Differences among Sexually Abused and Nonabused Women from Functional and Dysfunctional Families.
ERIC Educational Resources Information Center
Brock, Kathleen J.; Mintz, Laurie B.; Good, Glenn E.
1997-01-01
Identifies a previously unexamined group of sexual abuse survivors (those from functional families) and addresses methodological flaws in previous research. Results indicate that women in the abused-dysfunctional group reported the highest level of psychological distress. Psychological distress reported by abused-functional women paralleled that…
USDA-ARS?s Scientific Manuscript database
This study was conducted as an initial assessment of a newly available genotyping assay containing about 34,000 common SNP included on previous SNP chips, and 199,000 sequence variants predicted to affect gene function. Objectives were to identify functional variants associated with birth weight in...
Ashford, Stephen; Jackson, Diana; Turner-Stokes, Lynne
2015-03-01
Following stroke or brain injury, goals for rehabilitation of the hemiparetic upper limb include restoring active function if there is return of motor control or, if none is possible, improving passive function, and facilitating care for the limb. To inform development of a new patient reported outcome measure (PROM) of active and passive function in the hemiparetic upper limb, the Arm Activity measure, we examined functional goals for the upper limb, identified during goal setting for spasticity intervention (physical therapy and concomitant botulinum toxin A interventions). Using secondary analysis of a prospective observational cohort study, functional goals determined between patients, their carers and the clinical team were assigned into categories by two raters. Goal category identification, followed by assignment of goals to a category, was undertaken and then confirmed by a second reviewer. Participants comprised nine males and seven females of mean (SD) age 54.5 (15.7) years and their carers. Fifteen had sustained a stroke and one a traumatic brain injury. Goals were used to identify five categories: passive function, active function, symptoms, cosmesis and impairment. Two passive function items not previously identified by a previous systematic review were identified. Analysis of goals important to patients and carers revealed items for inclusion in a new measure of arm function and provide a useful alternative method to involve patients and carers in standardised measure development. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Testing the Construct Validity of the Gambling Functional Assessment-Revised
ERIC Educational Resources Information Center
Weatherly, Jeffrey N.; Miller, Joseph C.; Terrell, Heather K.
2011-01-01
An attempt was made to modify the Gambling Functional Assessment (GFA), which was proposed to identify four possible contingencies maintaining the respondent's gambling behavior. However, previous research found that it only identified two contingencies (i.e., positive vs. negative reinforcement), with some items cross-loading on both…
Evidence for hubs in human functional brain networks
Power, Jonathan D; Schlaggar, Bradley L; Lessov-Schlaggar, Christina N; Petersen, Steven E
2013-01-01
Summary Hubs integrate and distribute information in powerful ways due to the number and positioning of their contacts in a network. Several resting state functional connectivity MRI reports have implicated regions of the default mode system as brain hubs; we demonstrate that previous degree-based approaches to hub identification may have identified portions of large brain systems rather than critical nodes of brain networks. We utilize two methods to identify hub-like brain regions: 1) finding network nodes that participate in multiple sub-networks of the brain, and 2) finding spatial locations where several systems are represented within a small volume. These methods converge on a distributed set of regions that differ from previous reports on hubs. This work identifies regions that support multiple systems, leading to spatially constrained predictions about brain function that may be tested in terms of lesions, evoked responses, and dynamic patterns of activity. PMID:23972601
1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function
Gorski, Mathias; van der Most, Peter J.; Teumer, Alexander; Chu, Audrey Y.; Li, Man; Mijatovic, Vladan; Nolte, Ilja M.; Cocca, Massimiliano; Taliun, Daniel; Gomez, Felicia; Li, Yong; Tayo, Bamidele; Tin, Adrienne; Feitosa, Mary F.; Aspelund, Thor; Attia, John; Biffar, Reiner; Bochud, Murielle; Boerwinkle, Eric; Borecki, Ingrid; Bottinger, Erwin P.; Chen, Ming-Huei; Chouraki, Vincent; Ciullo, Marina; Coresh, Josef; Cornelis, Marilyn C.; Curhan, Gary C.; d’Adamo, Adamo Pio; Dehghan, Abbas; Dengler, Laura; Ding, Jingzhong; Eiriksdottir, Gudny; Endlich, Karlhans; Enroth, Stefan; Esko, Tõnu; Franco, Oscar H.; Gasparini, Paolo; Gieger, Christian; Girotto, Giorgia; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Hancock, Stephen J.; Harris, Tamara B.; Helmer, Catherine; Höllerer, Simon; Hofer, Edith; Hofman, Albert; Holliday, Elizabeth G.; Homuth, Georg; Hu, Frank B.; Huth, Cornelia; Hutri-Kähönen, Nina; Hwang, Shih-Jen; Imboden, Medea; Johansson, Åsa; Kähönen, Mika; König, Wolfgang; Kramer, Holly; Krämer, Bernhard K.; Kumar, Ashish; Kutalik, Zoltan; Lambert, Jean-Charles; Launer, Lenore J.; Lehtimäki, Terho; de Borst, Martin; Navis, Gerjan; Swertz, Morris; Liu, Yongmei; Lohman, Kurt; Loos, Ruth J. F.; Lu, Yingchang; Lyytikäinen, Leo-Pekka; McEvoy, Mark A.; Meisinger, Christa; Meitinger, Thomas; Metspalu, Andres; Metzger, Marie; Mihailov, Evelin; Mitchell, Paul; Nauck, Matthias; Oldehinkel, Albertine J.; Olden, Matthias; WJH Penninx, Brenda; Pistis, Giorgio; Pramstaller, Peter P.; Probst-Hensch, Nicole; Raitakari, Olli T.; Rettig, Rainer; Ridker, Paul M.; Rivadeneira, Fernando; Robino, Antonietta; Rosas, Sylvia E.; Ruderfer, Douglas; Ruggiero, Daniela; Saba, Yasaman; Sala, Cinzia; Schmidt, Helena; Schmidt, Reinhold; Scott, Rodney J.; Sedaghat, Sanaz; Smith, Albert V.; Sorice, Rossella; Stengel, Benedicte; Stracke, Sylvia; Strauch, Konstantin; Toniolo, Daniela; Uitterlinden, Andre G.; Ulivi, Sheila; Viikari, Jorma S.; Völker, Uwe; Vollenweider, Peter; Völzke, Henry; Vuckovic, Dragana; Waldenberger, Melanie; Jin Wang, Jie; Yang, Qiong; Chasman, Daniel I.; Tromp, Gerard; Snieder, Harold; Heid, Iris M.; Fox, Caroline S.; Köttgen, Anna; Pattaro, Cristian; Böger, Carsten A.; Fuchsberger, Christian
2017-01-01
HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10−8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples. PMID:28452372
1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.
Gorski, Mathias; van der Most, Peter J; Teumer, Alexander; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Nolte, Ilja M; Cocca, Massimiliano; Taliun, Daniel; Gomez, Felicia; Li, Yong; Tayo, Bamidele; Tin, Adrienne; Feitosa, Mary F; Aspelund, Thor; Attia, John; Biffar, Reiner; Bochud, Murielle; Boerwinkle, Eric; Borecki, Ingrid; Bottinger, Erwin P; Chen, Ming-Huei; Chouraki, Vincent; Ciullo, Marina; Coresh, Josef; Cornelis, Marilyn C; Curhan, Gary C; d'Adamo, Adamo Pio; Dehghan, Abbas; Dengler, Laura; Ding, Jingzhong; Eiriksdottir, Gudny; Endlich, Karlhans; Enroth, Stefan; Esko, Tõnu; Franco, Oscar H; Gasparini, Paolo; Gieger, Christian; Girotto, Giorgia; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Hancock, Stephen J; Harris, Tamara B; Helmer, Catherine; Höllerer, Simon; Hofer, Edith; Hofman, Albert; Holliday, Elizabeth G; Homuth, Georg; Hu, Frank B; Huth, Cornelia; Hutri-Kähönen, Nina; Hwang, Shih-Jen; Imboden, Medea; Johansson, Åsa; Kähönen, Mika; König, Wolfgang; Kramer, Holly; Krämer, Bernhard K; Kumar, Ashish; Kutalik, Zoltan; Lambert, Jean-Charles; Launer, Lenore J; Lehtimäki, Terho; de Borst, Martin; Navis, Gerjan; Swertz, Morris; Liu, Yongmei; Lohman, Kurt; Loos, Ruth J F; Lu, Yingchang; Lyytikäinen, Leo-Pekka; McEvoy, Mark A; Meisinger, Christa; Meitinger, Thomas; Metspalu, Andres; Metzger, Marie; Mihailov, Evelin; Mitchell, Paul; Nauck, Matthias; Oldehinkel, Albertine J; Olden, Matthias; Wjh Penninx, Brenda; Pistis, Giorgio; Pramstaller, Peter P; Probst-Hensch, Nicole; Raitakari, Olli T; Rettig, Rainer; Ridker, Paul M; Rivadeneira, Fernando; Robino, Antonietta; Rosas, Sylvia E; Ruderfer, Douglas; Ruggiero, Daniela; Saba, Yasaman; Sala, Cinzia; Schmidt, Helena; Schmidt, Reinhold; Scott, Rodney J; Sedaghat, Sanaz; Smith, Albert V; Sorice, Rossella; Stengel, Benedicte; Stracke, Sylvia; Strauch, Konstantin; Toniolo, Daniela; Uitterlinden, Andre G; Ulivi, Sheila; Viikari, Jorma S; Völker, Uwe; Vollenweider, Peter; Völzke, Henry; Vuckovic, Dragana; Waldenberger, Melanie; Jin Wang, Jie; Yang, Qiong; Chasman, Daniel I; Tromp, Gerard; Snieder, Harold; Heid, Iris M; Fox, Caroline S; Köttgen, Anna; Pattaro, Cristian; Böger, Carsten A; Fuchsberger, Christian
2017-04-28
HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10 -8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples.
Pernice, Wolfgang M.; Vevea, Jason D.; Pon, Liza A.
2016-01-01
Previous studies indicate that replicative lifespan in daughter cells of Sacchraromyces cerevisiae depends on the preferential inheritance of young, high-functioning mitochondria. We report here that mitochondria are functionally segregated even within single mother cells in S. cerevisiae. A high-functioning population of mitochondria accumulates at the tip of the mother cell distal to the bud. We find that the mitochondrial F-box protein (Mfb1p) localizes to mitochondria in the mother tip and is required for mitochondrial anchorage at that site, independent of the previously identified anchorage protein Num1p. Deletion of MFB1 results in loss of the mother-tip-localized mitochondrial population, defects in mitochondrial function and premature replicative ageing. Inhibiting mitochondrial inheritance to buds, by deletion of MMR1, in mfb1Δ cells restores mitochondrial distribution, promotes mitochondrial function and extends replicative lifespan. Our results identify a mechanism that retains a reservoir of high-functioning mitochondria in mother cells and thereby preserves maternal reproductive capacity. PMID:26839174
ERIC Educational Resources Information Center
Myers, Nicholas D.; Wolfe, Edward W.; Feltz, Deborah L.; Penfield, Randall D.
2006-01-01
This study (a) provided a conceptual introduction to differential item functioning (DIF), (b) introduced the multifaceted Rasch rating scale model (MRSM) and an associated statistical procedure for identifying DIF in rating scale items, and (c) applied this procedure to previously collected data from American coaches who responded to the coaching…
An algorithm to identify functional groups in organic molecules.
Ertl, Peter
2017-06-07
The concept of functional groups forms a basis of organic chemistry, medicinal chemistry, toxicity assessment, spectroscopy and also chemical nomenclature. All current software systems to identify functional groups are based on a predefined list of substructures. We are not aware of any program that can identify all functional groups in a molecule automatically. The algorithm presented in this article is an attempt to solve this scientific challenge. An algorithm to identify functional groups in a molecule based on iterative marching through its atoms is described. The procedure is illustrated by extracting functional groups from the bioactive portion of the ChEMBL database, resulting in identification of 3080 unique functional groups. A new algorithm to identify all functional groups in organic molecules is presented. The algorithm is relatively simple and full details with examples are provided, therefore implementation in any cheminformatics toolkit should be relatively easy. The new method allows the analysis of functional groups in large chemical databases in a way that was not possible using previous approaches. Graphical abstract .
Oncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, BCR-ABL1, EML4-ALK, and ETV6-NTRK3, as well as 20 previously uncharacterized fusion genes identified in TCGA datasets.
Expediting Combinatorial Data Set Analysis by Combining Human and Algorithmic Analysis.
Stein, Helge Sören; Jiao, Sally; Ludwig, Alfred
2017-01-09
A challenge in combinatorial materials science remains the efficient analysis of X-ray diffraction (XRD) data and its correlation to functional properties. Rapid identification of phase-regions and proper assignment of corresponding crystal structures is necessary to keep pace with the improved methods for synthesizing and characterizing materials libraries. Therefore, a new modular software called htAx (high-throughput analysis of X-ray and functional properties data) is presented that couples human intelligence tasks used for "ground-truth" phase-region identification with subsequent unbiased verification by an algorithm to efficiently analyze which phases are present in a materials library. Identified phases and phase-regions may then be correlated to functional properties in an expedited manner. For the functionality of htAx to be proven, two previously published XRD benchmark data sets of the materials systems Al-Cr-Fe-O and Ni-Ti-Cu are analyzed by htAx. The analysis of ∼1000 XRD patterns takes less than 1 day with htAx. The proposed method reliably identifies phase-region boundaries and robustly identifies multiphase structures. The method also addresses the problem of identifying regions with previously unpublished crystal structures using a special daisy ternary plot.
Defining the human deubiquitinating enzyme interaction landscape.
Sowa, Mathew E; Bennett, Eric J; Gygi, Steven P; Harper, J Wade
2009-07-23
Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.
Defining the Human Deubiquitinating Enzyme Interaction Landscape
Sowa, Mathew E.; Bennett, Eric J.; Gygi, Steven P.; Harper, J. Wade
2009-01-01
Summary Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform, called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel non-reciprocal proteomic datasets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, sub-cellular localization and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway. PMID:19615732
Screening for Albuminuria Identifies Individuals at Increased Renal Risk
van der Velde, Marije; Halbesma, Nynke; de Charro, Frank T.; Bakker, Stephan J.L.; de Zeeuw, Dick; de Jong, Paul E.; Gansevoort, Ronald T.
2009-01-01
It is unknown whether screening for albuminuria in the general population identifies individuals at increased risk for renal replacement therapy (RRT) or accelerated loss of renal function. Here, in a general population-based cohort of 40,854 individuals aged 28 to 75 yr, we collected a first morning void for measurement of urinary albumin. In a subset of 6879 individuals, we measured 24-h urinary albumin excretion and estimated GFR at baseline and during 6 yr of follow-up. Linkage with the national RRT registry identified 45 individuals who started RRT during 9 yr of follow-up. The quantity of albuminuria was associated with increased renal risk: the higher the level of albuminuria, the higher the risk of need for renal replacement therapy and the more rapid renal function decline. A urinary albumin concentration of ≥20 mg/L identified individuals who started RRT during follow-up with 58% sensitivity and 92% specificity. Of the identified individuals, 39% were previously unknown to have impaired renal function, and 50% were not being medically treated. Restricting screening to high-risk groups (e.g., known hypertension, diabetes, cardiovascular disease [CVD], older age) reduced the sensitivity of the test only marginally but failed to identify 45% of individuals with micro- and macroalbuminuria. In conclusion, individuals with elevated levels of urinary albumin are at increased risk for RRT and accelerated loss of renal function. Screening for albuminuria identifies patients at increased risk for progressive renal disease, 40 to 50% of whom were previously undiagnosed or untreated. PMID:19211710
Nashiro, Kaoru; Sakaki, Michiko; Braskie, Meredith N; Mather, Mara
2017-06-01
Correlations in activity across disparate brain regions during rest reveal functional networks in the brain. Although previous studies largely agree that there is an age-related decline in the "default mode network," how age affects other resting-state networks, such as emotion-related networks, is still controversial. Here we used a dual-regression approach to investigate age-related alterations in resting-state networks. The results revealed age-related disruptions in functional connectivity in all 5 identified cognitive networks, namely the default mode network, cognitive-auditory, cognitive-speech (or speech-related somatosensory), and right and left frontoparietal networks, whereas such age effects were not observed in the 3 identified emotion networks. In addition, we observed age-related decline in functional connectivity in 3 visual and 3 motor/visuospatial networks. Older adults showed greater functional connectivity in regions outside 4 out of the 5 identified cognitive networks, consistent with the dedifferentiation effect previously observed in task-based functional magnetic resonance imaging studies. Both reduced within-network connectivity and increased out-of-network connectivity were correlated with poor cognitive performance, providing potential biomarkers for cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.
Guiu, Jordi; Shimizu, Ritsuko; D’Altri, Teresa; Fraser, Stuart T.; Hatakeyama, Jun; Bresnick, Emery H.; Kageyama, Ryoichiro; Dzierzak, Elaine; Yamamoto, Masayuki; Espinosa, Lluis
2013-01-01
Previous studies have identified Notch as a key regulator of hematopoietic stem cell (HSC) development, but the underlying downstream mechanisms remain unknown. The Notch target Hes1 is widely expressed in the aortic endothelium and hematopoietic clusters, though Hes1-deficient mice show no overt hematopoietic abnormalities. We now demonstrate that Hes is required for the development of HSC in the mouse embryo, a function previously undetected as the result of functional compensation by de novo expression of Hes5 in the aorta/gonad/mesonephros (AGM) region of Hes1 mutants. Analysis of embryos deficient for Hes1 and Hes5 reveals an intact arterial program with overproduction of nonfunctional hematopoietic precursors and total absence of HSC activity. These alterations were associated with increased expression of the hematopoietic regulators Runx1, c-myb, and the previously identified Notch target Gata2. By analyzing the Gata2 locus, we have identified functional RBPJ-binding sites, which mutation results in loss of Gata2 reporter expression in transgenic embryos, and functional Hes-binding sites, which mutation leads to specific Gata2 up-regulation in the hematopoietic precursors. Together, our findings show that Notch activation in the AGM triggers Gata2 and Hes1 transcription, and next HES-1 protein represses Gata2, creating an incoherent feed-forward loop required to restrict Gata2 expression in the emerging HSCs. PMID:23267012
Harper, Angela F; Leuthaeuser, Janelle B; Babbitt, Patricia C; Morris, John H; Ferrin, Thomas E; Poole, Leslie B; Fetrow, Jacquelyn S
2017-02-01
Peroxiredoxins (Prxs or Prdxs) are a large protein superfamily of antioxidant enzymes that rapidly detoxify damaging peroxides and/or affect signal transduction and, thus, have roles in proliferation, differentiation, and apoptosis. Prx superfamily members are widespread across phylogeny and multiple methods have been developed to classify them. Here we present an updated atlas of the Prx superfamily identified using a novel method called MISST (Multi-level Iterative Sequence Searching Technique). MISST is an iterative search process developed to be both agglomerative, to add sequences containing similar functional site features, and divisive, to split groups when functional site features suggest distinct functionally-relevant clusters. Superfamily members need not be identified initially-MISST begins with a minimal representative set of known structures and searches GenBank iteratively. Further, the method's novelty lies in the manner in which isofunctional groups are selected; rather than use a single or shifting threshold to identify clusters, the groups are deemed isofunctional when they pass a self-identification criterion, such that the group identifies itself and nothing else in a search of GenBank. The method was preliminarily validated on the Prxs, as the Prxs presented challenges of both agglomeration and division. For example, previous sequence analysis clustered the Prx functional families Prx1 and Prx6 into one group. Subsequent expert analysis clearly identified Prx6 as a distinct functionally relevant group. The MISST process distinguishes these two closely related, though functionally distinct, families. Through MISST search iterations, over 38,000 Prx sequences were identified, which the method divided into six isofunctional clusters, consistent with previous expert analysis. The results represent the most complete computational functional analysis of proteins comprising the Prx superfamily. The feasibility of this novel method is demonstrated by the Prx superfamily results, laying the foundation for potential functionally relevant clustering of the universe of protein sequences.
Babbitt, Patricia C.; Ferrin, Thomas E.
2017-01-01
Peroxiredoxins (Prxs or Prdxs) are a large protein superfamily of antioxidant enzymes that rapidly detoxify damaging peroxides and/or affect signal transduction and, thus, have roles in proliferation, differentiation, and apoptosis. Prx superfamily members are widespread across phylogeny and multiple methods have been developed to classify them. Here we present an updated atlas of the Prx superfamily identified using a novel method called MISST (Multi-level Iterative Sequence Searching Technique). MISST is an iterative search process developed to be both agglomerative, to add sequences containing similar functional site features, and divisive, to split groups when functional site features suggest distinct functionally-relevant clusters. Superfamily members need not be identified initially—MISST begins with a minimal representative set of known structures and searches GenBank iteratively. Further, the method’s novelty lies in the manner in which isofunctional groups are selected; rather than use a single or shifting threshold to identify clusters, the groups are deemed isofunctional when they pass a self-identification criterion, such that the group identifies itself and nothing else in a search of GenBank. The method was preliminarily validated on the Prxs, as the Prxs presented challenges of both agglomeration and division. For example, previous sequence analysis clustered the Prx functional families Prx1 and Prx6 into one group. Subsequent expert analysis clearly identified Prx6 as a distinct functionally relevant group. The MISST process distinguishes these two closely related, though functionally distinct, families. Through MISST search iterations, over 38,000 Prx sequences were identified, which the method divided into six isofunctional clusters, consistent with previous expert analysis. The results represent the most complete computational functional analysis of proteins comprising the Prx superfamily. The feasibility of this novel method is demonstrated by the Prx superfamily results, laying the foundation for potential functionally relevant clustering of the universe of protein sequences. PMID:28187133
2011-01-01
Background The drug/metabolite transporter superfamily comprises a diversity of protein domain families with multiple functions including transport of nucleotide sugars. Drug/metabolite transporter domains are contained in both solute carrier families 30, 35 and 39 proteins as well as in acyl-malonyl condensing enzyme proteins. In this paper, we present an evolutionary analysis of nucleotide sugar transporters in relation to the entire superfamily of drug/metabolite transporters that considers crucial intra-protein duplication events that have shaped the transporters. We use a method that combines the strengths of hidden Markov models and maximum likelihood to find relationships between drug/metabolite transporter families, and branches within families. Results We present evidence that the triose-phosphate transporters, domain unknown function 914, uracil-diphosphate glucose-N-acetylglucosamine, and nucleotide sugar transporter families have evolved from a domain duplication event before the radiation of Viridiplantae in the EamA family (previously called domain unknown function 6). We identify previously unknown branches in the solute carrier 30, 35 and 39 protein families that emerged simultaneously as key physiological developments after the radiation of Viridiplantae, including the "35C/E" branch of EamA, which formed in the lineage of T. adhaerens (Animalia). We identify a second cluster of DMTs, called the domain unknown function 1632 cluster, which has non-cytosolic N- and C-termini, and thus appears to have been formed from a different domain duplication event. We identify a previously uncharacterized motif, G-X(6)-G, which is overrepresented in the fifth transmembrane helix of C-terminal domains. We present evidence that the family called fatty acid elongases are homologous to transporters, not enzymes as had previously been thought. Conclusions The nucleotide sugar transporters families were formed through differentiation of the gene cluster EamA (domain unknown function 6) before Viridiplantae, showing for the first time the significance of EamA. PMID:21569384
Multimodal connectivity of motor learning-related dorsal premotor cortex.
Hardwick, Robert M; Lesage, Elise; Eickhoff, Claudia R; Clos, Mareike; Fox, Peter; Eickhoff, Simon B
2015-12-01
The dorsal premotor cortex (dPMC) is a key region for motor learning and sensorimotor integration, yet we have limited understanding of its functional interactions with other regions. Previous work has started to examine functional connectivity in several brain areas using resting state functional connectivity (RSFC) and meta-analytical connectivity modelling (MACM). More recently, structural covariance (SC) has been proposed as a technique that may also allow delineation of functional connectivity. Here, we applied these three approaches to provide a comprehensive characterization of functional connectivity with a seed in the left dPMC that a previous meta-analysis of functional neuroimaging studies has identified as playing a key role in motor learning. Using data from two sources (the Rockland sample, containing resting state data and anatomical scans from 132 participants, and the BrainMap database, which contains peak activation foci from over 10,000 experiments), we conducted independent whole-brain functional connectivity mapping analyses of a dPMC seed. RSFC and MACM revealed similar connectivity maps spanning prefrontal, premotor, and parietal regions, while the SC map identified more widespread frontal regions. Analyses indicated a relatively consistent pattern of functional connectivity between RSFC and MACM that was distinct from that identified by SC. Notably, results indicate that the seed is functionally connected to areas involved in visuomotor control and executive functions, suggesting that the dPMC acts as an interface between motor control and cognition. Copyright © 2015 Elsevier Inc. All rights reserved.
Katsogiannou, Maria; Andrieu, Claudia; Baylot, Virginie; Baudot, Anaïs; Dusetti, Nelson J.; Gayet, Odile; Finetti, Pascal; Garrido, Carmen; Birnbaum, Daniel; Bertucci, François; Brun, Christine; Rocchi, Palma
2014-01-01
Previously, we identified the stress-induced chaperone, Hsp27, as highly overexpressed in castration-resistant prostate cancer and developed an Hsp27 inhibitor (OGX-427) currently tested in phase I/II clinical trials as a chemosensitizing agent in different cancers. To better understand the Hsp27 poorly-defined cytoprotective functions in cancers and increase the OGX-427 pharmacological safety, we established the Hsp27-protein interaction network using a yeast two-hybrid approach and identified 226 interaction partners. As an example, we showed that targeting Hsp27 interaction with TCTP, a partner protein identified in our screen increases therapy sensitivity, opening a new promising field of research for therapeutic approaches that could decrease or abolish toxicity for normal cells. Results of an in-depth bioinformatics network analysis allying the Hsp27 interaction map into the human interactome underlined the multifunctional character of this protein. We identified interactions of Hsp27 with proteins involved in eight well known functions previously related to Hsp27 and uncovered 17 potential new ones, such as DNA repair and RNA splicing. Validation of Hsp27 involvement in both processes in human prostate cancer cells supports our system biology-predicted functions and provides new insights into Hsp27 roles in cancer cells. PMID:25277244
Independent Component Analysis of Resting-State Functional Magnetic Resonance Imaging in Pedophiles.
Cantor, J M; Lafaille, S J; Hannah, J; Kucyi, A; Soh, D W; Girard, T A; Mikulis, D J
2016-10-01
Neuroimaging and other studies have changed the common view that pedophilia is a result of childhood sexual abuse and instead is a neurologic phenomenon with prenatal origins. Previous research has identified differences in the structural connectivity of the brain in pedophilia. To identify analogous differences in functional connectivity. Functional magnetic resonance images were recorded from three groups of participants while they were at rest: pedophilic men with a history of sexual offenses against children (n = 37) and two control groups: non-pedophilic men who committed non-sexual offenses (n = 28) and non-pedophilic men with no criminal history (n = 39). Functional magnetic resonance imaging data were subjected to independent component analysis to identify known functional networks of the brain, and groups were compared to identify differences in connectivity with those networks (or "components"). The pedophilic group demonstrated wide-ranging increases in functional connectivity with the default mode network compared with controls and regional differences (increases and decreases) with the frontoparietal network. Of these brain regions (total = 23), 20 have been identified by meta-analytic studies to respond to sexually relevant stimuli. Conversely, of the brain areas known to be those that respond to sexual stimuli, nearly all emerged in the present data as significantly different in pedophiles. This study confirms the presence of significant differences in the functional connectivity of the brain in pedophilia consistent with previously reported differences in structural connectivity. The connectivity differences detected here and elsewhere are opposite in direction from those associated with anti-sociality, arguing against anti-sociality and for pedophilia as the source of the neuroanatomic differences detected. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Li, Ruifang; Zhao, Yan; Truhlar, Donald G
2011-02-28
Adequate polarization functions reduce the error of density functional theory (DFT) for the heat of reaction for CF(4) + SiCl(4) from ∼9-12 kcal mol(-1) to ∼2-4 kcal mol(-1), and using an improved density functional further reduces it to ∼1 kcal mol(-1). This reaction was previously identified as a stumbling block for DFT, but we show that the problem with the previous calculations was not DFT but rather inadequate basis sets to account for intramolecular charge polarization.
Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus
Di, Han; Madden, Joseph C.; Morantz, Esther K.; Tang, Hsin-Yao; Graham, Rachel L.; Baric, Ralph S.
2017-01-01
Members of the order Nidovirales express their structural protein ORFs from a nested set of 3′ subgenomic mRNAs (sg mRNAs), and for most of these ORFs, a single genomic transcription regulatory sequence (TRS) was identified. Nine TRSs were previously reported for the arterivirus Simian hemorrhagic fever virus (SHFV). In the present study, which was facilitated by next-generation sequencing, 96 SHFV body TRSs were identified that were functional in both infected MA104 cells and macaque macrophages. The abundance of sg mRNAs produced from individual TRSs was consistent over time in the two different cell types. Most of the TRSs are located in the genomic 3′ region, but some are in the 5′ ORF1a/1b region and provide alternative sources of nonstructural proteins. Multiple functional TRSs were identified for the majority of the SHFV 3′ ORFs, and four previously identified TRSs were found not to be the predominant ones used. A third of the TRSs generated sg mRNAs with variant leader–body junction sequences. Sg mRNAs encoding E′, GP2, or ORF5a as their 5′ ORF as well as sg mRNAs encoding six previously unreported alternative frame ORFs or 14 previously unreported C-terminal ORFs of known proteins were also identified. Mutation of the start codon of two C-terminal ORFs in an infectious clone reduced virus yield. Mass spectrometry detected one previously unreported protein and suggested translation of some of the C-terminal ORFs. The results reveal the complexity of the transcriptional regulatory mechanism and expanded coding capacity for SHFV, which may also be characteristic of other nidoviruses. PMID:29073030
Transcriptome map of plant mitochondria reveals islands of unexpected transcribed regions.
Fujii, Sota; Toda, Takushi; Kikuchi, Shunsuke; Suzuki, Ryutaro; Yokoyama, Koji; Tsuchida, Hiroko; Yano, Kentaro; Toriyama, Kinya
2011-06-01
Plant mitochondria contain a relatively large amount of genetic information, suggesting that their functional regulation may not be as straightforward as that of metazoans. We used a genomic tiling array to draw a transcriptomic atlas of Oryza sativa japonica (rice) mitochondria, which was predicted to be approximately 490-kb long. Whereas statistical analysis verified the transcription of all previously known functional genes such as the ones related to oxidative phosphorylation, a similar extent of RNA expression was frequently observed in the inter-genic regions where none of the previously annotated genes are located. The newly identified open reading frames (ORFs) predicted in these transcribed inter-genic regions were generally not conserved among flowering plant species, suggesting that these ORFs did not play a role in mitochondrial principal functions. We also identified two partial fragments of retrotransposon sequences as being transcribed in rice mitochondria. The present study indicated the previously unexpected complexity of plant mitochondrial RNA metabolism. Our transcriptomic data (Oryza sativa Mitochondrial rna Expression Server: OsMES) is publicly accessible at [http://bioinf.mind.meiji.ac.jp/cgi-bin/gbrowse/OsMes/#search].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, Joel M.; Colmenares, Serafin U.; Strom, Amy R.
Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors andmore » regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.« less
Zhang, Jun; Li, Xiaohai; Mueller, Michael; Wang, Yueju; Zong, Chenggong; Deng, Ning; Vondriska, Thomas M.; Liem, David A.; Yang, Jeong-In; Korge, Paavo; Honda, Henry; Weiss, James N.; Apweiler, Rolf; Ping, Peipei
2009-01-01
Mitochondria play essential roles in cardiac pathophysiology and the murine model has been extensively used to investigate cardiovascular diseases. In the present study, we characterized murine cardiac mitochondria using an LC/MS/MS approach. We extracted and purified cardiac mitochondria; validated their functionality to ensure the final preparation contains necessary components to sustain their normal function; and subjected these validated organelles to LC/MS/MS-based protein identification. A total of 940 distinct proteins were identified from murine cardiac mitochondria, among which, 480 proteins were not previously identified by major proteomic profiling studies. The 940 proteins consist of functional clusters known to support oxidative phosphorylation, metabolism and biogenesis. In addition, there are several other clusters--including proteolysis, protein folding, and reduction/oxidation signaling-which ostensibly represent previously under-appreciated tasks of cardiac mitochondria. Moreover, many identified proteins were found to occupy other subcellular locations, including cytoplasm, ER, and golgi, in addition to their presence in the mitochondria. These results provide a comprehensive picture of the murine cardiac mitochondrial proteome and underscore tissue- and species-specification. Moreover, the use of functionally intact mitochondria insures that the proteomic observations in this organelle are relevant to its normal biology and facilitates decoding the interplay between mitochondria and other organelles. PMID:18348319
Extending and implementing the Persistent ID pillars
NASA Astrophysics Data System (ADS)
Car, Nicholas; Golodoniuc, Pavel; Klump, Jens
2017-04-01
The recent double decade anniversary of scholarly persistent identifier use has triggered journal special editions such as "20 Years of Persistent Identifiers". For such a publication, it is apt to consider the longevity of some persistent identifier (PID) mechanisms (Digital Object Identifiers) and the partial disappearance of others (Life Sciences IDs). We have previously postulated a set of "PID Pillars" [1] which are design principles aimed at ensuring PIDs can survive technology and social change and thus persist for the long term that we have drawn from our observations of PIDs at work over many years. The principles: describe how to ensure identifiers' system and organisation independence; codify the delivery of essential PID system functions; mandate a separation of PID functions from data delivery mechanisms; and require generation of policies detailing how change is handled. In this presentation, first we extend on our previous work of introducing the pillars by refining their descriptions, giving specific suggestions for each and presenting some work that addresses them. Second, we propose a baseline data model for persistent identifiers that, if used, would assist the separation of PID metadata and PID system functioning. This would allow PID system function specifics to change over time (e.g. resolver services or even resolution protocols) and yet preserve the PIDs themselves. Third, we detail our existing PID system — the PID Service [2] — that partially implements the pillars and describe both its successes and shortcomings. Finally, we describe our planned next-generation system that will aim to use the baseline data model and fully implement the pillars.
Katsogiannou, Maria; Andrieu, Claudia; Baylot, Virginie; Baudot, Anaïs; Dusetti, Nelson J; Gayet, Odile; Finetti, Pascal; Garrido, Carmen; Birnbaum, Daniel; Bertucci, François; Brun, Christine; Rocchi, Palma
2014-12-01
Previously, we identified the stress-induced chaperone, Hsp27, as highly overexpressed in castration-resistant prostate cancer and developed an Hsp27 inhibitor (OGX-427) currently tested in phase I/II clinical trials as a chemosensitizing agent in different cancers. To better understand the Hsp27 poorly-defined cytoprotective functions in cancers and increase the OGX-427 pharmacological safety, we established the Hsp27-protein interaction network using a yeast two-hybrid approach and identified 226 interaction partners. As an example, we showed that targeting Hsp27 interaction with TCTP, a partner protein identified in our screen increases therapy sensitivity, opening a new promising field of research for therapeutic approaches that could decrease or abolish toxicity for normal cells. Results of an in-depth bioinformatics network analysis allying the Hsp27 interaction map into the human interactome underlined the multifunctional character of this protein. We identified interactions of Hsp27 with proteins involved in eight well known functions previously related to Hsp27 and uncovered 17 potential new ones, such as DNA repair and RNA splicing. Validation of Hsp27 involvement in both processes in human prostate cancer cells supports our system biology-predicted functions and provides new insights into Hsp27 roles in cancer cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
ERIC Educational Resources Information Center
Ringdahl, Joel E.; Falcomata, Terry S.; Christensen, Tory J.; Bass-Ringdahl, Sandie M.; Lentz, Alison; Dutt, Anuradha; Schuh-Claus, Jessica
2009-01-01
Recent research has suggested that variables related to specific mand topographies targeted during functional communication training (FCT) can affect treatment outcomes. These include effort, novelty of mands, previous relationships with problem behavior, and preference. However, there is little extant research on procedures for identifying which…
Extending existing structural identifiability analysis methods to mixed-effects models.
Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D
2018-01-01
The concept of structural identifiability for state-space models is expanded to cover mixed-effects state-space models. Two methods applicable for the analytical study of the structural identifiability of mixed-effects models are presented. The two methods are based on previously established techniques for non-mixed-effects models; namely the Taylor series expansion and the input-output form approach. By generating an exhaustive summary, and by assuming an infinite number of subjects, functions of random variables can be derived which in turn determine the distribution of the system's observation function(s). By considering the uniqueness of the analytical statistical moments of the derived functions of the random variables, the structural identifiability of the corresponding mixed-effects model can be determined. The two methods are applied to a set of examples of mixed-effects models to illustrate how they work in practice. Copyright © 2017 Elsevier Inc. All rights reserved.
Turco, Gina; Schnable, James C.; Pedersen, Brent; Freeling, Michael
2013-01-01
Conserved non-coding sequences (CNS) are islands of non-coding sequence that, like protein coding exons, show less divergence in sequence between related species than functionless DNA. Several CNSs have been demonstrated experimentally to function as cis-regulatory regions. However, the specific functions of most CNSs remain unknown. Previous searches for CNS in plants have either anchored on exons and only identified nearby sequences or required years of painstaking manual annotation. Here we present an open source tool that can accurately identify CNSs between any two related species with sequenced genomes, including both those immediately adjacent to exons and distal sequences separated by >12 kb of non-coding sequence. We have used this tool to characterize new motifs, associate CNSs with additional functions, and identify previously undetected genes encoding RNA and protein in the genomes of five grass species. We provide a list of 15,363 orthologous CNSs conserved across all grasses tested. We were also able to identify regulatory sequences present in the common ancestor of grasses that have been lost in one or more extant grass lineages. Lists of orthologous gene pairs and associated CNSs are provided for reference inbred lines of arabidopsis, Japonica rice, foxtail millet, sorghum, brachypodium, and maize. PMID:23874343
Illuminating structural proteins in viral "dark matter" with metaproteomics
Brum, Jennifer R.; Ignacio-Espinoza, J. Cesar; Kim, Eun -Hae; ...
2016-02-16
Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional darkmatter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore,more » four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Altogether, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.« less
Illuminating structural proteins in viral "dark matter" with metaproteomics.
Brum, Jennifer R; Ignacio-Espinoza, J Cesar; Kim, Eun-Hae; Trubl, Gareth; Jones, Robert M; Roux, Simon; VerBerkmoes, Nathan C; Rich, Virginia I; Sullivan, Matthew B
2016-03-01
Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.
Illuminating structural proteins in viral “dark matter” with metaproteomics
Brum, Jennifer R.; Ignacio-Espinoza, J. Cesar; Kim, Eun-Hae; Trubl, Gareth; Jones, Robert M.; Roux, Simon; VerBerkmoes, Nathan C.; Rich, Virginia I.; Sullivan, Matthew B.
2016-01-01
Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional “viral dark matter.” Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world’s oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter. PMID:26884177
The Lymantria dispar nucleopolyhedrovirus enhancins are components of occlusion-derived virus
James M. Slavicek; Holly J.R. Popham
2005-01-01
Enhancins are metalloproteinases, first identified in granuloviruses, that can enhance nucleopolyhedrovirus (NIPV) potency. We had previously identified two enhamin genes (El and E2) in the Lymantria dispar multinucleocapsid NPV (LdMNPV) and showed that both were functional. For this study, we have extended our analysis of LdMNPV...
Freyre-González, Julio A; Treviño-Quintanilla, Luis G; Valtierra-Gutiérrez, Ilse A; Gutiérrez-Ríos, Rosa María; Alonso-Pavón, José A
2012-10-31
Escherichia coli and Bacillus subtilis are two of the best-studied prokaryotic model organisms. Previous analyses of their transcriptional regulatory networks have shown that they exhibit high plasticity during evolution and suggested that both converge to scale-free-like structures. Nevertheless, beyond this suggestion, no analyses have been carried out to identify the common systems-level components and principles governing these organisms. Here we show that these two phylogenetically distant organisms follow a set of common novel biologically consistent systems principles revealed by the mathematically and biologically founded natural decomposition approach. The discovered common functional architecture is a diamond-shaped, matryoshka-like, three-layer (coordination, processing, and integration) hierarchy exhibiting feedback, which is shaped by four systems-level components: global transcription factors (global TFs), locally autonomous modules, basal machinery and intermodular genes. The first mathematical criterion to identify global TFs, the κ-value, was reassessed on B. subtilis and confirmed its high predictive power by identifying all the previously reported, plus three potential, master regulators and eight sigma factors. The functionally conserved cores of modules, basal cell machinery, and a set of non-orthologous common physiological global responses were identified via both orthologous genes and non-orthologous conserved functions. This study reveals novel common systems principles maintained between two phylogenetically distant organisms and provides a comparison of their lifestyle adaptations. Our results shed new light on the systems-level principles and the fundamental functions required by bacteria to sustain life. Copyright © 2012 Elsevier B.V. All rights reserved.
