package v1.0.1

    NASA Astrophysics Data System (ADS)

    Munhoven, G.

    2013-08-01

    The total alkalinity-pH equation, which relates total alkalinity and pH for a given set of total concentrations of the acid-base systems that contribute to total alkalinity in a given water sample, is reviewed and its mathematical properties established. We prove that the equation function is strictly monotone and always has exactly one positive root. Different commonly used approximations are discussed and compared. An original method to derive appropriate initial values for the iterative solution of the cubic polynomial equation based upon carbonate-borate-alkalinity is presented. We then review different methods that have been used to solve the total alkalinity-pH equation, with a main focus on biogeochemical models. The shortcomings and limitations of these methods are made out and discussed. We then present two variants of a new, robust and universally convergent algorithm to solve the total alkalinity-pH equation. This algorithm does not require any a priori knowledge of the solution. SolveSAPHE (Solver Suite for Alkalinity-PH Equations) provides reference implementations of several variants of the new algorithm in Fortran 90, together with new implementations of other, previously published solvers. The new iterative procedure is shown to converge from any starting value to the physical solution. The extra computational cost for the convergence security is only 10-15% compared to the fastest algorithm in our test series.

  9. Gene expression based mouse brain parcellation using Markov random field regularized non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Haynor, David R.; Thompson, Carol L.; Lein, Ed; Hawrylycz, Michael

    2009-02-01

    Understanding the geography of genetic expression in the mouse brain has opened previously unexplored avenues in neuroinformatics. The Allen Brain Atlas (www.brain-map.org) (ABA) provides genome-wide colorimetric in situ hybridization (ISH) gene expression images at high spatial resolution, all mapped to a common three-dimensional 200μm3 spatial framework defined by the Allen Reference Atlas (ARA) and is a unique data set for studying expression based structural and functional organization of the brain. The goal of this study was to facilitate an unbiased data-driven structural partitioning of the major structures in the mouse brain. We have developed an algorithm that uses nonnegative matrix factorization (NMF) to perform parts based analysis of ISH gene expression images. The standard NMF approach and its variants are limited in their ability to flexibly integrate prior knowledge, in the context of spatial data. In this paper, we introduce spatial connectivity as an additional regularization in NMF decomposition via the use of Markov Random Fields (mNMF). The mNMF algorithm alternates neighborhood updates with iterations of the standard NMF algorithm to exploit spatial correlations in the data. We present the algorithm and show the sub-divisions of hippocampus and somatosensory-cortex obtained via this approach. The results are compared with established neuroanatomic knowledge. We also highlight novel gene expression based sub divisions of the hippocampus identified by using the mNMF algorithm.

  10. Short paths in expander graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinberg, J.; Rubinfeld, R.

    Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratiomore » in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.« less

  11. A test to evaluate the earthquake prediction algorithm, M8

    USGS Publications Warehouse

    Healy, John H.; Kossobokov, Vladimir G.; Dewey, James W.

    1992-01-01

    A test of the algorithm M8 is described. The test is constructed to meet four rules, which we propose to be applicable to the test of any method for earthquake prediction:  1. An earthquake prediction technique should be presented as a well documented, logical algorithm that can be used by  investigators without restrictions. 2. The algorithm should be coded in a common programming language and implementable on widely available computer systems. 3. A test of the earthquake prediction technique should involve future predictions with a black box version of the algorithm in which potentially adjustable parameters are fixed in advance. The source of the input data must be defined and ambiguities in these data must be resolved automatically by the algorithm. 4. At least one reasonable null hypothesis should be stated in advance of testing the earthquake prediction method, and it should be stated how this null hypothesis will be used to estimate the statistical significance of the earthquake predictions. The M8 algorithm has successfully predicted several destructive earthquakes, in the sense that the earthquakes occurred inside regions with linear dimensions from 384 to 854 km that the algorithm had identified as being in times of increased probability for strong earthquakes. In addition, M8 has successfully "post predicted" high percentages of strong earthquakes in regions to which it has been applied in retroactive studies. The statistical significance of previous predictions has not been established, however, and post-prediction studies in general are notoriously subject to success-enhancement through hindsight. Nor has it been determined how much more precise an M8 prediction might be than forecasts and probability-of-occurrence estimates made by other techniques. We view our test of M8 both as a means to better determine the effectiveness of M8 and as an experimental structure within which to make observations that might lead to improvements in the algorithm or conceivably lead to a radically different approach to earthquake prediction.

  12. Determination of Hydrodynamic Parameters on Two--Phase Flow Gas - Liquid in Pipes with Different Inclination Angles Using Image Processing Algorithm

    NASA Astrophysics Data System (ADS)

    Montoya, Gustavo; Valecillos, María; Romero, Carlos; Gonzáles, Dosinda

    2009-11-01

    In the present research a digital image processing-based automated algorithm was developed in order to determine the phase's height, hold up, and statistical distribution of the drop size in a two-phase system water-air using pipes with 0 , 10 , and 90 of inclination. Digital images were acquired with a high speed camera (up to 4500fps), using an equipment that consist of a system with three acrylic pipes with diameters of 1.905, 3.175, and 4.445 cm. Each pipe is arranged in two sections of 8 m of length. Various flow patterns were visualized for different superficial velocities of water and air. Finally, using the image processing program designed in Matlab/Simulink^, the captured images were processed to establish the parameters previously mentioned. The image processing algorithm is based in the frequency domain analysis of the source pictures, which allows to find the phase as the edge between the water and air, through a Sobel filter that extracts the high frequency components of the image. The drop size was found using the calculation of the Feret diameter. Three flow patterns were observed: Annular, ST, and ST&MI.

  13. Optimal Quantum Spatial Search on Random Temporal Networks

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  14. A framework for comparing different image segmentation methods and its use in studying equivalences between level set and fuzzy connectedness frameworks

    PubMed Central

    Ciesielski, Krzysztof Chris; Udupa, Jayaram K.

    2011-01-01

    In the current vast image segmentation literature, there seems to be considerable redundancy among algorithms, while there is a serious lack of methods that would allow their theoretical comparison to establish their similarity, equivalence, or distinctness. In this paper, we make an attempt to fill this gap. To accomplish this goal, we argue that: (1) every digital segmentation algorithm A should have a well defined continuous counterpart MA, referred to as its model, which constitutes an asymptotic of A when image resolution goes to infinity; (2) the equality of two such models MA and MA′ establishes a theoretical (asymptotic) equivalence of their digital counterparts A and A′. Such a comparison is of full theoretical value only when, for each involved algorithm A, its model MA is proved to be an asymptotic of A. So far, such proofs do not appear anywhere in the literature, even in the case of algorithms introduced as digitizations of continuous models, like level set segmentation algorithms. The main goal of this article is to explore a line of investigation for formally pairing the digital segmentation algorithms with their asymptotic models, justifying such relations with mathematical proofs, and using the results to compare the segmentation algorithms in this general theoretical framework. As a first step towards this general goal, we prove here that the gradient based thresholding model M∇ is the asymptotic for the fuzzy connectedness Udupa and Samarasekera segmentation algorithm used with gradient based affinity A∇. We also argue that, in a sense, M∇ is the asymptotic for the original front propagation level set algorithm of Malladi, Sethian, and Vemuri, thus establishing a theoretical equivalence between these two specific algorithms. Experimental evidence of this last equivalence is also provided. PMID:21442014

  15. Yet one more dwell time algorithm

    NASA Astrophysics Data System (ADS)

    Haberl, Alexander; Rascher, Rolf

    2017-06-01

    The current demand of even more powerful and efficient microprocessors, for e.g. deep learning, has led to an ongoing trend of reducing the feature size of the integrated circuits. These processors are patterned with EUV-lithography which enables 7 nm chips [1]. To produce mirrors which satisfy the needed requirements is a challenging task. Not only increasing requirements on the imaging properties, but also new lens shapes, such as aspheres or lenses with free-form surfaces, require innovative production processes. However, these lenses need new deterministic sub-aperture polishing methods that have been established in the past few years. These polishing methods are characterized, by an empirically determined TIF and local stock removal. Such a deterministic polishing method is ion-beam-figuring (IBF). The beam profile of an ion beam is adjusted to a nearly ideal Gaussian shape by various parameters. With the known removal function, a dwell time profile can be generated for each measured error profile. Such a profile is always generated pixel-accurately to the predetermined error profile, with the aim always of minimizing the existing surface structures up to the cut-off frequency of the tool used [2]. The processing success of a correction-polishing run depends decisively on the accuracy of the previously computed dwell-time profile. So the used algorithm to calculate the dwell time has to accurately reflect the reality. But furthermore the machine operator should have no influence on the dwell-time calculation. Conclusively there mustn't be any parameters which have an influence on the calculation result. And lastly it should take a minimum of machining time to get a minimum of remaining error structures. Unfortunately current dwell time algorithm calculations are divergent, user-dependent, tending to create high processing times and need several parameters to bet set. This paper describes an, realistic, convergent and user independent dwell time algorithm. The typical processing times are reduced to about 80 % up to 50 % compared to conventional algorithms (Lucy-Richardson, Van-Cittert …) as used in established machines. To verify its effectiveness a plane surface was machined on an IBF.

  16. Abnormal Strain Rate Sensitivity Driven by a Unit Dislocation-Obstacle Interaction in bcc Fe

    NASA Astrophysics Data System (ADS)

    Bai, Zhitong; Fan, Yue

    2018-03-01

    The interaction between an edge dislocation and a sessile vacancy cluster in bcc Fe is investigated over a wide range of strain rates from 108 down to 103 s-1 , which is enabled by employing an energy landscape-based atomistic modeling algorithm. It is observed that, at low strain rates regime less than 105 s-1 , such interaction leads to a surprising negative strain rate sensitivity behavior because of the different intermediate microstructures emerged under the complex interplays between thermal activation and applied strain rate. Implications of our findings regarding the previously established global diffusion model are also discussed.

  17. A new algorithm for attitude-independent magnetometer calibration

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Shuster, Malcolm D.

    1994-01-01

    A new algorithm is developed for inflight magnetometer bias determination without knowledge of the attitude. This algorithm combines the fast convergence of a heuristic algorithm currently in use with the correct treatment of the statistics and without discarding data. The algorithm performance is examined using simulated data and compared with previous algorithms.

  18. Medical Image Processing Server applied to Quality Control of Nuclear Medicine.

    NASA Astrophysics Data System (ADS)

    Vergara, C.; Graffigna, J. P.; Marino, E.; Omati, S.; Holleywell, P.

    2016-04-01

    This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work.

  19. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    PubMed

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  20. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)].

    PubMed

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-07

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T 0 ) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T 0 ) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T 0 ) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T 0 ) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T 0 ) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T 0 ) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T 0 ), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  1. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-01

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  2. MPLNET V3 Cloud and Planetary Boundary Layer Detection

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.

    2016-01-01

    The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.

  3. A coarse to fine minutiae-based latent palmprint matching.

    PubMed

    Liu, Eryun; Jain, Anil K; Tian, Jie

    2013-10-01

    With the availability of live-scan palmprint technology, high resolution palmprint recognition has started to receive significant attention in forensics and law enforcement. In forensic applications, latent palmprints provide critical evidence as it is estimated that about 30 percent of the latents recovered at crime scenes are those of palms. Most of the available high-resolution palmprint matching algorithms essentially follow the minutiae-based fingerprint matching strategy. Considering the large number of minutiae (about 1,000 minutiae in a full palmprint compared to about 100 minutiae in a rolled fingerprint) and large area of foreground region in full palmprints, novel strategies need to be developed for efficient and robust latent palmprint matching. In this paper, a coarse to fine matching strategy based on minutiae clustering and minutiae match propagation is designed specifically for palmprint matching. To deal with the large number of minutiae, a local feature-based minutiae clustering algorithm is designed to cluster minutiae into several groups such that minutiae belonging to the same group have similar local characteristics. The coarse matching is then performed within each cluster to establish initial minutiae correspondences between two palmprints. Starting with each initial correspondence, a minutiae match propagation algorithm searches for mated minutiae in the full palmprint. The proposed palmprint matching algorithm has been evaluated on a latent-to-full palmprint database consisting of 446 latents and 12,489 background full prints. The matching results show a rank-1 identification accuracy of 79.4 percent, which is significantly higher than the 60.8 percent identification accuracy of a state-of-the-art latent palmprint matching algorithm on the same latent database. The average computation time of our algorithm for a single latent-to-full match is about 141 ms for genuine match and 50 ms for impostor match, on a Windows XP desktop system with 2.2-GHz CPU and 1.00-GB RAM. The computation time of our algorithm is an order of magnitude faster than a previously published state-of-the-art-algorithm.

  4. The effect of algorithms on copy number variant detection.

    PubMed

    Tsuang, Debby W; Millard, Steven P; Ely, Benjamin; Chi, Peter; Wang, Kenneth; Raskind, Wendy H; Kim, Sulgi; Brkanac, Zoran; Yu, Chang-En

    2010-12-30

    The detection of copy number variants (CNVs) and the results of CNV-disease association studies rely on how CNVs are defined, and because array-based technologies can only infer CNVs, CNV-calling algorithms can produce vastly different findings. Several authors have noted the large-scale variability between CNV-detection methods, as well as the substantial false positive and false negative rates associated with those methods. In this study, we use variations of four common algorithms for CNV detection (PennCNV, QuantiSNP, HMMSeg, and cnvPartition) and two definitions of overlap (any overlap and an overlap of at least 40% of the smaller CNV) to illustrate the effects of varying algorithms and definitions of overlap on CNV discovery. We used a 56 K Illumina genotyping array enriched for CNV regions to generate hybridization intensities and allele frequencies for 48 Caucasian schizophrenia cases and 48 age-, ethnicity-, and gender-matched control subjects. No algorithm found a difference in CNV burden between the two groups. However, the total number of CNVs called ranged from 102 to 3,765 across algorithms. The mean CNV size ranged from 46 kb to 787 kb, and the average number of CNVs per subject ranged from 1 to 39. The number of novel CNVs not previously reported in normal subjects ranged from 0 to 212. Motivated by the availability of multiple publicly available genome-wide SNP arrays, investigators are conducting numerous analyses to identify putative additional CNVs in complex genetic disorders. However, the number of CNVs identified in array-based studies, and whether these CNVs are novel or valid, will depend on the algorithm(s) used. Thus, given the variety of methods used, there will be many false positives and false negatives. Both guidelines for the identification of CNVs inferred from high-density arrays and the establishment of a gold standard for validation of CNVs are needed.

  5. A split finite element algorithm for the compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1979-01-01

    An accurate and efficient numerical solution algorithm is established for solution of the high Reynolds number limit of the Navier-Stokes equations governing the multidimensional flow of a compressible essentially inviscid fluid. Finite element interpolation theory is used within a dissipative formulation established using Galerkin criteria within the Method of Weighted Residuals. An implicit iterative solution algorithm is developed, employing tensor product bases within a fractional steps integration procedure, that significantly enhances solution economy concurrent with sharply reduced computer hardware demands. The algorithm is evaluated for resolution of steep field gradients and coarse grid accuracy using both linear and quadratic tensor product interpolation bases. Numerical solutions for linear and nonlinear, one, two and three dimensional examples confirm and extend the linearized theoretical analyses, and results are compared to competitive finite difference derived algorithms.

  6. Efficient Record Linkage Algorithms Using Complete Linkage Clustering.

    PubMed

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times.

  7. Efficient Record Linkage Algorithms Using Complete Linkage Clustering

    PubMed Central

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times. PMID:27124604

  8. Application of ant colony Algorithm and particle swarm optimization in architectural design

    NASA Astrophysics Data System (ADS)

    Song, Ziyi; Wu, Yunfa; Song, Jianhua

    2018-02-01

    By studying the development of ant colony algorithm and particle swarm algorithm, this paper expounds the core idea of the algorithm, explores the combination of algorithm and architectural design, sums up the application rules of intelligent algorithm in architectural design, and combines the characteristics of the two algorithms, obtains the research route and realization way of intelligent algorithm in architecture design. To establish algorithm rules to assist architectural design. Taking intelligent algorithm as the beginning of architectural design research, the authors provide the theory foundation of ant colony Algorithm and particle swarm algorithm in architectural design, popularize the application range of intelligent algorithm in architectural design, and provide a new idea for the architects.

  9. A Coherent VLSI Environment

    DTIC Science & Technology

    1987-03-31

    processors . The symmetry-breaking algorithms give efficient ways to convert probabilistic algorithms to deterministic algorithms. Some of the...techniques have been applied to construct several efficient linear- processor algorithms for graph problems, including an O(lg* n)-time algorithm for (A + 1...On n-node graphs, the algorithm works in O(log 2 n) time using only n processors , in contrast to the previous best algorithm which used about n3

  10. The threshold bootstrap clustering: a new approach to find families or transmission clusters within molecular quasispecies.

    PubMed

    Prosperi, Mattia C F; De Luca, Andrea; Di Giambenedetto, Simona; Bracciale, Laura; Fabbiani, Massimiliano; Cauda, Roberto; Salemi, Marco

    2010-10-25

    Phylogenetic methods produce hierarchies of molecular species, inferring knowledge about taxonomy and evolution. However, there is not yet a consensus methodology that provides a crisp partition of taxa, desirable when considering the problem of intra/inter-patient quasispecies classification or infection transmission event identification. We introduce the threshold bootstrap clustering (TBC), a new methodology for partitioning molecular sequences, that does not require a phylogenetic tree estimation. The TBC is an incremental partition algorithm, inspired by the stochastic Chinese restaurant process, and takes advantage of resampling techniques and models of sequence evolution. TBC uses as input a multiple alignment of molecular sequences and its output is a crisp partition of the taxa into an automatically determined number of clusters. By varying initial conditions, the algorithm can produce different partitions. We describe a procedure that selects a prime partition among a set of candidate ones and calculates a measure of cluster reliability. TBC was successfully tested for the identification of type-1 human immunodeficiency and hepatitis C virus subtypes, and compared with previously established methodologies. It was also evaluated in the problem of HIV-1 intra-patient quasispecies clustering, and for transmission cluster identification, using a set of sequences from patients with known transmission event histories. TBC has been shown to be effective for the subtyping of HIV and HCV, and for identifying intra-patient quasispecies. To some extent, the algorithm was able also to infer clusters corresponding to events of infection transmission. The computational complexity of TBC is quadratic in the number of taxa, lower than other established methods; in addition, TBC has been enhanced with a measure of cluster reliability. The TBC can be useful to characterise molecular quasipecies in a broad context.

  11. A 3D reconstruction algorithm for magneto-acoustic tomography with magnetic induction based on ultrasound transducer characteristics.

    PubMed

    Ma, Ren; Zhou, Xiaoqing; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng

    2016-12-21

    In this study we present a three-dimensional (3D) reconstruction algorithm for magneto-acoustic tomography with magnetic induction (MAT-MI) based on the characteristics of the ultrasound transducer. The algorithm is investigated to solve the blur problem of the MAT-MI acoustic source image, which is caused by the ultrasound transducer and the scanning geometry. First, we established a transducer model matrix using measured data from the real transducer. With reference to the S-L model used in the computed tomography algorithm, a 3D phantom model of electrical conductivity is set up. Both sphere scanning and cylinder scanning geometries are adopted in the computer simulation. Then, using finite element analysis, the distribution of the eddy current and the acoustic source as well as the acoustic pressure can be obtained with the transducer model matrix. Next, using singular value decomposition, the inverse transducer model matrix together with the reconstruction algorithm are worked out. The acoustic source and the conductivity images are reconstructed using the proposed algorithm. Comparisons between an ideal point transducer and the realistic transducer are made to evaluate the algorithms. Finally, an experiment is performed using a graphite phantom. We found that images of the acoustic source reconstructed using the proposed algorithm are a better match than those using the previous one, the correlation coefficient of sphere scanning geometry is 98.49% and that of cylinder scanning geometry is 94.96%. Comparison between the ideal point transducer and the realistic transducer shows that the correlation coefficients are 90.2% in sphere scanning geometry and 86.35% in cylinder scanning geometry. The reconstruction of the graphite phantom experiment also shows a higher resolution using the proposed algorithm. We conclude that the proposed reconstruction algorithm, which considers the characteristics of the transducer, can obviously improve the resolution of the reconstructed image. This study can be applied to analyse the effect of the position of the transducer and the scanning geometry on imaging. It may provide a more precise method to reconstruct the conductivity distribution in MAT-MI.

  12. Discrete-Time Deterministic $Q$ -Learning: A Novel Convergence Analysis.

    PubMed

    Wei, Qinglai; Lewis, Frank L; Sun, Qiuye; Yan, Pengfei; Song, Ruizhuo

    2017-05-01

    In this paper, a novel discrete-time deterministic Q -learning algorithm is developed. In each iteration of the developed Q -learning algorithm, the iterative Q function is updated for all the state and control spaces, instead of updating for a single state and a single control in traditional Q -learning algorithm. A new convergence criterion is established to guarantee that the iterative Q function converges to the optimum, where the convergence criterion of the learning rates for traditional Q -learning algorithms is simplified. During the convergence analysis, the upper and lower bounds of the iterative Q function are analyzed to obtain the convergence criterion, instead of analyzing the iterative Q function itself. For convenience of analysis, the convergence properties for undiscounted case of the deterministic Q -learning algorithm are first developed. Then, considering the discounted factor, the convergence criterion for the discounted case is established. Neural networks are used to approximate the iterative Q function and compute the iterative control law, respectively, for facilitating the implementation of the deterministic Q -learning algorithm. Finally, simulation results and comparisons are given to illustrate the performance of the developed algorithm.

  13. Inferring Gene Regulatory Networks by Singular Value Decomposition and Gravitation Field Algorithm

    PubMed Central

    Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms. PMID:23226565

  14. Texture-preserved penalized weighted least-squares reconstruction of low-dose CT image via image segmentation and high-order MRF modeling

    NASA Astrophysics Data System (ADS)

    Han, Hao; Zhang, Hao; Wei, Xinzhou; Moore, William; Liang, Zhengrong

    2016-03-01

    In this paper, we proposed a low-dose computed tomography (LdCT) image reconstruction method with the help of prior knowledge learning from previous high-quality or normal-dose CT (NdCT) scans. The well-established statistical penalized weighted least squares (PWLS) algorithm was adopted for image reconstruction, where the penalty term was formulated by a texture-based Gaussian Markov random field (gMRF) model. The NdCT scan was firstly segmented into different tissue types by a feature vector quantization (FVQ) approach. Then for each tissue type, a set of tissue-specific coefficients for the gMRF penalty was statistically learnt from the NdCT image via multiple-linear regression analysis. We also proposed a scheme to adaptively select the order of gMRF model for coefficients prediction. The tissue-specific gMRF patterns learnt from the NdCT image were finally used to form an adaptive MRF penalty for the PWLS reconstruction of LdCT image. The proposed texture-adaptive PWLS image reconstruction algorithm was shown to be more effective to preserve image textures than the conventional PWLS image reconstruction algorithm, and we further demonstrated the gain of high-order MRF modeling for texture-preserved LdCT PWLS image reconstruction.

  15. Co-complex protein membership evaluation using Maximum Entropy on GO ontology and InterPro annotation.

    PubMed

    Armean, Irina M; Lilley, Kathryn S; Trotter, Matthew W B; Pilkington, Nicholas C V; Holden, Sean B

    2018-06-01

    Protein-protein interactions (PPI) play a crucial role in our understanding of protein function and biological processes. The standardization and recording of experimental findings is increasingly stored in ontologies, with the Gene Ontology (GO) being one of the most successful projects. Several PPI evaluation algorithms have been based on the application of probabilistic frameworks or machine learning algorithms to GO properties. Here, we introduce a new training set design and machine learning based approach that combines dependent heterogeneous protein annotations from the entire ontology to evaluate putative co-complex protein interactions determined by empirical studies. PPI annotations are built combinatorically using corresponding GO terms and InterPro annotation. We use a S.cerevisiae high-confidence complex dataset as a positive training set. A series of classifiers based on Maximum Entropy and support vector machines (SVMs), each with a composite counterpart algorithm, are trained on a series of training sets. These achieve a high performance area under the ROC curve of ≤0.97, outperforming go2ppi-a previously established prediction tool for protein-protein interactions (PPI) based on Gene Ontology (GO) annotations. https://github.com/ima23/maxent-ppi. sbh11@cl.cam.ac.uk. Supplementary data are available at Bioinformatics online.

  16. Seamless lesion insertion in digital mammography: methodology and reader study

    NASA Astrophysics Data System (ADS)

    Pezeshk, Aria; Petrick, Nicholas; Sahiner, Berkman

    2016-03-01

    Collection of large repositories of clinical images containing verified cancer locations is costly and time consuming due to difficulties associated with both the accumulation of data and establishment of the ground truth. This problem poses a significant challenge to the development of machine learning algorithms that require large amounts of data to properly train and avoid overfitting. In this paper we expand the methods in our previous publications by making several modifications that significantly increase the speed of our insertion algorithms, thereby allowing them to be used for inserting lesions that are much larger in size. These algorithms have been incorporated into an image composition tool that we have made publicly available. This tool allows users to modify or supplement existing datasets by seamlessly inserting a real breast mass or micro-calcification cluster extracted from a source digital mammogram into a different location on another mammogram. We demonstrate examples of the performance of this tool on clinical cases taken from the University of South Florida Digital Database for Screening Mammography (DDSM). Finally, we report the results of a reader study evaluating the realism of inserted lesions compared to clinical lesions. Analysis of the radiologist scores in the study using receiver operating characteristic (ROC) methodology indicates that inserted lesions cannot be reliably distinguished from clinical lesions.

  17. Medicaid beneficiaries in california reported less positive experiences when assigned to a managed care plan.

    PubMed

    McDonnell, Diana D; Graham, Carrie L

    2015-03-01

    In 2011 California began transitioning approximately 340,000 seniors and people with disabilities from Medicaid fee-for-service (FFS) to Medicaid managed care plans. When beneficiaries did not actively choose a managed care plan, the state assigned them to one using an algorithm based on their previous FFS primary and specialty care use. When no clear link could be established, beneficiaries were assigned by default to a managed care plan based on weighted randomization. In this article we report the results of a telephone survey of 1,521 seniors and people with disabilities enrolled in Medi-Cal (California Medicaid) and who were recently transitioned to a managed care plan. We found that 48 percent chose their own plan, 11 percent were assigned to a plan by algorithm, and 41 percent were assigned to a plan by default. People in the latter two categories reported being similarly less positive about their experiences compared to beneficiaries who actively chose a plan. Many states in addition to California are implementing mandatory transitions of Medicaid-only beneficiaries to managed care plans. Our results highlight the importance of encouraging beneficiaries to actively choose their health plan; when beneficiaries do not choose, states should employ robust intelligent assignment algorithms. Project HOPE—The People-to-People Health Foundation, Inc.

  18. Subarachnoid hemorrhage admissions retrospectively identified using a prediction model

    PubMed Central

    McIntyre, Lauralyn; Fergusson, Dean; Turgeon, Alexis; dos Santos, Marlise P.; Lum, Cheemun; Chassé, Michaël; Sinclair, John; Forster, Alan; van Walraven, Carl

    2016-01-01

    Objective: To create an accurate prediction model using variables collected in widely available health administrative data records to identify hospitalizations for primary subarachnoid hemorrhage (SAH). Methods: A previously established complete cohort of consecutive primary SAH patients was combined with a random sample of control hospitalizations. Chi-square recursive partitioning was used to derive and internally validate a model to predict the probability that a patient had primary SAH (due to aneurysm or arteriovenous malformation) using health administrative data. Results: A total of 10,322 hospitalizations with 631 having primary SAH (6.1%) were included in the study (5,122 derivation, 5,200 validation). In the validation patients, our recursive partitioning algorithm had a sensitivity of 96.5% (95% confidence interval [CI] 93.9–98.0), a specificity of 99.8% (95% CI 99.6–99.9), and a positive likelihood ratio of 483 (95% CI 254–879). In this population, patients meeting criteria for the algorithm had a probability of 45% of truly having primary SAH. Conclusions: Routinely collected health administrative data can be used to accurately identify hospitalized patients with a high probability of having a primary SAH. This algorithm may allow, upon validation, an easy and accurate method to create validated cohorts of primary SAH from either ruptured aneurysm or arteriovenous malformation. PMID:27629096

  19. Disrupting the Dissertation: Linked Data, Enhanced Publication and Algorithmic Culture

    ERIC Educational Resources Information Center

    Tracy, Frances; Carmichael, Patrick

    2017-01-01

    This article explores how the three aspects of Striphas' notion of algorithmic culture (information, crowds and algorithms) might influence and potentially disrupt established educational practices. We draw on our experience of introducing semantic web and linked data technologies into higher education settings, focussing on extended student…

  20. Calculations of Electron Inelastic Mean Free Paths. XI. Data for Liquid Water for Energies from 50 eV to 30 keV

    PubMed Central

    Shinotsuka, H.; Da, B.; Tanuma, S.; Yoshikawa, H.; Powell, C. J.; Penn, D. R.

    2017-01-01

    We calculated electron inelastic mean free paths (IMFPs) for liquid water from its optical energy-loss function (ELF) for electron energies from 50 eV to 30 keV. These calculations were made with the relativistic full Penn algorithm (FPA) that has been used for previous IMFP and electron stopping-power calculations for many elemental solids. We also calculated IMFPs of water with three additional algorithms: the relativistic single-pole approximation (SPA), the relativistic simplified SPA, and the relativistic extended Mermin method. These calculations were made using the same optical ELF in order to assess any differences of the IMFPs arising from choice of the algorithm. We found good agreement among the IMFPs from the four algorithms for energies over 300 eV. For energies less than 100 eV, however, large differences became apparent. IMFPs from the relativistic TPP-2M equation for predicting IMFPs were in good agreement with IMFPs from the four algorithms for energies between 300 eV and 30 keV but there was poorer agreement for lower energies. We calculated values of the static structure factor as a function of momentum transfer from the FPA. The resulting values were in good agreement with results from first-principles calculations and with inelastic X-ray scattering spectroscopy experiments. We made comparisons of our IMFPs with earlier calculations from authors who had used different algorithms and different ELF data sets. IMFP differences could then be analyzed in terms of the algorithms and the data sets. Finally, we compared our IMFPs with measurements of IMFPs and of a related quantity, the effective attenuation length (EAL). There were large variations in the measured IMFPs and EALs (as well as their dependence on electron energy). Further measurements are therefore required to establish consistent data sets and for more detailed comparisons with calculated IMFPs. PMID:28751796

  1. Calculations of Electron Inelastic Mean Free Paths. XI. Data for Liquid Water for Energies from 50 eV to 30 keV.

    PubMed

    Shinotsuka, H; Da, B; Tanuma, S; Yoshikawa, H; Powell, C J; Penn, D R

    2017-04-01

    We calculated electron inelastic mean free paths (IMFPs) for liquid water from its optical energy-loss function (ELF) for electron energies from 50 eV to 30 keV. These calculations were made with the relativistic full Penn algorithm (FPA) that has been used for previous IMFP and electron stopping-power calculations for many elemental solids. We also calculated IMFPs of water with three additional algorithms: the relativistic single-pole approximation (SPA), the relativistic simplified SPA, and the relativistic extended Mermin method. These calculations were made using the same optical ELF in order to assess any differences of the IMFPs arising from choice of the algorithm. We found good agreement among the IMFPs from the four algorithms for energies over 300 eV. For energies less than 100 eV, however, large differences became apparent. IMFPs from the relativistic TPP-2M equation for predicting IMFPs were in good agreement with IMFPs from the four algorithms for energies between 300 eV and 30 keV but there was poorer agreement for lower energies. We calculated values of the static structure factor as a function of momentum transfer from the FPA. The resulting values were in good agreement with results from first-principles calculations and with inelastic X-ray scattering spectroscopy experiments. We made comparisons of our IMFPs with earlier calculations from authors who had used different algorithms and different ELF data sets. IMFP differences could then be analyzed in terms of the algorithms and the data sets. Finally, we compared our IMFPs with measurements of IMFPs and of a related quantity, the effective attenuation length (EAL). There were large variations in the measured IMFPs and EALs (as well as their dependence on electron energy). Further measurements are therefore required to establish consistent data sets and for more detailed comparisons with calculated IMFPs.

  2. BiPACE 2D--graph-based multiple alignment for comprehensive 2D gas chromatography-mass spectrometry.

    PubMed

    Hoffmann, Nils; Wilhelm, Mathias; Doebbe, Anja; Niehaus, Karsten; Stoye, Jens

    2014-04-01

    Comprehensive 2D gas chromatography-mass spectrometry is an established method for the analysis of complex mixtures in analytical chemistry and metabolomics. It produces large amounts of data that require semiautomatic, but preferably automatic handling. This involves the location of significant signals (peaks) and their matching and alignment across different measurements. To date, there exist only a few openly available algorithms for the retention time alignment of peaks originating from such experiments that scale well with increasing sample and peak numbers, while providing reliable alignment results. We describe BiPACE 2D, an automated algorithm for retention time alignment of peaks from 2D gas chromatography-mass spectrometry experiments and evaluate it on three previously published datasets against the mSPA, SWPA and Guineu algorithms. We also provide a fourth dataset from an experiment studying the H2 production of two different strains of Chlamydomonas reinhardtii that is available from the MetaboLights database together with the experimental protocol, peak-detection results and manually curated multiple peak alignment for future comparability with newly developed algorithms. BiPACE 2D is contained in the freely available Maltcms framework, version 1.3, hosted at http://maltcms.sf.net, under the terms of the L-GPL v3 or Eclipse Open Source licenses. The software used for the evaluation along with the underlying datasets is available at the same location. The C.reinhardtii dataset is freely available at http://www.ebi.ac.uk/metabolights/MTBLS37.

  3. Validation of the Saskatoon Falls Prevention Consortium's Falls Screening and Referral Algorithm

    PubMed Central

    Lawson, Sara Nicole; Zaluski, Neal; Petrie, Amanda; Arnold, Cathy; Basran, Jenny

    2013-01-01

    ABSTRACT Purpose: To investigate the concurrent validity of the Saskatoon Falls Prevention Consortium's Falls Screening and Referral Algorithm (FSRA). Method: A total of 29 older adults (mean age 77.7 [SD 4.0] y) residing in an independent-living senior's complex who met inclusion criteria completed a demographic questionnaire and the components of the FSRA and Berg Balance Scale (BBS). The FSRA consists of the Elderly Fall Screening Test (EFST) and the Multi-factor Falls Questionnaire (MFQ); it is designed to categorize individuals into low, moderate, or high fall-risk categories to determine appropriate management pathways. A predictive model for probability of fall risk, based on previous research, was used to determine concurrent validity of the FSRI. Results: The FSRA placed 79% of participants into the low-risk category, whereas the predictive model found the probability of fall risk to range from 0.04 to 0.74, with a mean of 0.35 (SD 0.25). No statistically significant correlation was found between the FSRA and the predictive model for probability of fall risk (Spearman's ρ=0.35, p=0.06). Conclusion: The FSRA lacks concurrent validity relative to to a previously established model of fall risk and appears to over-categorize individuals into the low-risk group. Further research on the FSRA as an adequate tool to screen community-dwelling older adults for fall risk is recommended. PMID:24381379

  4. BootGraph: probabilistic fiber tractography using bootstrap algorithms and graph theory.

    PubMed

    Vorburger, Robert S; Reischauer, Carolin; Boesiger, Peter

    2013-02-01

    Bootstrap methods have recently been introduced to diffusion-weighted magnetic resonance imaging to estimate the measurement uncertainty of ensuing diffusion parameters directly from the acquired data without the necessity to assume a noise model. These methods have been previously combined with deterministic streamline tractography algorithms to allow for the assessment of connection probabilities in the human brain. Thereby, the local noise induced disturbance in the diffusion data is accumulated additively due to the incremental progression of streamline tractography algorithms. Graph based approaches have been proposed to overcome this drawback of streamline techniques. For this reason, the bootstrap method is in the present work incorporated into a graph setup to derive a new probabilistic fiber tractography method, called BootGraph. The acquired data set is thereby converted into a weighted, undirected graph by defining a vertex in each voxel and edges between adjacent vertices. By means of the cone of uncertainty, which is derived using the wild bootstrap, a weight is thereafter assigned to each edge. Two path finding algorithms are subsequently applied to derive connection probabilities. While the first algorithm is based on the shortest path approach, the second algorithm takes all existing paths between two vertices into consideration. Tracking results are compared to an established algorithm based on the bootstrap method in combination with streamline fiber tractography and to another graph based algorithm. The BootGraph shows a very good performance in crossing situations with respect to false negatives and permits incorporating additional constraints, such as a curvature threshold. By inheriting the advantages of the bootstrap method and graph theory, the BootGraph method provides a computationally efficient and flexible probabilistic tractography setup to compute connection probability maps and virtual fiber pathways without the drawbacks of streamline tractography algorithms or the assumption of a noise distribution. Moreover, the BootGraph can be applied to common DTI data sets without further modifications and shows a high repeatability. Thus, it is very well suited for longitudinal studies and meta-studies based on DTI. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. BLIND ordering of large-scale transcriptomic developmental timecourses.

    PubMed

    Anavy, Leon; Levin, Michal; Khair, Sally; Nakanishi, Nagayasu; Fernandez-Valverde, Selene L; Degnan, Bernard M; Yanai, Itai

    2014-03-01

    RNA-Seq enables the efficient transcriptome sequencing of many samples from small amounts of material, but the analysis of these data remains challenging. In particular, in developmental studies, RNA-Seq is challenged by the morphological staging of samples, such as embryos, since these often lack clear markers at any particular stage. In such cases, the automatic identification of the stage of a sample would enable previously infeasible experimental designs. Here we present the 'basic linear index determination of transcriptomes' (BLIND) method for ordering samples comprising different developmental stages. The method is an implementation of a traveling salesman algorithm to order the transcriptomes according to their inter-relationships as defined by principal components analysis. To establish the direction of the ordered samples, we show that an appropriate indicator is the entropy of transcriptomic gene expression levels, which increases over developmental time. Using BLIND, we correctly recover the annotated order of previously published embryonic transcriptomic timecourses for frog, mosquito, fly and zebrafish. We further demonstrate the efficacy of BLIND by collecting 59 embryos of the sponge Amphimedon queenslandica and ordering their transcriptomes according to developmental stage. BLIND is thus useful in establishing the temporal order of samples within large datasets and is of particular relevance to the study of organisms with asynchronous development and when morphological staging is difficult.

  6. A new effective operator for the hybrid algorithm for solving global optimisation problems

    NASA Astrophysics Data System (ADS)

    Duc, Le Anh; Li, Kenli; Nguyen, Tien Trong; Yen, Vu Minh; Truong, Tung Khac

    2018-04-01

    Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms.

  7. Symbolic Computation of Strongly Connected Components Using Saturation

    NASA Technical Reports Server (NTRS)

    Zhao, Yang; Ciardo, Gianfranco

    2010-01-01

    Finding strongly connected components (SCCs) in the state-space of discrete-state models is a critical task in formal verification of LTL and fair CTL properties, but the potentially huge number of reachable states and SCCs constitutes a formidable challenge. This paper is concerned with computing the sets of states in SCCs or terminal SCCs of asynchronous systems. Because of its advantages in many applications, we employ saturation on two previously proposed approaches: the Xie-Beerel algorithm and transitive closure. First, saturation speeds up state-space exploration when computing each SCC in the Xie-Beerel algorithm. Then, our main contribution is a novel algorithm to compute the transitive closure using saturation. Experimental results indicate that our improved algorithms achieve a clear speedup over previous algorithms in some cases. With the help of the new transitive closure computation algorithm, up to 10(exp 150) SCCs can be explored within a few seconds.

  8. Adapting sensory data for multiple robots performing spill cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storjohann, K.; Saltzen, E.

    1990-09-01

    This paper describes a possible method of converting a single performing robot algorithm into a multiple performing robot algorithm without the need to modify previously written codes. The algorithm to be converted involves spill detection and clean up by the HERMIES-III mobile robot. In order to achieve the goal of multiple performing robots with this algorithm, two steps are taken. First, the task is formally divided into two sub-tasks, spill detection and spill clean-up, the former of which is allocated to the added performing robot, HERMIES-IIB. Second, a inverse perspective mapping, is applied to the data acquired by the newmore » performing robot (HERMIES-IIB), allowing the data to be processed by the previously written algorithm without re-writing the code. 6 refs., 4 figs.« less

  9. A LAI inversion algorithm based on the unified model of canopy bidirectional reflectance distribution function for the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Ma, B.; Li, J.; Fan, W.; Ren, H.; Xu, X.

    2017-12-01

    Leaf area index (LAI) is one of the important parameters of vegetation canopy structure, which can represent the growth condition of vegetation effectively. The accuracy, availability and timeliness of LAI data can be improved greatly, which is of great importance to vegetation-related research, such as the study of atmospheric, land surface and hydrological processes to obtain LAI by remote sensing method. Heihe River Basin is the inland river basin in northwest China. There are various types of vegetation and all kinds of terrain conditions in the basin, so it is helpful for testing the accuracy of the model under the complex surface and evaluating the correctness of the model to study LAI in this area. On the other hand, located in west arid area of China, the ecological environment of Heihe Basin is fragile, LAI is an important parameter to represent the vegetation growth condition, and can help us understand the status of vegetation in the Heihe River Basin. Different from the previous LAI inversion models, the BRDF (bidirectional reflectance distribution function) unified model can be applied for both continuous vegetation and discrete vegetation, it is appropriate to the complex vegetation distribution. LAI is the key input parameter of the model. We establish the inversion algorithm that can exactly retrieve LAI using remote sensing image based on the unified model. First, we determine the vegetation type through the vegetation classification map to obtain the corresponding G function, leaf and surface reflectivity. Then, we need to determine the leaf area index (LAI), the aggregation index (ζ) and the sky scattered light ratio (β) range and the value of the interval, entering all the parameters into the model to calculate the corresponding reflectivity ρ and establish the lookup table of different vegetation. Finally, we can invert LAI on the basis of the established lookup table. The principle of inversion is least squares method. We have produced 1 km LAI products from 2000 to 2014, once every 8 days. The results show that the algorithm owns good stability and can effectively invert LAI in areas with very complex vegetation and terrain conditions.

  10. Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.; Deo, R. C.; Carro-Calvo, L.; Saavedra-Moreno, B.

    2016-07-01

    Long-term air temperature prediction is of major importance in a large number of applications, including climate-related studies, energy, agricultural, or medical. This paper examines the performance of two Machine Learning algorithms (Support Vector Regression (SVR) and Multi-layer Perceptron (MLP)) in a problem of monthly mean air temperature prediction, from the previous measured values in observational stations of Australia and New Zealand, and climate indices of importance in the region. The performance of the two considered algorithms is discussed in the paper and compared to alternative approaches. The results indicate that the SVR algorithm is able to obtain the best prediction performance among all the algorithms compared in the paper. Moreover, the results obtained have shown that the mean absolute error made by the two algorithms considered is significantly larger for the last 20 years than in the previous decades, in what can be interpreted as a change in the relationship among the prediction variables involved in the training of the algorithms.

  11. Indications for MARS-MRI in Patients Treated With Metal-on-Metal Hip Resurfacing Arthroplasty.

    PubMed

    Connelly, James W; Galea, Vincent P; Matuszak, Sean J; Madanat, Rami; Muratoglu, Orhun; Malchau, Henrik

    2018-06-01

    Currently, there are no universally accepted guidelines on when to obtain metal artifact reduction sequence magnetic resonance imaging (MARS-MRI) in metal-on-metal (MoM) hip resurfacing arthroplasty (HRA) patients. Our primary aims were to identify which patient and clinical factors are predictive of adverse local tissue reaction (ALTR) and create an algorithm for indicating MARS-MRI in patients with Articular Surface Replacement (ASR) HRA. The secondary aim was to compare our algorithm to existing guidelines on when to perform MARS-MRI in MoM HRA patients. The study cohort consisted of 182 patients with unilateral ASR HRA from a prospective, multicenter study. Subjects received MARS-MRI at a mean of 7.8 years from surgery, regardless of symptoms. We determined which variables were predictive of ALTR and generated cutoffs for each variable. Finally, we created an algorithm to predict ALTR and indicate MARS-MRI in ASR HRA patients using these cutoffs and compared it to existing guidelines. We found high blood cobalt (Co) (odds ratio = 1.070; P = .011) and high blood chromium (Cr) (odds ratio = 1.162; P = .002) to be significant predictors of ALTR presence. Our algorithm using a blood Co cutoff of 1.15 ppb and a Cr cutoff of 1.09 ppb achieved 96.6% sensitivity and 35.3% specificity in predicting ALTR, which outperformed the existing guidelines. Blood Co and Cr levels are predictive of ALTR in ASR HRA patients. Our algorithm considering blood Co and Cr levels predicts ALTR in ASR HRA patients with higher sensitivity than previously established guidelines. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Relating Convective and Stratiform Rain to Latent Heating

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Stephen; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2010-01-01

    The relationship among surface rainfall, its intensity, and its associated stratiform amount is established by examining observed precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The results show that for moderate-high stratiform fractions, rain probabilities are strongly skewed toward light rain intensities. For convective-type rain, the peak probability of occurrence shifts to higher intensities but is still significantly skewed toward weaker rain rates. The main differences between the distributions for oceanic and continental rain are for heavily convective rain. The peak occurrence, as well as the tail of the distribution containing the extreme events, is shifted to higher intensities for continental rain. For rainy areas sampled at 0.58 horizontal resolution, the occurrence of conditional rain rates over 100 mm/day is significantly higher over land. Distributions of rain intensity versus stratiform fraction for simulated precipitation data obtained from cloud-resolving model (CRM) simulations are quite similar to those from the satellite, providing a basis for mapping simulated cloud quantities to the satellite observations. An improved convective-stratiform heating (CSH) algorithm is developed based on two sources of information: gridded rainfall quantities (i.e., the conditional intensity and the stratiform fraction) observed from the TRMM PR and synthetic cloud process data (i.e., latent heating, eddy heat flux convergence, and radiative heating/cooling) obtained from CRM simulations of convective cloud systems. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. Major differences between the new and old algorithms include a significant increase in the amount of low- and midlevel heating, a downward emphasis in the level of maximum cloud heating by about 1 km, and a larger variance between land and ocean in the new CSH algorithm.