Voils, Corrine I.; Olsen, Maren K.; Williams, John W.; for the IMPACT Study Investigators
2008-01-01
Objective: To determine whether a subset of depressive symptoms could be identified to facilitate diagnosis of depression in older adults in primary care. Method: Secondary analysis was conducted on 898 participants aged 60 years or older with major depressive disorder and/or dysthymic disorder (according to DSM-IV criteria) who participated in the Improving Mood–Promoting Access to Collaborative Treatment (IMPACT) study, a multisite, randomized trial of collaborative care for depression (recruitment from July 1999 to August 2001). Linear regression was used to identify a core subset of depressive symptoms associated with decreased social, physical, and mental functioning. The sensitivity and specificity, adjusting for selection bias, were evaluated for these symptoms. The sensitivity and specificity of a second subset of 4 depressive symptoms previously validated in a midlife sample was also evaluated. Results: Psychomotor changes, fatigue, and suicidal ideation were associated with decreased functioning and served as the core set of symptoms. Adjusting for selection bias, the sensitivity of these 3 symptoms was 0.012 and specificity 0.994. The sensitivity of the 4 symptoms previously validated in a midlife sample was 0.019 and specificity was 0.997. Conclusion: We identified 3 depression symptoms that were highly specific for major depressive disorder in older adults. However, these symptoms and a previously identified subset were too insensitive for accurate diagnosis. Therefore, we recommend a full assessment of DSM-IV depression criteria for accurate diagnosis. PMID:18311416
NASA Astrophysics Data System (ADS)
Sanders, R. W.; Gast, R. J.
2016-02-01
Many protists traditionally described as phototrophic have recently been shown to have retained the primitive trait of phagotrophy, and thus function as mixotrophs. Mixotrophic nanoflagellates were identified in every sample examined from a summer cruise in the Ross Sea, Antarctica, where they often were more abundant than heterotrophic nanoflagellates that have previously been considered the major bacterivores in marine waters. Mixotrophs, identified by uptake of fluorescent tracers, comprised similar proportions (9-75%) of the total bacterivorous flagellates in summer as were previously determined for an earlier spring cruise in the Ross Sea. Protist diversity also was linked to functional bacterivores using a culture-independent method in which BrdU-labeled DNA of bacterial prey was incorporated into the DNA of eukaryotic grazers. Immunoprecipitation of the BrdU-labeld DNA was followed by high-throughput sequencing to identify a diverse group of bacterivores, including numerous uncultured eukaryotes. However, its utility for identification of mixotrophs was limited by the availability of sequences from known mixotrophs.
The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, Joel M.; Colmenares, Serafin U.; Strom, Amy R.
Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors andmore » regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.« less
The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic
Swenson, Joel M.; Colmenares, Serafin U.; Strom, Amy R.; ...
2016-08-11
Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors andmore » regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.« less
Huffman, Jennifer E.; de Vries, Paul S.; Morrison, Alanna C.; Sabater-Lleal, Maria; Kacprowski, Tim; Auer, Paul L.; Brody, Jennifer A.; Chasman, Daniel I.; Chen, Ming-Huei; Guo, Xiuqing; Lin, Li-An; Marioni, Riccardo E.; Müller-Nurasyid, Martina; Yanek, Lisa R.; Pankratz, Nathan; Grove, Megan L.; de Maat, Moniek P. M.; Cushman, Mary; Wiggins, Kerri L.; Qi, Lihong; Sennblad, Bengt; Harris, Sarah E.; Polasek, Ozren; Riess, Helene; Rivadeneira, Fernando; Rose, Lynda M.; Goel, Anuj; Taylor, Kent D.; Teumer, Alexander; Uitterlinden, André G.; Vaidya, Dhananjay; Yao, Jie; Tang, Weihong; Levy, Daniel; Waldenberger, Melanie; Becker, Diane M.; Folsom, Aaron R.; Giulianini, Franco; Greinacher, Andreas; Hofman, Albert; Huang, Chiang-Ching; Kooperberg, Charles; Silveira, Angela; Starr, John M.; Strauch, Konstantin; Strawbridge, Rona J.; Wright, Alan F.; McKnight, Barbara; Franco, Oscar H.; Zakai, Neil; Mathias, Rasika A.; Psaty, Bruce M.; Ridker, Paul M.; Tofler, Geoffrey H.; Völker, Uwe; Watkins, Hugh; Fornage, Myriam; Hamsten, Anders; Deary, Ian J.; Boerwinkle, Eric; Koenig, Wolfgang; Rotter, Jerome I.; Hayward, Caroline; Dehghan, Abbas; Reiner, Alex P.; O’Donnell, Christopher J.
2015-01-01
Fibrinogen, coagulation factor VII (FVII), and factor VIII (FVIII) and its carrier von Willebrand factor (vWF) play key roles in hemostasis. Previously identified common variants explain only a small fraction of the trait heritabilities, and additional variations may be explained by associations with rarer variants with larger effects. The aim of this study was to identify low-frequency (minor allele frequency [MAF] ≥0.01 and <0.05) and rare (MAF <0.01) variants that influence plasma concentrations of these 4 hemostatic factors by meta-analyzing exome chip data from up to 76 000 participants of 4 ancestries. We identified 12 novel associations of low-frequency (n = 2) and rare (n = 10) variants across the fibrinogen, FVII, FVIII, and vWF traits that were independent of previously identified associations. Novel loci were found within previously reported genes and had effect sizes much larger than and independent of previously identified common variants. In addition, associations at KCNT1, HID1, and KATNB1 identified new candidate genes related to hemostasis for follow-up replication and functional genomic analysis. Newly identified low-frequency and rare-variant associations accounted for modest amounts of trait variance and therefore are unlikely to increase predicted trait heritability but provide new information for understanding individual variation in hemostasis pathways. PMID:26105150
Brake System Design Optimization : Volume 2. Supplemental Data.
DOT National Transportation Integrated Search
1981-04-01
Existing freight car braking systems, components, and subsystems are characterized both physically and functionally, and life-cycle costs are examined. Potential improvements to existing systems previously proposed or available are identified and des...
Brake System Design Optimization. Volume II : Supplemental Data.
DOT National Transportation Integrated Search
1981-06-01
Existing freight car braking systems, components, and subsystems are characterized both physically and functionally, and life-cycle costs are examined. Potential improvements to existing systems previously proposed or available are identified and des...
Clinical predictors of interpersonal functioning in patients with bipolar disorder.
Rosa, Adriane R; Bonnin, Caterina Mar; Mazzarini, Luis; Amann, Benedikt; Kapczinski, Flavio P; Vieta, Eduard
2009-04-01
Functional impairment has been repeatedly reported in patients with bipolar disorder even during clinical remission. Less is known about specific domains, such as interpersonal relationships. The aim of this study was to identify clinical predictors of poor interpersonal relationships. Using a specific subscale of the Functioning Assessment Short Test (FAST), we assessed the interpersonal relationships of a sample of 71 euthymic bipolar (Hamilton Depression Rating Scale [HAM-D] < 8; Young Mania Rating Scale [YMRS] < 5) patients. The sample was divided into two categories: low vs. high level functioning in interpersonal relationships according to the median of the sample. Multivariate analyses were applied to identify significant predictors of interpersonal functioning. Age (p=0.026), the number of previous depressive and mixed episodes and HAM-D scores differed significantly between the two groups (p<0.05). For manic episodes, only a tendency was detected (p=0.064). After running multivariate analyses, age (p=0.026), depressive symptoms (p=0.055) and the number of previous manic episodes (p=0.033) could be considered predictors of poor interpersonal functioning. The model predicted 83.3% of the variance (R=0.59; gl=1; p<0.001). Our results indicate a link between greater impairment in interpersonal relationships and being older and having more residual symptoms and a higher number of previous manic episodes. Patients with these features should be carefully monitored and specific psychosocial interventions should be implemented to improve their outcome. Copyright © 2009 Sociedad Española de Psiquiatría and Sociedad Española de Psiquiatría Biológica. Published by Elsevier Espana. All rights reserved.
Li, Hongmei; Hu, Chuansheng; Bai, Ling; Li, Hua; Li, Mingfa; Zhao, Xiaodong; Czajkowsky, Daniel M; Shao, Zhifeng
2016-12-01
There is growing recognition that small open reading frames (sORFs) encoding peptides shorter than 100 amino acids are an important class of functional elements in the eukaryotic genome, with several already identified to play critical roles in growth, development, and disease. However, our understanding of their biological importance has been hindered owing to the significant technical challenges limiting their annotation. Here we combined ultra-deep sequencing of ribosome-associated poly-adenylated RNAs with rigorous conservation analysis to identify a comprehensive population of translated sORFs during early Drosophila embryogenesis. In total, we identify 399 sORFs, including those previously annotated but without evidence of translational capacity, those found within transcripts previously classified as non-coding, and those not previously known to be transcribed. Further, we find, for the first time, evidence for translation of many sORFs with different isoforms, suggesting their regulation is as complex as longer ORFs. Furthermore, many sORFs are found not associated with ribosomes in late-stage Drosophila S2 cells, suggesting that many of the translated sORFs may have stage-specific functions during embryogenesis. These results thus provide the first comprehensive annotation of the sORFs present during early Drosophila embryogenesis, a necessary basis for a detailed delineation of their function in embryogenesis and other biological processes. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Grobei, Monica A.; Qeli, Ermir; Brunner, Erich; Rehrauer, Hubert; Zhang, Runxuan; Roschitzki, Bernd; Basler, Konrad; Ahrens, Christian H.; Grossniklaus, Ueli
2009-01-01
Pollen, the male gametophyte of flowering plants, represents an ideal biological system to study developmental processes, such as cell polarity, tip growth, and morphogenesis. Upon hydration, the metabolically quiescent pollen rapidly switches to an active state, exhibiting extremely fast growth. This rapid switch requires relevant proteins to be stored in the mature pollen, where they have to retain functionality in a desiccated environment. Using a shotgun proteomics approach, we unambiguously identified ∼3500 proteins in Arabidopsis pollen, including 537 proteins that were not identified in genetic or transcriptomic studies. To generate this comprehensive reference data set, which extends the previously reported pollen proteome by a factor of 13, we developed a novel deterministic peptide classification scheme for protein inference. This generally applicable approach considers the gene model–protein sequence–protein accession relationships. It allowed us to classify and eliminate ambiguities inherently associated with any shotgun proteomics data set, to report a conservative list of protein identifications, and to seamlessly integrate data from previous transcriptomics studies. Manual validation of proteins unambiguously identified by a single, information-rich peptide enabled us to significantly reduce the false discovery rate, while keeping valuable identifications of shorter and lower abundant proteins. Bioinformatic analyses revealed a higher stability of pollen proteins compared to those of other tissues and implied a protein family of previously unknown function in vesicle trafficking. Interestingly, the pollen proteome is most similar to that of seeds, indicating physiological similarities between these developmentally distinct tissues. PMID:19546170
Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects
Chang, Howard C.; Sen, Anindya; Kalloo, Geetika; Harris, Jevede; Barsby, Tom; Walsh, Melissa B.; Satterlee, John S.; Li, Chris; Van Vactor, David; Artavanis-Tsakonas, Spyros; Hart, Anne C.
2010-01-01
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species. PMID:21124729
How to differentiate non-erosive reflux disease from functional heartburn.
Ke, Mei Yun
2012-12-01
Heartburn is a common symptom in gastroesophageal reflux disease. Endoscopic examination can differentiate between reflux esophagitis and non-erosive reflux disease (NERD), but not between NERD and functional heartburn. With the development of new techniques, more NERD patients could be identified among those previously diagnosed with functional heartburn. Most patients with NERD, however, could be identified based on their clinical characteristics and response to proton pump inhibitors and/or integrated anti-gastroesophageal reflux therapy. © 2012 The Author. Journal of Digestive Diseases © 2012 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
USDA-ARS?s Scientific Manuscript database
Apple gene MDP0000136494 was identified as the only LysM containing protein encoding gene which was specifically up-regulated in P. ultimum infected apple root by a previous transcriptome analysis. In current study, the functional identity of MDP0000136494 was investigated using combined genomic, tr...
Brake System Design Optimization : Volume 1. A Survey and Assessment.
DOT National Transportation Integrated Search
1978-06-01
Existing freight car braking systems, components, and subsystems are characterized both physically and functionally, and life-cycle costs are examined. Potential improvements to existing systems previously proposed or available are identified and des...
Manesia, Javed K.; Franch, Monica; Tabas-Madrid, Daniel; Nogales-Cadenas, Ruben; Vanwelden, Thomas; Van Den Bosch, Elisa; Xu, Zhuofei; Pascual-Montano, Alberto; Khurana, Satish; Verfaillie, Catherine M.
2018-01-01
During ontogeny, fetal liver (FL) acts as a major site for hematopoietic stem cell (HSC) maturation and expansion, whereas HSCs in the adult bone marrow (ABM) are largely quiescent. HSCs in the FL possess faster repopulation capacity as compared with ABM HSCs. However, the molecular mechanism regulating the greater self-renewal potential of FL HSCs has not yet extensively been assessed. Recently, we published RNA sequencing-based gene expression analysis on FL HSCs from 14.5-day mouse embryo (E14.5) in comparison to the ABM HSCs. We reanalyzed these data to identify key transcriptional regulators that play important roles in the expansion of HSCs during development. The comparison of FL E14.5 with ABM HSCs identified more than 1,400 differentially expressed genes. More than 200 genes were shortlisted based on the gene ontology (GO) annotation term “transcription.” By morpholino-based knockdown studies in zebrafish, we assessed the function of 18 of these regulators, previously not associated with HSC proliferation. Our studies identified a previously unknown role for tdg, uhrf1, uchl5, and ncoa1 in the emergence of definitive hematopoiesis in zebrafish. In conclusion, we demonstrate that identification of genes involved in transcriptional regulation differentially expressed between expanding FL HSCs and quiescent ABM HSCs, uncovers novel regulators of HSC function. PMID:27958775
A potential functional association between mutant BMPR2 and primary ovarian insufficiency.
Patiño, Liliana Catherine; Silgado, Daniel; Laissue, Paul
2017-06-01
Primary ovarian insufficiency (POI) affects ~1% of women in the general population. Despite numerous attempts at identifying POI genetic aetiology, coding mutations in only a few genes have been functionally related to POI pathogenesis. It has been suggested that mutant BMPR2 might contribute towards the phenotype. Several BMP15 (a BMPR2 ligand) coding mutations in human species have been related to POI pathogenesis. The BMPR2 p.Ser987Phe mutation, previously identified in a woman with POI, might therefore lead to cellular dysfunction contributing to the phenotype. To explore such an assumption, the present study assessed potential pathogenic subcellular localization/aggregation patterns associated with the p.Ser987Phe mutant form of BMPR2 in a relevant model for studying ovarian function. A significant increase in protein-like aggregation patterns was identified at the endoplasmic reticulum (ER) which permitted us to establish, for the first time, a potential functional association between mutant BMPR2 and POI aetiology. Since BMPR2 mutant forms were previously related to idiopathic pulmonary arterial hypertension, BMPR2 mutations may be related to an as-yet-to-be described syndromic form of POI involving pulmonary dysfunction. Additional assays are necessary to confirm that BMPR2 abnormal subcellular patterns are composed by aggregates. POI: primary ovarian insufficiency; ER: endoplasmic reticulum; NGS: next generation sequencing.
Jaeschke, Holger; Mueller, Sandra; Eszlinger, Markus; Paschke, Ralf
2010-12-01
Constitutively activating mutations (CAMs) of the TSHR are the major cause for nonautoimmune hyperthyroidism. Re-examination of constitutive activity previously determined in CHO cell lines recently demonstrated the caveats for the in vitro determination of constitutive TSHR activity, which leads to false positive conclusions regarding the molecular origin of hyperthyroidism or hot thyroid carcinomas. Mutations L677V and T620I identified in hot thyroid carcinomas were previously characterized in CHO and in 3T3-Vill cell lines, respectively, stably expressing the mutant without determination of TSHR expression. F666L identified in a patient with hot thyroid nodules, I691F in a family with nonautoimmune hyperthyroidism and F631I identified in a hot thyroid carcinoma were not characterized for their in vitro function. Therefore, we decided to (re)evaluate the in vitro function of these five TSHR variants by determination of cell surface expression, and intracellular cAMP and inositol phosphate levels and performed additionally linear regression analyses to determine basal activity independently from the mutant's cell surface expression in COS-7 and HEK(GT) cells. Only one (F631I) of the five investigated TSHR variants displayed constitutive activity for G(α) s signalling and showed correlation with the clinical phenotype. The previous false classification of T620I and L677V as CAMs is most likely related to the fact that both mutations were characterized in cell lines stably expressing the mutated receptor construct without assessing the respective receptor number per cell. Other molecular aetiologies for the nonautoimmune hyperthyroidism and/or hot thyroid carcinomas in these three patients and one family should be elucidated. © 2010 Blackwell Publishing Ltd.
Nayeri, Shadi; Sargolzaei, Mehdi; Abo-Ismail, Mohammed K; May, Natalie; Miller, Stephen P; Schenkel, Flavio; Moore, Stephen S; Stothard, Paul
2016-06-10
Genome-wide association studies (GWAS) are a powerful tool for detecting genomic regions explaining variation in phenotype. The objectives of the present study were to identify or refine the positions of genomic regions affecting milk production, milk components and fertility traits in Canadian Holstein cattle, and to use these positions to identify genes and pathways that may influence these traits. Several QTL regions were detected for milk production (MILK), fat production (FAT), protein production (PROT) and fat and protein deviation (FATD, PROTD respectively). The identified QTL regions for production traits (including milk production) support previous findings and some overlap with genes with known relevant biological functions identified in earlier studies such as DGAT1 and CPSF1. A significant region on chromosome 21 overlapping with the gene FAM181A and not previous linked to fertility in dairy cattle was identified for the calving to first service interval and days open. A functional enrichment analysis of the GWAS results yielded GO terms consistent with the specific phenotypes tested, for example GO terms GO:0007595 (lactation) and GO:0043627 (response to estrogen) for milk production (MILK), GO:0051057 (positive regulation of small GTPase mediated signal transduction) for fat production (FAT), GO:0040019 (positive regulation of embryonic development) for first service to calving interval (CTFS) and GO:0043268 (positive regulation of potassium ion transport) for days open (DO). In other cases the connection between the enriched GO terms and the traits were less clear, for example GO:0003279 (cardiac septum development) for FAT and GO:0030903 (notochord development) for DO trait. The chromosomal regions and enriched pathways identified in this study confirm several previous findings and highlight new regions and pathways that may contribute to variation in production or fertility traits in dairy cattle.
Deusch, Oliver; O’Flynn, Ciaran; Colyer, Alison; Morris, Penelope; Allaway, David; Jones, Paul G.; Swanson, Kelly S.
2014-01-01
Background Previously, we demonstrated that dietary protein:carbohydrate ratio dramatically affects the fecal microbial taxonomic structure of kittens using targeted 16S gene sequencing. The present study, using the same fecal samples, applied deep Illumina shotgun sequencing to identify the diet-associated functional potential and analyze taxonomic changes of the feline fecal microbiome. Methodology & Principal Findings Fecal samples from kittens fed one of two diets differing in protein and carbohydrate content (high–protein, low–carbohydrate, HPLC; and moderate-protein, moderate-carbohydrate, MPMC) were collected at 8, 12 and 16 weeks of age (n = 6 per group). A total of 345.3 gigabases of sequence were generated from 36 samples, with 99.75% of annotated sequences identified as bacterial. At the genus level, 26% and 39% of reads were annotated for HPLC- and MPMC-fed kittens, with HPLC-fed cats showing greater species richness and microbial diversity. Two phyla, ten families and fifteen genera were responsible for more than 80% of the sequences at each taxonomic level for both diet groups, consistent with the previous taxonomic study. Significantly different abundances between diet groups were observed for 324 genera (56% of all genera identified) demonstrating widespread diet-induced changes in microbial taxonomic structure. Diversity was not affected over time. Functional analysis identified 2,013 putative enzyme function groups were different (p<0.000007) between the two dietary groups and were associated to 194 pathways, which formed five discrete clusters based on average relative abundance. Of those, ten contained more (p<0.022) enzyme functions with significant diet effects than expected by chance. Six pathways were related to amino acid biosynthesis and metabolism linking changes in dietary protein with functional differences of the gut microbiome. Conclusions These data indicate that feline feces-derived microbiomes have large structural and functional differences relating to the dietary protein:carbohydrate ratio and highlight the impact of diet early in life. PMID:25010839
NASA Astrophysics Data System (ADS)
Bytev, Vladimir V.; Kniehl, Bernd A.
2016-09-01
We present a further extension of the HYPERDIRE project, which is devoted to the creation of a set of Mathematica-based program packages for manipulations with Horn-type hypergeometric functions on the basis of differential equations. Specifically, we present the implementation of the differential reduction for the Lauricella function FC of three variables. Catalogue identifier: AEPP_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPP_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 243461 No. of bytes in distributed program, including test data, etc.: 61610782 Distribution format: tar.gz Programming language: Mathematica. Computer: All computers running Mathematica. Operating system: Operating systems running Mathematica. Classification: 4.4. Does the new version supersede the previous version?: No, it significantly extends the previous version. Nature of problem: Reduction of hypergeometric function FC of three variables to a set of basis functions. Solution method: Differential reduction. Reasons for new version: The extension package allows the user to handle the Lauricella function FC of three variables. Summary of revisions: The previous version goes unchanged. Running time: Depends on the complexity of the problem.
PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors
Jin, Jinpu; Zhang, He; Kong, Lei; Gao, Ge; Luo, Jingchu
2014-01-01
With the aim to provide a resource for functional and evolutionary study of plant transcription factors (TFs), we updated the plant TF database PlantTFDB to version 3.0 (http://planttfdb.cbi.pku.edu.cn). After refining the TF classification pipeline, we systematically identified 129 288 TFs from 83 species, of which 67 species have genome sequences, covering main lineages of green plants. Besides the abundant annotation provided in the previous version, we generated more annotations for identified TFs, including expression, regulation, interaction, conserved elements, phenotype information, expert-curated descriptions derived from UniProt, TAIR and NCBI GeneRIF, as well as references to provide clues for functional studies of TFs. To help identify evolutionary relationship among identified TFs, we assigned 69 450 TFs into 3924 orthologous groups, and constructed 9217 phylogenetic trees for TFs within the same families or same orthologous groups, respectively. In addition, we set up a TF prediction server in this version for users to identify TFs from their own sequences. PMID:24174544
Review of gestational diabetes mellitus effects on vascular structure and function.
Jensen, Louise A; Chik, Constance L; Ryan, Edmond A
2016-05-01
Vascular dysfunction has been described in women with a history of gestational diabetes mellitus. Furthermore, previous gestational diabetes mellitus increases the risk of developing Type 2 diabetes mellitus, a risk factor for cardiovascular disease. Factors contributing to vascular changes remain uncertain. The aim of this review was to summarize vascular structure and function changes found to occur in women with previous gestational diabetes mellitus and to identify factors that contribute to vascular dysfunction. A systematic search of electronic databases yielded 15 publications from 1998 to March 2014 that met the inclusion criteria. Our review confirmed that previous gestational diabetes mellitus contributes to vascular dysfunction, and the most consistent risk factor associated with previous gestational diabetes mellitus and vascular dysfunction was elevated body mass index. Heterogeneity existed across studies in determining the relationship of glycaemic levels and insulin resistance to vascular dysfunction. © The Author(s) 2016.
Identifying a gene expression signature of cluster headache in blood
Eising, Else; Pelzer, Nadine; Vijfhuizen, Lisanne S.; Vries, Boukje de; Ferrari, Michel D.; ‘t Hoen, Peter A. C.; Terwindt, Gisela M.; van den Maagdenberg, Arn M. J. M.
2017-01-01
Cluster headache is a relatively rare headache disorder, typically characterized by multiple daily, short-lasting attacks of excruciating, unilateral (peri-)orbital or temporal pain associated with autonomic symptoms and restlessness. To better understand the pathophysiology of cluster headache, we used RNA sequencing to identify differentially expressed genes and pathways in whole blood of patients with episodic (n = 19) or chronic (n = 20) cluster headache in comparison with headache-free controls (n = 20). Gene expression data were analysed by gene and by module of co-expressed genes with particular attention to previously implicated disease pathways including hypocretin dysregulation. Only moderate gene expression differences were identified and no associations were found with previously reported pathogenic mechanisms. At the level of functional gene sets, associations were observed for genes involved in several brain-related mechanisms such as GABA receptor function and voltage-gated channels. In addition, genes and modules of co-expressed genes showed a role for intracellular signalling cascades, mitochondria and inflammation. Although larger study samples may be required to identify the full range of involved pathways, these results indicate a role for mitochondria, intracellular signalling and inflammation in cluster headache. PMID:28074859
Sun, Celi; Molineros, Julio E; Looger, Loren L; Zhou, Xu-Jie; Kim, Kwangwoo; Okada, Yukinori; Ma, Jianyang; Qi, Yuan-Yuan; Kim-Howard, Xana; Motghare, Prasenjeet; Bhattarai, Krishna; Adler, Adam; Bang, So-Young; Lee, Hye-Soon; Kim, Tae-Hwan; Kang, Young Mo; Suh, Chang-Hee; Chung, Won Tae; Park, Yong-Beom; Choe, Jung-Yoon; Shim, Seung Cheol; Kochi, Yuta; Suzuki, Akari; Kubo, Michiaki; Sumida, Takayuki; Yamamoto, Kazuhiko; Lee, Shin-Seok; Kim, Young Jin; Han, Bok-Ghee; Dozmorov, Mikhail; Kaufman, Kenneth M; Wren, Jonathan D; Harley, John B; Shen, Nan; Chua, Kek Heng; Zhang, Hong; Bae, Sang-Cheol; Nath, Swapan K
2016-03-01
Systemic lupus erythematosus (SLE) has a strong but incompletely understood genetic architecture. We conducted an association study with replication in 4,478 SLE cases and 12,656 controls from six East Asian cohorts to identify new SLE susceptibility loci and better localize known loci. We identified ten new loci and confirmed 20 known loci with genome-wide significance. Among the new loci, the most significant locus was GTF2IRD1-GTF2I at 7q11.23 (rs73366469, Pmeta = 3.75 × 10(-117), odds ratio (OR) = 2.38), followed by DEF6, IL12B, TCF7, TERT, CD226, PCNXL3, RASGRP1, SYNGR1 and SIGLEC6. We identified the most likely functional variants at each locus by analyzing epigenetic marks and gene expression data. Ten candidate variants are known to alter gene expression in cis or in trans. Enrichment analysis highlights the importance of these loci in B cell and T cell biology. The new loci, together with previously known loci, increase the explained heritability of SLE to 24%. The new loci share functional and ontological characteristics with previously reported loci and are possible drug targets for SLE therapeutics.
A Dynamic Time Warping based covariance function for Gaussian Processes signature identification
NASA Astrophysics Data System (ADS)
Silversides, Katherine L.; Melkumyan, Arman
2016-11-01
Modelling stratiform deposits requires a detailed knowledge of the stratigraphic boundaries. In Banded Iron Formation (BIF) hosted ores of the Hamersley Group in Western Australia these boundaries are often identified using marker shales. Both Gaussian Processes (GP) and Dynamic Time Warping (DTW) have been previously proposed as methods to automatically identify marker shales in natural gamma logs. However, each method has different advantages and disadvantages. We propose a DTW based covariance function for the GP that combines the flexibility of the DTW with the probabilistic framework of the GP. The three methods are tested and compared on their ability to identify two natural gamma signatures from a Marra Mamba type iron ore deposit. These tests show that while all three methods can identify boundaries, the GP with the DTW covariance function combines and balances the strengths and weaknesses of the individual methods. This method identifies more positive signatures than the GP with the standard covariance function, and has a higher accuracy for identified signatures than the DTW. The combined method can handle larger variations in the signature without requiring multiple libraries, has a probabilistic output and does not require manual cut-off selections.
PARylation of the forkhead-associated domain protein DAWDLE regulates plant immunity.
Feng, Baomin; Ma, Shisong; Chen, Sixue; Zhu, Ning; Zhang, Shuxin; Yu, Bin; Yu, Yu; Le, Brandon; Chen, Xuemei; Dinesh-Kumar, Savithramma P; Shan, Libo; He, Ping
2016-12-01
Protein poly(ADP-ribosyl)ation (PARylation) primarily catalyzed by poly(ADP-ribose) polymerases (PARPs) plays a crucial role in controlling various cellular responses. However, PARylation targets and their functions remain largely elusive. Here, we deployed an Arabidopsis protein microarray coupled with in vitro PARylation assays to globally identify PARylation targets in plants. Consistent with the essential role of PARylation in plant immunity, the forkhead-associated (FHA) domain protein DAWDLE (DDL), one of PARP2 targets, positively regulates plant defense to both adapted and non-adapted pathogens. Arabidopsis PARP2 interacts with and PARylates DDL, which was enhanced upon treatment of bacterial flagellin. Mass spectrometry and mutagenesis analysis identified multiple PARylation sites of DDL by PARP2. Genetic complementation assays indicate that DDL PARylation is required for its function in plant immunity. In contrast, DDL PARylation appears to be dispensable for its previously reported function in plant development partially mediated by the regulation of microRNA biogenesis. Our study uncovers many previously unknown PARylation targets and points to the distinct functions of DDL in plant immunity and development mediated by protein PARylation and small RNA biogenesis, respectively. © 2016 The Authors.
Kar, Bhoomika Rastogi; Srinivasan, Narayanan; Nehabala, Yagyima; Nigam, Richa
2018-03-01
We examined proactive and reactive control effects in the context of task-relevant happy, sad, and angry facial expressions on a face-word Stroop task. Participants identified the emotion expressed by a face that contained a congruent or incongruent emotional word (happy/sad/angry). Proactive control effects were measured in terms of the reduction in Stroop interference (difference between incongruent and congruent trials) as a function of previous trial emotion and previous trial congruence. Reactive control effects were measured in terms of the reduction in Stroop interference as a function of current trial emotion and previous trial congruence. Previous trial negative emotions exert greater influence on proactive control than the positive emotion. Sad faces in the previous trial resulted in greater reduction in the Stroop interference for happy faces in the current trial. However, current trial angry faces showed stronger adaptation effects compared to happy faces. Thus, both proactive and reactive control mechanisms are dependent on emotional valence of task-relevant stimuli.
Bessho-Uehara, Kanako; Wang, Diane R; Furuta, Tomoyuki; Minami, Anzu; Nagai, Keisuke; Gamuyao, Rico; Asano, Kenji; Angeles-Shim, Rosalyn B; Shimizu, Yoshihiro; Ayano, Madoka; Komeda, Norio; Doi, Kazuyuki; Miura, Kotaro; Toda, Yosuke; Kinoshita, Toshinori; Okuda, Satohiro; Higashiyama, Tetsuya; Nomoto, Mika; Tada, Yasuomi; Shinohara, Hidefumi; Matsubayashi, Yoshikatsu; Greenberg, Anthony; Wu, Jianzhong; Yasui, Hideshi; Yoshimura, Atsushi; Mori, Hitoshi; McCouch, Susan R; Ashikari, Motoyuki
2016-08-09
Domestication of crops based on artificial selection has contributed numerous beneficial traits for agriculture. Wild characteristics such as red pericarp and seed shattering were lost in both Asian (Oryza sativa) and African (Oryza glaberrima) cultivated rice species as a result of human selection on common genes. Awnedness, in contrast, is a trait that has been lost in both cultivated species due to selection on different sets of genes. In a previous report, we revealed that at least three loci regulate awn development in rice; however, the molecular mechanism underlying awnlessness remains unknown. Here we isolate and characterize a previously unidentified EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family member named REGULATOR OF AWN ELONGATION 2 (RAE2) and identify one of its requisite processing enzymes, SUBTILISIN-LIKE PROTEASE 1 (SLP1). The RAE2 precursor is specifically cleaved by SLP1 in the rice spikelet, where the mature RAE2 peptide subsequently induces awn elongation. Analysis of RAE2 sequence diversity identified a highly variable GC-rich region harboring multiple independent mutations underlying protein-length variation that disrupt the function of the RAE2 protein and condition the awnless phenotype in Asian rice. Cultivated African rice, on the other hand, retained the functional RAE2 allele despite its awnless phenotype. Our findings illuminate the molecular function of RAE2 in awn development and shed light on the independent domestication histories of Asian and African cultivated rice.
Chakrabarti, Kausik; Pearson, Michael; Grate, Leslie; Sterne-Weiler, Timothy; Deans, Jonathan; Donohue, John Paul; Ares, Manuel
2007-01-01
As the genomes of more eukaryotic pathogens are sequenced, understanding how molecular differences between parasite and host might be exploited to provide new therapies has become a major focus. Central to cell function are RNA-containing complexes involved in gene expression, such as the ribosome, the spliceosome, snoRNAs, RNase P, and telomerase, among others. In this article we identify by comparative genomics and validate by RNA analysis numerous previously unknown structural RNAs encoded by the Plasmodium falciparum genome, including the telomerase RNA, U3, 31 snoRNAs, as well as previously predicted spliceosomal snRNAs, SRP RNA, MRP RNA, and RNAse P RNA. Furthermore, we identify six new RNA coding genes of unknown function. To investigate the relationships of the RNA coding genes to other genomic features in related parasites, we developed a genome browser for P. falciparum (http://areslab.ucsc.edu/cgi-bin/hgGateway). Additional experiments provide evidence supporting the prediction that snoRNAs guide methylation of a specific position on U4 snRNA, as well as predicting an snRNA promoter element particular to Plasmodium sp. These findings should allow detailed structural comparisons between the RNA components of the gene expression machinery of the parasite and its vertebrate hosts. PMID:17901154
ERIC Educational Resources Information Center
Cole, Steven W.; Arevalo, Jesusa M. G.; Manu, Kavya; Telzer, Eva H.; Kiang, Lisa; Bower, Julienne E.; Irwin, Michael R.; Fuligni, Andrew J.
2011-01-01
The authors tested the evolutionary genetic hypothesis that the functional form of an asymmetrically risky Gene x Environment interaction will differ as a function of age-related antagonistic pleiotropy (i.e., show opposite effects in young vs. old individuals). Previous studies have identified a polymorphism in the human "IL6" promoter…
Improved deoxyribozymes for synthesis of covalently branched DNA and RNA.
Lee, Christine S; Mui, Timothy P; Silverman, Scott K
2011-01-01
A covalently branched nucleic acid can be synthesized by joining the 2'-hydroxyl of the branch-site ribonucleotide of a DNA or RNA strand to the activated 5'-phosphorus of a separate DNA or RNA strand. We have previously used deoxyribozymes to synthesize several types of branched nucleic acids for experiments in biotechnology and biochemistry. Here, we report in vitro selection experiments to identify improved deoxyribozymes for synthesis of branched DNA and RNA. Each of the new deoxyribozymes requires Mn²(+) as a cofactor, rather than Mg²(+) as used by our previous branch-forming deoxyribozymes, and each has an initially random region of 40 rather than 22 or fewer combined nucleotides. The deoxyribozymes all function by forming a three-helix-junction (3HJ) complex with their two oligonucleotide substrates. For synthesis of branched DNA, the best new deoxyribozyme, 8LV13, has k(obs) on the order of 0.1 min⁻¹, which is about two orders of magnitude faster than our previously identified 15HA9 deoxyribozyme. 8LV13 also functions at closer-to-neutral pH than does 15HA9 (pH 7.5 versus 9.0) and has useful tolerance for many DNA substrate sequences. For synthesis of branched RNA, two new deoxyribozymes, 8LX1 and 8LX6, were identified with broad sequence tolerances and substantial activity at pH 7.5, versus pH 9.0 for many of our previous deoxyribozymes that form branched RNA. These experiments provide new, and in key aspects improved, practical catalysts for preparation of synthetic branched DNA and RNA.
Ungar, Daniel; Oka, Toshihiko; Brittle, Elizabeth E.; Vasile, Eliza; Lupashin, Vladimir V.; Chatterton, Jon E.; Heuser, John E.; Krieger, Monty; Waters, M. Gerard
2002-01-01
Multiprotein complexes are key determinants of Golgi apparatus structure and its capacity for intracellular transport and glycoprotein modification. Three complexes that have previously been partially characterized include (a) the Golgi transport complex (GTC), identified in an in vitro membrane transport assay, (b) the ldlCp complex, identified in analyses of CHO cell mutants with defects in Golgi-associated glycosylation reactions, and (c) the mammalian Sec34 complex, identified by homology to yeast Sec34p, implicated in vesicular transport. We show that these three complexes are identical and rename them the conserved oligomeric Golgi (COG) complex. The COG complex comprises four previously characterized proteins (Cog1/ldlBp, Cog2/ldlCp, Cog3/Sec34, and Cog5/GTC-90), three homologues of yeast Sec34/35 complex subunits (Cog4, -6, and -8), and a previously unidentified Golgi-associated protein (Cog7). EM of ldlB and ldlC mutants established that COG is required for normal Golgi morphology. “Deep etch” EM of purified COG revealed an ∼37-nm-long structure comprised of two similarly sized globular domains connected by smaller extensions. Consideration of biochemical and genetic data for mammalian COG and its yeast homologue suggests a model for the subunit distribution within this complex, which plays critical roles in Golgi structure and function. PMID:11980916
Wang, Kun; Yu, Chunshui; Xu, Lijuan; Qin, Wen; Li, Kuncheng; Xu, Lin; Jiang, Tianzi
2009-01-01
Spontaneous thought processes (STPs), also called daydreaming or mind-wandering, occur ubiquitously in daily life. However, the functional significance of STPs remains largely unknown. Using functional magnetic resonance imaging (fMRI), we first identified an STPs-network whose activity was positively correlated with the subjects' tendency of having STPs during a task-free state. The STPs-network was then found to be strongly associated with the default network, which has previously been established as being active during the task-free state. Interestingly, we found that offline reprocessing of previously memorized information further increased the activity of the STPs-network regions, although during a state with less STPs. In addition, we found that the STPs-network kept a dynamic balance between functional integration and functional separation among its component regions to execute offline memory reprocessing in STPs. These findings strengthen a view that offline memory reprocessing and STPs share the brain's default network, and thus implicate that offline memory reprocessing may be a predetermined function of STPs. This supports the perspective that memory can be consolidated and modified during STPs, and thus gives rise to a dynamic behavior dependent on both previous external and internal experiences.
A Systematic Genetic Screen to Dissect the MicroRNA Pathway in Drosophila.
Pressman, Sigal; Reinke, Catherine A; Wang, Xiaohong; Carthew, Richard W
2012-04-01
A central goal of microRNA biology is to elucidate the genetic program of miRNA function and regulation. However, relatively few of the effectors that execute miRNA repression have been identified. Because such genes may function in many developmental processes, mutations in them are expected to be pleiotropic and thus are discarded in most standard genetic screens. Here, we describe a systematic screen designed to identify all Drosophila genes in ∼40% of the genome that function in the miRNA pathway. To identify potentially pleiotropic genes, the screen analyzed clones of homozygous mutant cells in heterozygous animals. We identified 45 mutations representing 24 genes, and we molecularly characterized 9 genes. These include 4 previously known genes that encode core components of the miRNA pathway, including Drosha, Pasha, Dicer-1, and Ago1. The rest are new genes that function through chromatin remodeling, signaling, and mRNA decapping. The results suggest genetic screens that use clonal analysis can elucidate the miRNA program and that ∼100 genes are required to execute the miRNA program.
Zhang, Shu; Zhao, Yu; Jiang, Xi; Shen, Dinggang; Liu, Tianming
2018-06-01
In the brain mapping field, there have been significant interests in representation of structural/functional profiles to establish structural/functional landmark correspondences across individuals and populations. For example, from the structural perspective, our previous studies have identified hundreds of consistent DICCCOL (dense individualized and common connectivity-based cortical landmarks) landmarks across individuals and populations, each of which possess consistent DTI-derived fiber connection patterns. From the functional perspective, a large collection of well-characterized HAFNI (holistic atlases of functional networks and interactions) networks based on sparse representation of whole-brain fMRI signals have been identified in our prior studies. However, due to the remarkable variability of structural and functional architectures in the human brain, it is challenging for earlier studies to jointly represent the connectome-scale structural and functional profiles for establishing a common cortical architecture which can comprehensively encode both structural and functional characteristics across individuals. To address this challenge, we propose an effective computational framework to jointly represent the structural and functional profiles for identification of consistent and common cortical landmarks with both structural and functional correspondences across different brains based on DTI and fMRI data. Experimental results demonstrate that 55 structurally and functionally common cortical landmarks can be successfully identified.
High-throughput discovery of novel developmental phenotypes
Dickinson, Mary E.; Flenniken, Ann M.; Ji, Xiao; Teboul, Lydia; Wong, Michael D.; White, Jacqueline K.; Meehan, Terrence F.; Weninger, Wolfgang J.; Westerberg, Henrik; Adissu, Hibret; Baker, Candice N.; Bower, Lynette; Brown, James M.; Caddle, L. Brianna; Chiani, Francesco; Clary, Dave; Cleak, James; Daly, Mark J.; Denegre, James M.; Doe, Brendan; Dolan, Mary E.; Edie, Sarah M.; Fuchs, Helmut; Gailus-Durner, Valerie; Galli, Antonella; Gambadoro, Alessia; Gallegos, Juan; Guo, Shiying; Horner, Neil R.; Hsu, Chih-wei; Johnson, Sara J.; Kalaga, Sowmya; Keith, Lance C.; Lanoue, Louise; Lawson, Thomas N.; Lek, Monkol; Mark, Manuel; Marschall, Susan; Mason, Jeremy; McElwee, Melissa L.; Newbigging, Susan; Nutter, Lauryl M.J.; Peterson, Kevin A.; Ramirez-Solis, Ramiro; Rowland, Douglas J.; Ryder, Edward; Samocha, Kaitlin E.; Seavitt, John R.; Selloum, Mohammed; Szoke-Kovacs, Zsombor; Tamura, Masaru; Trainor, Amanda G; Tudose, Ilinca; Wakana, Shigeharu; Warren, Jonathan; Wendling, Olivia; West, David B.; Wong, Leeyean; Yoshiki, Atsushi; MacArthur, Daniel G.; Tocchini-Valentini, Glauco P.; Gao, Xiang; Flicek, Paul; Bradley, Allan; Skarnes, William C.; Justice, Monica J.; Parkinson, Helen E.; Moore, Mark; Wells, Sara; Braun, Robert E.; Svenson, Karen L.; de Angelis, Martin Hrabe; Herault, Yann; Mohun, Tim; Mallon, Ann-Marie; Henkelman, R. Mark; Brown, Steve D.M.; Adams, David J.; Lloyd, K.C. Kent; McKerlie, Colin; Beaudet, Arthur L.; Bucan, Maja; Murray, Stephen A.
2016-01-01
Approximately one third of all mammalian genes are essential for life. Phenotypes resulting from mouse knockouts of these genes have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5000 knockout mouse lines, we have identified 410 lethal genes during the production of the first 1751 unique gene knockouts. Using a standardised phenotyping platform that incorporates high-resolution 3D imaging, we identified novel phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes identified in our screen, thus providing a novel dataset that facilitates prioritization and validation of mutations identified in clinical sequencing efforts. PMID:27626380
Bäumler, Fabian; Gorb, Stanislav N; Büsse, Sebastian
2018-05-02
Due to their unique flight mechanism including a direct flight musculature, Odonata show impressive flight skills. Several publications addressed the details of this flight apparatus like: sclerites, wings, musculature, and flight aerodynamics. However, 3D-analysis of the thorax musculature of adult dragonflies was not studied before and this paper allows for a detailed insight. We, therefore, focused on the thorax musculature of adult Anisoptera using micro-computed tomography. Herewith, we present a comparative morphological approach to identify differences within Anisoptera: Aeshnidae, Corduliidae, Gomphidae, and Libellulidae. In total, 54 muscles were identified: 16 prothoracic, 19 mesothoracic, and 19 metathoracic. Recorded differences were for example, the reduction of muscle Idlm4 and an additional muscle IIIdlm1 in Aeshna cyanea, previously described as rudimentary or missing. Muscle Iscm1, which was previously reported missing in all Odonata, was found in all investigated species. The attachment of muscle IIpcm2 in Pantala flavescens is interpreted as a probable adaption to its long-distance migration behaviour. Furthermore, we present a review of functions of the odonatan flight muscles, considering previous publications. The data herein set a basis for functional and biomechanical studies of the flight apparatus and will therefore lay the foundation for a better understanding of the odonatan flight. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rare copy number variants in patients with congenital conotruncal heart defects.
Xie, Hongbo M; Werner, Petra; Stambolian, Dwight; Bailey-Wilson, Joan E; Hakonarson, Hakon; White, Peter S; Taylor, Deanne M; Goldmuntz, Elizabeth
2017-03-01
Previous studies using different cardiac phenotypes, technologies and designs suggest a burden of large, rare or de novo copy number variants (CNVs) in subjects with congenital heart defects. We sought to identify disease-related CNVs, candidate genes, and functional pathways in a large number of cases with conotruncal and related defects that carried no known genetic syndrome. Cases and control samples were divided into two cohorts and genotyped to assess each subject's CNV content. Analyses were performed to ascertain differences in overall CNV prevalence and to identify enrichment of specific genes and functional pathways in conotruncal cases relative to healthy controls. Only findings present in both cohorts are presented. From 973 total conotruncal cases, a burden of rare CNVs was detected in both cohorts. Candidate genes from rare CNVs found in both cohorts were identified based on their association with cardiac development or disease, and/or their reported disruption in published studies. Functional and pathway analyses revealed significant enrichment of terms involved in either heart or early embryonic development. Our study tested one of the largest cohorts specifically with cardiac conotruncal and related defects. These results confirm and extend previous findings that CNVs contribute to disease risk for congenital heart defects in general and conotruncal defects in particular. As disease heterogeneity renders identification of single recurrent genes or loci difficult, functional pathway and gene regulation network analyses appear to be more informative. Birth Defects Research 109:271-295, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Cuykendall, Tawny N.; Houston, Douglas W.
2011-01-01
RNA localization is a common mechanism for regulating cell structure and function. Localized RNAs in Xenopus oocytes are critical for early development, including germline specification by the germ plasm. Despite the importance of these localized RNAs, only approximately 25 have been identified and fewer are functionally characterized. Using microarrays, we identified a large set of localized RNAs from the vegetal cortex. Overall, our results indicate a minimum of 275 localized RNAs in oocytes, or 2–3% of maternal transcripts, which are in general agreement with previous findings. We further validated vegetal localization for 24 candidates and further characterized three genes expressed in the germ plasm. We identified novel germ plasm expression for reticulon 3.1, exd2 (a novel exonuclease-domain encoding gene), and a putative noncoding RNA. Further analysis of these and other localized RNAs will likely identify new functions of germ plasm and facilitate the identification of cis-acting RNA localization elements. PMID:20503379
Complement Factor B Mutations in Atypical Hemolytic Uremic Syndrome—Disease-Relevant or Benign?
Marinozzi, Maria Chiara; Vergoz, Laura; Rybkine, Tania; Ngo, Stephanie; Bettoni, Serena; Pashov, Anastas; Cayla, Mathieu; Tabarin, Fanny; Jablonski, Mathieu; Hue, Christophe; Smith, Richard J.; Noris, Marina; Halbwachs-Mecarelli, Lise; Donadelli, Roberta; Fremeaux-Bacchi, Veronique
2014-01-01
Atypical hemolytic uremic syndrome (aHUS) is a genetic ultrarare renal disease associated with overactivation of the alternative pathway of complement. Four gain-of-function mutations that form a hyperactive or deregulated C3 convertase have been identified in Factor B (FB) ligand binding sites. Here, we studied the functional consequences of 10 FB genetic changes recently identified from different aHUS cohorts. Using several tests for alternative C3 and C5 convertase formation and regulation, we identified two gain-of-function and potentially disease-relevant mutations that formed either an overactive convertase (M433I) or a convertase resistant to decay by FH (K298Q). One mutation (R178Q) produced a partially cleaved protein with no ligand binding or functional activity. Seven genetic changes led to near-normal or only slightly reduced ligand binding and functional activity compared with the most common polymorphism at position 7, R7. Notably, none of the algorithms used to predict the disease relevance of FB mutations agreed completely with the experimental data, suggesting that in silico approaches should be undertaken with caution. These data, combined with previously published results, suggest that 9 of 15 FB genetic changes identified in patients with aHUS are unrelated to disease pathogenesis. This study highlights that functional assessment of identified nucleotide changes in FB is mandatory to confirm disease association. PMID:24652797
Arnold, Aiden E G F; Iaria, Giuseppe; Goghari, Vina M
2016-02-28
Schizophrenia is associated with deficits in face perception and emotion recognition. Despite consistent behavioural results, the neural mechanisms underlying these cognitive abilities have been difficult to isolate, in part due to differences in neuroimaging methods used between studies for identifying regions in the face processing system. Given this problem, we aimed to validate a recently developed fMRI-based dynamic functional localizer task for use in studies of psychiatric populations and specifically schizophrenia. Previously, this functional localizer successfully identified each of the core face processing regions (i.e. fusiform face area, occipital face area, superior temporal sulcus), and regions within an extended system (e.g. amygdala) in healthy individuals. In this study, we tested the functional localizer success rate in 27 schizophrenia patients and in 24 community controls. Overall, the core face processing regions were localized equally between both the schizophrenia and control group. Additionally, the amygdala, a candidate brain region from the extended system, was identified in nearly half the participants from both groups. These results indicate the effectiveness of a dynamic functional localizer at identifying regions of interest associated with face perception and emotion recognition in schizophrenia. The use of dynamic functional localizers may help standardize the investigation of the facial and emotion processing system in this and other clinical populations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A chronological expression profile of gene activity during embryonic mouse brain development.
Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P
2013-12-01
The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.
Busch, Robert; Hobbs, Brian D; Zhou, Jin; Castaldi, Peter J; McGeachie, Michael J; Hardin, Megan E; Hawrylkiewicz, Iwona; Sliwinski, Pawel; Yim, Jae-Joon; Kim, Woo Jin; Kim, Deog K; Agusti, Alvar; Make, Barry J; Crapo, James D; Calverley, Peter M; Donner, Claudio F; Lomas, David A; Wouters, Emiel F; Vestbo, Jørgen; Tal-Singer, Ruth; Bakke, Per; Gulsvik, Amund; Litonjua, Augusto A; Sparrow, David; Paré, Peter D; Levy, Robert D; Rennard, Stephen I; Beaty, Terri H; Hokanson, John; Silverman, Edwin K; Cho, Michael H
2017-07-01
The heritability of chronic obstructive pulmonary disease (COPD) cannot be fully explained by recognized genetic risk factors identified as achieving genome-wide significance. In addition, the combined contribution of genetic variation to COPD risk has not been fully explored. We sought to determine: (1) whether studies of variants from previous studies of COPD or lung function in a larger sample could identify additional associated variants, particularly for severe COPD; and (2) the impact of genetic risk scores on COPD. We genotyped 3,346 single-nucleotide polymorphisms (SNPs) in 2,588 cases (1,803 severe COPD) and 1,782 control subjects from four cohorts, and performed association testing with COPD, combining these results with existing genotyping data from 6,633 cases (3,497 severe COPD) and 5,704 control subjects. In addition, we developed genetic risk scores from SNPs associated with lung function and COPD and tested their discriminatory power for COPD-related measures. We identified significant associations between SNPs near PPIC (P = 1.28 × 10 -8 ) and PPP4R4/SERPINA1 (P = 1.01 × 10 -8 ) and severe COPD; the latter association may be driven by recognized variants in SERPINA1. Genetic risk scores based on SNPs previously associated with COPD and lung function had a modest ability to discriminate COPD (area under the curve, ∼0.6), and accounted for a mean 0.9-1.9% lower forced expiratory volume in 1 second percent predicted for each additional risk allele. In a large genetic association analysis, we identified associations with severe COPD near PPIC and SERPINA1. A risk score based on combining genetic variants had modest, but significant, effects on risk of COPD and lung function.
A subtype specific function for the extracellular domain of neuroligin 1 in hippocampal LTP
Shipman, Seth L.; Nicoll, Roger A.
2014-01-01
Summary At neuronal excitatory synapses, two major subtypes of the synaptic adhesion molecule neuroligin are present. These subtypes, neuroligin 1 and neuroligin 3, have roles in synaptogenesis and synaptic maintenance that appear largely overlapping. In this study we combine electrophysiology with molecular deletion and replacement of these proteins to identify similarities and differences between these subtypes. In doing so, we identify a subtype specific role in LTP for neuroligin 1 in young CA1, which persists into adulthood in the dentate gyrus. As neuroligin 3 showed no requirement for LTP, we constructed chimeric proteins of the two excitatory neuroligin subtypes to identify the molecular determinants particular to the unique function of neuroligin 1. Using in vivo molecular replacement experiments, we find that these unique functions depend on a region in its extracellular domain containing the B site splice insertion previously shown to determine specificity of neurexin binding. PMID:23083734
Bateman, Nicholas W; Shoji, Yutaka; Conrads, Kelly A; Stroop, Kevin D; Hamilton, Chad A; Darcy, Kathleen M; Maxwell, George L; Risinger, John I; Conrads, Thomas P
2016-01-01
AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. Copyright © 2015 Elsevier Inc. All rights reserved.
A network-based method for the identification of putative genes related to infertility.
Wang, ShaoPeng; Huang, GuoHua; Hu, Qinghua; Zou, Quan
2016-11-01
Infertility has become one of the major health problems worldwide, with its incidence having risen markedly in recent decades. There is an urgent need to investigate the pathological mechanisms behind infertility and to design effective treatments. However, this is made difficult by the fact that various biological factors have been identified to be related to infertility, including genetic factors. A network-based method was established to identify new genes potentially related to infertility. A network constructed using human protein-protein interactions based on previously validated infertility-related genes enabled the identification of some novel candidate genes. These genes were then filtered by a permutation test and their functional and structural associations with infertility-related genes. Our method identified 23 novel genes, which have strong functional and structural associations with previously validated infertility-related genes. Substantial evidence indicates that the identified genes are strongly related to dysfunction of the four main biological processes of fertility: reproductive development and physiology, gametogenesis, meiosis and recombination, and hormone regulation. The newly discovered genes may provide new directions for investigating infertility. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016 Elsevier B.V. All rights reserved.
Mahendru, Amita A; Everett, Thomas R; McEniery, Carmel M; Wilkinson, Ian B; Lees, Christoph C
2013-03-01
To investigate prepregnancy cardiovascular function and risk factors in women with previous pregnancy complications. Thirty-four women with previous normal pregnancy (controls), 26 with unexplained recurrent miscarriage (RM) and 14 with pre-eclampsia (PE) and/or intrauterine growth restriction (IUGR), planning to conceive were recruited. Brachial and central blood pressures (BP), cardiac output (CO), peripheral vascular resistance (PVR), aortic stiffness, blood biochemistry and platelet aggregation were assessed. Women with previous PE/IUGR had higher brachial diastolic BP (78 ± 9 vs 71 ± 7 mmHg; p = 0.03), central systolic BP (107 ± 10 vs 99 ± 8 mmHg; p = 0.03), mean arterial pressure (92 ± 10 vs 84 ± 8 mmHg; p = 0.01) and PVR (1499 ± 300 vs 1250 ± 220 dynes.s(-1) cm(-5); p = 0.005), than the controls. No differences were observed in either cardiovascular function or blood biochemistry in women with unexplained RM compared with the controls. Women with previous PE/IUGR though not with RM had a stronger family history of cardiovascular disease (CVD) than controls. Women with previous PE and/or IUGR had higher BP and PVR compared with controls, which may predispose them to CVD later in life. However, in the absence of underlying vascular pathology, women with unexplained RM did not have abnormal cardiovascular function. Prepregnancy period provides an opportunity to identify cardiovascular risks in relation to previous obstetric history.
Deciphering functional diversification within the lichen microbiota by meta-omics.
Cernava, Tomislav; Erlacher, Armin; Aschenbrenner, Ines Aline; Krug, Lisa; Lassek, Christian; Riedel, Katharina; Grube, Martin; Berg, Gabriele
2017-07-19
Recent evidence of specific bacterial communities extended the traditional concept of fungal-algal lichen symbioses by a further organismal kingdom. Although functional roles were already assigned to dominant members of the highly diversified microbiota, a substantial fraction of the ubiquitous colonizers remained unexplored. We employed a multi-omics approach to further characterize functional guilds in an unconventional model system. The general community structure of the lichen-associated microbiota was shown to be highly similar irrespective of the employed omics approach. Five highly abundant bacterial orders-Sphingomonadales, Rhodospirillales, Myxococcales, Chthoniobacterales, and Sphingobacteriales-harbor functions that are of substantial importance for the holobiome. Identified functions range from the provision of vitamins and cofactors to the degradation of phenolic compounds like phenylpropanoid, xylenols, and cresols. Functions that facilitate the persistence of Lobaria pulmonaria under unfavorable conditions were present in previously overlooked fractions of the microbiota. So far, unrecognized groups like Chthoniobacterales (Verrucomicrobia) emerged as functional protectors in the lichen microbiome. By combining multi-omics and imaging techniques, we highlight previously overlooked participants in the complex microenvironment of the lichens.
Tarver, Matthew R; Schmelz, Eric A; Rocca, James R; Scharf, Michael E
2009-02-01
Primer pheromones play key roles in regulating division of labor, which is a fundamental and defining aspect of insect sociality. Primer pheromones are chemical messengers that transmit hormone-like messages among colony members; in recipients, these messages can either induce or suppress phenotypic caste differentiation. Here, we investigated soldier caste-derived chemicals as possible primer pheromones in the lower termite Reticulitermes flavipes, a species for which no primer pheromones have yet been identified. We determined that soldier head extracts (SHE), when provided to totipotent workers along with the insect morphogenetic juvenile hormone (JH), significantly enhanced soldier caste differentiation. When applied alone, however, SHE had no impacts on caste differentiation, survivorship, or any other aspect of worker biology. These findings support a function of soldier chemicals as primer pheromones that enhance the action of the endogenous JH. In accord with previous studies, gamma-cadinene and the corresponding aldehyde, gamma-cadinenal, were identified by gas chromatography-mass spectrometry and nuclear magnetic resonance analyses as the two most abundant components of R. flavipes SHE. Validative bioassays with commercially available cadinene confirmed activity. Several other terpenes, previously identified in R. flavipes soldiers, also were found to be active. These findings reveal a novel primer pheromone-like function for soldier-derived terpenes in termites and further suggest convergent evolution of terpene functions in enhancing JH-dependent soldier caste differentiation.
2013-01-01
Background Genetic engineering of industrial microorganisms often suffers from undesirable side effects on essential functions. Reverse engineering is an alternative strategy to improve multifactorial traits like low glycerol/high ethanol yield in yeast fermentation. Previous rational engineering of this trait always affected essential functions like growth and stress tolerance. We have screened Saccharomyces cerevisiae biodiversity for specific alleles causing lower glycerol/higher ethanol yield, assuming higher compatibility with normal cellular functionality. Previous work identified ssk1E330N…K356N as causative allele in strain CBS6412, which displayed the lowest glycerol/ethanol ratio. Results We have now identified a unique segregant, 26B, that shows similar low glycerol/high ethanol production as the superior parent, but lacks the ssk1E330N…K356N allele. Using segregants from the backcross of 26B with the inferior parent strain, we applied pooled-segregant whole-genome sequence analysis and identified three minor quantitative trait loci (QTLs) linked to low glycerol/high ethanol production. Within these QTLs, we identified three novel alleles of known regulatory and structural genes of glycerol metabolism, smp1R110Q,P269Q, hot1P107S,H274Y and gpd1L164P as causative genes. All three genes separately caused a significant drop in the glycerol/ethanol production ratio, while gpd1L164P appeared to be epistatically suppressed by other alleles in the superior parent. The order of potency in reducing the glycerol/ethanol ratio of the three alleles was: gpd1L164P > hot1P107S,H274Y ≥ smp1R110Q,P269Q. Conclusions Our results show that natural yeast strains harbor multiple specific alleles of genes controlling essential functions, that are apparently compatible with survival in the natural environment. These newly identified alleles can be used as gene tools for engineering industrial yeast strains with multiple subtle changes, minimizing the risk of negatively affecting other essential functions. The gene tools act at the transcriptional, regulatory or structural gene level, distributing the impact over multiple targets and thus further minimizing possible side-effects. In addition, the results suggest polygenic analysis of complex traits as a promising new avenue to identify novel components involved in cellular functions, including those important in industrial applications. PMID:23759206
Schweizer, Rena M; Robinson, Jacqueline; Harrigan, Ryan; Silva, Pedro; Galverni, Marco; Musiani, Marco; Green, Richard E; Novembre, John; Wayne, Robert K
2016-01-01
In an era of ever-increasing amounts of whole-genome sequence data for individuals and populations, the utility of traditional single nucleotide polymorphisms (SNPs) array-based genome scans is uncertain. We previously performed a SNP array-based genome scan to identify candidate genes under selection in six distinct grey wolf (Canis lupus) ecotypes. Using this information, we designed a targeted capture array for 1040 genes, including all exons and flanking regions, as well as 5000 1-kb nongenic neutral regions, and resequenced these regions in 107 wolves. Selection tests revealed striking patterns of variation within candidate genes relative to noncandidate regions and identified potentially functional variants related to local adaptation. We found 27% and 47% of candidate genes from the previous SNP array study had functional changes that were outliers in sweed and bayenv analyses, respectively. This result verifies the use of genomewide SNP surveys to tag genes that contain functional variants between populations. We highlight nonsynonymous variants in APOB, LIPG and USH2A that occur in functional domains of these proteins, and that demonstrate high correlation with precipitation seasonality and vegetation. We find Arctic and High Arctic wolf ecotypes have higher numbers of genes under selection, which highlight their conservation value and heightened threat due to climate change. This study demonstrates that combining genomewide genotyping arrays with large-scale resequencing and environmental data provides a powerful approach to discern candidate functional variants in natural populations. © 2015 John Wiley & Sons Ltd.
Neural mechanisms of imitation and 'mirror neuron' functioning in autistic spectrum disorder.
Williams, Justin H G; Waiter, Gordon D; Gilchrist, Anne; Perrett, David I; Murray, Alison D; Whiten, Andrew
2006-01-01
An association between autistic spectrum disorder and imitative impairment might result from dysfunction in mirror neurons (MNs) that serve to relate observed actions to motor codings. To explore this hypothesis, we employed a functional magnetic resonance imaging (fMRI) protocol previously used to identify the neural substrate of imitation, and human MN function, to compare 16 adolescent males of normal intelligence with autistic spectrum disorder (ASD) and age, sex and IQ matched controls. In the control group, in accord with previous findings, we identified activity attributable to MNs in areas of the right parietal lobe. Activity in this area was less extensive in the ASD group and was absent during non-imitative action execution. Broca's area was minimally active during imitation in controls. Differential patterns of activity during imitation and action observation in ASD and controls were most evident in an area at the right temporo-parietal junction also associated with a 'theory of mind' (ToM) function. ASD participants also failed to show modulation of left amygdala activity during imitation that was evident in the controls. This may have implications for understanding the imitation of emotional stimuli in ASD. Overall, we suggest that ASD is associated with altered patterns of brain activity during imitation, which could stem from poor integration between areas serving visual, motor, proprioceptive and emotional functions. Such poor integration is likely to adversely affect the development of ToM through imitation as well as other aspects of social cognitive function in ASD.
Functional correlates of the anterolateral processing hierarchy in human auditory cortex.
Chevillet, Mark; Riesenhuber, Maximilian; Rauschecker, Josef P
2011-06-22
Converging evidence supports the hypothesis that an anterolateral processing pathway mediates sound identification in auditory cortex, analogous to the role of the ventral cortical pathway in visual object recognition. Studies in nonhuman primates have characterized the anterolateral auditory pathway as a processing hierarchy, composed of three anatomically and physiologically distinct initial stages: core, belt, and parabelt. In humans, potential homologs of these regions have been identified anatomically, but reliable and complete functional distinctions between them have yet to be established. Because the anatomical locations of these fields vary across subjects, investigations of potential homologs between monkeys and humans require these fields to be defined in single subjects. Using functional MRI, we presented three classes of sounds (tones, band-passed noise bursts, and conspecific vocalizations), equivalent to those used in previous monkey studies. In each individual subject, three regions showing functional similarities to macaque core, belt, and parabelt were readily identified. Furthermore, the relative sizes and locations of these regions were consistent with those reported in human anatomical studies. Our results demonstrate that the functional organization of the anterolateral processing pathway in humans is largely consistent with that of nonhuman primates. Because our scanning sessions last only 15 min/subject, they can be run in conjunction with other scans. This will enable future studies to characterize functional modules in human auditory cortex at a level of detail previously possible only in visual cortex. Furthermore, the approach of using identical schemes in both humans and monkeys will aid with establishing potential homologies between them.
Wu, Ying; Waite, Lindsay L.; Jackson, Anne U.; Sheu, Wayne H-H.; Buyske, Steven; Absher, Devin; Arnett, Donna K.; Boerwinkle, Eric; Bonnycastle, Lori L.; Carty, Cara L.; Cheng, Iona; Cochran, Barbara; Croteau-Chonka, Damien C.; Dumitrescu, Logan; Eaton, Charles B.; Franceschini, Nora; Guo, Xiuqing; Henderson, Brian E.; Hindorff, Lucia A.; Kim, Eric; Kinnunen, Leena; Komulainen, Pirjo; Lee, Wen-Jane; Le Marchand, Loic; Lin, Yi; Lindström, Jaana; Lingaas-Holmen, Oddgeir; Mitchell, Sabrina L.; Narisu, Narisu; Robinson, Jennifer G.; Schumacher, Fred; Stančáková, Alena; Sundvall, Jouko; Sung, Yun-Ju; Swift, Amy J.; Wang, Wen-Chang; Wilkens, Lynne; Wilsgaard, Tom; Young, Alicia M.; Adair, Linda S.; Ballantyne, Christie M.; Bůžková, Petra; Chakravarti, Aravinda; Collins, Francis S.; Duggan, David; Feranil, Alan B.; Ho, Low-Tone; Hung, Yi-Jen; Hunt, Steven C.; Hveem, Kristian; Juang, Jyh-Ming J.; Kesäniemi, Antero Y.; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lee, I-Te; Leppert, Mark F.; Matise, Tara C.; Moilanen, Leena; Njølstad, Inger; Peters, Ulrike; Quertermous, Thomas; Rauramaa, Rainer; Rotter, Jerome I.; Saramies, Jouko; Tuomilehto, Jaakko; Uusitupa, Matti; Wang, Tzung-Dau; Mohlke, Karen L.
2013-01-01
Genome-wide association studies (GWAS) have identified ∼100 loci associated with blood lipid levels, but much of the trait heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), respectively, in individuals of African American (n = 6,832), East Asian (n = 9,449), and European (n = 10,829) ancestry. We aimed to identify the variants with strongest association at each locus, identify additional and population-specific signals, refine association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33 exhibited evidence of association at P<1×10−4 in at least one ancestry group. Sequential conditional analyses revealed that ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific variants, and limit the number of candidate SNPs for functional studies. PMID:23555291
Sun, Celi; Molineros, Julio E.; Looger, Loren L.; Zhou, Xu-jie; Kim, Kwangwoo; Okada, Yukinori; Ma, Jianyang; Qi, Yuan-yuan; Kim-Howard, Xana; Motghare, Prasenjeet; Bhattarai, Krishna; Adler, Adam; Bang, So-Young; Lee, Hye-Soon; Kim, Tae-Hwan; Kang, Young Mo; Suh, Chang-Hee; Chung, Won Tae; Park, Yong-Beom; Choe, Jung-Yoon; Shim, Seung Cheol; Kochi, Yuta; Suzuki, Akari; Kubo, Michiaki; Sumida, Takayuki; Yamamoto, Kazuhiko; Lee, Shin-Seok; Kim, Young Jin; Han, Bok-Ghee; Dozmorov, Mikhail; Kaufman, Kenneth M.; Wren, Jonathan D.; Harley, John B.; Shen, Nan; Chua, Kek Heng; Zhang, Hong; Bae, Sang-Cheol; Nath, Swapan K.
2016-01-01
Systemic lupus erythematosus (SLE) has a strong but incompletely understood genetic architecture. We conducted an association study with replication in 4,492 SLE cases and 12,675 controls from six East-Asian cohorts, to identify novel and better localize known SLE susceptibility loci. We identified 10 novel loci as well as 20 known loci with genome-wide significance. Among the novel loci, the most significant was GTF2IRD1-GTF2I at 7q11.23 (rs73366469, Pmeta=3.75×10−117, OR=2.38), followed by DEF6, IL12B, TCF7, TERT, CD226, PCNXL3, RASGRP1, SYNGR1 and SIGLEC6. We localized the most likely functional variants for each locus by analyzing epigenetic marks and gene regulation data. Ten putative variants are known to alter cis- or trans-gene expression. Enrichment analysis highlights the importance of these loci in B- and T-cell biology. Together with previously known loci, the explained heritability of SLE increases to 24%. Novel loci share functional and ontological characteristics with previously reported loci, and are possible drug targets for SLE therapeutics. PMID:26808113
Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis*
Gago-Fuentes, Raquel; Fernández-Puente, Patricia; Megias, Diego; Carpintero-Fernández, Paula; Mateos, Jesus; Acea, Benigno; Fonseca, Eduardo; Blanco, Francisco Javier; Mayan, Maria Dolores
2015-01-01
We have previously reported that articular chondrocytes in tissue contain long cytoplasmic arms that physically connect two distant cells. Cell-to-cell communication occurs through connexin channels termed Gap Junction (GJ) channels, which achieve direct cellular communication by allowing the intercellular exchange of ions, small RNAs, nutrients, and second messengers. The Cx43 protein is overexpressed in several human diseases and inflammation processes and in articular cartilage from patients with osteoarthritis (OA). An increase in the level of Cx43 is known to alter gene expression, cell signaling, growth, and cell proliferation. The interaction of proteins with the C-terminal tail of connexin 43 (Cx43) directly modulates GJ-dependent and -independent functions. Here, we describe the isolation of Cx43 complexes using mild extraction conditions and immunoaffinity purification. Cx43 complexes were extracted from human primary articular chondrocytes isolated from healthy donors and patients with OA. The proteomic content of the native complexes was determined using LC-MS/MS, and protein associations with Cx43 were validated using Western blot and immunolocalization experiments. We identified >100 Cx43-associated proteins including previously uncharacterized proteins related to nucleolar functions, RNA transport, and translation. We also identified several proteins involved in human diseases, cartilage structure, and OA as novel functional Cx43 interactors, which emphasized the importance of Cx43 in the normal physiology and structural and functional integrity of chondrocytes and articular cartilage. Gene Ontology (GO) terms of the proteins identified in the OA samples showed an enrichment of Cx43-interactors related to cell adhesion, calmodulin binding, the nucleolus, and the cytoskeleton in OA samples compared with healthy samples. However, the mitochondrial proteins SOD2 and ATP5J2 were identified only in samples from healthy donors. The identification of Cx43 interactors will provide clues to the functions of Cx43 in human cells and its roles in the development of several diseases, including OA. PMID:25903580
A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome
Gloux, Karine; Berteau, Olivier; El oumami, Hanane; Béguet, Fabienne; Leclerc, Marion; Doré, Joël
2011-01-01
In the human gastrointestinal tract, bacterial β-D-glucuronidases (BG; E.C. 3.2.1.31) are involved both in xenobiotic metabolism and in some of the beneficial effects of dietary compounds. Despite their biological significance, investigations are hampered by the fact that only a few BGs have so far been studied. A functional metagenomic approach was therefore performed on intestinal metagenomic libraries using chromogenic glucuronides as probes. Using this strategy, 19 positive metagenomic clones were identified but only one exhibited strong β-D-glucuronidase activity when subcloned into an expression vector. The cloned gene encoded a β-D-glucuronidase (called H11G11-BG) that had distant amino acid sequence homologies and an additional C terminus domain compared with known β-D-glucuronidases. Fifteen homologs were identified in public bacterial genome databases (38–57% identity with H11G11-BG) in the Firmicutes phylum. The genomes identified derived from strains from Ruminococcaceae, Lachnospiraceae, and Clostridiaceae. The genetic context diversity, with closely related symporters and gene duplication, argued for functional diversity and contribution to adaptive mechanisms. In contrast to the previously known β-D-glucuronidases, this previously undescribed type was present in the published microbiome of each healthy adult/child investigated (n = 11) and was specific to the human gut ecosystem. In conclusion, our functional metagenomic approach revealed a class of BGs that may be part of a functional core specifically evolved to adapt to the human gut environment with major health implications. We propose consensus motifs for this unique Firmicutes β-D-glucuronidase subfamily and for the glycosyl hydrolase family 2. PMID:20615998
Three novel approaches to structural identifiability analysis in mixed-effects models.
Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D
2016-05-06
Structural identifiability is a concept that considers whether the structure of a model together with a set of input-output relations uniquely determines the model parameters. In the mathematical modelling of biological systems, structural identifiability is an important concept since biological interpretations are typically made from the parameter estimates. For a system defined by ordinary differential equations, several methods have been developed to analyse whether the model is structurally identifiable or otherwise. Another well-used modelling framework, which is particularly useful when the experimental data are sparsely sampled and the population variance is of interest, is mixed-effects modelling. However, established identifiability analysis techniques for ordinary differential equations are not directly applicable to such models. In this paper, we present and apply three different methods that can be used to study structural identifiability in mixed-effects models. The first method, called the repeated measurement approach, is based on applying a set of previously established statistical theorems. The second method, called the augmented system approach, is based on augmenting the mixed-effects model to an extended state-space form. The third method, called the Laplace transform mixed-effects extension, is based on considering the moment invariants of the systems transfer function as functions of random variables. To illustrate, compare and contrast the application of the three methods, they are applied to a set of mixed-effects models. Three structural identifiability analysis methods applicable to mixed-effects models have been presented in this paper. As method development of structural identifiability techniques for mixed-effects models has been given very little attention, despite mixed-effects models being widely used, the methods presented in this paper provides a way of handling structural identifiability in mixed-effects models previously not possible. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia
2014-08-28
The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigatedmore » preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results.« less
Badders, Nisha M; Korff, Ane; Miranda, Helen C; Vuppala, Pradeep K; Smith, Rebecca B; Winborn, Brett J; Quemin, Emmanuelle R; Sopher, Bryce L; Dearman, Jennifer; Messing, James; Kim, Nam Chul; Moore, Jennifer; Freibaum, Brian D; Kanagaraj, Anderson P; Fan, Baochang; Tillman, Heather; Chen, Ping-Chung; Wang, Yingzhe; Freeman, Burgess B; Li, Yimei; Kim, Hong Joo; La Spada, Albert R; Taylor, J Paul
2018-05-01
Spinal bulbar muscular atrophy (SBMA) is a motor neuron disease caused by toxic gain of function of the androgen receptor (AR). Previously, we found that co-regulator binding through the activation function-2 (AF2) domain of AR is essential for pathogenesis, suggesting that AF2 may be a potential drug target for selective modulation of toxic AR activity. We screened previously identified AF2 modulators for their ability to rescue toxicity in a Drosophila model of SBMA. We identified two compounds, tolfenamic acid (TA) and 1-[2-(4-methylphenoxy)ethyl]-2-[(2-phenoxyethyl)sulfanyl]-1H-benzimidazole (MEPB), as top candidates for rescuing lethality, locomotor function and neuromuscular junction defects in SBMA flies. Pharmacokinetic analyses in mice revealed a more favorable bioavailability and tissue retention of MEPB compared with TA in muscle, brain and spinal cord. In a preclinical trial in a new mouse model of SBMA, MEPB treatment yielded a dose-dependent rescue from loss of body weight, rotarod activity and grip strength. In addition, MEPB ameliorated neuronal loss, neurogenic atrophy and testicular atrophy, validating AF2 modulation as a potent androgen-sparing strategy for SBMA therapy.
Seven functional classes of Barth syndrome mutation.
Whited, Kevin; Baile, Matthew G; Currier, Pamela; Claypool, Steven M
2013-02-01
Patients with Barth syndrome (BTHS), a rare X-linked disease, suffer from skeletal and cardiomyopathy and bouts of cyclic neutropenia. The causative gene encodes tafazzin, a transacylase, which is the major determinant of the final acyl chain composition of the mitochondrial-specific phospholipid, CL. In addition to numerous frame shift and splice-site mutations, 36 missense mutations have been associated with BTHS. Previously, we established a BTHS-mutant panel in the yeast Saccharomyces cerevisiae that successfully models 18/21 conserved pathogenic missense mutations and defined the loss-of-function mechanism associated with a subset of the mutant tafazzins. Here, we report the biochemical and cell biological characterization of the rest of the yeast BTHS-mutant panel and in so doing identify three additional modes of tafazzin dysfunction. The largest group of mutant tafazzins is catalytically null, two mutants encode hypomorphic alleles, and another two mutants are temperature sensitive. Additionally, we have expanded the defects associated with previously characterized matrix-mislocalized-mutant tafazzins to include the rapid degradation of aggregation-prone polypeptides that correctly localize to the mitochondrial IMS. In sum, our in-depth characterization of the yeast BTHS-mutant panel has identified seven functional classes of BTHS mutation.
Loh, Su-Yi; Jahans-Price, Thomas; Greenwood, Michael P; Greenwood, Mingkwan; Hoe, See-Ziau; Konopacka, Agnieszka; Campbell, Colin; Murphy, David; Hindmarch, Charles C T
2017-01-01
The supraoptic nucleus (SON) is a group of neurons in the hypothalamus responsible for the synthesis and secretion of the peptide hormones vasopressin and oxytocin. Following physiological cues, such as dehydration, salt-loading and lactation, the SON undergoes a function related plasticity that we have previously described in the rat at the transcriptome level. Using the unsupervised graphical lasso (Glasso) algorithm, we reconstructed a putative network from 500 plastic SON genes in which genes are the nodes and the edges are the inferred interactions. The most active nodal gene identified within the network was Caprin2 . Caprin2 encodes an RNA-binding protein that we have previously shown to be vital for the functioning of osmoregulatory neuroendocrine neurons in the SON of the rat hypothalamus. To test the validity of the Glasso network, we either overexpressed or knocked down Caprin2 transcripts in differentiated rat pheochromocytoma PC12 cells and showed that these manipulations had significant opposite effects on the levels of putative target mRNAs. These studies suggest that the predicative power of the Glasso algorithm within an in vivo system is accurate, and identifies biological targets that may be important to the functional plasticity of the SON.
Zhang, Tianxiao; Hou, Liping; Chen, David T; McMahon, Francis J; Wang, Jen-Chyong; Rice, John P
2018-03-01
Bipolar disorder is a mental illness with lifetime prevalence of about 1%. Previous genetic studies have identified multiple chromosomal linkage regions and candidate genes that might be associated with bipolar disorder. The present study aimed to identify potential susceptibility variants for bipolar disorder using 6 related case samples from a four-generation family. A combination of exome sequencing and linkage analysis was performed to identify potential susceptibility variants for bipolar disorder. Our study identified a list of five potential candidate genes for bipolar disorder. Among these five genes, GRID1(Glutamate Receptor Delta-1 Subunit), which was previously reported to be associated with several psychiatric disorders and brain related traits, is particularly interesting. Variants with functional significance in this gene were identified from two cousins in our bipolar disorder pedigree. Our findings suggest a potential role for these genes and the related rare variants in the onset and development of bipolar disorder in this one family. Additional research is needed to replicate these findings and evaluate their patho-biological significance. Copyright © 2017 Elsevier B.V. All rights reserved.
Should School Administrators Be Leaders or Managers?
ERIC Educational Resources Information Center
Burke, W. Warner
Research in leadership relevant to school administrators is reviewed and summarized here. The author maintains that most previous authors identified two primary leader functions, concerns, types, or dimensions. These authors include Wortman, who, following in the footsteps of Zaleznick, saw a dichotomy between leaders and managers; Burns, who…
Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico; Nigon, Fabienne; Møller, Bente; Issazadeh-Navikas, Shohreh; Berg, Jacob; Lees, Michael; Sap, Jan
2013-01-01
Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely result from activation of its tyrosine kinase receptor TrkB. Although intracellular neurotrophin (NT) signaling presumably reflects the combined action of kinases and phosphatases, little is known about the contributions of the latter to TrkB regulation. The issue is complicated by the fact that phosphatases belong to multiple independently evolved families, which are rarely studied together. We undertook a loss-of-function RNA-interference-based screen of virtually all known (254) human phosphatases to understand their function in BDNF/TrkB-mediated neurite outgrowth in differentiated SH-SY5Y cells. This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. “Classical” protein tyrosine phosphatases (PTPs) accounted for 13% of the candidate regulatory phosphatases. The top classical PTP identified as a negative regulator of BDNF-TrkB-mediated neurite outgrowth was PTPN12 (also called PTP-PEST). Validation and follow-up studies showed that endogenous PTPN12 antagonizes tyrosine phosphorylation of TrkB itself, and the downstream activation of ERK1/2. We also found PTPN12 to negatively regulate phosphorylation of p130cas and FAK, proteins with previously described functions related to cell motility and growth cone behavior. Our data provide the first comprehensive survey of phosphatase function in NT signaling and neurite outgrowth. They reveal the complexity of phosphatase control, with several evolutionarily unrelated phosphatase families cooperating to affect this biological response, and hence the relevance of considering all phosphatase families when mining for potentially druggable targets. PMID:23785422
Santos, Regie Lyn P.; El-Shanti, Hatem; Sikandar, Shaheen; Lee, Kwanghyuk; Bhatti, Attya; Yan, Kai; Chahrour, Maria H.; McArthur, Nathan; Pham, Thanh L.; Mahasneh, Amjad Abdullah; Ahmad, Wasim
2010-01-01
To date, 37 genes have been identified for nonsyndromic hearing impairment (NSHI). Identifying the functional sequence variants within these genes and knowing their population-specific frequencies is of public health value, in particular for genetic screening for NSHI. To determine putatively functional sequence variants in the transmembrane inner ear (TMIE) gene in Pakistani and Jordanian families with autosomal recessive (AR) NSHI, four Jordanian and 168 Pakistani families with ARNSHI that is not due to GJB2 (CX26) were submitted to a genome scan. Two-point and multipoint parametric linkage analyses were performed, and families with logarithmic odds (LOD) scores of 1.0 or greater within the TMIE region underwent further DNA sequencing. The evolutionary conservation and location in predicted protein domains of amino acid residues where sequence variants occurred were studied to elucidate the possible effects of these sequence variants on function. Of seven families that were screened for TMIE, putatively functional sequence variants were found to segregate with hearing impairment in four families but were not seen in not less than 110 ethnically matched control chromosomes. The previously reported c.241C>T (p.R81C) variant was observed in two Pakistani families. Two novel variants, c.92A>G (p.E31G) and the splice site mutation c.212–2A>C, were identified in one Pakistani and one Jordanian family, respectively. The c.92A>G (p.E31G) variant occurred at a residue that is conserved in the mouse and is predicted to be extracellular. Conservation and potential functionality of previously published mutations were also examined. The prevalence of functional TMIE variants in Pakistani families is 1.7% [95% confidence interval (CI) 0.3–4.8]. Further studies on the spectrum, prevalence rates, and functional effect of sequence variants in the TMIE gene in other populations should demonstrate the true importance of this gene as a cause of hearing impairment. PMID:16389551
Collaborative Protection and Control Schemes for Shipboard Electrical Systems
2007-03-26
VSCs ) for fault current limiting and interruption. Revisions needed on the VSCs to perform these functions have been identified, and feasibility of this...disturbances very fast - less than 3-4 ms [3]. Next section summarizes the details of the agent based protection scheme that uses the VSC as the...fault currents. In our previous work [2, 3], it has been demonstrated that this new functionally for VSC can be achieved by proper selection of
Yazicioglu, Mustafa N.; Monaldini, Luca; Chu, Kirk; Khazi, Fayaz R.; Murphy, Samuel L.; Huang, Heshu; Margaritis, Paris; High, Katherine A.