  13. Validation of the IHC4 Breast Cancer Prognostic Algorithm Using Multiple Approaches on the Multinational TEAM Clinical Trial.

    PubMed

    Bartlett, John M S; Christiansen, Jason; Gustavson, Mark; Rimm, David L; Piper, Tammy; van de Velde, Cornelis J H; Hasenburg, Annette; Kieback, Dirk G; Putter, Hein; Markopoulos, Christos J; Dirix, Luc Y; Seynaeve, Caroline; Rea, Daniel W

    2016-01-01

    Hormone receptors HER2/neu and Ki-67 are markers of residual risk in early breast cancer. An algorithm (IHC4) combining these markers may provide additional information on residual risk of recurrence in patients treated with hormone therapy. To independently validate the IHC4 algorithm in the multinational Tamoxifen Versus Exemestane Adjuvant Multicenter Trial (TEAM) cohort, originally developed on the trans-ATAC (Arimidex, Tamoxifen, Alone or in Combination Trial) cohort, by comparing 2 methodologies. The IHC4 biomarker expression was quantified on TEAM cohort samples (n = 2919) by using 2 independent methodologies (conventional 3,3'-diaminobezidine [DAB] immunohistochemistry with image analysis and standardized quantitative immunofluorescence [QIF] by AQUA technology). The IHC4 scores were calculated by using the same previously established coefficients and then compared with recurrence-free and distant recurrence-free survival, using multivariate Cox proportional hazards modeling. The QIF model was highly significant for prediction of residual risk (P < .001), with continuous model scores showing a hazard ratio (HR) of 1.012 (95% confidence interval [95% CI]: 1.010-1.014), which was significantly higher than that for the DAB model (HR: 1.008, 95% CI: 1.006-1.009); P < .001). Each model added significant prognostic value in addition to recognized clinical prognostic factors, including nodal status, in multivariate analyses. Quantitative immunofluorescence, however, showed more accuracy with respect to overall residual risk assessment than the DAB model. The use of the IHC4 algorithm was validated on the TEAM trial for predicting residual risk in patients with breast cancer. These data support the use of the IHC4 algorithm clinically, but quantitative and standardized approaches need to be used.

  14. Performance bounds for matched field processing in subsurface object detection applications

    NASA Astrophysics Data System (ADS)

    Sahin, Adnan; Miller, Eric L.

    1998-09-01

    In recent years there has been considerable interest in the use of ground penetrating radar (GPR) for the non-invasive detection and localization of buried objects. In a previous work, we have considered the use of high resolution array processing methods for solving these problems for measurement geometries in which an array of electromagnetic receivers observes the fields scattered by the subsurface targets in response to a plane wave illumination. Our approach uses the MUSIC algorithm in a matched field processing (MFP) scheme to determine both the range and the bearing of the objects. In this paper we derive the Cramer-Rao bounds (CRB) for this MUSIC-based approach analytically. Analysis of the theoretical CRB has shown that there exists an optimum inter-element spacing of array elements for which the CRB is minimum. Furthermore, the optimum inter-element spacing minimizing CRB is smaller than the conventional half wavelength criterion. The theoretical bounds are then verified for two estimators using Monte-Carlo simulations. The first estimator is the MUSIC-based MFP and the second one is the maximum likelihood based MFP. The two approaches differ in the cost functions they optimize. We observe that Monte-Carlo simulated error variances always lie above the values established by CRB. Finally, we evaluate the performance of our MUSIC-based algorithm in the presence of model mismatches. Since the detection algorithm strongly depends on the model used, we have tested the performance of the algorithm when the object radius used in the model is different from the true radius. This analysis reveals that the algorithm is still capable of localizing the objects with a bias depending on the degree of mismatch.

  15. New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water

    NASA Astrophysics Data System (ADS)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Bull, Michael A.; Seidel, Felix C.

    2018-01-01

    A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR) observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous version 22 (V22) operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture and then used a combination of these values to compute the final, best estimate AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of (a) the absolute values of the cost functions for each aerosol mixture, (b) the widths of the cost function distributions as a function of AOD, and (c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on empirical thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new aerosol retrieval confidence index (ARCI) is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI ≥ 0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.

  16. New Approach to the Retrieval of AOD and its Uncertainty from MISR Observations Over Dark Water

    NASA Astrophysics Data System (ADS)

    Witek, M. L.; Garay, M. J.; Diner, D. J.; Bull, M. A.; Seidel, F.

    2017-12-01

    A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR) observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous Version 22 (V22) operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture, then used a combination of these values to compute the final, "best estimate" AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of a) the absolute values of the cost functions for each aerosol mixture, b) the widths of the cost function distributions as a function of AOD, and c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on arbitrary thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new Aerosol Retrieval Confidence Index (ARCI) is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI≥0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.

  17. Scalable Domain Decomposed Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    O'Brien, Matthew Joseph

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.

  18. ECG Sensor Card with Evolving RBP Algorithms for Human Verification.

    PubMed

    Tseng, Kuo-Kun; Huang, Huang-Nan; Zeng, Fufu; Tu, Shu-Yi

    2015-08-21

    It is known that cardiac and respiratory rhythms in electrocardiograms (ECGs) are highly nonlinear and non-stationary. As a result, most traditional time-domain algorithms are inadequate for characterizing the complex dynamics of the ECG. This paper proposes a new ECG sensor card and a statistical-based ECG algorithm, with the aid of a reduced binary pattern (RBP), with the aim of achieving faster ECG human identity recognition with high accuracy. The proposed algorithm has one advantage that previous ECG algorithms lack-the waveform complex information and de-noising preprocessing can be bypassed; therefore, it is more suitable for non-stationary ECG signals. Experimental results tested on two public ECG databases (MIT-BIH) from MIT University confirm that the proposed scheme is feasible with excellent accuracy, low complexity, and speedy processing. To be more specific, the advanced RBP algorithm achieves high accuracy in human identity recognition and is executed at least nine times faster than previous algorithms. Moreover, based on the test results from a long-term ECG database, the evolving RBP algorithm also demonstrates superior capability in handling long-term and non-stationary ECG signals.

  19. An improved cooperative adaptive cruise control (CACC) algorithm considering invalid communication

    NASA Astrophysics Data System (ADS)

    Wang, Pangwei; Wang, Yunpeng; Yu, Guizhen; Tang, Tieqiao

    2014-05-01

    For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.

  20. Wiener filter preprocessing for OFDM systems in the presence of both nonstationary and stationary phase noises

    NASA Astrophysics Data System (ADS)

    Zhong, Ke; Lei, Xia; Li, Shaoqian

    2013-12-01

    Statistics-based intercarrier interference (ICI) mitigation algorithm is proposed for orthogonal frequency division multiplexing systems in presence of both nonstationary and stationary phase noises. By utilizing the statistics of phase noise, which can be obtained from measurements or data sheets, a Wiener filter preprocessing algorithm for ICI mitigation is proposed. The proposed algorithm can be regarded as a performance-improving technique for the previous researches on phase noise cancelation. Simulation results show that the proposed algorithm can effectively mitigate ICI and lower the error floor, and therefore significantly improve the performances of previous researches on phase noise cancelation, especially in the presence of severe phase noise.

  1. On the verification of intransitive noninterference in mulitlevel security.

    PubMed

    Ben Hadj-Alouane, Nejib; Lafrance, Stéphane; Lin, Feng; Mullins, John; Yeddes, Mohamed Moez

    2005-10-01

    We propose an algorithmic approach to the problem of verification of the property of intransitive noninterference (INI), using tools and concepts of discrete event systems (DES). INI can be used to characterize and solve several important security problems in multilevel security systems. In a previous work, we have established the notion of iP-observability, which precisely captures the property of INI. We have also developed an algorithm for checking iP-observability by indirectly checking P-observability for systems with at most three security levels. In this paper, we generalize the results for systems with any finite number of security levels by developing a direct method for checking iP-observability, based on an insightful observation that the iP function is a left congruence in terms of relations on formal languages. To demonstrate the applicability of our approach, we propose a formal method to detect denial of service vulnerabilities in security protocols based on INI. This method is illustrated using the TCP/IP protocol. The work extends the theory of supervisory control of DES to a new application domain.

  2. Merkel cell carcinoma: An algorithm for multidisciplinary management and decision-making.

    PubMed

    Prieto, Isabel; Pérez de la Fuente, Teresa; Medina, Susana; Castelo, Beatriz; Sobrino, Beatriz; Fortes, Jose R; Esteban, David; Cassinello, Fernando; Jover, Raquel; Rodríguez, Nuria

    2016-02-01

    Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine tumor of the skin. Therapeutic approach is often unclear, and considerable controversy exists regarding MCC pathogenesis and optimal management. Due to its rising incidence and poor prognosis, it is imperative to establish the optimal therapy for both the tumor and the lymph node basin, and for treatment to include sentinel node biopsy. Sentinel node biopsy is currently the most consistent predictor of survival for MCC patients, although there are conflicting views and a lack of awareness regarding node management. Tumor and node management involve different specialists, and their respective decisions and interventions are interrelated. No effective systemic treatment has been made available to date, and therefore patients continue to experience distant failure, often without local failure. This review aims to improve multidisciplinary decision-making by presenting scientific evidence of the contributions of each team member implicated in MCC management. Following this review of previously published research, the authors conclude that multidisciplinary team management is beneficial for care, and propose a multidisciplinary decision algorithm for managing this tumor. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Breaking the indexing ambiguity in serial crystallography.

    PubMed

    Brehm, Wolfgang; Diederichs, Kay

    2014-01-01

    In serial crystallography, a very incomplete partial data set is obtained from each diffraction experiment (a `snapshot'). In some space groups, an indexing ambiguity exists which requires that the indexing mode of each snapshot needs to be established with respect to a reference data set. In the absence of such re-indexing information, crystallographers have thus far resorted to a straight merging of all snapshots, yielding a perfectly twinned data set of higher symmetry which is poorly suited for structure solution and refinement. Here, two algorithms have been designed for assembling complete data sets by clustering those snapshots that are indexed in the same way, and they have been tested using 15,445 snapshots from photosystem I [Chapman et al. (2011), Nature (London), 470, 73-77] and with noisy model data. The results of the clustering are unambiguous and enabled the construction of complete data sets in the correct space group P63 instead of (twinned) P6322 that researchers have been forced to use previously in such cases of indexing ambiguity. The algorithms thus extend the applicability and reach of serial crystallography.

  4. Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.

    PubMed

    Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F

    2011-03-01

    This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.

  5. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and other Meteorological Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Larry; Cecil, Dan; Bateman, Monte; Stano, Geoffrey; Goodman, Steve

    2012-01-01

    Objective of project is to refine, adapt and demonstrate the Lightning Jump Algorithm (LJA) for transition to GOES -R GLM (Geostationary Lightning Mapper) readiness and to establish a path to operations Ongoing work . reducing risk in GLM lightning proxy, cell tracking, LJA algorithm automation, and data fusion (e.g., radar + lightning).

  6. Sequential Organization and Room Reverberation for Speech Segregation

    DTIC Science & Technology

    2012-02-28

    we have proposed two algorithms for sequential organization, an unsupervised clustering algorithm applicable to monaural recordings and a binaural ...algorithm that integrates monaural and binaural analyses. In addition, we have conducted speech intelligibility tests that Firmly establish the...comprehensive version is currently under review for journal publication. A binaural approach in room reverberation Most existing approaches to binaural or

  7. New techniques for fluorescence background rejection in microscopy and endoscopy

    NASA Astrophysics Data System (ADS)

    Ventalon, Cathie

    2009-03-01

    Confocal microscopy is a popular technique in the bioimaging community, mainly because it provides optical sectioning. However, its standard implementation requires 3-dimensional scanning of focused illumination throughout the sample. Efficient non-scanning alternatives have been implemented, among which the simple and well-established incoherent structured illumination microscopy (SIM) [1]. We recently proposed a similar technique, called Dynamic Speckle Illumination (DSI) microscopy, wherein the incoherent grid illumination pattern is replaced with a coherent speckle illumination pattern from a laser, taking advantage of the fact that speckle contrast is highly maintained in a scattering media, making the technique well adapted to tissue imaging [2]. DSI microscopy relies on the illumination of a sample with a sequence of dynamic speckle patterns and an image processing algorithm based only on an a priori knowledge of speckle statistics. The choice of this post-processing algorithm is crucial to obtain a good sectioning strength: in particular, we developed a novel post-processing algorithm based one wavelet pre-filtering of the raw images and obtained near-confocal fluorescence sectioning in a mouse brain labeled with GFP, with a good image quality maintained throughout a depth of ˜100 μm [3]. In the purpose of imaging fluorescent tissue at higher depth, we recently applied structured illumination to endoscopy. We used a similar set-up wherein the illumination pattern (a one-dimensional grid) is transported to the sample with an imaging fiber bundle with miniaturized objective and the fluorescence image is collected through the same bundle. Using a post-processing algorithm similar to the one previously described [3], we obtained high-quality images of a fluorescein-labeled rat colonic mucosa [4], establishing the potential of our endomicroscope for bioimaging applications. [4pt] Ref: [0pt] [1] M. A. A. Neil et al, Opt. Lett. 22, 1905 (1997) [0pt] [2] C. Ventalon et al, Opt. Lett. 30, 3350 (2005) [0pt] [3] C. Ventalon et al, Opt. Lett. 32, 1417 (2007) [0pt] [4] N. Bozinovic et al, Opt. Express 16, 8016 (2008)

  8. Applicability of an established management algorithm for destructive colon injuries after abbreviated laparotomy: a 17-year experience.

    PubMed

    Sharpe, John P; Magnotti, Louis J; Weinberg, Jordan A; Shahan, Charles P; Cullinan, Darren R; Marino, Katy A; Fabian, Timothy C; Croce, Martin A

    2014-04-01

    For more than a decade, operative decisions (resection plus anastomosis vs diversion) for colon injuries, at our institution, have followed a defined management algorithm based on established risk factors (pre- or intraoperative transfusion requirements of more than 6 units packed RBCs and/or presence of significant comorbid diseases). However, this management algorithm was originally developed for patients managed with a single laparotomy. The purpose of this study was to evaluate the applicability of this algorithm to destructive colon injuries after abbreviated laparotomy (AL) and to determine whether additional risk factors should be considered. Consecutive patients over a 17-year period with colon injuries after AL were identified. Nondestructive injuries were managed with primary repair. Destructive wounds were resected at the initial laparotomy followed by either a staged diversion (SD) or a delayed anastomosis (DA) at the subsequent exploration. Outcomes were evaluated to identify additional risk factors in the setting of AL. We identified 149 patients: 33 (22%) patients underwent primary repair at initial exploration, 42 (28%) underwent DA, and 72 (49%) had SD. Two (1%) patients died before re-exploration. Of those undergoing DA, 23 (55%) patients were managed according to the algorithm and 19 (45%) were not. Adherence to the algorithm resulted in lower rates of suture line failure (4% vs 32%, p = 0.03) and colon-related morbidity (22% vs 58%, p = 0.03) for patients undergoing DA. No additional specific risk factors for suture line failure after DA were identified. Adherence to an established algorithm, originally defined for destructive colon injuries after single laparotomy, is likewise efficacious for the management of these injuries in the setting of AL. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Using landscape topology to compare continuous metaheuristics: a framework and case study on EDAs and ridge structure.

    PubMed

    Morgan, R; Gallagher, M

    2012-01-01

    In this paper we extend a previously proposed randomized landscape generator in combination with a comparative experimental methodology to study the behavior of continuous metaheuristic optimization algorithms. In particular, we generate two-dimensional landscapes with parameterized, linear ridge structure, and perform pairwise comparisons of algorithms to gain insight into what kind of problems are easy and difficult for one algorithm instance relative to another. We apply this methodology to investigate the specific issue of explicit dependency modeling in simple continuous estimation of distribution algorithms. Experimental results reveal specific examples of landscapes (with certain identifiable features) where dependency modeling is useful, harmful, or has little impact on mean algorithm performance. Heat maps are used to compare algorithm performance over a large number of landscape instances and algorithm trials. Finally, we perform a meta-search in the landscape parameter space to find landscapes which maximize the performance between algorithms. The results are related to some previous intuition about the behavior of these algorithms, but at the same time lead to new insights into the relationship between dependency modeling in EDAs and the structure of the problem landscape. The landscape generator and overall methodology are quite general and extendable and can be used to examine specific features of other algorithms.

  10. A comparative intelligibility study of single-microphone noise reduction algorithms.

    PubMed

    Hu, Yi; Loizou, Philipos C

    2007-09-01

    The evaluation of intelligibility of noise reduction algorithms is reported. IEEE sentences and consonants were corrupted by four types of noise including babble, car, street and train at two signal-to-noise ratio levels (0 and 5 dB), and then processed by eight speech enhancement methods encompassing four classes of algorithms: spectral subtractive, sub-space, statistical model based and Wiener-type algorithms. The enhanced speech was presented to normal-hearing listeners for identification. With the exception of a single noise condition, no algorithm produced significant improvements in speech intelligibility. Information transmission analysis of the consonant confusion matrices indicated that no algorithm improved significantly the place feature score, significantly, which is critically important for speech recognition. The algorithms which were found in previous studies to perform the best in terms of overall quality, were not the same algorithms that performed the best in terms of speech intelligibility. The subspace algorithm, for instance, was previously found to perform the worst in terms of overall quality, but performed well in the present study in terms of preserving speech intelligibility. Overall, the analysis of consonant confusion matrices suggests that in order for noise reduction algorithms to improve speech intelligibility, they need to improve the place and manner feature scores.

  11. Unsupervised algorithms for intrusion detection and identification in wireless ad hoc sensor networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2009-05-01

    In previous work by the author, parameters across network protocol layers were selected as features in supervised algorithms that detect and identify certain intrusion attacks on wireless ad hoc sensor networks (WSNs) carrying multisensor data. The algorithms improved the residual performance of the intrusion prevention measures provided by any dynamic key-management schemes and trust models implemented among network nodes. The approach of this paper does not train algorithms on the signature of known attack traffic, but, instead, the approach is based on unsupervised anomaly detection techniques that learn the signature of normal network traffic. Unsupervised learning does not require the data to be labeled or to be purely of one type, i.e., normal or attack traffic. The approach can be augmented to add any security attributes and quantified trust levels, established during data exchanges among nodes, to the set of cross-layer features from the WSN protocols. A two-stage framework is introduced for the security algorithms to overcome the problems of input size and resource constraints. The first stage is an unsupervised clustering algorithm which reduces the payload of network data packets to a tractable size. The second stage is a traditional anomaly detection algorithm based on a variation of support vector machines (SVMs), whose efficiency is improved by the availability of data in the packet payload. In the first stage, selected algorithms are adapted to WSN platforms to meet system requirements for simple parallel distributed computation, distributed storage and data robustness. A set of mobile software agents, acting like an ant colony in securing the WSN, are distributed at the nodes to implement the algorithms. The agents move among the layers involved in the network response to the intrusions at each active node and trustworthy neighborhood, collecting parametric values and executing assigned decision tasks. This minimizes the need to move large amounts of audit-log data through resource-limited nodes and locates routines closer to that data. Performance of the unsupervised algorithms is evaluated against the network intrusions of black hole, flooding, Sybil and other denial-of-service attacks in simulations of published scenarios. Results for scenarios with intentionally malfunctioning sensors show the robustness of the two-stage approach to intrusion anomalies.

  12. Quantification of regional myocardial blood flow estimation with three-dimensional dynamic rubidium-82 PET and modified spillover correction model.

    PubMed

    Katoh, Chietsugu; Yoshinaga, Keiichiro; Klein, Ran; Kasai, Katsuhiko; Tomiyama, Yuuki; Manabe, Osamu; Naya, Masanao; Sakakibara, Mamoru; Tsutsui, Hiroyuki; deKemp, Robert A; Tamaki, Nagara

    2012-08-01

    Myocardial blood flow (MBF) estimation with (82)Rubidium ((82)Rb) positron emission tomography (PET) is technically difficult because of the high spillover between regions of interest, especially due to the long positron range. We sought to develop a new algorithm to reduce the spillover in image-derived blood activity curves, using non-uniform weighted least-squares fitting. Fourteen volunteers underwent imaging with both 3-dimensional (3D) (82)Rb and (15)O-water PET at rest and during pharmacological stress. Whole left ventricular (LV) (82)Rb MBF was estimated using a one-compartment model, including a myocardium-to-blood spillover correction to estimate the corresponding blood input function Ca(t)(whole). Regional K1 values were calculated using this uniform global input function, which simplifies equations and enables robust estimation of MBF. To assess the robustness of the modified algorithm, inter-operator repeatability of 3D (82)Rb MBF was compared with a previously established method. Whole LV correlation of (82)Rb MBF with (15)O-water MBF was better (P < .01) with the modified spillover correction method (r = 0.92 vs r = 0.60). The modified method also yielded significantly improved inter-operator repeatability of regional MBF quantification (r = 0.89) versus the established method (r = 0.82) (P < .01). A uniform global input function can suppress LV spillover into the image-derived blood input function, resulting in improved precision for MBF quantification with 3D (82)Rb PET.

  13. A quasi-Newton algorithm for large-scale nonlinear equations.

    PubMed

    Huang, Linghua

    2017-01-01

    In this paper, the algorithm for large-scale nonlinear equations is designed by the following steps: (i) a conjugate gradient (CG) algorithm is designed as a sub-algorithm to obtain the initial points of the main algorithm, where the sub-algorithm's initial point does not have any restrictions; (ii) a quasi-Newton algorithm with the initial points given by sub-algorithm is defined as main algorithm, where a new nonmonotone line search technique is presented to get the step length [Formula: see text]. The given nonmonotone line search technique can avoid computing the Jacobian matrix. The global convergence and the [Formula: see text]-order convergent rate of the main algorithm are established under suitable conditions. Numerical results show that the proposed method is competitive with a similar method for large-scale problems.

  14. Testing algorithms for a passenger train braking performance model.

    DOT National Transportation Integrated Search

    2011-09-01

    "The Federal Railroad Administrations Office of Research and Development funded a project to establish performance model to develop, analyze, and test positive train control (PTC) braking algorithms for passenger train operations. With a good brak...

  15. Seismic and acoustic signal identification algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LADD,MARK D.; ALAM,M. KATHLEEN; SLEEFE,GERARD E.

    2000-04-03

    This paper will describe an algorithm for detecting and classifying seismic and acoustic signals for unattended ground sensors. The algorithm must be computationally efficient and continuously process a data stream in order to establish whether or not a desired signal has changed state (turned-on or off). The paper will focus on describing a Fourier based technique that compares the running power spectral density estimate of the data to a predetermined signature in order to determine if the desired signal has changed state. How to establish the signature and the detection thresholds will be discussed as well as the theoretical statisticsmore » of the algorithm for the Gaussian noise case with results from simulated data. Actual seismic data results will also be discussed along with techniques used to reduce false alarms due to the inherent nonstationary noise environments found with actual data.« less

  16. Treatment Algorithms Based on Tumor Molecular Profiling: The Essence of Precision Medicine Trials.

    PubMed

    Le Tourneau, Christophe; Kamal, Maud; Tsimberidou, Apostolia-Maria; Bedard, Philippe; Pierron, Gaëlle; Callens, Céline; Rouleau, Etienne; Vincent-Salomon, Anne; Servant, Nicolas; Alt, Marie; Rouzier, Roman; Paoletti, Xavier; Delattre, Olivier; Bièche, Ivan

    2016-04-01

    With the advent of high-throughput molecular technologies, several precision medicine (PM) studies are currently ongoing that include molecular screening programs and PM clinical trials. Molecular profiling programs establish the molecular profile of patients' tumors with the aim to guide therapy based on identified molecular alterations. The aim of prospective PM clinical trials is to assess the clinical utility of tumor molecular profiling and to determine whether treatment selection based on molecular alterations produces superior outcomes compared with unselected treatment. These trials use treatment algorithms to assign patients to specific targeted therapies based on tumor molecular alterations. These algorithms should be governed by fixed rules to ensure standardization and reproducibility. Here, we summarize key molecular, biological, and technical criteria that, in our view, should be addressed when establishing treatment algorithms based on tumor molecular profiling for PM trials. © The Author 2015. Published by Oxford University Press.

  17. NOSS Altimeter Detailed Algorithm specifications

    NASA Technical Reports Server (NTRS)

    Hancock, D. W.; Mcmillan, J. D.

    1982-01-01

    The details of the algorithms and data sets required for satellite radar altimeter data processing are documented in a form suitable for (1) development of the benchmark software and (2) coding the operational software. The algorithms reported in detail are those established for altimeter processing. The algorithms which required some additional development before documenting for production were only scoped. The algorithms are divided into two levels of processing. The first level converts the data to engineering units and applies corrections for instrument variations. The second level provides geophysical measurements derived from altimeter parameters for oceanographic users.

  18. A plant cell division algorithm based on cell biomechanics and ellipse-fitting.

    PubMed

    Abera, Metadel K; Verboven, Pieter; Defraeye, Thijs; Fanta, Solomon Workneh; Hertog, Maarten L A T M; Carmeliet, Jan; Nicolai, Bart M

    2014-09-01

    The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. The algorithm presented can produce different tissues varying in topological and geometrical properties. This flexibility to produce different tissue types gives the model great potential for use in investigations of plant cell division and growth in silico.

  19. Discrete-Time Local Value Iteration Adaptive Dynamic Programming: Admissibility and Termination Analysis.

    PubMed

    Wei, Qinglai; Liu, Derong; Lin, Qiao

    In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.

  20. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2012-01-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  1. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2011-12-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  2. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Merriam, E. W.; Becker, J. D.

    1973-01-01

    A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.

  3. Dynamics of Conflicts in Wikipedia

    PubMed Central

    Yasseri, Taha; Sumi, Robert; Rung, András; Kornai, András; Kertész, János

    2012-01-01

    In this work we study the dynamical features of editorial wars in Wikipedia (WP). Based on our previously established algorithm, we build up samples of controversial and peaceful articles and analyze the temporal characteristics of the activity in these samples. On short time scales, we show that there is a clear correspondence between conflict and burstiness of activity patterns, and that memory effects play an important role in controversies. On long time scales, we identify three distinct developmental patterns for the overall behavior of the articles. We are able to distinguish cases eventually leading to consensus from those cases where a compromise is far from achievable. Finally, we analyze discussion networks and conclude that edit wars are mainly fought by few editors only. PMID:22745683

  4. Optimization of the design of Gas Cherenkov Detectors for ICF diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Hu, Huasi; Han, Hetong; Lv, Huanwen; Li, Lan

    2018-07-01

    A design method, which combines a genetic algorithm (GA) with Monte-Carlo simulation, is established and applied to two different types of Cherenkov detectors, namely, Gas Cherenkov Detector (GCD) and Gamma Reaction History (GRH). For accelerating the optimization program, open Message Passing Interface (MPI) is used in the Geant4 simulation. Compared with the traditional optical ray-tracing method, the performances of these detectors have been improved with the optimization method. The efficiency for GCD system, with a threshold of 6.3 MeV, is enhanced by ∼20% and time response improved by ∼7.2%. For the GRH system, with threshold of 10 MeV, the efficiency is enhanced by ∼76% in comparison with previously published results.

  5. A Performance Evaluation of Lightning-NO Algorithms in CMAQ

    EPA Science Inventory

    In the Community Multiscale Air Quality (CMAQv5.2) model, we have implemented two algorithms for lightning NO production; one algorithm is based on the hourly observed cloud-to-ground lightning strike data from National Lightning Detection Network (NLDN) to replace the previous m...

  6. Derivation of a regional active-optical reflectance sensor corn algorithm

    USDA-ARS?s Scientific Manuscript database

    Active-optical reflectance sensor (AORS) algorithms developed for in-season corn (Zea mays L.) N management have traditionally been derived using sub-regional scale information. However, studies have shown these previously developed AORS algorithms are not consistently accurate when used on a region...

  7. Research and application of multi-agent genetic algorithm in tower defense game

    NASA Astrophysics Data System (ADS)

    Jin, Shaohua

    2018-04-01

    In this paper, a new multi-agent genetic algorithm based on orthogonal experiment is proposed, which is based on multi-agent system, genetic algorithm and orthogonal experimental design. The design of neighborhood competition operator, orthogonal crossover operator, Son and self-learning operator. The new algorithm is applied to mobile tower defense game, according to the characteristics of the game, the establishment of mathematical models, and finally increases the value of the game's monster.

  8. Investigating prior probabilities in a multiple hypothesis test for use in space domain awareness

    NASA Astrophysics Data System (ADS)

    Hardy, Tyler J.; Cain, Stephen C.

    2016-05-01

    The goal of this research effort is to improve Space Domain Awareness (SDA) capabilities of current telescope systems through improved detection algorithms. Ground-based optical SDA telescopes are often spatially under-sampled, or aliased. This fact negatively impacts the detection performance of traditionally proposed binary and correlation-based detection algorithms. A Multiple Hypothesis Test (MHT) algorithm has been previously developed to mitigate the effects of spatial aliasing. This is done by testing potential Resident Space Objects (RSOs) against several sub-pixel shifted Point Spread Functions (PSFs). A MHT has been shown to increase detection performance for the same false alarm rate. In this paper, the assumption of a priori probability used in a MHT algorithm is investigated. First, an analysis of the pixel decision space is completed to determine alternate hypothesis prior probabilities. These probabilities are then implemented into a MHT algorithm, and the algorithm is then tested against previous MHT algorithms using simulated RSO data. Results are reported with Receiver Operating Characteristic (ROC) curves and probability of detection, Pd, analysis.

  9. An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method

    NASA Astrophysics Data System (ADS)

    Nouizi, F.; Erkol, H.; Luk, A.; Marks, M.; Unlu, M. B.; Gulsen, G.

    2016-10-01

    We previously introduced photo-magnetic imaging (PMI), an imaging technique that illuminates the medium under investigation with near-infrared light and measures the induced temperature increase using magnetic resonance thermometry (MRT). Using a multiphysics solver combining photon migration and heat diffusion, PMI models the spatiotemporal distribution of temperature variation and recovers high resolution optical absorption images using these temperature maps. In this paper, we present a new fast non-iterative reconstruction algorithm for PMI. This new algorithm uses analytic methods during the resolution of the forward problem and the assembly of the sensitivity matrix. We validate our new analytic-based algorithm with the first generation finite element method (FEM) based reconstruction algorithm previously developed by our team. The validation is performed using, first synthetic data and afterwards, real MRT measured temperature maps. Our new method accelerates the reconstruction process 30-fold when compared to a single iteration of the FEM-based algorithm.

  10. Multiscale computations with a wavelet-adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Rastigejev, Yevgenii Anatolyevich

    A wavelet-based adaptive multiresolution algorithm for the numerical solution of multiscale problems governed by partial differential equations is introduced. The main features of the method include fast algorithms for the calculation of wavelet coefficients and approximation of derivatives on nonuniform stencils. The connection between the wavelet order and the size of the stencil is established. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution which are used in conjunction with an appropriate threshold criteria to adapt the collocation grid. The efficient data structures for grid representation as well as related computational algorithms to support grid rearrangement procedure are developed. The algorithm is applied to the simulation of phenomena described by Navier-Stokes equations. First, we undertake the study of the ignition and subsequent viscous detonation of a H2 : O2 : Ar mixture in a one-dimensional shock tube. Subsequently, we apply the algorithm to solve the two- and three-dimensional benchmark problem of incompressible flow in a lid-driven cavity at large Reynolds numbers. For these cases we show that solutions of comparable accuracy as the benchmarks are obtained with more than an order of magnitude reduction in degrees of freedom. The simulations show the striking ability of the algorithm to adapt to a solution having different scales at different spatial locations so as to produce accurate results at a relatively low computational cost.

  11. On Super-Resolution and the MUSIC Algorithm,

    DTIC Science & Technology

    1985-05-01

    SUPER-RESOLUTION AND THE MUSIC ALGORITHM AUTHOR: G D de Villiers DATE: May 1985 SUMMARY Simulation results for phased array signal processing using...the MUSIC algorithm are presented. The model used is more realistic than previous ones and it gives an indication as to how the algorithm would perform...resolution ON SUPER-RESOLUTION AND THE MUSIC ALGORITHM 1. INTRODUCTION At present there is a considerable amount of interest in "high-resolution" b

  12. Four (Algorithms) in One (Bag): An Integrative Framework of Knowledge for Teaching the Standard Algorithms of the Basic Arithmetic Operations

    ERIC Educational Resources Information Center

    Raveh, Ira; Koichu, Boris; Peled, Irit; Zaslavsky, Orit

    2016-01-01

    In this article we present an integrative framework of knowledge for teaching the standard algorithms of the four basic arithmetic operations. The framework is based on a mathematical analysis of the algorithms, a connectionist perspective on teaching mathematics and an analogy with previous frameworks of knowledge for teaching arithmetic…

  13. A comparison of companion matrix methods to find roots of a trigonometric polynomial

    NASA Astrophysics Data System (ADS)

    Boyd, John P.

    2013-08-01

    A trigonometric polynomial is a truncated Fourier series of the form fN(t)≡∑j=0Naj cos(jt)+∑j=1N bj sin(jt). It has been previously shown by the author that zeros of such a polynomial can be computed as the eigenvalues of a companion matrix with elements which are complex valued combinations of the Fourier coefficients, the "CCM" method. However, previous work provided no examples, so one goal of this new work is to experimentally test the CCM method. A second goal is introduce a new alternative, the elimination/Chebyshev algorithm, and experimentally compare it with the CCM scheme. The elimination/Chebyshev matrix (ECM) algorithm yields a companion matrix with real-valued elements, albeit at the price of usefulness only for real roots. The new elimination scheme first converts the trigonometric rootfinding problem to a pair of polynomial equations in the variables (c,s) where c≡cos(t) and s≡sin(t). The elimination method next reduces the system to a single univariate polynomial P(c). We show that this same polynomial is the resultant of the system and is also a generator of the Groebner basis with lexicographic ordering for the system. Both methods give very high numerical accuracy for real-valued roots, typically at least 11 decimal places in Matlab/IEEE 754 16 digit floating point arithmetic. The CCM algorithm is typically one or two decimal places more accurate, though these differences disappear if the roots are "Newton-polished" by a single Newton's iteration. The complex-valued matrix is accurate for complex-valued roots, too, though accuracy decreases with the magnitude of the imaginary part of the root. The cost of both methods scales as O(N3) floating point operations. In spite of intimate connections of the elimination/Chebyshev scheme to two well-established technologies for solving systems of equations, resultants and Groebner bases, and the advantages of using only real-valued arithmetic to obtain a companion matrix with real-valued elements, the ECM algorithm is noticeably inferior to the complex-valued companion matrix in simplicity, ease of programming, and accuracy.

  14. Tracking a convoy of multiple targets using acoustic sensor data

    NASA Astrophysics Data System (ADS)

    Damarla, T. R.

    2003-08-01

    In this paper we present an algorithm to track a convoy of several targets in a scene using acoustic sensor array data. The tracking algorithm is based on template of the direction of arrival (DOA) angles for the leading target. Often the first target is the closest target to the sensor array and hence the loudest with good signal to noise ratio. Several steps were used to generate a template of the DOA angle for the leading target, namely, (a) the angle at the present instant should be close to the angle at the previous instant and (b) the angle at the present instant should be within error bounds of the predicted value based on the previous values. Once the template of the DOA angles of the leading target is developed, it is used to predict the DOA angle tracks of the remaining targets. In order to generate the tracks for the remaining targets, a track is established if the angles correspond to the initial track values of the first target. Second the time delay between the first track and the remaining tracks are estimated at the highest correlation points between the first track and the remaining tracks. As the vehicles move at different speeds the tracks either compress or expand depending on whether a target is moving fast or slow compared to the first target. The expansion and compression ratios are estimated and used to estimate the predicted DOA angle values of the remaining targets. Based on these predicted DOA angles of the remaining targets the DOA angles obtained from the MVDR or Incoherent MUSIC will be appropriately assigned to proper tracks. Several other rules were developed to avoid mixing the tracks. The algorithm is tested on data collected at Aberdeen Proving Ground with a convoy of 3, 4 and 5 vehicles. Some of the vehicles are tracked and some are wheeled vehicles. The tracking algorithm results are found to be good. The results will be presented at the conference and in the paper.

  15. Protein folding optimization based on 3D off-lattice model via an improved artificial bee colony algorithm.

    PubMed

    Li, Bai; Lin, Mu; Liu, Qiao; Li, Ya; Zhou, Changjun

    2015-10-01

    Protein folding is a fundamental topic in molecular biology. Conventional experimental techniques for protein structure identification or protein folding recognition require strict laboratory requirements and heavy operating burdens, which have largely limited their applications. Alternatively, computer-aided techniques have been developed to optimize protein structures or to predict the protein folding process. In this paper, we utilize a 3D off-lattice model to describe the original protein folding scheme as a simplified energy-optimal numerical problem, where all types of amino acid residues are binarized into hydrophobic and hydrophilic ones. We apply a balance-evolution artificial bee colony (BE-ABC) algorithm as the minimization solver, which is featured by the adaptive adjustment of search intensity to cater for the varying needs during the entire optimization process. In this work, we establish a benchmark case set with 13 real protein sequences from the Protein Data Bank database and evaluate the convergence performance of BE-ABC algorithm through strict comparisons with several state-of-the-art ABC variants in short-term numerical experiments. Besides that, our obtained best-so-far protein structures are compared to the ones in comprehensive previous literature. This study also provides preliminary insights into how artificial intelligence techniques can be applied to reveal the dynamics of protein folding. Graphical Abstract Protein folding optimization using 3D off-lattice model and advanced optimization techniques.

  16. The Chorus Conflict and Loss of Separation Resolution Algorithms

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.

    2013-01-01

    The Chorus software is designed to investigate near-term, tactical conflict and loss of separation detection and resolution concepts for air traffic management. This software is currently being used in two different problem domains: en-route self- separation and sense and avoid for unmanned aircraft systems. This paper describes the core resolution algorithms that are part of Chorus. The combination of several features of the Chorus program distinguish this software from other approaches to conflict and loss of separation resolution. First, the program stores a history of state information over time which enables it to handle communication dropouts and take advantage of previous input data. Second, the underlying conflict algorithms find resolutions that solve the most urgent conflict, but also seek to prevent secondary conflicts with the other aircraft. Third, if the program is run on multiple aircraft, and the two aircraft maneuver at the same time, the result will be implicitly co-ordinated. This implicit coordination property is established by ensuring that a resolution produced by Chorus will comply with a mathematically-defined criteria whose correctness has been formally verified. Fourth, the program produces both instantaneous solutions and kinematic solutions, which are based on simple accel- eration models. Finally, the program provides resolutions for recovery from loss of separation. Different versions of this software are implemented as Java and C++ software programs, respectively.

  17. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications

    NASA Astrophysics Data System (ADS)

    Lee, Jay; Wu, Fangji; Zhao, Wenyu; Ghaffari, Masoud; Liao, Linxia; Siegel, David

    2014-01-01

    Much research has been conducted in prognostics and health management (PHM), an emerging field in mechanical engineering that is gaining interest from both academia and industry. Most of these efforts have been in the area of machinery PHM, resulting in the development of many algorithms for this particular application. The majority of these algorithms concentrate on applications involving common rotary machinery components, such as bearings and gears. Knowledge of this prior work is a necessity for any future research efforts to be conducted; however, there has not been a comprehensive overview that details previous and on-going efforts in PHM. In addition, a systematic method for developing and deploying a PHM system has yet to be established. Such a method would enable rapid customization and integration of PHM systems for diverse applications. To address these gaps, this paper provides a comprehensive review of the PHM field, followed by an introduction of a systematic PHM design methodology, 5S methodology, for converting data to prognostics information. This methodology includes procedures for identifying critical components, as well as tools for selecting the most appropriate algorithms for specific applications. Visualization tools are presented for displaying prognostics information in an appropriate fashion for quick and accurate decision making. Industrial case studies are included in this paper to show how this methodology can help in the design of an effective PHM system.

  18. GStream: Improving SNP and CNV Coverage on Genome-Wide Association Studies

    PubMed Central

    Alonso, Arnald; Marsal, Sara; Tortosa, Raül; Canela-Xandri, Oriol; Julià, Antonio

    2013-01-01

    We present GStream, a method that combines genome-wide SNP and CNV genotyping in the Illumina microarray platform with unprecedented accuracy. This new method outperforms previous well-established SNP genotyping software. More importantly, the CNV calling algorithm of GStream dramatically improves the results obtained by previous state-of-the-art methods and yields an accuracy that is close to that obtained by purely CNV-oriented technologies like Comparative Genomic Hybridization (CGH). We demonstrate the superior performance of GStream using microarray data generated from HapMap samples. Using the reference CNV calls generated by the 1000 Genomes Project (1KGP) and well-known studies on whole genome CNV characterization based either on CGH or genotyping microarray technologies, we show that GStream can increase the number of reliably detected variants up to 25% compared to previously developed methods. Furthermore, the increased genome coverage provided by GStream allows the discovery of CNVs in close linkage disequilibrium with SNPs, previously associated with disease risk in published Genome-Wide Association Studies (GWAS). These results could provide important insights into the biological mechanism underlying the detected disease risk association. With GStream, large-scale GWAS will not only benefit from the combined genotyping of SNPs and CNVs at an unprecedented accuracy, but will also take advantage of the computational efficiency of the method. PMID:23844243

  19. Simulation optimization of PSA-threshold based prostate cancer screening policies

    PubMed Central

    Zhang, Jingyu; Denton, Brian T.; Shah, Nilay D.; Inman, Brant A.

    2013-01-01

    We describe a simulation optimization method to design PSA screening policies based on expected quality adjusted life years (QALYs). Our method integrates a simulation model in a genetic algorithm which uses a probabilistic method for selection of the best policy. We present computational results about the efficiency of our algorithm. The best policy generated by our algorithm is compared to previously recommended screening policies. Using the policies determined by our model, we present evidence that patients should be screened more aggressively but for a shorter length of time than previously published guidelines recommend. PMID:22302420

  20. A class of least-squares filtering and identification algorithms with systolic array architectures

    NASA Technical Reports Server (NTRS)

    Kalson, Seth Z.; Yao, Kung

    1991-01-01

    A unified approach is presented for deriving a large class of new and previously known time- and order-recursive least-squares algorithms with systolic array architectures, suitable for high-throughput-rate and VLSI implementations of space-time filtering and system identification problems. The geometrical derivation given is unique in that no assumption is made concerning the rank of the sample data correlation matrix. This method utilizes and extends the concept of oblique projections, as used previously in the derivations of the least-squares lattice algorithms. Exponentially weighted least-squares criteria are considered for both sliding and growing memory.

  1. A proposed method to estimate premorbid full scale intelligence quotient (FSIQ) for the Canadian Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) using demographic and combined estimation procedures.

    PubMed

    Schoenberg, Mike R; Lange, Rael T; Saklofske, Donald H

    2007-11-01

    Establishing a comparison standard in neuropsychological assessment is crucial to determining change in function. There is no available method to estimate premorbid intellectual functioning for the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). The WISC-IV provided normative data for both American and Canadian children aged 6 to 16 years old. This study developed regression algorithms as a proposed method to estimate full-scale intelligence quotient (FSIQ) for the Canadian WISC-IV. Participants were the Canadian WISC-IV standardization sample (n = 1,100). The sample was randomly divided into two groups (development and validation groups). The development group was used to generate regression algorithms; 1 algorithm only included demographics, and 11 combined demographic variables with WISC-IV subtest raw scores. The algorithms accounted for 18% to 70% of the variance in FSIQ (standard error of estimate, SEE = 8.6 to 14.2). Estimated FSIQ significantly correlated with actual FSIQ (r = .30 to .80), and the majority of individual FSIQ estimates were within +/-10 points of actual FSIQ. The demographic-only algorithm was less accurate than algorithms combining demographic variables with subtest raw scores. The current algorithms yielded accurate estimates of current FSIQ for Canadian individuals aged 6-16 years old. The potential application of the algorithms to estimate premorbid FSIQ is reviewed. While promising, clinical validation of the algorithms in a sample of children and/or adolescents with known neurological dysfunction is needed to establish these algorithms as a premorbid estimation procedure.

  2. A statistical analysis of RNA folding algorithms through thermodynamic parameter perturbation.

    PubMed

    Layton, D M; Bundschuh, R

    2005-01-01

    Computational RNA secondary structure prediction is rather well established. However, such prediction algorithms always depend on a large number of experimentally measured parameters. Here, we study how sensitive structure prediction algorithms are to changes in these parameters. We found already that for changes corresponding to the actual experimental error to which these parameters have been determined, 30% of the structure are falsely predicted whereas the ground state structure is preserved under parameter perturbation in only 5% of all the cases. We establish that base-pairing probabilities calculated in a thermal ensemble are viable although not a perfect measure for the reliability of the prediction of individual structure elements. Here, a new measure of stability using parameter perturbation is proposed, and its limitations are discussed.

  3. Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.

    PubMed

    Serebrinsky, Santiago A

    2011-03-01

    We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.

  4. Hysteresis modeling of magnetic shape memory alloy actuator based on Krasnosel'skii-Pokrovskii model.

    PubMed

    Zhou, Miaolei; Wang, Shoubin; Gao, Wei

    2013-01-01

    As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.

  5. Hysteresis Modeling of Magnetic Shape Memory Alloy Actuator Based on Krasnosel'skii-Pokrovskii Model

    PubMed Central

    Wang, Shoubin; Gao, Wei

    2013-01-01

    As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator. PMID:23737730

  6. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    PubMed Central

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028

  7. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    PubMed

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  8. An improved algorithm for evaluating trellis phase codes

    NASA Technical Reports Server (NTRS)

    Mulligan, M. G.; Wilson, S. G.

    1982-01-01

    A method is described for evaluating the minimum distance parameters of trellis phase codes, including CPFSK, partial response FM, and more importantly, coded CPM (continuous phase modulation) schemes. The algorithm provides dramatically faster execution times and lesser memory requirements than previous algorithms. Results of sample calculations and timing comparisons are included.