2013-01-01
The genes encoding a family of proteins termed proline-rich γ-carboxyglutamic acid (PRRG) proteins were identified and characterized more than a decade ago, but their functions remain unknown. These novel membrane proteins have an extracellular γ-carboxyglutamic acid (Gla) protein domain and cytosolic WW binding motifs. We screened WW domain arrays for cytosolic binding partners for PRRG4 and identified novel protein-protein interactions for the protein. We also uncovered a new WW binding motif in PRRG4 that is essential for these newly found protein-protein interactions. Several of the PRRG-interacting proteins we identified are essential for a variety of physiologic processes. Our findings indicate possible novel and previously unidentified functions for PRRG proteins. PMID:23873930
Gazes, Yunglin; Habeck, Christian; O'Shea, Deirdre; Razlighi, Qolamreza R; Steffener, Jason; Stern, Yaakov
2015-01-01
Introduction A functional activation (i.e., ordinal trend) pattern was previously identified in both young and older adults during task-switching performance, the expression of which correlated with reaction time. The current study aimed to (1) replicate this functional activation pattern in a new group of fMRI activation data, and (2) extend the previous study by specifically examining whether the effect of aging on reaction time can be explained by differences in the activation of the functional activation pattern. Method A total of 47 young and 50 older participants were included in the extension analysis. Participants performed task-switching as the activation task and were cued by the color of the stimulus for the task to be performed in each block. To test for replication, two approaches were implemented. The first approach tested the replicability of the predictive power of the previously identified functional activation pattern by forward applying the pattern to the Study II data and the second approach was rederivation of the activation pattern in the Study II data. Results Both approaches showed successful replication in the new data set. Using mediation analysis, expression of the pattern from the first approach was found to partially mediate age-related effects on reaction time such that older age was associated with greater activation of the brain pattern and longer reaction time, suggesting that brain activation efficiency (defined as “the rate of activation increase with increasing task difficulty” in Neuropsychologia 47, 2009, 2015) of the regions in the Ordinal trend pattern directly accounts for age-related differences in task performance. Discussion The successful replication of the functional activation pattern demonstrates the versatility of the Ordinal Trend Canonical Variates Analysis, and the ability to summarize each participant's brain activation map into one number provides a useful metric in multimodal analysis as well as cross-study comparisons. PMID:25874162
Gavalas, Nikos G; Gottumukkala, Raju V S R K; Gawkrodger, David J; Watson, Philip F; Weetman, Anthony P; Kemp, E Helen
2009-05-01
The melanin-concentrating hormone receptor 1 (MCHR1) has been identified as a B cell autoantigen in vitiligo with antibodies to the receptor detectable in binding and function-blocking assays. Two epitope domains (amino acids 1-138 and 139-298) have been previously identified. In this study, we aimed to further define the epitope specificity of MCHR1 antibodies using phage-display technology and to identify the epitopes recognised by receptor antibodies detected in MCHR1 function-blocking assays. Antibody reactivity to MCHR1 peptides 51-80, 85-98, 154-158 and 254-260 was identified by phage-display and subsequently confirmed in phage ELISA in 2/12, 5/12, 3/12 and 6/12 of vitiligo patients, respectively. The results suggest that major autoantibody epitopes are localised in the 85-98 and 254-260 amino acid regions of MCHR1 with minor epitopes in amino acid sequences 51-80 and 154-158. Antibodies with MCHR1 function-blocking activity were determined to recognise epitope 254-260, this being the first epitope to be reported as a target site for antibodies that block the function of the receptor.
Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes.
Lal, Dennis; Reinthaler, Eva M; Dejanovic, Borislav; May, Patrick; Thiele, Holger; Lehesjoki, Anna-Elina; Schwarz, Günter; Riesch, Erik; Ikram, M Arfan; van Duijn, Cornelia M; Uitterlinden, Andre G; Hofman, Albert; Steinböck, Hannelore; Gruber-Sedlmayr, Ursula; Neophytou, Birgit; Zara, Federico; Hahn, Andreas; Gormley, Padhraig; Becker, Felicitas; Weber, Yvonne G; Cilio, Maria Roberta; Kunz, Wolfram S; Krause, Roland; Zimprich, Fritz; Lemke, Johannes R; Nürnberg, Peter; Sander, Thomas; Lerche, Holger; Neubauer, Bernd A
2016-01-01
The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%). Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP_001159435.1) are not pathogenic. Only the p.T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60 x 10-4; OR = 0.32, fishers exact test), previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions.
Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes
May, Patrick; Thiele, Holger; Lehesjoki, Anna-Elina; Schwarz, Günter; Riesch, Erik; Ikram, M. Arfan; van Duijn, Cornelia M.; Uitterlinden, Andre G.; Hofman, Albert; Steinböck, Hannelore; Gruber-Sedlmayr, Ursula; Neophytou, Birgit; Zara, Federico; Hahn, Andreas; Gormley, Padhraig; Becker, Felicitas; Weber, Yvonne G.; Cilio, Maria Roberta; Kunz, Wolfram S.; Krause, Roland; Zimprich, Fritz; Lemke, Johannes R.; Nürnberg, Peter; Sander, Thomas; Lerche, Holger; Neubauer, Bernd A.
2016-01-01
Objective The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. Methods We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. Results and Interpretation We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%). Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP_001159435.1) are not pathogenic. Only the p.T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60 x 10−4; OR = 0.32, fishers exact test), previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions. PMID:26990884
Prevalence and characteristics of vibrator use among women who have sex with women.
Schick, Vanessa; Herbenick, Debby; Rosenberger, Joshua G; Reece, Michael
2011-12-01
Research suggests that vibrator use may be more prevalent among lesbian/bisexual-identified women. However, previous research has been limited by small samples of lesbian- and bisexual-identified women and has not focused specifically on the characteristics of vibrator use between women. The present study was designed in order to develop a comprehensive understanding of women's use of vibrators with their female sexual partners and to understand the extent to which vibrator use is related to their sexual experiences. Data were collected via a cross-sectional web-based survey from 2,192 women living in the United States and the United Kingdom. All participants reported engaging in sexual behavior with only women in the previous year. Sociodemographic characteristics, vibrator use history, vibrator use perceptions, and the Female Sexual Function Index (FSFI). Over three-quarters of women in the sample reported a history of vibrator use during solo masturbation/with a female partner and over a quarter of the sample reported use in the previous month. Participants who were older, white, and in a long-term relationship were the most likely to use a vibrator with a female partner in the previous year. Vibrator use lifetime history was unrelated to all FSFI subscales with the exception of pain for lesbian and queer-identified women. In contrast to lifetime use, participants who used a vibrator with a female sexual partner in the previous month scored higher on several of the FSFI domains than women who reported no vibrator use or vibrator use only during solo masturbation in the past month. Vibrator use was common among this sample of women who have sex with women. Women who reported recent vibrator use with other women had higher mean sexual functioning scores than women who reported no vibrator use or vibrator use only during masturbation. Implications for health-care providers are discussed. © 2011 International Society for Sexual Medicine.
Diverse types of genetic variation converge on functional gene networks involved in schizophrenia.
Gilman, Sarah R; Chang, Jonathan; Xu, Bin; Bawa, Tejdeep S; Gogos, Joseph A; Karayiorgou, Maria; Vitkup, Dennis
2012-12-01
Despite the successful identification of several relevant genomic loci, the underlying molecular mechanisms of schizophrenia remain largely unclear. We developed a computational approach (NETBAG+) that allows an integrated analysis of diverse disease-related genetic data using a unified statistical framework. The application of this approach to schizophrenia-associated genetic variations, obtained using unbiased whole-genome methods, allowed us to identify several cohesive gene networks related to axon guidance, neuronal cell mobility, synaptic function and chromosomal remodeling. The genes forming the networks are highly expressed in the brain, with higher brain expression during prenatal development. The identified networks are functionally related to genes previously implicated in schizophrenia, autism and intellectual disability. A comparative analysis of copy number variants associated with autism and schizophrenia suggests that although the molecular networks implicated in these distinct disorders may be related, the mutations associated with each disease are likely to lead, at least on average, to different functional consequences.
Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates.
Nakatsuka, Nako; Cao, Huan H; Deshayes, Stephanie; Melkonian, Arin Lucy; Kasko, Andrea M; Weiss, Paul S; Andrews, Anne M
2018-05-31
Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or L-tryptophan were selectively recognized by previously identified dopamine or L-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though slightly greater than the previously determined solution dissociation constant. Using pre-functionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with L-DOPA, L-DOPS, and L-5-HTP enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons, and future identification and characterization of novel aptamers targeting neurotransmitters or other important small-molecules.
Parkinson's Disease and Dopaminergic Therapy--Differential Effects on Movement, Reward and Cognition
ERIC Educational Resources Information Center
Rowe, J. B.; Hughes, L.; Ghosh, B. C. P.; Eckstein, D.; Williams-Gray, C. H.; Fallon, S.; Barker, R. A.; Owen, A. M.
2008-01-01
Cognitive deficits are very common in Parkinson's disease particularly for "executive functions" associated with frontal cortico-striatal networks. Previous work has identified deficits in tasks that require attentional control like task-switching, and reward-based tasks like gambling or reversal learning. However, there is a complex…
Zinc transport and diabetes risk.
Pearson, Ewan
2014-04-01
Genome-wide association studies have previously identified variants in SLC30A8, encoding the zinc transporter ZnT8, associated with diabetes risk. A rare variant association study has now established the direction of effect, surprisingly showing that loss-of-function mutations in SLC30A8 are protective against diabetes.
Personal and Impersonal Stimuli Differentially Engage Brain Networks during Moral Reasoning
ERIC Educational Resources Information Center
Xue, Shao-Wei; Wang, Yan; Tang, Yi-Yuan
2013-01-01
Moral decision making has recently attracted considerable attention as a core feature of all human endeavors. Previous functional magnetic resonance imaging studies about moral judgment have identified brain areas associated with cognitive or emotional engagement. Here, we applied graph theory-based network analysis of event-related potentials…
Although the process of glycolysis is highly conserved in eukaryotes, several glycolytic enzymes have unique structural or functional features in spermatogenic cells. We previously identified and characterized the mouse complementary DNA (cDNA) and a gene for 1 of these enzymes, ...
The Functions and Dysfunctions of College Rankings: An Analysis of Institutional Expenditure
ERIC Educational Resources Information Center
Kim, Jeongeun
2018-01-01
College rankings have become a powerful influence in higher education. While the determinants of educational quality are not clearly defined, college rankings designate an institution's standing in a numerical order based on quantifiable measurements that focus primarily on institutional resources. Previous research has identified the…
USDA-ARS?s Scientific Manuscript database
A transparent and functional system for virus classification is essential to allow scientists to correctly identify and report on viruses detected in different hosts or locations without ambiguity. New research into relationships between previously characterized and newly-emerging viruses may requir...
USDA-ARS?s Scientific Manuscript database
A transparent and functional system for virus classification is essential to allow scientists to correctly identify and report on viruses detected in different hosts or locations without ambiguity. New research into relationships between previously characterized and newly-emerging viruses may requir...
Novo, Maite; Mangado, Ana; Quirós, Manuel; Morales, Pilar; Salvadó, Zoel; Gonzalez, Ramon
2013-01-01
This work was designed to identify yeast cellular functions specifically affected by the stress factors predominating during the early stages of wine fermentation, and genes required for optimal growth under these conditions. The main experimental method was quantitative fitness analysis by means of competition experiments in continuous culture of whole genome barcoded yeast knockout collections. This methodology allowed the identification of haploinsufficient genes, and homozygous deletions resulting in growth impairment in synthetic must. However, genes identified as haploproficient, or homozygous deletions resulting in fitness advantage, were of little predictive power concerning optimal growth in this medium. The relevance of these functions for enological performance of yeast was assessed in batch cultures with single strains. Previous studies addressing yeast adaptation to winemaking conditions by quantitative fitness analysis were not specifically focused on the proliferative stages. In some instances our results highlight the importance of genes not previously linked to winemaking. In other cases they are complementary to those reported in previous studies concerning, for example, the relevance of some genes involved in vacuolar, peroxisomal, or ribosomal functions. Our results indicate that adaptation to the quickly changing growth conditions during grape must fermentation require the function of different gene sets in different moments of the process. Transport processes and glucose signaling seem to be negatively affected by the stress factors encountered by yeast in synthetic must. Vacuolar activity is important for continued growth during the transition to stationary phase. Finally, reduced biogenesis of peroxisomes also seems to be advantageous. However, in contrast to what was described for later stages, reduced protein synthesis is not advantageous for the early (proliferative) stages of the fermentation process. Finally, we found adenine and lysine to be in short supply for yeast growth in some natural grape musts.
High-throughput discovery of novel developmental phenotypes.
Dickinson, Mary E; Flenniken, Ann M; Ji, Xiao; Teboul, Lydia; Wong, Michael D; White, Jacqueline K; Meehan, Terrence F; Weninger, Wolfgang J; Westerberg, Henrik; Adissu, Hibret; Baker, Candice N; Bower, Lynette; Brown, James M; Caddle, L Brianna; Chiani, Francesco; Clary, Dave; Cleak, James; Daly, Mark J; Denegre, James M; Doe, Brendan; Dolan, Mary E; Edie, Sarah M; Fuchs, Helmut; Gailus-Durner, Valerie; Galli, Antonella; Gambadoro, Alessia; Gallegos, Juan; Guo, Shiying; Horner, Neil R; Hsu, Chih-Wei; Johnson, Sara J; Kalaga, Sowmya; Keith, Lance C; Lanoue, Louise; Lawson, Thomas N; Lek, Monkol; Mark, Manuel; Marschall, Susan; Mason, Jeremy; McElwee, Melissa L; Newbigging, Susan; Nutter, Lauryl M J; Peterson, Kevin A; Ramirez-Solis, Ramiro; Rowland, Douglas J; Ryder, Edward; Samocha, Kaitlin E; Seavitt, John R; Selloum, Mohammed; Szoke-Kovacs, Zsombor; Tamura, Masaru; Trainor, Amanda G; Tudose, Ilinca; Wakana, Shigeharu; Warren, Jonathan; Wendling, Olivia; West, David B; Wong, Leeyean; Yoshiki, Atsushi; MacArthur, Daniel G; Tocchini-Valentini, Glauco P; Gao, Xiang; Flicek, Paul; Bradley, Allan; Skarnes, William C; Justice, Monica J; Parkinson, Helen E; Moore, Mark; Wells, Sara; Braun, Robert E; Svenson, Karen L; de Angelis, Martin Hrabe; Herault, Yann; Mohun, Tim; Mallon, Ann-Marie; Henkelman, R Mark; Brown, Steve D M; Adams, David J; Lloyd, K C Kent; McKerlie, Colin; Beaudet, Arthur L; Bućan, Maja; Murray, Stephen A
2016-09-22
Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.
Activation of Gαq Signaling Enhances Memory Consolidation and Slows Cognitive Decline.
Arey, Rachel N; Stein, Geneva M; Kaletsky, Rachel; Kauffman, Amanda; Murphy, Coleen T
2018-05-02
Perhaps the most devastating decline with age is the loss of memory. Therefore, identifying mechanisms to restore memory function with age is critical. Using C. elegans associative learning and memory assays, we identified a gain-of-function G αq signaling pathway mutant that forms a long-term (cAMP response element binding protein [CREB]-dependent) memory following one conditioned stimulus-unconditioned stimulus (CS-US) pairing, which usually requires seven CS-US pairings. Increased CREB activity in AIM interneurons reduces the threshold for memory consolidation through transcription of a set of previously identified "long-term memory" genes. Enhanced G αq signaling in the AWC sensory neuron is both necessary and sufficient for improved memory and increased AIM CREB activity, and activation of G αq specifically in aged animals rescues the ability to form memory. Activation of G αq in AWC sensory neurons non-cell autonomously induces consolidation after one CS-US pairing, enabling both cognitive function maintenance with age and restoration of memory function in animals with impaired memory performance without decreased longevity. Copyright © 2018 Elsevier Inc. All rights reserved.
2014-09-01
previous report [6, 7], Ptenpc-/- tumors are sensitive to ADT (Fig 1A). A significant amount of normal epithelium was identified in castrated...histopathological analysis by H & E staining (Fig 1A) and MRI analysis (data not shown). There is no noticeable normal epithelium in the castrated Ptenpc...indicated that while tumor cells are enriched for pathways involving cell adhesion molecules and tight junction (consistent with their epithelial
D'Addabbo, Annarita; Palmieri, Orazio; Maglietta, Rosalia; Latiano, Anna; Mukherjee, Sayan; Annese, Vito; Ancona, Nicola
2011-08-01
A meta-analysis has re-analysed previous genome-wide association scanning definitively confirming eleven genes and further identifying 21 new loci. However, the identified genes/loci still explain only the minority of genetic predisposition of Crohn's disease. To identify genes weakly involved in disease predisposition by analysing chromosomal regions enriched of single nucleotide polymorphisms with modest statistical association. We utilized the WTCCC data set evaluating 1748 CD and 2938 controls. The identification of candidate genes/loci was performed by a two-step procedure: first of all chromosomal regions enriched of weak association signals were localized; subsequently, weak signals clustered in gene regions were identified. The statistical significance was assessed by non parametric permutation tests. The cytoband enrichment analysis highlighted 44 regions (P≤0.05) enriched with single nucleotide polymorphisms significantly associated with the trait including 23 out of 31 previously confirmed and replicated genes. Importantly, we highlight further 20 novel chromosomal regions carrying approximately one hundred genes/loci with modest association. Amongst these we find compelling functional candidate genes such as MAPT, GRB2 and CREM, LCT, and IL12RB2. Our study suggests a different statistical perspective to discover genes weakly associated with a given trait, although further confirmatory functional studies are needed. Copyright © 2011 Editrice Gastroenterologica Italiana S.r.l. All rights reserved.
Alcauter, Sarael; García-Mondragón, Liliana; Gracia-Tabuenca, Zeus; Moreno, Martha B; Ortiz, Juan J; Barrios, Fernando A
2017-11-01
The current study investigated the neural basis of reading performance in 60 school-age Spanish-speaking children, aged 6 to 9years. By using a data-driven approach and an automated matching procedure, we identified a left-lateralized resting state network that included typical language regions (Wernicke's and Broca's regions), prefrontal cortex, pre- and post-central gyri, superior and middle temporal gyri, cerebellum, and subcortical regions, and explored its relevance for reading performance (accuracy, comprehension and speed). Functional connectivity of the left frontal and temporal cortices and subcortical regions predicted reading speed. These results extend previous findings on the relationship between functional connectivity and reading competence in children, providing new evidence about such relationships in previously unexplored regions in the resting brain, including the left caudate, putamen and thalamus. This work highlights the relevance of a broad network, functionally synchronized in the resting state, for the acquisition and perfecting of reading abilities in young children. Copyright © 2017 Elsevier Inc. All rights reserved.
Severe viral respiratory infections in children with IFIH1 loss-of-function mutations
Schlapbach, Luregn J.; Anchisi, Stéphanie; Hammer, Christian; Bartha, Istvan; Junier, Thomas; Mottet-Osman, Geneviève; Posfay-Barbe, Klara M.; Longchamp, David; Stocker, Martin; Cordey, Samuel; Kaiser, Laurent; Riedel, Thomas; Kenna, Tony; Long, Deborah; Schibler, Andreas; Tapparel, Caroline; Garcin, Dominique
2017-01-01
Viral respiratory infections are usually mild and self-limiting; still they exceptionally result in life-threatening infections in previously healthy children. To investigate a potential genetic cause, we recruited 120 previously healthy children requiring support in intensive care because of a severe illness caused by a respiratory virus. Using exome and transcriptome sequencing, we identified and characterized three rare loss-of-function variants in IFIH1, which encodes an RIG-I-like receptor involved in the sensing of viral RNA. Functional testing of the variants IFIH1 alleles demonstrated that the resulting proteins are unable to induce IFN-β, are intrinsically less stable than wild-type IFIH1, and lack ATPase activity. In vitro assays showed that IFIH1 effectively restricts replication of human respiratory syncytial virus and rhinoviruses. We conclude that IFIH1 deficiency causes a primary immunodeficiency manifested in extreme susceptibility to common respiratory RNA viruses. PMID:28716935
Cirera, S; Clop, A; Jacobsen, M J; Guerin, M; Lesnik, P; Jørgensen, C B; Fredholm, M; Karlskov-Mortensen, P
2018-04-01
Taste receptors (TASRs) and appetite and reward (AR) mechanisms influence eating behaviour, which in turn affects food intake and risk of obesity. In a previous study, we used next generation sequencing to identify potentially functional mutations in TASR and AR genes and found indications for genetic associations between identified variants and growth and fat deposition in a subgroup of animals (n = 38) from the UNIK resource pig population. This population was created for studying obesity and obesity-related diseases. In the present study we validated results from our previous study by investigating genetic associations between 24 selected single nucleotide variants in TASR and AR gene variants and 35 phenotypes describing obesity and metabolism in the entire UNIK population (n = 564). Fifteen variants showed significant association with specific obesity-related phenotypes after Bonferroni correction. Six of the 15 genes, namely SIM1, FOS, TAS2R4, TAS2R9, MCHR2 and LEPR, showed good correlation between known biological function and associated phenotype. We verified a genetic association between potentially functional variants in TASR/AR genes and growth/obesity and conclude that the combination of identification of potentially functional variants by next generation sequencing followed by targeted genotyping and association studies is a powerful and cost-effective approach for increasing the power of genetic association studies. © 2018 Stichting International Foundation for Animal Genetics.
Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-Man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H-H; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B; Adair, Linda S; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; Chen, Yii-Der Ida; Shu, Xiao-Ou; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars G; Nielsen, Jonas Bille; Tse, Hung-Fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Kathiresan, Sekar; Mohlke, Karen L; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J
2017-12-01
Most genome-wide association studies have been of European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we used an exome array to examine protein-coding genetic variants in 47,532 East Asian individuals. We identified 255 variants at 41 loci that reached chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After a meta-analysis including >300,000 European samples, we identified an additional nine novel loci. Sixteen genes were identified by protein-altering variants in both East Asians and Europeans, and thus are likely to be functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci.
Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J.; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N.; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H.-H.; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B.; Adair, Linda S.; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; da Chen, Yii-Der I; Shu, XiaoOu; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K.; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars; Nielsen, Jonas Bille; Tse, Hung-fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y. Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Consortium, GLGC; Kathiresan, Sekar; Mohlke, Karen L.; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J
2017-01-01
Most genome-wide association studies have been conducted in European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we examined protein-coding genetic variants in 47,532 East Asian individuals using an exome array. We identified 255 variants at 41 loci reaching chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After meta-analysis with > 300,000 European samples, we identified an additional 9 novel loci. The same 16 genes were identified by the protein-altering variants in both East Asians and Europeans, likely pointing to the functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population-specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci. PMID:29083407
Sequence Segmentation with changeptGUI.
Tasker, Edward; Keith, Jonathan M
2017-01-01
Many biological sequences have a segmental structure that can provide valuable clues to their content, structure, and function. The program changept is a tool for investigating the segmental structure of a sequence, and can also be applied to multiple sequences in parallel to identify a common segmental structure, thus providing a method for integrating multiple data types to identify functional elements in genomes. In the previous edition of this book, a command line interface for changept is described. Here we present a graphical user interface for this package, called changeptGUI. This interface also includes tools for pre- and post-processing of data and results to facilitate investigation of the number and characteristics of segment classes.
Coram, Nicolette J; van Zyl, Leonardo J; Rawlings, Douglas E
2005-11-01
Two plasmids, of 28,878 bp and 28,012 bp, were isolated from Leptospirillum ferrooxidans ATCC 49879. Altogether, a total of 67 open reading frames (ORFs) were identified on both plasmids, of which 32 had predicted products with high homology to proteins of known function, while 11 ORFs had predicted products with homology to previously identified proteins of unknown function. Twenty-four ORFs had products with no homologues in the GenBank/NCBI database. An analysis of the ORFs and other features of the two plasmids, the first to be isolated from a bacterium of the genus Leptospirillum, is presented.
Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin
2015-01-01
Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Nicholas W.; The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD; Shoji, Yutaka
2016-01-01
AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. - Highlights: • We have identified a bipartitemore » nuclear localization sequence (NLS) in ARID1A. • Confirmation of the NLS was performed using GFP constructs. • NLS mutant ARID1A exhibits greater stability than wild-type ARID1A.« less
Silberstein, Lev; Goncalves, Kevin A; Kharchenko, Peter V; Turcotte, Raphael; Kfoury, Youmna; Mercier, Francois; Baryawno, Ninib; Severe, Nicolas; Bachand, Jacqueline; Spencer, Joel A; Papazian, Ani; Lee, Dongjun; Chitteti, Brahmananda Reddy; Srour, Edward F; Hoggatt, Jonathan; Tate, Tiffany; Lo Celso, Cristina; Ono, Noriaki; Nutt, Stephen; Heino, Jyrki; Sipilä, Kalle; Shioda, Toshihiro; Osawa, Masatake; Lin, Charles P; Hu, Guo-Fu; Scadden, David T
2016-10-06
Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on the differential single-cell gene expression analysis of mesenchymal osteolineage cells close to, and further removed from, hematopoietic stem/progenitor cells (HSPCs) to identify candidate niche factors. Mesenchymal cells displayed distinct molecular profiles based on their relative location. We functionally examined, among the genes that were preferentially expressed in proximal cells, three secreted or cell-surface molecules not previously connected to HSPC biology-the secreted RNase angiogenin, the cytokine IL18, and the adhesion molecule Embigin-and discovered that all of these factors are HSPC quiescence regulators. Therefore, our proximity-based differential single-cell approach reveals molecular heterogeneity within niche cells and can be used to identify novel extrinsic stem/progenitor cell regulators. Similar approaches could also be applied to other stem cell/niche pairs to advance the understanding of microenvironmental regulation of stem cell function. Copyright © 2016 Elsevier Inc. All rights reserved.
Bogaard, Amy; Hodgson, John; Nitsch, Erika; Jones, Glynis; Styring, Amy; Diffey, Charlotte; Pouncett, John; Herbig, Christoph; Charles, Michael; Ertuğ, Füsun; Tugay, Osman; Filipovic, Dragana; Fraser, Rebecca
This investigation combines two independent methods of identifying crop growing conditions and husbandry practices-functional weed ecology and crop stable carbon and nitrogen isotope analysis-in order to assess their potential for inferring the intensity of past cereal production systems using archaeobotanical assemblages. Present-day organic cereal farming in Haute Provence, France features crop varieties adapted to low-nutrient soils managed through crop rotation, with little to no manuring. Weed quadrat survey of 60 crop field transects in this region revealed that floristic variation primarily reflects geographical differences. Functional ecological weed data clearly distinguish the Provence fields from those surveyed in a previous study of intensively managed spelt wheat in Asturias, north-western Spain: as expected, weed ecological data reflect higher soil fertility and disturbance in Asturias. Similarly, crop stable nitrogen isotope values distinguish between intensive manuring in Asturias and long-term cultivation with minimal manuring in Haute Provence. The new model of cereal cultivation intensity based on weed ecology and crop isotope values in Haute Provence and Asturias was tested through application to two other present-day regimes, successfully identifying a high-intensity regime in the Sighisoara region, Romania, and low-intensity production in Kastamonu, Turkey. Application of this new model to Neolithic archaeobotanical assemblages in central Europe suggests that early farming tended to be intensive, and likely incorporated manuring, but also exhibited considerable variation, providing a finer grained understanding of cultivation intensity than previously available.
Large-scale gene-centric analysis identifies novel variants for coronary artery disease.
2011-09-01
Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10(-33); LPA:p<10(-19); 1p13.3:p<10(-17)) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10(-7)). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06-1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and clarified the literature with regard to many previously suggested genes.
Lustgarten, Michael S; Fielding, Roger A
2017-12-15
Reduced skeletal muscle density in older adults is associated with insulin resistance, decreased physical function, and an increased all-cause mortality risk. To elucidate mechanisms that may underlie the maintenance of skeletal muscle density, we conducted a secondary analysis of previously published muscle composition and serum metabolomic data in 73 older adults (average age, 78y). Multivariable-adjusted linear regression was used to examine associations between 321 metabolites with muscle composition, defined as the ratio between normal density (NDM) with low density (LDM) thigh muscle cross sectional area (NDM/LDM). Sixty metabolites were significantly (p≤0.05 and q<0.30) associated with NDM/LDM. Decreased renal function and the immune response have been previously linked with reduced muscle density, but the mechanisms underlying these connections are less clear. Metabolites that were significantly associated with muscle composition were then tested for their association with circulating markers of renal function (blood urea nitrogen, creatinine, uric acid), and with the immune response (neutrophils/lymphocytes) and activation (kynurenine/tryptophan). 43 significant NDM/LDM metabolites (including urea) were co-associated with at least 1 marker of renal function; 23 of these metabolites have been previously identified as uremic solutes. The neutrophil/lymphocyte ratio was significantly associated with NDM/LDM (β±SE: -0.3±0.1, p=0.01, q=0.04). 35 significant NDM/LDM metabolites were co-associated with immune activation. Carbamylation (defined as homocitrulline/lysine) was identified as a pathway that may link renal function and immune activation with muscle composition, as 29 significant NDM/LDM metabolites were co-associated with homocitrulline/lysine, with at least 2 markers of renal function, and with kynurenine/tryptophan. When considering that elevated urea and uremic metabolites have been linked with an increased systemic microbial burden, that antimicrobial defense can be reduced in the presence of carbamylation, and that adipocytes can promote host defense, we propose the novel hypothesis that the age-related increase in adipogenesis within muscle may be a compensatory antimicrobial response to protect against an elevated microbial burden. Copyright © 2017 Elsevier Inc. All rights reserved.
Winglee, Kathryn; Lun, Shichun; Pieroni, Marco; Kozikowski, Alan; Bishai, William
2015-11-01
Drug resistance is a major problem in Mycobacterium tuberculosis control, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity against M. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independent M. tuberculosis mutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations in Rv2887 were common to all three MP-III-71-resistant mutants, and we confirmed the role of Rv2887 as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified in Escherichia coli to negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation of Rv2887 abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations of Rv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance of M. tuberculosis Rv2887 mutants may involve efflux pump upregulation and also drug methylation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Winglee, Kathryn; Lun, Shichun; Pieroni, Marco; Kozikowski, Alan
2015-01-01
Drug resistance is a major problem in Mycobacterium tuberculosis control, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity against M. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independent M. tuberculosis mutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations in Rv2887 were common to all three MP-III-71-resistant mutants, and we confirmed the role of Rv2887 as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified in Escherichia coli to negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation of Rv2887 abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations of Rv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance of M. tuberculosis Rv2887 mutants may involve efflux pump upregulation and also drug methylation. PMID:26303802
Scoggin, Kirsten E. S.; Ulloa, Aida; Nyborg, Jennifer K.
2001-01-01
Oncogenesis associated with human T-cell leukemia virus (HTLV) infection is directly linked to the virally encoded transcription factor Tax. To activate HTLV-1 transcription Tax interacts with the cellular protein CREB and the pleiotropic coactivators CBP and p300. While extensively studied, the molecular mechanisms of Tax transcription function and coactivator utilization are not fully understood. Previous studies have focused on Tax binding to the KIX domain of CBP, as this was believed to be the key step in recruiting the coactivator to the HTLV-1 promoter. In this study, we identify a carboxy-terminal region of CBP (and p300) that strongly interacts with Tax and mediates Tax transcription function. Through deletion mutagenesis, we identify amino acids 2003 to 2212 of CBP, which we call carboxy-terminal region 2 (CR2), as the minimal region for Tax interaction. Interestingly, this domain corresponds to the steroid receptor coactivator 1 (SRC-1)-interacting domain of CBP. We show that a double point mutant targeted to one of the putative α-helical motifs in this domain significantly compromises the interaction with Tax. We also characterize the region of Tax responsible for interaction with CR2 and show that the previously identified transactivation domain of Tax (amino acids 312 to 319) participates in CR2 binding. This region of Tax corresponds to a consensus amphipathic helix, and single point mutations targeted to amino acids on the face of this helix abolish interaction with CR2 and dramatically reduce Tax transcription function. Finally, we demonstrate that Tax and SRC-1 bind to CR2 in a mutually exclusive fashion. Together, these studies identify a novel Tax-interacting site on CBP/p300 and extend our understanding of the molecular mechanism of Tax transactivation. PMID:11463834
Bernstein, Adrien N; Lavery, Hugh J; Hobbs, Adele R; Chin, Edward; Samadi, David B
2013-06-01
Previous abdominal or prostate surgery can be a significant barrier to subsequent minimally invasive procedures, including radical prostatectomy (RP). This is relevant to a quarter of prostatectomy patients who have had previous surgery. The technological advances of robot-assisted laparoscopic RP (RALP) can mitigate some of these challenges. To that end, our objective was to elucidate the effect of previous surgery on RALP, and to describe a multidisciplinary approach to the previously entered abdomen. One-thousand four-hundred and fourteen RALP patients were identified from a single-surgeon database. Potentially difficult cases were discussed preoperatively and treated in a multidisciplinary fashion with a general surgeon. Operative, pathological, and functional outcomes were analyzed after stratification by previous surgical history. Four-hundred and twenty (30 %) patients underwent previous surgery at least once. Perioperative outcomes were similar among most groups. Previous major abdominal surgery was associated with increased operative time (147 vs. 119 min, p < 0.001), as was the presence of adhesions (120 vs. 154 min, p < 0.001). Incidence of complications was comparable, irrespective of surgical history. Major complications included two enterotomies diagnosed intraoperatively and one patient requiring reoperation. All cases were performed robotically, without conversion to open-RP. There was no difference in biochemical disease-free survival among surgical groups and continence and potency were equivalent between groups. In conclusion, previous abdominal surgery did not affect the safety or feasibility of RALP, with all patients experiencing comparable perioperative, functional, and oncologic outcomes.
NASA Technical Reports Server (NTRS)
Mcallister, J. G.
1984-01-01
Space based servicing of an orbit transfer vehicle (OTV) was previously outlined in sufficient detail to arrive at OTV and support system servicing requirements. Needed space station facilities and their functional requirements were identified. The impact of logistics and space serviceable design on the OTV design is detailed herein. RL10 derivative rocket engine inspection task times are enumerated.
ERIC Educational Resources Information Center
Holdnack, James; Goldstein, Gerald; Drozdick, Lisa
2011-01-01
Previous research using the Wechsler scales has identified areas of cognitive weaknesses in children, adolescents, and adults diagnosed with Autism or Asperger's syndrome. The current study evaluates cognitive functioning in adolescents and adults diagnosed with Autism or Asperger's syndrome using the Wechsler Adult Intelligence Scale-Fourth…
The ability to anchor chemical class-based gene expression changes to phenotypic lesions and to describe these changes as a function of dose and time can inform mode of action and improve quantitative risk assessment. Previous research identified a 330-gene cluster commonly resp...
Displaying Now-Understanding: The Finnish Change-of-State Token "aa"
ERIC Educational Resources Information Center
Koivisto, Aino
2015-01-01
This article discusses the use of the Finnish change-of-state token "aa" that has previously not been identified. The central claim is that even though "aa" indicates a cognitive shift experienced by the speaker, it does not function as a receipt of new information. Instead, the token "aa" indicates that the speaker…
Rapid Hypothesis Testing with Candida albicans through Gene Disruption with Short Homology Regions
Wilson, R. Bryce; Davis, Dana; Mitchell, Aaron P.
1999-01-01
Disruption of newly identified genes in the pathogen Candida albicans is a vital step in determination of gene function. Several gene disruption methods described previously employ long regions of homology flanking a selectable marker. Here, we describe disruption of C. albicans genes with PCR products that have 50 to 60 bp of homology to a genomic sequence on each end of a selectable marker. We used the method to disrupt two known genes, ARG5 and ADE2, and two sequences newly identified through the Candida genome project, HRM101 and ENX3. HRM101 and ENX3 are homologous to genes in the conserved RIM101 (previously called RIM1) and PacC pathways of Saccharomyces cerevisiae and Aspergillus nidulans. We show that three independent hrm101/hrm101 mutants and two independent enx3/enx3 mutants are defective in filamentation on Spider medium. These observations argue that HRM101 and ENX3 sequences are indeed portions of genes and that the respective gene products have related functions. PMID:10074081
Structural and configurational properties of nanoconfined monolayer ice from first principles
Corsetti, Fabiano; Matthews, Paul; Artacho, Emilio
2016-01-01
Understanding the structural tendencies of nanoconfined water is of great interest for nanoscience and biology, where nano/micro-sized objects may be separated by very few layers of water. Here we investigate the properties of ice confined to a quasi-2D monolayer by a featureless, chemically neutral potential, in order to characterize its intrinsic behaviour. We use density-functional theory simulations with a non-local van der Waals density functional. An ab initio random structure search reveals all the energetically competitive monolayer configurations to belong to only two of the previously-identified families, characterized by a square or honeycomb hydrogen-bonding network, respectively. We discuss the modified ice rules needed for each network, and propose a simple point dipole 2D lattice model that successfully explains the energetics of the square configurations. All identified stable phases for both networks are found to be non-polar (but with a topologically non-trivial texture for the square) and, hence, non-ferroelectric, in contrast to previous predictions from a five-site empirical force-field model. Our results are in good agreement with very recently reported experimental observations. PMID:26728125
Structural and configurational properties of nanoconfined monolayer ice from first principles
NASA Astrophysics Data System (ADS)
Corsetti, Fabiano; Matthews, Paul; Artacho, Emilio
2016-01-01
Understanding the structural tendencies of nanoconfined water is of great interest for nanoscience and biology, where nano/micro-sized objects may be separated by very few layers of water. Here we investigate the properties of ice confined to a quasi-2D monolayer by a featureless, chemically neutral potential, in order to characterize its intrinsic behaviour. We use density-functional theory simulations with a non-local van der Waals density functional. An ab initio random structure search reveals all the energetically competitive monolayer configurations to belong to only two of the previously-identified families, characterized by a square or honeycomb hydrogen-bonding network, respectively. We discuss the modified ice rules needed for each network, and propose a simple point dipole 2D lattice model that successfully explains the energetics of the square configurations. All identified stable phases for both networks are found to be non-polar (but with a topologically non-trivial texture for the square) and, hence, non-ferroelectric, in contrast to previous predictions from a five-site empirical force-field model. Our results are in good agreement with very recently reported experimental observations.
Plant U13 orthologues and orphan snoRNAs identified by RNomics of RNA from Arabidopsis nucleoli
Kim, Sang Hyon; Spensley, Mark; Choi, Seung Kook; Calixto, Cristiane P. G.; Pendle, Ali F.; Koroleva, Olga; Shaw, Peter J.; Brown, John W. S.
2010-01-01
Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs whose main function in eukaryotes is to guide the modification of nucleotides in ribosomal and spliceosomal small nuclear RNAs, respectively. Full-length sequences of Arabidopsis snoRNAs and scaRNAs have been obtained from cDNA libraries of capped and uncapped small RNAs using RNA from isolated nucleoli from Arabidopsis cell cultures. We have identified 31 novel snoRNA genes (9 box C/D and 22 box H/ACA) and 15 new variants of previously described snoRNAs. Three related capped snoRNAs with a distinct gene organization and structure were identified as orthologues of animal U13snoRNAs. In addition, eight of the novel genes had no complementarity to rRNAs or snRNAs and are therefore putative orphan snoRNAs potentially reflecting wider functions for these RNAs. The nucleolar localization of a number of the snoRNAs and the localization to nuclear bodies of two putative scaRNAs was confirmed by in situ hybridization. The majority of the novel snoRNA genes were found in new gene clusters or as part of previously described clusters. These results expand the repertoire of Arabidopsis snoRNAs to 188 snoRNA genes with 294 gene variants. PMID:20081206
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohr, Georg; Del Campo, Mark; Turner, Kathryn G.