  9. An improved algorithm for evaluating trellis phase codes

    NASA Technical Reports Server (NTRS)

    Mulligan, M. G.; Wilson, S. G.

    1984-01-01

    A method is described for evaluating the minimum distance parameters of trellis phase codes, including CPFSK, partial response FM, and more importantly, coded CPM (continuous phase modulation) schemes. The algorithm provides dramatically faster execution times and lesser memory requirements than previous algorithms. Results of sample calculations and timing comparisons are included.

  10. GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.

    PubMed

    Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim

    2016-08-01

    In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.

  11. A SAT Based Effective Algorithm for the Directed Hamiltonian Cycle Problem

    NASA Astrophysics Data System (ADS)

    Jäger, Gerold; Zhang, Weixiong

    The Hamiltonian cycle problem (HCP) is an important combinatorial problem with applications in many areas. While thorough theoretical and experimental analyses have been made on the HCP in undirected graphs, little is known for the HCP in directed graphs (DHCP). The contribution of this work is an effective algorithm for the DHCP. Our algorithm explores and exploits the close relationship between the DHCP and the Assignment Problem (AP) and utilizes a technique based on Boolean satisfiability (SAT). By combining effective algorithms for the AP and SAT, our algorithm significantly outperforms previous exact DHCP algorithms including an algorithm based on the award-winning Concorde TSP algorithm.

  12. Model-based Bayesian signal extraction algorithm for peripheral nerves

    NASA Astrophysics Data System (ADS)

    Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.

    2017-10-01

    Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of controlling a prosthetic limb.

  13. The Search for Effective Algorithms for Recovery from Loss of Separation

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Munoz, Cesar A.; Narawicz, Anthony J.

    2012-01-01

    Our previous work presented an approach for developing high confidence algorithms for recovering aircraft from loss of separation situations. The correctness theorems for the algorithms relied on several key assumptions, namely that state data for all local aircraft is perfectly known, that resolution maneuvers can be achieved instantaneously, and that all aircraft compute resolutions using exactly the same data. Experiments showed that these assumptions were adequate in cases where the aircraft are far away from losing separation, but are insufficient when the aircraft have already lost separation. This paper describes the results of this experimentation and proposes a new criteria specification for loss of separation recovery that preserves the formal safety properties of the previous criteria while overcoming some key limitations. Candidate algorithms that satisfy the new criteria are presented.

  14. Models of performance of evolutionary program induction algorithms based on indicators of problem difficulty.

    PubMed

    Graff, Mario; Poli, Riccardo; Flores, Juan J

    2013-01-01

    Modeling the behavior of algorithms is the realm of evolutionary algorithm theory. From a practitioner's point of view, theory must provide some guidelines regarding which algorithm/parameters to use in order to solve a particular problem. Unfortunately, most theoretical models of evolutionary algorithms are difficult to apply to realistic situations. However, in recent work (Graff and Poli, 2008, 2010), where we developed a method to practically estimate the performance of evolutionary program-induction algorithms (EPAs), we started addressing this issue. The method was quite general; however, it suffered from some limitations: it required the identification of a set of reference problems, it required hand picking a distance measure in each particular domain, and the resulting models were opaque, typically being linear combinations of 100 features or more. In this paper, we propose a significant improvement of this technique that overcomes the three limitations of our previous method. We achieve this through the use of a novel set of features for assessing problem difficulty for EPAs which are very general, essentially based on the notion of finite difference. To show the capabilities or our technique and to compare it with our previous performance models, we create models for the same two important classes of problems-symbolic regression on rational functions and Boolean function induction-used in our previous work. We model a variety of EPAs. The comparison showed that for the majority of the algorithms and problem classes, the new method produced much simpler and more accurate models than before. To further illustrate the practicality of the technique and its generality (beyond EPAs), we have also used it to predict the performance of both autoregressive models and EPAs on the problem of wind speed forecasting, obtaining simpler and more accurate models that outperform in all cases our previous performance models.

  15. Analysis of Two Advanced Smoothing Algorithms.

    DTIC Science & Technology

    1985-09-01

    59 B. METHODOLOGY . ......... ........... 60 6 C. TESTING AND RESULTS ---- LINEAR UNDERLYING FUNCTION...SMOOTHING ALGORITHMS ...... .................... 94 A. GENERAL ......... ....................... .. 94 B. METHODOLOGY ............................ .95 C...to define succinctly. 59 B. METHODOLOGY There is no established procedure to follow in testing the efficiency and effectiveness of a smoothing

  16. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography.

    PubMed

    Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60-90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity.

  17. Can machine-learning improve cardiovascular risk prediction using routine clinical data?

    PubMed Central

    Kai, Joe; Garibaldi, Jonathan M.; Qureshi, Nadeem

    2017-01-01

    Background Current approaches to predict cardiovascular risk fail to identify many people who would benefit from preventive treatment, while others receive unnecessary intervention. Machine-learning offers opportunity to improve accuracy by exploiting complex interactions between risk factors. We assessed whether machine-learning can improve cardiovascular risk prediction. Methods Prospective cohort study using routine clinical data of 378,256 patients from UK family practices, free from cardiovascular disease at outset. Four machine-learning algorithms (random forest, logistic regression, gradient boosting machines, neural networks) were compared to an established algorithm (American College of Cardiology guidelines) to predict first cardiovascular event over 10-years. Predictive accuracy was assessed by area under the ‘receiver operating curve’ (AUC); and sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) to predict 7.5% cardiovascular risk (threshold for initiating statins). Findings 24,970 incident cardiovascular events (6.6%) occurred. Compared to the established risk prediction algorithm (AUC 0.728, 95% CI 0.723–0.735), machine-learning algorithms improved prediction: random forest +1.7% (AUC 0.745, 95% CI 0.739–0.750), logistic regression +3.2% (AUC 0.760, 95% CI 0.755–0.766), gradient boosting +3.3% (AUC 0.761, 95% CI 0.755–0.766), neural networks +3.6% (AUC 0.764, 95% CI 0.759–0.769). The highest achieving (neural networks) algorithm predicted 4,998/7,404 cases (sensitivity 67.5%, PPV 18.4%) and 53,458/75,585 non-cases (specificity 70.7%, NPV 95.7%), correctly predicting 355 (+7.6%) more patients who developed cardiovascular disease compared to the established algorithm. Conclusions Machine-learning significantly improves accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment, while avoiding unnecessary treatment of others. PMID:28376093

  18. Can machine-learning improve cardiovascular risk prediction using routine clinical data?

    PubMed

    Weng, Stephen F; Reps, Jenna; Kai, Joe; Garibaldi, Jonathan M; Qureshi, Nadeem

    2017-01-01

    Current approaches to predict cardiovascular risk fail to identify many people who would benefit from preventive treatment, while others receive unnecessary intervention. Machine-learning offers opportunity to improve accuracy by exploiting complex interactions between risk factors. We assessed whether machine-learning can improve cardiovascular risk prediction. Prospective cohort study using routine clinical data of 378,256 patients from UK family practices, free from cardiovascular disease at outset. Four machine-learning algorithms (random forest, logistic regression, gradient boosting machines, neural networks) were compared to an established algorithm (American College of Cardiology guidelines) to predict first cardiovascular event over 10-years. Predictive accuracy was assessed by area under the 'receiver operating curve' (AUC); and sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) to predict 7.5% cardiovascular risk (threshold for initiating statins). 24,970 incident cardiovascular events (6.6%) occurred. Compared to the established risk prediction algorithm (AUC 0.728, 95% CI 0.723-0.735), machine-learning algorithms improved prediction: random forest +1.7% (AUC 0.745, 95% CI 0.739-0.750), logistic regression +3.2% (AUC 0.760, 95% CI 0.755-0.766), gradient boosting +3.3% (AUC 0.761, 95% CI 0.755-0.766), neural networks +3.6% (AUC 0.764, 95% CI 0.759-0.769). The highest achieving (neural networks) algorithm predicted 4,998/7,404 cases (sensitivity 67.5%, PPV 18.4%) and 53,458/75,585 non-cases (specificity 70.7%, NPV 95.7%), correctly predicting 355 (+7.6%) more patients who developed cardiovascular disease compared to the established algorithm. Machine-learning significantly improves accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment, while avoiding unnecessary treatment of others.

  19. [Standard algorithm of molecular typing of Yersinia pestis strains].

    PubMed

    Eroshenko, G A; Odinokov, G N; Kukleva, L M; Pavlova, A I; Krasnov, Ia M; Shavina, N Iu; Guseva, N P; Vinogradova, N A; Kutyrev, V V

    2012-01-01

    Development of the standard algorithm of molecular typing of Yersinia pestis that ensures establishing of subspecies, biovar and focus membership of the studied isolate. Determination of the characteristic strain genotypes of plague infectious agent of main and nonmain subspecies from various natural foci of plague of the Russian Federation and the near abroad. Genotyping of 192 natural Y. pestis strains of main and nonmain subspecies was performed by using PCR methods, multilocus sequencing and multilocus analysis of variable tandem repeat number. A standard algorithm of molecular typing of plague infectious agent including several stages of Yersinia pestis differentiation by membership: in main and nonmain subspecies, various biovars of the main subspecies, specific subspecies; natural foci and geographic territories was developed. The algorithm is based on 3 typing methods--PCR, multilocus sequence typing and multilocus analysis of variable tandem repeat number using standard DNA targets--life support genes (terC, ilvN, inv, glpD, napA, rhaS and araC) and 7 loci of variable tandem repeats (ms01, ms04, ms06, ms07, ms46, ms62, ms70). The effectiveness of the developed algorithm is shown on the large number of natural Y. pestis strains. Characteristic sequence types of Y. pestis strains of various subspecies and biovars as well as MLVA7 genotypes of strains from natural foci of plague of the Russian Federation and the near abroad were established. The application of the developed algorithm will increase the effectiveness of epidemiologic monitoring of plague infectious agent, and analysis of epidemics and outbreaks of plague with establishing the source of origin of the strain and routes of introduction of the infection.

  20. Reconstructing Spectral Scenes Using Statistical Estimation to Enhance Space Situational Awareness

    DTIC Science & Technology

    2006-12-01

    simultane- ously spatially and spectrally deblur the images collected from ASIS. The algorithms are based on proven estimation theories and do not...collected with any system using a filtering technology known as Electronic Tunable Filters (ETFs). Previous methods to deblur spectral images collected...spectrally deblurring then the previously investigated methods. This algorithm expands on a method used for increasing the spectral resolution in gamma-ray

  1. Torsional anharmonicity in the conformational thermodynamics of flexible molecules

    NASA Astrophysics Data System (ADS)

    Miller, Thomas F., III; Clary, David C.

    We present an algorithm for calculating the conformational thermodynamics of large, flexible molecules that combines ab initio electronic structure theory calculations with a torsional path integral Monte Carlo (TPIMC) simulation. The new algorithm overcomes the previous limitations of the TPIMC method by including the thermodynamic contributions of non-torsional vibrational modes and by affordably incorporating the ab initio calculation of conformer electronic energies, and it improves the conventional ab initio treatment of conformational thermodynamics by accounting for the anharmonicity of the torsional modes. Using previously published ab initio results and new TPIMC calculations, we apply the algorithm to the conformers of the adrenaline molecule.

  2. Interleaved diffusion-weighted EPI improved by adaptive partial-Fourier and multi-band multiplexed sensitivity-encoding reconstruction

    PubMed Central

    Chang, Hing-Chiu; Guhaniyogi, Shayan; Chen, Nan-kuei

    2014-01-01

    Purpose We report a series of techniques to reliably eliminate artifacts in interleaved echo-planar imaging (EPI) based diffusion weighted imaging (DWI). Methods First, we integrate the previously reported multiplexed sensitivity encoding (MUSE) algorithm with a new adaptive Homodyne partial-Fourier reconstruction algorithm, so that images reconstructed from interleaved partial-Fourier DWI data are free from artifacts even in the presence of either a) motion-induced k-space energy peak displacement, or b) susceptibility field gradient induced fast phase changes. Second, we generalize the previously reported single-band MUSE framework to multi-band MUSE, so that both through-plane and in-plane aliasing artifacts in multi-band multi-shot interleaved DWI data can be effectively eliminated. Results The new adaptive Homodyne-MUSE reconstruction algorithm reliably produces high-quality and high-resolution DWI, eliminating residual artifacts in images reconstructed with previously reported methods. Furthermore, the generalized MUSE algorithm is compatible with multi-band and high-throughput DWI. Conclusion The integration of the multi-band and adaptive Homodyne-MUSE algorithms significantly improves the spatial-resolution, image quality, and scan throughput of interleaved DWI. We expect that the reported reconstruction framework will play an important role in enabling high-resolution DWI for both neuroscience research and clinical uses. PMID:24925000

  3. Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis

    ERIC Educational Resources Information Center

    Cai, Li

    2010-01-01

    Item factor analysis (IFA), already well established in educational measurement, is increasingly applied to psychological measurement in research settings. However, high-dimensional confirmatory IFA remains a numerical challenge. The current research extends the Metropolis-Hastings Robbins-Monro (MH-RM) algorithm, initially proposed for…

  4. A study on the application of topic models to motif finding algorithms.

    PubMed

    Basha Gutierrez, Josep; Nakai, Kenta

    2016-12-22

    Topic models are statistical algorithms which try to discover the structure of a set of documents according to the abstract topics contained in them. Here we try to apply this approach to the discovery of the structure of the transcription factor binding sites (TFBS) contained in a set of biological sequences, which is a fundamental problem in molecular biology research for the understanding of transcriptional regulation. Here we present two methods that make use of topic models for motif finding. First, we developed an algorithm in which first a set of biological sequences are treated as text documents, and the k-mers contained in them as words, to then build a correlated topic model (CTM) and iteratively reduce its perplexity. We also used the perplexity measurement of CTMs to improve our previous algorithm based on a genetic algorithm and several statistical coefficients. The algorithms were tested with 56 data sets from four different species and compared to 14 other methods by the use of several coefficients both at nucleotide and site level. The results of our first approach showed a performance comparable to the other methods studied, especially at site level and in sensitivity scores, in which it scored better than any of the 14 existing tools. In the case of our previous algorithm, the new approach with the addition of the perplexity measurement clearly outperformed all of the other methods in sensitivity, both at nucleotide and site level, and in overall performance at site level. The statistics obtained show that the performance of a motif finding method based on the use of a CTM is satisfying enough to conclude that the application of topic models is a valid method for developing motif finding algorithms. Moreover, the addition of topic models to a previously developed method dramatically increased its performance, suggesting that this combined algorithm can be a useful tool to successfully predict motifs in different kinds of sets of DNA sequences.

  5. An improved NSGA - II algorithm for mixed model assembly line balancing

    NASA Astrophysics Data System (ADS)

    Wu, Yongming; Xu, Yanxia; Luo, Lifei; Zhang, Han; Zhao, Xudong

    2018-05-01

    Aiming at the problems of assembly line balancing and path optimization for material vehicles in mixed model manufacturing system, a multi-objective mixed model assembly line (MMAL), which is based on optimization objectives, influencing factors and constraints, is established. According to the specific situation, an improved NSGA-II algorithm based on ecological evolution strategy is designed. An environment self-detecting operator, which is used to detect whether the environment changes, is adopted in the algorithm. Finally, the effectiveness of proposed model and algorithm is verified by examples in a concrete mixing system.

  6. Status report: Data management program algorithm evaluation activity at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.

    1977-01-01

    An algorithm evaluation activity was initiated to study the problems associated with image processing by assessing the independent and interdependent effects of registration, compression, and classification techniques on LANDSAT data for several discipline applications. The objective of the activity was to make recommendations on selected applicable image processing algorithms in terms of accuracy, cost, and timeliness or to propose alternative ways of processing the data. As a means of accomplishing this objective, an Image Coding Panel was established. The conduct of the algorithm evaluation is described.

  7. A general U-block model-based design procedure for nonlinear polynomial control systems

    NASA Astrophysics Data System (ADS)

    Zhu, Q. M.; Zhao, D. Y.; Zhang, Jianhua

    2016-10-01

    The proposition of U-model concept (in terms of 'providing concise and applicable solutions for complex problems') and a corresponding basic U-control design algorithm was originated in the first author's PhD thesis. The term of U-model appeared (not rigorously defined) for the first time in the first author's other journal paper, which established a framework for using linear polynomial control system design approaches to design nonlinear polynomial control systems (in brief, linear polynomial approaches → nonlinear polynomial plants). This paper represents the next milestone work - using linear state-space approaches to design nonlinear polynomial control systems (in brief, linear state-space approaches → nonlinear polynomial plants). The overall aim of the study is to establish a framework, defined as the U-block model, which provides a generic prototype for using linear state-space-based approaches to design the control systems with smooth nonlinear plants/processes described by polynomial models. For analysing the feasibility and effectiveness, sliding mode control design approach is selected as an exemplary case study. Numerical simulation studies provide a user-friendly step-by-step procedure for the readers/users with interest in their ad hoc applications. In formality, this is the first paper to present the U-model-oriented control system design in a formal way and to study the associated properties and theorems. The previous publications, in the main, have been algorithm-based studies and simulation demonstrations. In some sense, this paper can be treated as a landmark for the U-model-based research from intuitive/heuristic stage to rigour/formal/comprehensive studies.

  8. Trusted measurement model based on multitenant behaviors.

    PubMed

    Ning, Zhen-Hu; Shen, Chang-Xiang; Zhao, Yong; Liang, Peng

    2014-01-01

    With a fast growing pervasive computing, especially cloud computing, the behaviour measurement is at the core and plays a vital role. A new behaviour measurement tailored for Multitenants in cloud computing is needed urgently to fundamentally establish trust relationship. Based on our previous research, we propose an improved trust relationship scheme which captures the world of cloud computing where multitenants share the same physical computing platform. Here, we first present the related work on multitenant behaviour; secondly, we give the scheme of behaviour measurement where decoupling of multitenants is taken into account; thirdly, we explicitly explain our decoupling algorithm for multitenants; fourthly, we introduce a new way of similarity calculation for deviation control, which fits the coupled multitenants under study well; lastly, we design the experiments to test our scheme.

  9. Trusted Measurement Model Based on Multitenant Behaviors

    PubMed Central

    Ning, Zhen-Hu; Shen, Chang-Xiang; Zhao, Yong; Liang, Peng

    2014-01-01

    With a fast growing pervasive computing, especially cloud computing, the behaviour measurement is at the core and plays a vital role. A new behaviour measurement tailored for Multitenants in cloud computing is needed urgently to fundamentally establish trust relationship. Based on our previous research, we propose an improved trust relationship scheme which captures the world of cloud computing where multitenants share the same physical computing platform. Here, we first present the related work on multitenant behaviour; secondly, we give the scheme of behaviour measurement where decoupling of multitenants is taken into account; thirdly, we explicitly explain our decoupling algorithm for multitenants; fourthly, we introduce a new way of similarity calculation for deviation control, which fits the coupled multitenants under study well; lastly, we design the experiments to test our scheme. PMID:24987731

  10. Retrieval of volcanic ash height from satellite-based infrared measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Li, Jun; Zhao, Yingying; Gong, He; Li, Wenjie

    2017-05-01

    A new algorithm for retrieving volcanic ash cloud height from satellite-based measurements is presented. This algorithm, which was developed in preparation for China's next-generation meteorological satellite (FY-4), is based on volcanic ash microphysical property simulation and statistical optimal estimation theory. The MSG satellite's main payload, a 12-channel Spinning Enhanced Visible and Infrared Imager, was used as proxy data to test this new algorithm. A series of eruptions of Iceland's Eyjafjallajökull volcano during April to May 2010 and the Puyehue-Cordón Caulle volcanic complex eruption in the Chilean Andes on 16 June 2011 were selected as two typical cases for evaluating the algorithm under various meteorological backgrounds. Independent volcanic ash simulation training samples and satellite-based Cloud-Aerosol Lidar with Orthogonal Polarization data were used as validation data. It is demonstrated that the statistically based volcanic ash height algorithm is able to rapidly retrieve volcanic ash heights, globally. The retrieved ash heights show comparable accuracy with both independent training data and the lidar measurements, which is consistent with previous studies. However, under complicated background, with multilayers in vertical scale, underlying stratus clouds tend to have detrimental effects on the final retrieval accuracy. This is an unresolved problem, like many other previously published methods using passive satellite sensors. Compared with previous studies, the FY-4 ash height algorithm is independent of simultaneous atmospheric profiles, providing a flexible way to estimate volcanic ash height using passive satellite infrared measurements.

  11. Computational complexity of algorithms for sequence comparison, short-read assembly and genome alignment.

    PubMed

    Baichoo, Shakuntala; Ouzounis, Christos A

    A multitude of algorithms for sequence comparison, short-read assembly and whole-genome alignment have been developed in the general context of molecular biology, to support technology development for high-throughput sequencing, numerous applications in genome biology and fundamental research on comparative genomics. The computational complexity of these algorithms has been previously reported in original research papers, yet this often neglected property has not been reviewed previously in a systematic manner and for a wider audience. We provide a review of space and time complexity of key sequence analysis algorithms and highlight their properties in a comprehensive manner, in order to identify potential opportunities for further research in algorithm or data structure optimization. The complexity aspect is poised to become pivotal as we will be facing challenges related to the continuous increase of genomic data on unprecedented scales and complexity in the foreseeable future, when robust biological simulation at the cell level and above becomes a reality. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Q-Learning-Based Adjustable Fixed-Phase Quantum Grover Search Algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Shi, Wensha; Wang, Yijun; Hu, Jiankun

    2017-02-01

    We demonstrate that the rotation phase can be suitably chosen to increase the efficiency of the phase-based quantum search algorithm, leading to a dynamic balance between iterations and success probabilities of the fixed-phase quantum Grover search algorithm with Q-learning for a given number of solutions. In this search algorithm, the proposed Q-learning algorithm, which is a model-free reinforcement learning strategy in essence, is used for performing a matching algorithm based on the fraction of marked items λ and the rotation phase α. After establishing the policy function α = π(λ), we complete the fixed-phase Grover algorithm, where the phase parameter is selected via the learned policy. Simulation results show that the Q-learning-based Grover search algorithm (QLGA) enables fewer iterations and gives birth to higher success probabilities. Compared with the conventional Grover algorithms, it avoids the optimal local situations, thereby enabling success probabilities to approach one.

  13. Elitist Binary Wolf Search Algorithm for Heuristic Feature Selection in High-Dimensional Bioinformatics Datasets.

    PubMed

    Li, Jinyan; Fong, Simon; Wong, Raymond K; Millham, Richard; Wong, Kelvin K L

    2017-06-28

    Due to the high-dimensional characteristics of dataset, we propose a new method based on the Wolf Search Algorithm (WSA) for optimising the feature selection problem. The proposed approach uses the natural strategy established by Charles Darwin; that is, 'It is not the strongest of the species that survives, but the most adaptable'. This means that in the evolution of a swarm, the elitists are motivated to quickly obtain more and better resources. The memory function helps the proposed method to avoid repeat searches for the worst position in order to enhance the effectiveness of the search, while the binary strategy simplifies the feature selection problem into a similar problem of function optimisation. Furthermore, the wrapper strategy gathers these strengthened wolves with the classifier of extreme learning machine to find a sub-dataset with a reasonable number of features that offers the maximum correctness of global classification models. The experimental results from the six public high-dimensional bioinformatics datasets tested demonstrate that the proposed method can best some of the conventional feature selection methods up to 29% in classification accuracy, and outperform previous WSAs by up to 99.81% in computational time.

  14. The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies

    NASA Astrophysics Data System (ADS)

    Foster, C.; van de Sande, J.; D'Eugenio, F.; Cortese, L.; McDermid, R. M.; Bland-Hawthorn, J.; Brough, S.; Bryant, J.; Croom, S. M.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Medling, A. M.; Owers, M. S.; Richards, S. N.; Scott, N.; Taranu, D. S.; Tonini, C.; Zafar, T.

    2017-11-01

    Using the stellar kinematic maps and ancillary imaging data from the Sydney AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of kinematically selected samples of galaxies is inferred. We implement an efficient and optimized algorithm to fit the intrinsic shape of galaxies using an established method to simultaneously invert the distributions of apparent ellipticities and kinematic misalignments. The algorithm output compares favourably with previous studies of the intrinsic shape of galaxies based on imaging alone and our re-analysis of the ATLAS3D data. Our results indicate that most galaxies are oblate axisymmetric. We show empirically that the intrinsic shape of galaxies varies as a function of their rotational support as measured by the 'spin' parameter proxy λ _{R_e}. In particular, low-spin systems have a higher occurrence of triaxiality, while high-spin systems are more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies is linked to their formation and merger histories. Galaxies with high-spin values have intrinsic shapes consistent with dissipational minor mergers, while the intrinsic shape of low-spin systems is consistent with dissipationless multimerger assembly histories. This range in assembly histories inferred from intrinsic shapes is broadly consistent with expectations from cosmological simulations.

  15. [Algorithm of locally adaptive region growing based on multi-template matching applied to automated detection of hemorrhages].

    PubMed

    Gao, Wei-Wei; Shen, Jian-Xin; Wang, Yu-Liang; Liang, Chun; Zuo, Jing

    2013-02-01

    In order to automatically detect hemorrhages in fundus images, and develop an automated diabetic retinopathy screening system, a novel algorithm named locally adaptive region growing based on multi-template matching was established and studied. Firstly, spectral signature of major anatomical structures in fundus was studied, so that the right channel among RGB channels could be selected for different segmentation objects. Secondly, the fundus image was preprocessed by means of HSV brightness correction and contrast limited adaptive histogram equalization (CLAHE). Then, seeds of region growing were founded out by removing optic disc and vessel from the resulting image of normalized cross-correlation (NCC) template matching on the previous preprocessed image with several templates. Finally, locally adaptive region growing segmentation was used to find out the exact contours of hemorrhages, and the automated detection of the lesions was accomplished. The approach was tested on 90 different resolution fundus images with variable color, brightness and quality. Results suggest that the approach could fast and effectively detect hemorrhages in fundus images, and it is stable and robust. As a result, the approach can meet the clinical demands.

  16. Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML)

    PubMed Central

    Lechevalier, D.; Ak, R.; Ferguson, M.; Law, K. H.; Lee, Y.-T. T.; Rachuri, S.

    2017-01-01

    This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain. PMID:29202125

  17. Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML).

    PubMed

    Park, J; Lechevalier, D; Ak, R; Ferguson, M; Law, K H; Lee, Y-T T; Rachuri, S

    2017-01-01

    This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain.

  18. A l% and 1cm Perspective Leads to a Novel CDOM Absorption Algorithm

    NASA Technical Reports Server (NTRS)

    Morrow, J. H.; Hooker, S. B.; Matsuoka, A.

    2012-01-01

    A next-generation in-water profiler designed to measure the apparent optical properties of seawater was developed and validated across a wide dynamic range of water properties. This new Compact-Optical Profiling System (C-OPS) design uses a novel, kite-shaped, free-falling backplane with adjustable buoyancy and is based on 19 state-of-the-art microradiometers, spanning 320-780 nm. Data collected as part of the field commissioning were of a previously unachievable quality and showed that systematic uncertainties in the sampling protocols were discernible at the 1% optical and 1cm depth resolution levels. A sensitivity analysis as a function of three water types, established by the peak in the remote sensing reflectance spectra, revealed which water types and spectral domains were the most indicative of data acquisition uncertainties. The unprecedented vertical resolution of C-OPS measurements provided near-surface data products at the spectral endpoints with a quality level that has not been obtainable. The improved data allowed development of an algorithm for predicting the spectral absorption due to chromophoric dissolved organic matter (CDOM) using ratios of diffuse attenuation coefficients with over 99% of the variance in the data explained.

  19. The QKD network: model and routing scheme

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zhang, Hongqi; Su, Jinhai

    2017-11-01

    Quantum key distribution (QKD) technology can establish unconditional secure keys between two communicating parties. Although this technology has some inherent constraints, such as the distance and point-to-point mode limits, building a QKD network with multiple point-to-point QKD devices can overcome these constraints. Considering the development level of current technology, the trust relaying QKD network is the first choice to build a practical QKD network. However, the previous research didn't address a routing method on the trust relaying QKD network in detail. This paper focuses on the routing issues, builds a model of the trust relaying QKD network for easily analysing and understanding this network, and proposes a dynamical routing scheme for this network. From the viewpoint of designing a dynamical routing scheme in classical network, the proposed scheme consists of three components: a Hello protocol helping share the network topology information, a routing algorithm to select a set of suitable paths and establish the routing table and a link state update mechanism helping keep the routing table newly. Experiments and evaluation demonstrates the validity and effectiveness of the proposed routing scheme.

  20. Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed

    NASA Technical Reports Server (NTRS)

    Tian, Ye; Song, Qi; Cattafesta, Louis

    2005-01-01

    This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.

  1. Boosting with Averaged Weight Vectors

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the previous base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. Some researchers have pointed out the intuition that it is probably better to construct a distribution that is orthogonal to the mistake vectors of all the previous base models, but that this is not always possible. We present an algorithm that attempts to come as close as possible to this goal in an efficient manner. We present experimental results demonstrating significant improvement over AdaBoost and the Totally Corrective boosting algorithm, which also attempts to satisfy this goal.

  2. Predictive Cache Modeling and Analysis

    DTIC Science & Technology

    2011-11-01

    metaheuristic /bin-packing algorithm to optimize task placement based on task communication characterization. Our previous work on task allocation showed...Cache Miss Minimization Technology To efficiently explore combinations and discover nearly-optimal task-assignment algorithms , we extended to our...it was possible to use our algorithmic techniques to decrease network bandwidth consumption by ~25%. In this effort, we adapted these existing

  3. An efficient identification approach for stable and unstable nonlinear systems using Colliding Bodies Optimization algorithm.

    PubMed

    Pal, Partha S; Kar, R; Mandal, D; Ghoshal, S P

    2015-11-01

    This paper presents an efficient approach to identify different stable and practically useful Hammerstein models as well as unstable nonlinear process along with its stable closed loop counterpart with the help of an evolutionary algorithm as Colliding Bodies Optimization (CBO) optimization algorithm. The performance measures of the CBO based optimization approach such as precision, accuracy are justified with the minimum output mean square value (MSE) which signifies that the amount of bias and variance in the output domain are also the least. It is also observed that the optimization of output MSE in the presence of outliers has resulted in a very close estimation of the output parameters consistently, which also justifies the effective general applicability of the CBO algorithm towards the system identification problem and also establishes the practical usefulness of the applied approach. Optimum values of the MSEs, computational times and statistical information of the MSEs are all found to be the superior as compared with those of the other existing similar types of stochastic algorithms based approaches reported in different recent literature, which establish the robustness and efficiency of the applied CBO based identification scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Investigation of optical current transformer signal processing method based on an improved Kalman algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Ge, Jin-ming; Zhang, Guo-qing; Yu, Wen-bin; Liu, Rui-tong; Fan, Wei; Yang, Ying-xuan

    2018-01-01

    This paper explores the problem of signal processing in optical current transformers (OCTs). Based on the noise characteristics of OCTs, such as overlapping signals, noise frequency bands, low signal-to-noise ratios, and difficulties in acquiring statistical features of noise power, an improved standard Kalman filtering algorithm was proposed for direct current (DC) signal processing. The state-space model of the OCT DC measurement system is first established, and then mixed noise can be processed by adding mixed noise into measurement and state parameters. According to the minimum mean squared error criterion, state predictions and update equations of the improved Kalman algorithm could be deduced based on the established model. An improved central difference Kalman filter was proposed for alternating current (AC) signal processing, which improved the sampling strategy and noise processing of colored noise. Real-time estimation and correction of noise were achieved by designing AC and DC noise recursive filters. Experimental results show that the improved signal processing algorithms had a good filtering effect on the AC and DC signals with mixed noise of OCT. Furthermore, the proposed algorithm was able to achieve real-time correction of noise during the OCT filtering process.

  5. [Clinical study using activity-based costing to assess cost-effectiveness of a wound management system utilizing modern dressings in comparison with traditional wound care].

    PubMed

    Ohura, Takehiko; Sanada, Hiromi; Mino, Yoshio

    2004-01-01

    In recent years, the concept of cost-effectiveness, including medical delivery and health service fee systems, has become widespread in Japanese health care. In the field of pressure ulcer management, the recent introduction of penalty subtraction in the care fee system emphasizes the need for prevention and cost-effective care of pressure ulcer. Previous cost-effectiveness research on pressure ulcer management tended to focus only on "hardware" costs such as those for pharmaceuticals and medical supplies, while neglecting other cost aspects, particularly those involving the cost of labor. Thus, cost-effectiveness in pressure ulcer care has not yet been fully established. To provide true cost effectiveness data, a comparative prospective study was initiated in patients with stage II and III pressure ulcers. Considering the potential impact of the pressure reduction mattress on clinical outcome, in particular, the same type of pressure reduction mattresses are utilized in all the cases in the study. The cost analysis method used was Activity-Based Costing, which measures material and labor cost aspects on a daily basis. A reduction in the Pressure Sore Status Tool (PSST) score was used to measure clinical effectiveness. Patients were divided into three groups based on the treatment method and on the use of a consistent algorithm of wound care: 1. MC/A group, modern dressings with a treatment algorithm (control cohort). 2. TC/A group, traditional care (ointment and gauze) with a treatment algorithm. 3. TC/NA group, traditional care (ointment and gauze) without a treatment algorithm. The results revealed that MC/A is more cost-effective than both TC/A and TC/NA. This suggests that appropriate utilization of modern dressing materials and a pressure ulcer care algorithm would contribute to reducing health care costs, improved clinical results, and, ultimately, greater cost-effectiveness.

  6. Parameter optimization of the QUAL2K model for a multiple-reach river using an influence coefficient algorithm.

    PubMed

    Cho, Jae Heon; Ha, Sung Ryong

    2010-03-15

    An influence coefficient algorithm and a genetic algorithm (GA) were introduced to develop an automatic calibration model for QUAL2K, the latest version of the QUAL2E river and stream water-quality model. The influence coefficient algorithm was used for the parameter optimization in unsteady state, open channel flow. The GA, used in solving the optimization problem, is very simple and comprehensible yet still applicable to any complicated mathematical problem, where it can find the global-optimum solution quickly and effectively. The previously established model QUAL2Kw was used for the automatic calibration of the QUAL2K. The parameter-optimization method using the influence coefficient and genetic algorithm (POMIG) developed in this study and QUAL2Kw were each applied to the Gangneung Namdaecheon River, which has multiple reaches, and the results of the two models were compared. In the modeling, the river reach was divided into two parts based on considerations of the water quality and hydraulic characteristics. The calibration results by POMIG showed a good correspondence between the calculated and observed values for most of water-quality variables. In the application of POMIG and QUAL2Kw, relatively large errors were generated between the observed and predicted values in the case of the dissolved oxygen (DO) and chlorophyll-a (Chl-a) in the lowest part of the river; therefore, two weighting factors (1 and 5) were applied for DO and Chl-a in the lower river. The sums of the errors for DO and Chl-a with a weighting factor of 5 were slightly lower compared with the application of a factor of 1. However, with a weighting factor of 5 the sums of errors for other water-quality variables were slightly increased in comparison to the case with a factor of 1. Generally, the results of the POMIG were slightly better than those of the QUAL2Kw.

  7. Hybrid algorithms for fuzzy reverse supply chain network design.

    PubMed

    Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.

  8. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    PubMed Central

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  9. Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data.

    PubMed

    Kroenke, Candyce H; Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J

    2016-03-01

    The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women's Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms-one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV-using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this "triangulation." Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography

    PubMed Central

    Tweedell, Andrew J.; Haynes, Courtney A.

    2017-01-01

    The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60–90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity. PMID:28489897

  11. Optimizing the Learning Order of Chinese Characters Using a Novel Topological Sort Algorithm

    PubMed Central

    Wang, Jinzhao

    2016-01-01

    We present a novel algorithm for optimizing the order in which Chinese characters are learned, one that incorporates the benefits of learning them in order of usage frequency and in order of their hierarchal structural relationships. We show that our work outperforms previously published orders and algorithms. Our algorithm is applicable to any scheduling task where nodes have intrinsic differences in importance and must be visited in topological order. PMID:27706234

  12. Tail Biting Trellis Representation of Codes: Decoding and Construction

    NASA Technical Reports Server (NTRS)

    Shao. Rose Y.; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents two new iterative algorithms for decoding linear codes based on their tail biting trellises, one is unidirectional and the other is bidirectional. Both algorithms are computationally efficient and achieves virtually optimum error performance with a small number of decoding iterations. They outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding delay. Also presented in the paper is a method for constructing tail biting trellises for linear block codes.

  13. Combined Dust Detection Algorithm by Using MODIS Infrared Channels over East Asia

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Jaehwa; Lee, Sukjo; Kim, Jeong Soo; Chang, Lim Seok; Ou, Steve

    2014-01-01

    A new dust detection algorithm is developed by combining the results of multiple dust detectionmethods using IR channels onboard the MODerate resolution Imaging Spectroradiometer (MODIS). Brightness Temperature Difference (BTD) between two wavelength channels has been used widely in previous dust detection methods. However, BTDmethods have limitations in identifying the offset values of the BTDto discriminate clear-sky areas. The current algorithm overcomes the disadvantages of previous dust detection methods by considering the Brightness Temperature Ratio (BTR) values of the dual wavelength channels with 30-day composite, the optical properties of the dust particles, the variability of surface properties, and the cloud contamination. Therefore, the current algorithm shows improvements in detecting the dust loaded region over land during daytime. Finally, the confidence index of the current dust algorithm is shown in 10 × 10 pixels of the MODIS observations. From January to June, 2006, the results of the current algorithm are within 64 to 81% of those found using the fine mode fraction (FMF) and aerosol index (AI) from the MODIS and Ozone Monitoring Instrument (OMI). The agreement between the results of the current algorithm and the OMI AI over the non-polluted land also ranges from 60 to 67% to avoid errors due to the anthropogenic aerosol. In addition, the developed algorithm shows statistically significant results at four AErosol RObotic NETwork (AERONET) sites in East Asia.

  14. An Algorithm for Timely Transmission of Solicitation Messages in RPL for Energy-Efficient Node Mobility.

    PubMed

    Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok

    2017-04-19

    The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms.

  15. An Algorithm for Timely Transmission of Solicitation Messages in RPL for Energy-Efficient Node Mobility

    PubMed Central

    Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok

    2017-01-01

    The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms. PMID:28422084

  16. Multi-scale graph-cut algorithm for efficient water-fat separation.

    PubMed

    Berglund, Johan; Skorpil, Mikael

    2017-09-01

    To improve the accuracy and robustness to noise in water-fat separation by unifying the multiscale and graph cut based approaches to B 0 -correction. A previously proposed water-fat separation algorithm that corrects for B 0 field inhomogeneity in 3D by a single quadratic pseudo-Boolean optimization (QPBO) graph cut was incorporated into a multi-scale framework, where field map solutions are propagated from coarse to fine scales for voxels that are not resolved by the graph cut. The accuracy of the single-scale and multi-scale QPBO algorithms was evaluated against benchmark reference datasets. The robustness to noise was evaluated by adding noise to the input data prior to water-fat separation. Both algorithms achieved the highest accuracy when compared with seven previously published methods, while computation times were acceptable for implementation in clinical routine. The multi-scale algorithm was more robust to noise than the single-scale algorithm, while causing only a small increase (+10%) of the reconstruction time. The proposed 3D multi-scale QPBO algorithm offers accurate water-fat separation, robustness to noise, and fast reconstruction. The software implementation is freely available to the research community. Magn Reson Med 78:941-949, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Is it worth changing pattern recognition methods for structural health monitoring?

    NASA Astrophysics Data System (ADS)

    Bull, L. A.; Worden, K.; Cross, E. J.; Dervilis, N.

    2017-05-01

    The key element of this work is to demonstrate alternative strategies for using pattern recognition algorithms whilst investigating structural health monitoring. This paper looks to determine if it makes any difference in choosing from a range of established classification techniques: from decision trees and support vector machines, to Gaussian processes. Classification algorithms are tested on adjustable synthetic data to establish performance metrics, then all techniques are applied to real SHM data. To aid the selection of training data, an informative chain of artificial intelligence tools is used to explore an active learning interaction between meaningful clusters of data.

  18. Research on Vehicle-Based Driver Status/Performance Monitoring, Part III

    DOT National Transportation Integrated Search

    1996-09-01

    A driver drowsiness detection/alarm/countermeasures system was specified, tested and evaluated, resulting in the development of revised algorithms for the detection of driver drowsiness. Previous algorithms were examined in a test and evaluation stud...

  19. Research On Vehicle-Based Driver Status/Performance Monitoring, Part I

    DOT National Transportation Integrated Search

    1996-09-01

    A driver drowsiness detection/alarm/countermeasures system was specified, tested and evaluated, resulting in the development of revised algorithms for the detection of driver drowsiness. Previous algorithms were examined in a test and evaluation stud...

  20. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.

    PubMed

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.

  1. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models

    PubMed Central

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)β k ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409

  2. A different Deutsch-Jozsa

    NASA Astrophysics Data System (ADS)

    Bera, Debajyoti

    2015-06-01

    One of the early achievements of quantum computing was demonstrated by Deutsch and Jozsa (Proc R Soc Lond A Math Phys Sci 439(1907):553, 1992) regarding classification of a particular type of Boolean functions. Their solution demonstrated an exponential speedup compared to classical approaches to the same problem; however, their solution was the only known quantum algorithm for that specific problem so far. This paper demonstrates another quantum algorithm for the same problem, with the same exponential advantage compared to classical algorithms. The novelty of this algorithm is the use of quantum amplitude amplification, a technique that is the key component of another celebrated quantum algorithm developed by Grover (Proceedings of the twenty-eighth annual ACM symposium on theory of computing, ACM Press, New York, 1996). A lower bound for randomized (classical) algorithms is also presented which establishes a sound gap between the effectiveness of our quantum algorithm and that of any randomized algorithm with similar efficiency.

  3. A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models

    NASA Astrophysics Data System (ADS)

    Li, Qia; Micchelli, Charles A.; Shen, Lixin; Xu, Yuesheng

    2012-09-01

    Our goal in this paper is to improve the computational performance of the proximity algorithms for the L1/TV denoising model. This leads us to a new characterization of all solutions to the L1/TV model via fixed-point equations expressed in terms of the proximity operators. Based upon this observation we develop an algorithm for solving the model and establish its convergence. Furthermore, we demonstrate that the proposed algorithm can be accelerated through the use of the componentwise Gauss-Seidel iteration so that the CPU time consumed is significantly reduced. Numerical experiments using the proposed algorithm for impulsive noise removal are included, with a comparison to three recently developed algorithms. The numerical results show that while the proposed algorithm enjoys a high quality of the restored images, as the other three known algorithms do, it performs significantly better in terms of computational efficiency measured in the CPU time consumed.

  4. Privacy Preservation in Distributed Subgradient Optimization Algorithms.

    PubMed

    Lou, Youcheng; Yu, Lean; Wang, Shouyang; Yi, Peng

    2017-07-31

    In this paper, some privacy-preserving features for distributed subgradient optimization algorithms are considered. Most of the existing distributed algorithms focus mainly on the algorithm design and convergence analysis, but not the protection of agents' privacy. Privacy is becoming an increasingly important issue in applications involving sensitive information. In this paper, we first show that the distributed subgradient synchronous homogeneous-stepsize algorithm is not privacy preserving in the sense that the malicious agent can asymptotically discover other agents' subgradients by transmitting untrue estimates to its neighbors. Then a distributed subgradient asynchronous heterogeneous-stepsize projection algorithm is proposed and accordingly its convergence and optimality is established. In contrast to the synchronous homogeneous-stepsize algorithm, in the new algorithm agents make their optimization updates asynchronously with heterogeneous stepsizes. The introduced two mechanisms of projection operation and asynchronous heterogeneous-stepsize optimization can guarantee that agents' privacy can be effectively protected.

  5. Optimal cost design of water distribution networks using a decomposition approach

    NASA Astrophysics Data System (ADS)

    Lee, Ho Min; Yoo, Do Guen; Sadollah, Ali; Kim, Joong Hoon

    2016-12-01

    Water distribution network decomposition, which is an engineering approach, is adopted to increase the efficiency of obtaining the optimal cost design of a water distribution network using an optimization algorithm. This study applied the source tracing tool in EPANET, which is a hydraulic and water quality analysis model, to the decomposition of a network to improve the efficiency of the optimal design process. The proposed approach was tested by carrying out the optimal cost design of two water distribution networks, and the results were compared with other optimal cost designs derived from previously proposed optimization algorithms. The proposed decomposition approach using the source tracing technique enables the efficient decomposition of an actual large-scale network, and the results can be combined with the optimal cost design process using an optimization algorithm. This proves that the final design in this study is better than those obtained with other previously proposed optimization algorithms.

  6. Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions

    PubMed Central

    Patwary, Nurmohammed; Preza, Chrysanthe

    2015-01-01

    A depth-variant (DV) image restoration algorithm for wide field fluorescence microscopy, using an orthonormal basis decomposition of DV point-spread functions (PSFs), is investigated in this study. The efficient PSF representation is based on a previously developed principal component analysis (PCA), which is computationally intensive. We present an approach developed to reduce the number of DV PSFs required for the PCA computation, thereby making the PCA-based approach computationally tractable for thick samples. Restoration results from both synthetic and experimental images show consistency and that the proposed algorithm addresses efficiently depth-induced aberration using a small number of principal components. Comparison of the PCA-based algorithm with a previously-developed strata-based DV restoration algorithm demonstrates that the proposed method improves performance by 50% in terms of accuracy and simultaneously reduces the processing time by 64% using comparable computational resources. PMID:26504634

  7. Analysis of modal behavior at frequency cross-over

    NASA Astrophysics Data System (ADS)

    Costa, Robert N., Jr.

    1994-11-01

    The existence of the mode crossing condition is detected and analyzed in the Active Control of Space Structures Model 4 (ACOSS4). The condition is studied for its contribution to the inability of previous algorithms to successfully optimize the structure and converge to a feasible solution. A new algorithm is developed to detect and correct for mode crossings. The existence of the mode crossing condition is verified in ACOSS4 and found not to have appreciably affected the solution. The structure is then successfully optimized using new analytic methods based on modal expansion. An unrelated error in the optimization algorithm previously used is verified and corrected, thereby equipping the optimization algorithm with a second analytic method for eigenvector differentiation based on Nelson's Method. The second structure is the Control of Flexible Structures (COFS). The COFS structure is successfully reproduced and an initial eigenanalysis completed.

  8. Blind prediction of noncanonical RNA structure at atomic accuracy.

    PubMed

    Watkins, Andrew M; Geniesse, Caleb; Kladwang, Wipapat; Zakrevsky, Paul; Jaeger, Luc; Das, Rhiju

    2018-05-01

    Prediction of RNA structure from nucleotide sequence remains an unsolved grand challenge of biochemistry and requires distinct concepts from protein structure prediction. Despite extensive algorithmic development in recent years, modeling of noncanonical base pairs of new RNA structural motifs has not been achieved in blind challenges. We report a stepwise Monte Carlo (SWM) method with a unique add-and-delete move set that enables predictions of noncanonical base pairs of complex RNA structures. A benchmark of 82 diverse motifs establishes the method's general ability to recover noncanonical pairs ab initio, including multistrand motifs that have been refractory to prior approaches. In a blind challenge, SWM models predicted nucleotide-resolution chemical mapping and compensatory mutagenesis experiments for three in vitro selected tetraloop/receptors with previously unsolved structures (C7.2, C7.10, and R1). As a final test, SWM blindly and correctly predicted all noncanonical pairs of a Zika virus double pseudoknot during a recent community-wide RNA-Puzzle. Stepwise structure formation, as encoded in the SWM method, enables modeling of noncanonical RNA structure in a variety of previously intractable problems.

  9. An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis.

    PubMed

    Varela, J A; Vázquez, S A; Martínez-Núñez, E

    2017-05-01

    A novel computational method is proposed in this work for use in discovering reaction mechanisms and solving the kinetics of transition metal-catalyzed reactions. The method does not rely on either chemical intuition or assumed a priori mechanisms, and it works in a fully automated fashion. Its core is a procedure, recently developed by one of the authors, that combines accelerated direct dynamics with an efficient geometry-based post-processing algorithm to find transition states (Martinez-Nunez, E., J. Comput. Chem. 2015 , 36 , 222-234). In the present work, several auxiliary tools have been added to deal with the specific features of transition metal catalytic reactions. As a test case, we chose the cobalt-catalyzed hydroformylation of ethylene because of its well-established mechanism, and the fact that it has already been used in previous automated computational studies. Besides the generally accepted mechanism of Heck and Breslow, several side reactions, such as hydrogenation of the alkene, emerged from our calculations. Additionally, the calculated rate law for the hydroformylation reaction agrees reasonably well with those obtained in previous experimental and theoretical studies.

  10. Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1989-01-01

    The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.

  11. A VLSI architecture for simplified arithmetic Fourier transform algorithm

    NASA Technical Reports Server (NTRS)

    Reed, Irving S.; Shih, Ming-Tang; Truong, T. K.; Hendon, E.; Tufts, D. W.

    1992-01-01

    The arithmetic Fourier transform (AFT) is a number-theoretic approach to Fourier analysis which has been shown to perform competitively with the classical FFT in terms of accuracy, complexity, and speed. Theorems developed in a previous paper for the AFT algorithm are used here to derive the original AFT algorithm which Bruns found in 1903. This is shown to yield an algorithm of less complexity and of improved performance over certain recent AFT algorithms. A VLSI architecture is suggested for this simplified AFT algorithm. This architecture uses a butterfly structure which reduces the number of additions by 25 percent of that used in the direct method.

  12. An advancing front Delaunay triangulation algorithm designed for robustness

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field.

  13. A comparison between physicians and computer algorithms for form CMS-2728 data reporting.

    PubMed

    Malas, Mohammed Said; Wish, Jay; Moorthi, Ranjani; Grannis, Shaun; Dexter, Paul; Duke, Jon; Moe, Sharon

    2017-01-01

    CMS-2728 form (Medical Evidence Report) assesses 23 comorbidities chosen to reflect poor outcomes and increased mortality risk. Previous studies questioned the validity of physician reporting on forms CMS-2728. We hypothesize that reporting of comorbidities by computer algorithms identifies more comorbidities than physician completion, and, therefore, is more reflective of underlying disease burden. We collected data from CMS-2728 forms for all 296 patients who had incident ESRD diagnosis and received chronic dialysis from 2005 through 2014 at Indiana University outpatient dialysis centers. We analyzed patients' data from electronic medical records systems that collated information from multiple health care sources. Previously utilized algorithms or natural language processing was used to extract data on 10 comorbidities for a period of up to 10 years prior to ESRD incidence. These algorithms incorporate billing codes, prescriptions, and other relevant elements. We compared the presence or unchecked status of these comorbidities on the forms to the presence or absence according to the algorithms. Computer algorithms had higher reporting of comorbidities compared to forms completion by physicians. This remained true when decreasing data span to one year and using only a single health center source. The algorithms determination was well accepted by a physician panel. Importantly, algorithms use significantly increased the expected deaths and lowered the standardized mortality ratios. Using computer algorithms showed superior identification of comorbidities for form CMS-2728 and altered standardized mortality ratios. Adapting similar algorithms in available EMR systems may offer more thorough evaluation of comorbidities and improve quality reporting. © 2016 International Society for Hemodialysis.

  14. An administrative data validation study of the accuracy of algorithms for identifying rheumatoid arthritis: the influence of the reference standard on algorithm performance.

    PubMed

    Widdifield, Jessica; Bombardier, Claire; Bernatsky, Sasha; Paterson, J Michael; Green, Diane; Young, Jacqueline; Ivers, Noah; Butt, Debra A; Jaakkimainen, R Liisa; Thorne, J Carter; Tu, Karen

    2014-06-23

    We have previously validated administrative data algorithms to identify patients with rheumatoid arthritis (RA) using rheumatology clinic records as the reference standard. Here we reassessed the accuracy of the algorithms using primary care records as the reference standard. We performed a retrospective chart abstraction study using a random sample of 7500 adult patients under the care of 83 family physicians contributing to the Electronic Medical Record Administrative data Linked Database (EMRALD) in Ontario, Canada. Using physician-reported diagnoses as the reference standard, we computed and compared the sensitivity, specificity, and predictive values for over 100 administrative data algorithms for RA case ascertainment. We identified 69 patients with RA for a lifetime RA prevalence of 0.9%. All algorithms had excellent specificity (>97%). However, sensitivity varied (75-90%) among physician billing algorithms. Despite the low prevalence of RA, most algorithms had adequate positive predictive value (PPV; 51-83%). The algorithm of "[1 hospitalization RA diagnosis code] or [3 physician RA diagnosis codes with ≥1 by a specialist over 2 years]" had a sensitivity of 78% (95% CI 69-88), specificity of 100% (95% CI 100-100), PPV of 78% (95% CI 69-88) and NPV of 100% (95% CI 100-100). Administrative data algorithms for detecting RA patients achieved a high degree of accuracy amongst the general population. However, results varied slightly from our previous report, which can be attributed to differences in the reference standards with respect to disease prevalence, spectrum of disease, and type of comparator group.

  15. An improved semi-implicit method for structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Park, K. C.

    1982-01-01

    A semi-implicit algorithm is presented for direct time integration of the structural dynamics equations. The algorithm avoids the factoring of the implicit difference solution matrix and mitigates the unacceptable accuracy losses which plagued previous semi-implicit algorithms. This substantial accuracy improvement is achieved by augmenting the solution matrix with two simple diagonal matrices of the order of the integration truncation error.

  16. Symmetry compression method for discovering network motifs.

    PubMed

    Wang, Jianxin; Huang, Yuannan; Wu, Fang-Xiang; Pan, Yi

    2012-01-01

    Discovering network motifs could provide a significant insight into systems biology. Interestingly, many biological networks have been found to have a high degree of symmetry (automorphism), which is inherent in biological network topologies. The symmetry due to the large number of basic symmetric subgraphs (BSSs) causes a certain redundant calculation in discovering network motifs. Therefore, we compress all basic symmetric subgraphs before extracting compressed subgraphs and propose an efficient decompression algorithm to decompress all compressed subgraphs without loss of any information. In contrast to previous approaches, the novel Symmetry Compression method for Motif Detection, named as SCMD, eliminates most redundant calculations caused by widespread symmetry of biological networks. We use SCMD to improve three notable exact algorithms and two efficient sampling algorithms. Results of all exact algorithms with SCMD are the same as those of the original algorithms, since SCMD is a lossless method. The sampling results show that the use of SCMD almost does not affect the quality of sampling results. For highly symmetric networks, we find that SCMD used in both exact and sampling algorithms can help get a remarkable speedup. Furthermore, SCMD enables us to find larger motifs in biological networks with notable symmetry than previously possible.

  17. Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.

    PubMed

    Huson, Daniel H; Linz, Simone

    2018-01-01

    A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.

  18. Preliminary application of a novel algorithm to monitor changes in pre-flight total peripheral resistance for prediction of post-flight orthostatic intolerance in astronauts

    NASA Astrophysics Data System (ADS)

    Arai, Tatsuya; Lee, Kichang; Stenger, Michael B.; Platts, Steven H.; Meck, Janice V.; Cohen, Richard J.

    2011-04-01

    Orthostatic intolerance (OI) is a significant challenge for astronauts after long-duration spaceflight. Depending on flight duration, 20-80% of astronauts suffer from post-flight OI, which is associated with reduced vascular resistance. This paper introduces a novel algorithm for continuously monitoring changes in total peripheral resistance (TPR) by processing the peripheral arterial blood pressure (ABP). To validate, we applied our novel mathematical algorithm to the pre-flight ABP data previously recorded from twelve astronauts ten days before launch. The TPR changes were calculated by our algorithm and compared with the TPR value estimated using cardiac output/heart rate before and after phenylephrine administration. The astronauts in the post-flight presyncopal group had lower pre-flight TPR changes (1.66 times) than those in the non-presyncopal group (2.15 times). The trend in TPR changes calculated with our algorithm agreed with the TPR trend calculated using measured cardiac output in the previous study. Further data collection and algorithm refinement are needed for pre-flight detection of OI and monitoring of continuous TPR by analysis of peripheral arterial blood pressure.

  19. An efficient algorithm for function optimization: modified stem cells algorithm

    NASA Astrophysics Data System (ADS)

    Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad Hadi

    2013-03-01

    In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).

  20. A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency.

    PubMed

    Jiang, Junfeng; Wang, Shaohua; Liu, Tiegen; Liu, Kun; Yin, Jinde; Meng, Xiange; Zhang, Yimo; Wang, Shuang; Qin, Zunqi; Wu, Fan; Li, Dingjie

    2012-07-30

    A demodulation algorithm based on absolute phase recovery of a selected monochromatic frequency is proposed for optical fiber Fabry-Perot pressure sensing system. The algorithm uses Fourier transform to get the relative phase and intercept of the unwrapped phase-frequency linear fit curve to identify its interference-order, which are then used to recover the absolute phase. A simplified mathematical model of the polarized low-coherence interference fringes was established to illustrate the principle of the proposed algorithm. Phase unwrapping and the selection of monochromatic frequency were discussed in detail. Pressure measurement experiment was carried out to verify the effectiveness of the proposed algorithm. Results showed that the demodulation precision by our algorithm could reach up to 0.15kPa, which has been improved by 13 times comparing with phase slope based algorithm.

  1. Uplink transmit beamforming design for SINR maximization with full multiuser channel state information

    NASA Astrophysics Data System (ADS)

    Xi, Songnan; Zoltowski, Michael D.

    2008-04-01

    Multiuser multiple-input multiple-output (MIMO) systems are considered in this paper. We continue our research on uplink transmit beamforming design for multiple users under the assumption that the full multiuser channel state information, which is the collection of the channel state information between each of the users and the base station, is known not only to the receiver but also to all the transmitters. We propose an algorithm for designing optimal beamforming weights in terms of maximizing the signal-to-interference-plus-noise ratio (SINR). Through statistical modeling, we decouple the original mathematically intractable optimization problem and achieved a closed-form solution. As in our previous work, the minimum mean-squared error (MMSE) receiver with successive interference cancellation (SIC) is adopted for multiuser detection. The proposed scheme is compared with an existing jointly optimized transceiver design, referred to as the joint transceiver in this paper, and our previously proposed eigen-beamforming algorithm. Simulation results demonstrate that our algorithm, with much less computational burden, accomplishes almost the same performance as the joint transceiver for spatially independent MIMO channel and even better performance for spatially correlated MIMO channels. And it always works better than our previously proposed eigen beamforming algorithm.

  2. The performance of monotonic and new non-monotonic gradient ascent reconstruction algorithms for high-resolution neuroreceptor PET imaging.

    PubMed

    Angelis, G I; Reader, A J; Kotasidis, F A; Lionheart, W R; Matthews, J C

    2011-07-07

    Iterative expectation maximization (EM) techniques have been extensively used to solve maximum likelihood (ML) problems in positron emission tomography (PET) image reconstruction. Although EM methods offer a robust approach to solving ML problems, they usually suffer from slow convergence rates. The ordered subsets EM (OSEM) algorithm provides significant improvements in the convergence rate, but it can cycle between estimates converging towards the ML solution of each subset. In contrast, gradient-based methods, such as the recently proposed non-monotonic maximum likelihood (NMML) and the more established preconditioned conjugate gradient (PCG), offer a globally convergent, yet equally fast, alternative to OSEM. Reported results showed that NMML provides faster convergence compared to OSEM; however, it has never been compared to other fast gradient-based methods, like PCG. Therefore, in this work we evaluate the performance of two gradient-based methods (NMML and PCG) and investigate their potential as an alternative to the fast and widely used OSEM. All algorithms were evaluated using 2D simulations, as well as a single [(11)C]DASB clinical brain dataset. Results on simulated 2D data show that both PCG and NMML achieve orders of magnitude faster convergence to the ML solution compared to MLEM and exhibit comparable performance to OSEM. Equally fast performance is observed between OSEM and PCG for clinical 3D data, but NMML seems to perform poorly. However, with the addition of a preconditioner term to the gradient direction, the convergence behaviour of NMML can be substantially improved. Although PCG is a fast convergent algorithm, the use of a (bent) line search increases the complexity of the implementation, as well as the computational time involved per iteration. Contrary to previous reports, NMML offers no clear advantage over OSEM or PCG, for noisy PET data. Therefore, we conclude that there is little evidence to replace OSEM as the algorithm of choice for many applications, especially given that in practice convergence is often not desired for algorithms seeking ML estimates.

  3. A plant cell division algorithm based on cell biomechanics and ellipse-fitting

    PubMed Central

    Abera, Metadel K.; Verboven, Pieter; Defraeye, Thijs; Fanta, Solomon Workneh; Hertog, Maarten L. A. T. M.; Carmeliet, Jan; Nicolai, Bart M.

    2014-01-01

    Background and Aims The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. Methods The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. Key Results The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. Conclusions The algorithm presented can produce different tissues varying in topological and geometrical properties. This flexibility to produce different tissue types gives the model great potential for use in investigations of plant cell division and growth in silico. PMID:24863687

  4. Technical Note: A novel leaf sequencing optimization algorithm which considers previous underdose and overdose events for MLC tracking radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisotzky, Eric, E-mail: eric.wisotzky@charite.de, E-mail: eric.wisotzky@ipk.fraunhofer.de; O’Brien, Ricky; Keall, Paul J., E-mail: paul.keall@sydney.edu.au

    2016-01-15

    Purpose: Multileaf collimator (MLC) tracking radiotherapy is complex as the beam pattern needs to be modified due to the planned intensity modulation as well as the real-time target motion. The target motion cannot be planned; therefore, the modified beam pattern differs from the original plan and the MLC sequence needs to be recomputed online. Current MLC tracking algorithms use a greedy heuristic in that they optimize for a given time, but ignore past errors. To overcome this problem, the authors have developed and improved an algorithm that minimizes large underdose and overdose regions. Additionally, previous underdose and overdose events aremore » taken into account to avoid regions with high quantity of dose events. Methods: The authors improved the existing MLC motion control algorithm by introducing a cumulative underdose/overdose map. This map represents the actual projection of the planned tumor shape and logs occurring dose events at each specific regions. These events have an impact on the dose cost calculation and reduce recurrence of dose events at each region. The authors studied the improvement of the new temporal optimization algorithm in terms of the L1-norm minimization of the sum of overdose and underdose compared to not accounting for previous dose events. For evaluation, the authors simulated the delivery of 5 conformal and 14 intensity-modulated radiotherapy (IMRT)-plans with 7 3D patient measured tumor motion traces. Results: Simulations with conformal shapes showed an improvement of L1-norm up to 8.5% after 100 MLC modification steps. Experiments showed comparable improvements with the same type of treatment plans. Conclusions: A novel leaf sequencing optimization algorithm which considers previous dose events for MLC tracking radiotherapy has been developed and investigated. Reductions in underdose/overdose are observed for conformal and IMRT delivery.« less

  5. A structure preserving Lanczos algorithm for computing the optical absorption spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Meiyue; Jornada, Felipe H. da; Lin, Lin

    2016-11-16

    We present a new structure preserving Lanczos algorithm for approximating the optical absorption spectrum in the context of solving full Bethe-Salpeter equation without Tamm-Dancoff approximation. The new algorithm is based on a structure preserving Lanczos procedure, which exploits the special block structure of Bethe-Salpeter Hamiltonian matrices. A recently developed technique of generalized averaged Gauss quadrature is incorporated to accelerate the convergence. We also establish the connection between our structure preserving Lanczos procedure with several existing Lanczos procedures developed in different contexts. Numerical examples are presented to demonstrate the effectiveness of our Lanczos algorithm.

  6. Learning control system design based on 2-D theory - An application to parallel link manipulator

    NASA Technical Reports Server (NTRS)

    Geng, Z.; Carroll, R. L.; Lee, J. D.; Haynes, L. H.

    1990-01-01

    An approach to iterative learning control system design based on two-dimensional system theory is presented. A two-dimensional model for the iterative learning control system which reveals the connections between learning control systems and two-dimensional system theory is established. A learning control algorithm is proposed, and the convergence of learning using this algorithm is guaranteed by two-dimensional stability. The learning algorithm is applied successfully to the trajectory tracking control problem for a parallel link robot manipulator. The excellent performance of this learning algorithm is demonstrated by the computer simulation results.

  7. Procedure of Partitioning Data Into Number of Data Sets or Data Group - A Review

    NASA Astrophysics Data System (ADS)

    Kim, Tai-Hoon

    The goal of clustering is to decompose a dataset into similar groups based on a objective function. Some already well established clustering algorithms are there for data clustering. Objective of these data clustering algorithms are to divide the data points of the feature space into a number of groups (or classes) so that a predefined set of criteria are satisfied. The article considers the comparative study about the effectiveness and efficiency of traditional data clustering algorithms. For evaluating the performance of the clustering algorithms, Minkowski score is used here for different data sets.

  8. Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data

    PubMed Central

    Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J.

    2016-01-01

    Abstract Background: The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. Methods: We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women’s Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms—one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV—using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this “triangulation.” Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. Results: The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Conclusions: Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. PMID:26582243

  9. Probabilistic analysis algorithm for UA slope software program.

    DOT National Transportation Integrated Search

    2013-12-01

    A reliability-based computational algorithm for using a single row and equally spaced drilled shafts to : stabilize an unstable slope has been developed in this research. The Monte-Carlo simulation (MCS) : technique was used in the previously develop...

  10. A New Inversion-Based Algorithm for Retrieval of Over-Water Rain Rate from SSM/I Multichannel Imagery

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Stettner, David R.

    1994-01-01

    This paper discusses certain aspects of a new inversion based algorithm for the retrieval of rain rate over the open ocean from the special sensor microwave/imager (SSM/I) multichannel imagery. This algorithm takes a more detailed physical approach to the retrieval problem than previously discussed algorithms that perform explicit forward radiative transfer calculations based on detailed model hydrometer profiles and attempt to match the observations to the predicted brightness temperature.

  11. Affine Projection Algorithm with Improved Data-Selective Method Using the Condition Number

    NASA Astrophysics Data System (ADS)

    Ban, Sung Jun; Lee, Chang Woo; Kim, Sang Woo

    Recently, a data-selective method has been proposed to achieve low misalignment in affine projection algorithm (APA) by keeping the condition number of an input data matrix small. We present an improved method, and a complexity reduction algorithm for the APA with the data-selective method. Experimental results show that the proposed algorithm has lower misalignment and a lower condition number for an input data matrix than both the conventional APA and the APA with the previous data-selective method.

  12. A real-time simulation evaluation of an advanced detection. Isolation and accommodation algorithm for sensor failures in turbine engines

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Delaat, J. C.

    1986-01-01

    An advanced sensor failure detection, isolation, and accommodation (ADIA) algorithm has been developed for use with an aircraft turbofan engine control system. In a previous paper the authors described the ADIA algorithm and its real-time implementation. Subsequent improvements made to the algorithm and implementation are discussed, and the results of an evaluation presented. The evaluation used a real-time, hybrid computer simulation of an F100 turbofan engine.

  13. Smart Phase Tuning in Microwave Photonic Integrated Circuits Toward Automated Frequency Multiplication by Design

    NASA Astrophysics Data System (ADS)

    Nabavi, N.

    2018-07-01

    The author investigates the monitoring methods for fine adjustment of the previously proposed on-chip architecture for frequency multiplication and translation of harmonics by design. Digital signal processing (DSP) algorithms are utilized to create an optimized microwave photonic integrated circuit functionality toward automated frequency multiplication. The implemented DSP algorithms are formed on discrete Fourier transform and optimization-based algorithms (Greedy and gradient-based algorithms), which are analytically derived and numerically compared based on the accuracy and speed of convergence criteria.

  14. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity.

    PubMed

    Kim, Hui Kwon; Min, Seonwoo; Song, Myungjae; Jung, Soobin; Choi, Jae Woo; Kim, Younggwang; Lee, Sangeun; Yoon, Sungroh; Kim, Hyongbum Henry

    2018-03-01

    We present two algorithms to predict the activity of AsCpf1 guide RNAs. Indel frequencies for 15,000 target sequences were used in a deep-learning framework based on a convolutional neural network to train Seq-deepCpf1. We then incorporated chromatin accessibility information to create the better-performing DeepCpf1 algorithm for cell lines for which such information is available and show that both algorithms outperform previous machine learning algorithms on our own and published data sets.

  15. Development of sensor-based nitrogen recommendation algorithms for cereal crops

    NASA Astrophysics Data System (ADS)

    Asebedo, Antonio Ray

    Nitrogen (N) management is one of the most recognizable components of farming both within and outside the world of agriculture. Interest over the past decade has greatly increased in improving N management systems in corn (Zea mays) and winter wheat (Triticum aestivum ) to have high NUE, high yield, and be environmentally sustainable. Nine winter wheat experiments were conducted across seven locations from 2011 through 2013. The objectives of this study were to evaluate the impacts of fall-winter, Feekes 4, Feekes 7, and Feekes 9 N applications on winter wheat grain yield, grain protein, and total grain N uptake. Nitrogen treatments were applied as single or split applications in the fall-winter, and top-dressed in the spring at Feekes 4, Feekes 7, and Feekes 9 with applied N rates ranging from 0 to 134 kg ha-1. Results indicate that Feekes 7 and 9 N applications provide more optimal combinations of grain yield, grain protein levels, and fertilizer N recovered in the grain when compared to comparable rates of N applied in the fall-winter or at Feekes 4. Winter wheat N management studies from 2006 through 2013 were utilized to develop sensor-based N recommendation algorithms for winter wheat in Kansas. Algorithm RosieKat v.2.6 was designed for multiple N application strategies and utilized N reference strips for establishing N response potential. Algorithm NRS v1.5 addressed single top-dress N applications and does not require a N reference strip. In 2013, field validations of both algorithms were conducted at eight locations across Kansas. Results show algorithm RK v2.6 consistently provided highly efficient N recommendations for improving NUE, while achieving high grain yield and grain protein. Without the use of the N reference strip, NRS v1.5 performed statistically equal to the KSU soil test N recommendation in regards to grain yield but with lower applied N rates. Six corn N fertigation experiments were conducted at KSU irrigated experiment fields from 2012 through 2014 to evaluate the previously developed KSU sensor-based N recommendation algorithm in corn N fertigation systems. Results indicate that the current KSU corn algorithm was effective at achieving high yields, but has the tendency to overestimate N requirements. To optimize sensor-based N recommendations for N fertigation systems, algorithms must be specifically designed for these systems to take advantage of their full capabilities, thus allowing implementation of high NUE N management systems.

  16. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning.

    PubMed

    Abràmoff, Michael David; Lou, Yiyue; Erginay, Ali; Clarida, Warren; Amelon, Ryan; Folk, James C; Niemeijer, Meindert

    2016-10-01

    To compare performance of a deep-learning enhanced algorithm for automated detection of diabetic retinopathy (DR), to the previously published performance of that algorithm, the Iowa Detection Program (IDP)-without deep learning components-on the same publicly available set of fundus images and previously reported consensus reference standard set, by three US Board certified retinal specialists. We used the previously reported consensus reference standard of referable DR (rDR), defined as International Clinical Classification of Diabetic Retinopathy moderate, severe nonproliferative (NPDR), proliferative DR, and/or macular edema (ME). Neither Messidor-2 images, nor the three retinal specialists setting the Messidor-2 reference standard were used for training IDx-DR version X2.1. Sensitivity, specificity, negative predictive value, area under the curve (AUC), and their confidence intervals (CIs) were calculated. Sensitivity was 96.8% (95% CI: 93.3%-98.8%), specificity was 87.0% (95% CI: 84.2%-89.4%), with 6/874 false negatives, resulting in a negative predictive value of 99.0% (95% CI: 97.8%-99.6%). No cases of severe NPDR, PDR, or ME were missed. The AUC was 0.980 (95% CI: 0.968-0.992). Sensitivity was not statistically different from published IDP sensitivity, which had a CI of 94.4% to 99.3%, but specificity was significantly better than the published IDP specificity CI of 55.7% to 63.0%. A deep-learning enhanced algorithm for the automated detection of DR, achieves significantly better performance than a previously reported, otherwise essentially identical, algorithm that does not employ deep learning. Deep learning enhanced algorithms have the potential to improve the efficiency of DR screening, and thereby to prevent visual loss and blindness from this devastating disease.

  17. GOSAT CO2 retrieval results using TANSO-CAI aerosol information over East Asia

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, W.; Jung, Y.; Lee, S.; Kim, J.; Lee, H.; Boesch, H.; Goo, T. Y.

    2015-12-01

    In the satellite remote sensing of CO2, incorrect aerosol information could induce large errors as previous studies suggested. Many factors, such as, aerosol type, wavelength dependency of AOD, aerosol polarization effect and etc. have been main error sources. Due to these aerosol effects, large number of data retrieved are screened out in quality control, or retrieval errors tend to increase if not screened out, especially in East Asia where aerosol concentrations are fairly high. To reduce these aerosol induced errors, a CO2 retrieval algorithm using the simultaneous TANSO-CAI aerosol information is developed. This algorithm adopts AOD and aerosol type information as a priori information from the CAI aerosol retrieval algorithm. The CO2 retrieval algorithm based on optimal estimation method and VLIDORT, a vector discrete ordinate radiative transfer model. The CO2 algorithm, developed with various state vectors to find accurate CO2 concentration, shows reasonable results when compared with other dataset. This study concentrates on the validation of retrieved results with the ground-based TCCON measurements in East Asia and the comparison with the previous retrieval from ACOS, NIES, and UoL. Although, the retrieved CO2 concentration is lower than previous results by ppm's, it shows similar trend and high correlation with previous results. Retrieved data and TCCON measurements data are compared at three stations of Tsukuba, Saga, Anmyeondo in East Asia, with the collocation criteria of ±2°in latitude/longitude and ±1 hours of GOSAT passing time. Compared results also show similar trend with good correlation. Based on the TCCON comparison results, bias correction equation is calculated and applied to the East Asia data.

  18. Developments in the application of the geometrical theory of diffraction and computer graphics to aircraft inter-antenna coupling analysis

    NASA Astrophysics Data System (ADS)

    Bogusz, Michael

    1993-01-01

    The need for a systematic methodology for the analysis of aircraft electromagnetic compatibility (EMC) problems is examined. The available computer aids used in aircraft EMC analysis are assessed and a theoretical basis is established for the complex algorithms which identify and quantify electromagnetic interactions. An overview is presented of one particularly well established aircraft antenna to antenna EMC analysis code, the Aircraft Inter-Antenna Propagation with Graphics (AAPG) Version 07 software. The specific new algorithms created to compute cone geodesics and their associated path losses and to graph the physical coupling path are discussed. These algorithms are validated against basic principles. Loss computations apply the uniform geometrical theory of diffraction and are subsequently compared to measurement data. The increased modelling and analysis capabilities of the newly developed AAPG Version 09 are compared to those of Version 07. Several models of real aircraft, namely the Electronic Systems Trainer Challenger, are generated and provided as a basis for this preliminary comparative assessment. Issues such as software reliability, algorithm stability, and quality of hardcopy output are also discussed.

  19. Machining Parameters Optimization using Hybrid Firefly Algorithm and Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Farahlina Johari, Nur; Zain, Azlan Mohd; Haszlinna Mustaffa, Noorfa; Udin, Amirmudin

    2017-09-01

    Firefly Algorithm (FA) is a metaheuristic algorithm that is inspired by the flashing behavior of fireflies and the phenomenon of bioluminescent communication and the algorithm is used to optimize the machining parameters (feed rate, depth of cut, and spindle speed) in this research. The algorithm is hybridized with Particle Swarm Optimization (PSO) to discover better solution in exploring the search space. Objective function of previous research is used to optimize the machining parameters in turning operation. The optimal machining cutting parameters estimated by FA that lead to a minimum surface roughness are validated using ANOVA test.

  20. Simplified Syndrome Decoding of (n, 1) Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1983-01-01

    A new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck is presented. The new algorithm uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). This set of Diophantine solutions is a coset of the CC space. A recursive or Viterbi-like algorithm is developed to find the minimum weight error vector cirumflex E(D) in this error coset. An example illustrating the new decoding algorithm is given for the binary nonsymmetric (2,1)CC.

  1. Robust automatic line scratch detection in films.

    PubMed

    Newson, Alasdair; Almansa, Andrés; Gousseau, Yann; Pérez, Patrick

    2014-03-01

    Line scratch detection in old films is a particularly challenging problem due to the variable spatiotemporal characteristics of this defect. Some of the main problems include sensitivity to noise and texture, and false detections due to thin vertical structures belonging to the scene. We propose a robust and automatic algorithm for frame-by-frame line scratch detection in old films, as well as a temporal algorithm for the filtering of false detections. In the frame-by-frame algorithm, we relax some of the hypotheses used in previous algorithms in order to detect a wider variety of scratches. This step's robustness and lack of external parameters is ensured by the combined use of an a contrario methodology and local statistical estimation. In this manner, over-detection in textured or cluttered areas is greatly reduced. The temporal filtering algorithm eliminates false detections due to thin vertical structures by exploiting the coherence of their motion with that of the underlying scene. Experiments demonstrate the ability of the resulting detection procedure to deal with difficult situations, in particular in the presence of noise, texture, and slanted or partial scratches. Comparisons show significant advantages over previous work.

  2. A novel symbiotic organisms search algorithm for congestion management in deregulated environment

    NASA Astrophysics Data System (ADS)

    Verma, Sumit; Saha, Subhodip; Mukherjee, V.

    2017-01-01

    In today's competitive electricity market, managing transmission congestion in deregulated power system has created challenges for independent system operators to operate the transmission lines reliably within the limits. This paper proposes a new meta-heuristic algorithm, called as symbiotic organisms search (SOS) algorithm, for congestion management (CM) problem in pool based electricity market by real power rescheduling of generators. Inspired by interactions among organisms in ecosystem, SOS algorithm is a recent population based algorithm which does not require any algorithm specific control parameters unlike other algorithms. Various security constraints such as load bus voltage and line loading are taken into account while dealing with the CM problem. In this paper, the proposed SOS algorithm is applied on modified IEEE 30- and 57-bus test power system for the solution of CM problem. The results, thus, obtained are compared to those reported in the recent state-of-the-art literature. The efficacy of the proposed SOS algorithm for obtaining the higher quality solution is also established.

  3. A novel symbiotic organisms search algorithm for congestion management in deregulated environment

    NASA Astrophysics Data System (ADS)

    Verma, Sumit; Saha, Subhodip; Mukherjee, V.

    2017-01-01

    In today's competitive electricity market, managing transmission congestion in deregulated power system has created challenges for independent system operators to operate the transmission lines reliably within the limits. This paper proposes a new meta-heuristic algorithm, called as symbiotic organisms search (SOS) algorithm, for congestion management (CM) problem in pool-based electricity market by real power rescheduling of generators. Inspired by interactions among organisms in ecosystem, SOS algorithm is a recent population-based algorithm which does not require any algorithm specific control parameters unlike other algorithms. Various security constraints such as load bus voltage and line loading are taken into account while dealing with the CM problem. In this paper, the proposed SOS algorithm is applied on modified IEEE 30- and 57-bus test power system for the solution of CM problem. The results, thus, obtained are compared to those reported in the recent state-of-the-art literature. The efficacy of the proposed SOS algorithm for obtaining the higher quality solution is also established.

  4. Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.

    PubMed

    Petrotchenko, Evgeniy V; Borchers, Christoph H

    2014-09-01

    Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The elimination of colour blocks in remote sensing images in VR

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuying; Li, Guohui; Su, Zhenyu

    2018-02-01

    Aiming at the characteristics in HSI colour space of remote sensing images at different time in VR, a unified colour algorithm is proposed. First the method converted original image from RGB colour space to HSI colour space. Then, based on the invariance of the hue before and after the colour adjustment in the HSI colour space and the brightness translational features of the image after the colour adjustment, establish the linear model which satisfied these characteristics of the image. And then determine the range of the parameters in the model. Finally, according to the established colour adjustment model, the experimental verification is carried out. The experimental results show the proposed model can effectively recover the clear image, and the algorithm is faster. The experimental results show the proposed algorithm can effectively enhance the image clarity and can solve the pigment block problem well.

  6. A finite element solution algorithm for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1974-01-01

    A finite element solution algorithm is established for the two-dimensional Navier-Stokes equations governing the steady-state kinematics and thermodynamics of a variable viscosity, compressible multiple-species fluid. For an incompressible fluid, the motion may be transient as well. The primitive dependent variables are replaced by a vorticity-streamfunction description valid in domains spanned by rectangular, cylindrical and spherical coordinate systems. Use of derived variables provides a uniformly elliptic partial differential equation description for the Navier-Stokes system, and for which the finite element algorithm is established. Explicit non-linearity is accepted by the theory, since no psuedo-variational principles are employed, and there is no requirement for either computational mesh or solution domain closure regularity. Boundary condition constraints on the normal flux and tangential distribution of all computational variables, as well as velocity, are routinely piecewise enforceable on domain closure segments arbitrarily oriented with respect to a global reference frame.

  7. Economic Considerations of Early Rule-In/Rule-Out Algorithms for The Diagnosis of Myocardial Infarction in The Emergency Department Using Cardiac Troponin and Glycemic Biomarkers.

    PubMed

    Shortt, Colleen; Xie, Feng; Whitlock, Richard; Ma, Jinhui; Clayton, Natasha; Sherbino, Jonathan; Hill, Stephen A; Pare, Guillaume; McQueen, Matthew; Mehta, Shamir R; Devereaux, P J; Worster, Andrew; Kavsak, Peter

    2017-02-01

    We have previously demonstrated the utility of a rule-in/rule-out strategy for myocardial infarction (MI) using glycemic biomarkers in combination with cardiac troponin in the emergency department (ED). Given that the cost of assessing patients with possible MI in the ED is increasing, we sought to compare the health services cost of our previously identified early rule-in/rule-out approaches for MI among patients who present to the ED with symptoms suggestive of acute coronary syndrome (ACS). We compared the cost differences between different rule-in/rule-out strategies for MI using presentation cardiac troponin I (cTnI), high-sensitivity cTnI (hs-cTnI), high-sensitivity cardiac troponin T (hs-cTnT), glucose, and/or hemoglobin A 1c (Hb A 1c ) in 1137 ED patients (7-day MI n = 133) as per our previously defined algorithms and compared them with the European Society of Cardiology (ESC) 0-h algorithm-cutoffs. Costs associated with each decision model were obtained from site-specific sources (length of stay) and provincial sources (Ontario Case Costing Initiative). Algorithms incorporating cardiac troponin and glucose for early rule-in/rule-out were the most cost effective and clinically safest methods (i.e., ≤1 MI missed) for early decision making, with hs-cTnI and glucose yielding lower costs compared to cTnI and glucose, despite the higher price for the hs-cTnI test. The addition of Hb A 1c to the algorithms increased the cost of these algorithms but did not miss any additional patients with MI. Applying the ESC 0-h algorithm-cutoffs for hs-cTnI and hs-cTnT were the most costly. Rule-in/rule-out algorithms incorporating presentation glucose with high-sensitivity cardiac troponin are the safest and most cost-effective options as compared to the ESC 0-h algorithm-cutoffs. © 2016 American Association for Clinical Chemistry.

  8. Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software.

    PubMed

    Moon, Andres; Smith, Geoffrey H; Kong, Jun; Rogers, Thomas E; Ellis, Carla L; Farris, Alton B Brad

    2018-02-01

    Renal allograft rejection diagnosis depends on assessment of parameters such as interstitial inflammation; however, studies have shown interobserver variability regarding interstitial inflammation assessment. Since automated image analysis quantitation can be reproducible, we devised customized analysis methods for CD3+ T-cell staining density as a measure of rejection severity and compared them with established commercial methods along with visual assessment. Renal biopsy CD3 immunohistochemistry slides (n = 45), including renal allografts with various degrees of acute cellular rejection (ACR) were scanned for whole slide images (WSIs). Inflammation was quantitated in the WSIs using pathologist visual assessment, commercial algorithms (Aperio nuclear algorithm for CD3+ cells/mm 2 and Aperio positive pixel count algorithm), and customized open source algorithms developed in ImageJ with thresholding/positive pixel counting (custom CD3+%) and identification of pixels fulfilling "maxima" criteria for CD3 expression (custom CD3+ cells/mm 2 ). Based on visual inspections of "markup" images, CD3 quantitation algorithms produced adequate accuracy. Additionally, CD3 quantitation algorithms correlated between each other and also with visual assessment in a statistically significant manner (r = 0.44 to 0.94, p = 0.003 to < 0.0001). Methods for assessing inflammation suggested a progression through the tubulointerstitial ACR grades, with statistically different results in borderline versus other ACR types, in all but the custom methods. Assessment of CD3-stained slides using various open source image analysis algorithms presents salient correlations with established methods of CD3 quantitation. These analysis techniques are promising and highly customizable, providing a form of on-slide "flow cytometry" that can facilitate additional diagnostic accuracy in tissue-based assessments.

  9. Scalable Domain Decomposed Monte Carlo Particle Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Matthew Joseph

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  10. Integrated identification, modeling and control with applications

    NASA Astrophysics Data System (ADS)

    Shi, Guojun

    This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing controller such that the active control energy is minimized. A weighted q-Markov COVER method is introduced for identification with measurement noise. The result is use to develop an iterative closed loop identification/control design algorithm. The effectiveness of the algorithm is illustrated by experimental results.

  11. A Limited-Memory BFGS Algorithm Based on a Trust-Region Quadratic Model for Large-Scale Nonlinear Equations.

    PubMed

    Li, Yong; Yuan, Gonglin; Wei, Zengxin

    2015-01-01

    In this paper, a trust-region algorithm is proposed for large-scale nonlinear equations, where the limited-memory BFGS (L-M-BFGS) update matrix is used in the trust-region subproblem to improve the effectiveness of the algorithm for large-scale problems. The global convergence of the presented method is established under suitable conditions. The numerical results of the test problems show that the method is competitive with the norm method.

  12. A robust human face detection algorithm

    NASA Astrophysics Data System (ADS)

    Raviteja, Thaluru; Karanam, Srikrishna; Yeduguru, Dinesh Reddy V.

    2012-01-01

    Human face detection plays a vital role in many applications like video surveillance, managing a face image database, human computer interface among others. This paper proposes a robust algorithm for face detection in still color images that works well even in a crowded environment. The algorithm uses conjunction of skin color histogram, morphological processing and geometrical analysis for detecting human faces. To reinforce the accuracy of face detection, we further identify mouth and eye regions to establish the presence/absence of face in a particular region of interest.

  13. Subvisual-thin cirrus lidar dataset for satellite verification and climatological research

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Cho, Byung S.

    1992-01-01

    A polarization (0.694 microns wavelength) lidar dataset for subvisual and thin (bluish-colored) cirrus clouds is drawn from project FIRE (First ISCCP Regional Experiment) extended time observations. The clouds are characterized by their day-night visual appearance; base, top, and optical midcloud heights and temperatures; measured physical and estimated optical cloud thicknesses; integrated linear depolarization ratios; and derived k/2 eta ratios. A subset of the data supporting 30 NOAA polar-orbiting satellite overpasses is given in tabular form to provide investigators with the means to test cloud retrieval algorithms and establish the limits of cirrus detectability from satellite measurements under various conditions. Climatologically, subvisual-thin cirrus appear to be higher, colder, and more strongly depolarizing than previously reported multilatitude cirrus, although similar k/2 eta that decrease with height and temperature are found.

  14. Establishing Reliable miRNA-Cancer Association Network Based on Text-Mining Method

    PubMed Central

    Yang, Zhaowan; Fang, Ming; Zhang, Libin; Zhou, Yanhong

    2014-01-01

    Associating microRNAs (miRNAs) with cancers is an important step of understanding the mechanisms of cancer pathogenesis and finding novel biomarkers for cancer therapies. In this study, we constructed a miRNA-cancer association network (miCancerna) based on more than 1,000 miRNA-cancer associations detected from millions of abstracts with the text-mining method, including 226 miRNA families and 20 common cancers. We further prioritized cancer-related miRNAs at the network level with the random-walk algorithm, achieving a relatively higher performance than previous miRNA disease networks. Finally, we examined the top 5 candidate miRNAs for each kind of cancer and found that 71% of them are confirmed experimentally. miCancerna would be an alternative resource for the cancer-related miRNA identification. PMID:24895499

  15. High performance computation of radiative transfer equation using the finite element method

    NASA Astrophysics Data System (ADS)

    Badri, M. A.; Jolivet, P.; Rousseau, B.; Favennec, Y.

    2018-05-01

    This article deals with an efficient strategy for numerically simulating radiative transfer phenomena using distributed computing. The finite element method alongside the discrete ordinate method is used for spatio-angular discretization of the monochromatic steady-state radiative transfer equation in an anisotropically scattering media. Two very different methods of parallelization, angular and spatial decomposition methods, are presented. To do so, the finite element method is used in a vectorial way. A detailed comparison of scalability, performance, and efficiency on thousands of processors is established for two- and three-dimensional heterogeneous test cases. Timings show that both algorithms scale well when using proper preconditioners. It is also observed that our angular decomposition scheme outperforms our domain decomposition method. Overall, we perform numerical simulations at scales that were previously unattainable by standard radiative transfer equation solvers.

  16. Computer-Aided Diagnosis Of Leukemic Blood Cells

    NASA Astrophysics Data System (ADS)

    Gunter, U.; Harms, H.; Haucke, M.; Aus, H. M.; ter Meulen, V.

    1982-11-01

    In a first clinical test, computer programs are being used to diagnose leukemias. The data collected include blood samples from patients suffering from acute myelomonocytic-, acute monocytic- and acute promyelocytic, myeloblastic, prolymphocytic, chronic lymphocytic leukemias and leukemic transformed immunocytoma. The proper differentiation of the leukemic cells is essential because the therapy depends on the type of leukemia. The algorithms analyse the fine chromatin texture and distribution in the nuclei as well as size and shape parameters from the cells and nuclei. Cells with similar nuclei from different leukemias can be distinguished from each other by analyzing the cell cytoplasm images. Recognition of these subtle differences in the cells require an image sampling rate of 15-30 pixel/micron. The results for the entire data set correlate directly to established hematological parameters and support the previously published initial training set .

  17. Multicore and GPU algorithms for Nussinov RNA folding

    PubMed Central

    2014-01-01

    Background One segment of a RNA sequence might be paired with another segment of the same RNA sequence due to the force of hydrogen bonds. This two-dimensional structure is called the RNA sequence's secondary structure. Several algorithms have been proposed to predict an RNA sequence's secondary structure. These algorithms are referred to as RNA folding algorithms. Results We develop cache efficient, multicore, and GPU algorithms for RNA folding using Nussinov's algorithm. Conclusions Our cache efficient algorithm provides a speedup between 1.6 and 3.0 relative to a naive straightforward single core code. The multicore version of the cache efficient single core algorithm provides a speedup, relative to the naive single core algorithm, between 7.5 and 14.0 on a 6 core hyperthreaded CPU. Our GPU algorithm for the NVIDIA C2050 is up to 1582 times as fast as the naive single core algorithm and between 5.1 and 11.2 times as fast as the fastest previously known GPU algorithm for Nussinov RNA folding. PMID:25082539

  18. 3D Protein structure prediction with genetic tabu search algorithm

    PubMed Central

    2010-01-01

    Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively. PMID:20522256

  19. Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.

    PubMed

    Wei, Qinglai; Li, Benkai; Song, Ruizhuo

    2018-04-01

    In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.

  20. Simultaneous beam sampling and aperture shape optimization for SPORT.

    PubMed

    Zarepisheh, Masoud; Li, Ruijiang; Ye, Yinyu; Xing, Lei

    2015-02-01

    Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.