The Saccharomyces cerevisiae DEAD-box protein Mss116p is a general RNA chaperone that functions in splicing mitochondrial group I and group II introns. Recent X-ray crystal structures of Mss116p in complex with ATP analogs and single-stranded RNA show that the helicase core induces a bend in the bound RNA, as in other DEAD-box proteins, while a C-terminal extension (CTE) induces a second bend, resulting in RNA crimping. Here, we illuminate these structures by using high-throughput genetic selections, unigenic evolution, and analyses of in vivo splicing activity to comprehensively identify functionally important regions and permissible amino acid substitutions throughout Mss116p. The functionallymore » important regions include those containing conserved sequence motifs involved in ATP and RNA binding or interdomain interactions, as well as previously unidentified regions, including surface loops that may function in protein-protein interactions. The genetic selections recapitulate major features of the conserved helicase motifs seen in other DEAD-box proteins but also show surprising variations, including multiple novel variants of motif III (SAT). Patterns of amino acid substitutions indicate that the RNA bend induced by the helicase core depends on ionic and hydrogen-bonding interactions with the bound RNA; identify a subset of critically interacting residues; and indicate that the bend induced by the CTE results primarily from a steric block. Finally, we identified two conserved regions - one the previously noted post II region in the helicase core and the other in the CTE - that may help displace or sequester the opposite RNA strand during RNA unwinding.« less
Secreted Phosphoprotein 1 Is a Determinant of Lung Function Development in Mice
Martin, Timothy M.; Concel, Vincent J.; Upadhyay, Swapna; Bein, Kiflai; Brant, Kelly A.; George, Leema; Mitra, Ankita; Thimraj, Tania A.; Fabisiak, James P.; Vuga, Louis J.; Fattman, Cheryl; Kaminski, Naftali; Schulz, Holger; Leikauf, George D.
2014-01-01
Secreted phosphoprotein 1 (Spp1) is located within quantitative trait loci associated with lung function that was previously identified by contrasting C3H/HeJ and JF1/Msf mouse strains that have extremely divergent lung function. JF1/Msf mice with diminished lung function had reduced lung SPP1 transcript and protein during the peak stage of alveologenesis (postnatal day [P]14–P28) as compared with C3H/HeJ mice. In addition to a previously identified genetic variant that altered runt-related transcription factor 2 (RUNX2) binding in the Spp1 promoter, we identified another promoter variant in a putative RUNX2 binding site that increased the DNA protein binding. SPP1 induced dose-dependent mouse lung epithelial-15 cell proliferation. Spp1(−/−) mice have decreased specific total lung capacity/body weight, higher specific compliance, and increased mean airspace chord length (Lm) compared with Spp1(+/+) mice. Microarray analysis revealed enriched gene ontogeny categories, with numerous genes associated with lung development and/or respiratory disease. Insulin-like growth factor 1, Hedgehog-interacting protein, wingless-related mouse mammary tumor virus integration site 5A, and NOTCH1 transcripts decreased in the lung of P14 Spp1(−/−) mice as determined by quantitative RT-PCR analysis. SPP1 promotes pneumocyte growth, and mice lacking SPP1 have smaller, more compliant lungs with enlarged airspace (i.e., increased Lm). Microarray analysis suggests a dysregulation of key lung developmental transcripts in gene-targeted Spp1(−/−) mice, particularly during the peak phase of alveologenesis. In addition to its known roles in lung disease, this study supports SPP1 as a determinant of lung development in mice. PMID:24816281
Daoud, Hussein; Zhang, Dong; McMurray, Fiona; Yu, Andrea; Luco, Stephanie M; Vanstone, Jason; Jarinova, Olga; Carson, Nancy; Wickens, James; Shishodia, Shifali; Choi, Hwanho; McDonough, Michael A; Schofield, Christopher J; Harper, Mary-Ellen; Dyment, David A; Armour, Christine M
2016-03-01
A homozygous loss-of-function mutation p.(Arg316Gln) in the fat mass and obesity-associated (FTO) gene, which encodes for an iron and 2-oxoglutarate-dependent oxygenase, was previously identified in a large family in which nine affected individuals present with a lethal syndrome characterised by growth retardation and multiple malformations. To date, no other pathogenic mutation in FTO has been identified as a cause of multiple congenital malformations. We investigated a 21-month-old girl who presented distinctive facial features, failure to thrive, global developmental delay, left ventricular cardiac hypertrophy, reduced vision and bilateral hearing loss. We performed targeted next-generation sequencing of 4813 clinically relevant genes in the patient and her parents. We identified a novel FTO homozygous missense mutation (c.956C>T; p.(Ser319Phe)) in the affected individual. This mutation affects a highly conserved residue located in the same functional domain as the previously characterised mutation p.(Arg316Gln). Biochemical studies reveal that p.(Ser319Phe) FTO has reduced 2-oxoglutarate turnover and N-methyl-nucleoside demethylase activity. Our findings are consistent with previous reports that homozygous mutations in FTO can lead to rare growth retardation and developmental delay syndrome, and further support the proposal that FTO plays an important role in early development of human central nervous and cardiovascular systems. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Iolascon, Giovanni; Moretti, Antimo; Giamattei, Maria Teresa; Migliaccio, Silvia; Gimigliano, Francesca
2015-10-01
Fragility fractures are a major burden for health and social care in elderly people. In order to identify earlier the "frail elders", new concepts of "dysmobility syndrome" and skeletal muscle function deficit (SMFD), including sarcopenia, osteoporosis, obesity, and mobility limitation, leading to a higher risk of fractures, have been recently introduced. There are very few studies investigating the association between fragility fractures and both the dysmobility syndrome and the SMFD. The objective of our study is to investigate the role of previous fragility fractures as a risk factor in determining the dysmobility syndrome and/or the SMFD in post-menopausal women. In this case-control study, we retrospectively examined data from the medical records of post-menopausal women aged 50 or older. We divided the study population in two groups. The first group includes women with a previous fragility fracture (cases) and the other group includes women without any previous osteoporotic fracture (controls). We identified the subjects with "dysmobility syndrome", "dynapenic SMFD", "sarcopenic SMFD", and "mixed SMFD" in both groups. Data collected refer to a 6-month period. We retrieved data of 121 post-menopausal women, 77 (63.64%) had already sustained a fragility fracture at any site (cases). The risk for dysmobility syndrome was significantly higher (adjusted OR for age and serum 25-OH vitamin D3 of 2.46) in the cases compared with the controls. An early diagnosis of conditions limiting mobility, including dysmobility syndrome, might be useful to identify, among patients with osteoporotic fractures, those who might have a higher risk of a new fragility fracture.
Chemical Genetics of 14-3-3 Regulation and Role in Tumor Development
2005-11-01
inhibitors , our group had identified a series of inhibitory compounds. When tested one of these, TK10, shows an inhibitory effect on 14-3-3 sigma nuclear...potential regulators of 14-3-3 sigma function. 5 BODY Determine the biological activity of the newly identified inhibitor of 14-3- &T nuclear export TKI0 I...have previously shown that an inhibitor of FOXOla nuclear export, TK10, inhibits the export of 14- 3-3 from the nucleus while TK10 does not affect
Antigen Presentation Keeps Trending in Immunotherapy Resistance.
Kalbasi, Anusha; Ribas, Antoni
2018-04-19
Through a gain-of-function kinome screen, MEX3B was identified as a mediator of resistance to T-cell immunotherapy not previously identified using CRISPR-based screens. MEX3B is a posttranscriptional regulator of HLA-A, validating the critical role of tumor-intrinsic antigen presentation in T-cell immunotherapy and indicating a new putative molecular target. Clin Cancer Res; 24(14); 1-3. ©2018 AACR. See related article by Huang et al., p. xxxx . ©2018 American Association for Cancer Research.
Jahans-Price, Thomas; Greenwood, Michael P.; Greenwood, Mingkwan; Hoe, See-Ziau; Konopacka, Agnieszka
2017-01-01
Abstract The supraoptic nucleus (SON) is a group of neurons in the hypothalamus responsible for the synthesis and secretion of the peptide hormones vasopressin and oxytocin. Following physiological cues, such as dehydration, salt-loading and lactation, the SON undergoes a function related plasticity that we have previously described in the rat at the transcriptome level. Using the unsupervised graphical lasso (Glasso) algorithm, we reconstructed a putative network from 500 plastic SON genes in which genes are the nodes and the edges are the inferred interactions. The most active nodal gene identified within the network was Caprin2. Caprin2 encodes an RNA-binding protein that we have previously shown to be vital for the functioning of osmoregulatory neuroendocrine neurons in the SON of the rat hypothalamus. To test the validity of the Glasso network, we either overexpressed or knocked down Caprin2 transcripts in differentiated rat pheochromocytoma PC12 cells and showed that these manipulations had significant opposite effects on the levels of putative target mRNAs. These studies suggest that the predicative power of the Glasso algorithm within an in vivo system is accurate, and identifies biological targets that may be important to the functional plasticity of the SON. PMID:29279858
Shafi, Mouhsin M.; Whitfield-Gabrieli, Susan; Chu, Catherine J.; Pascual-Leone, Alvaro; Chang, Bernard S.
2017-01-01
Resting-state functional connectivity MRI (rs-fcMRI) is a technique that identifies connectivity between different brain regions based on correlations over time in the blood-oxygenation level dependent signal. rs-fcMRI has been applied extensively to identify abnormalities in brain connectivity in different neurologic and psychiatric diseases. However, the relationship among rs-fcMRI connectivity abnormalities, brain electrophysiology and disease state is unknown, in part because the causal significance of alterations in functional connectivity in disease pathophysiology has not been established. Transcranial Magnetic Stimulation (TMS) is a technique that uses electromagnetic induction to noninvasively produce focal changes in cortical activity. When combined with electroencephalography (EEG), TMS can be used to assess the brain's response to external perturbations. Here we provide a protocol for combining rs-fcMRI, TMS and EEG to assess the physiologic significance of alterations in functional connectivity in patients with neuropsychiatric disease. We provide representative results from a previously published study in which rs-fcMRI was used to identify regions with abnormal connectivity in patients with epilepsy due to a malformation of cortical development, periventricular nodular heterotopia (PNH). Stimulation in patients with epilepsy resulted in abnormal TMS-evoked EEG activity relative to stimulation of the same sites in matched healthy control patients, with an abnormal increase in the late component of the TMS-evoked potential, consistent with cortical hyperexcitability. This abnormality was specific to regions with abnormal resting-state functional connectivity. Electrical source analysis in a subject with previously recorded seizures demonstrated that the origin of the abnormal TMS-evoked activity co-localized with the seizure-onset zone, suggesting the presence of an epileptogenic circuit. These results demonstrate how rs-fcMRI, TMS and EEG can be utilized together to identify and understand the physiological significance of abnormal brain connectivity in human diseases. PMID:27911366
Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study.
Wang, Kun; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Jiang, Tianzi
2007-10-01
Previous studies have led to the proposal that patients with Alzheimer's disease (AD) may have disturbed functional connectivity between different brain regions. Furthermore, recent resting-state functional magnetic resonance imaging (fMRI) studies have also shown that low-frequency (<0.08 Hz) fluctuations (LFF) of the blood oxygenation level-dependent signals were abnormal in several brain areas of AD patients. However, few studies have investigated disturbed LFF connectivity in AD patients. By using resting-state fMRI, this study sought to investigate the abnormal functional connectivities throughout the entire brain of early AD patients, and analyze the global distribution of these abnormalities. For this purpose, the authors divided the whole brain into 116 regions and identified abnormal connectivities by comparing the correlation coefficients of each pair. Compared with healthy controls, AD patients had decreased positive correlations between the prefrontal and parietal lobes, but increased positive correlations within the prefrontal lobe, parietal lobe, and occipital lobe. The AD patients also had decreased negative correlations (closer to zero) between two intrinsically anti-correlated networks that had previously been found in the resting brain. By using resting-state fMRI, our results supported previous studies that have reported an anterior-posterior disconnection phenomenon and increased within-lobe functional connectivity in AD patients. In addition, the results also suggest that AD may disturb the correlation/anti-correlation effect in the two intrinsically anti-correlated networks. Wiley-Liss, Inc.
Sehgal, Vasudha; Seviour, Elena G; Moss, Tyler J; Mills, Gordon B; Azencott, Robert; Ram, Prahlad T
2015-01-01
MicroRNAs (miRNAs) play a crucial role in the maintenance of cellular homeostasis by regulating the expression of their target genes. As such, the dysregulation of miRNA expression has been frequently linked to cancer. With rapidly accumulating molecular data linked to patient outcome, the need for identification of robust multi-omic molecular markers is critical in order to provide clinical impact. While previous bioinformatic tools have been developed to identify potential biomarkers in cancer, these methods do not allow for rapid classification of oncogenes versus tumor suppressors taking into account robust differential expression, cutoffs, p-values and non-normality of the data. Here, we propose a methodology, Robust Selection Algorithm (RSA) that addresses these important problems in big data omics analysis. The robustness of the survival analysis is ensured by identification of optimal cutoff values of omics expression, strengthened by p-value computed through intensive random resampling taking into account any non-normality in the data and integration into multi-omic functional networks. Here we have analyzed pan-cancer miRNA patient data to identify functional pathways involved in cancer progression that are associated with selected miRNA identified by RSA. Our approach demonstrates the way in which existing survival analysis techniques can be integrated with a functional network analysis framework to efficiently identify promising biomarkers and novel therapeutic candidates across diseases.
Identifying functional thermodynamics in autonomous Maxwellian ratchets
NASA Astrophysics Data System (ADS)
Boyd, Alexander B.; Mandal, Dibyendu; Crutchfield, James P.
2016-02-01
We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are more functional than previous candidates. They too behave either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external work to remove information from a sequence of binary symbols by decreasing their individual uncertainty. Going beyond these, our Demon exhibits a new functionality that erases bits not by simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by adding temporal order) while increasing single-symbol uncertainty. In all cases, but especially in the new erasure regime, exactly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of thermodynamics that relies on the Kolmogorov-Sinai entropy for dynamical processes and not on changes purely in system configurational entropy, as previously employed. We rigorously derive the refined Second Law under minimal assumptions and so it applies quite broadly—for Demons with and without memory and input sequences that are correlated or not. We note that general Maxwellian Demons readily violate previously proposed, alternative such bounds, while the current bound still holds. As such, it broadly describes the minimal energetic cost of any computation by a thermodynamic system.
Investigation deuteron-induced reactions on cobalt
NASA Astrophysics Data System (ADS)
Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Baba, M.; Ignatyuk, A. V.
2010-09-01
The excitation functions of deuteron-induced reactions were measured on metallic cobalt. Beyond the 56,57,58,60Co cobalt isotopes, we also identified 57Ni, 54Mn, 56Mn and 59Fe in the deuteron experiments. For the above radionuclides, the excitation functions in the measured energy range were determined and compared with the data found in the literature and with the results of model calculations (ALICE-IPPE, EMPIRE-D, EAF, and TALYS (TENDL)). The excitation functions agree with previous measurements; furthermore, we calculated the yield and thin layer activation (TLA) curves that are necessary for practical and industrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougherty, Gerard W.; Section on Structural Cell Biology, National Institute on Deafness and Communication Disorders; Chopp, Treasa
2005-05-15
Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5more » domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.« less
A Screening of UNF Targets Identifies Rnb, a Novel Regulator of Drosophila Circadian Rhythms.
Kozlov, Anatoly; Jaumouillé, Edouard; Machado Almeida, Pedro; Koch, Rafael; Rodriguez, Joseph; Abruzzi, Katharine C; Nagoshi, Emi
2017-07-12
Behavioral circadian rhythms are controlled by multioscillator networks comprising functionally different subgroups of clock neurons. Studies have demonstrated that molecular clocks in the fruit fly Drosophila melanogaster are regulated differently in clock neuron subclasses to support their specific functions (Lee et al., 2016; Top et al., 2016). The nuclear receptor unfulfilled ( unf ) represents a regulatory node that provides the small ventral lateral neurons (s-LNvs) unique characteristics as the master pacemaker (Beuchle et al., 2012). We previously showed that UNF interacts with the s-LNv molecular clocks by regulating transcription of the core clock gene period ( per ) (Jaumouillé et al., 2015). To gain more insight into the mechanisms by which UNF contributes to the functioning of the circadian master pacemaker, we identified UNF target genes using chromatin immunoprecipitation. Our data demonstrate that a previously uncharacterized gene CG7837 , which we termed R and B ( Rnb ), acts downstream of UNF to regulate the function of the s-LNvs as the master circadian pacemaker. Mutations and LNv-targeted adult-restricted knockdown of Rnb impair locomotor rhythms. RNB localizes to the nucleus, and its loss-of-function blunts the molecular rhythms and output rhythms of the s-LNvs, particularly the circadian rhythms in PDF accumulation and axonal arbor remodeling. These results establish a second pathway by which UNF interacts with the molecular clocks in the s-LNvs and highlight the mechanistic differences in the molecular clockwork within the pacemaker circuit. SIGNIFICANCE STATEMENT Circadian behavior is generated by a pacemaker circuit comprising diverse classes of pacemaker neurons, each of which contains a molecular clock. In addition to the anatomical and functional diversity, recent studies have shown the mechanistic differences in the molecular clockwork among the pacemaker neurons in Drosophila Here, we identified the molecular characteristics distinguishing the s-LNvs, the master pacemaker of the locomotor rhythms, from other clock neuron subtypes. We demonstrated that a newly identified gene Rnb is an s-LNv-specific regulator of the molecular clock and essential for the generation of circadian locomotor behavior. Our results provide additional evidence to the emerging view that the differential regulation of the molecular clocks underlies the functional differences among the pacemaker neuron subgroups. Copyright © 2017 the authors 0270-6474/17/376673-13$15.00/0.
Risk Factors for Developing Scoliosis in Cerebral Palsy: A Cross-Sectional Descriptive Study.
Bertoncelli, Carlo M; Solla, Federico; Loughenbury, Peter R; Tsirikos, Athanasios I; Bertoncelli, Domenico; Rampal, Virginie
2017-06-01
This study aims to identify the risk factors leading to the development of severe scoliosis among children with cerebral palsy. A cross-sectional descriptive study of 70 children (aged 12-18 years) with severe spastic and/or dystonic cerebral palsy treated in a single specialist unit is described. Statistical analysis included Fisher exact test and logistic regression analysis to identify risk factors. Severe scoliosis is more likely to occur in patients with intractable epilepsy ( P = .008), poor gross motor functional assessment scores ( P = .018), limb spasticity ( P = .045), a history of previous hip surgery ( P = .048), and nonambulatory patients ( P = .013). Logistic regression model confirms the major risk factors are previous hip surgery ( P = .001), moderate to severe epilepsy ( P = .007), and female gender ( P = .03). History of previous hip surgery, intractable epilepsy, and female gender are predictors of developing severe scoliosis in children with cerebral palsy. This knowledge should aid in the early diagnosis of scoliosis and timely referral to specialist services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, A.P.; Ferro-Novick, S.
We have adapted a (/sup 3/H)mannose suicide selection to identify mutations in additional genes which function in the early part of the yeast secretory pathway. Thus far this protocol has led to the identification of two new genes which are implicated in this process, as well as additional alleles of previously identified genes. The new mutants, bet1 and bet2, are temperature sensitive for growth and protein transport. Thin section analysis has revealed the accumulation of a network of endoplasmic reticulum (ER) at the restrictive temperature (37/sup 0/C). Precursors of exported proteins that accumulate in the cell at 37/sup 0/C aremore » terminally core glycosylated. These observations suggest that the transport of precursors is blocked subsequent to translocation into the ER but before entry into the Golgi apparatus. The bet1 and bet2 mutants define two new complementation groups which have the same properties as previously identified ER-accumulating mutants. This and previous findings suggest that protein exit from the ER and entry into the Golgi apparatus is a complex process requiring at least 11 genes.« less
Kirby, Jessica L; Houston, Megan N; Gabriner, Michael L; Hoch, Matthew C
2016-08-01
Individuals with chronic ankle instability (CAI) have demonstrated alterations in ankle mechanics and deficits in sensory function. However, relationships between mechanical stability and somatosensory function have not been examined, nor have those between somatosensory function and injury history characteristics. Therefore, the objective of this study was to examine relationships between (1) somatosensory function and mechanical stability and (2) somatosensory function and injury history characteristics. Forty adults with CAI volunteered to participate. In a single testing session, participants completed mechanical and sensory assessments in a counterbalanced order. Dependent variables included anterior/posterior displacement (mm), inversion/eversion rotation (°), SWM index values, JPS absolute error (°), number of previous ankle sprains, and number of "giving way" episodes in the previous 3 months. Spearman's Rho correlations examined the relationships between somatosensory function and (1) mechanical stability and (2) injury history characteristics (p<0.05). No significant correlations were identified between any variables (p>0.11), and all r-values were considered weak. These results revealed somatosensory function was not significantly correlated to mechanical stability or injury history characteristics. This indicates peripheral sensory impairments associated with CAI are likely caused by factors other than mechanical stability and injury history characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves
2017-01-01
Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene (MMP20) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI. PMID:28659819
Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves
2017-01-01
Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene ( MMP20 ) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.
O'Driscoll, Jonathan; Glynn, Frances; Fitzgerald, Gerald F; van Sinderen, Douwe
2006-09-01
The conjugative lactococcal plasmid pNP40, identified in Lactococcus lactis subsp. diacetylactis DRC3, possesses a potent complement of bacteriophage resistance systems, which has stimulated its application as a fitness-improving, food-grade genetic element for industrial starter cultures. The complete sequence of this plasmid allowed the mapping of previously known functions including replication, conjugation, bacteriocin resistance, heavy metal tolerance, and bacteriophage resistance. In addition, functions for cold shock adaptation and DNA damage repair were identified, further confirming pNP40's contribution to environmental stress protection. A plasmid cointegration event appears to have been part of the evolution of pNP40, resulting in a "stockpiling" of bacteriophage resistance systems.
Analysis of URI nuclear interaction with RPB5 and components of the R2TP/prefoldin-like complex.
Mita, Paolo; Savas, Jeffrey N; Ha, Susan; Djouder, Nabil; Yates, John R; Logan, Susan K
2013-01-01
Unconventional prefoldin RPB5 Interactor (URI) was identified as a transcriptional repressor that binds RNA polymerase II (pol II) through interaction with the RPB5/POLR2E subunit. Despite the fact that many other proteins involved in transcription regulation have been shown to interact with URI, its nuclear function still remains elusive. Previous mass spectrometry analyses reported that URI is part of a novel protein complex called R2TP/prefoldin-like complex responsible for the cytoplasmic assembly of RNA polymerase II. We performed a mass spectrometry (MS)-based proteomic analysis to identify nuclear proteins interacting with URI in prostate cells. We identified all the components of the R2TP/prefoldin-like complex as nuclear URI interactors and we showed that URI binds and regulates RPB5 protein stability and transcription. Moreover, we validated the interaction of URI to the P53 and DNA damage-Regulated Gene 1 (PDRG1) and show that PDRG1 protein is also stabilized by URI binding. We present data demonstrating that URI nuclear/cytoplasmic shuttling is affected by compounds that stall pol II on the DNA (α-amanitin and actinomycin-D) and by leptomycin B, an inhibitor of the CRM1 exportin that mediates the nuclear export of pol II subunits. These data suggest that URI, and probably the entire R2TP/prefoldin-like complex is exported from the nucleus through CRM1. Finally we identified putative URI sites of phosphorylation and acetylation and confirmed URI sites of post-transcriptional modification identified in previous large-scale analyses the importance of which is largely unknown. However URI post-transcriptional modification was shown to be essential for URI function and therefore characterization of novel sites of URI modification will be important to the understanding of URI function.
Analysis of URI Nuclear Interaction with RPB5 and Components of the R2TP/Prefoldin-Like Complex
Mita, Paolo; Savas, Jeffrey N.; Ha, Susan; Djouder, Nabil; Yates, John R.; Logan, Susan K.
2013-01-01
Unconventional prefoldin RPB5 Interactor (URI) was identified as a transcriptional repressor that binds RNA polymerase II (pol II) through interaction with the RPB5/POLR2E subunit. Despite the fact that many other proteins involved in transcription regulation have been shown to interact with URI, its nuclear function still remains elusive. Previous mass spectrometry analyses reported that URI is part of a novel protein complex called R2TP/prefoldin-like complex responsible for the cytoplasmic assembly of RNA polymerase II. We performed a mass spectrometry (MS)-based proteomic analysis to identify nuclear proteins interacting with URI in prostate cells. We identified all the components of the R2TP/prefoldin-like complex as nuclear URI interactors and we showed that URI binds and regulates RPB5 protein stability and transcription. Moreover, we validated the interaction of URI to the P53 and DNA damage-Regulated Gene 1 (PDRG1) and show that PDRG1 protein is also stabilized by URI binding. We present data demonstrating that URI nuclear/cytoplasmic shuttling is affected by compounds that stall pol II on the DNA (α-amanitin and actinomycin-D) and by leptomycin B, an inhibitor of the CRM1 exportin that mediates the nuclear export of pol II subunits. These data suggest that URI, and probably the entire R2TP/prefoldin-like complex is exported from the nucleus through CRM1. Finally we identified putative URI sites of phosphorylation and acetylation and confirmed URI sites of post-transcriptional modification identified in previous large-scale analyses the importance of which is largely unknown. However URI post-transcriptional modification was shown to be essential for URI function and therefore characterization of novel sites of URI modification will be important to the understanding of URI function. PMID:23667685
Santiago, Ednalise; Akamine, Pearl; Snider, Jamie; Wong, Victoria; Jessulat, Matthew; Deineko, Viktor; Gagarinova, Alla; Aoki, Hiroyuki; Minic, Zoran; Phanse, Sadhna; San Antonio, Andrea; Cubano, Luis A; Rymond, Brian C; Babu, Mohan; Stagljar, Igor; Rodriguez-Medina, Jose R
2016-05-03
Nonmuscle myosin type II (Myo1p) is required for cytokinesis in the budding yeast Saccharomyces cerevisiae Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization. The identification of new Myo1p-interacting proteins may shed light on the other functions of the Myo1p tail domain. To identify novel Myo1p-interacting proteins, and determine if Myo1p can serve as a scaffold to recruit proteins to the bud neck during cytokinesis, we used the integrated split-ubiquitin membrane yeast two-hybrid (iMYTH) system. Myo1p was iMYTH-tagged at its C-terminus, and screened against both cDNA and genomic prey libraries to identify interacting proteins. Control experiments showed that the Myo1p-bait construct was appropriately expressed, and that the protein colocalized to the yeast bud neck. Thirty novel Myo1p-interacting proteins were identified by iMYTH. Eight proteins were confirmed by coprecipitation (Ape2, Bzz1, Fba1, Pdi1, Rpl5, Tah11, and Trx2) or mass spectrometry (AP-MS) (Abp1). The novel Myo1p-interacting proteins identified come from a range of different processes, including cellular organization and protein synthesis. Actin assembly/disassembly factors such as the SH3 domain protein Bzz1 and the actin-binding protein Abp1 represent likely Myo1p interactions during cytokinesis. Copyright © 2016 Santiago et al.
Slodownik, Robert; Ogonowska-Slodownik, Anna; Morgulec-Adamowicz, Natalia
2017-09-29
Handball is known to be one of the team sports representing the highest risk of injury. Several investigators have tried to identify injury risk factors in team sports including handball and suggested the need to develop an optimal tool to capture and quantify the potential risk of injury. The aim of the study was to evaluate potential risk of injury among handball players. It was a mixed design study. Handball players from 1st and 2nd division were evaluated (n = 30) using the Functional Movement ScreenTM (FMSTM). Additionally, self-reported history of injury was collected during FMSTM evaluation and after 6 months. Competitive level, training experience, playing position, anthropometric features, symmetry of movement patterns and history of previous injury were analysed while assessing the potential risk of injury. Significant difference between the right and left side (upper limb) was revealed for Shoulder Mobility Test (U = 308.5, p = 0.014). Odds Ratio analysis revealed that having previous injury in the last 12 months is the only statistically significant injury risk factor (OR = 13.71, p = 0.02). Based on this study we can assume that previous injury history reports are crucial in predicting injuries. FMSTM can help in identifying a typical adaptation in throwing shoulder among handball players, but should not be used alone to assess injury risk.
Heterologous pathway assembly reveals molecular steps of fungal terreic acid biosynthesis.
Kong, Chuixing; Huang, Hezhou; Xue, Ying; Liu, Yiqi; Peng, Qiangqiang; Liu, Qi; Xu, Qin; Zhu, Qiaoyun; Yin, Ying; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao
2018-02-01
Terreic acid is a potential anticancer drug as it inhibits Bruton's tyrosine kinase; however, its biosynthetic molecular steps remain unclear. In this work, the individual reactions of terreic acid biosynthesis were determined by stepwise pathway assembly in a heterologous host, Pichia pastoris, on the basis of previous knockout studies in a native host, Aspergillus terreus. Polyketide synthase AtX was found to catalyze the formation of partially reduced polyketide 6-methylsalicylic acid, followed by 3-methylcatechol synthesis by salicylate 1-monooxygenase AtA-mediated decarboxylative hydroxylation of 6-methylsalicylic acid. Our results show that cytochrome P450 monooxygenase AtE hydroxylates 3-methylcatechol, thus producing the next product, 3-methyl-1,2,4-benzenetriol. A smaller putative cytochrome P450 monooxygenase, AtG, assists with this step. Then, AtD causes epoxidation and hydroxyl oxidation of 3-methyl-1,2,4-benzenetriol and produces a compound terremutin, via which the previously unknown function of AtD was identified as cyclooxygenation. The final step involves an oxidation reaction of a hydroxyl group by a glucose-methanol-choline oxidoreductase, AtC, which leads to the final product: terreic acid. Functions of AtD and AtG were determined for the first time. All the genes were reanalyzed and all intermediates and final products were isolated and identified. Our model fully defines the molecular steps and corrects previous results from the literature.
Florio, Walter; Batoni, Giovanna; Esin, Semih; Bottai, Daria; Maisetta, Giuseppantonio; Pardini, Manuela; Campa, Mario
2003-05-01
Two-dimensional gel electrophoresis and mass spectrometry were used to identify proteins in the isoelectric point range 6-11 in culture filtrates of Mycobacterium bovis bacillus Calmette-Guérin (BCG). Twelve proteins were identified, three of which had not been described previously. The expression of the identified proteins was comparatively analyzed in culture filtrates of BCG in different growth phases and culture conditions. For some of these proteins, the relative protein abundance in the different culture filtrate preparations was significantly different. The differential expression of the identified proteins is discussed in relation to their putative localization and/or biological function.
Proteomic analysis of bovine nucleolus.
Patel, Amrutlal K; Olson, Doug; Tikoo, Suresh K
2010-09-01
Nucleolus is the most prominent subnuclear structure, which performs a wide variety of functions in the eukaryotic cellular processes. In order to understand the structural and functional role of the nucleoli in bovine cells, we analyzed the proteomic composition of the bovine nucleoli. The nucleoli were isolated from Madin Darby bovine kidney cells and subjected to proteomic analysis by LC-MS/MS after fractionation by SDS-PAGE and strong cation exchange chromatography. Analysis of the data using the Mascot database search and the GPM database search identified 311 proteins in the bovine nucleoli, which contained 22 proteins previously not identified in the proteomic analysis of human nucleoli. Analysis of the identified proteins using the GoMiner software suggested that the bovine nucleoli contained proteins involved in ribosomal biogenesis, cell cycle control, transcriptional, translational and post-translational regulation, transport, and structural organization. Copyright © 2010 Beijing Genomics Institute. Published by Elsevier Ltd. All rights reserved.
How does tissue preparation affect skeletal muscle transverse isotropy?
Wheatley, Benjamin B.; Odegard, Gregory M.; Kaufman, Kenton R.; Haut Donahue, Tammy L.
2016-01-01
The passive tensile properties of skeletal muscle play a key role in its physiological function. Previous research has identified conflicting reports of muscle transverse isotropy, with some data suggesting the longitudinal direction is stiffest, while others show the transverse direction is stiffest. Accurate constitutive models of skeletal muscle must be employed to provide correct recommendations for and observations of clinical methods. The goal of this work was to identify transversely isotropic tensile muscle properties as a function of post mortem handling. Six pairs of tibialis anterior muscles were harvested from Giant Flemish rabbits and split into two groups: fresh testing (within four hours post mortem), and non-fresh testing (subject to delayed testing and a freeze/thaw cycle). Longitudinal and transverse samples were removed from each muscle and tested to identify tensile modulus and relaxation behavior. Longitudinal non-fresh samples exhibited a higher initial modulus value and faster relaxation than longitudinal fresh, transverse fresh, and transverse rigor samples (p<0.05), while longitudinal fresh samples were less stiff at lower strain levels than longitudinal non-fresh, transverse fresh, and transverse non-fresh samples (p<0.05), but exhibited more nonlinear behavior. While fresh skeletal muscle exhibits a higher transverse modulus than longitudinal modulus, discrepancies in previously published data may be the result of a number of differences in experimental protocol. Constitutive modeling of fresh muscle should reflect these data by identifying the material as truly transversely isotropic and not as an isotropic matrix reinforced with fibers. PMID:27425557
Hubert, Amy; Henderson, Jordana M; Cowles, Martis W; Ross, Kelly G; Hagen, Matthew; Anderson, Christa; Szeterlak, Claudia J; Zayas, Ricardo M
2015-10-12
Planarians are renowned for their regenerative capacity and are an attractive model for the study of adult stem cells and tissue regeneration. In an effort to better understand the molecular mechanisms underlying planarian regeneration, we performed a functional genomics screen aimed at identifying genes involved in this process in Schmidtea mediterranea. We used microarrays to detect changes in gene expression in regenerating and non-regenerating tissues in planarians regenerating one side of the head and followed this with high-throughput screening by in situ hybridization and RNAi to characterize the expression patterns and function of the differentially expressed genes. Along with five previously characterized genes (Smed-cycD, Smed-morf41/mrg-1, Smed-pdss2/dlp1, Smed-slbp, and Smed-tph), we identified 20 additional genes necessary for stem cell maintenance (Smed-sart3, Smed-smarcc-1, Smed-espl1, Smed-rrm2b-1, Smed-rrm2b-2, Smed-dkc1, Smed-emg1, Smed-lig1, Smed-prim2, Smed-mcm7, and a novel sequence) or general regenerative capability (Smed-rbap46/48-2, Smed-mcm2, Smed-ptbp1, and Smed-fen-1) or that caused tissue-specific defects upon knockdown (Smed-ddc, Smed-gas8, Smed-pgbd4, and Smed-b9d2). We also found that a homolog of the nuclear transport factor Importin-α plays a role in stem cell function and tissue patterning, suggesting that controlled nuclear import of proteins is important for regeneration. Through this work, we described the roles of several previously uncharacterized genes in planarian regeneration and implicated nuclear import in this process. We have additionally created an online database to house our in situ and RNAi data to make it accessible to the planarian research community.
Schachtschneider, Kyle M; Liu, Yingkai; Rund, Laurie A; Madsen, Ole; Johnson, Rodney W; Groenen, Martien A M; Schook, Lawrence B
2016-11-03
Iron deficiency is a common childhood micronutrient deficiency that results in altered hippocampal function and cognitive disorders. However, little is known about the mechanisms through which neonatal iron deficiency results in long lasting alterations in hippocampal gene expression and function. DNA methylation is an epigenetic mark involved in gene regulation and altered by environmental factors. In this study, hippocampal DNA methylation and gene expression were assessed via reduced representation bisulfite sequencing and RNA-seq on samples from a previous study reporting reduced hippocampal-based learning and memory in a porcine biomedical model of neonatal iron deficiency. In total 192 differentially expressed genes (DEGs) were identified between the iron deficient and control groups. GO term and pathway enrichment analysis identified DEGs associated with hypoxia, angiogenesis, increased blood brain barrier (BBB) permeability, and altered neurodevelopment and function. Of particular interest are genes previously implicated in cognitive deficits and behavioral disorders in humans and mice, including HTR2A, HTR2C, PAK3, PRSS12, and NETO1. Altered genome-wide DNA methylation was observed across 0.5 million CpG and 2.4 million non-CpG sites. In total 853 differentially methylated (DM) CpG and 99 DM non-CpG sites were identified between groups. Samples clustered by group when comparing DM non-CpG sites, suggesting high conservation of non-CpG methylation in response to neonatal environment. In total 12 DM sites were associated with 9 DEGs, including genes involved in angiogenesis, neurodevelopment, and neuronal function. Neonatal iron deficiency leads to altered hippocampal DNA methylation and gene regulation involved in hypoxia, angiogenesis, increased BBB permeability, and altered neurodevelopment and function. Together, these results provide new insights into the mechanisms through which neonatal iron deficiency results in long lasting reductions in cognitive development in humans.
Zhang, Qingbin; Chen, Li; Cui, Shiman; Li, Yan; Zhao, Qi; Cao, Wei; Lai, Shixiang; Yin, Sanjun; Zuo, Zhixiang; Ren, Jian
2017-10-25
Although long noncoding RNAs (lncRNAs) have been emerging as critical regulators in various tissues and biological processes, little is known about their expression and regulation during the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in inflammatory microenvironment. In this study, we have identified 63 lncRNAs that are not annotated in previous database. These novel lncRNAs were not randomly located in the genome but preferentially located near protein-coding genes related to particular functions and diseases, such as stem cell maintenance and differentiation, development disorders and inflammatory diseases. Moreover, we have identified 650 differentially expressed lncRNAs among different subsets of PDLSCs. Pathway enrichment analysis for neighboring protein-coding genes of these differentially expressed lncRNAs revealed stem cell differentiation related functions. Many of these differentially expressed lncRNAs function as competing endogenous RNAs that regulate protein-coding transcripts through competing shared miRNAs.
Tissue-Specific Enrichment of Lymphoma Risk Loci in Regulatory Elements
Hayes, James E.; Trynka, Gosia; Vijai, Joseph; Offit, Kenneth; Raychaudhuri, Soumya; Klein, Robert J.
2015-01-01
Though numerous polymorphisms have been associated with risk of developing lymphoma, how these variants function to promote tumorigenesis is poorly understood. Here, we report that lymphoma risk SNPs, especially in the non-Hodgkin’s lymphoma subtype chronic lymphocytic leukemia, are significantly enriched for co-localization with epigenetic marks of active gene regulation. These enrichments were seen in a lymphoid-specific manner for numerous ENCODE datasets, including DNase-hypersensitivity as well as multiple segmentation-defined enhancer regions. Furthermore, we identify putatively functional SNPs that are both in regulatory elements in lymphocytes and are associated with gene expression changes in blood. We developed an algorithm, UES, that uses a Monte Carlo simulation approach to calculate the enrichment of previously identified risk SNPs in various functional elements. This multiscale approach integrating multiple datasets helps disentangle the underlying biology of lymphoma, and more broadly, is generally applicable to GWAS results from other diseases as well. PMID:26422229
Large-scale Phenotyping of Noise-Induced Hearing Loss in 100 Strains of Mice
Myint, Anthony; White, Cory H.; Ohmen, Jeffrey D.; Li, Xin; Wang, Juemei; Lavinsky, Joel; Salehi, Pezhman; Crow, Amanda L.; Ohyama, Takahiro; Friedman, Rick A.
2015-01-01
A cornerstone technique in the study of hearing is the Auditory Brainstem Response (ABR), an electrophysiologic technique that can be used as a quantitative measure of hearing function. Previous studies have published databases of baseline ABR thresholds for mouse strains, providing a valuable resource for the study of baseline hearing function and genetic mapping of hearing traits in mice. In this study, we further expand upon the existing literature by characterizing the baseline ABR characteristics of 100 inbred mouse strains, 47 of which are newly characterized for hearing function. We identify several distinct patterns of baseline hearing deficits and provide potential avenues for further investigation. Additionally, we characterize the sensitivity of the same 100 strains to noise exposure using permanent thresholds shifts, identifying several distinct patterns of noise-sensitivity. The resulting data provides a new resource for studying hearing loss and noise-sensitivity in mice. PMID:26706709
DNA-Catalyzed Amide Hydrolysis.
Zhou, Cong; Avins, Joshua L; Klauser, Paul C; Brandsen, Benjamin M; Lee, Yujeong; Silverman, Scott K
2016-02-24
DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases.
Hatzold, Julia; Beleggia, Filippo; Herzig, Hannah; Altmüller, Janine; Nürnberg, Peter; Bloch, Wilhelm; Wollnik, Bernd; Hammerschmidt, Matthias
2016-01-01
The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression. DOI: http://dx.doi.org/10.7554/eLife.14277.001 PMID:27240166
ERIC Educational Resources Information Center
Cuesta-Vargas, Antonio Ignacio; Paz-Lourido, Berta; Rodriguez, Alejandro
2011-01-01
Neuromuscular and aerobic capacity can be reduced in people with intellectual disabilities (ID). Previous studies suggest these individuals might be particularly susceptible to losing basic functions because of poor physical fitness. The aim of this study is to describe the physical fitness profile of adult athletes with ID and identify whether…
USDA-ARS?s Scientific Manuscript database
The retina is an extension of the nervous system and is accessible for in vivo assessments. We have previously demonstrated changes in retinal function and pathology associated with scrapie, TME and BSE. The purpose of this work was to determine the utility of the retina to identify early CNS change...
ERIC Educational Resources Information Center
Liang, Chun-Yu; Xu, Zhi-Yuan; Mei, Wei; Wang, Li-Li; Xue, Li; Lu, De Jian; Zhao, Hu
2012-01-01
Previous functional magnetic resonance imaging (fMRI) studies have identified activation in the prefrontal-parietal-sub-cortical circuit during feigned memory impairment when comparing with truthful telling. Here, we used fMRI to determine whether neural activity can differentiate between answering correctly, answering randomly, answering…
Functional Connectivity between Brain Regions Involved in Learning Words of a New Language
ERIC Educational Resources Information Center
Veroude, Kim; Norris, David G.; Shumskaya, Elena; Gullberg, Marianne; Indefrey, Peter
2010-01-01
Previous studies have identified several brain regions that appear to be involved in the acquisition of novel word forms. Standard word-by-word presentation is often used although exposure to a new language normally occurs in a natural, real world situation. In the current experiment we investigated naturalistic language exposure and applied a…
Utilization of a tobacco rattle virus vector to clone an Nicotiana benthamiana cDNA library for VIGS
USDA-ARS?s Scientific Manuscript database
Virus-induced gene silencing (VIGS) is an efficient and rapid method to identify plant gene functions. One of the most widely used VIGS vectors is Tobacco rattle virus (TRV) which has been used successfully for RNA interference (RNAi) in N. benthamiana and tomato. We previously modified a TRV VIGS v...