  1. Simultaneous beam sampling and aperture shape optimization for SPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decisionmore » variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. Conclusions: The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.« less

  2. Forward collision warning based on kernelized correlation filters

    NASA Astrophysics Data System (ADS)

    Pu, Jinchuan; Liu, Jun; Zhao, Yong

    2017-07-01

    A vehicle detection and tracking system is one of the indispensable methods to reduce the occurrence of traffic accidents. The nearest vehicle is the most likely to cause harm to us. So, this paper will do more research on about the nearest vehicle in the region of interest (ROI). For this system, high accuracy, real-time and intelligence are the basic requirement. In this paper, we set up a system that combines the advanced KCF tracking algorithm with the HaarAdaBoost detection algorithm. The KCF algorithm reduces computation time and increase the speed through the cyclic shift and diagonalization. This algorithm satisfies the real-time requirement. At the same time, Haar features also have the same advantage of simple operation and high speed for detection. The combination of this two algorithm contribute to an obvious improvement of the system running rate comparing with previous works. The detection result of the HaarAdaBoost classifier provides the initial value for the KCF algorithm. This fact optimizes KCF algorithm flaws that manual car marking in the initial phase, which is more scientific and more intelligent. Haar detection and KCF tracking with Histogram of Oriented Gradient (HOG) ensures the accuracy of the system. We evaluate the performance of framework on dataset that were self-collected. The experimental results demonstrate that the proposed method is robust and real-time. The algorithm can effectively adapt to illumination variation, even in the night it can meet the detection and tracking requirements, which is an improvement compared with the previous work.

  3. Visual feature extraction and establishment of visual tags in the intelligent visual internet of things

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqun; Wang, Zhihui

    2015-12-01

    The Internet of things (IOT) is a kind of intelligent networks which can be used to locate, track, identify and supervise people and objects. One of important core technologies of intelligent visual internet of things ( IVIOT) is the intelligent visual tag system. In this paper, a research is done into visual feature extraction and establishment of visual tags of the human face based on ORL face database. Firstly, we use the principal component analysis (PCA) algorithm for face feature extraction, then adopt the support vector machine (SVM) for classifying and face recognition, finally establish a visual tag for face which is already classified. We conducted a experiment focused on a group of people face images, the result show that the proposed algorithm have good performance, and can show the visual tag of objects conveniently.

  4. A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peyret, Thomas; Poulin, Patrick; Krishnan, Kannan, E-mail: kannan.krishnan@umontreal.ca

    The algorithms in the literature focusing to predict tissue:blood PC (P{sub tb}) for environmental chemicals and tissue:plasma PC based on total (K{sub p}) or unbound concentration (K{sub pu}) for drugs differ in their consideration of binding to hemoglobin, plasma proteins and charged phospholipids. The objective of the present study was to develop a unified algorithm such that P{sub tb}, K{sub p} and K{sub pu} for both drugs and environmental chemicals could be predicted. The development of the unified algorithm was accomplished by integrating all mechanistic algorithms previously published to compute the PCs. Furthermore, the algorithm was structured in such amore » way as to facilitate predictions of the distribution of organic compounds at the macro (i.e. whole tissue) and micro (i.e. cells and fluids) levels. The resulting unified algorithm was applied to compute the rat P{sub tb}, K{sub p} or K{sub pu} of muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons and ethers. The unified algorithm reproduced adequately the values predicted previously by the published algorithms for a total of 142 drugs and chemicals. The sensitivity analysis demonstrated the relative importance of the various compound properties reflective of specific mechanistic determinants relevant to prediction of PC values of drugs and environmental chemicals. Overall, the present unified algorithm uniquely facilitates the computation of macro and micro level PCs for developing organ and cellular-level PBPK models for both chemicals and drugs.« less

  5. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    PubMed

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. An adaptive scale factor based MPPT algorithm for changing solar irradiation levels in outer space

    NASA Astrophysics Data System (ADS)

    Kwan, Trevor Hocksun; Wu, Xiaofeng

    2017-03-01

    Maximum power point tracking (MPPT) techniques are popularly used for maximizing the output of solar panels by continuously tracking the maximum power point (MPP) of their P-V curves, which depend both on the panel temperature and the input insolation. Various MPPT algorithms have been studied in literature, including perturb and observe (P&O), hill climbing, incremental conductance, fuzzy logic control and neural networks. This paper presents an algorithm which improves the MPP tracking performance by adaptively scaling the DC-DC converter duty cycle. The principle of the proposed algorithm is to detect the oscillation by checking the sign (ie. direction) of the duty cycle perturbation between the current and previous time steps. If there is a difference in the signs then it is clear an oscillation is present and the DC-DC converter duty cycle perturbation is subsequently scaled down by a constant factor. By repeating this process, the steady state oscillations become negligibly small which subsequently allows for a smooth steady state MPP response. To verify the proposed MPPT algorithm, a simulation involving irradiances levels that are typically encountered in outer space is conducted. Simulation and experimental results prove that the proposed algorithm is fast and stable in comparison to not only the conventional fixed step counterparts, but also to previous variable step size algorithms.

  7. Performance of 12 DIR algorithms in low-contrast regions for mass and density conserving deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeo, U. J.; Supple, J. R.; Franich, R. D.

    2013-10-15

    Purpose: Deformable image registration (DIR) has become a key tool for adaptive radiotherapy to account for inter- and intrafraction organ deformation. Of contemporary interest, the application to deformable dose accumulation requires accurate deformation even in low contrast regions where dose gradients may exist within near-uniform tissues. One expects high-contrast features to generally be deformed more accurately by DIR algorithms. The authors systematically assess the accuracy of 12 DIR algorithms and quantitatively examine, in particular, low-contrast regions, where accuracy has not previously been established.Methods: This work investigates DIR algorithms in three dimensions using deformable gel (DEFGEL) [U. J. Yeo, M. L.more » Taylor, L. Dunn, R. L. Smith, T. Kron, and R. D. Franich, “A novel methodology for 3D deformable dosimetry,” Med. Phys. 39, 2203–2213 (2012)], for application to mass- and density-conserving deformations. CT images of DEFGEL phantoms with 16 fiducial markers (FMs) implanted were acquired in deformed and undeformed states for three different representative deformation geometries. Nonrigid image registration was performed using 12 common algorithms in the public domain. The optimum parameter setup was identified for each algorithm and each was tested for deformation accuracy in three scenarios: (I) original images of the DEFGEL with 16 FMs; (II) images with eight of the FMs mathematically erased; and (III) images with all FMs mathematically erased. The deformation vector fields obtained for scenarios II and III were then applied to the original images containing all 16 FMs. The locations of the FMs estimated by the algorithms were compared to actual locations determined by CT imaging. The accuracy of the algorithms was assessed by evaluation of three-dimensional vectors between true marker locations and predicted marker locations.Results: The mean magnitude of 16 error vectors per sample ranged from 0.3 to 3.7, 1.0 to 6.3, and 1.3 to 7.5 mm across algorithms for scenarios I to III, respectively. The greatest accuracy was exhibited by the original Horn and Schunck optical flow algorithm. In this case, for scenario III (erased FMs not contributing to driving the DIR calculation), the mean error was half that of the modified demons algorithm (which exhibited the greatest error), across all deformations. Some algorithms failed to reproduce the geometry at all, while others accurately deformed high contrast features but not low-contrast regions—indicating poor interpolation between landmarks.Conclusions: The accuracy of DIR algorithms was quantitatively evaluated using a tissue equivalent, mass, and density conserving DEFGEL phantom. For the model studied, optical flow algorithms performed better than demons algorithms, with the original Horn and Schunck performing best. The degree of error is influenced more by the magnitude of displacement than the geometric complexity of the deformation. As might be expected, deformation is estimated less accurately for low-contrast regions than for high-contrast features, and the method presented here allows quantitative analysis of the differences. The evaluation of registration accuracy through observation of the same high contrast features that drive the DIR calculation is shown to be circular and hence misleading.« less

  8. Positive dwell time algorithm with minimum equal extra material removal in deterministic optical surfacing technology.

    PubMed

    Li, Longxiang; Xue, Donglin; Deng, Weijie; Wang, Xu; Bai, Yang; Zhang, Feng; Zhang, Xuejun

    2017-11-10

    In deterministic computer-controlled optical surfacing, accurate dwell time execution by computer numeric control machines is crucial in guaranteeing a high-convergence ratio for the optical surface error. It is necessary to consider the machine dynamics limitations in the numerical dwell time algorithms. In this paper, these constraints on dwell time distribution are analyzed, and a model of the equal extra material removal is established. A positive dwell time algorithm with minimum equal extra material removal is developed. Results of simulations based on deterministic magnetorheological finishing demonstrate the necessity of considering machine dynamics performance and illustrate the validity of the proposed algorithm. Indeed, the algorithm effectively facilitates the determinacy of sub-aperture optical surfacing processes.

  9. AveBoost2: Boosting for Noisy Data

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.

    2004-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the pre- vious base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. In previous work, we developed an algorithm, AveBoost, that constructed distributions orthogonal to the mistake vectors of all the previous models, and then averaged them to create the next base model s distribution. Our experiments demonstrated the superior accuracy of our approach. In this paper, we slightly revise our algorithm to allow us to obtain non-trivial theoretical results: bounds on the training error and generalization error (difference between training and test error). Our averaging process has a regularizing effect which, as expected, leads us to a worse training error bound for our algorithm than for AdaBoost but a superior generalization error bound. For this paper, we experimented with the data that we used in both as originally supplied and with added label noise-a small fraction of the data has its original label changed. Noisy data are notoriously difficult for AdaBoost to learn. Our algorithm's performance improvement over AdaBoost is even greater on the noisy data than the original data.

  10. Quick fuzzy backpropagation algorithm.

    PubMed

    Nikov, A; Stoeva, S

    2001-03-01

    A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.

  11. On the Hilbert-Huang Transform Theoretical Foundation

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Blank, Karin; Huang, Norden E.

    2004-01-01

    The Hilbert-Huang Transform [HHT] is a novel empirical method for spectrum analysis of non-linear and non-stationary signals. The HHT is a recent development and much remains to be done to establish the theoretical foundation of the HHT algorithms. This paper develops the theoretical foundation for the convergence of the HHT sifting algorithm and it proves that the finest spectrum scale will always be the first generated by the HHT Empirical Mode Decomposition (EMD) algorithm. The theoretical foundation for cutting an extrema data points set into two parts is also developed. This then allows parallel signal processing for the HHT computationally complex sifting algorithm and its optimization in hardware.

  12. Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.

    PubMed

    Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing

    2015-01-01

    Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA.

  13. Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem

    PubMed Central

    Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing

    2015-01-01

    Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA. PMID:26167171

  14. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations

    EPA Science Inventory

    We analyzed 10 established and 4 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense water truth collected within one hour of image acquisition to develop si...

  15. Ad hoc cost analysis of the new gastrointestinal bleeding algorithm in patients with ventricular assist device.

    PubMed

    Hirose, Hitoshi; Sarosiek, Konrad; Cavarocchi, Nicholas C

    2014-01-01

    Gastrointestinal bleed (GIB) is a known complication in patients receiving nonpulsatile ventricular assist devices (VAD). Previously, we reported a new algorithm for the workup of GIB in VAD patients using deep bowel enteroscopy. In this new algorithm, patients underwent fewer procedures, received less transfusions, and took less time to make the diagnosis than the traditional GIB algorithm group. Concurrently, we reviewed the cost-effectiveness of this new algorithm compared with the traditional workup. The procedure charges for the diagnosis and treatment of each episode of GIB was ~ $2,902 in the new algorithm group versus ~ $9,013 in the traditional algorithm group (p < 0.0001). Following the new algorithm in VAD patients with GIB resulted in fewer transfusions and diagnostic tests while attaining a substantial cost savings per episode of bleeding.

  16. Designing synthetic networks in silico: a generalised evolutionary algorithm approach.

    PubMed

    Smith, Robert W; van Sluijs, Bob; Fleck, Christian

    2017-12-02

    Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.

  17. Frequency-domain beamformers using conjugate gradient techniques for speech enhancement.

    PubMed

    Zhao, Shengkui; Jones, Douglas L; Khoo, Suiyang; Man, Zhihong

    2014-09-01

    A multiple-iteration constrained conjugate gradient (MICCG) algorithm and a single-iteration constrained conjugate gradient (SICCG) algorithm are proposed to realize the widely used frequency-domain minimum-variance-distortionless-response (MVDR) beamformers and the resulting algorithms are applied to speech enhancement. The algorithms are derived based on the Lagrange method and the conjugate gradient techniques. The implementations of the algorithms avoid any form of explicit or implicit autocorrelation matrix inversion. Theoretical analysis establishes formal convergence of the algorithms. Specifically, the MICCG algorithm is developed based on a block adaptation approach and it generates a finite sequence of estimates that converge to the MVDR solution. For limited data records, the estimates of the MICCG algorithm are better than the conventional estimators and equivalent to the auxiliary vector algorithms. The SICCG algorithm is developed based on a continuous adaptation approach with a sample-by-sample updating procedure and the estimates asymptotically converge to the MVDR solution. An illustrative example using synthetic data from a uniform linear array is studied and an evaluation on real data recorded by an acoustic vector sensor array is demonstrated. Performance of the MICCG algorithm and the SICCG algorithm are compared with the state-of-the-art approaches.

  18. Optimal Fungal Space Searching Algorithms.

    PubMed

    Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V

    2016-10-01

    Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.

  19. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.; Som, Sukhamony

    1990-01-01

    The performance modeling and enhancement for periodic execution of large-grain, decision-free algorithms in data flow architectures is examined. Applications include real-time implementation of control and signal processing algorithms where performance is required to be highly predictable. The mapping of algorithms onto the specified class of data flow architectures is realized by a marked graph model called ATAMM (Algorithm To Architecture Mapping Model). Performance measures and bounds are established. Algorithm transformation techniques are identified for performance enhancement and reduction of resource (computing element) requirements. A systematic design procedure is described for generating operating conditions for predictable performance both with and without resource constraints. An ATAMM simulator is used to test and validate the performance prediction by the design procedure. Experiments on a three resource testbed provide verification of the ATAMM model and the design procedure.

  20. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Som, Sukhamoy; Stoughton, John W.; Mielke, Roland R.

    1990-01-01

    Performance modeling and performance enhancement for periodic execution of large-grain, decision-free algorithms in data flow architectures are discussed. Applications include real-time implementation of control and signal processing algorithms where performance is required to be highly predictable. The mapping of algorithms onto the specified class of data flow architectures is realized by a marked graph model called algorithm to architecture mapping model (ATAMM). Performance measures and bounds are established. Algorithm transformation techniques are identified for performance enhancement and reduction of resource (computing element) requirements. A systematic design procedure is described for generating operating conditions for predictable performance both with and without resource constraints. An ATAMM simulator is used to test and validate the performance prediction by the design procedure. Experiments on a three resource testbed provide verification of the ATAMM model and the design procedure.

  1. Scoring best-worst data in unbalanced many-item designs, with applications to crowdsourcing semantic judgments.

    PubMed

    Hollis, Geoff

    2018-04-01

    Best-worst scaling is a judgment format in which participants are presented with a set of items and have to choose the superior and inferior items in the set. Best-worst scaling generates a large quantity of information per judgment because each judgment allows for inferences about the rank value of all unjudged items. This property of best-worst scaling makes it a promising judgment format for research in psychology and natural language processing concerned with estimating the semantic properties of tens of thousands of words. A variety of different scoring algorithms have been devised in the previous literature on best-worst scaling. However, due to problems of computational efficiency, these scoring algorithms cannot be applied efficiently to cases in which thousands of items need to be scored. New algorithms are presented here for converting responses from best-worst scaling into item scores for thousands of items (many-item scoring problems). These scoring algorithms are validated through simulation and empirical experiments, and considerations related to noise, the underlying distribution of true values, and trial design are identified that can affect the relative quality of the derived item scores. The newly introduced scoring algorithms consistently outperformed scoring algorithms used in the previous literature on scoring many-item best-worst data.

  2. Richardson-Lucy/maximum likelihood image restoration algorithm for fluorescence microscopy: further testing.

    PubMed

    Holmes, T J; Liu, Y H

    1989-11-15

    A maximum likelihood based iterative algorithm adapted from nuclear medicine imaging for noncoherent optical imaging was presented in a previous publication with some initial computer-simulation testing. This algorithm is identical in form to that previously derived in a different way by W. H. Richardson "Bayesian-Based Iterative Method of Image Restoration," J. Opt. Soc. Am. 62, 55-59 (1972) and L. B. Lucy "An Iterative Technique for the Rectification of Observed Distributions," Astron. J. 79, 745-765 (1974). Foreseen applications include superresolution and 3-D fluorescence microscopy. This paper presents further simulation testing of this algorithm and a preliminary experiment with a defocused camera. The simulations show quantified resolution improvement as a function of iteration number, and they show qualitatively the trend in limitations on restored resolution when noise is present in the data. Also shown are results of a simulation in restoring missing-cone information for 3-D imaging. Conclusions are in support of the feasibility of using these methods with real systems, while computational cost and timing estimates indicate that it should be realistic to implement these methods. Itis suggested in the Appendix that future extensions to the maximum likelihood based derivation of this algorithm will address some of the limitations that are experienced with the nonextended form of the algorithm presented here.

  3. Dynamic Reconstruction Algorithm of Three-Dimensional Temperature Field Measurement by Acoustic Tomography

    PubMed Central

    Li, Yanqiu; Liu, Shi; Inaki, Schlaberg H.

    2017-01-01

    Accuracy and speed of algorithms play an important role in the reconstruction of temperature field measurements by acoustic tomography. Existing algorithms are based on static models which only consider the measurement information. A dynamic model of three-dimensional temperature reconstruction by acoustic tomography is established in this paper. A dynamic algorithm is proposed considering both acoustic measurement information and the dynamic evolution information of the temperature field. An objective function is built which fuses measurement information and the space constraint of the temperature field with its dynamic evolution information. Robust estimation is used to extend the objective function. The method combines a tunneling algorithm and a local minimization technique to solve the objective function. Numerical simulations show that the image quality and noise immunity of the dynamic reconstruction algorithm are better when compared with static algorithms such as least square method, algebraic reconstruction technique and standard Tikhonov regularization algorithms. An effective method is provided for temperature field reconstruction by acoustic tomography. PMID:28895930

  4. Programming Deep Brain Stimulation for Parkinson's Disease: The Toronto Western Hospital Algorithms.

    PubMed

    Picillo, Marina; Lozano, Andres M; Kou, Nancy; Puppi Munhoz, Renato; Fasano, Alfonso

    2016-01-01

    Deep brain stimulation (DBS) is an established and effective treatment for Parkinson's disease (PD). After surgery, a number of extensive programming sessions are performed to define the most optimal stimulation parameters. Programming sessions mainly rely only on neurologist's experience. As a result, patients often undergo inconsistent and inefficient stimulation changes, as well as unnecessary visits. We reviewed the literature on initial and follow-up DBS programming procedures and integrated our current practice at Toronto Western Hospital (TWH) to develop standardized DBS programming protocols. We propose four algorithms including the initial programming and specific algorithms tailored to symptoms experienced by patients following DBS: speech disturbances, stimulation-induced dyskinesia and gait impairment. We conducted a literature search of PubMed from inception to July 2014 with the keywords "deep brain stimulation", "festination", "freezing", "initial programming", "Parkinson's disease", "postural instability", "speech disturbances", and "stimulation induced dyskinesia". Seventy papers were considered for this review. Based on the literature review and our experience at TWH, we refined four algorithms for: (1) the initial programming stage, and management of symptoms following DBS, particularly addressing (2) speech disturbances, (3) stimulation-induced dyskinesia, and (4) gait impairment. We propose four algorithms tailored to an individualized approach to managing symptoms associated with DBS and disease progression in patients with PD. We encourage established as well as new DBS centers to test the clinical usefulness of these algorithms in supplementing the current standards of care. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation

    DOE PAGES

    Ryan, Kevin; Rajan, Deepak; Ahmed, Shabbir

    2016-05-01

    We recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In our work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous and asynchronous algorithm are proposed. We also test the results on well known stochastic 0-1 programs from the SIPLIB test library and is able to solve one previously unsolved instance from the test set.

  6. An implicit flux-split algorithm to calculate hypersonic flowfields in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1987-01-01

    An implicit, finite-difference, shock-capturing algorithm that calculates inviscid, hypersonic flows in chemical equilibrium is presented. The flux vectors and flux Jacobians are differenced using a first-order, flux-split technique. The equilibrium composition of the gas is determined by minimizing the Gibbs free energy at every node point. The code is validated by comparing results over an axisymmetric hemisphere against previously published results. The algorithm is also applied to more practical configurations. The accuracy, stability, and versatility of the algorithm have been promising.

  7. Connectivity algorithm with depth first search (DFS) on simple graphs

    NASA Astrophysics Data System (ADS)

    Riansanti, O.; Ihsan, M.; Suhaimi, D.

    2018-01-01

    This paper discusses an algorithm to detect connectivity of a simple graph using Depth First Search (DFS). The DFS implementation in this paper differs than other research, that is, on counting the number of visited vertices. The algorithm obtains s from the number of vertices and visits source vertex, following by its adjacent vertices until the last vertex adjacent to the previous source vertex. Any simple graph is connected if s equals 0 and disconnected if s is greater than 0. The complexity of the algorithm is O(n2).

  8. Medical image reconstruction algorithm based on the geometric information between sensor detector and ROI

    NASA Astrophysics Data System (ADS)

    Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Roh, Seungkuk

    2016-05-01

    In this paper, we propose a new image reconstruction algorithm considering the geometric information of acoustic sources and senor detector and review the two-step reconstruction algorithm which was previously proposed based on the geometrical information of ROI(region of interest) considering the finite size of acoustic sensor element. In a new image reconstruction algorithm, not only mathematical analysis is very simple but also its software implementation is very easy because we don't need to use the FFT. We verify the effectiveness of the proposed reconstruction algorithm by showing the simulation results by using Matlab k-wave toolkit.

  9. Fast gravity, gravity partials, normalized gravity, gravity gradient torque and magnetic field: Derivation, code and data

    NASA Technical Reports Server (NTRS)

    Gottlieb, Robert G.

    1993-01-01

    Derivation of first and second partials of the gravitational potential is given in both normalized and unnormalized form. Two different recursion formulas are considered. Derivation of a general gravity gradient torque algorithm which uses the second partial of the gravitational potential is given. Derivation of the geomagnetic field vector is given in a form that closely mimics the gravitational algorithm. Ada code for all algorithms that precomputes all possible data is given. Test cases comparing the new algorithms with previous data are given, as well as speed comparisons showing the relative efficiencies of the new algorithms.

  10. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  11. New syndrome decoding techniques for the (n, k) convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1984-01-01

    This paper presents a new syndrome decoding algorithm for the (n, k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3, 1)CC. Previously announced in STAR as N83-34964

  12. Rapid code acquisition algorithms employing PN matched filters

    NASA Technical Reports Server (NTRS)

    Su, Yu T.

    1988-01-01

    The performance of four algorithms using pseudonoise matched filters (PNMFs), for direct-sequence spread-spectrum systems, is analyzed. They are: parallel search with fix dwell detector (PL-FDD), parallel search with sequential detector (PL-SD), parallel-serial search with fix dwell detector (PS-FDD), and parallel-serial search with sequential detector (PS-SD). The operation characteristic for each detector and the mean acquisition time for each algorithm are derived. All the algorithms are studied in conjunction with the noncoherent integration technique, which enables the system to operate in the presence of data modulation. Several previous proposals using PNMF are seen as special cases of the present algorithms.

  13. New algorithms for identifying the flavour of [Formula: see text] mesons using pions and protons.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S

    2017-01-01

    Two new algorithms for use in the analysis of [Formula: see text] collision are developed to identify the flavour of [Formula: see text] mesons at production using pions and protons from the hadronization process. The algorithms are optimized and calibrated on data, using [Formula: see text] decays from [Formula: see text] collision data collected by LHCb at centre-of-mass energies of 7 and 8 TeV . The tagging power of the new pion algorithm is 60% greater than the previously available one; the algorithm using protons to identify the flavour of a [Formula: see text] meson is the first of its kind.

  14. Generalized image contrast enhancement technique based on Heinemann contrast discrimination model

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Nodine, Calvin F.

    1994-03-01

    This paper presents a generalized image contrast enhancement technique which equalizes perceived brightness based on the Heinemann contrast discrimination model. This is a modified algorithm which presents an improvement over the previous study by Mokrane in its mathematically proven existence of a unique solution and in its easily tunable parameterization. The model uses a log-log representation of contrast luminosity between targets and the surround in a fixed luminosity background setting. The algorithm consists of two nonlinear gray-scale mapping functions which have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of gray scale distribution of the image, and can be uniquely determined once the previous three are given. Tests have been carried out to examine the effectiveness of the algorithm for increasing the overall contrast of images. It can be demonstrated that the generalized algorithm provides better contrast enhancement than histogram equalization. In fact, the histogram equalization technique is a special case of the proposed mapping.

  15. A Two-Dimensional Linear Bicharacteristic FDTD Method

    NASA Technical Reports Server (NTRS)

    Beggs, John H.

    2002-01-01

    The linear bicharacteristic scheme (LBS) was originally developed to improve unsteady solutions in computational acoustics and aeroacoustics. The LBS has previously been extended to treat lossy materials for one-dimensional problems. It is a classical leapfrog algorithm, but is combined with upwind bias in the spatial derivatives. This approach preserves the time-reversibility of the leapfrog algorithm, which results in no dissipation, and it permits more flexibility by the ability to adopt a characteristic based method. The use of characteristic variables allows the LBS to include the Perfectly Matched Layer boundary condition with no added storage or complexity. The LBS offers a central storage approach with lower dispersion than the Yee algorithm, plus it generalizes much easier to nonuniform grids. It has previously been applied to two and three-dimensional free-space electromagnetic propagation and scattering problems. This paper extends the LBS to the two-dimensional case. Results are presented for point source radiation problems, and the FDTD algorithm is chosen as a convenient reference for comparison.

  16. Has universal screening with Xpert® MTB/RIF increased the proportion of multidrug-resistant tuberculosis cases diagnosed in a routine operational setting?

    PubMed Central

    Dunbar, Rory; Caldwell, Judy; Lombard, Carl; Beyers, Nulda

    2017-01-01

    Setting Primary health services in Cape Town, South Africa where the introduction of Xpert® MTB/RIF (Xpert) enabled simultaneous screening for tuberculosis (TB) and drug susceptibility in all presumptive cases. Study aim To compare the proportion of TB cases with drug susceptibility tests undertaken and multidrug-resistant tuberculosis (MDR-TB) diagnosed pre-treatment and during the course of 1st line treatment in the previous smear/culture and the newly introduced Xpert-based algorithms. Methods TB cases identified in a previous stepped-wedge study of TB yield in five sub-districts over seven one-month time-points prior to, during and after the introduction of the Xpert-based algorithm were analysed. We used a combination of patient identifiers to identify all drug susceptibility tests undertaken from electronic laboratory records. Differences in the proportions of DST undertaken and MDR-TB cases diagnosed between algorithms were estimated using a binomial regression model. Results Pre-treatment, the probability of having a DST undertaken (RR = 1.82)(p<0.001) and being diagnosed with MDR-TB (RR = 1.42)(p<0.001) was higher in the Xpert-based algorithm than in the smear/culture-based algorithm. For cases evaluated during the course of 1st-line TB treatment, there was no significant difference in the proportion with DST undertaken (RR = 1.02)(p = 0.848) or MDR-TB diagnosed (RR = 1.12)(p = 0.678) between algorithms. Conclusion Universal screening for drug susceptibility in all presumptive TB cases in the Xpert-based algorithm resulted in a higher overall proportion of MDR-TB cases being diagnosed and is an important strategy in reducing transmission. The previous strategy of only screening new TB cases when 1st line treatment failed did not compensate for cases missed pre-treatment. PMID:28199375

  17. Precise algorithm to generate random sequential adsorption of hard polygons at saturation

    NASA Astrophysics Data System (ADS)

    Zhang, G.

    2018-04-01

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation" limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles and could thus determine the saturation density of spheres with high accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensional polygons. We also calculate the saturation density for regular polygons of three to ten sides and obtain results that are consistent with previous, extrapolation-based studies.

  18. Precise algorithm to generate random sequential adsorption of hard polygons at saturation.

    PubMed

    Zhang, G

    2018-04-01

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation" limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles and could thus determine the saturation density of spheres with high accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensional polygons. We also calculate the saturation density for regular polygons of three to ten sides and obtain results that are consistent with previous, extrapolation-based studies.

  19. Evolutionary Optimization of Yagi-Uda Antennas

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Colombano, Silvano P.

    2001-01-01

    Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, and the inclusion of numerous parasitic elements. We present a genetic algorithm-based automated antenna optimization system that uses a fixed Yagi-Uda topology and a byte-encoded antenna representation. The fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. The genetic operators used are also simpler. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain. We also present encouraging preliminary results where a coevolutionary genetic algorithm is used.

  20. DISTING: A web application for fast algorithmic computation of alternative indistinguishable linear compartmental models.

    PubMed

    Davidson, Natalie R; Godfrey, Keith R; Alquaddoomi, Faisal; Nola, David; DiStefano, Joseph J

    2017-05-01

    We describe and illustrate use of DISTING, a novel web application for computing alternative structurally identifiable linear compartmental models that are input-output indistinguishable from a postulated linear compartmental model. Several computer packages are available for analysing the structural identifiability of such models, but DISTING is the first to be made available for assessing indistinguishability. The computational algorithms embedded in DISTING are based on advanced versions of established geometric and algebraic properties of linear compartmental models, embedded in a user-friendly graphic model user interface. Novel computational tools greatly speed up the overall procedure. These include algorithms for Jacobian matrix reduction, submatrix rank reduction, and parallelization of candidate rank computations in symbolic matrix analysis. The application of DISTING to three postulated models with respectively two, three and four compartments is given. The 2-compartment example is used to illustrate the indistinguishability problem; the original (unidentifiable) model is found to have two structurally identifiable models that are indistinguishable from it. The 3-compartment example has three structurally identifiable indistinguishable models. It is found from DISTING that the four-compartment example has five structurally identifiable models indistinguishable from the original postulated model. This example shows that care is needed when dealing with models that have two or more compartments which are neither perturbed nor observed, because the numbering of these compartments may be arbitrary. DISTING is universally and freely available via the Internet. It is easy to use and circumvents tedious and complicated algebraic analysis previously done by hand. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Bayesian approach to the analysis of neutron Brillouin scattering data on liquid metals

    NASA Astrophysics Data System (ADS)

    De Francesco, A.; Guarini, E.; Bafile, U.; Formisano, F.; Scaccia, L.

    2016-08-01

    When the dynamics of liquids and disordered systems at mesoscopic level is investigated by means of inelastic scattering (e.g., neutron or x ray), spectra are often characterized by a poor definition of the excitation lines and spectroscopic features in general and one important issue is to establish how many of these lines need to be included in the modeling function and to estimate their parameters. Furthermore, when strongly damped excitations are present, commonly used and widespread fitting algorithms are particularly affected by the choice of initial values of the parameters. An inadequate choice may lead to an inefficient exploration of the parameter space, resulting in the algorithm getting stuck in a local minimum. In this paper, we present a Bayesian approach to the analysis of neutron Brillouin scattering data in which the number of excitation lines is treated as unknown and estimated along with the other model parameters. We propose a joint estimation procedure based on a reversible-jump Markov chain Monte Carlo algorithm, which efficiently explores the parameter space, producing a probabilistic measure to quantify the uncertainty on the number of excitation lines as well as reliable parameter estimates. The method proposed could turn out of great importance in extracting physical information from experimental data, especially when the detection of spectral features is complicated not only because of the properties of the sample, but also because of the limited instrumental resolution and count statistics. The approach is tested on generated data set and then applied to real experimental spectra of neutron Brillouin scattering from a liquid metal, previously analyzed in a more traditional way.

  2. Establishment of turbidity forecasting model and early-warning system for source water turbidity management using back-propagation artificial neural network algorithm and probability analysis.

    PubMed

    Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng

    2014-08-01

    The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.

  3. A study on the aerodynamic characteristics of airfoil in the flapping adjustment stage during forward flight

    NASA Astrophysics Data System (ADS)

    Luo, Pan; Zhang, Xingwei; Huang, Panpan; Xie, Lingwang

    2017-10-01

    The aim of this study is to investigate the aerodynamic characteristics of a flapping airfoil in the adjustment stage between two specific flight patterns during the forward flight. Four flapping movement models in adjustment stage are firstly established by using the multi-objective optimization algorithm. Then, a numerical experiment is carried out by using finite volume method to solve the two-dimensional time-dependent incompressible Navier-Stokes equations. The attack angles are selected from -5° to 7.5° with an increase of 2.5°. The results are systematically analyzed and special attention is paid to the corresponding changes of aerodynamic forces, vortex shedding mechanism in the wake structure and thrust efficiency. Present results show that output aerodynamic performance of flapping airfoil can be improved by the increasement of amplitude and frequency in the flapping adjustment stage, which further validates and complements previous studies. Moreover, it is also show that the manner using multi-objective optimization algorithm to generate a movement model in adjustment stage, to connect other two specific plunging motions, is a feasible and effective method. Current study is dedicated to providing some helpful references for the design and control of artificial flapping wing air vehicles.

  4. Leveraging long read sequencing from a single individual to provide a comprehensive resource for benchmarking variant calling methods

    PubMed Central

    Mu, John C.; Tootoonchi Afshar, Pegah; Mohiyuddin, Marghoob; Chen, Xi; Li, Jian; Bani Asadi, Narges; Gerstein, Mark B.; Wong, Wing H.; Lam, Hugo Y. K.

    2015-01-01

    A high-confidence, comprehensive human variant set is critical in assessing accuracy of sequencing algorithms, which are crucial in precision medicine based on high-throughput sequencing. Although recent works have attempted to provide such a resource, they still do not encompass all major types of variants including structural variants (SVs). Thus, we leveraged the massive high-quality Sanger sequences from the HuRef genome to construct by far the most comprehensive gold set of a single individual, which was cross validated with deep Illumina sequencing, population datasets, and well-established algorithms. It was a necessary effort to completely reanalyze the HuRef genome as its previously published variants were mostly reported five years ago, suffering from compatibility, organization, and accuracy issues that prevent their direct use in benchmarking. Our extensive analysis and validation resulted in a gold set with high specificity and sensitivity. In contrast to the current gold sets of the NA12878 or HS1011 genomes, our gold set is the first that includes small variants, deletion SVs and insertion SVs up to a hundred thousand base-pairs. We demonstrate the utility of our HuRef gold set to benchmark several published SV detection tools. PMID:26412485

  5. Spectral identification of sperm whales from Littoral Acoustic Demonstration Center passive acoustic recordings

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, Natalia A.; Richard, Blake; Ioup, George E.; Ioup, Juliette W.

    2005-09-01

    The Littoral Acoustic Demonstration Center (LADC) made a series of passive broadband acoustic recordings in the Gulf of Mexico and Ligurian Sea to study noise and marine mammal phonations. The collected data contain a large amount of various types of sperm whale phonations, such as isolated clicks and communication codas. It was previously reported that the spectrograms of the extracted clicks and codas contain well-defined null patterns that seem to be unique for individuals. The null pattern is formed due to individual features of the sound production organs of an animal. These observations motivated the present studies of adapting human speech identification techniques for deep-diving marine mammal phonations. A three-state trained hidden Markov model (HMM) was used with the phonation spectra of sperm whales. The HHM-algorithm gave 75% accuracy in identifying individuals when it had been initially tested for the acoustic data set correlated with visual observations of sperm whales. A comparison of the identification accuracy based on null-pattern similarity analysis and the HMM-algorithm is presented. The results can establish the foundation for developing an acoustic identification database for sperm whales and possibly other deep-diving marine mammals that would be difficult to observe visually. [Research supported by ONR.

  6. Energy conserving schemes for the simulation of musical instrument contact dynamics

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Vasileios; van Walstijn, Maarten

    2015-03-01

    Collisions are an innate part of the function of many musical instruments. Due to the nonlinear nature of contact forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis. Finite difference schemes and other time-stepping algorithms used for musical instrument modelling purposes are normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-analytic functions of the phase space variables, algorithm stability can rarely be established this way. This paper presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed numerical formulations follow from discretising Hamilton's equations of motion, generally leading to an implicit system of nonlinear equations that can be solved with Newton's method. The approach is first outlined for point mass collisions and then extended to distributed settings, such as vibrating strings and beams colliding with rigid obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of string instrument.

  7. Efficient self-organizing multilayer neural network for nonlinear system modeling.

    PubMed

    Han, Hong-Gui; Wang, Li-Dan; Qiao, Jun-Fei

    2013-07-01

    It has been shown extensively that the dynamic behaviors of a neural system are strongly influenced by the network architecture and learning process. To establish an artificial neural network (ANN) with self-organizing architecture and suitable learning algorithm for nonlinear system modeling, an automatic axon-neural network (AANN) is investigated in the following respects. First, the network architecture is constructed automatically to change both the number of hidden neurons and topologies of the neural network during the training process. The approach introduced in adaptive connecting-and-pruning algorithm (ACP) is a type of mixed mode operation, which is equivalent to pruning or adding the connecting of the neurons, as well as inserting some required neurons directly. Secondly, the weights are adjusted, using a feedforward computation (FC) to obtain the information for the gradient during learning computation. Unlike most of the previous studies, AANN is able to self-organize the architecture and weights, and to improve the network performances. Also, the proposed AANN has been tested on a number of benchmark problems, ranging from nonlinear function approximating to nonlinear systems modeling. The experimental results show that AANN can have better performances than that of some existing neural networks. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Using the IMS infrasound network for the identification of mountain-associated waves and gravity waves hotspots

    NASA Astrophysics Data System (ADS)

    Hupe, Patrick; Ceranna, Lars; Pilger, Christoph; Le Pichon, Alexis

    2017-04-01

    The infrasound network of the International Monitoring System (IMS) has been established for monitoring the atmosphere to detect violations of the Comprehensive nuclear-Test-Ban Treaty (CTBT). The IMS comprises 49 certified infrasound stations which are globally distributed. Each station provides data for up to 16 years. Due to the uniform distribution of the stations, the IMS infrasound network can be used to derive global information on atmospheric dynamics' features. This study focuses on mountain-associated waves (MAWs), i.e. acoustic waves in the frequency range between approximately 0.01 Hz and 0.05 Hz. MAWs can be detected in infrasound data by applying the Progressive Multi-Channel Correlation (PMCC) algorithm. As a result of triangulation, global hotspots of MAWs can be identified. Previous studies on gravity waves indicate that global hotspots of gravity waves are similar to those found for MAWs by using the PMCC algorithm. The objective of our study is an enhanced understanding of the excitation sources and of possible interactions between MAWs and gravity waves. Therefore, spatial and temporal correlation analyses will be performed. As a preceding step, we will present (seasonal) hotspots of MAWs as well as hotspots of gravity waves derived by the IMS infrasound network.

  9. Predictive classification of pediatric bipolar disorder using atlas-based diffusion weighted imaging and support vector machines.

    PubMed

    Mwangi, Benson; Wu, Mon-Ju; Bauer, Isabelle E; Modi, Haina; Zeni, Cristian P; Zunta-Soares, Giovana B; Hasan, Khader M; Soares, Jair C

    2015-11-30

    Previous studies have reported abnormalities of white-matter diffusivity in pediatric bipolar disorder. However, it has not been established whether these abnormalities are able to distinguish individual subjects with pediatric bipolar disorder from healthy controls with a high specificity and sensitivity. Diffusion-weighted imaging scans were acquired from 16 youths diagnosed with DSM-IV bipolar disorder and 16 demographically matched healthy controls. Regional white matter tissue microstructural measurements such as fractional anisotropy, axial diffusivity and radial diffusivity were computed using an atlas-based approach. These measurements were used to 'train' a support vector machine (SVM) algorithm to predict new or 'unseen' subjects' diagnostic labels. The SVM algorithm predicted individual subjects with specificity=87.5%, sensitivity=68.75%, accuracy=78.12%, positive predictive value=84.62%, negative predictive value=73.68%, area under receiver operating characteristic curve (AUROC)=0.7812 and chi-square p-value=0.0012. A pattern of reduced regional white matter fractional anisotropy was observed in pediatric bipolar disorder patients. These results suggest that atlas-based diffusion weighted imaging measurements can distinguish individual pediatric bipolar disorder patients from healthy controls. Notably, from a clinical perspective these findings will contribute to the pathophysiological understanding of pediatric bipolar disorder. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Vasculitic wheel - an algorithmic approach to cutaneous vasculitides.

    PubMed

    Ratzinger, Gudrun; Zelger, Bettina Gudrun; Carlson, J Andrew; Burgdorf, Walter; Zelger, Bernhard

    2015-11-01

    Previous classifications of vasculitides suffer from several defects. First, classifications may follow different principles including clinicopathologic findings, etiology, pathogenesis, prognosis, or therapeutic options. Second, authors fail to distinguish between vasculitis and coagulopathy. Third, vasculitides are systemic diseases. Organ-specific variations make morphologic findings difficult to compare. Fourth, subtle changes are recognized in the skin, but may be asymptomatic in other organs. Our aim was to use the skin and subcutis as a model and the clinicopathologic correlation as the basic process for classification. We use an algorithmic approach with pattern analysis, which allows for consistent reporting of microscopic findings. We first differentiate between small and medium vessel vasculitis. In the second step, we differentiate the subtypes of small (capillaries versus postcapillary venules) and medium-sized (arterioles/arteries versus veins) vessels. In the final step, we differentiate, according to the predominant cell type, into leukocytoclastic and/or granulomatous vasculitis. Starting from leukocytoclastic vasculitis as a central reaction pattern of cutaneous small/medium vessel vasculitides, its relations or variations may be arranged around it like spokes of a wheel around the hub. This may help establish some basic order in this rather complex realm of cutaneous vasculitides, leading to a better understanding in a complicated field. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  11. Heavy quark radiation in NLO+PS POWHEG generators

    NASA Astrophysics Data System (ADS)

    Buonocore, Luca; Nason, Paolo; Tramontano, Francesco

    2018-02-01

    In this paper we deal with radiation from heavy quarks in the context of next-to-leading order calculations matched to parton shower generators. A new algorithm for radiation from massive quarks is presented that has considerable advantages over the one previously employed. We implement the algorithm in the framework of the POWHEG-BOX, and compare it with the previous one in the case of the hvq generator for bottom production in hadronic collisions, and in the case of the bb4l generator for top production and decay.

  12. Improved argument-FFT frequency offset estimation for QPSK coherent optical Systems

    NASA Astrophysics Data System (ADS)

    Han, Jilong; Li, Wei; Yuan, Zhilin; Li, Haitao; Huang, Liyan; Hu, Qianggao

    2016-02-01

    A frequency offset estimation (FOE) algorithm based on fast Fourier transform (FFT) of the signal's argument is investigated, which does not require removing the modulated data phase. In this paper, we analyze the flaw of the argument-FFT algorithm and propose a combined FOE algorithm, in which the absolute of frequency offset (FO) is accurately calculated by argument-FFT algorithm with a relatively large number of samples and the sign of FO is determined by FFT-based interpolation discrete Fourier transformation (DFT) algorithm with a relatively small number of samples. Compared with the previous algorithms based on argument-FFT, the proposed one has low complexity and can still effectively work with a relatively less number of samples.

  13. Designing Fault-Injection Experiments for the Reliability of Embedded Systems

    NASA Technical Reports Server (NTRS)

    White, Allan L.

    2012-01-01

    This paper considers the long-standing problem of conducting fault-injections experiments to establish the ultra-reliability of embedded systems. There have been extensive efforts in fault injection, and this paper offers a partial summary of the efforts, but these previous efforts have focused on realism and efficiency. Fault injections have been used to examine diagnostics and to test algorithms, but the literature does not contain any framework that says how to conduct fault-injection experiments to establish ultra-reliability. A solution to this problem integrates field-data, arguments-from-design, and fault-injection into a seamless whole. The solution in this paper is to derive a model reduction theorem for a class of semi-Markov models suitable for describing ultra-reliable embedded systems. The derivation shows that a tight upper bound on the probability of system failure can be obtained using only the means of system-recovery times, thus reducing the experimental effort to estimating a reasonable number of easily-observed parameters. The paper includes an example of a system subject to both permanent and transient faults. There is a discussion of integrating fault-injection with field-data and arguments-from-design.

  14. A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem

    PubMed Central

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389

  15. The application of dynamic programming in production planning

    NASA Astrophysics Data System (ADS)

    Wu, Run

    2017-05-01

    Nowadays, with the popularity of the computers, various industries and fields are widely applying computer information technology, which brings about huge demand for a variety of application software. In order to develop software meeting various needs with most economical cost and best quality, programmers must design efficient algorithms. A superior algorithm can not only soul up one thing, but also maximize the benefits and generate the smallest overhead. As one of the common algorithms, dynamic programming algorithms are used to solving problems with some sort of optimal properties. When solving problems with a large amount of sub-problems that needs repetitive calculations, the ordinary sub-recursive method requires to consume exponential time, and dynamic programming algorithm can reduce the time complexity of the algorithm to the polynomial level, according to which we can conclude that dynamic programming algorithm is a very efficient compared to other algorithms reducing the computational complexity and enriching the computational results. In this paper, we expound the concept, basic elements, properties, core, solving steps and difficulties of the dynamic programming algorithm besides, establish the dynamic programming model of the production planning problem.

  16. Maximum Likelihood Estimation of Nonlinear Structural Equation Models.

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Zhu, Hong-Tu

    2002-01-01

    Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)

  17. Better ILP models for haplotype assembly.

    PubMed

    Etemadi, Maryam; Bagherian, Mehri; Chen, Zhi-Zhong; Wang, Lusheng

    2018-02-19

    The haplotype assembly problem for diploid is to find a pair of haplotypes from a given set of aligned Single Nucleotide Polymorphism (SNP) fragments (reads). It has many applications in association studies, drug design, and genetic research. Since this problem is computationally hard, both heuristic and exact algorithms have been designed for it. Although exact algorithms are much slower, they are still of great interest because they usually output significantly better solutions than heuristic algorithms in terms of popular measures such as the Minimum Error Correction (MEC) score, the number of switch errors, and the QAN50 score. Exact algorithms are also valuable because they can be used to witness how good a heuristic algorithm is. The best known exact algorithm is based on integer linear programming (ILP) and it is known that ILP can also be used to improve the output quality of every heuristic algorithm with a little decline in speed. Therefore, faster ILP models for the problem are highly demanded. As in previous studies, we consider not only the general case of the problem but also its all-heterozygous case where we assume that if a column of the input read matrix contains at least one 0 and one 1, then it corresponds to a heterozygous SNP site. For both cases, we design new ILP models for the haplotype assembly problem which aim at minimizing the MEC score. The new models are theoretically better because they contain significantly fewer constraints. More importantly, our experimental results show that for both simulated and real datasets, the new model for the all-heterozygous (respectively, general) case can usually be solved via CPLEX (an ILP solver) at least 5 times (respectively, twice) faster than the previous bests. Indeed, the running time can sometimes be 41 times better. This paper proposes a new ILP model for the haplotype assembly problem and its all-heterozygous case, respectively. Experiments with both real and simulated datasets show that the new models can be solved within much shorter time by CPLEX than the previous bests. We believe that the models can be used to improve heuristic algorithms as well.

  18. A fast complex integer convolution using a hybrid transform

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; K Truong, T.

    1978-01-01

    It is shown that the Winograd transform can be combined with a complex integer transform over the Galois field GF(q-squared) to yield a new algorithm for computing the discrete cyclic convolution of complex number points. By this means a fast method for accurately computing the cyclic convolution of a sequence of complex numbers for long convolution lengths can be obtained. This new hybrid algorithm requires fewer multiplications than previous algorithms.

  19. A Methodology for Projecting U.S.-Flag Commercial Tanker Capacity

    DTIC Science & Technology

    1986-03-01

    total crude supply for the total US is less than the sum of the total crude supplies of the PADDs . The algorithm generating the output shown in tables...other PADDs . Accordingly, projected receipts for PADD V are zero , and in conjunction with the values for the vari- ables that previously were...SHIPMENTS ALGORITHM This section presents the mathematics of the algorithm that generates the shipments projections for each PADD . The notation

  20. New approaches for measuring changes in the cortical surface using an automatic reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Pham, Dzung L.; Han, Xiao; Rettmann, Maryam E.; Xu, Chenyang; Tosun, Duygu; Resnick, Susan; Prince, Jerry L.

    2002-05-01

    In previous work, the authors presented a multi-stage procedure for the semi-automatic reconstruction of the cerebral cortex from magnetic resonance images. This method suffered from several disadvantages. First, the tissue classification algorithm used can be sensitive to noise within the image. Second, manual interaction was required for masking out undesired regions of the brain image, such as the ventricles and putamen. Third, iterated median filters were used to perform a topology correction on the initial cortical surface, resulting in an overly smoothed initial surface. Finally, the deformable surface used to converge to the cortex had difficulty capturing narrow gyri. In this work, all four disadvantages of the procedure have been addressed. A more robust tissue classification algorithm is employed and the manual masking step is replaced by an automatic method involving level set deformable models. Instead of iterated median filters, an algorithm developed specifically for topology correction is used. The last disadvantage is addressed using an algorithm that artificially separates adjacent sulcal banks. The new procedure is more automated but also more accurate than the previous one. Its utility is demonstrated by performing a preliminary study on data from the Baltimore Longitudinal Study of Aging.

  1. A time series based sequence prediction algorithm to detect activities of daily living in smart home.

    PubMed

    Marufuzzaman, M; Reaz, M B I; Ali, M A M; Rahman, L F

    2015-01-01

    The goal of smart homes is to create an intelligent environment adapting the inhabitants need and assisting the person who needs special care and safety in their daily life. This can be reached by collecting the ADL (activities of daily living) data and further analysis within existing computing elements. In this research, a very recent algorithm named sequence prediction via enhanced episode discovery (SPEED) is modified and in order to improve accuracy time component is included. The modified SPEED or M-SPEED is a sequence prediction algorithm, which modified the previous SPEED algorithm by using time duration of appliance's ON-OFF states to decide the next state. M-SPEED discovered periodic episodes of inhabitant behavior, trained it with learned episodes, and made decisions based on the obtained knowledge. The results showed that M-SPEED achieves 96.8% prediction accuracy, which is better than other time prediction algorithms like PUBS, ALZ with temporal rules and the previous SPEED. Since human behavior shows natural temporal patterns, duration times can be used to predict future events more accurately. This inhabitant activity prediction system will certainly improve the smart homes by ensuring safety and better care for elderly and handicapped people.

  2. Method and Excel VBA Algorithm for Modeling Master Recession Curve Using Trigonometry Approach.

    PubMed

    Posavec, Kristijan; Giacopetti, Marco; Materazzi, Marco; Birk, Steffen

    2017-11-01

    A new method was developed and implemented into an Excel Visual Basic for Applications (VBAs) algorithm utilizing trigonometry laws in an innovative way to overlap recession segments of time series and create master recession curves (MRCs). Based on a trigonometry approach, the algorithm horizontally translates succeeding recession segments of time series, placing their vertex, that is, the highest recorded value of each recession segment, directly onto the appropriate connection line defined by measurement points of a preceding recession segment. The new method and algorithm continues the development of methods and algorithms for the generation of MRC, where the first published method was based on a multiple linear/nonlinear regression model approach (Posavec et al. 2006). The newly developed trigonometry-based method was tested on real case study examples and compared with the previously published multiple linear/nonlinear regression model-based method. The results show that in some cases, that is, for some time series, the trigonometry-based method creates narrower overlaps of the recession segments, resulting in higher coefficients of determination R 2 , while in other cases the multiple linear/nonlinear regression model-based method remains superior. The Excel VBA algorithm for modeling MRC using the trigonometry approach is implemented into a spreadsheet tool (MRCTools v3.0 written by and available from Kristijan Posavec, Zagreb, Croatia) containing the previously published VBA algorithms for MRC generation and separation. All algorithms within the MRCTools v3.0 are open access and available free of charge, supporting the idea of running science on available, open, and free of charge software. © 2017, National Ground Water Association.

  3. Fuzzy PID control algorithm based on PSO and application in BLDC motor

    NASA Astrophysics Data System (ADS)

    Lin, Sen; Wang, Guanglong

    2017-06-01

    A fuzzy PID control algorithm is studied based on improved particle swarm optimization (PSO) to perform Brushless DC (BLDC) motor control which has high accuracy, good anti-jamming capability and steady state accuracy compared with traditional PID control. The mathematical and simulation model is established for BLDC motor by simulink software, and the speed loop of the fuzzy PID controller is designed. The simulation results show that the fuzzy PID control algorithm based on PSO has higher stability, high control precision and faster dynamic response speed.

  4. A fourth-order Cartesian grid embeddedboundary method for Poisson’s equation

    DOE PAGES

    Devendran, Dharshi; Graves, Daniel; Johansen, Hans; ...

    2017-05-08

    In this paper, we present a fourth-order algorithm to solve Poisson's equation in two and three dimensions. We use a Cartesian grid, embedded boundary method to resolve complex boundaries. We use a weighted least squares algorithm to solve for our stencils. We use convergence tests to demonstrate accuracy and we show the eigenvalues of the operator to demonstrate stability. We compare accuracy and performance with an established second-order algorithm. We also discuss in depth strategies for retaining higher-order accuracy in the presence of nonsmooth geometries.

  5. F-8C adaptive control law refinement and software development

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.

    1981-01-01

    An explicit adaptive control algorithm based on maximum likelihood estimation of parameters was designed. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm was implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer, surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software.

  6. A fourth-order Cartesian grid embeddedboundary method for Poisson’s equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devendran, Dharshi; Graves, Daniel; Johansen, Hans

    In this paper, we present a fourth-order algorithm to solve Poisson's equation in two and three dimensions. We use a Cartesian grid, embedded boundary method to resolve complex boundaries. We use a weighted least squares algorithm to solve for our stencils. We use convergence tests to demonstrate accuracy and we show the eigenvalues of the operator to demonstrate stability. We compare accuracy and performance with an established second-order algorithm. We also discuss in depth strategies for retaining higher-order accuracy in the presence of nonsmooth geometries.

  7. Multi-objective Optimization Design of Gear Reducer Based on Adaptive Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Li, Rui; Chang, Tian; Wang, Jianwei; Wei, Xiaopeng; Wang, Jinming

    2008-11-01

    An adaptive Genetic Algorithm (GA) is introduced to solve the multi-objective optimized design of the reducer. Firstly, according to the structure, strength, etc. in a reducer, a multi-objective optimized model of the helical gear reducer is established. And then an adaptive GA based on a fuzzy controller is introduced, aiming at the characteristics of multi-objective, multi-parameter, multi-constraint conditions. Finally, a numerical example is illustrated to show the advantages of this approach and the effectiveness of an adaptive genetic algorithm used in optimized design of a reducer.

  8. Research on Taxiway Path Optimization Based on Conflict Detection

    PubMed Central

    Zhou, Hang; Jiang, Xinxin

    2015-01-01

    Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency. PMID:26226485

  9. Research on Taxiway Path Optimization Based on Conflict Detection.

    PubMed

    Zhou, Hang; Jiang, Xinxin

    2015-01-01

    Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency.

  10. Developing a NIR multispectral imaging for prediction and visualization of peanut protein content using variable selection algorithms

    NASA Astrophysics Data System (ADS)

    Cheng, Jun-Hu; Jin, Huali; Liu, Zhiwei

    2018-01-01

    The feasibility of developing a multispectral imaging method using important wavelengths from hyperspectral images selected by genetic algorithm (GA), successive projection algorithm (SPA) and regression coefficient (RC) methods for modeling and predicting protein content in peanut kernel was investigated for the first time. Partial least squares regression (PLSR) calibration model was established between the spectral data from the selected optimal wavelengths and the reference measured protein content ranged from 23.46% to 28.43%. The RC-PLSR model established using eight key wavelengths (1153, 1567, 1972, 2143, 2288, 2339, 2389 and 2446 nm) showed the best predictive results with the coefficient of determination of prediction (R2P) of 0.901, and root mean square error of prediction (RMSEP) of 0.108 and residual predictive deviation (RPD) of 2.32. Based on the obtained best model and image processing algorithms, the distribution maps of protein content were generated. The overall results of this study indicated that developing a rapid and online multispectral imaging system using the feature wavelengths and PLSR analysis is potential and feasible for determination of the protein content in peanut kernels.

  11. A smartphone-based pain management app for adolescents with cancer: establishing system requirements and a pain care algorithm based on literature review, interviews, and consensus.

    PubMed

    Jibb, Lindsay A; Stevens, Bonnie J; Nathan, Paul C; Seto, Emily; Cafazzo, Joseph A; Stinson, Jennifer N

    2014-03-19

    Pain that occurs both within and outside of the hospital setting is a common and distressing problem for adolescents with cancer. The use of smartphone technology may facilitate rapid, in-the-moment pain support for this population. To ensure the best possible pain management advice is given, evidence-based and expert-vetted care algorithms and system design features, which are designed using user-centered methods, are required. To develop the decision algorithm and system requirements that will inform the pain management advice provided by a real-time smartphone-based pain management app for adolescents with cancer. A systematic approach to algorithm development and system design was utilized. Initially, a comprehensive literature review was undertaken to understand the current body of knowledge pertaining to pediatric cancer pain management. A user-centered approach to development was used as the results of the review were disseminated to 15 international experts (clinicians, scientists, and a consumer) in pediatric pain, pediatric oncology and mHealth design, who participated in a 2-day consensus conference. This conference used nominal group technique to develop consensus on important pain inputs, pain management advice, and system design requirements. Using data generated at the conference, a prototype algorithm was developed. Iterative qualitative testing was conducted with adolescents with cancer, as well as pediatric oncology and pain health care providers to vet and refine the developed algorithm and system requirements for the real-time smartphone app. The systematic literature review established the current state of research related to nonpharmacological pediatric cancer pain management. The 2-day consensus conference established which clinically important pain inputs by adolescents would require action (pain management advice) from the app, the appropriate advice the app should provide to adolescents in pain, and the functional requirements of the app. These results were used to build a detailed prototype algorithm capable of providing adolescents with pain management support based on their individual pain. Analysis of qualitative interviews with 9 multidisciplinary health care professionals and 10 adolescents resulted in 4 themes that helped to adapt the algorithm and requirements to the needs of adolescents. Specifically, themes were overall endorsement of the system, the need for a clinical expert, the need to individualize the system, and changes to the algorithm to improve potential clinical effectiveness. This study used a phased and user-centered approach to develop a pain management algorithm for adolescents with cancer and the system requirements of an associated app. The smartphone software is currently being created and subsequent work will focus on the usability, feasibility, and effectiveness testing of the app for adolescents with cancer pain.

  12. A Smartphone-Based Pain Management App for Adolescents With Cancer: Establishing System Requirements and a Pain Care Algorithm Based on Literature Review, Interviews, and Consensus

    PubMed Central

    Stevens, Bonnie J; Nathan, Paul C; Seto, Emily; Cafazzo, Joseph A; Stinson, Jennifer N

    2014-01-01

    Background Pain that occurs both within and outside of the hospital setting is a common and distressing problem for adolescents with cancer. The use of smartphone technology may facilitate rapid, in-the-moment pain support for this population. To ensure the best possible pain management advice is given, evidence-based and expert-vetted care algorithms and system design features, which are designed using user-centered methods, are required. Objective To develop the decision algorithm and system requirements that will inform the pain management advice provided by a real-time smartphone-based pain management app for adolescents with cancer. Methods A systematic approach to algorithm development and system design was utilized. Initially, a comprehensive literature review was undertaken to understand the current body of knowledge pertaining to pediatric cancer pain management. A user-centered approach to development was used as the results of the review were disseminated to 15 international experts (clinicians, scientists, and a consumer) in pediatric pain, pediatric oncology and mHealth design, who participated in a 2-day consensus conference. This conference used nominal group technique to develop consensus on important pain inputs, pain management advice, and system design requirements. Using data generated at the conference, a prototype algorithm was developed. Iterative qualitative testing was conducted with adolescents with cancer, as well as pediatric oncology and pain health care providers to vet and refine the developed algorithm and system requirements for the real-time smartphone app. Results The systematic literature review established the current state of research related to nonpharmacological pediatric cancer pain management. The 2-day consensus conference established which clinically important pain inputs by adolescents would require action (pain management advice) from the app, the appropriate advice the app should provide to adolescents in pain, and the functional requirements of the app. These results were used to build a detailed prototype algorithm capable of providing adolescents with pain management support based on their individual pain. Analysis of qualitative interviews with 9 multidisciplinary health care professionals and 10 adolescents resulted in 4 themes that helped to adapt the algorithm and requirements to the needs of adolescents. Specifically, themes were overall endorsement of the system, the need for a clinical expert, the need to individualize the system, and changes to the algorithm to improve potential clinical effectiveness. Conclusions This study used a phased and user-centered approach to develop a pain management algorithm for adolescents with cancer and the system requirements of an associated app. The smartphone software is currently being created and subsequent work will focus on the usability, feasibility, and effectiveness testing of the app for adolescents with cancer pain. PMID:24646454

  13. Particle swarm optimization: an alternative in marine propeller optimization?

    NASA Astrophysics Data System (ADS)

    Vesting, F.; Bensow, R. E.

    2018-01-01

    This article deals with improving and evaluating the performance of two evolutionary algorithm approaches for automated engineering design optimization. Here a marine propeller design with constraints on cavitation nuisance is the intended application. For this purpose, the particle swarm optimization (PSO) algorithm is adapted for multi-objective optimization and constraint handling for use in propeller design. Three PSO algorithms are developed and tested for the optimization of four commercial propeller designs for different ship types. The results are evaluated by interrogating the generation medians and the Pareto front development. The same propellers are also optimized utilizing the well established NSGA-II genetic algorithm to provide benchmark results. The authors' PSO algorithms deliver comparable results to NSGA-II, but converge earlier and enhance the solution in terms of constraints violation.

  14. A multi-group firefly algorithm for numerical optimization

    NASA Astrophysics Data System (ADS)

    Tong, Nan; Fu, Qiang; Zhong, Caiming; Wang, Pengjun

    2017-08-01

    To solve the problem of premature convergence of firefly algorithm (FA), this paper analyzes the evolution mechanism of the algorithm, and proposes an improved Firefly algorithm based on modified evolution model and multi-group learning mechanism (IMGFA). A Firefly colony is divided into several subgroups with different model parameters. Within each subgroup, the optimal firefly is responsible for leading the others fireflies to implement the early global evolution, and establish the information mutual system among the fireflies. And then, each firefly achieves local search by following the brighter firefly in its neighbors. At the same time, learning mechanism among the best fireflies in various subgroups to exchange information can help the population to obtain global optimization goals more effectively. Experimental results verify the effectiveness of the proposed algorithm.

  15. Automated characterization of perceptual quality of clinical chest radiographs: Validation and calibration to observer preference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, Ehsan, E-mail: samei@duke.edu; Lin, Yuan; Choudhury, Kingshuk R.

    Purpose: The authors previously proposed an image-based technique [Y. Lin et al. Med. Phys. 39, 7019–7031 (2012)] to assess the perceptual quality of clinical chest radiographs. In this study, an observer study was designed and conducted to validate the output of the program against rankings by expert radiologists and to establish the ranges of the output values that reflect the acceptable image appearance so the program output can be used for image quality optimization and tracking. Methods: Using an IRB-approved protocol, 2500 clinical chest radiographs (PA/AP) were collected from our clinical operation. The images were processed through our perceptual qualitymore » assessment program to measure their appearance in terms of ten metrics of perceptual image quality: lung gray level, lung detail, lung noise, rib–lung contrast, rib sharpness, mediastinum detail, mediastinum noise, mediastinum alignment, subdiaphragm–lung contrast, and subdiaphragm area. From the results, for each targeted appearance attribute/metric, 18 images were selected such that the images presented a relatively constant appearance with respect to all metrics except the targeted one. The images were then incorporated into a graphical user interface, which displayed them into three panels of six in a random order. Using a DICOM calibrated diagnostic display workstation and under low ambient lighting conditions, each of five participating attending chest radiologists was tasked to spatially order the images based only on the targeted appearance attribute regardless of the other qualities. Once ordered, the observer also indicated the range of image appearances that he/she considered clinically acceptable. The observer data were analyzed in terms of the correlations between the observer and algorithmic rankings and interobserver variability. An observer-averaged acceptable image appearance was also statistically derived for each quality attribute based on the collected individual acceptable ranges. Results: The observer study indicated that, for each image quality attribute, the averaged observer ranking strongly correlated with the algorithmic ranking (linear correlation coefficient R > 0.92), with highest correlation (R = 1) for lung gray level and the lowest (R = 0.92) for mediastinum noise. There was a strong concordance between the observers in terms of their rankings (i.e., Kendall’s tau agreement > 0.84). The observers also generally indicated similar tolerance and preference levels in terms of acceptable ranges, as 85% of the values were close to the overall tolerance or preference levels and the differences were smaller than 0.15. Conclusions: The observer study indicates that the previously proposed technique provides a robust reflection of the perceptual image quality in clinical images. The results established the range of algorithmic outputs for each metric that can be used to quantitatively assess and qualify the appearance quality of clinical chest radiographs.« less

  16. Testing mapping algorithms of the cancer-specific EORTC QLQ-C30 onto EQ-5D in malignant mesothelioma.

    PubMed

    Arnold, David T; Rowen, Donna; Versteegh, Matthijs M; Morley, Anna; Hooper, Clare E; Maskell, Nicholas A

    2015-01-23

    In order to estimate utilities for cancer studies where the EQ-5D was not used, the EORTC QLQ-C30 can be used to estimate EQ-5D using existing mapping algorithms. Several mapping algorithms exist for this transformation, however, algorithms tend to lose accuracy in patients in poor health states. The aim of this study was to test all existing mapping algorithms of QLQ-C30 onto EQ-5D, in a dataset of patients with malignant pleural mesothelioma, an invariably fatal malignancy where no previous mapping estimation has been published. Health related quality of life (HRQoL) data where both the EQ-5D and QLQ-C30 were used simultaneously was obtained from the UK-based prospective observational SWAMP (South West Area Mesothelioma and Pemetrexed) trial. In the original trial 73 patients with pleural mesothelioma were offered palliative chemotherapy and their HRQoL was assessed across five time points. This data was used to test the nine available mapping algorithms found in the literature, comparing predicted against observed EQ-5D values. The ability of algorithms to predict the mean, minimise error and detect clinically significant differences was assessed. The dataset had a total of 250 observations across 5 timepoints. The linear regression mapping algorithms tested generally performed poorly, over-estimating the predicted compared to observed EQ-5D values, especially when observed EQ-5D was below 0.5. The best performing algorithm used a response mapping method and predicted the mean EQ-5D with accuracy with an average root mean squared error of 0.17 (Standard Deviation; 0.22). This algorithm reliably discriminated between clinically distinct subgroups seen in the primary dataset. This study tested mapping algorithms in a population with poor health states, where they have been previously shown to perform poorly. Further research into EQ-5D estimation should be directed at response mapping methods given its superior performance in this study.

  17. Dissolved Organic Carbon along the Louisiana coast from MODIS and MERIS satellite data

    NASA Astrophysics Data System (ADS)

    Chaichi Tehrani, N.; D'Sa, E. J.

    2012-12-01

    Dissolved organic carbon (DOC) plays a critical role in the coastal and ocean carbon cycle. Hence, it is important to monitor and investigate its the distribution and fate in coastal waters. Since DOC cannot be measured directly through satellite remote sensors, chromophoric dissolved organic matter (CDOM) as an optically active fraction of DOC can be used as an alternative proxy to trace DOC concentrations. Here, satellite ocean color data from MODIS, MERIS, and field measurements of CDOM and DOC were used to develop and assess CDOM and DOC ocean color algorithms for coastal waters. To develop a CDOM retrieval algorithm, empirical relationships between CDOM absorption coefficient at 412 nm (aCDOM(412)) and reflectance ratios Rrs(488)/Rrs(555) for MODIS and Rrs(510)/Rrs(560) for MERIS were established. The performance of two CDOM empirical algorithms were evaluated for retrieval of (aCDOM(412)) from MODIS and MERIS in the northern Gulf of Mexico. Further, empirical algorithms were developed to estimate DOC concentration using the relationship between in situ aCDOM(412) and DOC, as well as using the newly developed CDOM empirical algorithms. Accordingly, our results revealed that DOC concentration was strongly correlated to aCDOM (412) for summer and spring-winter periods (r2 = 0.9 for both periods). Then, using the aCDOM(412)-Rrs and the aCDOM(412)-DOC relationships derived from field measurements, a relationship between DOC-Rrs was established for MODIS and MERIS data. The DOC empirical algorithms performed well as indicated by match-up comparisons between satellite estimates and field data (R2=0.52 and 0.58 for MODIS and MERIS for summer period, respectively). These algorithms were then used to examine DOC distribution along the Louisiana coast.

  18. Vector Quantization Algorithm Based on Associative Memories

    NASA Astrophysics Data System (ADS)

    Guzmán, Enrique; Pogrebnyak, Oleksiy; Yáñez, Cornelio; Manrique, Pablo

    This paper presents a vector quantization algorithm for image compression based on extended associative memories. The proposed algorithm is divided in two stages. First, an associative network is generated applying the learning phase of the extended associative memories between a codebook generated by the LBG algorithm and a training set. This associative network is named EAM-codebook and represents a new codebook which is used in the next stage. The EAM-codebook establishes a relation between training set and the LBG codebook. Second, the vector quantization process is performed by means of the recalling stage of EAM using as associative memory the EAM-codebook. This process generates a set of the class indices to which each input vector belongs. With respect to the LBG algorithm, the main advantages offered by the proposed algorithm is high processing speed and low demand of resources (system memory); results of image compression and quality are presented.

  19. Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms

    NASA Astrophysics Data System (ADS)

    Lohvithee, Manasavee; Biguri, Ander; Soleimani, Manuchehr

    2017-12-01

    There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.

  20. State-Space System Realization with Input- and Output-Data Correlation

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    1997-01-01

    This paper introduces a general version of the information matrix consisting of the autocorrelation and cross-correlation matrices of the shifted input and output data. Based on the concept of data correlation, a new system realization algorithm is developed to create a model directly from input and output data. The algorithm starts by computing a special type of correlation matrix derived from the information matrix. The special correlation matrix provides information on the system-observability matrix and the state-vector correlation. A system model is then developed from the observability matrix in conjunction with other algebraic manipulations. This approach leads to several different algorithms for computing system matrices for use in representing the system model. The relationship of the new algorithms with other realization algorithms in the time and frequency domains is established with matrix factorization of the information matrix. Several examples are given to illustrate the validity and usefulness of these new algorithms.

  1. Explosive Detection in Aviation Applications Using CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, H E; Crawford, C R

    2011-02-15

    CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. Though very similar to single- and dual-energy multi-slice CT scanners used today in medical imaging, some recently developed explosives detection scanners employ multiple sources and detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for spectral imaging, and limited number of views to reduce cost. For each bag scanned, the resulting reconstructed images are first processed by automated threat recognition algorithms to screen for explosives and other threats. Human operators review the images only when these automated algorithms report the presence of possible threats.more » The US Department of Homeland Security (DHS) has requirements for future scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. A third-party in this context refers to academics and companies other than the established vendors. DHS is particularly interested in exploring the model that has been used very successfully by the medical imaging industry, in which university researchers develop algorithms that are eventually deployed in commercial medical imaging equipment. The purpose of this paper is to discuss opportunities for third-parties to develop advanced reconstruction and threat detection algorithms.« less

  2. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks.

    PubMed

    Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing

    2017-07-19

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.

  3. Community-aware task allocation for social networked multiagent systems.

    PubMed

    Wang, Wanyuan; Jiang, Yichuan

    2014-09-01

    In this paper, we propose a novel community-aware task allocation model for social networked multiagent systems (SN-MASs), where the agent' cooperation domain is constrained in community and each agent can negotiate only with its intracommunity member agents. Under such community-aware scenarios, we prove that it remains NP-hard to maximize system overall profit. To solve this problem effectively, we present a heuristic algorithm that is composed of three phases: 1) task selection: select the desirable task to be allocated preferentially; 2) allocation to community: allocate the selected task to communities based on a significant task-first heuristics; and 3) allocation to agent: negotiate resources for the selected task based on a nonoverlap agent-first and breadth-first resource negotiation mechanism. Through the theoretical analyses and experiments, the advantages of our presented heuristic algorithm and community-aware task allocation model are validated. 1) Our presented heuristic algorithm performs very closely to the benchmark exponential brute-force optimal algorithm and the network flow-based greedy algorithm in terms of system overall profit in small-scale applications. Moreover, in the large-scale applications, the presented heuristic algorithm achieves approximately the same overall system profit, but significantly reduces the computational load compared with the greedy algorithm. 2) Our presented community-aware task allocation model reduces the system communication cost compared with the previous global-aware task allocation model and improves the system overall profit greatly compared with the previous local neighbor-aware task allocation model.

  4. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Bowring, J. F.; Bowring, S. A.

    2011-06-01

    High-precision U-Pb geochronology by isotope dilution-thermal ionization mass spectrometry is integral to a variety of Earth science disciplines, but its ultimate resolving power is quantified by the uncertainties of calculated U-Pb dates. As analytical techniques have advanced, formerly small sources of uncertainty are increasingly important, and thus previous simplifications for data reduction and uncertainty propagation are no longer valid. Although notable previous efforts have treated propagation of correlated uncertainties for the U-Pb system, the equations, uncertainties, and correlations have been limited in number and subject to simplification during propagation through intermediary calculations. We derive and present a transparent U-Pb data reduction algorithm that transforms raw isotopic data and measured or assumed laboratory parameters into the isotopic ratios and dates geochronologists interpret without making assumptions about the relative size of sample components. To propagate uncertainties and their correlations, we describe, in detail, a linear algebraic algorithm that incorporates all input uncertainties and correlations without limiting or simplifying covariance terms to propagate them though intermediate calculations. Finally, a weighted mean algorithm is presented that utilizes matrix elements from the uncertainty propagation algorithm to propagate random and systematic uncertainties for data comparison between other U-Pb labs and other geochronometers. The linear uncertainty propagation algorithms are verified with Monte Carlo simulations of several typical analyses. We propose that our algorithms be considered by the community for implementation to improve the collaborative science envisioned by the EARTHTIME initiative.

  5. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zheng, E-mail: 19994035@sina.com; Wang, Jun; Zhou, Bihua

    2014-03-15

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented tomore » tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, SB; Cady, ST; Dominguez-Garcia, AD

    This paper presents the theory and implementation of a distributed algorithm for controlling differential power processing converters in photovoltaic (PV) applications. This distributed algorithm achieves true maximum power point tracking of series-connected PV submodules by relying only on local voltage measurements and neighbor-to-neighbor communication between the differential power converters. Compared to previous solutions, the proposed algorithm achieves reduced number of perturbations at each step and potentially faster tracking without adding extra hardware; all these features make this algorithm well-suited for long submodule strings. The formulation of the algorithm, discussion of its properties, as well as three case studies are presented.more » The performance of the distributed tracking algorithm has been verified via experiments, which yielded quantifiable improvements over other techniques that have been implemented in practice. Both simulations and hardware experiments have confirmed the effectiveness of the proposed distributed algorithm.« less

  7. Runtime support for parallelizing data mining algorithms

    NASA Astrophysics Data System (ADS)

    Jin, Ruoming; Agrawal, Gagan

    2002-03-01

    With recent technological advances, shared memory parallel machines have become more scalable, and offer large main memories and high bus bandwidths. They are emerging as good platforms for data warehousing and data mining. In this paper, we focus on shared memory parallelization of data mining algorithms. We have developed a series of techniques for parallelization of data mining algorithms, including full replication, full locking, fixed locking, optimized full locking, and cache-sensitive locking. Unlike previous work on shared memory parallelization of specific data mining algorithms, all of our techniques apply to a large number of common data mining algorithms. In addition, we propose a reduction-object based interface for specifying a data mining algorithm. We show how our runtime system can apply any of the technique we have developed starting from a common specification of the algorithm.

  8. Link establishment criterion and topology optimization for hybrid GPS satellite communications with laser crosslinks

    NASA Astrophysics Data System (ADS)

    Li, Lun; Wei, Sixiao; Tian, Xin; Hsieh, Li-Tse; Chen, Zhijiang; Pham, Khanh; Lyke, James; Chen, Genshe

    2018-05-01

    In the current global positioning system (GPS), the reliability of information transmissions can be enhanced with the aid of inter-satellite links (ISLs) or crosslinks between satellites. Instead of only using conventional radio frequency (RF) crosslinks, the laser crosslinks provide an option to significantly increase the data throughput. The connectivity and robustness of ISL are needed for analysis, especially for GPS constellations with laser crosslinks. In this paper, we first propose a hybrid GPS communication architecture in which uplinks and downlinks are established via RF signals and crosslinks are established via laser links. Then, we design an optical crosslink assignment criteria considering the practical optical communication factors such as optical line- of-sight (LOS) range, link distance, and angular velocity, etc. After that, to further improve the rationality of establishing crosslinks, a topology control algorithm is formulated to optimize GPS crosslink networks at both physical and network layers. The RF transmission features for uplink and downlink and optical transmission features for crosslinks are taken into account as constraints for the optimization problem. Finally, the proposed link establishment criteria are implemented for GPS communication with optical crosslinks. The designs of this paper provide a potential crosslink establishment and topology control algorithm for the next generation GPS.

  9. Flight data processing with the F-8 adaptive algorithm

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Stein, G.; Petersen, K.

    1977-01-01

    An explicit adaptive control algorithm based on maximum likelihood estimation of parameters has been designed for NASA's DFBW F-8 aircraft. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm has been implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer and surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software. The software and its performance evaluation based on flight data are described

  10. Parallel algorithms for placement and routing in VLSI design. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Brouwer, Randall Jay

    1991-01-01

    The computational requirements for high quality synthesis, analysis, and verification of very large scale integration (VLSI) designs have rapidly increased with the fast growing complexity of these designs. Research in the past has focused on the development of heuristic algorithms, special purpose hardware accelerators, or parallel algorithms for the numerous design tasks to decrease the time required for solution. Two new parallel algorithms are proposed for two VLSI synthesis tasks, standard cell placement and global routing. The first algorithm, a parallel algorithm for global routing, uses hierarchical techniques to decompose the routing problem into independent routing subproblems that are solved in parallel. Results are then presented which compare the routing quality to the results of other published global routers and which evaluate the speedups attained. The second algorithm, a parallel algorithm for cell placement and global routing, hierarchically integrates a quadrisection placement algorithm, a bisection placement algorithm, and the previous global routing algorithm. Unique partitioning techniques are used to decompose the various stages of the algorithm into independent tasks which can be evaluated in parallel. Finally, results are presented which evaluate the various algorithm alternatives and compare the algorithm performance to other placement programs. Measurements are presented on the parallel speedups available.

  11. The complexity of identifying Ryu-Takayanagi surfaces in AdS 3/CFT 2

    DOE PAGES

    Bao, Ning; Chatwin-Davies, A.

    2016-11-07

    Here, we present a constructive algorithm for the determination of Ryu-Takayanagi surfaces in AdS 3/CFT 2 which exploits previously noted connections between holographic entanglement entropy and max-flow/min-cut. We then characterize its complexity as a polynomial time algorithm.

  12. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-10-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical ozone concentrations and ozone layers aloft, especially during air quality episodes. For these reasons, this paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and confirm that it is properly representing ozone concentrations. This paper is focused on ensuring the TROPOZ algorithm is properly quantifying ozone concentrations, and a following paper will focus on a systematic uncertainty analysis. This methodology begins by simulating synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile. This was then systematically performed to identify any areas that need refinement for a new operational version of the TROPOZ retrieval algorithm. One immediate outcome of this exercise was that a bin registration error in the correction for detector saturation within the original retrieval was discovered and was subsequently corrected for. Another noticeable outcome was that the vertical smoothing in the retrieval algorithm was upgraded from a constant vertical resolution to a variable vertical resolution to yield a statistical uncertainty of <10 %. This new and optimized vertical-resolution scheme retains the ability to resolve fluctuations in the known ozone profile, but it now allows near-field signals to be more appropriately smoothed. With these revisions to the previous TROPOZ retrieval, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the previous version of the retrieval, the TROPOZopt had an overall mean improvement of 3.5 %, and large improvements (upwards of 10-15 % as compared to the previous algorithm) were apparent between 4.5 and 9 km. Finally, to ensure the TROPOZopt retrieval algorithm is robust enough to handle actual lidar return signals, a comparison is shown between four nearby ozonesonde measurements. The ozonesondes are mostly within the TROPOZopt retrieval uncertainty bars, which implies that this exercise was quite successful.

  13. Serial removal of caries lesions from tooth occlusal surfaces using near-IR image-guided IR laser ablation

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Tom, Henry; Darling, Cynthia L.; Fried, Daniel

    2015-02-01

    Previous studies have established that caries lesions can be imaged with high contrast without the interference of stains at near-IR wavelengths greater than 1300-nm. It has been demonstrated that computer controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, we report our progress towards the development of algorithms for generating rasterized ablation maps from near-IR reflectance images for the removal of natural lesions from tooth occlusal surfaces. An InGaAs camera and a filtered tungsten-halogen lamp producing near-IR light in the range of 1500-1700-nm were used to collect crosspolarization reflectance images of tooth occlusal surfaces. A CO2 laser operating at a wavelength of 9.3- μm with a pulse duration of 10-15-μs was used for image-guided ablation.

  14. Automatic Camera Calibration Using Multiple Sets of Pairwise Correspondences.

    PubMed

    Vasconcelos, Francisco; Barreto, Joao P; Boyer, Edmond

    2018-04-01

    We propose a new method to add an uncalibrated node into a network of calibrated cameras using only pairwise point correspondences. While previous methods perform this task using triple correspondences, these are often difficult to establish when there is limited overlap between different views. In such challenging cases we must rely on pairwise correspondences and our solution becomes more advantageous. Our method includes an 11-point minimal solution for the intrinsic and extrinsic calibration of a camera from pairwise correspondences with other two calibrated cameras, and a new inlier selection framework that extends the traditional RANSAC family of algorithms to sampling across multiple datasets. Our method is validated on different application scenarios where a lack of triple correspondences might occur: addition of a new node to a camera network; calibration and motion estimation of a moving camera inside a camera network; and addition of views with limited overlap to a Structure-from-Motion model.

  15. Systems Proteomics for Translational Network Medicine

    PubMed Central

    Arrell, D. Kent; Terzic, Andre

    2012-01-01

    Universal principles underlying network science, and their ever-increasing applications in biomedicine, underscore the unprecedented capacity of systems biology based strategies to synthesize and resolve massive high throughput generated datasets. Enabling previously unattainable comprehension of biological complexity, systems approaches have accelerated progress in elucidating disease prediction, progression, and outcome. Applied to the spectrum of states spanning health and disease, network proteomics establishes a collation, integration, and prioritization algorithm to guide mapping and decoding of proteome landscapes from large-scale raw data. Providing unparalleled deconvolution of protein lists into global interactomes, integrative systems proteomics enables objective, multi-modal interpretation at molecular, pathway, and network scales, merging individual molecular components, their plurality of interactions, and functional contributions for systems comprehension. As such, network systems approaches are increasingly exploited for objective interpretation of cardiovascular proteomics studies. Here, we highlight network systems proteomic analysis pipelines for integration and biological interpretation through protein cartography, ontological categorization, pathway and functional enrichment and complex network analysis. PMID:22896016

  16. Sensor failure detection for jet engines

    NASA Technical Reports Server (NTRS)

    Beattie, E. C.; Laprad, R. F.; Akhter, M. M.; Rock, S. M.

    1983-01-01

    Revisions to the advanced sensor failure detection, isolation, and accommodation (DIA) algorithm, developed under the sensor failure detection system program were studied to eliminate the steady state errors due to estimation filter biases. Three algorithm revisions were formulated and one revision for detailed evaluation was chosen. The selected version modifies the DIA algorithm to feedback the actual sensor outputs to the integral portion of the control for the nofailure case. In case of a failure, the estimates of the failed sensor output is fed back to the integral portion. The estimator outputs are fed back to the linear regulator portion of the control all the time. The revised algorithm is evaluated and compared to the baseline algorithm developed previously.

  17. Automatic Boosted Flood Mapping from Satellite Data

    NASA Technical Reports Server (NTRS)

    Coltin, Brian; McMichael, Scott; Smith, Trey; Fong, Terrence

    2016-01-01

    Numerous algorithms have been proposed to map floods from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, most require human input to succeed, either to specify a threshold value or to manually annotate training data. We introduce a new algorithm based on Adaboost which effectively maps floods without any human input, allowing for a truly rapid and automatic response. The Adaboost algorithm combines multiple thresholds to achieve results comparable to state-of-the-art algorithms which do require human input. We evaluate Adaboost, as well as numerous previously proposed flood mapping algorithms, on multiple MODIS flood images, as well as on hundreds of non-flood MODIS lake images, demonstrating its effectiveness across a wide variety of conditions.

  18. Interface Generation and Compositional Verification in JavaPathfinder

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Pasareanu, Corina

    2009-01-01

    We present a novel algorithm for interface generation of software components. Given a component, our algorithm uses learning techniques to compute a permissive interface representing legal usage of the component. Unlike our previous work, this algorithm does not require knowledge about the component s environment. Furthermore, in contrast to other related approaches, our algorithm computes permissive interfaces even in the presence of non-determinism in the component. Our algorithm is implemented in the JavaPathfinder model checking framework for UML statechart components. We have also added support for automated assume-guarantee style compositional verification in JavaPathfinder, using component interfaces. We report on the application of the presented approach to the generation of interfaces for flight software components.

  19. Techniques for shuttle trajectory optimization

    NASA Technical Reports Server (NTRS)

    Edge, E. R.; Shieh, C. J.; Powers, W. F.

    1973-01-01

    The application of recently developed function-space Davidon-type techniques to the shuttle ascent trajectory optimization problem is discussed along with an investigation of the recently developed PRAXIS algorithm for parameter optimization. At the outset of this analysis, the major deficiency of the function-space algorithms was their potential storage problems. Since most previous analyses of the methods were with relatively low-dimension problems, no storage problems were encountered. However, in shuttle trajectory optimization, storage is a problem, and this problem was handled efficiently. Topics discussed include: the shuttle ascent model and the development of the particular optimization equations; the function-space algorithms; the operation of the algorithm and typical simulations; variable final-time problem considerations; and a modification of Powell's algorithm.

  20. A novel artificial immune algorithm for spatial clustering with obstacle constraint and its applications.

    PubMed

    Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji

    2014-01-01

    An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.

  1. A range-based predictive localization algorithm for WSID networks

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Chen, Junjie; Li, Gang

    2017-11-01

    Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.

  2. Improvement in Visual Target Tracking for a Mobile Robot

    NASA Technical Reports Server (NTRS)

    Kim, Won; Ansar, Adnan; Madison, Richard

    2006-01-01

    In an improvement of the visual-target-tracking software used aboard a mobile robot (rover) of the type used to explore the Martian surface, an affine-matching algorithm has been replaced by a combination of a normalized- cross-correlation (NCC) algorithm and a template-image-magnification algorithm. Although neither NCC nor template-image magnification is new, the use of both of them to increase the degree of reliability with which features can be matched is new. In operation, a template image of a target is obtained from a previous rover position, then the magnification of the template image is based on the estimated change in the target distance from the previous rover position to the current rover position (see figure). For this purpose, the target distance at the previous rover position is determined by stereoscopy, while the target distance at the current rover position is calculated from an estimate of the current pose of the rover. The template image is then magnified by an amount corresponding to the estimated target distance to obtain a best template image to match with the image acquired at the current rover position.

  3. Key handling in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Li, Y.; Newe, T.

    2007-07-01

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided.

  4. Wearable EEG via lossless compression.

    PubMed

    Dufort, Guillermo; Favaro, Federico; Lecumberry, Federico; Martin, Alvaro; Oliver, Juan P; Oreggioni, Julian; Ramirez, Ignacio; Seroussi, Gadiel; Steinfeld, Leonardo

    2016-08-01

    This work presents a wearable multi-channel EEG recording system featuring a lossless compression algorithm. The algorithm, based in a previously reported algorithm by the authors, exploits the existing temporal correlation between samples at different sampling times, and the spatial correlation between different electrodes across the scalp. The low-power platform is able to compress, by a factor between 2.3 and 3.6, up to 300sps from 64 channels with a power consumption of 176μW/ch. The performance of the algorithm compares favorably with the best compression rates reported up to date in the literature.

  5. Impulsive noise removal from color video with morphological filtering

    NASA Astrophysics Data System (ADS)

    Ruchay, Alexey; Kober, Vitaly

    2017-09-01

    This paper deals with impulse noise removal from color video. The proposed noise removal algorithm employs a switching filtering for denoising of color video; that is, detection of corrupted pixels by means of a novel morphological filtering followed by removal of the detected pixels on the base of estimation of uncorrupted pixels in the previous scenes. With the help of computer simulation we show that the proposed algorithm is able to well remove impulse noise in color video. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.

  6. Precise algorithm to generate random sequential adsorption of hard polygons at saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, G.

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation'' limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles, and could thus determine the saturation density of spheres with high accuracy. Here in this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensionalmore » polygons. We also calculate the saturation density for regular polygons of three to ten sides, and obtain results that are consistent with previous, extrapolation-based studies.« less

  7. Precise algorithm to generate random sequential adsorption of hard polygons at saturation

    DOE PAGES

    Zhang, G.

    2018-04-30

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation'' limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles, and could thus determine the saturation density of spheres with high accuracy. Here in this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensionalmore » polygons. We also calculate the saturation density for regular polygons of three to ten sides, and obtain results that are consistent with previous, extrapolation-based studies.« less

  8. Duality quantum algorithm efficiently simulates open quantum systems

    PubMed Central

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  9. Skull removal in MR images using a modified artificial bee colony optimization algorithm.

    PubMed

    Taherdangkoo, Mohammad

    2014-01-01

    Removal of the skull from brain Magnetic Resonance (MR) images is an important preprocessing step required for other image analysis techniques such as brain tissue segmentation. In this paper, we propose a new algorithm based on the Artificial Bee Colony (ABC) optimization algorithm to remove the skull region from brain MR images. We modify the ABC algorithm using a different strategy for initializing the coordinates of scout bees and their direction of search. Moreover, we impose an additional constraint to the ABC algorithm to avoid the creation of discontinuous regions. We found that our algorithm successfully removed all bony skull from a sample of de-identified MR brain images acquired from different model scanners. The obtained results of the proposed algorithm compared with those of previously introduced well known optimization algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) demonstrate the superior results and computational performance of our algorithm, suggesting its potential for clinical applications.

  10. An EEG blind source separation algorithm based on a weak exclusion principle.

    PubMed

    Lan Ma; Blu, Thierry; Wang, William S-Y

    2016-08-01

    The question of how to separate individual brain and non-brain signals, mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings, is a significant problem in contemporary neuroscience. This study proposes and evaluates a novel EEG Blind Source Separation (BSS) algorithm based on a weak exclusion principle (WEP). The chief point in which it differs from most previous EEG BSS algorithms is that the proposed algorithm is not based upon the hypothesis that the sources are statistically independent. Our first step was to investigate algorithm performance on simulated signals which have ground truth. The purpose of this simulation is to illustrate the proposed algorithm's efficacy. The results show that the proposed algorithm has good separation performance. Then, we used the proposed algorithm to separate real EEG signals from a memory study using a revised version of Sternberg Task. The results show that the proposed algorithm can effectively separate the non-brain and brain sources.

  11. Classifying syndromes in Chinese medicine using multi-label learning algorithm with relevant features for each label.