ERIC Educational Resources Information Center
Vaughn, Brian E.; Santos, António J.; Monteiro, Ligia; Shin, Nana; Daniel, João R.; Krzysik, Lisa; Pinto, Alexandra
2016-01-01
This study tested the hypothesis that social engagement (SE) with peers is a fundamental aspect of social competence during early childhood. Relations between SE and a set of previously validated social competence indicators, as well as additional variables derived from observation and sociometric interviews were assessed using both…
Human Factors of Flight-deck Automation: NASA/Industry Workshop
NASA Technical Reports Server (NTRS)
Boehm-Davis, D. A.; Curry, R. E.; Wiener, E. L.; Harrison, R. L.
1981-01-01
The scope of automation, the benefits of automation, and automation-induced problems were discussed at a workshop held to determine whether those functions previously performed manually on the flight deck of commercial aircraft should always be automated in view of various human factors. Issues which require research for resolution were identified. The research questions developed are presented.
ERIC Educational Resources Information Center
Nagle, Courtney; Moore-Russo, Deborah
2014-01-01
This article provides an initial comparison of the Principles and Standards for School Mathematics and the Common Core State Standards for Mathematics by examining the fundamental notion of slope. Each set of standards is analyzed using eleven previously identified conceptualizations of slope. Both sets of standards emphasize Functional Property,…
Code of Federal Regulations, 2012 CFR
2012-07-01
... of computer codes. The emission control diagnostic system shall record and store in computer memory..., shall be stored in computer memory to identify correctly functioning emission control systems and those... in computer memory. Should a subsequent fuel system or misfire malfunction occur, any previously...
Code of Federal Regulations, 2013 CFR
2013-07-01
... of computer codes. The emission control diagnostic system shall record and store in computer memory..., shall be stored in computer memory to identify correctly functioning emission control systems and those... in computer memory. Should a subsequent fuel system or misfire malfunction occur, any previously...
USDA-ARS?s Scientific Manuscript database
Studying the host-associated butyrate-producing bacterial community is important because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl-coA:acetate transferase (2.3.8.3) as a the main gene for butyrate production in intestinal ecosystems; h...
Integrated Formal Analysis of Timed-Triggered Ethernet
NASA Technical Reports Server (NTRS)
Dutertre, Bruno; Shankar, Nstarajan; Owre, Sam
2012-01-01
We present new results related to the verification of the Timed-Triggered Ethernet (TTE) clock synchronization protocol. This work extends previous verification of TTE based on model checking. We identify a suboptimal design choice in a compression function used in clock synchronization, and propose an improvement. We compare the original design and the improved definition using the SAL model checker.
Functional Analysis of the Aspergillus nidulans Kinome
De Souza, Colin P.; Hashmi, Shahr B.; Osmani, Aysha H.; Andrews, Peter; Ringelberg, Carol S.; Dunlap, Jay C.; Osmani, Stephen A.
2013-01-01
The filamentous fungi are an ecologically important group of organisms which also have important industrial applications but devastating effects as pathogens and agents of food spoilage. Protein kinases have been implicated in the regulation of virtually all biological processes but how they regulate filamentous fungal specific processes is not understood. The filamentous fungus Aspergillus nidulans has long been utilized as a powerful molecular genetic system and recent technical advances have made systematic approaches to study large gene sets possible. To enhance A. nidulans functional genomics we have created gene deletion constructs for 9851 genes representing 93.3% of the encoding genome. To illustrate the utility of these constructs, and advance the understanding of fungal kinases, we have systematically generated deletion strains for 128 A. nidulans kinases including expanded groups of 15 histidine kinases, 7 SRPK (serine-arginine protein kinases) kinases and an interesting group of 11 filamentous fungal specific kinases. We defined the terminal phenotype of 23 of the 25 essential kinases by heterokaryon rescue and identified phenotypes for 43 of the 103 non-essential kinases. Uncovered phenotypes ranged from almost no growth for a small number of essential kinases implicated in processes such as ribosomal biosynthesis, to conditional defects in response to cellular stresses. The data provide experimental evidence that previously uncharacterized kinases function in the septation initiation network, the cell wall integrity and the morphogenesis Orb6 kinase signaling pathways, as well as in pathways regulating vesicular trafficking, sexual development and secondary metabolism. Finally, we identify ChkC as a third effector kinase functioning in the cellular response to genotoxic stress. The identification of many previously unknown functions for kinases through the functional analysis of the A. nidulans kinome illustrates the utility of the A. nidulans gene deletion constructs. PMID:23505451
Common Anesthetic-binding Site for Inhibition of Pentameric Ligand-gated Ion Channels.
Kinde, Monica N; Bu, Weiming; Chen, Qiang; Xu, Yan; Eckenhoff, Roderic G; Tang, Pei
2016-03-01
Identifying functionally relevant anesthetic-binding sites in pentameric ligand-gated ion channels (pLGICs) is an important step toward understanding the molecular mechanisms underlying anesthetic action. The anesthetic propofol is known to inhibit cation-conducting pLGICs, including a prokaryotic pLGIC from Erwinia chrysanthemi (ELIC), but the sites responsible for functional inhibition remain undetermined. We photolabeled ELIC with a light-activated derivative of propofol (AziPm) and performed fluorine-19 nuclear magnetic resonance experiments to support propofol binding to a transmembrane domain (TMD) intrasubunit pocket. To differentiate sites responsible for propofol inhibition from those that are functionally irrelevant, we made an ELIC-γ-aminobutyric acid receptor (GABAAR) chimera that replaced the ELIC-TMD with the α1β3GABAAR-TMD and compared functional responses of ELIC-GABAAR and ELIC with propofol modulations. Photolabeling showed multiple AziPm-binding sites in the extracellular domain (ECD) but only one site in the TMD with labeled residues M265 and F308 in the resting state of ELIC. Notably, this TMD site is an intrasubunit pocket that overlaps with binding sites for anesthetics, including propofol, found previously in other pLGICs. Fluorine-19 nuclear magnetic resonance experiments supported propofol binding to this TMD intrasubunit pocket only in the absence of agonist. Functional measurements of ELIC-GABAAR showed propofol potentiation of the agonist-elicited current instead of inhibition observed on ELIC. The distinctly different responses of ELIC and ELIC-GABAAR to propofol support the functional relevance of propofol binding to the TMD. Combining the newly identified TMD intrasubunit pocket in ELIC with equivalent TMD anesthetic sites found previously in other cationic pLGICs, we propose this TMD pocket as a common site for anesthetic inhibition of pLGICs.
NASA Astrophysics Data System (ADS)
Roth, Wolff-Michael; Oliveri, Maria Elena; Dallie Sandilands, Debra; Lyons-Thomas, Juliette; Ercikan, Kadriye
2013-03-01
Even if national and international assessments are designed to be comparable, subsequent psychometric analyses often reveal differential item functioning (DIF). Central to achieving comparability is to examine the presence of DIF, and if DIF is found, to investigate its sources to ensure differentially functioning items that do not lead to bias. In this study, sources of DIF were examined using think-aloud protocols. The think-aloud protocols of expert reviewers were conducted for comparing the English and French versions of 40 items previously identified as DIF (N = 20) and non-DIF (N = 20). Three highly trained and experienced experts in verifying and accepting/rejecting multi-lingual versions of curriculum and testing materials for government purposes participated in this study. Although there is a considerable amount of agreement in the identification of differentially functioning items, experts do not consistently identify and distinguish DIF and non-DIF items. Our analyses of the think-aloud protocols identified particular linguistic, general pedagogical, content-related, and cognitive factors related to sources of DIF. Implications are provided for the process of arriving at the identification of DIF, prior to the actual administration of tests at national and international levels.
Regulation of yeast central metabolism by enzyme phosphorylation
Oliveira, Ana Paula; Ludwig, Christina; Picotti, Paola; Kogadeeva, Maria; Aebersold, Ruedi; Sauer, Uwe
2012-01-01
As a frequent post-translational modification, protein phosphorylation regulates many cellular processes. Although several hundred phosphorylation sites have been mapped to metabolic enzymes in Saccharomyces cerevisiae, functionality was demonstrated for few of them. Here, we describe a novel approach to identify in vivo functionality of enzyme phosphorylation by combining flux analysis with proteomics and phosphoproteomics. Focusing on the network of 204 enzymes that constitute the yeast central carbon and amino-acid metabolism, we combined protein and phosphoprotein levels to identify 35 enzymes that change their degree of phosphorylation during growth under five conditions. Correlations between previously determined intracellular fluxes and phosphoprotein abundances provided first functional evidence for five novel phosphoregulated enzymes in this network, adding to nine known phosphoenzymes. For the pyruvate dehydrogenase complex E1 α subunit Pda1 and the newly identified phosphoregulated glycerol-3-phosphate dehydrogenase Gpd1 and phosphofructose-1-kinase complex β subunit Pfk2, we then validated functionality of specific phosphosites through absolute peptide quantification by targeted mass spectrometry, metabolomics and physiological flux analysis in mutants with genetically removed phosphosites. These results demonstrate the role of phosphorylation in controlling the metabolic flux realised by these three enzymes. PMID:23149688
Liang, Jian; Song, Wenjun; Tromp, Gail; Kolattukudy, Pappachan E.; Fu, Mingui
2008-01-01
Previously, we have identified a novel CCCH zinc finger protein family as negative regulators of macrophage activation. To gain an overall insight into the entire CCCH zinc finger gene family and to evaluate their potential role in macrophage activation, here we performed a genome-wide survey of CCCH zinc finger genes in mouse and human. Totally 58 CCCH zinc finger genes in mouse and 55 in human were identified and most of them have not been reported previously. Phylogenetic analysis revealed that the mouse CCCH family was divided into 6 groups. Meanwhile, we employed quantitative real-time PCR to profile their tissue expression patterns in adult mice. Clustering analysis showed that most of CCCH genes were broadly expressed in all of tissues examined with various levels. Interestingly, several CCCH genes Mbnl3, Zfp36l2, Zfp36, Zc3h12a, Zc3h12d, Zc3h7a and Leng9 were enriched in macrophage-related organs such as thymus, spleen, lung, intestine and adipose. Consistently, a comprehensive assessment of changes in expression of the 58 members of the mouse CCCH family during macrophage activation also revealed that these CCCH zinc finger genes were associated with the activation of bone marrow-derived macrophages by lipopolysaccharide. Taken together, this study not only identified a functional module of CCCH zinc finger genes in the regulation of macrophage activation but also provided the framework for future studies to dissect the function of this emerging gene family. PMID:18682727
Qin, Xiaoqiong; Coku, Ardian; Inoue, Kentaro; Tian, Li
2011-10-01
Carotenoids perform many critical functions in plants, animals, and humans. It is therefore important to understand carotenoid biosynthesis and its regulation in plants. Phytoene synthase (PSY) catalyzes the first committed and rate-limiting step in carotenoid biosynthesis. While PSY is present as a single copy gene in Arabidopsis, duplicated PSY genes have been identified in many economically important monocot and dicot crops. CmPSY1 was previously identified from melon (Cucumis melo L.), but was not functionally characterized. We isolated a second PSY gene, CmPSY2, from melon in this work. CmPSY2 possesses a unique intron/exon structure that has not been observed in other plant PSYs. Both CmPSY1 and CmPSY2 are functional in vitro, but exhibit distinct expression patterns in different melon tissues and during fruit development, suggesting differential regulation of the duplicated melon PSY genes. In vitro chloroplast import assays verified the plastidic localization of CmPSY1 and CmPSY2 despite the lack of an obvious plastid target peptide in CmPSY2. Promoter motif analysis of the duplicated melon and tomato PSY genes and the Arabidopsis PSY revealed distinctive cis-regulatory structures of melon PSYs and identified gibberellin-responsive motifs in all PSYs except for SlPSY1, which has not been reported previously. Overall, these data provide new insights into the evolutionary history of plant PSY genes and the regulation of PSY expression by developmental and environmental signals that may involve different regulatory networks.
An Extended Proteome Map of the Lysosomal Membrane Reveals Novel Potential Transporters*
Chapel, Agnès; Kieffer-Jaquinod, Sylvie; Sagné, Corinne; Verdon, Quentin; Ivaldi, Corinne; Mellal, Mourad; Thirion, Jaqueline; Jadot, Michel; Bruley, Christophe; Garin, Jérôme; Gasnier, Bruno; Journet, Agnès
2013-01-01
Lysosomes are membrane-bound endocytic organelles that play a major role in degrading cell macromolecules and recycling their building blocks. A comprehensive knowledge of the lysosome function requires an extensive description of its content, an issue partially addressed by previous proteomic analyses. However, the proteins underlying many lysosomal membrane functions, including numerous membrane transporters, remain unidentified. We performed a comparative, semi-quantitative proteomic analysis of rat liver lysosome-enriched and lysosome-nonenriched membranes and used spectral counts to evaluate the relative abundance of proteins. Among a total of 2,385 identified proteins, 734 proteins were significantly enriched in the lysosomal fraction, including 207 proteins already known or predicted as endo-lysosomal and 94 proteins without any known or predicted subcellular localization. The remaining 433 proteins had been previously assigned to other subcellular compartments but may in fact reside on lysosomes either predominantly or as a secondary location. Many membrane-associated complexes implicated in diverse processes such as degradation, membrane trafficking, lysosome biogenesis, lysosome acidification, signaling, and nutrient sensing were enriched in the lysosomal fraction. They were identified to an unprecedented extent as most, if not all, of their subunits were found and retained by our screen. Numerous transporters were also identified, including 46 novel potentially lysosomal proteins. We expressed 12 candidates in HeLa cells and observed that most of them colocalized with the lysosomal marker LAMP1, thus confirming their lysosomal residency. This list of candidate lysosomal proteins substantially increases our knowledge of the lysosomal membrane and provides a basis for further characterization of lysosomal functions. PMID:23436907
Chen, Ming-Huei; Yanek, Lisa R; Backman, Joshua D; Eicher, John D; Huffman, Jennifer E; Ben-Shlomo, Yoav; Beswick, Andrew D; Yerges-Armstrong, Laura M; Shuldiner, Alan R; O'Connell, Jeffrey R; Mathias, Rasika A; Becker, Diane M; Becker, Lewis C; Lewis, Joshua P; Johnson, Andrew D; Faraday, Nauder
2017-11-29
Previous genome-wide association studies (GWAS) have identified several variants associated with platelet function phenotypes; however, the proportion of variance explained by the identified variants is mostly small. Rare coding variants, particularly those with high potential for impact on protein structure/function, may have substantial impact on phenotype but are difficult to detect by GWAS. The main purpose of this study was to identify low frequency or rare variants associated with platelet function using genotype data from the Illumina HumanExome Bead Chip. Three family-based cohorts of European ancestry, including ~4,000 total subjects, comprised the discovery cohort and two independent cohorts, one of European and one of African American ancestry, were used for replication. Optical aggregometry in platelet-rich plasma was performed in all the discovery cohorts in response to adenosine diphosphate (ADP), epinephrine, and collagen. Meta-analyses were performed using both gene-based and single nucleotide variant association methods. The gene-based meta-analysis identified a significant association (P = 7.13 × 10 -7 ) between rare genetic variants in ANKRD26 and ADP-induced platelet aggregation. One of the ANKRD26 SNVs - rs191015656, encoding a threonine to isoleucine substitution predicted to alter protein structure/function, was replicated in Europeans. Aggregation increases of ~20-50% were observed in heterozygotes in all cohorts. Novel genetic signals in ABCG1 and HCP5 were also associated with platelet aggregation to ADP in meta-analyses, although only results for HCP5 could be replicated. The SNV in HCP5 intersects epigenetic signatures in CD41+ megakaryocytes suggesting a new functional role in platelet biology for HCP5. This is the first study to use gene-based association methods from SNV array genotypes to identify rare variants related to platelet function. The molecular mechanisms and pathophysiological relevance for the identified genetic associations requires further study.
Clinical records anonymisation and text extraction (CRATE): an open-source software system.
Cardinal, Rudolf N
2017-04-26
Electronic medical records contain information of value for research, but contain identifiable and often highly sensitive confidential information. Patient-identifiable information cannot in general be shared outside clinical care teams without explicit consent, but anonymisation/de-identification allows research uses of clinical data without explicit consent. This article presents CRATE (Clinical Records Anonymisation and Text Extraction), an open-source software system with separable functions: (1) it anonymises or de-identifies arbitrary relational databases, with sensitivity and precision similar to previous comparable systems; (2) it uses public secure cryptographic methods to map patient identifiers to research identifiers (pseudonyms); (3) it connects relational databases to external tools for natural language processing; (4) it provides a web front end for research and administrative functions; and (5) it supports a specific model through which patients may consent to be contacted about research. Creation and management of a research database from sensitive clinical records with secure pseudonym generation, full-text indexing, and a consent-to-contact process is possible and practical using entirely free and open-source software.
Arendt, Cassandra S.; Ri, Keirei; Yates, Phillip A.; Ullman, Buddy
2007-01-01
We describe an efficient method for generating highly functional membrane proteins with variant amino acids at defined positions that couples a modified site-saturation strategy with functional genetic selection. We applied this method to the production of a cysteine-less variant of the Crithidia fasciculata inosine-guanosine permease CfNT2, in order to facilitate biochemical studies using thiol-specific modifying reagents. Of ten endogenous cysteine residues in CfNT2, two cannot be replaced with serine or alanine without loss of function. High-quality single- and double-mutant libraries were produced by combining a previously reported site-saturation mutagenesis scheme based on the Quikchange method with a novel gel purification step that effectively eliminated template DNA from the products. Following selection for functional complementation in S. cerevisiae cells auxotrophic for purines, several highly functional non-cysteine substitutions were efficiently identified at each desired position, allowing the construction of cysteine-less variants of CfNT2 that retained wild-type affinity for inosine. This combination of an improved site-saturation mutagenesis technique and positive genetic selection provides a simple and efficient means to identify functional and perhaps unexpected amino acid variants at a desired position. PMID:17481563
Wuchty, S; Rajagopala, S V; Blazie, S M; Parrish, J R; Khuri, S; Finley, R L; Uetz, P
2017-01-01
The functions of roughly a third of all proteins in Streptococcus pneumoniae , a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein's function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae . We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae , the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins.
Pervasive Transcription of a Herpesvirus Genome Generates Functionally Important RNAs
Canny, Susan P.; Reese, Tiffany A.; Johnson, L. Steven; Zhang, Xin; Kambal, Amal; Duan, Erning; Liu, Catherine Y.; Virgin, Herbert W.
2014-01-01
ABSTRACT Pervasive transcription is observed in a wide range of organisms, including humans, mice, and viruses, but the functional significance of the resulting transcripts remains uncertain. Current genetic approaches are often limited by their emphasis on protein-coding open reading frames (ORFs). We previously identified extensive pervasive transcription from the murine gammaherpesvirus 68 (MHV68) genome outside known ORFs and antisense to known genes (termed expressed genomic regions [EGRs]). Similar antisense transcripts have been identified in many other herpesviruses, including Kaposi’s sarcoma-associated herpesvirus and human and murine cytomegalovirus. Despite their prevalence, whether these RNAs have any functional importance in the viral life cycle is unknown, and one interpretation is that these are merely “noise” generated by functionally unimportant transcriptional events. To determine whether pervasive transcription of a herpesvirus genome generates RNA molecules that are functionally important, we used a strand-specific functional approach to target transcripts from thirteen EGRs in MHV68. We found that targeting transcripts from six EGRs reduced viral protein expression, proving that pervasive transcription can generate functionally important RNAs. We characterized transcripts emanating from EGRs 26 and 27 in detail using several methods, including RNA sequencing, and identified several novel polyadenylated transcripts that were enriched in the nuclei of infected cells. These data provide the first evidence of the functional importance of regions of pervasive transcription emanating from MHV68 EGRs. Therefore, studies utilizing mutation of a herpesvirus genome must account for possible effects on RNAs generated by pervasive transcription. PMID:24618256
Genome-wide Fitness Profiles Reveal a Requirement for Autophagy During Yeast Fermentation
Piggott, Nina; Cook, Michael A.; Tyers, Mike; Measday, Vivien
2011-01-01
The ability of cells to respond to environmental changes and adapt their metabolism enables cell survival under stressful conditions. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) is particularly well adapted to the harsh conditions of anaerobic wine fermentation. However, S. cerevisiae gene function has not been previously systematically interrogated under conditions of industrial fermentation. We performed a genome-wide study of essential and nonessential S. cerevisiae gene requirements during grape juice fermentation to identify deletion strains that are either depleted or enriched within the viable fermentative population. Genes that function in autophagy and ubiquitin-proteasome degradation are required for optimal survival during fermentation, whereas genes that function in ribosome assembly and peroxisome biogenesis impair fitness during fermentation. We also uncover fermentation phenotypes for 139 uncharacterized genes with no previously known cellular function. We demonstrate that autophagy is induced early in wine fermentation in a nitrogen-replete environment, suggesting that autophagy may be triggered by other forms of stress that arise during fermentation. These results provide insights into the complex fermentation process and suggest possible means for improvement of industrial fermentation strains. PMID:22384346
Baxter, Laura L; Hsu, Benjamin J; Umayam, Lowell; Wolfsberg, Tyra G; Larson, Denise M; Frith, Martin C; Kawai, Jun; Hayashizaki, Yoshihide; Carninci, Piero; Pavan, William J
2007-06-01
As part of the RIKEN mouse encyclopedia project, two cDNA libraries were prepared from melanocyte-derived cell lines, using techniques of full-length clone selection and subtraction/normalization to enrich for rare transcripts. End sequencing showed that these libraries display over 83% complete coding sequence at the 5' end and 96-97% complete coding sequence at the 3' end. Evaluation of the libraries, derived from B16F10Y tumor cells and melan-c cells, revealed that they contain clones for a majority of the genes previously demonstrated to function in melanocyte biology. Analysis of genomic locations for transcripts revealed that the distribution of melanocyte genes is non-random throughout the genome. Three genomic regions identified that showed significant clustering of melanocyte-expressed genes contain one or more genes previously shown to regulate melanocyte development or function. A catalog of genes expressed in these libraries is presented, providing a valuable resource of cDNA clones and sequence information that can be used for identification of new genes important for melanocyte development, function, and disease.
Uncoupling of Satellite DNA and Centromeric Function in the Genus Equus
Magnani, Elisa; Bertoni, Livia; Attolini, Carmen; Khoriauli, Lela; Raimondi, Elena; Giulotto, Elena
2010-01-01
In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs. PMID:20169180
Wild, Philipp S.; Felix, Janine F.; Schillert, Arne; Chen, Ming-Huei; Leening, Maarten J.G.; Völker, Uwe; Großmann, Vera; Brody, Jennifer A.; Irvin, Marguerite R.; Shah, Sanjiv J.; Pramana, Setia; Lieb, Wolfgang; Schmidt, Reinhold; Stanton, Alice V.; Malzahn, Dörthe; Lyytikäinen, Leo-Pekka; Tiller, Daniel; Smith, J. Gustav; Di Tullio, Marco R.; Musani, Solomon K.; Morrison, Alanna C.; Pers, Tune H.; Morley, Michael; Kleber, Marcus E.; Aragam, Jayashri; Bis, Joshua C.; Bisping, Egbert; Broeckel, Ulrich; Cheng, Susan; Deckers, Jaap W.; Del Greco M, Fabiola; Edelmann, Frank; Fornage, Myriam; Franke, Lude; Friedrich, Nele; Harris, Tamara B.; Hofer, Edith; Hofman, Albert; Huang, Jie; Hughes, Alun D.; Kähönen, Mika; investigators, KNHI; Kruppa, Jochen; Lackner, Karl J.; Lannfelt, Lars; Laskowski, Rafael; Launer, Lenore J.; Lindgren, Cecilia M.; Loley, Christina; Mayet, Jamil; Medenwald, Daniel; Morris, Andrew P.; Müller, Christian; Müller-Nurasyid, Martina; Nappo, Stefania; Nilsson, Peter M.; Nuding, Sebastian; Nutile, Teresa; Peters, Annette; Pfeufer, Arne; Pietzner, Diana; Pramstaller, Peter P.; Raitakari, Olli T.; Rice, Kenneth M.; Rotter, Jerome I.; Ruohonen, Saku T.; Sacco, Ralph L.; Samdarshi, Tandaw E.; Sharp, Andrew S.P.; Shields, Denis C.; Sorice, Rossella; Sotoodehnia, Nona; Stricker, Bruno H.; Surendran, Praveen; Töglhofer, Anna M.; Uitterlinden, André G.; Völzke, Henry; Ziegler, Andreas; Münzel, Thomas; März, Winfried; Cappola, Thomas P.; Hirschhorn, Joel N.; Mitchell, Gary F.; Smith, Nicholas L.; Fox, Ervin R.; Dueker, Nicole D.; Jaddoe, Vincent W.V.; Melander, Olle; Lehtimäki, Terho; Ciullo, Marina; Hicks, Andrew A.; Lind, Lars; Gudnason, Vilmundur; Pieske, Burkert; Barron, Anthony J.; Zweiker, Robert; Schunkert, Heribert; Ingelsson, Erik; Liu, Kiang; Arnett, Donna K.; Psaty, Bruce M.; Blankenberg, Stefan; Larson, Martin G.; Felix, Stephan B.; Franco, Oscar H.; Zeller, Tanja; Vasan, Ramachandran S.; Dörr, Marcus
2017-01-01
BACKGROUND. Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function. METHODS. A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function. RESULTS. The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue. CONCLUSION. The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies. FUNDING. For detailed information per study, see Acknowledgments. PMID:28394258
Grossi, Eugene A; Crooke, Gregory A; DiGiorgi, Paul L; Schwartz, Charles F; Jorde, Ulrich; Applebaum, Robert M; Ribakove, Greg H; Galloway, Aubrey C; Grau, Juan B; Colvin, Stephen B
2006-07-04
Mild and moderate functional ischemic mitral insufficiency present at the time of surgical revascularization present clinical uncertainty. It is unclear whether the relatively poor outcomes in this cohort are dependent on valvular function or related to left ventricular dysfunction. The purpose of this study was to examine the early and late outcomes in patients with less-than-severe functional ischemic mitral insufficiency at the time of isolated coronary artery bypass grafting (CABG). From 1996 through 2004, 2242 consecutive patients undergoing isolated CABG were identified as having none to moderate mitral regurgitation (MR) and no valve leaflet pathology. All of the patients at this single institution routinely had an intraoperative transesophageal echocardiography, prospectively quantified MR, and ejection fraction (EF). The New York State Cardiac Surgery Reporting System infrastructure was used to prospectively collect in-hospital patient variables and outcomes. Social Security Death Benefit Index was used to determine long-term survival. Odds ratio and significance (P value) are presented for each determined risk factor. There were 841 patients (37.5%) with no MR, 1137 (50.7%) with mild MR, and 264 (11.8%) with moderate MR. The patients with moderate MR were more likely to be older, female, and have more renal disease, previous MI, congestive heart failure, previous cardiac surgery, and lower EFs. Hospital mortality was independently and significantly associated with renal disease, decreasing EF, increasing age, previous cardiac operation, and cerebral vascular disease. Multivariable analysis revealed decreased survival with increasing age, previous operation, congestive heart failure, diabetes, nonelective operation, decreasing EF, and the presence of moderate MR (expbeta = 1.49; P=0.007) and mild MR (expbeta = 1.34; P=0.033). Independent of ventricular function, mild and moderate functional mitral insufficiency are associated with significantly decreased survival in patients undergoing CABG. Whether correction of moderate functional MR at the time of CABG improves outcome still needs to be determined.
Modeling the integration of bacterial rRNA fragments into the human cancer genome.
Sieber, Karsten B; Gajer, Pawel; Dunning Hotopp, Julie C
2016-03-21
Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.
Star Identification Without Attitude Knowledge: Testing with X-Ray Timing Experiment Data
NASA Technical Reports Server (NTRS)
Ketchum, Eleanor
1997-01-01
As the budget for the scientific exploration of space shrinks, the need for more autonomous spacecraft increases. For a spacecraft with a star tracker, the ability to determinate attitude from a lost in space state autonomously requires the capability to identify the stars in the field of view of the tracker. Although there have been efforts to produce autonomous star trackers which perform this function internally, many programs cannot afford these sensors. The author previously presented a method for identifying stars without a priori attitude knowledge specifically targeted for onboard computers as it minimizes the necessary computer storage. The method has previously been tested with simulated data. This paper provides results of star identification without a priori attitude knowledge using flight data from two 8 by 8 degree charge coupled device star trackers onboard the X-Ray Timing Experiment.
Glucose-6-phosphate isomerase is necessary for embryo implantation in the domestic ferret
Schulz, Laura Clamon; Bahr, Janice M.
2003-01-01
The mechanism of implantation in carnivores is poorly understood. However, a previously unidentified 60-kDa protein has been shown to be necessary for embryo implantation in ferrets. Here we identify this protein as glucose-6-phosphate isomerase (GPI). GPI is expressed by the corpus luteum on days 6–9 of pregnancy, the time at which implantation-promoting activity has been found in corpora lutea. Passive immunization against GPI reduced the number of implantation sites in pregnant ferrets in a dose-dependent manner. GPI is a multifunctional protein. Although first identified for its role in glycolysis, GPI has since been implicated in neural growth, lymphocyte maturation, and metastasis. This study demonstrates a previously uncharacterized function of this protein that may represent the natural motility-stimulating activity that has been co-opted by tumor cells. PMID:12826606
Presenilin-Based Genetic Screens in Drosophila melanogaster Identify Novel Notch Pathway Modifiers
Mahoney, Matt B.; Parks, Annette L.; Ruddy, David A.; Tiong, Stanley Y. K.; Esengil, Hanife; Phan, Alexander C.; Philandrinos, Panos; Winter, Christopher G.; Chatterjee, Runa; Huppert, Kari; Fisher, William W.; L'Archeveque, Lynn; Mapa, Felipa A.; Woo, Wendy; Ellis, Michael C.; Curtis, Daniel
2006-01-01
Presenilin is the enzymatic component of γ-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for γ-tubulin in the pathway. PMID:16415372
Presenilin-based genetic screens in Drosophila melanogaster identify novel notch pathway modifiers.
Mahoney, Matt B; Parks, Annette L; Ruddy, David A; Tiong, Stanley Y K; Esengil, Hanife; Phan, Alexander C; Philandrinos, Panos; Winter, Christopher G; Chatterjee, Runa; Huppert, Kari; Fisher, William W; L'Archeveque, Lynn; Mapa, Felipa A; Woo, Wendy; Ellis, Michael C; Curtis, Daniel
2006-04-01
Presenilin is the enzymatic component of gamma-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for gamma-tubulin in the pathway.
Repeat neurobehavioral study of borderline personality disorder.
van Reekum, R; Links, P S; Finlayson, M A; Boyle, M; Boiago, I; Ostrander, L A; Moustacalis, E
1996-01-01
Previous research has tentatively identified a large subgroup of patients with borderline personality disorder (BPD) with histories of developmental or acquired brain insults. Similarly, these studies have demonstrated a possible biological correlation between the severity of BPD and the number of previous brain insults. The possibility of frontal system cognitive dysfunction in BPD has been raised. This single-blind, case-control study of BPD showed that 13 of 24 subjects with BPD had suffered a brain insult. Correlations between neurodevelopmental/acquired brain injury score and the diagnostic interview for borderline (DIB) score (r = 0.47), and between frontal system cognitive functioning and DIB score (r = -0.37) were seen. Neurocognitive testing and comparison with a cohort of subjects with traumatic brain injury (TBI) showed a pattern of similar cognitive functioning between the 2 groups, with the only differences on individual tests being in the direction of worse functioning in the group with BPD on 2 tasks. These results support the hypotheses described above. The main limitation reflects the low numbers of subjects. PMID:8580113
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habicht, S C; Vinueza, Nelson R; Amundson, Lucas M
2011-02-01
We report here a comparison of the use of diagnostic ion–molecule reactions for the identification of oxygen-containing functional groups in Fourier-transform ion cyclotron resonance (FTICR) and linear quadrupole ion trap (LQIT) mass spectrometers. The ultimate goal of this research is to be able to identify functionalities in previously unknown analytes by using many different types of mass spectrometers. Previous work has focused on the reactions of various boron reagents with protonated oxygen-containing analytes in FTICR mass spectrometers. By using a LQIT modified to allow the introduction of neutral reagents into the helium buffer gas, this methodology has been successfully implementedmore » to this type of an ion trap instrument. The products obtained from the reactions of trimethyl borate (TMB) with various protonated analytes are compared for the two instruments. Finally, the ability to integrate these reactions into LC-MS experiments on the LQIT is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Han; Rahman, Sadia; Li, Wen
2015-03-27
A novel domain, GATE (Glycine-loop And Transducer Element), is identified in the ABC protein DrrA. This domain shows sequence and structural conservation among close homologs of DrrA as well as distantly-related ABC proteins. Among the highly conserved residues in this domain are three glycines, G215, G221 and G231, of which G215 was found to be critical for stable expression of the DrrAB complex. Other conserved residues, including E201, G221, K227 and G231, were found to be critical for the catalytic and transport functions of the DrrAB transporter. Structural analysis of both the previously published crystal structure of the DrrA homologmore » MalK and the modeled structure of DrrA showed that G215 makes close contacts with residues in and around the Walker A motif, suggesting that these interactions may be critical for maintaining the integrity of the ATP binding pocket as well as the complex. It is also shown that G215A or K227R mutation diminishes some of the atomic interactions essential for ATP catalysis and overall transport function. Therefore, based on both the biochemical and structural analyses, it is proposed that the GATE domain, located outside of the previously identified ATP binding and hydrolysis motifs, is an additional element involved in ATP catalysis. - Highlights: • A novel domain ‘GATE’ is identified in the ABC protein DrrA. • GATE shows high sequence and structural conservation among diverse ABC proteins. • GATE is located outside of the previously studied ATP binding and hydrolysis motifs. • Conserved GATE residues are critical for stability of DrrAB and for ATP catalysis.« less
Lee, Choong‐Hee; Ryu, Jungwon; Lee, Sang‐Hun; Kim, Hakjin
2016-01-01
ABSTRACT The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27009679
A computational neural approach to support the discovery of gene function and classes of cancer.
Azuaje, F
2001-03-01
Advances in molecular classification of tumours may play a central role in cancer treatment. Here, a novel approach to genome expression pattern interpretation is described and applied to the recognition of B-cell malignancies as a test set. Using cDNA microarrays data generated by a previous study, a neural network model known as simplified fuzzy ARTMAP is able to identify normal and diffuse large B-cell lymphoma (DLBCL) patients. Furthermore, it discovers the distinction between patients with molecularly distinct forms of DLBCL without previous knowledge of those subtypes.
Wichelecki, Daniel J.; Vetting, Matthew W.; Chou, Liyushang; Al-Obaidi, Nawar; Bouvier, Jason T.; Almo, Steven C.; Gerlt, John A.
2015-01-01
Innovations in the discovery of the functions of uncharacterized proteins/enzymes have become increasingly important as advances in sequencing technology flood protein databases with an exponentially growing number of open reading frames. This study documents one such innovation developed by the Enzyme Function Initiative (EFI; U54GM093342), the use of solute-binding proteins for transport systems to identify novel metabolic pathways. In a previous study, this strategy was applied to the tripartite ATP-independent periplasmic transporters. Here, we apply this strategy to the ATP-binding cassette transporters and report the discovery of novel catabolic pathways for d-altritol and galactitol in Agrobacterium tumefaciens C58. These efforts resulted in the description of three novel enzymatic reactions as follows: 1) oxidation of d-altritol to d-tagatose via a dehydrogenase in Pfam family PF00107, a previously unknown reaction; 2) phosphorylation of d-tagatose to d-tagatose 6-phosphate via a kinase in Pfam family PF00294, a previously orphan EC number; and 3) epimerization of d-tagatose 6-phosphate C-4 to d-fructose 6-phosphate via a member of Pfam family PF08013, another previously unknown reaction. The epimerization reaction catalyzed by a member of PF08013 is especially noteworthy, because the functions of members of PF08013 have been unknown. These discoveries were assisted by the following two synergistic bioinformatics web tools made available by the Enzyme Function Initiative: the EFI-Enzyme Similarity Tool and the EFI-Genome Neighborhood Tool. PMID:26472925
We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks.
Molecular mechanisms underlying osteoarthritis development: Notch and NF-κB.
Saito, Taku; Tanaka, Sakae
2017-05-15
Osteoarthritis (OA) is a multi-factorial and highly prevalent joint disorder worldwide. Since the establishment of murine surgical knee OA models in 2005, many of the key molecules and signalling pathways responsible for OA development have been identified. Here we review the roles of two multi-functional signalling pathways in OA development: Notch and nuclear factor kappa-light-chain-enhancer of activated B cells. Previous studies have identified various aspects of articular chondrocyte regulation by these pathways. However, comprehensive understanding of the molecular networks regulating articular cartilage homeostasis and OA pathogenesis is needed.
Holtom-Viesel, Anita; Allan, Steven
2014-02-01
The objectives of this review were to systematically identify and evaluate quantitative research comparing family functioning (a) in eating disorder families with control families, (b) in families with different eating disorder diagnoses (c) perceptions of different family members and (d) the relationship between family functioning and recovery. This adds to the findings of previous reviews of family functioning by including data from control families, the range of diagnoses, and focusing on recovery. Findings were considered in relation to models of family functioning. Using specific search criteria, 17 research papers were identified and evaluated. Findings indicated that eating disorder families reported worse family functioning than control families but there was little evidence for a typical pattern of family dysfunction. A consistent pattern of family dysfunction for different diagnoses was not suggested but patients consistently rated their family as more dysfunctional than one or both of their parents. With respect to outcome and recovery, those with more positive perceptions of family functioning generally had more positive outcomes, irrespective of severity of eating disorder. Conclusions were limited by inconsistent findings and methodological issues. Further research is needed into the relationship between family functioning and outcome and the assessment of family functioning beyond self-report. © 2013.
NASA Astrophysics Data System (ADS)
Xu, Long-Kun; Bi, Ting-Jun; Ming, Mei-Jun; Wang, Jing-Bo; Li, Xiang-Yuan
2017-07-01
Based on the previous work on nonequilibrium solvation model by the authors, Intermolecular charge-transfer electronic excitation of tetracyanoethylene (TCE)/tetramethylethylene (TME) π -stacked complex in dichloromethane (DCM) has been investigated. For weak interaction correction, dispersion corrected functional DFT-D3 is adopted for geometry optimization. In order to identify the excitation metric, dipole moment components of each Cartesian direction, atomic charge, charge separation and Δr index are analyzed for TCE/TME complex. Calculation shows that the calculated excitation energy is dependent on the functional choice, when conjuncted with suitable time-dependent density functional, the modified nonequilibrium expression gives satisfied results for intermolecular charge-transfer electronic excitation.
Functional ecology of an Antarctic Dry Valley
Chan, Yuki; Van Nostrand, Joy D.; Zhou, Jizhong; Pointing, Stephen B.
2013-01-01
The McMurdo Dry Valleys are the largest ice-free region in Antarctica and are critically at risk from climate change. The terrestrial landscape is dominated by oligotrophic mineral soils and extensive exposed rocky surfaces where biota are largely restricted to microbial communities, although their ability to perform the majority of geobiological processes has remained largely uncharacterized. Here, we identified functional traits that drive microbial survival and community assembly, using a metagenomic approach with GeoChip-based functional gene arrays to establish metabolic capabilities in communities inhabiting soil and rock surface niches in McKelvey Valley. Major pathways in primary metabolism were identified, indicating significant plasticity in autotrophic, heterotrophic, and diazotrophic strategies supporting microbial communities. This represents a major advance beyond biodiversity surveys in that we have now identified how putative functional ecology drives microbial community assembly. Significant differences were apparent between open soil, hypolithic, chasmoendolithic, and cryptoendolithic communities. A suite of previously unappreciated Antarctic microbial stress response pathways, thermal, osmotic, and nutrient limitation responses were identified and related to environmental stressors, offering tangible clues to the mechanisms behind the enduring success of microorganisms in this seemingly inhospitable terrain. Rocky substrates exposed to larger fluctuations in environmental stress supported greater functional diversity in stress-response pathways than soils. Soils comprised a unique reservoir of genes involved in transformation of organic hydrocarbons and lignin-like degradative pathways. This has major implications for the evolutionary origin of the organisms, turnover of recalcitrant substrates in Antarctic soils, and predicting future responses to anthropogenic pollution. PMID:23671121
Functional ecology of an Antarctic Dry Valley.