    PubMed

    Xu, Jin; Xu, Zhao-Xia; Lu, Ping; Guo, Rui; Yan, Hai-Xia; Xu, Wen-Jie; Wang, Yi-Qin; Xia, Chun-Ming

    2016-11-01

    To develop an effective Chinese Medicine (CM) diagnostic model of coronary heart disease (CHD) and to confifirm the scientifific validity of CM theoretical basis from an algorithmic viewpoint. Four types of objective diagnostic data were collected from 835 CHD patients by using a self-developed CM inquiry scale for the diagnosis of heart problems, a tongue diagnosis instrument, a ZBOX-I pulse digital collection instrument, and the sound of an attending acquisition system. These diagnostic data was analyzed and a CM diagnostic model was established using a multi-label learning algorithm (REAL). REAL was employed to establish a Xin (Heart) qi defificiency, Xin yang defificiency, Xin yin defificiency, blood stasis, and phlegm fifive-card CM diagnostic model, which had recognition rates of 80.32%, 89.77%, 84.93%, 85.37%, and 69.90%, respectively. The multi-label learning method established using four diagnostic models based on mutual information feature selection yielded good recognition results. The characteristic model parameters were selected by maximizing the mutual information for each card type. The four diagnostic methods used to obtain information in CM, i.e., observation, auscultation and olfaction, inquiry, and pulse diagnosis, can be characterized by these parameters, which is consistent with CM theory.

  12. Optimal Wonderful Life Utility Functions in Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)

    2000-01-01

    The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.

  13. Semiannual Report, April 1, 1989 through September 30, 1989 (Institute for Computer Applications in Science and Engineering)

    DTIC Science & Technology

    1990-02-01

    noise. Tobias B. Orloff Work began on developing a high quality rendering algorithm based on the radiosity method. The algorithm is similar to...previous progressive radiosity algorithms except for the following improvements: 1. At each iteration vertex radiosities are computed using a modified scan...line approach, thus eliminating the quadratic cost associated with a ray tracing computation of vortex radiosities . 2. At each iteration the scene is

  14. New syndrome decoder for (n, 1) convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1983-01-01

    The letter presents a new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck. The new technique uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). A recursive, Viterbi-like, algorithm is developed to find the minimum weight error vector E(D). An example is given for the binary nonsystematic (2, 1) CC.

  15. CAT-PUMA: CME Arrival Time Prediction Using Machine learning Algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert

    2018-04-01

    CAT-PUMA (CME Arrival Time Prediction Using Machine learning Algorithms) quickly and accurately predicts the arrival of Coronal Mass Ejections (CMEs) of CME arrival time. The software was trained via detailed analysis of CME features and solar wind parameters using 182 previously observed geo-effective partial-/full-halo CMEs and uses algorithms of the Support Vector Machine (SVM) to make its predictions, which can be made within minutes of providing the necessary input parameters of a CME.

  16. A dynamic data source selection system for smartwatch platform.

    PubMed

    Nemati, Ebrahim; Sideris, Konstantinos; Kalantarian, Haik; Sarrafzadeh, Majid

    2016-08-01

    A novel data source selection algorithm is proposed for ambulatory activity tracking of elderly people. The algorithm introduces the concept of dynamic switching between the data collection modules (a smartwatch and a smartphone) to improve accuracy and battery life using contextual information. We show that by making offloading decisions as a function of activity, the proposed algorithm improves power consumption and accuracy of the previous work by 7 hours and 5% respectively compared to the baseline.

  17. Using Information From Prior Satellite Scans to Improve Cloud Detection Near the Day-Night Terminator

    NASA Technical Reports Server (NTRS)

    Yost, Christopher R.; Minnis, Patrick; Trepte, Qing Z.; Palikonda, Rabindra; Ayers, Jeffrey K.; Spangenberg, Doulas A.

    2012-01-01

    With geostationary satellite data it is possible to have a continuous record of diurnal cycles of cloud properties for a large portion of the globe. Daytime cloud property retrieval algorithms are typically superior to nighttime algorithms because daytime methods utilize measurements of reflected solar radiation. However, reflected solar radiation is difficult to accurately model for high solar zenith angles where the amount of incident radiation is small. Clear and cloudy scenes can exhibit very small differences in reflected radiation and threshold-based cloud detection methods have more difficulty setting the proper thresholds for accurate cloud detection. Because top-of-atmosphere radiances are typically more accurately modeled outside the terminator region, information from previous scans can help guide cloud detection near the terminator. This paper presents an algorithm that uses cloud fraction and clear and cloudy infrared brightness temperatures from previous satellite scan times to improve the performance of a threshold-based cloud mask near the terminator. Comparisons of daytime, nighttime, and terminator cloud fraction derived from Geostationary Operational Environmental Satellite (GOES) radiance measurements show that the algorithm greatly reduces the number of false cloud detections and smoothes the transition from the daytime to the nighttime clod detection algorithm. Comparisons with the Geoscience Laser Altimeter System (GLAS) data show that using this algorithm decreases the number of false detections by approximately 20 percentage points.

  18. Meta-heuristic algorithms as tools for hydrological science

    NASA Astrophysics Data System (ADS)

    Yoo, Do Guen; Kim, Joong Hoon

    2014-12-01

    In this paper, meta-heuristic optimization techniques are introduced and their applications to water resources engineering, particularly in hydrological science are introduced. In recent years, meta-heuristic optimization techniques have been introduced that can overcome the problems inherent in iterative simulations. These methods are able to find good solutions and require limited computation time and memory use without requiring complex derivatives. Simulation-based meta-heuristic methods such as Genetic algorithms (GAs) and Harmony Search (HS) have powerful searching abilities, which can occasionally overcome the several drawbacks of traditional mathematical methods. For example, HS algorithms can be conceptualized from a musical performance process and used to achieve better harmony; such optimization algorithms seek a near global optimum determined by the value of an objective function, providing a more robust determination of musical performance than can be achieved through typical aesthetic estimation. In this paper, meta-heuristic algorithms and their applications (focus on GAs and HS) in hydrological science are discussed by subject, including a review of existing literature in the field. Then, recent trends in optimization are presented and a relatively new technique such as Smallest Small World Cellular Harmony Search (SSWCHS) is briefly introduced, with a summary of promising results obtained in previous studies. As a result, previous studies have demonstrated that meta-heuristic algorithms are effective tools for the development of hydrological models and the management of water resources.

  19. Difficulties in the diagnosis of vertebral fracture in men: agreement between doctors.

    PubMed

    Fechtenbaum, Jacques; Briot, Karine; Paternotte, Simon; Audran, Maurice; Breuil, Véronique; Cortet, Bernard; Debiais, Françoise; Grados, Franck; Guggenbuhl, Pascal; Laroche, Michel; Legrand, Erick; Lespessailles, Eric; Marcelli, Christian; Orcel, Philippe; Szulc, Pawel; Thomas, Thierry; Kolta, Sami; Roux, Christian

    2014-03-01

    The agreement for vertebral fracture (VF) diagnosis in men, between doctors is poor. To assess the agreement for VF diagnosis, in men, on standard radiographs, between experts, before and after consensual workshop and establishing an algorithm. The agreement between thirteen experimented rheumatologists has been calculated in thirty osteoporotic men. Then, the group discussed in a workshop and 28 other radiograph sets of osteoporotic men with follow-up radiographs and incident confirmed VF, have been reviewed. The experts identified and hierarchised 18 pathological features of vertebral deformation and established an algorithm of VF diagnosis. Eleven experts have realized a second reading of the first set of radiographs. We compared the agreement between the 2 readings without and with the algorithm. After consensus and the use of the algorithm the results are: number of fractured patients (with at least 1 VF) according to the experts varies from 13 to 26 patients out of 30 (13 to 28 during the first reading). The agreement between the experts at the patient level is 75% (70% at the first reading). Among the 390 vertebrae analyzed by the experts, the number of VF detected varies from 18 to 59 (18 to 98 at the first reading). The agreement between the experts at the vertebral level is 92% (89% at the first reading). The algorithm allows a good improvement of the agreement, especially for 8 of the 11 experts. Discrepancies for the VF diagnosis between experts exist. The algorithm improves the agreement. Copyright © 2013 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  20. Estimating the ratios of the stationary distribution values for Markov chains modeling evolutionary algorithms.

    PubMed

    Mitavskiy, Boris; Cannings, Chris

    2009-01-01

    The evolutionary algorithm stochastic process is well-known to be Markovian. These have been under investigation in much of the theoretical evolutionary computing research. When the mutation rate is positive, the Markov chain modeling of an evolutionary algorithm is irreducible and, therefore, has a unique stationary distribution. Rather little is known about the stationary distribution. In fact, the only quantitative facts established so far tell us that the stationary distributions of Markov chains modeling evolutionary algorithms concentrate on uniform populations (i.e., those populations consisting of a repeated copy of the same individual). At the same time, knowing the stationary distribution may provide some information about the expected time it takes for the algorithm to reach a certain solution, assessment of the biases due to recombination and selection, and is of importance in population genetics to assess what is called a "genetic load" (see the introduction for more details). In the recent joint works of the first author, some bounds have been established on the rates at which the stationary distribution concentrates on the uniform populations. The primary tool used in these papers is the "quotient construction" method. It turns out that the quotient construction method can be exploited to derive much more informative bounds on ratios of the stationary distribution values of various subsets of the state space. In fact, some of the bounds obtained in the current work are expressed in terms of the parameters involved in all the three main stages of an evolutionary algorithm: namely, selection, recombination, and mutation.

  1. A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations

    PubMed Central

    Ho, ThienLuan; Oh, Seung-Rohk

    2017-01-01

    Approximate string matching with k-differences has a number of practical applications, ranging from pattern recognition to computational biology. This paper proposes an efficient memory-access algorithm for parallel approximate string matching with k-differences on Graphics Processing Units (GPUs). In the proposed algorithm, all threads in the same GPUs warp share data using warp-shuffle operation instead of accessing the shared memory. Moreover, we implement the proposed algorithm by exploiting the memory structure of GPUs to optimize its performance. Experiment results for real DNA packages revealed that the performance of the proposed algorithm and its implementation archived up to 122.64 and 1.53 times compared to that of sequential algorithm on CPU and previous parallel approximate string matching algorithm on GPUs, respectively. PMID:29016700

  2. Intra Frame Coding In Advanced Video Coding Standard (H.264) to Obtain Consistent PSNR and Reduce Bit Rate for Diagonal Down Left Mode Using Gaussian Pulse

    NASA Astrophysics Data System (ADS)

    Manjanaik, N.; Parameshachari, B. D.; Hanumanthappa, S. N.; Banu, Reshma

    2017-08-01

    Intra prediction process of H.264 video coding standard used to code first frame i.e. Intra frame of video to obtain good coding efficiency compare to previous video coding standard series. More benefit of intra frame coding is to reduce spatial pixel redundancy with in current frame, reduces computational complexity and provides better rate distortion performance. To code Intra frame it use existing process Rate Distortion Optimization (RDO) method. This method increases computational complexity, increases in bit rate and reduces picture quality so it is difficult to implement in real time applications, so the many researcher has been developed fast mode decision algorithm for coding of intra frame. The previous work carried on Intra frame coding in H.264 standard using fast decision mode intra prediction algorithm based on different techniques was achieved increased in bit rate, degradation of picture quality(PSNR) for different quantization parameters. Many previous approaches of fast mode decision algorithms on intra frame coding achieved only reduction of computational complexity or it save encoding time and limitation was increase in bit rate with loss of quality of picture. In order to avoid increase in bit rate and loss of picture quality a better approach was developed. In this paper developed a better approach i.e. Gaussian pulse for Intra frame coding using diagonal down left intra prediction mode to achieve higher coding efficiency in terms of PSNR and bitrate. In proposed method Gaussian pulse is multiplied with each 4x4 frequency domain coefficients of 4x4 sub macro block of macro block of current frame before quantization process. Multiplication of Gaussian pulse for each 4x4 integer transformed coefficients at macro block levels scales the information of the coefficients in a reversible manner. The resulting signal would turn abstract. Frequency samples are abstract in a known and controllable manner without intermixing of coefficients, it avoids picture getting bad hit for higher values of quantization parameters. The proposed work was implemented using MATLAB and JM 18.6 reference software. The proposed work measure the performance parameters PSNR, bit rate and compression of intra frame of yuv video sequences in QCIF resolution under different values of quantization parameter with Gaussian value for diagonal down left intra prediction mode. The simulation results of proposed algorithm are tabulated and compared with previous algorithm i.e. Tian et al method. The proposed algorithm achieved reduced in bit rate averagely 30.98% and maintain consistent picture quality for QCIF sequences compared to previous algorithm i.e. Tian et al method.

  3. Simulation of the Ozone Monitoring Instrument Aerosol Index Using the NASA Goddard Earth Observing System Aerosol Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Colarco, Peter R.; Gasso, Santiago; Ahn, Changwoo; Buchard, Virginie; Da Silva, Arlindo M.; Torres, Omar

    2017-01-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI aerosol retrieval algorithms, and its retrieved AI (OMAERUV AI) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600hPa and 1013.25hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  4. Regression analysis of radial artery pulse palpation as a potential tool for traditional Chinese medicine training education.

    PubMed

    Huang, Po-Yu; Lin, Wen-Chen; Chiu, Bill Yuan-Chi; Chang, Hen-Hong; Lin, Kang-Ping

    2013-12-01

    Pulse palpation was an important part of the traditional Chinese medicine (TCM) vascular examination. It is challenging for new physicians to learn to differentiate between palpations of various pulse types, due to limited comparative learning time with established masters, and so normally it takes many years to master the art. The purpose of this study was to introduce an offline TCM skill evaluation and comparison system that makes available learning of palpation without the master's presence. We record patient's radial artery pulse using an existing pressure-based pulse acquisition system, then annotate it with teachers' evaluation when palpating the same patient, assigned as likelihood of it being each pulse type, e.g. wiry, slippery, hesitant. These training data were separated into per-doctor and per-skill databases for evaluation and comparison purposes, using the following novel procedure: each database was used as training data to a panel of time-series data-mining algorithms, driven by two validation tests, with the created training models evaluated in mean-squared-error. Each validation of the panel and training data yielded an array of error terms, and we chose one to quantitatively evaluate palpation techniques, giving way to compute self consistency and mutual-similarity across different practitioners and techniques. Our experiment of two practitioners and 396 per-processing samples yielded the following: one of the physicians has much higher value of self-consistency for all tested pulse types. Also, the two physicians have high similarity in how they palpate the slipper pulse (P) type, but very dissimilar for hesitant (H) type. This system of skill comparisons may be more broadly applied in places where supervised learning algorithms can detect and use meaningful features in the data; we chose a panel of algorithms previously shown to be effective for many time-series types, but specialized algorithms may be added to improve feature-specific aspect of evaluation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Simulation of the Ozone Monitoring Instrument aerosol index using the NASA Goddard Earth Observing System aerosol reanalysis products

    NASA Astrophysics Data System (ADS)

    Colarco, Peter R.; Gassó, Santiago; Ahn, Changwoo; Buchard, Virginie; da Silva, Arlindo M.; Torres, Omar

    2017-11-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI near-UV aerosol retrieval algorithms (known as OMAERUV) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining to the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600 and 1013.25 hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial-resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  6. Improving the Numerical Stability of Fast Matrix Multiplication

    DOE PAGES

    Ballard, Grey; Benson, Austin R.; Druinsky, Alex; ...

    2016-10-04

    Fast algorithms for matrix multiplication, namely those that perform asymptotically fewer scalar operations than the classical algorithm, have been considered primarily of theoretical interest. Apart from Strassen's original algorithm, few fast algorithms have been efficiently implemented or used in practical applications. However, there exist many practical alternatives to Strassen's algorithm with varying performance and numerical properties. Fast algorithms are known to be numerically stable, but because their error bounds are slightly weaker than the classical algorithm, they are not used even in cases where they provide a performance benefit. We argue in this study that the numerical sacrifice of fastmore » algorithms, particularly for the typical use cases of practical algorithms, is not prohibitive, and we explore ways to improve the accuracy both theoretically and empirically. The numerical accuracy of fast matrix multiplication depends on properties of the algorithm and of the input matrices, and we consider both contributions independently. We generalize and tighten previous error analyses of fast algorithms and compare their properties. We discuss algorithmic techniques for improving the error guarantees from two perspectives: manipulating the algorithms, and reducing input anomalies by various forms of diagonal scaling. In conclusion, we benchmark performance and demonstrate our improved numerical accuracy.« less

  7. Computing Quantitative Characteristics of Finite-State Real-Time Systems

    DTIC Science & Technology

    1994-05-04

    Current methods for verifying real - time systems are essentially decision procedures that establish whether the system model satisfies a given...specification. We present a general method for computing quantitative information about finite-state real - time systems . We have developed algorithms that...our technique can be extended to a more general representation of real - time systems , namely, timed transition graphs. The algorithms presented in this

  8. Sigint Application for Polymorphous Computing Architecture (PCA): Wideband DF

    DTIC Science & Technology

    2006-08-01

    Polymorphous Computing Architecture (PCA) program as stated by Robert Graybill is to Develop the computing foundation for agile systems by establishing...ubiquitous MUSIC algorithm rely upon an underlying narrowband signal model [8]. In this case, narrowband means that the signal bandwidth is less than...a wideband DF algorithm is needed to compensate for this model inadequacy. Among the various wideband DF techniques available, the coherent signal

  9. Development and validation of an algorithm for laser application in wound treatment 1

    PubMed Central

    da Cunha, Diequison Rite; Salomé, Geraldo Magela; Massahud, Marcelo Renato; Mendes, Bruno; Ferreira, Lydia Masako

    2017-01-01

    ABSTRACT Objective: To develop and validate an algorithm for laser wound therapy. Method: Methodological study and literature review. For the development of the algorithm, a review was performed in the Health Sciences databases of the past ten years. The algorithm evaluation was performed by 24 participants, nurses, physiotherapists, and physicians. For data analysis, the Cronbach’s alpha coefficient and the chi-square test for independence was used. The level of significance of the statistical test was established at 5% (p<0.05). Results: The professionals’ responses regarding the facility to read the algorithm indicated: 41.70%, great; 41.70%, good; 16.70%, regular. With regard the algorithm being sufficient for supporting decisions related to wound evaluation and wound cleaning, 87.5% said yes to both questions. Regarding the participants’ opinion that the algorithm contained enough information to support their decision regarding the choice of laser parameters, 91.7% said yes. The questionnaire presented reliability using the Cronbach’s alpha coefficient test (α = 0.962). Conclusion: The developed and validated algorithm showed reliability for evaluation, wound cleaning, and use of laser therapy in wounds. PMID:29211197

  10. Post-processing interstitialcy diffusion from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Bhardwaj, U.; Bukkuru, S.; Warrier, M.

    2016-01-01

    An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures is studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms.

  11. Mechanisms of Undersensing by a Noise Detection Algorithm That Utilizes Far-Field Electrograms With Near-Field Bandpass Filtering.

    PubMed

    Koneru, Jayanthi N; Swerdlow, Charles D; Ploux, Sylvain; Sharma, Parikshit S; Kaszala, Karoly; Tan, Alex Y; Huizar, Jose F; Vijayaraman, Pugazhendi; Kenigsberg, David; Ellenbogen, Kenneth A

    2017-02-01

    Implantable cardioverter defibrillators (ICDs) must establish a balance between delivering appropriate shocks for ventricular tachyarrhythmias and withholding inappropriate shocks for lead-related oversensing ("noise"). To improve the specificity of ICD therapy, manufacturers have developed proprietary algorithms that detect lead noise. The SecureSense TM RV Lead Noise discrimination (St. Jude Medical, St. Paul, MN, USA) algorithm is designed to differentiate oversensing due to lead failure from ventricular tachyarrhythmias and withhold therapies in the presence of sustained lead-related oversensing. We report 5 patients in whom appropriate ICD therapy was withheld due to the operation of the SecureSense algorithm and explain the mechanism for inhibition of therapy in each case. Limitations of algorithms designed to increase ICD therapy specificity, especially for the SecureSense algorithm, are analyzed. The SecureSense algorithm can withhold appropriate therapies for ventricular arrhythmias due to design and programming limitations. Electrophysiologists should have a thorough understanding of the SecureSense algorithm before routinely programming it and understand the implications for ventricular arrhythmia misclassification. © 2016 Wiley Periodicals, Inc.

  12. Post-processing interstitialcy diffusion from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, U., E-mail: haptork@gmail.com; Bukkuru, S.; Warrier, M.

    2016-01-15

    An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures ismore » studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms. -- Graphical abstract:.« less

  13. Morphology vs morphokinetics: a retrospective comparison of inter-observer and intra-observer agreement between embryologists on blastocysts with known implantation outcome.

    PubMed

    Adolfsson, Emma; Andershed, Anna Nowosad

    2018-06-18

    Our primary aim was to compare the morphology and morphokinetics on inter- and intra-observer agreement for blastocyst with known implantation outcome. Our secondary aim was to validate the morphokinetic parameters' ability to predict pregnancy using a previous published selection algorithm, and to compare this to standard morphology assessments. Two embryologists made independent blinded annotations on two occasions using time-lapse images and morphology evaluations using the Gardner Schoolcraft criteria of 99 blastocysts with known implantation outcome. Inter- and intra-observer agreement was calculated and compared using the two methods. The embryos were grouped based on their morphological score, and on their morphokinetic class using a previous published selection algorithm. The implantation rates for each group was calculated and compared. There was moderate agreement for morphology, with agreement on the same embryo score in 55 of 99 cases. The highest agreement rate was found for expansion grade, followed by trophectoderm and inner cell mass. Correlation with pregnancy was inconclusive. For morphokinetics, almost perfect agreement was found for early and late embryo development events, and strong agreement for day-2 and day-3 events. When applying the selection algorithm, the embryo distributions were uneven, and correlation to pregnancy was inconclusive. Time-lapse annotation is consistent and accurate, but our external validation of a previously published selection algorithm was unsuccessful.

  14. Identification of genes related to proliferative diabetic retinopathy through RWR algorithm based on protein-protein interaction network.

    PubMed

    Zhang, Jian; Suo, Yan; Liu, Min; Xu, Xun

    2018-06-01

    Proliferative diabetic retinopathy (PDR) is one of the most common complications of diabetes and can lead to blindness. Proteomic studies have provided insight into the pathogenesis of PDR and a series of PDR-related genes has been identified but are far from fully characterized because the experimental methods are expensive and time consuming. In our previous study, we successfully identified 35 candidate PDR-related genes through the shortest-path algorithm. In the current study, we developed a computational method using the random walk with restart (RWR) algorithm and the protein-protein interaction (PPI) network to identify potential PDR-related genes. After some possible genes were obtained by the RWR algorithm, a three-stage filtration strategy, which includes the permutation test, interaction test and enrichment test, was applied to exclude potential false positives caused by the structure of PPI network, the poor interaction strength, and the limited similarity on gene ontology (GO) terms and biological pathways. As a result, 36 candidate genes were discovered by the method which was different from the 35 genes reported in our previous study. A literature review showed that 21 of these 36 genes are supported by previous experiments. These findings suggest the robustness and complementary effects of both our efforts using different computational methods, thus providing an alternative method to study PDR pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Representations of mechanical assembly sequences

    NASA Technical Reports Server (NTRS)

    Homem De Mello, Luiz S.; Sanderson, Arthur C.

    1991-01-01

    Five types of representations for assembly sequences are reviewed: the directed graph of feasible assembly sequences, the AND/OR graph of feasible assembly sequences, the set of establishment conditions, and two types of sets of precedence relationships. (precedence relationships between the establishment of one connection between parts and the establishment of another connection, and precedence relationships between the establishment of one connection and states of the assembly process). The mappings of one representation into the others are established. The correctness and completeness of these representations are established. The results presented are needed in the proof of correctness and completeness of algorithms for the generation of mechanical assembly sequences.

  16. Medical management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes.

    PubMed

    Nathan, D M; Buse, J B; Davidson, M B; Ferrannini, E; Holman, R R; Sherwin, R; Zinman, B

    2009-01-01

    The consensus algorithm for the medical management of type 2 diabetes was published in August 2006 with the expectation that it would be updated, based on the availability of new interventions and new evidence to establish their clinical role. The authors continue to endorse the principles used to develop the algorithm and its major features. We are sensitive to the risks of changing the algorithm cavalierly or too frequently, without compelling new information. An update to the consensus algorithm published in January 2008 specifically addressed safety issues surrounding the thiazolidinediones. In this revision, we focus on the new classes of medications that now have more clinical data and experience.

  17. Research on aviation unsafe incidents classification with improved TF-IDF algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yanhua; Zhang, Zhiyuan; Huo, Weigang

    2016-05-01

    The text content of Aviation Safety Confidential Reports contains a large number of valuable information. Term frequency-inverse document frequency algorithm is commonly used in text analysis, but it does not take into account the sequential relationship of the words in the text and its role in semantic expression. According to the seven category labels of civil aviation unsafe incidents, aiming at solving the problems of TF-IDF algorithm, this paper improved TF-IDF algorithm based on co-occurrence network; established feature words extraction and words sequential relations for classified incidents. Aviation domain lexicon was used to improve the accuracy rate of classification. Feature words network model was designed for multi-documents unsafe incidents classification, and it was used in the experiment. Finally, the classification accuracy of improved algorithm was verified by the experiments.

  18. Infrastructure system restoration planning using evolutionary algorithms

    USGS Publications Warehouse

    Corns, Steven; Long, Suzanna K.; Shoberg, Thomas G.

    2016-01-01

    This paper presents an evolutionary algorithm to address restoration issues for supply chain interdependent critical infrastructure. Rapid restoration of infrastructure after a large-scale disaster is necessary to sustaining a nation's economy and security, but such long-term restoration has not been investigated as thoroughly as initial rescue and recovery efforts. A model of the Greater Saint Louis Missouri area was created and a disaster scenario simulated. An evolutionary algorithm is used to determine the order in which the bridges should be repaired based on indirect costs. Solutions were evaluated based on the reduction of indirect costs and the restoration of transportation capacity. When compared to a greedy algorithm, the evolutionary algorithm solution reduced indirect costs by approximately 12.4% by restoring automotive travel routes for workers and re-establishing the flow of commodities across the three rivers in the Saint Louis area.

  19. GraDit: graph-based data repair algorithm for multiple data edits rule violations

    NASA Astrophysics Data System (ADS)

    Ode Zuhayeni Madjida, Wa; Gusti Bagus Baskara Nugraha, I.

    2018-03-01

    Constraint-based data cleaning captures data violation to a set of rule called data quality rules. The rules consist of integrity constraint and data edits. Structurally, they are similar, where the rule contain left hand side and right hand side. Previous research proposed a data repair algorithm for integrity constraint violation. The algorithm uses undirected hypergraph as rule violation representation. Nevertheless, this algorithm can not be applied for data edits because of different rule characteristics. This study proposed GraDit, a repair algorithm for data edits rule. First, we use bipartite-directed hypergraph as model representation of overall defined rules. These representation is used for getting interaction between violation rules and clean rules. On the other hand, we proposed undirected graph as violation representation. Our experimental study showed that algorithm with undirected graph as violation representation model gave better data quality than algorithm with undirected hypergraph as representation model.

  20. Zero-block mode decision algorithm for H.264/AVC.

    PubMed

    Lee, Yu-Ming; Lin, Yinyi

    2009-03-01

    In the previous paper , we proposed a zero-block intermode decision algorithm for H.264 video coding based upon the number of zero-blocks of 4 x 4 DCT coefficients between the current macroblock and the co-located macroblock. The proposed algorithm can achieve significant improvement in computation, but the computation performance is limited for high bit-rate coding. To improve computation efficiency, in this paper, we suggest an enhanced zero-block decision algorithm, which uses an early zero-block detection method to compute the number of zero-blocks instead of direct DCT and quantization (DCT/Q) calculation and incorporates two adequate decision methods into semi-stationary and nonstationary regions of a video sequence. In addition, the zero-block decision algorithm is also applied to the intramode prediction in the P frame. The enhanced zero-block decision algorithm brings out a reduction of average 27% of total encoding time compared to the zero-block decision algorithm.

  1. Optimization and experimental realization of the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Yalçınkaya, I.; Gedik, Z.

    2017-12-01

    The quantum permutation algorithm provides computational speed-up over classical algorithms for determining the parity of a given cyclic permutation. For its n -qubit implementations, the number of required quantum gates scales quadratically with n due to the quantum Fourier transforms included. We show here for the n -qubit case that the algorithm can be simplified so that it requires only O (n ) quantum gates, which theoretically reduces the complexity of the implementation. To test our results experimentally, we utilize IBM's 5-qubit quantum processor to realize the algorithm by using the original and simplified recipes for the 2-qubit case. It turns out that the latter results in a significantly higher success probability which allows us to verify the algorithm more precisely than the previous experimental realizations. We also verify the algorithm for the first time for the 3-qubit case with a considerable success probability by taking the advantage of our simplified scheme.

  2. Early Obstacle Detection and Avoidance for All to All Traffic Pattern in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huc, Florian; Jarry, Aubin; Leone, Pierre; Moraru, Luminita; Nikoletseas, Sotiris; Rolim, Jose

    This paper deals with early obstacles recognition in wireless sensor networks under various traffic patterns. In the presence of obstacles, the efficiency of routing algorithms is increased by voluntarily avoiding some regions in the vicinity of obstacles, areas which we call dead-ends. In this paper, we first propose a fast convergent routing algorithm with proactive dead-end detection together with a formal definition and description of dead-ends. Secondly, we present a generalization of this algorithm which improves performances in all to many and all to all traffic patterns. In a third part we prove that this algorithm produces paths that are optimal up to a constant factor of 2π + 1. In a fourth part we consider the reactive version of the algorithm which is an extension of a previously known early obstacle detection algorithm. Finally we give experimental results to illustrate the efficiency of our algorithms in different scenarios.

  3. The efficiency of average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling in identifying homogeneous precipitation catchments

    NASA Astrophysics Data System (ADS)

    Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan

    2018-04-01

    Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.

  4. Analysis of basic clustering algorithms for numerical estimation of statistical averages in biomolecules.

    PubMed

    Anandakrishnan, Ramu; Onufriev, Alexey

    2008-03-01

    In statistical mechanics, the equilibrium properties of a physical system of particles can be calculated as the statistical average over accessible microstates of the system. In general, these calculations are computationally intractable since they involve summations over an exponentially large number of microstates. Clustering algorithms are one of the methods used to numerically approximate these sums. The most basic clustering algorithms first sub-divide the system into a set of smaller subsets (clusters). Then, interactions between particles within each cluster are treated exactly, while all interactions between different clusters are ignored. These smaller clusters have far fewer microstates, making the summation over these microstates, tractable. These algorithms have been previously used for biomolecular computations, but remain relatively unexplored in this context. Presented here, is a theoretical analysis of the error and computational complexity for the two most basic clustering algorithms that were previously applied in the context of biomolecular electrostatics. We derive a tight, computationally inexpensive, error bound for the equilibrium state of a particle computed via these clustering algorithms. For some practical applications, it is the root mean square error, which can be significantly lower than the error bound, that may be more important. We how that there is a strong empirical relationship between error bound and root mean square error, suggesting that the error bound could be used as a computationally inexpensive metric for predicting the accuracy of clustering algorithms for practical applications. An example of error analysis for such an application-computation of average charge of ionizable amino-acids in proteins-is given, demonstrating that the clustering algorithm can be accurate enough for practical purposes.

  5. Mining User Dwell Time for Personalized Web Search Re-Ranking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songhua; Jiang, Hao; Lau, Francis

    We propose a personalized re-ranking algorithm through mining user dwell times derived from a user's previously online reading or browsing activities. We acquire document level user dwell times via a customized web browser, from which we then infer conceptword level user dwell times in order to understand a user's personal interest. According to the estimated concept word level user dwell times, our algorithm can estimate a user's potential dwell time over a new document, based on which personalized webpage re-ranking can be carried out. We compare the rankings produced by our algorithm with rankings generated by popular commercial search enginesmore » and a recently proposed personalized ranking algorithm. The results clearly show the superiority of our method. In this paper, we propose a new personalized webpage ranking algorithmthrough mining dwell times of a user. We introduce a quantitative model to derive concept word level user dwell times from the observed document level user dwell times. Once we have inferred a user's interest over the set of concept words the user has encountered in previous readings, we can then predict the user's potential dwell time over a new document. Such predicted user dwell time allows us to carry out personalized webpage re-ranking. To explore the effectiveness of our algorithm, we measured the performance of our algorithm under two conditions - one with a relatively limited amount of user dwell time data and the other with a doubled amount. Both evaluation cases put our algorithm for generating personalized webpage rankings to satisfy a user's personal preference ahead of those by Google, Yahoo!, and Bing, as well as a recent personalized webpage ranking algorithm.« less

  6. Clinical effectiveness of a Bayesian algorithm for the diagnosis and management of heparin-induced thrombocytopenia.

    PubMed

    Raschke, R A; Gallo, T; Curry, S C; Whiting, T; Padilla-Jones, A; Warkentin, T E; Puri, A

    2017-08-01

    Essentials We previously published a diagnostic algorithm for heparin-induced thrombocytopenia (HIT). In this study, we validated the algorithm in an independent large healthcare system. The accuracy was 98%, sensitivity 82% and specificity 99%. The algorithm has potential to improve accuracy and efficiency in the diagnosis of HIT. Background Heparin-induced thrombocytopenia (HIT) is a life-threatening drug reaction caused by antiplatelet factor 4/heparin (anti-PF4/H) antibodies. Commercial tests to detect these antibodies have suboptimal operating characteristics. We previously developed a diagnostic algorithm for HIT that incorporated 'four Ts' (4Ts) scoring and a stratified interpretation of an anti-PF4/H enzyme-linked immunosorbent assay (ELISA) and yielded a discriminant accuracy of 0.97 (95% confidence interval [CI], 0.93-1.00). Objectives The purpose of this study was to validate the algorithm in an independent patient population and quantitate effects that algorithm adherence could have on clinical care. Methods A retrospective cohort comprised patients who had undergone anti-PF4/H ELISA and serotonin release assay (SRA) testing in our healthcare system from 2010 to 2014. We determined the algorithm recommendation for each patient, compared recommendations with the clinical care received, and enumerated consequences of discrepancies. Operating characteristics were calculated for algorithm recommendations using SRA as the reference standard. Results Analysis was performed on 181 patients, 10 of whom were ruled in for HIT. The algorithm accurately stratified 98% of patients (95% CI, 95-99%), ruling out HIT in 158, ruling in HIT in 10 and recommending an SRA in 13 patients. Algorithm adherence would have obviated 165 SRAs and prevented 30 courses of unnecessary antithrombotic therapy for HIT. Diagnostic sensitivity was 0.82 (95% CI, 0.48-0.98), specificity 0.99 (95% CI, 0.97-1.00), PPV 0.90 (95% CI, 0.56-0.99) and NPV 0.99 (95% CI, 0.96-1.00). Conclusions An algorithm incorporating 4Ts scoring and a stratified interpretation of the anti-PF4/H ELISA has good operating characteristics and the potential to improve management of suspected HIT patients. © 2017 International Society on Thrombosis and Haemostasis.

  7. Composeable Chat over Low-Bandwidth Intermittent Communication Links

    DTIC Science & Technology

    2007-04-01

    Compression (STC), introduced in this report, is a data compression algorithm intended to compress alphanumeric... Ziv - Lempel coding, the grandfather of most modern general-purpose file compression programs, watches for input symbol sequences that have previously... data . This section applies these techniques to create a new compression algorithm called Small Text Compression . Various sequence compression

  8. Measuring Disorientation Based on the Needleman-Wunsch Algorithm

    ERIC Educational Resources Information Center

    Güyer, Tolga; Atasoy, Bilal; Somyürek, Sibel

    2015-01-01

    This study offers a new method to measure navigation disorientation in web based systems which is powerful learning medium for distance and open education. The Needleman-Wunsch algorithm is used to measure disorientation in a more precise manner. The process combines theoretical and applied knowledge from two previously distinct research areas,…

  9. Wireless Intrusion Detection

    DTIC Science & Technology

    2007-03-01

    32 4.4 Algorithm Pseudo - Code ...................................................................................34 4.5 WIND Interface With a...difference estimates of xc temporal derivatives, or by using a polynomial fit to the previous values of xc. 34 4.4 ALGORITHM PSEUDO - CODE Pseudo ...Phase Shift Keying DQPSK Differential Quadrature Phase Shift Keying EVM Error Vector Magnitude FFT Fast Fourier Transform FPGA Field Programmable

  10. Optical Detection of Degraded Therapeutic Proteins.

    PubMed

    Herrington, William F; Singh, Gajendra P; Wu, Di; Barone, Paul W; Hancock, William; Ram, Rajeev J

    2018-03-23

    The quality of therapeutic proteins such as hormones, subunit and conjugate vaccines, and antibodies is critical to the safety and efficacy of modern medicine. Identifying malformed proteins at the point-of-care can prevent adverse immune reactions in patients; this is of special concern when there is an insecure supply chain resulting in the delivery of degraded, or even counterfeit, drug product. Identification of degraded protein, for example human growth hormone, is demonstrated by applying automated anomaly detection algorithms. Detection of the degraded protein differs from previous applications of machine-learning and classification to spectral analysis: only example spectra of genuine, high-quality drug products are used to construct the classifier. The algorithm is tested on Raman spectra acquired on protein dilutions typical of formulated drug product and at sample volumes of 25 µL, below the typical overfill (waste) volumes present in vials of injectable drug product. The algorithm is demonstrated to correctly classify anomalous recombinant human growth hormone (rhGH) with 92% sensitivity and 98% specificity even when the algorithm has only previously encountered high-quality drug product.

  11. Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data

    NASA Astrophysics Data System (ADS)

    Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho

    2018-05-01

    We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.

  12. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  13. Approximation algorithms for the min-power symmetric connectivity problem

    NASA Astrophysics Data System (ADS)

    Plotnikov, Roman; Erzin, Adil; Mladenovic, Nenad

    2016-10-01

    We consider the NP-hard problem of synthesis of optimal spanning communication subgraph in a given arbitrary simple edge-weighted graph. This problem occurs in the wireless networks while minimizing the total transmission power consumptions. We propose several new heuristics based on the variable neighborhood search metaheuristic for the approximation solution of the problem. We have performed a numerical experiment where all proposed algorithms have been executed on the randomly generated test samples. For these instances, on average, our algorithms outperform the previously known heuristics.

  14. Effect of Fourier transform on the streaming in quantum lattice gas algorithms

    NASA Astrophysics Data System (ADS)

    Oganesov, Armen; Vahala, George; Vahala, Linda; Soe, Min

    2018-04-01

    All our previous quantum lattice gas algorithms for nonlinear physics have approximated the kinetic energy operator by streaming sequences to neighboring lattice sites. Here, the kinetic energy can be treated to all orders by Fourier transforming the kinetic energy operator with interlaced Dirac-based unitary collision operators. Benchmarking against exact solutions for the 1D nonlinear Schrodinger equation shows an extended range of parameters (soliton speeds and amplitudes) over the Dirac-based near-lattice-site streaming quantum algorithm.

  15. The Correlation Fractal Dimension of Complex Networks

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Liu, Zhenzhen; Wang, Mogei

    2013-05-01

    The fractality of complex networks is studied by estimating the correlation dimensions of the networks. Comparing with the previous algorithms of estimating the box dimension, our algorithm achieves a significant reduction in time complexity. For four benchmark cases tested, that is, the Escherichia coli (E. Coli) metabolic network, the Homo sapiens protein interaction network (H. Sapiens PIN), the Saccharomyces cerevisiae protein interaction network (S. Cerevisiae PIN) and the World Wide Web (WWW), experiments are provided to demonstrate the validity of our algorithm.

  16. Algorithm comparison for schedule optimization in MR fingerprinting.

    PubMed

    Cohen, Ouri; Rosen, Matthew S

    2017-09-01

    In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom schedule. In previous work, we have shown that maximizing the discrimination between different tissue types by optimizing the acquisition schedule allows reductions in the number of measurements required. The ideal optimization algorithm for this application remains unknown, however. In this work we examine several different optimization algorithms to determine the one best suited for optimizing MR Fingerprinting acquisition schedules. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Action Recommendation for Cyber Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sutanay; Rodriguez, Luke R.; Curtis, Darren S.

    2015-09-01

    This paper presents an unifying graph-based model for representing the infrastructure, behavior and missions of an enterprise. We describe how the model can be used to achieve resiliency against a wide class of failures and attacks. We introduce an algorithm for recommending resilience establishing actions based on dynamic updates to the models. Without loss of generality, we show the effectiveness of the algorithm for preserving latency based quality of service (QoS). Our models and the recommendation algorithms are implemented in a software framework that we seek to release as an open source framework for simulating resilient cyber systems.

  18. Study on store-space assignment based on logistic AGV in e-commerce goods to person picking pattern

    NASA Astrophysics Data System (ADS)

    Xu, Lijuan; Zhu, Jie

    2017-10-01

    This paper studied on the store-space assignment based on logistic AGV in E-commerce goods to person picking pattern, and established the store-space assignment model based on the lowest picking cost, and design for store-space assignment algorithm after the cluster analysis based on similarity coefficient. And then through the example analysis, compared the picking cost between store-space assignment algorithm this paper design and according to item number and storage according to ABC classification allocation, and verified the effectiveness of the design of the store-space assignment algorithm.

  19. Fault Tolerant Frequent Pattern Mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shohdy, Sameh; Vishnu, Abhinav; Agrawal, Gagan

    FP-Growth algorithm is a Frequent Pattern Mining (FPM) algorithm that has been extensively used to study correlations and patterns in large scale datasets. While several researchers have designed distributed memory FP-Growth algorithms, it is pivotal to consider fault tolerant FP-Growth, which can address the increasing fault rates in large scale systems. In this work, we propose a novel parallel, algorithm-level fault-tolerant FP-Growth algorithm. We leverage algorithmic properties and MPI advanced features to guarantee an O(1) space complexity, achieved by using the dataset memory space itself for checkpointing. We also propose a recovery algorithm that can use in-memory and disk-based checkpointing,more » though in many cases the recovery can be completed without any disk access, and incurring no memory overhead for checkpointing. We evaluate our FT algorithm on a large scale InfiniBand cluster with several large datasets using up to 2K cores. Our evaluation demonstrates excellent efficiency for checkpointing and recovery in comparison to the disk-based approach. We have also observed 20x average speed-up in comparison to Spark, establishing that a well designed algorithm can easily outperform a solution based on a general fault-tolerant programming model.« less

  20. A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China.

    PubMed

    Chen, Jun; Quan, Wenting; Cui, Tingwei

    2015-01-01

    In this study, two sample semi-analytical algorithms and one new unified multi-band semi-analytical algorithm (UMSA) for estimating chlorophyll-a (Chla) concentration were constructed by specifying optimal wavelengths. The three sample semi-analytical algorithms, including the three-band semi-analytical algorithm (TSA), four-band semi-analytical algorithm (FSA), and UMSA algorithm, were calibrated and validated by the dataset collected in the Yellow River Estuary between September 1 and 10, 2009. By comparing of the accuracy of assessment of TSA, FSA, and UMSA algorithms, it was found that the UMSA algorithm had a superior performance in comparison with the two other algorithms, TSA and FSA. Using the UMSA algorithm in retrieving Chla concentration in the Yellow River Estuary decreased by 25.54% NRMSE (normalized root mean square error) when compared with the FSA algorithm, and 29.66% NRMSE in comparison with the TSA algorithm. These are very significant improvements upon previous methods. Additionally, the study revealed that the TSA and FSA algorithms are merely more specific forms of the UMSA algorithm. Owing to the special form of the UMSA algorithm, if the same bands were used for both the TSA and UMSA algorithms or FSA and UMSA algorithms, the UMSA algorithm would theoretically produce superior results in comparison with the TSA and FSA algorithms. Thus, good results may also be produced if the UMSA algorithm were to be applied for predicting Chla concentration for datasets of Gitelson et al. (2008) and Le et al. (2009).

  1. A genetic algorithm based global search strategy for population pharmacokinetic/pharmacodynamic model selection

    PubMed Central

    Sale, Mark; Sherer, Eric A

    2015-01-01

    The current algorithm for selecting a population pharmacokinetic/pharmacodynamic model is based on the well-established forward addition/backward elimination method. A central strength of this approach is the opportunity for a modeller to continuously examine the data and postulate new hypotheses to explain observed biases. This algorithm has served the modelling community well, but the model selection process has essentially remained unchanged for the last 30 years. During this time, more robust approaches to model selection have been made feasible by new technology and dramatic increases in computation speed. We review these methods, with emphasis on genetic algorithm approaches and discuss the role these methods may play in population pharmacokinetic/pharmacodynamic model selection. PMID:23772792

  2. LMI-Based Generation of Feedback Laws for a Robust Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Carson, John M., III

    2007-01-01

    This technical note provides a mathematical proof of Corollary 1 from the paper 'A Nonlinear Model Predictive Control Algorithm with Proven Robustness and Resolvability' that appeared in the 2006 Proceedings of the American Control Conference. The proof was omitted for brevity in the publication. The paper was based on algorithms developed for the FY2005 R&TD (Research and Technology Development) project for Small-body Guidance, Navigation, and Control [2].The framework established by the Corollary is for a robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems that guarantees the resolvability of the associated nite-horizon optimal control problem in a receding-horizon implementation. Additional details of the framework are available in the publication.

  3. A Seed-Based Plant Propagation Algorithm: The Feeding Station Model

    PubMed Central

    Salhi, Abdellah

    2015-01-01

    The seasonal production of fruit and seeds is akin to opening a feeding station, such as a restaurant. Agents coming to feed on the fruit are like customers attending the restaurant; they arrive at a certain rate and get served at a certain rate following some appropriate processes. The same applies to birds and animals visiting and feeding on ripe fruit produced by plants such as the strawberry plant. This phenomenon underpins the seed dispersion of the plants. Modelling it as a queuing process results in a seed-based search/optimisation algorithm. This variant of the Plant Propagation Algorithm is described, analysed, tested on nontrivial problems, and compared with well established algorithms. The results are included. PMID:25821858

  4. Data Mining Citizen Science Results

    NASA Astrophysics Data System (ADS)

    Borne, K. D.