Chan, Yuki; Van Nostrand, Joy D; Zhou, Jizhong; Pointing, Stephen B; Farrell, Roberta L
2013-05-28
The McMurdo Dry Valleys are the largest ice-free region in Antarctica and are critically at risk from climate change. The terrestrial landscape is dominated by oligotrophic mineral soils and extensive exposed rocky surfaces where biota are largely restricted to microbial communities, although their ability to perform the majority of geobiological processes has remained largely uncharacterized. Here, we identified functional traits that drive microbial survival and community assembly, using a metagenomic approach with GeoChip-based functional gene arrays to establish metabolic capabilities in communities inhabiting soil and rock surface niches in McKelvey Valley. Major pathways in primary metabolism were identified, indicating significant plasticity in autotrophic, heterotrophic, and diazotrophic strategies supporting microbial communities. This represents a major advance beyond biodiversity surveys in that we have now identified how putative functional ecology drives microbial community assembly. Significant differences were apparent between open soil, hypolithic, chasmoendolithic, and cryptoendolithic communities. A suite of previously unappreciated Antarctic microbial stress response pathways, thermal, osmotic, and nutrient limitation responses were identified and related to environmental stressors, offering tangible clues to the mechanisms behind the enduring success of microorganisms in this seemingly inhospitable terrain. Rocky substrates exposed to larger fluctuations in environmental stress supported greater functional diversity in stress-response pathways than soils. Soils comprised a unique reservoir of genes involved in transformation of organic hydrocarbons and lignin-like degradative pathways. This has major implications for the evolutionary origin of the organisms, turnover of recalcitrant substrates in Antarctic soils, and predicting future responses to anthropogenic pollution.
Macaulay, Iain C; Tijssen, Marloes R; Thijssen-Timmer, Daphne C; Gusnanto, Arief; Steward, Michael; Burns, Philippa; Langford, Cordelia F; Ellis, Peter D; Dudbridge, Frank; Zwaginga, Jaap-Jan; Watkins, Nicholas A; van der Schoot, C Ellen; Ouwehand, Willem H
2007-04-15
To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.
Functional brain activation differences in stuttering identified with a rapid fMRI sequence
Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.
2011-01-01
The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech motor and auditory brain activity in children who stutter closer to the age at which recovery from stuttering is documented. Rapid sequences may be preferred for individuals or populations who do not tolerate long scanning sessions. In this report, we document the application of a picture naming and phoneme monitoring task in three minute fMRI sequences with adults who stutter (AWS). If relevant brain differences are found in AWS with these approaches that conform to previous reports, then these approaches can be extended to younger populations. Pairwise contrasts of brain BOLD activity between AWS and normally fluent adults indicated the AWS showed higher BOLD activity in the right inferior frontal gyrus (IFG), right temporal lobe and sensorimotor cortices during picture naming and and higher activity in the right IFG during phoneme monitoring. The right lateralized pattern of BOLD activity together with higher activity in sensorimotor cortices is consistent with previous reports, which indicates rapid fMRI sequences can be considered for investigating stuttering in younger participants. PMID:22133409
Effect of heroin-conditioned auditory stimuli on cerebral functional activity in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trusk, T.C.; Stein, E.A.
1988-08-01
Cerebral functional activity was measured as changes in distribution of the free fatty acid (1-14C)octanoate in autoradiograms obtained from rats during brief presentation of a tone previously paired to infusions of heroin or saline. Rats were trained in groups of three consisting of one heroin self-administering animal and two animals receiving yoked infusions of heroin or saline. Behavioral experiments in separate groups of rats demonstrated that these training parameters imparts secondary reinforcing properties to the tone for animals self-administering heroin while the tone remains behaviorally neutral in yoked-infusion animals. The optical densities of thirty-seven brain regions were normalized to amore » relative index for comparisons between groups. Previous pairing of the tone to heroin infusions irrespective of behavior (yoked-heroin vs. yoked-saline groups) produced functional activity changes in fifteen brain areas. In addition, nineteen regional differences in octanoate labeling density were evident when comparison was made between animals previously trained to self-administer heroin to those receiving yoked-heroin infusions, while twelve differences were noted when comparisons were made between the yoked vehicle and self administration group. These functional activity changes are presumed related to the secondary reinforcing capacity of the tone acquired by association with heroin, and may identify neural substrates involved in auditory signalled conditioning of positive reinforcement to opiates.« less
DuMond, Jenna F.; Ramkissoon, Kevin; Zhang, Xue; Izumi, Yuichiro; Wang, Xujing; Eguchi, Koji; Gao, Shouguo; Mukoyama, Masashi; Ferraris, Joan D.
2016-01-01
NFAT5 is an osmoregulated transcription factor that particularly increases expression of genes involved in protection against hypertonicity. Transcription factors often contain unstructured regions that bind co-regulatory proteins that are crucial for their function. The NH2-terminal region of NFAT5 contains regions predicted to be intrinsically disordered. We used peptide aptamer-based affinity chromatography coupled with mass spectrometry to identify protein preys pulled down by one or more overlapping 20 amino acid peptide baits within a predicted NH2-terminal unstructured region of NFAT5. We identify a total of 467 unique protein preys that associate with at least one NH2-terminal peptide bait from NFAT5 in either cytoplasmic or nuclear extracts from HEK293 cells treated with elevated, normal, or reduced NaCl concentrations. Different sets of proteins are pulled down from nuclear vs. cytoplasmic extracts. We used GeneCards to ascertain known functions of the protein preys. The protein preys include many that were previously known, but also many novel ones. Consideration of the novel ones suggests many aspects of NFAT5 regulation, interaction and function that were not previously appreciated, for example, hypertonicity inhibits NFAT5 by sumoylating it and the NFAT5 protein preys include components of the CHTOP complex that desumoylate proteins, an action that should contribute to activation of NFAT5. PMID:26757802
Kram, Karin E; Hovel-Miner, Galadriel A; Tomich, Mladen; Figurski, David H
2008-06-01
The tad (tight adherence) locus of Aggregatibacter actinomycetemcomitans includes genes for the biogenesis of Flp pili, which are necessary for bacterial adhesion to surfaces, biofilm formation, and pathogenesis. Although studies have elucidated the functions of some of the Tad proteins, little is known about the regulation of the tad locus in A. actinomycetemcomitans. A promoter upstream of the tad locus was previously identified and shown to function in Escherichia coli. Using a specially constructed reporter plasmid, we show here that this promoter (tadp) functions in A. actinomycetemcomitans. To study expression of the pilin gene (flp-1) relative to that of tad secretion complex genes, we used Northern hybridization analysis and a lacZ reporter assay. We identified three terminators, two of which (T1 and T2) can explain flp-1 mRNA abundance, while the third (T3) is at the end of the locus. T1 and T3 have the appearance and behavior of intrinsic terminators, while T2 has a different structure and is inhibited by bicyclomycin, indicating that T2 is probably Rho dependent. To help achieve the appropriate stoichiometry of the Tad proteins, we show that a transcriptional-termination cascade is important to the proper expression of the tad genes. These data indicate a previously unreported mechanism of regulation in A. actinomycetemcomitans and lead to a more complete understanding of its Flp pilus biogenesis.
Swett, Katherine; Miller, Amanda C.; Burns, Scott; Hoeft, Fumiko; Davis, Nicole; Petrill, Stephen A.; Cutting, Laurie E.
2013-01-01
Little is known about the neural correlates of expository text comprehension. In this study, we sought to identify neural networks underlying expository text comprehension, how those networks change over the course of comprehension, and whether information central to the overall meaning of the text is functionally distinct from peripheral information. Seventeen adult subjects read expository passages while being scanned using functional magnetic resonance imaging (fMRI). By convolving phrase onsets with the hemodynamic response function (HRF), we were able to identify regions that increase and decrease in activation over the course of passage comprehension. We found that expository text comprehension relies on the co-activation of the semantic control network and regions in the posterior midline previously associated with mental model updating and integration [posterior cingulate cortex (PCC) and precuneus (PCU)]. When compared to single word comprehension, left PCC and left Angular Gyrus (AG) were activated only for discourse-level comprehension. Over the course of comprehension, reliance on the same regions in the semantic control network increased, while a parietal region associated with attention [intraparietal sulcus (IPS)] decreased. These results parallel previous findings in narrative comprehension that the initial stages of mental model building require greater visuospatial attention processes, while maintenance of the model increasingly relies on semantic integration regions. Additionally, we used an event-related analysis to examine phrases central to the text's overall meaning vs. peripheral phrases. It was found that central ideas are functionally distinct from peripheral ideas, showing greater activation in the PCC and PCU, while over the course of passage comprehension, central and peripheral ideas increasingly recruit different parts of the semantic control network. The finding that central information elicits greater response in mental model updating regions than peripheral ideas supports previous behavioral models on the cognitive importance of distinguishing textual centrality. PMID:24376411
Fine-mapping and initial characterization of QT interval loci in African Americans.
Avery, Christy L; Sethupathy, Praveen; Buyske, Steven; He, Qianchuan; Lin, Dan-Yu; Arking, Dan E; Carty, Cara L; Duggan, David; Fesinmeyer, Megan D; Hindorff, Lucia A; Jeff, Janina M; Klein, Liviu; Patton, Kristen K; Peters, Ulrike; Shohet, Ralph V; Sotoodehnia, Nona; Young, Alicia M; Kooperberg, Charles; Haiman, Christopher A; Mohlke, Karen L; Whitsel, Eric A; North, Kari E
2012-01-01
The QT interval (QT) is heritable and its prolongation is a risk factor for ventricular tachyarrhythmias and sudden death. Most genetic studies of QT have examined European ancestral populations; however, the increased genetic diversity in African Americans provides opportunities to narrow association signals and identify population-specific variants. We therefore evaluated 6,670 SNPs spanning eleven previously identified QT loci in 8,644 African American participants from two Population Architecture using Genomics and Epidemiology (PAGE) studies: the Atherosclerosis Risk in Communities study and Women's Health Initiative Clinical Trial. Of the fifteen known independent QT variants at the eleven previously identified loci, six were significantly associated with QT in African American populations (P≤1.20×10(-4)): ATP1B1, PLN1, KCNQ1, NDRG4, and two NOS1AP independent signals. We also identified three population-specific signals significantly associated with QT in African Americans (P≤1.37×10(-5)): one at NOS1AP and two at ATP1B1. Linkage disequilibrium (LD) patterns in African Americans assisted in narrowing the region likely to contain the functional variants for several loci. For example, African American LD patterns showed that 0 SNPs were in LD with NOS1AP signal rs12143842, compared with European LD patterns that indicated 87 SNPs, which spanned 114.2 Kb, were in LD with rs12143842. Finally, bioinformatic-based characterization of the nine African American signals pointed to functional candidates located exclusively within non-coding regions, including predicted binding sites for transcription factors such as TBX5, which has been implicated in cardiac structure and conductance. In this detailed evaluation of QT loci, we identified several African Americans SNPs that better define the association with QT and successfully narrowed intervals surrounding established loci. These results demonstrate that the same loci influence variation in QT across multiple populations, that novel signals exist in African Americans, and that the SNPs identified as strong candidates for functional evaluation implicate gene regulatory dysfunction in QT prolongation.
Fine-Mapping and Initial Characterization of QT Interval Loci in African Americans
Avery, Christy L.; Sethupathy, Praveen; Buyske, Steven; He, Qianchuan; Lin, Dan-Yu; Arking, Dan E.; Carty, Cara L.; Duggan, David; Fesinmeyer, Megan D.; Hindorff, Lucia A.; Jeff, Janina M.; Klein, Liviu; Patton, Kristen K.; Peters, Ulrike; Shohet, Ralph V.; Sotoodehnia, Nona; Young, Alicia M.; Kooperberg, Charles; Haiman, Christopher A.; Mohlke, Karen L.; Whitsel, Eric A.; North, Kari E.
2012-01-01
The QT interval (QT) is heritable and its prolongation is a risk factor for ventricular tachyarrhythmias and sudden death. Most genetic studies of QT have examined European ancestral populations; however, the increased genetic diversity in African Americans provides opportunities to narrow association signals and identify population-specific variants. We therefore evaluated 6,670 SNPs spanning eleven previously identified QT loci in 8,644 African American participants from two Population Architecture using Genomics and Epidemiology (PAGE) studies: the Atherosclerosis Risk in Communities study and Women's Health Initiative Clinical Trial. Of the fifteen known independent QT variants at the eleven previously identified loci, six were significantly associated with QT in African American populations (P≤1.20×10−4): ATP1B1, PLN1, KCNQ1, NDRG4, and two NOS1AP independent signals. We also identified three population-specific signals significantly associated with QT in African Americans (P≤1.37×10−5): one at NOS1AP and two at ATP1B1. Linkage disequilibrium (LD) patterns in African Americans assisted in narrowing the region likely to contain the functional variants for several loci. For example, African American LD patterns showed that 0 SNPs were in LD with NOS1AP signal rs12143842, compared with European LD patterns that indicated 87 SNPs, which spanned 114.2 Kb, were in LD with rs12143842. Finally, bioinformatic-based characterization of the nine African American signals pointed to functional candidates located exclusively within non-coding regions, including predicted binding sites for transcription factors such as TBX5, which has been implicated in cardiac structure and conductance. In this detailed evaluation of QT loci, we identified several African Americans SNPs that better define the association with QT and successfully narrowed intervals surrounding established loci. These results demonstrate that the same loci influence variation in QT across multiple populations, that novel signals exist in African Americans, and that the SNPs identified as strong candidates for functional evaluation implicate gene regulatory dysfunction in QT prolongation. PMID:22912591
Zapata, Luis; Pich, Oriol; Serrano, Luis; Kondrashov, Fyodor A; Ossowski, Stephan; Schaefer, Martin H
2018-05-31
Natural selection shapes cancer genomes. Previous studies used signatures of positive selection to identify genes driving malignant transformation. However, the contribution of negative selection against somatic mutations that affect essential tumor functions or specific domains remains a controversial topic. Here, we analyze 7546 individual exomes from 26 tumor types from TCGA data to explore the portion of the cancer exome under negative selection. Although we find most of the genes neutrally evolving in a pan-cancer framework, we identify essential cancer genes and immune-exposed protein regions under significant negative selection. Moreover, our simulations suggest that the amount of negative selection is underestimated. We therefore choose an empirical approach to identify genes, functions, and protein regions under negative selection. We find that expression and mutation status of negatively selected genes is indicative of patient survival. Processes that are most strongly conserved are those that play fundamental cellular roles such as protein synthesis, glucose metabolism, and molecular transport. Intriguingly, we observe strong signals of selection in the immunopeptidome and proteins controlling peptide exposition, highlighting the importance of immune surveillance evasion. Additionally, tumor type-specific immune activity correlates with the strength of negative selection on human epitopes. In summary, our results show that negative selection is a hallmark of cell essentiality and immune response in cancer. The functional domains identified could be exploited therapeutically, ultimately allowing for the development of novel cancer treatments.
Large-Scale Gene-Centric Analysis Identifies Novel Variants for Coronary Artery Disease
2011-01-01
Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10−33; LPA:p<10−19; 1p13.3:p<10−17) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10−7). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06–1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and clarified the literature with regard to many previously suggested genes. PMID:21966275
Second Language Acquisition, Culture Shock and Language Stress of Adult Latina Students in New York.
ERIC Educational Resources Information Center
Buttaro, Lucia
This study identified the second language acquisition, culture shock, and language stress of adult Latinas in New York as related to language, culture, and education. Participants were eight adult Latinas, for whom Spanish was the first language, who had come to the United States 10-15 years previously and developed some functioning English as a…
ERIC Educational Resources Information Center
Loughmiller-Newman, Jennifer Ann
2012-01-01
This dissertation presents a multidisciplinary means of determining the actual content (foodstuff, non-foodstuff, or lack of contents) of Classic Mayan (A.D. 250-900) vessels. Based on previous studies that have identified the residues of foodstuffs named in hieroglyphic texts (e.g. cacao), this study is designed to further investigate foodstuff…
USDA-ARS?s Scientific Manuscript database
Leukotoxin (Lkt) and LPS are the major virulence determinants of Mannheimia haemolytica that contribute to the pathogenesis of bovine and ovine pneumonic pasteurellosis. We have previously identified bovine and ovine CD18 as the functional receptor for Lkt. LPS complexes with Lkt resulting in incre...
Identification of differentially expressed genes in the zebrafish hypothalamus - pituitary axis
Toro, Sabrina; Wegner, Jeremy; Muller, Marc; Westerfield, Monte; Varga, Zoltan M.
2009-01-01
The vertebrate hypothalamic-pituitary axis (HP) is the main link between the central nervous system and endocrine system. Although several signal pathways and regulatory genes have been implicated in adenohypophysis ontogenesis, little is known about hypothalamic and neurohypophysial development or when the HP matures and becomes functional. To identify markers of the HP, we constructed subtractive cDNA libraries between adult zebrafish hypothalamus and pituitary. We identified previously published genes and ESTs and novel zebrafish genes, some of which were predicted by genomic database analysis. We also analyzed expression patterns of these genes and found that several are expressed in the embryonic and larval hypothalamus, neurohypophysis, and/or adenohypophysis. Expression at these stages makes these genes useful markers to study HP maturation and function. PMID:19166982
Kenchington, Ellen; Murillo, Francisco Javier; Lirette, Camille; Sacau, Mar; Koen-Alonso, Mariano; Kenny, Andrew; Ollerhead, Neil; Wareham, Vonda; Beazley, Lindsay
2014-01-01
The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME) from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO) produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE) to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify “significant concentrations” of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores), and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here and elsewhere. PMID:25289667
Kenchington, Ellen; Murillo, Francisco Javier; Lirette, Camille; Sacau, Mar; Koen-Alonso, Mariano; Kenny, Andrew; Ollerhead, Neil; Wareham, Vonda; Beazley, Lindsay
2014-01-01
The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME) from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO) produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE) to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify "significant concentrations" of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores), and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here and elsewhere.
Risk factors for lung function decline in a large cohort of young cystic fibrosis patients.
Cogen, Jonathan; Emerson, Julia; Sanders, Don B; Ren, Clement; Schechter, Michael S; Gibson, Ronald L; Morgan, Wayne; Rosenfeld, Margaret
2015-08-01
To identify novel risk factors and corroborate previously identified risk factors for mean annual decline in FEV1% predicted in a large, contemporary, United States cohort of young cystic fibrosis (CF) patients. Retrospective observational study of participants in the EPIC Observational Study, who were Pseudomonas-negative and ≤12 years of age at enrollment in 2004-2006. The associations between potential demographic, clinical, and environmental risk factors evaluated during the baseline year and subsequent mean annual decline in FEV1 percent predicted were evaluated using generalized estimating equations. The 946 participants in the current analysis were followed for a mean of 6.2 (SD 1.3) years. Mean annual decline in FEV1% predicted was 1.01% (95%CI 0.85-1.17%). Children with one or no F508del mutations had a significantly smaller annual decline in FEV1 compared to F508del homozygotes. In a multivariable model, risk factors during the baseline year associated with a larger subsequent mean annual lung function decline included female gender, frequent or productive cough, low BMI (<66th percentile, median in the cohort), ≥1 pulmonary exacerbation, high FEV1 (≥115% predicted, in the top quartile), and respiratory culture positive for methicillin-sensitive Staphylococcus aureus, methicillin-resistant S. aureus, or Stenotrophomonas maltophilia. We have identified a range of risk factors for FEV1 decline in a large cohort of young, CF patients who were Pa negative at enrollment, including novel as well as previously identified characteristics. These results could inform the design of a clinical trial in which rate of FEV1 decline is the primary endpoint and identify high-risk groups that may benefit from closer monitoring. © 2015 Wiley Periodicals, Inc.
Jin, Zhao; Di Rienzi, Sara C.; Janzon, Anders; Werner, Jeff J.; Angenent, Largus T.; Dangl, Jeffrey L.; Fowler, Douglas M.
2015-01-01
Metagenomes derived from environmental microbiota encode a vast diversity of protein homologs. How this diversity impacts protein function can be explored through selection assays aimed to optimize function. While artificially generated gene sequence pools are typically used in selection assays, their usage may be limited because of technical or ethical reasons. Here, we investigate an alternative strategy, the use of soil microbial DNA as a starting point. We demonstrate this approach by optimizing the function of a widely occurring soil bacterial enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase. We identified a specific ACC deaminase domain region (ACCD-DR) that, when PCR amplified from the soil, produced a variant pool that we could swap into functional plasmids carrying ACC deaminase-encoding genes. Functional clones of ACC deaminase were selected for in a competition assay based on their capacity to provide nitrogen to Escherichia coli in vitro. The most successful ACCD-DR variants were identified after multiple rounds of selection by sequence analysis. We observed that previously identified essential active-site residues were fixed in the original unselected library and that additional residues went to fixation after selection. We identified a divergent essential residue whose presence hints at the possible use of alternative substrates and a cluster of neutral residues that did not influence ACCD performance. Using an artificial ACCD-DR variant library generated by DNA oligomer synthesis, we validated the same fixation patterns. Our study demonstrates that soil metagenomes are useful starting pools of protein-coding-gene diversity that can be utilized for protein optimization and functional characterization when synthetic libraries are not appropriate. PMID:26637602
Rong, Rong; Tao, Ya-Xiong; Cheung, Bernard M Y; Xu, Aimin; Cheung, Grace C N; Lam, Karen S L
2006-08-01
Mutations in the melanocortin-4 receptor gene (MC4R) are the most common monogenic form of human obesity. However, the contribution of MC4R mutations to obesity in Chinese has not been investigated. We studied the frequency of MC4R mutations in an obese southern Chinese population and the functional consequences of the novel variants identified. We screened for MC4R mutations in 227 obese [body mass index (BMI) 35.29 +/- 5.75 kg/m2] and 100 lean (BMI 21.57 +/- 0.29 kg/m2) southern Chinese subjects using PCR-direct sequencing. In vitro functional studies, including cell surface expression, ligand binding, and cyclic adenosine monophosphate (cAMP) accumulation, were performed to examine the functional properties of three novel missense mutations. Apart from two previously reported polymorphisms, V103I and -176 A > C, three novel missense heterozygous variants (Y35C, C40R and M218T) were identified. The polymorphisms -176 A > C and Y35C were detected in both obese and normal subjects with similar frequency. C40R was identified only in an obese subject. Pedigree analysis revealed M218T carriers in both lean and obese subjects. The prevalence of V103I carriers in normal-weight controls was significantly higher than that in obese subjects (5.3%vs. 1.3%, P < 0.05). In vitro functional studies showed that all three novel missense variants have normal functions. Two known polymorphisms and three novel variants of the MC4R were identified. No overt functional defects were observed for the three novel MC4R variants, suggesting that they might not be the cause of obesity in variant carriers.
Peterson, Thomas A; Nehrt, Nathan L; Park, DoHwan
2012-01-01
Background and objective With recent breakthroughs in high-throughput sequencing, identifying deleterious mutations is one of the key challenges for personalized medicine. At the gene and protein level, it has proven difficult to determine the impact of previously unknown variants. A statistical method has been developed to assess the significance of disease mutation clusters on protein domains by incorporating domain functional annotations to assist in the functional characterization of novel variants. Methods Disease mutations aggregated from multiple databases were mapped to domains, and were classified as either cancer- or non-cancer-related. The statistical method for identifying significantly disease-associated domain positions was applied to both sets of mutations and to randomly generated mutation sets for comparison. To leverage the known function of protein domain regions, the method optionally distributes significant scores to associated functional feature positions. Results Most disease mutations are localized within protein domains and display a tendency to cluster at individual domain positions. The method identified significant disease mutation hotspots in both the cancer and non-cancer datasets. The domain significance scores (DS-scores) for cancer form a bimodal distribution with hotspots in oncogenes forming a second peak at higher DS-scores than non-cancer, and hotspots in tumor suppressors have scores more similar to non-cancers. In addition, on an independent mutation benchmarking set, the DS-score method identified mutations known to alter protein function with very high precision. Conclusion By aggregating mutations with known disease association at the domain level, the method was able to discover domain positions enriched with multiple occurrences of deleterious mutations while incorporating relevant functional annotations. The method can be incorporated into translational bioinformatics tools to characterize rare and novel variants within large-scale sequencing studies. PMID:22319177
Hirase, Tatsuya; Inokuchi, Shigeru; Matsusaka, Nobuou; Nakahara, Kazumi; Okita, Minoru
2014-01-01
Developing a practical fall risk assessment tool to predict the occurrence of falls in the primary care setting is important because investigators have reported deterioration of physical function associated with falls. Researchers have used many performance tests to predict the occurrence of falls. These performance tests predict falls and also assess physical function and determine exercise interventions. However, the need for such specialists as physical therapists to accurately conduct these tests limits their use in the primary care setting. Questionnaires for fall prediction offer an easy way to identify high-risk fallers without requiring specialists. Using an existing fall assessment questionnaire, this study aimed to identify items specific to physical function and determine whether those items were able to predict falls and estimate physical function of high-risk fallers. The analysis consisted of both retrospective and prospective studies and used 2 different samples (retrospective, n = 1871; prospective, n = 292). The retrospective study and 3-month prospective study comprised community-dwelling individuals aged 65 years or older and older adults using community day centers. The number of falls, risk factors for falls (15 risk factors on the questionnaire), and physical function determined by chair standing test (CST) and Timed Up and Go Test (TUGT) were assessed. The retrospective study selected fall risk factors related to physical function. The prospective study investigated whether the number of selected risk factors could predict falls. The predictive power was determined using the area under the receiver operating characteristic curve. Seven of the 15 risk factors were related to physical function. The area under the receiver operating characteristic curve for the sum of the selected risk factors of previous falls plus the other risk factors was 0.82 (P = .00). The best cutoff point was 4 risk factors, with sensitivity and specificity of 84% and 68%, respectively. The mean values for the CST and TUGT at the best cutoff point were 12.9 and 12.5 seconds, respectively. In the retrospective study, the values for the CST and TUGT corresponding to the best cutoff point from the prospective study were 13.2 and 11.4 seconds, respectively. This study confirms that a screening tool comprising 7 fall risk factors can be used to predict falls. The values for the CST and TUGT corresponding to the best cutoff point for the selected 7 risk factors determined in our prospective study were similar to the cutoff points for the CST and TUGT in previous studies for fall prediction. We propose that the sum of the selected risk factors of previous falls plus the other risk factors may be identified as the estimated value for physical function. These findings may contribute to earlier identification of high-risk fallers and intervention for fall prevention.
Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan
2008-01-01
Background Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. Results As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. Conclusion We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s). PMID:19055778
Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan
2008-12-03
Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, approximately 4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s).
GSDM family genes meet autophagy.
Tamura, Masaru; Shiroishi, Toshihiko
2015-07-15
In the previous issue of Biochemical Journal, Shi et al. [(2015) 468, 325-336] report that Gasdermin (Gsdm) family proteins regulate autophagy activity, which is counter-balanced by the opposite functions of well-conserved N- and C-terminal domains of the proteins. The Gsdm family was originally identified as the causative gene of dominant skin mutations exhibiting alopecia. Each member of the Gsdm gene family shows characteristic expression patterns in the epithelium, which is tissue and differentiation stage-specific. Previous phenotype analyses of mutant mice, biochemical analyses of proteins and genome-wide association studies showed that the Gsdm gene family might be involved in epithelial cell development, apoptosis, inflammation, carcinogenesis and immune-related diseases. To date, however, their molecular function(s) remain unclear. Shi et al. found that mutations in the C-terminal domain of Gsdma3, a member of the Gsdm family, induce autophagy. Further studies revealed that the wild-type N-terminal domain has pro-autophagic activity and that the C-terminal domain conversely inhibits this N-terminal function. These opposite functions of the two domains were also observed in other Gsdm family members. Thus, their study provides a new insight into the function of Gsdm genes in epithelial cell lineage, causality of cancers and immune-related diseases including childhood-onset asthma. © 2015 Authors; published by Portland Press Limited.
Human germline and pan-cancer variomes and their distinct functional profiles
Pan, Yang; Karagiannis, Konstantinos; Zhang, Haichen; Dingerdissen, Hayley; Shamsaddini, Amirhossein; Wan, Quan; Simonyan, Vahan; Mazumder, Raja
2014-01-01
Identification of non-synonymous single nucleotide variations (nsSNVs) has exponentially increased due to advances in Next-Generation Sequencing technologies. The functional impacts of these variations have been difficult to ascertain because the corresponding knowledge about sequence functional sites is quite fragmented. It is clear that mapping of variations to sequence functional features can help us better understand the pathophysiological role of variations. In this study, we investigated the effect of nsSNVs on more than 17 common types of post-translational modification (PTM) sites, active sites and binding sites. Out of 1 705 285 distinct nsSNVs on 259 216 functional sites we identified 38 549 variations that significantly affect 10 major functional sites. Furthermore, we found distinct patterns of site disruptions due to germline and somatic nsSNVs. Pan-cancer analysis across 12 different cancer types led to the identification of 51 genes with 106 nsSNV affected functional sites found in 3 or more cancer types. 13 of the 51 genes overlap with previously identified Significantly Mutated Genes (Nature. 2013 Oct 17;502(7471)). 62 mutations in these 13 genes affecting functional sites such as DNA, ATP binding and various PTM sites occur across several cancers and can be prioritized for additional validation and investigations. PMID:25232094
Electronic fitness function for screening semiconductors as thermoelectric materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Guangzong; Sun, Jifeng; Li, Yuwei
Here, we introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors, and Zintl phases. We find an efficient screening using this transport function. Themore » EFF identifies known high-performance p- and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.« less
The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions
Merchant, Sabeeha S.; Prochnik, Simon E.; Vallon, Olivier; Harris, Elizabeth H.; Karpowicz, Steven J.; Witman, George B.; Terry, Astrid; Salamov, Asaf; Fritz-Laylin, Lillian K.; Maréchal-Drouard, Laurence; Marshall, Wallace F.; Qu, Liang-Hu; Nelson, David R.; Sanderfoot, Anton A.; Spalding, Martin H.; Kapitonov, Vladimir V.; Ren, Qinghu; Ferris, Patrick; Lindquist, Erika; Shapiro, Harris; Lucas, Susan M.; Grimwood, Jane; Schmutz, Jeremy; Cardol, Pierre; Cerutti, Heriberto; Chanfreau, Guillaume; Chen, Chun-Long; Cognat, Valérie; Croft, Martin T.; Dent, Rachel; Dutcher, Susan; Fernández, Emilio; Ferris, Patrick; Fukuzawa, Hideya; González-Ballester, David; González-Halphen, Diego; Hallmann, Armin; Hanikenne, Marc; Hippler, Michael; Inwood, William; Jabbari, Kamel; Kalanon, Ming; Kuras, Richard; Lefebvre, Paul A.; Lemaire, Stéphane D.; Lobanov, Alexey V.; Lohr, Martin; Manuell, Andrea; Meier, Iris; Mets, Laurens; Mittag, Maria; Mittelmeier, Telsa; Moroney, James V.; Moseley, Jeffrey; Napoli, Carolyn; Nedelcu, Aurora M.; Niyogi, Krishna; Novoselov, Sergey V.; Paulsen, Ian T.; Pazour, Greg; Purton, Saul; Ral, Jean-Philippe; Riaño-Pachón, Diego Mauricio; Riekhof, Wayne; Rymarquis, Linda; Schroda, Michael; Stern, David; Umen, James; Willows, Robert; Wilson, Nedra; Zimmer, Sara Lana; Allmer, Jens; Balk, Janneke; Bisova, Katerina; Chen, Chong-Jian; Elias, Marek; Gendler, Karla; Hauser, Charles; Lamb, Mary Rose; Ledford, Heidi; Long, Joanne C.; Minagawa, Jun; Page, M. Dudley; Pan, Junmin; Pootakham, Wirulda; Roje, Sanja; Rose, Annkatrin; Stahlberg, Eric; Terauchi, Aimee M.; Yang, Pinfen; Ball, Steven; Bowler, Chris; Dieckmann, Carol L.; Gladyshev, Vadim N.; Green, Pamela; Jorgensen, Richard; Mayfield, Stephen; Mueller-Roeber, Bernd; Rajamani, Sathish; Sayre, Richard T.; Brokstein, Peter; Dubchak, Inna; Goodstein, David; Hornick, Leila; Huang, Y. Wayne; Jhaveri, Jinal; Luo, Yigong; Martínez, Diego; Ngau, Wing Chi Abby; Otillar, Bobby; Poliakov, Alexander; Porter, Aaron; Szajkowski, Lukasz; Werner, Gregory; Zhou, Kemin; Grigoriev, Igor V.; Rokhsar, Daniel S.; Grossman, Arthur R.
2010-01-01
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella. PMID:17932292
Electronic fitness function for screening semiconductors as thermoelectric materials
Xing, Guangzong; Sun, Jifeng; Li, Yuwei; ...
2017-11-17
Here, we introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors, and Zintl phases. We find an efficient screening using this transport function. Themore » EFF identifies known high-performance p- and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.« less
Kang, Jaeseung; Kim, Eunjoon
2015-01-01
Animals prenatally exposed to valproic acid (VPA), an antiepileptic agent, have been used as a model for autism spectrum disorders (ASDs). Previous studies have identified enhanced NMDA receptor (NMDAR) function in the brain of VPA rats, and demonstrated that pharmacological suppression of NMDAR function normalizes social deficits in these animals. However, whether repetitive behavior, another key feature of ASDs, can be rescued by NMDAR inhibition remains unknown. We report here that memantine, an NMDAR antagonist, administered to VPA mice rescues both social deficits and repetitive behaviors such as self-grooming and jumping. These results suggest that suppression of elevated NMDAR function in VPA animals normalizes repetitive behaviors in addition to social deficits.
Coping, functioning, and adjustment of rescue workers after the Oklahoma City bombing.
North, Carol S; Tivis, Laura; McMillen, J Curtis; Pfefferbaum, Betty; Cox, Jann; Spitznagel, Edward L; Bunch, Kenneth; Schorr, John; Smith, Elizabeth M
2002-06-01
Studies have not previously considered postdisaster adjustment in the context of psychiatric disorders. After the Oklahoma City bombing, a volunteer sample of 181 firefighters who served as rescue and recovery workers was assessed with a structured diagnostic interview. The firefighters had relatively low rates of posttraumatic stress disorder (PTSD) and described little functional impairment, positive social adjustment, and high job satisfaction. PTSD was associated with reduced job satisfaction and functional impairment, providing diagnostic validity. Turning to social supports, seeking mental health treatment, and taking medication were not widely prevalent coping responses. Postdisaster alcohol use disorders and drinking to cope were significantly associated with indicators of poorer functioning. Surveillance for problem drinking after disaster exposure may identify useful directions for intervention.
Heinnickel, Mark L; Grossman, Arthur R
2013-10-01
Based on comparative genomics, a list of proteins present in the green algal, flowering and nonflowering plant lineages, but not detected in nonphotosynthetic organisms, was assembled (Merchant et al., Science 318:245-250, 2007; Karpowicz et al., J Biol Chem 286:21427-21439, 2011). This protein grouping, previously designated the GreenCut, was established using stringent comparative genomic criteria; they are those Chlamydomonas reinhardtii proteins with orthologs in Arabidopsis thaliana, Physcomitrella patens, Oryza sativa, Populus tricocarpa and at least one of the three Ostreococcus species with fully sequenced genomes, but not in bacteria, yeast, fungi or mammals. Many GreenCut proteins are also present in red algae and diatoms and a subset of 189 have been identified as encoded on nearly all cyanobacterial genomes. Of the current GreenCut proteins (597 in total), approximately half have been studied previously. The functions or activities of a number of these proteins have been deduced from phenotypic analyses of mutants (defective for genes encoding specific GreenCut proteins) of A. thaliana, and in many cases the assigned functions do not exist in C. reinhardtii. Therefore, precise physiological functions of several previously studied GreenCut proteins are still not clear. The GreenCut also contains a number of proteins with certain conserved domains. Three of the most highly conserved domains are the FK506 binding, cyclophilin and PAP fibrillin domains; most members of these gene families are not well characterized. In general, our analysis of the GreenCut indicates that many processes critical to green lineage organisms remain unstudied or poorly characterized. We have begun to examine the functions of some GreenCut proteins in detail. For example, our work on the CPLD38 protein has demonstrated that it has an essential role in photosynthetic function and the stability of the cytochrome b 6 f complex.
Handfield, Louis-François; Chong, Yolanda T.; Simmons, Jibril; Andrews, Brenda J.; Moses, Alan M.
2013-01-01
Protein subcellular localization has been systematically characterized in budding yeast using fluorescently tagged proteins. Based on the fluorescence microscopy images, subcellular localization of many proteins can be classified automatically using supervised machine learning approaches that have been trained to recognize predefined image classes based on statistical features. Here, we present an unsupervised analysis of protein expression patterns in a set of high-resolution, high-throughput microscope images. Our analysis is based on 7 biologically interpretable features which are evaluated on automatically identified cells, and whose cell-stage dependency is captured by a continuous model for cell growth. We show that it is possible to identify most previously identified localization patterns in a cluster analysis based on these features and that similarities between the inferred expression patterns contain more information about protein function than can be explained by a previous manual categorization of subcellular localization. Furthermore, the inferred cell-stage associated to each fluorescence measurement allows us to visualize large groups of proteins entering the bud at specific stages of bud growth. These correspond to proteins localized to organelles, revealing that the organelles must be entering the bud in a stereotypical order. We also identify and organize a smaller group of proteins that show subtle differences in the way they move around the bud during growth. Our results suggest that biologically interpretable features based on explicit models of cell morphology will yield unprecedented power for pattern discovery in high-resolution, high-throughput microscopy images. PMID:23785265
Brown, J D; Hann, B C; Medzihradszky, K F; Niwa, M; Burlingame, A L; Walter, P
1994-01-01
The signal recognition particle (SRP) is an evolutionarily conserved ribonucleoprotein (RNP) complex that functions in protein targeting to the endoplasmic reticulum (ER) membrane. Only two protein subunits of the SRP, Srp54p and Sec65p, and the RNA subunit, scR1, were previously known in the yeast Saccharomyces cerevisiae. Purification of yeast SRP by immunoaffinity chromatography revealed five additional proteins. Amino acid sequencing and cloning of the genes encoding four of these proteins demonstrated that the yeast SRP contains homologs (termed Srp14p, Srp68p and Srp72p) of the SRP14, SRP68 and SRP72 subunits found in mammalian SRP. The yeast SRP also contains a 21 kDa protein (termed Srp21p) that is not homologous to any protein in mammalian SRP. An additional 7 kDa protein may correspond to the mammalian SRP9. Disruption of any one of the four genes encoding the newly identified SRP proteins results in slow cell growth and inefficient protein translocation across the ER membrane. These phenotypes are indistinguishable from those resulting from the disruption of genes encoding SRP components identified previously. These data indicate that a lack of any of the analyzed SRP components results in loss of SRP function. ScR1 RNA and SRP proteins are at reduced levels in cells lacking any one of the newly identified proteins. In contrast, SRP components are present at near wild type levels and SRP subparticles are present in cells lacking either Srp54p or Sec65p. Thus Srp14p, Srp21p, Srp68p and Srp72p, but not Sec65p or Srp54p, are required for stable expression of the yeast SRP. Images PMID:7925282
Ma, Jian; Stiller, Jiri; Zhao, Qiang; Feng, Qi; Cavanagh, Colin; Wang, Penghao; Gardiner, Donald; Choulet, Frédéric; Feuillet, Catherine; Zheng, You-Liang; Wei, Yuming; Yan, Guijun; Han, Bin; Manners, John M.; Liu, Chunji
2014-01-01
Fusarium pathogens cause two major diseases in cereals, Fusarium crown rot (FCR) and head blight (FHB). A large-effect locus conferring resistance to FCR disease was previously located to chromosome arm 3BL (designated as Qcrs-3B) and several independent sets of near isogenic lines (NILs) have been developed for this locus. In this study, five sets of the NILs were used to examine transcriptional changes associated with the Qcrs-3B locus and to identify genes linked to the resistance locus as a step towards the isolation of the causative gene(s). Of the differentially expressed genes (DEGs) detected between the NILs, 12.7% was located on the single chromosome 3B. Of the expressed genes containing SNP (SNP-EGs) detected, 23.5% was mapped to this chromosome. Several of the DEGs and SNP-EGs are known to be involved in host-pathogen interactions, and a large number of the DEGs were among those detected for FHB in previous studies. Of the DEGs detected, 22 were mapped in the Qcrs-3B interval and they included eight which were detected in the resistant isolines only. The enrichment of DEG, and not necessarily those containing SNPs between the resistant and susceptible isolines, around the Qcrs-3B locus is suggestive of local regulation of this region by the resistance allele. Functions for 13 of these DEGs are known. Of the SNP-EGs, 28 were mapped in the Qcrs-3B interval and biological functions for 16 of them are known. These results provide insights into responses regulated by the 3BL locus and identify a tractable number of target genes for fine mapping and functional testing to identify the causative gene(s) at this QTL. PMID:25405461
Freire, Bruna L; Homma, Thais K; Funari, Mariana F A; Lerario, Antônio M; Leal, Aline M; Velloso, Elvira D R P; Malaquias, Alexsandra C; Jorge, Alexander A L
2018-03-01
Fanconi Anemia (FA) is a rare and heterogeneous genetic syndrome. It is associated with short stature, bone marrow failure, high predisposition to cancer, microcephaly and congenital malformation. Many genes have been associated with FA. Previously, two adult patients with biallelic pathogenic variant in Breast Cancer 1 gene (BRCA1) had been identified in Fanconi Anemia-like condition. The proband was a 2.5 year-old girl with severe short stature, microcephaly, neurodevelopmental delay, congenital heart disease and dysmorphic features. Her parents were third degree cousins. Routine screening tests for short stature was normal. We conducted whole exome sequencing (WES) of the proband and used an analysis pipeline to identify rare nonsynonymous genetic variants that cause short stature. We identified a homozygous loss-of-function BRCA1 mutation (c.2709T > A; p. Cys903*), which promotes the loss of critical domains of the protein. Cytogenetic study with DEB showed an increased chromosomal breakage. We screened heterozygous parents of the index case for cancer and we detected, in her mother, a metastatic adenocarcinoma in an axillar lymph node with probable primary site in the breast. It is possible to consolidate the FA-like phenotype associated with biallelic loss-of-function BRCA1, characterized by microcephaly, short stature, developmental delay, dysmorphic face features and cancer predisposition. In our case, the WES allowed to establish the genetic cause of short stature in the context of a chromosome instability syndrome. An identification of BRCA1 mutations in our patient allowed precise genetic counseling and also triggered cancer screening for the patient and her family members. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Telonis-Scott, Marina; Sgrò, Carla M.; Hoffmann, Ary A.; Griffin, Philippa C.