    2012-12-01

    Scientific discovery from big data is enabled through multiple channels, including data mining (through the application of machine learning algorithms) and human computation (commonly implemented through citizen science tasks). We will describe the results of new data mining experiments on the results from citizen science activities. Discovering patterns, trends, and anomalies in data are among the powerful contributions of citizen science. Establishing scientific algorithms that can subsequently re-discover the same types of patterns, trends, and anomalies in automatic data processing pipelines will ultimately result from the transformation of those human algorithms into computer algorithms, which can then be applied to much larger data collections. Scientific discovery from big data is thus greatly amplified through the marriage of data mining with citizen science.

  5. Research on cutting path optimization of sheet metal parts based on ant colony algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Z. Y.; Ling, H.; Li, L.; Wu, L. H.; Liu, N. B.

    2017-09-01

    In view of the disadvantages of the current cutting path optimization methods of sheet metal parts, a new method based on ant colony algorithm was proposed in this paper. The cutting path optimization problem of sheet metal parts was taken as the research object. The essence and optimization goal of the optimization problem were presented. The traditional serial cutting constraint rule was improved. The cutting constraint rule with cross cutting was proposed. The contour lines of parts were discretized and the mathematical model of cutting path optimization was established. Thus the problem was converted into the selection problem of contour lines of parts. Ant colony algorithm was used to solve the problem. The principle and steps of the algorithm were analyzed.

  6. Motion artifact removal algorithm by ICA for e-bra: a women ECG measurement system

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.

    2013-04-01

    Wearable ECG(ElectroCardioGram) measurement systems have increasingly been developing for people who suffer from CVD(CardioVascular Disease) and have very active lifestyles. Especially, in the case of female CVD patients, several abnormal CVD symptoms are accompanied with CVDs. Therefore, monitoring women's ECG signal is a significant diagnostic method to prevent from sudden heart attack. The E-bra ECG measurement system from our previous work provides more convenient option for women than Holter monitor system. The e-bra system was developed with a motion artifact removal algorithm by using an adaptive filter with LMS(least mean square) and a wandering noise baseline detection algorithm. In this paper, ICA(independent component analysis) algorithms are suggested to remove motion artifact factor for the e-bra system. Firstly, the ICA algorithms are developed with two kinds of statistical theories: Kurtosis, Endropy and evaluated by performing simulations with a ECG signal created by sgolayfilt function of MATLAB, a noise signal including 0.4Hz, 1.1Hz and 1.9Hz, and a weighed vector W estimated by kurtosis or entropy. A correlation value is shown as the degree of similarity between the created ECG signal and the estimated new ECG signal. In the real time E-Bra system, two pseudo signals are extracted by multiplying with a random weighted vector W, the measured ECG signal from E-bra system, and the noise component signal by noise extraction algorithm from our previous work. The suggested ICA algorithm basing on kurtosis or entropy is used to estimate the new ECG signal Y without noise component.

  7. Visual identification and similarity measures used for on-line motion planning of autonomous robots in unknown environments

    NASA Astrophysics Data System (ADS)

    Martínez, Fredy; Martínez, Fernando; Jacinto, Edwar

    2017-02-01

    In this paper we propose an on-line motion planning strategy for autonomous robots in dynamic and locally observable environments. In this approach, we first visually identify geometric shapes in the environment by filtering images. Then, an ART-2 network is used to establish the similarity between patterns. The proposed algorithm allows that a robot establish its relative location in the environment, and define its navigation path based on images of the environment and its similarity to reference images. This is an efficient and minimalist method that uses the similarity of landmark view patterns to navigate to the desired destination. Laboratory tests on real prototypes demonstrate the performance of the algorithm.

  8. A pleiotropy-informed Bayesian false discovery rate adapted to a shared control design finds new disease associations from GWAS summary statistics.

    PubMed

    Liley, James; Wallace, Chris

    2015-02-01

    Genome-wide association studies (GWAS) have been successful in identifying single nucleotide polymorphisms (SNPs) associated with many traits and diseases. However, at existing sample sizes, these variants explain only part of the estimated heritability. Leverage of GWAS results from related phenotypes may improve detection without the need for larger datasets. The Bayesian conditional false discovery rate (cFDR) constitutes an upper bound on the expected false discovery rate (FDR) across a set of SNPs whose p values for two diseases are both less than two disease-specific thresholds. Calculation of the cFDR requires only summary statistics and have several advantages over traditional GWAS analysis. However, existing methods require distinct control samples between studies. Here, we extend the technique to allow for some or all controls to be shared, increasing applicability. Several different SNP sets can be defined with the same cFDR value, and we show that the expected FDR across the union of these sets may exceed expected FDR in any single set. We describe a procedure to establish an upper bound for the expected FDR among the union of such sets of SNPs. We apply our technique to pairwise analysis of p values from ten autoimmune diseases with variable sharing of controls, enabling discovery of 59 SNP-disease associations which do not reach GWAS significance after genomic control in individual datasets. Most of the SNPs we highlight have previously been confirmed using replication studies or larger GWAS, a useful validation of our technique; we report eight SNP-disease associations across five diseases not previously declared. Our technique extends and strengthens the previous algorithm, and establishes robust limits on the expected FDR. This approach can improve SNP detection in GWAS, and give insight into shared aetiology between phenotypically related conditions.

  9. A proof of the DBRF-MEGN method, an algorithm for deducing minimum equivalent gene networks

    PubMed Central

    2011-01-01

    Background We previously developed the DBRF-MEGN (difference-based regulation finding-minimum equivalent gene network) method, which deduces the most parsimonious signed directed graphs (SDGs) consistent with expression profiles of single-gene deletion mutants. However, until the present study, we have not presented the details of the method's algorithm or a proof of the algorithm. Results We describe in detail the algorithm of the DBRF-MEGN method and prove that the algorithm deduces all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants. Conclusions The DBRF-MEGN method provides all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants. PMID:21699737

  10. Theoretical Bounds of Direct Binary Search Halftoning.

    PubMed

    Liao, Jan-Ray

    2015-11-01

    Direct binary search (DBS) produces the images of the best quality among half-toning algorithms. The reason is that it minimizes the total squared perceived error instead of using heuristic approaches. The search for the optimal solution involves two operations: (1) toggle and (2) swap. Both operations try to find the binary states for each pixel to minimize the total squared perceived error. This error energy minimization leads to a conjecture that the absolute value of the filtered error after DBS converges is bounded by half of the peak value of the autocorrelation filter. However, a proof of the bound's existence has not yet been found. In this paper, we present a proof that shows the bound existed as conjectured under the condition that at least one swap occurs after toggle converges. The theoretical analysis also indicates that a swap with a pixel further away from the center of the autocorrelation filter results in a tighter bound. Therefore, we propose a new DBS algorithm which considers toggle and swap separately, and the swap operations are considered in the order from the edge to the center of the filter. Experimental results show that the new algorithm is more efficient than the previous algorithm and can produce half-toned images of the same quality as the previous algorithm.

  11. Constant-pressure nested sampling with atomistic dynamics

    NASA Astrophysics Data System (ADS)

    Baldock, Robert J. N.; Bernstein, Noam; Salerno, K. Michael; Pártay, Lívia B.; Csányi, Gábor

    2017-10-01

    The nested sampling algorithm has been shown to be a general method for calculating the pressure-temperature-composition phase diagrams of materials. While the previous implementation used single-particle Monte Carlo moves, these are inefficient for condensed systems with general interactions where single-particle moves cannot be evaluated faster than the energy of the whole system. Here we enhance the method by using all-particle moves: either Galilean Monte Carlo or the total enthalpy Hamiltonian Monte Carlo algorithm, introduced in this paper. We show that these algorithms enable the determination of phase transition temperatures with equivalent accuracy to the previous method at 1 /N of the cost for an N -particle system with general interactions, or at equal cost when single-particle moves can be done in 1 /N of the cost of a full N -particle energy evaluation. We demonstrate this speed-up for the freezing and condensation transitions of the Lennard-Jones system and show the utility of the algorithms by calculating the order-disorder phase transition of a binary Lennard-Jones model alloy, the eutectic of copper-gold, the density anomaly of water, and the condensation and solidification of bead-spring polymers. The nested sampling method with all three algorithms is implemented in the pymatnest software.

  12. UltraTrack: Software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images.

    PubMed

    Farris, Dominic James; Lichtwark, Glen A

    2016-05-01

    Dynamic measurements of human muscle fascicle length from sequences of B-mode ultrasound images have become increasingly prevalent in biomedical research. Manual digitisation of these images is time consuming and algorithms for automating the process have been developed. Here we present a freely available software implementation of a previously validated algorithm for semi-automated tracking of muscle fascicle length in dynamic ultrasound image recordings, "UltraTrack". UltraTrack implements an affine extension to an optic flow algorithm to track movement of the muscle fascicle end-points throughout dynamically recorded sequences of images. The underlying algorithm has been previously described and its reliability tested, but here we present the software implementation with features for: tracking multiple fascicles in multiple muscles simultaneously; correcting temporal drift in measurements; manually adjusting tracking results; saving and re-loading of tracking results and loading a range of file formats. Two example runs of the software are presented detailing the tracking of fascicles from several lower limb muscles during a squatting and walking activity. We have presented a software implementation of a validated fascicle-tracking algorithm and made the source code and standalone versions freely available for download. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. An Automated Algorithm for Identifying and Tracking Transverse Waves in Solar Images

    NASA Astrophysics Data System (ADS)

    Weberg, Micah J.; Morton, Richard J.; McLaughlin, James A.

    2018-01-01

    Recent instrumentation has demonstrated that the solar atmosphere supports omnipresent transverse waves, which could play a key role in energizing the solar corona. Large-scale studies are required in order to build up an understanding of the general properties of these transverse waves. To help facilitate this, we present an automated algorithm for identifying and tracking features in solar images and extracting the wave properties of any observed transverse oscillations. We test and calibrate our algorithm using a set of synthetic data, which includes noise and rotational effects. The results indicate an accuracy of 1%–2% for displacement amplitudes and 4%–10% for wave periods and velocity amplitudes. We also apply the algorithm to data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and find good agreement with previous studies. Of note, we find that 35%–41% of the observed plumes exhibit multiple wave signatures, which indicates either the superposition of waves or multiple independent wave packets observed at different times within a single structure. The automated methods described in this paper represent a significant improvement on the speed and quality of direct measurements of transverse waves within the solar atmosphere. This algorithm unlocks a wide range of statistical studies that were previously impractical.

  14. Adaptive power allocation schemes based on IAFS algorithm for OFDM-based cognitive radio systems

    NASA Astrophysics Data System (ADS)

    Zhang, Shuying; Zhao, Xiaohui; Liang, Cong; Ding, Xu

    2017-01-01

    In cognitive radio (CR) systems, reasonable power allocation can increase transmission rate of CR users or secondary users (SUs) as much as possible and at the same time insure normal communication among primary users (PUs). This study proposes an optimal power allocation scheme for the OFDM-based CR system with one SU influenced by multiple PU interference constraints. This scheme is based on an improved artificial fish swarm (IAFS) algorithm in combination with the advantage of conventional artificial fish swarm (ASF) algorithm and particle swarm optimisation (PSO) algorithm. In performance comparison of IAFS algorithm with other intelligent algorithms by simulations, the superiority of the IAFS algorithm is illustrated; this superiority results in better performance of our proposed scheme than that of the power allocation algorithms proposed by the previous studies in the same scenario. Furthermore, our proposed scheme can obtain higher transmission data rate under the multiple PU interference constraints and the total power constraint of SU than that of the other mentioned works.

  15. Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV

    NASA Astrophysics Data System (ADS)

    Fahringer, Timothy W.; Thurow, Brian S.

    2016-09-01

    A new algorithm for reconstruction of 3D particle fields from plenoptic image data is presented. The algorithm is based on the technique of computational refocusing with the addition of a post reconstruction filter to remove the out of focus particles. This new algorithm is tested in terms of reconstruction quality on synthetic particle fields as well as a synthetically generated 3D Gaussian ring vortex. Preliminary results indicate that the new algorithm performs as well as the MART algorithm (used in previous work) in terms of the reconstructed particle position accuracy, but produces more elongated particles. The major advantage to the new algorithm is the dramatic reduction in the computational cost required to reconstruct a volume. It is shown that the new algorithm takes 1/9th the time to reconstruct the same volume as MART while using minimal resources. Experimental results are presented in the form of the wake behind a cylinder at a Reynolds number of 185.

  16. Novel and efficient tag SNPs selection algorithms.

    PubMed

    Chen, Wen-Pei; Hung, Che-Lun; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2014-01-01

    SNPs are the most abundant forms of genetic variations amongst species; the association studies between complex diseases and SNPs or haplotypes have received great attention. However, these studies are restricted by the cost of genotyping all SNPs; thus, it is necessary to find smaller subsets, or tag SNPs, representing the rest of the SNPs. In fact, the existing tag SNP selection algorithms are notoriously time-consuming. An efficient algorithm for tag SNP selection was presented, which was applied to analyze the HapMap YRI data. The experimental results show that the proposed algorithm can achieve better performance than the existing tag SNP selection algorithms; in most cases, this proposed algorithm is at least ten times faster than the existing methods. In many cases, when the redundant ratio of the block is high, the proposed algorithm can even be thousands times faster than the previously known methods. Tools and web services for haplotype block analysis integrated by hadoop MapReduce framework are also developed using the proposed algorithm as computation kernels.

  17. [Optimization of the parameters of microcirculatory structural adaptation model based on improved quantum-behaved particle swarm optimization algorithm].

    PubMed

    Pan, Qing; Yao, Jialiang; Wang, Ruofan; Cao, Ping; Ning, Gangmin; Fang, Luping

    2017-08-01

    The vessels in the microcirculation keep adjusting their structure to meet the functional requirements of the different tissues. A previously developed theoretical model can reproduce the process of vascular structural adaptation to help the study of the microcirculatory physiology. However, until now, such model lacks the appropriate methods for its parameter settings with subsequent limitation of further applications. This study proposed an improved quantum-behaved particle swarm optimization (QPSO) algorithm for setting the parameter values in this model. The optimization was performed on a real mesenteric microvascular network of rat. The results showed that the improved QPSO was superior to the standard particle swarm optimization, the standard QPSO and the previously reported Downhill algorithm. We conclude that the improved QPSO leads to a better agreement between mathematical simulation and animal experiment, rendering the model more reliable in future physiological studies.

  18. MCSCF wave functions for excited states of polar molecules - Application to BeO. [Multi-Configuration Self-Consistent Field

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Yarkony, D. R.

    1980-01-01

    A previously reported multi-configuration self-consistent field (MCSCF) algorithm based on the generalized Brillouin theorem is extended in order to treat the excited states of polar molecules. In particular, the algorithm takes into account the proper treatment of nonorthogonality in the space of single excitations and invokes, when necessary, a constrained optimization procedure to prevent the variational collapse of excited states. In addition, a configuration selection scheme (suitable for use in conjunction with extended configuration interaction methods) is proposed for the MCSCF procedure. The algorithm is used to study the low-lying singlet states of BeO, a system which has not previously been studied using an MCSCF procedure. MCSCF wave functions are obtained for three 1 Sigma + and two 1 Pi states. The 1 Sigma + results are juxtaposed with comparable results for MgO in order to assess the generality of the description presented here.

  19. Formal verification of an oral messages algorithm for interactive consistency

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1992-01-01

    The formal specification and verification of an algorithm for Interactive Consistency based on the Oral Messages algorithm for Byzantine Agreement is described. We compare our treatment with that of Bevier and Young, who presented a formal specification and verification for a very similar algorithm. Unlike Bevier and Young, who observed that 'the invariant maintained in the recursive subcases of the algorithm is significantly more complicated than is suggested by the published proof' and who found its formal verification 'a fairly difficult exercise in mechanical theorem proving,' our treatment is very close to the previously published analysis of the algorithm, and our formal specification and verification are straightforward. This example illustrates how delicate choices in the formulation of the problem can have significant impact on the readability of its formal specification and on the tractability of its formal verification.

  20. A versatile pitch tracking algorithm: from human speech to killer whale vocalizations.

    PubMed

    Shapiro, Ari Daniel; Wang, Chao

    2009-07-01

    In this article, a pitch tracking algorithm [named discrete logarithmic Fourier transformation-pitch detection algorithm (DLFT-PDA)], originally designed for human telephone speech, was modified for killer whale vocalizations. The multiple frequency components of some of these vocalizations demand a spectral (rather than temporal) approach to pitch tracking. The DLFT-PDA algorithm derives reliable estimations of pitch and the temporal change of pitch from the harmonic structure of the vocal signal. Scores from both estimations are combined in a dynamic programming search to find a smooth pitch track. The algorithm is capable of tracking killer whale calls that contain simultaneous low and high frequency components and compares favorably across most signal to noise ratio ranges to the peak-picking and sidewinder algorithms that have been used for tracking killer whale vocalizations previously.

  1. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks

    PubMed Central

    Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Li, Baoqing; Yuan, Xiaobing

    2017-01-01

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum–minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms. PMID:28753962

  2. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale

    PubMed Central

    Kobourov, Stephen; Gallant, Mike; Börner, Katy

    2016-01-01

    Overview Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms—Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. Cluster Quality Metrics We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Network Clustering Algorithms Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters. PMID:27391786

  3. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale.

    PubMed

    Emmons, Scott; Kobourov, Stephen; Gallant, Mike; Börner, Katy

    2016-01-01

    Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms-Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters.

  4. Mass and Volume Optimization of Space Flight Medical Kits

    NASA Technical Reports Server (NTRS)

    Keenan, A. B.; Foy, Millennia Hope; Myers, Jerry

    2014-01-01

    Resource allocation is a critical aspect of space mission planning. All resources, including medical resources, are subject to a number of mission constraints such a maximum mass and volume. However, unlike many resources, there is often limited understanding in how to optimize medical resources for a mission. The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulates outcomes and describes the impact of medical events in terms of lost crew time, medical resource usage, and the potential for medically required evacuation. Previously published work describes an approach that uses the IMM to generate optimized medical kits that maximize benefit to the crew subject to mass and volume constraints. We improve upon the results obtained previously and extend our approach to minimize mass and volume while meeting some benefit threshold. METHODS We frame the medical kit optimization problem as a modified knapsack problem and implement an algorithm utilizing dynamic programming. Using this algorithm, optimized medical kits were generated for 3 mission scenarios with the goal of minimizing the medical kit mass and volume for a specified likelihood of evacuation or Crew Health Index (CHI) threshold. The algorithm was expanded to generate medical kits that maximize likelihood of evacuation or CHI subject to mass and volume constraints. RESULTS AND CONCLUSIONS In maximizing benefit to crew health subject to certain constraints, our algorithm generates medical kits that more closely resemble the unlimited-resource scenario than previous approaches which leverage medical risk information generated by the IMM. Our work here demonstrates that this algorithm provides an efficient and effective means to objectively allocate medical resources for spaceflight missions and provides an effective means of addressing tradeoffs in medical resource allocations and crew mission success parameters.

  5. Development and Evaluation of Algorithms for Breath Alcohol Screening.

    PubMed

    Ljungblad, Jonas; Hök, Bertil; Ekström, Mikael

    2016-04-01

    Breath alcohol screening is important for traffic safety, access control and other areas of health promotion. A family of sensor devices useful for these purposes is being developed and evaluated. This paper is focusing on algorithms for the determination of breath alcohol concentration in diluted breath samples using carbon dioxide to compensate for the dilution. The examined algorithms make use of signal averaging, weighting and personalization to reduce estimation errors. Evaluation has been performed by using data from a previously conducted human study. It is concluded that these features in combination will significantly reduce the random error compared to the signal averaging algorithm taken alone.

  6. A distributed scheduling algorithm for heterogeneous real-time systems

    NASA Technical Reports Server (NTRS)

    Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi

    1991-01-01

    Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.

  7. Algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations with the use of parallel computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moryakov, A. V., E-mail: sailor@orc.ru

    2016-12-15

    An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.

  8. Efficient algorithms for a class of partitioning problems

    NASA Technical Reports Server (NTRS)

    Iqbal, M. Ashraf; Bokhari, Shahid H.

    1990-01-01

    The problem of optimally partitioning the modules of chain- or tree-like tasks over chain-structured or host-satellite multiple computer systems is addressed. This important class of problems includes many signal processing and industrial control applications. Prior research has resulted in a succession of faster exact and approximate algorithms for these problems. Polynomial exact and approximate algorithms are described for this class that are better than any of the previously reported algorithms. The approach is based on a preprocessing step that condenses the given chain or tree structured task into a monotonic chain or tree. The partitioning of this monotonic take can then be carried out using fast search techniques.

  9. Increasing Prediction the Original Final Year Project of Student Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Saragih, Rijois Iboy Erwin; Turnip, Mardi; Sitanggang, Delima; Aritonang, Mendarissan; Harianja, Eva

    2018-04-01

    Final year project is very important forgraduation study of a student. Unfortunately, many students are not seriouslydidtheir final projects. Many of studentsask for someone to do it for them. In this paper, an application of genetic algorithms to predict the original final year project of a studentis proposed. In the simulation, the data of the final project for the last 5 years is collected. The genetic algorithm has several operators namely population, selection, crossover, and mutation. The result suggest that genetic algorithm can do better prediction than other comparable model. Experimental results of predicting showed that 70% was more accurate than the previous researched.

  10. Research on improved edge extraction algorithm of rectangular piece

    NASA Astrophysics Data System (ADS)

    He, Yi-Bin; Zeng, Ya-Jun; Chen, Han-Xin; Xiao, San-Xia; Wang, Yan-Wei; Huang, Si-Yu

    Traditional edge detection operators such as Prewitt operator, LOG operator and Canny operator, etc. cannot meet the requirements of the modern industrial measurement. This paper proposes a kind of image edge detection algorithm based on improved morphological gradient. It can be detect the image using structural elements, which deals with the characteristic information of the image directly. Choosing different shapes and sizes of structural elements to use together, the ideal image edge information can be detected. The experimental result shows that the algorithm can well extract image edge with noise, which is clearer, and has more detailed edges compared with the previous edge detection algorithm.

  11. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    NASA Astrophysics Data System (ADS)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  12. Erratum: Erratum: Denoising Phase Unwrapping Algorithm for Precise Phase Shifting Interferometry

    NASA Astrophysics Data System (ADS)

    Phuc, Phan Huy; Rhee, Hyug-Gyo; Ghim, Young-Sik

    2018-06-01

    This is a revision of the reference list reported in the original article. In order to clear the contribution of the previous work on the incremental breadth-first search (IBFS) method applied to the PUMA algorithm, we add one more reference to the existing reference list, as in this erratum. Page 83 : In this paper, we propose an algorithm that modifies the Boykov-Kolmogorov (BK) algorithm using the incremental breadth-first search (IBFS) method [27, 28] to find paths from the source to the sink of a graph. [28] S. Ali, H. Khan, I. Shaik and F. Ali, Int. J. Eng. and Technol. 7, 254 (2015).

  13. Reversible Data Hiding Based on DNA Computing

    PubMed Central

    Xie, Yingjie

    2017-01-01

    Biocomputing, especially DNA, computing has got great development. It is widely used in information security. In this paper, a novel algorithm of reversible data hiding based on DNA computing is proposed. Inspired by the algorithm of histogram modification, which is a classical algorithm for reversible data hiding, we combine it with DNA computing to realize this algorithm based on biological technology. Compared with previous results, our experimental results have significantly improved the ER (Embedding Rate). Furthermore, some PSNR (peak signal-to-noise ratios) of test images are also improved. Experimental results show that it is suitable for protecting the copyright of cover image in DNA-based information security. PMID:28280504

  14. Implementation of an established algorithm and modifications for the identification of epilepsy patients in the veterans health administration.

    PubMed

    Rehman, Rizwana; Everhart, Amanda; Frontera, Alfred T; Kelly, Pamela R; Lopez, Maria; Riley, Denise; Sajan, Sheela; Schooff, David M; Tran, Tung T; Husain, Aatif M

    2016-11-01

    Identification of epilepsy patients from administrative data in large managed healthcare organizations is a challenging task. The objectives of this report are to describe the implementation of an established algorithm and different modifications for the estimation of epilepsy prevalence in the Veterans Health Administration (VHA). For the prevalence estimation during a given time period patients prescribed anti-epileptic drugs and having seizure diagnoses on clinical encounters were identified. In contrast to the established algorithm, which required inclusion of diagnoses data from the time period of interest only, variants were tested by considering diagnoses data beyond prevalence period for improving sensitivity. One variant excluded data from diagnostic EEG and LTM clinics to improve specificity. Another modification also required documentation of seizures on the problem list (electronic list of patients' established diagnoses). Of the variants tested, the one excluding information from diagnostic clinics and extending time beyond base period of interest for clinical encounters was determined to be superior. It can be inferred that the number of patients receiving care for epilepsy in the VHA ranges between 74,000 and 87,000. In the wake of the recent implementation of ICD-10 codes in the VHA, minor tweaks are needed for future prevalence estimation due to significant efforts presented. This review is not only beneficial for researchers interested in VHA related data but can also be helpful for managed healthcare organizations involved in epilepsy care aiming at accurate identification of patients from large administrative databases. Published by Elsevier B.V.

  15. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Cheng-Yu; Wang, Yan-Yan; Wu, Dun-Shi; Qin, Xiao-Jun

    2017-12-01

    At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.

  16. hs-CRP is strongly associated with coronary heart disease (CHD): A data mining approach using decision tree algorithm.

    PubMed

    Tayefi, Maryam; Tajfard, Mohammad; Saffar, Sara; Hanachi, Parichehr; Amirabadizadeh, Ali Reza; Esmaeily, Habibollah; Taghipour, Ali; Ferns, Gordon A; Moohebati, Mohsen; Ghayour-Mobarhan, Majid

    2017-04-01

    Coronary heart disease (CHD) is an important public health problem globally. Algorithms incorporating the assessment of clinical biomarkers together with several established traditional risk factors can help clinicians to predict CHD and support clinical decision making with respect to interventions. Decision tree (DT) is a data mining model for extracting hidden knowledge from large databases. We aimed to establish a predictive model for coronary heart disease using a decision tree algorithm. Here we used a dataset of 2346 individuals including 1159 healthy participants and 1187 participant who had undergone coronary angiography (405 participants with negative angiography and 782 participants with positive angiography). We entered 10 variables of a total 12 variables into the DT algorithm (including age, sex, FBG, TG, hs-CRP, TC, HDL, LDL, SBP and DBP). Our model could identify the associated risk factors of CHD with sensitivity, specificity, accuracy of 96%, 87%, 94% and respectively. Serum hs-CRP levels was at top of the tree in our model, following by FBG, gender and age. Our model appears to be an accurate, specific and sensitive model for identifying the presence of CHD, but will require validation in prospective studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Comparison of satellite reflectance algorithms for estimating ...

    EPA Pesticide Factsheets

    We analyzed 10 established and 4 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense water truth collected within one hour of image acquisition to develop simple proxies for algal blooms and to facilitate portability between multispectral satellite imagers for regional algal bloom monitoring. Narrow band hyperspectral aircraft images were upscaled spectrally and spatially to simulate 5 current and near future satellite imaging systems. Established and new Chl-a algorithms were then applied to the synthetic satellite images and then compared to calibrated Chl-a water truth measurements collected from 44 sites within one hour of aircraft acquisition of the imagery. Masks based on the spatial resolution of the synthetic satellite imagery were then applied to eliminate mixed pixels including vegetated shorelines. Medium-resolution Landsat and finer resolution data were evaluated against 29 coincident water truth sites. Coarse-resolution MODIS and MERIS-like data were evaluated against 9 coincident water truth sites. Each synthetic satellite data set was then evaluated for the performance of a variety of spectrally appropriate algorithms with regard to the estimation of Chl-a concentrations against the water truth data set. The goal is to inform water resource decisions on the appropriate satellite data acquisition and processing for the es

  18. A portable back massage robot based on Traditional Chinese Medicine.

    PubMed

    Wang, Wendong; Liang, Chaohong; Zhang, Peng; Shi, Yikai

    2018-05-30

    A portable back massage robot which can complete the massage operations such as tapping, kneading and rolling was designed to improve the level of intelligence and massage effect. An efficient full covered path planning algorithm was put forward for a portable back massage robot to improve the coverage. Currently, massage robots has become one of important research focuses with the increasing requirements for healthcare. The massage robot is difficult to be widely accepted as there are problems of massage robot in control, structure, and coverage path planning. The 3D electromagnetic simulation model was established to optimize electromagnetic force. By analyzing the Traditional Chinese Medicine massage operation and the demands, the path planning algorithm models were established. The experimental platform of the massage robot was built. The simulation results show presented path planning algorithm is suitable for back massage, which ensures that the massage robot traverse the entire back area with improved massage coverage. The tested results show that the massage effect is best when the duty cycle is in the range of 1/8 to 1/2, and the massage force increases with the increase of the input voltage. The massage robot eventually achieved the desired massage effect, and the proposed efficient algorithm can effectively improve the coverage and promote the massage effect.

  19. New method for detection of gastric cancer by hyperspectral imaging: a pilot study

    NASA Astrophysics Data System (ADS)

    Kiyotoki, Shu; Nishikawa, Jun; Okamoto, Takeshi; Hamabe, Kouichi; Saito, Mari; Goto, Atsushi; Fujita, Yusuke; Hamamoto, Yoshihiko; Takeuchi, Yusuke; Satori, Shin; Sakaida, Isao

    2013-02-01

    We developed a new, easy, and objective method to detect gastric cancer using hyperspectral imaging (HSI) technology combining spectroscopy and imaging A total of 16 gastroduodenal tumors removed by endoscopic resection or surgery from 14 patients at Yamaguchi University Hospital, Japan, were recorded using a hyperspectral camera (HSC) equipped with HSI technology Corrected spectral reflectance was obtained from 10 samples of normal mucosa and 10 samples of tumors for each case The 16 cases were divided into eight training cases (160 training samples) and eight test cases (160 test samples) We established a diagnostic algorithm with training samples and evaluated it with test samples Diagnostic capability of the algorithm for each tumor was validated, and enhancement of tumors by image processing using the HSC was evaluated The diagnostic algorithm used the 726-nm wavelength, with a cutoff point established from training samples The sensitivity, specificity, and accuracy rates of the algorithm's diagnostic capability in the test samples were 78.8% (63/80), 92.5% (74/80), and 85.6% (137/160), respectively Tumors in HSC images of 13 (81.3%) cases were well enhanced by image processing Differences in spectral reflectance between tumors and normal mucosa suggested that tumors can be clearly distinguished from background mucosa with HSI technology.

  20. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  1. Proceedings of the 1989 CESAR/CEA (Center for Engineering Systems Advanced Research/Commissariat a l'Energie Atomique) workshop on autonomous mobile robots (May 30--June 1, 1989)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harber, K.S.; Pin, F.G.

    1990-03-01

    The US DOE Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) and the Commissariat a l'Energie Atomique's (CEA) Office de Robotique et Productique within the Directorat a la Valorization are working toward a long-term cooperative agreement and relationship in the area of Intelligent Systems Research (ISR). This report presents the proceedings of the first CESAR/CEA Workshop on Autonomous Mobile Robots which took place at ORNL on May 30, 31 and June 1, 1989. The purpose of the workshop was to present and discuss methodologies and algorithms under development at the two facilities in themore » area of perception and navigation for autonomous mobile robots in unstructured environments. Experimental demonstration of the algorithms and comparison of some of their features were proposed to take place within the framework of a previously mutually agreed-upon demonstration scenario or base-case.'' The base-case scenario described in detail in Appendix A, involved autonomous navigation by the robot in an a priori unknown environment with dynamic obstacles, in order to reach a predetermined goal. From the intermediate goal location, the robot had to search for and locate a control panel, move toward it, and dock in front of the panel face. The CESAR demonstration was successfully accomplished using the HERMIES-IIB robot while subsets of the CEA demonstration performed using the ARES robot simulation and animation system were presented. The first session of the workshop focused on these experimental demonstrations and on the needs and considerations for establishing benchmarks'' for testing autonomous robot control algorithms.« less

  2. MISR Aerosol Product Attributes and Statistical Comparisons with MODIS

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Nelson, David L.; Garay, Michael J.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Paradise, Susan R.; Hansen, Earl G.; Remer, Lorraine A.

    2009-01-01

    In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.

  3. Determining the saliency of feature measurements obtained from images of sedimentary organic matter for use in its classification

    NASA Astrophysics Data System (ADS)

    Weller, Andrew F.; Harris, Anthony J.; Ware, J. Andrew; Jarvis, Paul S.

    2006-11-01

    The classification of sedimentary organic matter (OM) images can be improved by determining the saliency of image analysis (IA) features measured from them. Knowing the saliency of IA feature measurements means that only the most significant discriminating features need be used in the classification process. This is an important consideration for classification techniques such as artificial neural networks (ANNs), where too many features can lead to the 'curse of dimensionality'. The classification scheme adopted in this work is a hybrid of morphologically and texturally descriptive features from previous manual classification schemes. Some of these descriptive features are assigned to IA features, along with several others built into the IA software (Halcon) to ensure that a valid cross-section is available. After an image is captured and segmented, a total of 194 features are measured for each particle. To reduce this number to a more manageable magnitude, the SPSS AnswerTree Exhaustive CHAID (χ 2 automatic interaction detector) classification tree algorithm is used to establish each measurement's saliency as a classification discriminator. In the case of continuous data as used here, the F-test is used as opposed to the published algorithm. The F-test checks various statistical hypotheses about the variance of groups of IA feature measurements obtained from the particles to be classified. The aim is to reduce the number of features required to perform the classification without reducing its accuracy. In the best-case scenario, 194 inputs are reduced to 8, with a subsequent multi-layer back-propagation ANN recognition rate of 98.65%. This paper demonstrates the ability of the algorithm to reduce noise, help overcome the curse of dimensionality, and facilitate an understanding of the saliency of IA features as discriminators for sedimentary OM classification.

  4. What young chimpanzees know about seeing.

    PubMed

    Povinelli, D J; Eddy, T J

    1996-01-01

    Previous experimental research has suggested that chimpanzees may understand some of the epistemological aspects of visual perception, such as how the perceptual act of seeing can have internal mental consequences for an individual's state of knowledge. Other research suggests that chimpanzees and other nonhuman primates may understand visual perception at a simpler level; that is, they may at least understand seeing as a mental event that subjectively anchors organisms to the external world. However, these results are ambiguous and are open to several interpretations. In this Monograph, we report the results of 15 studies that we conducted with chimpanzees and preschool children to explore their knowledge about visual perception. The central goal of these studies was to determine whether young chimpanzees appreciate that visual perception subjectively links organisms to the external world. In order to achieve this goal, our research incorporated three methodological objectives. First, we sought to overcome limitations of previous comparative theory of mind research by using a fairly large sample of well-trained chimpanzees (six to seven animals in all studies) who were all within 8 months of age of each other. In contrast, previous research has typically relied on the results of one to four animals ranging widely in age. Second, we designed our studies in order to allow for a very sensitive diagnosis of whether the animals possessed immediate dispositions to act in a fashion predicted by a theory of mind view of their psychology or whether their successful performances could be better explained by learning theory. Finally, using fairly well-established transitions in preschool children's understanding of visual perception, we sought to establish the validity of our nonverbal methods by testing predictions about how children of various ages ought to perform. Collectively, our findings provide little evidence that young chimpanzees understand seeing as a mental event. Although our results establish that young chimpanzees both (a) develop algorithms for tracking the visual gaze of other organisms and (b) quickly learn rules about the configurations of faces and eyes, on the one hand, and subsequent events, on the other, they provide no clear evidence that these algorithms and rules are grounded in a matrix of intentionality. Particularly striking, our results demonstrate that, even though young chimpanzee subjects spontaneously attend to and follow the visual gaze of others, they simultaneously appear oblivious to the attentional significance of that gaze. Thus, young chimpanzees possess and learn rules about visual perception, but these rules do not necessarily incorporate the notion that seeing is "about" something. The general pattern of our results is consistent with three different possibilities. First, the potential existence of a general developmental delay in psychological development in chimpanzees (or, more likely, an acceleration in humans) leaves open the possibility that older chimpanzees may display evidence of a mentalistic appreciation of seeing. Second, chimpanzees may possess a different (but nonetheless mentalistic) theory of attention in which organisms are subjectively connected to the world not through any particular sensory modality such as vision but rather through other (as-of-yet unspecified) behavioral indicators. Finally, a subjective understanding of visual perception (and perhaps behavior in general) may be a uniquely evolved feature of the human lineage.

  5. Forecasting Nonlinear Chaotic Time Series with Function Expression Method Based on an Improved Genetic-Simulated Annealing Algorithm

    PubMed Central

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior. PMID:26000011

  6. Quantitative Imaging Biomarkers: A Review of Statistical Methods for Computer Algorithm Comparisons

    PubMed Central

    2014-01-01

    Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research. PMID:24919829

  7. Efficient clustering aggregation based on data fragments.

    PubMed

    Wu, Ou; Hu, Weiming; Maybank, Stephen J; Zhu, Mingliang; Li, Bing

    2012-06-01

    Clustering aggregation, known as clustering ensembles, has emerged as a powerful technique for combining different clustering results to obtain a single better clustering. Existing clustering aggregation algorithms are applied directly to data points, in what is referred to as the point-based approach. The algorithms are inefficient if the number of data points is large. We define an efficient approach for clustering aggregation based on data fragments. In this fragment-based approach, a data fragment is any subset of the data that is not split by any of the clustering results. To establish the theoretical bases of the proposed approach, we prove that clustering aggregation can be performed directly on data fragments under two widely used goodness measures for clustering aggregation taken from the literature. Three new clustering aggregation algorithms are described. The experimental results obtained using several public data sets show that the new algorithms have lower computational complexity than three well-known existing point-based clustering aggregation algorithms (Agglomerative, Furthest, and LocalSearch); nevertheless, the new algorithms do not sacrifice the accuracy.

  8. Deadbeat Predictive Controllers

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1997-01-01

    Several new computational algorithms are presented to compute the deadbeat predictive control law. The first algorithm makes use of a multi-step-ahead output prediction to compute the control law without explicitly calculating the controllability matrix. The system identification must be performed first and then the predictive control law is designed. The second algorithm uses the input and output data directly to compute the feedback law. It combines the system identification and the predictive control law into one formulation. The third algorithm uses an observable-canonical form realization to design the predictive controller. The relationship between all three algorithms is established through the use of the state-space representation. All algorithms are applicable to multi-input, multi-output systems with disturbance inputs. In addition to the feedback terms, feed forward terms may also be added for disturbance inputs if they are measurable. Although the feedforward terms do not influence the stability of the closed-loop feedback law, they enhance the performance of the controlled system.

  9. [Semi-analysis algorithm to retrieve pigment concentrations in the red tide area of the East China Sea].

    PubMed

    Qiu, Zhong-Feng; Xi, Hong-Yan; He, Yi-Jun; Chen, Jay-Chung; Jian, Wei-Jun

    2006-08-01

    For the purpose of detecting and forecasting research of red tides to reduce the loss, a semi-analytic algorithm to retrieve chlorophyll-a concentrations was established in the area where red tides often brought out, according to the data collected during the red tides cruise in the East China Sea in April 2002. In the algorithm, empirical equations were made based on the coefficients from the in-situ data, including the optical properties of the research area. The in-situ data were used to validate the algorithm. The discrepancy of chlorophyll-a absorption coefficients and concentrations are mainly located in the region of 30%. The root mean deviation of the chlorophyll-a concentrations between the observed and the calculated is 0.24, the maximum relative deviation 40.93%, the mean relative deviation 18.83% and the correlation coefficient 0.83. The results show that the precision of the algorithm is high and the algorithm is fit for the research area.

  10. Forecasting nonlinear chaotic time series with function expression method based on an improved genetic-simulated annealing algorithm.

    PubMed

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  11. Multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement

    NASA Astrophysics Data System (ADS)

    Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing

    2018-02-01

    For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.

  12. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging.

    PubMed

    Jiang, J; Hall, T J

    2007-07-07

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s(-1)) that exceed our previous methods.

  13. Arrhythmia Evaluation in Wearable ECG Devices

    PubMed Central

    Sadrawi, Muammar; Lin, Chien-Hung; Hsieh, Yita; Kuo, Chia-Chun; Chien, Jen Chien; Haraikawa, Koichi; Abbod, Maysam F.; Shieh, Jiann-Shing

    2017-01-01

    This study evaluates four databases from PhysioNet: The American Heart Association database (AHADB), Creighton University Ventricular Tachyarrhythmia database (CUDB), MIT-BIH Arrhythmia database (MITDB), and MIT-BIH Noise Stress Test database (NSTDB). The ANSI/AAMI EC57:2012 is used for the evaluation of the algorithms for the supraventricular ectopic beat (SVEB), ventricular ectopic beat (VEB), atrial fibrillation (AF), and ventricular fibrillation (VF) via the evaluation of the sensitivity, positive predictivity and false positive rate. Sample entropy, fast Fourier transform (FFT), and multilayer perceptron neural network with backpropagation training algorithm are selected for the integrated detection algorithms. For this study, the result for SVEB has some improvements compared to a previous study that also utilized ANSI/AAMI EC57. In further, VEB sensitivity and positive predictivity gross evaluations have greater than 80%, except for the positive predictivity of the NSTDB database. For AF gross evaluation of MITDB database, the results show very good classification, excluding the episode sensitivity. In advanced, for VF gross evaluation, the episode sensitivity and positive predictivity for the AHADB, MITDB, and CUDB, have greater than 80%, except for MITDB episode positive predictivity, which is 75%. The achieved results show that the proposed integrated SVEB, VEB, AF, and VF detection algorithm has an accurate classification according to ANSI/AAMI EC57:2012. In conclusion, the proposed integrated detection algorithm can achieve good accuracy in comparison with other previous studies. Furthermore, more advanced algorithms and hardware devices should be performed in future for arrhythmia detection and evaluation. PMID:29068369

  14. Efficient, Decentralized Detection of Qualitative Spatial Events in a Dynamic Scalar Field

    PubMed Central

    Jeong, Myeong-Hun; Duckham, Matt

    2015-01-01

    This paper describes an efficient, decentralized algorithm to monitor qualitative spatial events in a dynamic scalar field. The events of interest involve changes to the critical points (i.e., peak, pits and passes) and edges of the surface network derived from the field. Four fundamental types of event (appearance, disappearance, movement and switch) are defined. Our algorithm is designed to rely purely on qualitative information about the neighborhoods of nodes in the sensor network and does not require information about nodes’ coordinate positions. Experimental investigations confirm that our algorithm is efficient, with O(n) overall communication complexity (where n is the number of nodes in the sensor network), an even load balance and low operational latency. The accuracy of event detection is comparable to established centralized algorithms for the identification of critical points of a surface network. Our algorithm is relevant to a broad range of environmental monitoring applications of sensor networks. PMID:26343672

  15. A parallel variable metric optimization algorithm

    NASA Technical Reports Server (NTRS)

    Straeter, T. A.

    1973-01-01

    An algorithm, designed to exploit the parallel computing or vector streaming (pipeline) capabilities of computers is presented. When p is the degree of parallelism, then one cycle of the parallel variable metric algorithm is defined as follows: first, the function and its gradient are computed in parallel at p different values of the independent variable; then the metric is modified by p rank-one corrections; and finally, a single univariant minimization is carried out in the Newton-like direction. Several properties of this algorithm are established. The convergence of the iterates to the solution is proved for a quadratic functional on a real separable Hilbert space. For a finite-dimensional space the convergence is in one cycle when p equals the dimension of the space. Results of numerical experiments indicate that the new algorithm will exploit parallel or pipeline computing capabilities to effect faster convergence than serial techniques.

  16. Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation

    NASA Astrophysics Data System (ADS)

    Bedi, Amrit Singh; Rajawat, Ketan

    2018-05-01

    Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.

  17. Quality control algorithms for rainfall measurements

    NASA Astrophysics Data System (ADS)

    Golz, Claudia; Einfalt, Thomas; Gabella, Marco; Germann, Urs

    2005-09-01

    One of the basic requirements for a scientific use of rain data from raingauges, ground and space radars is data quality control. Rain data could be used more intensively in many fields of activity (meteorology, hydrology, etc.), if the achievable data quality could be improved. This depends on the available data quality delivered by the measuring devices and the data quality enhancement procedures. To get an overview of the existing algorithms a literature review and literature pool have been produced. The diverse algorithms have been evaluated to meet VOLTAIRE objectives and sorted in different groups. To test the chosen algorithms an algorithm pool has been established, where the software is collected. A large part of this work presented here is implemented in the scope of the EU-project VOLTAIRE ( Validati on of mu ltisensors precipit ation fields and numerical modeling in Mediter ran ean test sites).

  18. Efficient, Decentralized Detection of Qualitative Spatial Events in a Dynamic Scalar Field.

    PubMed

    Jeong, Myeong-Hun; Duckham, Matt

    2015-08-28

    This paper describes an efficient, decentralized algorithm to monitor qualitative spatial events in a dynamic scalar field. The events of interest involve changes to the critical points (i.e., peak, pits and passes) and edges of the surface network derived from the field. Four fundamental types of event (appearance, disappearance, movement and switch) are defined. Our algorithm is designed to rely purely on qualitative information about the neighborhoods of nodes in the sensor network and does not require information about nodes' coordinate positions. Experimental investigations confirm that our algorithm is efficient, with O(n) overall communication complexity (where n is the number of nodes in the sensor network), an even load balance and low operational latency. The accuracy of event detection is comparable to established centralized algorithms for the identification of critical points of a surface network. Our algorithm is relevant to a broad range of environmental monitoring applications of sensor networks.

  19. A quantum causal discovery algorithm

    NASA Astrophysics Data System (ADS)

    Giarmatzi, Christina; Costa, Fabio

    2018-03-01

    Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.

  20. Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm

    PubMed Central

    Sun, Baoliang; Jiang, Chunlan; Li, Ming

    2016-01-01

    An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271

Top