2016-01-01
Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework. PMID:26733490
Delogu, Franco; Lampis, Giulia; Olivetti Belardinelli, Marta
2006-09-01
In tonal languages, as Mandarin Chinese and Thai, word meaning is partially determined by lexical tones. Previous studies suggest that lexical tones are processed by native listeners as linguistic information and not as pure tonal information. This study aims at verifying if, in nontonal languages speakers, the discrimination of lexical Mandarin tones varies in function of the melodic ability. Forty-six students with no previous experience of Mandarin or any other tonal language were presented with two short lists of spoken monosyllabic Mandarin words and invited to perform a same-different task trying to identify whether the variation were phonological or tonal. Main results show that subjects perform significantly better in identifying phonological variations rather than tonal ones and interestingly, the group with a high melodic ability (assessed by Wing subtest 3) shows a better performance exclusively in detecting tonal variations.
Identification of a motor to auditory pathway important for vocal learning
Roberts, Todd F.; Hisey, Erin; Tanaka, Masashi; Kearney, Matthew; Chattree, Gaurav; Yang, Cindy F.; Shah, Nirao M.; Mooney, Richard
2017-01-01
Summary Learning to vocalize depends on the ability to adaptively modify the temporal and spectral features of vocal elements. Neurons that convey motor-related signals to the auditory system are theorized to facilitate vocal learning, but the identity and function of such neurons remain unknown. Here we identify a previously unknown neuron type in the songbird brain that transmits vocal motor signals to the auditory cortex. Genetically ablating these neurons in juveniles disrupted their ability to imitate features of an adult tutor’s song. Ablating these neurons in adults had little effect on previously learned songs, but interfered with their ability to adaptively modify the duration of vocal elements and largely prevented the degradation of song’s temporal features normally caused by deafening. These findings identify a motor to auditory circuit essential to vocal imitation and to the adaptive modification of vocal timing. PMID:28504672
Guo, Yabin; Updegraff, Barrett L; Park, Sunho; Durakoglugil, Deniz; Cruz, Victoria H; Maddux, Sarah; Hwang, Tae Hyun; O'Donnell, Kathryn A
2016-02-15
Aberrant signaling through cytokine receptors and their downstream signaling pathways is a major oncogenic mechanism underlying hematopoietic malignancies. To better understand how these pathways become pathologically activated and to potentially identify new drivers of hematopoietic cancers, we developed a high-throughput functional screening approach using ex vivo mutagenesis with the Sleeping Beauty transposon. We analyzed over 1,100 transposon-mutagenized pools of Ba/F3 cells, an IL3-dependent pro-B-cell line, which acquired cytokine independence and tumor-forming ability. Recurrent transposon insertions could be mapped to genes in the JAK/STAT and MAPK pathways, confirming the ability of this strategy to identify known oncogenic components of cytokine signaling pathways. In addition, recurrent insertions were identified in a large set of genes that have been found to be mutated in leukemia or associated with survival, but were not previously linked to the JAK/STAT or MAPK pathways nor shown to functionally contribute to leukemogenesis. Forced expression of these novel genes resulted in IL3-independent growth in vitro and tumorigenesis in vivo, validating this mutagenesis-based approach for identifying new genes that promote cytokine signaling and leukemogenesis. Therefore, our findings provide a broadly applicable approach for classifying functionally relevant genes in diverse malignancies and offer new insights into the impact of cytokine signaling on leukemia development. ©2015 American Association for Cancer Research.
Smith, Emery; Janovick, Jo Ann; Bannister, Thomas D; Shumate, Justin; Scampavia, Louis; Conn, P Michael; Spicer, Timothy P
2016-09-01
Pharmacoperones correct the folding of otherwise misfolded protein mutants, restoring function (i.e., providing "rescue") by correcting their trafficking. Currently, most pharmacoperones possess intrinsic antagonist activity because they were identified using methods initially aimed at discovering such functions. Here, we describe an ultra-high-throughput homogeneous cell-based assay with a cAMP detection system, a method specifically designed to identify pharmacoperones of the vasopressin type 2 receptor (V2R), a GPCR that, when mutated, is associated with nephrogenic diabetes insipidus. Previously developed methods to identify compounds capable of altering cellular trafficking of V2R were modified and used to screen a 645,000 compound collection by measuring the ability of library compounds to rescue a mutant hV2R [L83Q], using a cell-based luminescent detection system. The campaign initially identified 3734 positive modulators of cAMP. The confirmation and counterscreen identified only 147 of the active compounds with an EC50 of ≤5 µM. Of these, 83 were reconfirmed as active through independently obtained pure samples and were also inactive in a relevant counterscreen. Active and tractable compounds within this set can be categorized into three predominant structural clusters, described here, in the first report detailing the results of a large-scale pharmacoperone high-throughput screening campaign. © 2016 Society for Laboratory Automation and Screening.
Hierarchical modularization of biochemical pathways using fuzzy-c means clustering.
de Luis Balaguer, Maria A; Williams, Cranos M
2014-08-01
Biological systems that are representative of regulatory, metabolic, or signaling pathways can be highly complex. Mathematical models that describe such systems inherit this complexity. As a result, these models can often fail to provide a path toward the intuitive comprehension of these systems. More coarse information that allows a perceptive insight of the system is sometimes needed in combination with the model to understand control hierarchies or lower level functional relationships. In this paper, we present a method to identify relationships between components of dynamic models of biochemical pathways that reside in different functional groups. We find primary relationships and secondary relationships. The secondary relationships reveal connections that are present in the system, which current techniques that only identify primary relationships are unable to show. We also identify how relationships between components dynamically change over time. This results in a method that provides the hierarchy of the relationships among components, which can help us to understand the low level functional structure of the system and to elucidate potential hierarchical control. As a proof of concept, we apply the algorithm to the epidermal growth factor signal transduction pathway, and to the C3 photosynthesis pathway. We identify primary relationships among components that are in agreement with previous computational decomposition studies, and identify secondary relationships that uncover connections among components that current computational approaches were unable to reveal.
Glubb, Dylan M.; Johnatty, Sharon E.; Quinn, Michael C.J.; O’Mara, Tracy A.; Tyrer, Jonathan P.; Gao, Bo; Fasching, Peter A.; Beckmann, Matthias W.; Lambrechts, Diether; Vergote, Ignace; Velez Edwards, Digna R.; Beeghly-Fadiel, Alicia; Benitez, Javier; Garcia, Maria J.; Goodman, Marc T.; Thompson, Pamela J.; Dörk, Thilo; Dürst, Matthias; Modungo, Francesmary; Moysich, Kirsten; Heitz, Florian; du Bois, Andreas; Pfisterer, Jacobus; Hillemanns, Peter; Karlan, Beth Y.; Lester, Jenny; Goode, Ellen L.; Cunningham, Julie M.; Winham, Stacey J.; Larson, Melissa C.; McCauley, Bryan M.; Kjær, Susanne Krüger; Jensen, Allan; Schildkraut, Joellen M.; Berchuck, Andrew; Cramer, Daniel W.; Terry, Kathryn L.; Salvesen, Helga B.; Bjorge, Line; Webb, Penny M.; Grant, Peter; Pejovic, Tanja; Moffitt, Melissa; Hogdall, Claus K.; Hogdall, Estrid; Paul, James; Glasspool, Rosalind; Bernardini, Marcus; Tone, Alicia; Huntsman, David; Woo, Michelle; Group, AOCS; deFazio, Anna; Kennedy, Catherine J.; Pharoah, Paul D.P.; MacGregor, Stuart; Chenevix-Trench, Georgia
2017-01-01
We previously identified associations with ovarian cancer outcome at five genetic loci. To identify putatively causal genetic variants and target genes, we prioritized two ovarian outcome loci (1q22 and 19p12) for further study. Bioinformatic and functional genetic analyses indicated that MEF2D and ZNF100 are targets of candidate outcome variants at 1q22 and 19p12, respectively. At 19p12, the chromatin interaction of a putative regulatory element with the ZNF100 promoter region correlated with candidate outcome variants. At 1q22, putative regulatory elements enhanced MEF2D promoter activity and haplotypes containing candidate outcome variants modulated these effects. In a public dataset, MEF2D and ZNF100 expression were both associated with ovarian cancer progression-free or overall survival time. In an extended set of 6,162 epithelial ovarian cancer patients, we found that functional candidates at the 1q22 and 19p12 loci, as well as other regional variants, were nominally associated with patient outcome; however, no associations reached our threshold for statistical significance (p<1×10-5). Larger patient numbers will be needed to convincingly identify any true associations at these loci. PMID:29029385
Bioinformatic analysis of the nucleolus.
Leung, Anthony K L; Andersen, Jens S; Mann, Matthias; Lamond, Angus I
2003-12-15
The nucleolus is a plurifunctional, nuclear organelle, which is responsible for ribosome biogenesis and many other functions in eukaryotes, including RNA processing, viral replication and tumour suppression. Our knowledge of the human nucleolar proteome has been expanded dramatically by the two recent MS studies on isolated nucleoli from HeLa cells [Andersen, Lyon, Fox, Leung, Lam, Steen, Mann and Lamond (2002) Curr. Biol. 12, 1-11; Scherl, Coute, Deon, Calle, Kindbeiter, Sanchez, Greco, Hochstrasser and Diaz (2002) Mol. Biol. Cell 13, 4100-4109]. Nearly 400 proteins were identified within the nucleolar proteome so far in humans. Approx. 12% of the identified proteins were previously shown to be nucleolar in human cells and, as expected, nearly all of the known housekeeping proteins required for ribosome biogenesis were identified in these analyses. Surprisingly, approx. 30% represented either novel or uncharacterized proteins. This review focuses on how to apply the derived knowledge of this newly recognized nucleolar proteome, such as their amino acid/peptide composition and their homologies across species, to explore the function and dynamics of the nucleolus, and suggests ways to identify, in silico, possible functions of the novel/uncharacterized proteins and potential interaction networks within the human nucleolus, or between the nucleolus and other nuclear organelles, by drawing resources from the public domain.
Inostroza-Blancheteau, Claudio; Aquea, Felipe; Reyes-Díaz, Marjorie; Alberdi, Miren; Arce-Johnson, Patricio
2011-09-01
To investigate the molecular mechanisms of Al(3+)-stress in blueberry, a cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis was employed to identify Al-regulated genes in roots of contrasting genotypes of highbush blueberry (Brigitta, Al(3+)-resistant and Bluegold, Al(3+)-sensitive). Plants grown in hydroponic culture were treated with 0 and 100 μM Al(3+) and collected at different times over 48 h. Seventy transcript-derived fragments (TDFs) were identified as being Al(3+) responsive, 31 of which showed significant homology to genes with known or putative functions. Twelve TDFs were homologous to uncharacterized genes and 27 did not have significant matches. The expression pattern of several of the genes with known functions in other species was confirmed by quantitative relative real-time RT-PCR. Twelve genes of known or putative function were related to cellular metabolism, nine associated to stress responses and other transcription and transport facilitation processes. Genes involved in signal transduction, photosynthetic and energy processes were also identified, suggesting that a multitude of processes are implicated in the Al(3+)-stress response as reported previously for other species. The Al(3+)-stress response genes identified in this study could be involved in Al(3+)-resistance in woody plants.
Loya, Travis J; O'Rourke, Thomas W; Reines, Daniel
2012-08-01
The yeast IMD2 gene encodes an enzyme involved in GTP synthesis. Its expression is controlled by guanine nucleotides through a set of alternate start sites and an intervening transcriptional terminator. In the off state, transcription results in a short non-coding RNA that starts upstream of the gene. Transcription terminates via the Nrd1-Nab3-Sen1 complex and is degraded by the nuclear exosome. Using a sensitive terminator read-through assay, we identified trans-acting Terminator Override (TOV) genes that operate this terminator. Four genes were identified: the RNA polymerase II phosphatase SSU72, the RNA polymerase II binding protein PCF11, the TRAMP subunit TRF4 and the hnRNP-like, NAB3. The TOV phenotype can be explained by the loss of function of these gene products as described in models in which termination and RNA degradation are coupled to the phosphorylation state of RNA polymerase II's repeat domain. The most interesting mutations were those found in NAB3, which led to the finding that the removal of merely three carboxy-terminal amino acids compromised Nab3's function. This region of previously unknown function is distant from the protein's well-known RNA binding and Nrd1 binding domains. Structural homology modeling suggests this Nab3 'tail' forms an α-helical multimerization domain that helps assemble it onto an RNA substrate.
Curson, Andrew R. J.; Burns, Oliver J.; Voget, Sonja; Daniel, Rolf; Todd, Jonathan D.; McInnis, Kathryn; Wexler, Margaret; Johnston, Andrew W. B.
2014-01-01
Acrylate is produced in significant quantities through the microbial cleavage of the highly abundant marine osmoprotectant dimethylsulfoniopropionate, an important process in the marine sulfur cycle. Acrylate can inhibit bacterial growth, likely through its conversion to the highly toxic molecule acrylyl-CoA. Previous work identified an acrylyl-CoA reductase, encoded by the gene acuI, as being important for conferring on bacteria the ability to grow in the presence of acrylate. However, some bacteria lack acuI, and, conversely, many bacteria that may not encounter acrylate in their regular environments do contain this gene. We therefore sought to identify new genes that might confer tolerance to acrylate. To do this, we used functional screening of metagenomic and genomic libraries to identify novel genes that corrected an E. coli mutant that was defective in acuI, and was therefore hyper-sensitive to acrylate. The metagenomic libraries yielded two types of genes that overcame this toxicity. The majority encoded enzymes resembling AcuI, but with significant sequence divergence among each other and previously ratified AcuI enzymes. One other metagenomic gene, arkA, had very close relatives in Bacillus and related bacteria, and is predicted to encode an enoyl-acyl carrier protein reductase, in the same family as FabK, which catalyses the final step in fatty-acid biosynthesis in some pathogenic Firmicute bacteria. A genomic library of Novosphingobium, a metabolically versatile alphaproteobacterium that lacks both acuI and arkA, yielded vutD and vutE, two genes that, together, conferred acrylate resistance. These encode sequential steps in the oxidative catabolism of valine in a pathway in which, significantly, methacrylyl-CoA is a toxic intermediate. These findings expand the range of bacteria for which the acuI gene encodes a functional acrylyl-CoA reductase, and also identify novel enzymes that can similarly function in conferring acrylate resistance, likely, again, through the removal of the toxic product acrylyl-CoA. PMID:24848004
Proteomic analysis of protein phosphatase Z1 from Candida albicans
Pfliegler, Walter P.; Petrényi, Katalin; Boros, Enikő; Pócsi, István; Tőzsér, József; Dombrádi, Viktor
2017-01-01
Protein phosphatase Z is a “novel type” fungus specific serine/threonine protein phosphatase. Previously our research group identified the CaPPZ1 gene in the opportunistic pathogen Candida albicans and reported that the gene deletion had several important physiological consequences. In order to reveal the protein targets and the associated mechanisms behind the functions of the phosphatase a proteomic method was adopted for the comparison of the cappz1 deletion mutant and the genetically matching QMY23 control strain. Proteins extracted from the control and deletion mutant strains were separated by two-dimensional gel electrophoresis and the protein spots were stained with RuBPS and Pro-Q Diamond in order to visualize the total proteome and the phosphoproteome, respectively. The alterations in spot intensities were determined by densitometry and were analysed with the Delta2D (Decodon) software. Spots showing significantly different intensities between the mutant and control strains were excised from the gels and were digested with trypsin. The resulting peptides were identified by LC-MS/MS mass spectrometry. As many as 15 protein spots were found that exhibited significant changes in their intensity upon the deletion of the phosphatase and 20 phosphoproteins were identified in which the level of phosphorylation was modified significantly in the mutant. In agreement with previous findings we found that the affected proteins function in protein synthesis, oxidative stress response, regulation of morphology and metabolism. Among these proteins we identified two potential CaPpz1 substrates (Eft2 and Rpp0) that may regulate the elongation step of translation. RT-qPCR experiments revealed that the expression of the genes coding for the affected proteins was not altered significantly. Thus, the absence of CaPpz1 exerted its effects via protein synthesis/degradation and phosphorylation/dephosphorylation. In addition, our proteomics data strongly suggested a role for CaPpz1 in biofilm formation, was confirmed experimentally. Thus our unbiased proteomic approach lead to the discovery of a novel function for this phosphatase in C. albicans. PMID:28837603
Eisenmann, D M; Kim, S K
2000-11-01
The Caenorhabditis elegans vulva develops from the progeny of three vulval precursor cells (VPCs) induced to divide and differentiate by a signal from the somatic gonad. Evolutionarily conserved Ras and Notch extracellular signaling pathways are known to function during this process. To identify novel loci acting in vulval development, we carried out a genetic screen for mutants having a protruding-vulva (Pvl) mutant phenotype. Here we report the initial genetic characterization of several novel loci: bar-1, pvl-4, pvl-5, and pvl-6. In addition, on the basis of their Pvl phenotypes, we show that the previously identified genes lin-26, mom-3/mig-14, egl-18, and sem-4 also function during vulval development. Our characterization indicates that (1) pvl-4 and pvl-5 are required for generation/survival of the VPCs; (2) bar-1, mom-3/mig-14, egl-18, and sem-4 play a role in VPC fate specification; (3) lin-26 is required for proper VPC fate execution; and (4) pvl-6 acts during vulval morphogenesis. In addition, two of these genes, bar-1 and mom-3/mig-14, are known to function in processes regulated by Wnt signaling, suggesting that a Wnt signaling pathway is acting during vulval development.
Pillai, Viju Vijayan; Weber, Darren M; Phinney, Brett S; Selvaraj, Vimal
2017-01-01
The oviductal microenvironment is a site for key events that involve gamete maturation, fertilization and early embryo development. Secretions into the oviductal lumen by either the lining epithelium or by transudation of plasma constituents are known to contain elements conducive for reproductive success. Although previous studies have identified some of these factors involved in reproduction, knowledge of secreted proteins in the oviductal fluid remains rudimentary with limited definition of function even in extensively studied species like cattle. In this study, we used a shotgun proteomics approach followed by bioinformatics sequence prediction to identify secreted proteins present in the bovine oviductal fluid (ex vivo) and secretions from the bovine oviductal epithelial cells (in vitro). From a total of 2087 proteins identified, 266 proteins could be classified as secreted, 109 (41%) of which were common for both in vivo and in vitro conditions. Pathway analysis indicated different classes of proteins that included growth factors, metabolic regulators, immune modulators, enzymes, and extracellular matrix components. Functional analysis revealed mechanisms in the oviductal lumen linked to immune homeostasis, gamete maturation, fertilization and early embryo development. These results point to several novel components that work together with known elements mediating functional homeostasis, and highlight the diversity of machinery associated with oviductal physiology and early events in cattle fertility.
The neural correlates of risk propensity in males and females using resting-state fMRI
Zhou, Yuan; Li, Shu; Dunn, John; Li, Huandong; Qin, Wen; Zhu, Maohu; Rao, Li-Lin; Song, Ming; Yu, Chunshui; Jiang, Tianzi
2014-01-01
Men are more risk prone than women, but the underlying basis remains unclear. To investigate this question, we developed a trait-like measure of risk propensity which we correlated with resting-state functional connectivity to identify sex differences. Specifically, we used short- and long-range functional connectivity densities to identify associated brain regions and examined their functional connectivities in resting-state functional magnetic resonance imaging (fMRI) data collected from a large sample of healthy young volunteers. We found that men had a higher level of general risk propensity (GRP) than women. At the neural level, although they shared a common neural correlate of GRP in a network centered at the right inferior frontal gyrus, men and women differed in a network centered at the right secondary somatosensory cortex, which included the bilateral dorsal anterior/middle insular cortices and the dorsal anterior cingulate cortex. In addition, men and women differed in a local network centered at the left inferior orbitofrontal cortex. Most of the regions identified by this resting-state fMRI study have been previously implicated in risk processing when people make risky decisions. This study provides a new perspective on the brain-behavioral relationships in risky decision making and contributes to our understanding of sex differences in risk propensity. PMID:24478649
Oyserman, Ben O.; Noguera, Daniel R.; del Rio, Tijana Glavina; ...
2015-11-10
Previous studies on enhanced biological phosphorus removal (EBPR) have focused on reconstructing genomic blueprints for the model polyphosphate-accumulating organism Candidatus Accumulibacter phosphatis. Here, a time series metatranscriptome generated from enrichment cultures of Accumulibacter was used to gain insight into anerobic/aerobic metabolism and regulatory mechanisms within an EBPR cycle. Co-expressed gene clusters were identified displaying ecologically relevant trends consistent with batch cycle phases. Transcripts displaying increased abundance during anerobic acetate contact were functionally enriched in energy production and conversion, including upregulation of both cytoplasmic and membrane-bound hydrogenases demonstrating the importance of transcriptional regulation to manage energy and electron flux during anerobicmore » acetate contact. We hypothesized and demonstrated hydrogen production after anerobic acetate contact, a previously unknown strategy for Accumulibacter to maintain redox balance. Genes involved in anerobic glycine utilization were identified and phosphorus release after anerobic glycine contact demonstrated, suggesting that Accumulibacter routes diverse carbon sources to acetyl-CoA formation via previously unrecognized pathways. A comparative genomics analysis of sequences upstream of co-expressed genes identified two statistically significant putative regulatory motifs. One palindromic motif was identified upstream of genes involved in PHA synthesis and acetate activation and is hypothesized to be a phaR binding site, hence representing a hypothetical PHA modulon. A second motif was identified ~35 base pairs (bp) upstream of a large and diverse array of genes and hence may represent a sigma factor binding site. As a result, this analysis provides a basis and framework for further investigations into Accumulibacter metabolism and the reconstruction of regulatory networks in uncultured organisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyserman, Ben O.; Noguera, Daniel R.; del Rio, Tijana Glavina
Previous studies on enhanced biological phosphorus removal (EBPR) have focused on reconstructing genomic blueprints for the model polyphosphate-accumulating organism Candidatus Accumulibacter phosphatis. Here, a time series metatranscriptome generated from enrichment cultures of Accumulibacter was used to gain insight into anerobic/aerobic metabolism and regulatory mechanisms within an EBPR cycle. Co-expressed gene clusters were identified displaying ecologically relevant trends consistent with batch cycle phases. Transcripts displaying increased abundance during anerobic acetate contact were functionally enriched in energy production and conversion, including upregulation of both cytoplasmic and membrane-bound hydrogenases demonstrating the importance of transcriptional regulation to manage energy and electron flux during anerobicmore » acetate contact. We hypothesized and demonstrated hydrogen production after anerobic acetate contact, a previously unknown strategy for Accumulibacter to maintain redox balance. Genes involved in anerobic glycine utilization were identified and phosphorus release after anerobic glycine contact demonstrated, suggesting that Accumulibacter routes diverse carbon sources to acetyl-CoA formation via previously unrecognized pathways. A comparative genomics analysis of sequences upstream of co-expressed genes identified two statistically significant putative regulatory motifs. One palindromic motif was identified upstream of genes involved in PHA synthesis and acetate activation and is hypothesized to be a phaR binding site, hence representing a hypothetical PHA modulon. A second motif was identified ~35 base pairs (bp) upstream of a large and diverse array of genes and hence may represent a sigma factor binding site. As a result, this analysis provides a basis and framework for further investigations into Accumulibacter metabolism and the reconstruction of regulatory networks in uncultured organisms.« less
Wei, Wei; Luo, Weijia; Wu, Feilin; Peng, Xuehui; Zhang, Yao; Zhang, Manli; Zhao, Yan; Su, Na; Qi, YingZi; Chen, Lingsheng; Zhang, Yangjun; Wen, Bo; He, Fuchu; Xu, Ping
2016-11-04
Since 2012, missing proteins (MPs) investigation has been one of the critical missions of Chromosome-Centric Human Proteome Project (C-HPP) through various biochemical strategies. On the basis of our previous testis MPs study, faster scanning and higher resolution mass-spectrometry-based proteomics might be conducive to MPs exploration, especially for low-abundance proteins. In this study, Q-Exactive HF (HF) was used to survey proteins from the same testis tissues separated by two separating methods (tricine- and glycine-SDS-PAGE), as previously described. A total of 8526 proteins were identified, of which more low-abundance proteins were uniquely detected in HF data but not in our previous LTQ Orbitrap Velos (Velos) reanalysis data. Further transcriptomics analysis showed that these uniquely identified proteins by HF also had lower expression at the mRNA level. Of the 81 total identified MPs, 74 and 39 proteins were listed as MPs in HF and Velos data sets, respectively. Among the above MPs, 47 proteins (43 neXtProt PE2 and 4 PE3) were ranked as confirmed MPs after verifying with the stringent spectra match and isobaric and single amino acid variants filtering. Functional investigation of these 47 MPs revealed that 11 MPs were testis-specific proteins and 7 MPs were involved in spermatogenesis process. Therefore, we concluded that higher scanning speed and resolution of HF might be factors for improving the low-abundance MP identification in future C-HPP studies. All mass-spectrometry data from this study have been deposited in the ProteomeXchange with identifier PXD004092.
Identification of Novel Interacting Partners of Sirtuin6
Polyakova, Oxana; Borman, Satty; Grimley, Rachel; Vamathevan, Jessica; Hayes, Brian; Solari, Roberto
2012-01-01
SIRT6 is a member of the Sirtuin family of histone deacetylases that has been implicated in inflammatory, aging and metabolic pathways. Some of its actions have been suggested to be via physical interaction with NFκB and HIF1α and transcriptional regulation through its histone deacetylase activity. Our previous studies have investigated the histone deacetylase activity of SIRT6 and explored its ability to regulate the transcriptional responses to an inflammatory stimulus such as TNFα. In order to develop a greater understanding of SIRT6 function we have sought to identify SIRT6 interacting proteins by both yeast-2-hybrid and co-immunoprecipitation studies. We report a number of interacting partners which strengthen previous findings that SIRT6 functions in base excision repair (BER), and novel interactors which suggest a role in nucleosome and chromatin remodeling, the cell cycle and NFκB biology. PMID:23240041
Chasman, Daniel I; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary F; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid B; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Kao, W H Linda; Fox, Caroline S; Köttgen, Anna
2012-12-15
In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.
Chasman, Daniel I.; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A.; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary F.; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid B.; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Kao, W.H. Linda; Fox, Caroline S.; Köttgen, Anna
2012-01-01
In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10−9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10−4–2.2 × 10−7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general. PMID:22962313
Fu, Lili; Han, Bingying; Tan, Deguan; Wang, Meng; Ding, Mei; Zhang, Jiaming
2016-02-22
Myrosinases are β-thioglucoside glucohydrolases and serve as defense mechanisms against insect pests and pathogens by producing toxic compounds. AtTGG6 in Arabidopsis thaliana was previously reported to be a myrosinase pseudogene but specifically expressed in pollen. However, we found that AlTGG6, an ortholog to AtTGG6 in A. lyrata (an outcrossing relative of A. thaliana) was functional, suggesting that functional AtTGG6 alleles may still exist in A. thaliana. AtTGG6 alleles in 29 A. thaliana ecotypes were cloned and sequenced. Results indicate that ten alleles were functional and encoded Myr II type myrosinase of 512 amino acids, and myrosinase activity was confirmed by overexpressing AtTGG6 in Pichia pastoris. However, the 19 other ecotypes had disabled alleles with highly polymorphic frame-shift mutations and diversified sequences. Thirteen frame-shift mutation types were identified, which occurred independently many times in the evolutionary history within a few thousand years. The functional allele was expressed specifically in pollen similar to the disabled alleles but at a higher expression level, suggesting its role in defense of pollen against insect pests such as pollen beetles. However, the defense function may have become less critical after A. thaliana evolved to self-fertilization, and thus resulted in loss of function in most ecotypes.
Proteins analysed as virtual knots
NASA Astrophysics Data System (ADS)
Alexander, Keith; Taylor, Alexander J.; Dennis, Mark R.
2017-02-01
Long, flexible physical filaments are naturally tangled and knotted, from macroscopic string down to long-chain molecules. The existence of knotting in a filament naturally affects its configuration and properties, and may be very stable or disappear rapidly under manipulation and interaction. Knotting has been previously identified in protein backbone chains, for which these mechanical constraints are of fundamental importance to their molecular functionality, despite their being open curves in which the knots are not mathematically well defined; knotting can only be identified by closing the termini of the chain somehow. We introduce a new method for resolving knotting in open curves using virtual knots, which are a wider class of topological objects that do not require a classical closure and so naturally capture the topological ambiguity inherent in open curves. We describe the results of analysing proteins in the Protein Data Bank by this new scheme, recovering and extending previous knotting results, and identifying topological interest in some new cases. The statistics of virtual knots in protein chains are compared with those of open random walks and Hamiltonian subchains on cubic lattices, identifying a regime of open curves in which the virtual knotting description is likely to be important.
Proteins analysed as virtual knots
Alexander, Keith; Taylor, Alexander J.; Dennis, Mark R.
2017-01-01
Long, flexible physical filaments are naturally tangled and knotted, from macroscopic string down to long-chain molecules. The existence of knotting in a filament naturally affects its configuration and properties, and may be very stable or disappear rapidly under manipulation and interaction. Knotting has been previously identified in protein backbone chains, for which these mechanical constraints are of fundamental importance to their molecular functionality, despite their being open curves in which the knots are not mathematically well defined; knotting can only be identified by closing the termini of the chain somehow. We introduce a new method for resolving knotting in open curves using virtual knots, which are a wider class of topological objects that do not require a classical closure and so naturally capture the topological ambiguity inherent in open curves. We describe the results of analysing proteins in the Protein Data Bank by this new scheme, recovering and extending previous knotting results, and identifying topological interest in some new cases. The statistics of virtual knots in protein chains are compared with those of open random walks and Hamiltonian subchains on cubic lattices, identifying a regime of open curves in which the virtual knotting description is likely to be important. PMID:28205562
NASA Astrophysics Data System (ADS)
Flores, Christopher E.
2016-12-01
The Beam Energy Scan (BES) at the Relativistic Heavy-Ion Collider was proposed to characterize the properties of the medium produced in heavy-ion interactions over a broad range of baryon chemical potential. The aptitude of the STAR detector for mid-rapidity measurements has previously been leveraged to measure identified particle yields and spectra to extract bulk properties for the BES energies for | y | ≤ 0.1. However, to extract information on expansion dynamics and full phase space particle production, it is necessary to study identified particle rapidity density distributions. We present the first rapidity density distributions of identified pions from Au+Au collisions at √{sNN} = 7.7 , 11.5, and 19.6 GeV from the BES program as measured by the STAR detector. We use these distributions to obtain the full phase space yields of the pions to provide additional information of the system's chemistry. Further, we report the width of the rapidity density distributions compared to the width expected from Landau hydrodynamics. Finally, we interpret the results as a function of collision energy and discuss them in the context of previous energy scans done at the AGS and SPS.
ERIC Educational Resources Information Center
Henderson, John M.; Larson, Christine L.; Zhu, David C.
2008-01-01
We used fMRI to directly compare activation in two cortical regions previously identified as relevant to real-world scene processing: retrosplenial cortex and a region of posterior parahippocampal cortex functionally defined as the parahippocampal place area (PPA). We compared activation in these regions to full views of scenes from a global…
USDA-ARS?s Scientific Manuscript database
Alternanthera mosaic virus (AltMV) triple gene block 3 (TGB3) protein is involved in viral movement. AltMV TGB3 subcellular localization was previously shown to be distinct from that of Potato virus X (PVX) TGB3, and a chloroplast binding domain identified; veinal necrosis and chloroplast vesiculati...
Rajagopala, S. V.; Blazie, S. M.; Parrish, J. R.; Khuri, S.; Finley, R. L.
2017-01-01
ABSTRACT The functions of roughly a third of all proteins in Streptococcus pneumoniae, a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein’s function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae. We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae, the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins. PMID:28744484
NASA Astrophysics Data System (ADS)
Yao, Shuo; Marsch, Eckart; Tu, Chuan-Yi; Schwenn, Rainer
2010-05-01
This work presents in situ solar wind observations of three magnetic clouds (MCs) that contain cold high-density material when Helios 2 was located at 0.3 AU on 9 May 1979, 0.5 AU on 30 March 1976, and 0.7 AU on 24 December 1978. In the cold high-density regions embedded in the interplanetary coronal mass ejections we find (1) that the number density of protons is higher than in other regions inside the magnetic cloud, (2) the possible existence of He+, (3) that the thermal velocity distribution functions are more isotropic and appear to be colder than in the other regions of the MC, and the proton temperature is lower than that of the ambient plasma, and (4) that the associated magnetic field configuration can for all three MC events be identified as a flux rope. This cold high-density region is located at the polarity inversion line in the center of the bipolar structure of the MC magnetic field (consistent with previous solar observation work that found that a prominence lies over the neutral line of the related bipolar solar magnetic field). Specifically, for the first magnetic cloud event on 8 May 1979, a coronal mass ejection (CME) was related to an eruptive prominence previously reported as a result of the observation of Solwind (P78-1). Therefore, we identify the cold and dense region in the MC as the prominence material. It is the first time that prominence ejecta were identified by both the plasma and magnetic field features inside 1 AU, and it is also the first time that the thermal ion velocity distribution functions were used to investigate the microstate of the prominence material. Moreover, from our three cases, we also found that this material tended to fall behind the magnetic cloud and become smaller as it propagated farther away from the Sun, which confirms speculations in previous work. Overall, our in situ observations are consistent with three-part CME models.
Arends, Jan; Griego, Marcena; Thomanek, Nikolas; Lindemann, Claudia; Kutscher, Blanka; Meyer, Helmut E; Narberhaus, Franz
2018-04-30
Controlling the cellular abundance and proper function of proteins by proteolysis is a universal process in all living organisms. In Escherichia coli, the ATP-dependent Lon protease is crucial for protein quality control and regulatory processes. To understand how diverse substrates are selected and degraded, unbiased global approaches are needed. We employed a quantitative Super-SILAC mass spectrometry approach and compared the proteomes of a lon mutant and a strain producing the protease to discover Lon-dependent physiological functions. To identify Lon substrates, we took advantage of a Lon trapping variant, which is able to translocate substrates but unable to degrade them. Lon-associated proteins were identified by label-free LC-MS/MS. The combination of both approaches revealed a total of 14 novel Lon substrates. Besides the identification of known pathways affected by Lon, for example the superoxide-stress response, our cumulative data suggests previously unrecognized fundamental functions of Lon in sulfur assimilation, nucleotide biosynthesis, amino acid and central energy metabolism. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
2014-01-01
Background The use of cold-active enzymes has many advantages, including reduced energy consumption and easy inactivation. The ikaite columns of SW Greenland are permanently cold (4-6°C) and alkaline (above pH 10), and the microorganisms living there and their enzymes are adapted to these conditions. Since only a small fraction of the total microbial diversity can be cultured in the laboratory, a combined approach involving functional screening of a strain collection and a metagenomic library was undertaken for discovery of novel enzymes from the ikaite columns. Results A strain collection with 322 cultured isolates was screened for enzymatic activities identifying a large number of enzyme producers, with a high re-discovery rate to previously characterized strains. A functional expression library established in Escherichia coli identified a number of novel cold-active enzymes. Both α-amylases and β-galactosidases were characterized in more detail with respect to temperature and pH profiles and one of the β-galactosidases, BGalI17E2, was able to hydrolyze lactose at 5°C. A metagenome sequence of the expression library indicated that the majority of enzymatic activities were not detected by functional expression. Phylogenetic analysis showed that different bacterial communities were targeted with the culture dependent and independent approaches and revealed the bias of multiple displacement amplification (MDA) of DNA isolated from complex microbial communities. Conclusions Many cold- and/or alkaline-active enzymes of industrial relevance were identified in the culture based approach and the majority of the enzyme-producing isolates were closely related to previously characterized strains. The function-based metagenomic approach, on the other hand, identified several enzymes (β-galactosidases, α-amylases and a phosphatase) with low homology to known sequences that were easily expressed in the production host E. coli. The β-galactosidase BGalI17E2 was able to hydrolyze lactose at low temperature, suggesting a possibly use in the dairy industry for this enzyme. The two different approaches complemented each other by targeting different microbial communities, highlighting the usefulness of combining methods for bioprospecting. Finally, we document here that ikaite columns constitute an important source of cold- and/or alkaline-active enzymes with industrial application potential. PMID:24886068
Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter
2014-05-20
The use of cold-active enzymes has many advantages, including reduced energy consumption and easy inactivation. The ikaite columns of SW Greenland are permanently cold (4-6°C) and alkaline (above pH 10), and the microorganisms living there and their enzymes are adapted to these conditions. Since only a small fraction of the total microbial diversity can be cultured in the laboratory, a combined approach involving functional screening of a strain collection and a metagenomic library was undertaken for discovery of novel enzymes from the ikaite columns. A strain collection with 322 cultured isolates was screened for enzymatic activities identifying a large number of enzyme producers, with a high re-discovery rate to previously characterized strains. A functional expression library established in Escherichia coli identified a number of novel cold-active enzymes. Both α-amylases and β-galactosidases were characterized in more detail with respect to temperature and pH profiles and one of the β-galactosidases, BGalI17E2, was able to hydrolyze lactose at 5°C. A metagenome sequence of the expression library indicated that the majority of enzymatic activities were not detected by functional expression. Phylogenetic analysis showed that different bacterial communities were targeted with the culture dependent and independent approaches and revealed the bias of multiple displacement amplification (MDA) of DNA isolated from complex microbial communities. Many cold- and/or alkaline-active enzymes of industrial relevance were identified in the culture based approach and the majority of the enzyme-producing isolates were closely related to previously characterized strains. The function-based metagenomic approach, on the other hand, identified several enzymes (β-galactosidases, α-amylases and a phosphatase) with low homology to known sequences that were easily expressed in the production host E. coli. The β-galactosidase BGalI17E2 was able to hydrolyze lactose at low temperature, suggesting a possibly use in the dairy industry for this enzyme. The two different approaches complemented each other by targeting different microbial communities, highlighting the usefulness of combining methods for bioprospecting. Finally, we document here that ikaite columns constitute an important source of cold- and/or alkaline-active enzymes with industrial application potential.
EXPLORING FUNCTIONAL CONNECTIVITY IN FMRI VIA CLUSTERING.
Venkataraman, Archana; Van Dijk, Koene R A; Buckner, Randy L; Golland, Polina
2009-04-01
In this paper we investigate the use of data driven clustering methods for functional connectivity analysis in fMRI. In particular, we consider the K-Means and Spectral Clustering algorithms as alternatives to the commonly used Seed-Based Analysis. To enable clustering of the entire brain volume, we use the Nyström Method to approximate the necessary spectral decompositions. We apply K-Means, Spectral Clustering and Seed-Based Analysis to resting-state fMRI data collected from 45 healthy young adults. Without placing any a priori constraints, both clustering methods yield partitions that are associated with brain systems previously identified via Seed-Based Analysis. Our empirical results suggest that clustering provides a valuable tool for functional connectivity analysis.
Comprehensive proteomic analysis of the human spliceosome
NASA Astrophysics Data System (ADS)
Zhou, Zhaolan; Licklider, Lawrence J.; Gygi, Steven P.; Reed, Robin
2002-09-01
The precise excision of introns from pre-messenger RNA is performed by the spliceosome, a macromolecular machine containing five small nuclear RNAs and numerous proteins. Much has been learned about the protein components of the spliceosome from analysis of individual purified small nuclear ribonucleoproteins and salt-stable spliceosome `core' particles. However, the complete set of proteins that constitutes intact functional spliceosomes has yet to be identified. Here we use maltose-binding protein affinity chromatography to isolate spliceosomes in highly purified and functional form. Using nanoscale microcapillary liquid chromatography tandem mass spectrometry, we identify ~145 distinct spliceosomal proteins, making the spliceosome the most complex cellular machine so far characterized. Our spliceosomes comprise all previously known splicing factors and 58 newly identified components. The spliceosome contains at least 30 proteins with known or putative roles in gene expression steps other than splicing. This complexity may be required not only for splicing multi-intronic metazoan pre-messenger RNAs, but also for mediating the extensive coupling between splicing and other steps in gene expression.
Sapkota, Yadav; Steinthorsdottir, Valgerdur; Morris, Andrew P.; Fassbender, Amelie; Rahmioglu, Nilufer; De Vivo, Immaculata; Buring, Julie E.; Zhang, Futao; Edwards, Todd L.; Jones, Sarah; O, Dorien; Peterse, Daniëlle; Rexrode, Kathryn M.; Ridker, Paul M.; Schork, Andrew J.; MacGregor, Stuart; Martin, Nicholas G.; Becker, Christian M.; Adachi, Sosuke; Yoshihara, Kosuke; Enomoto, Takayuki; Takahashi, Atsushi; Kamatani, Yoichiro; Matsuda, Koichi; Kubo, Michiaki; Thorleifsson, Gudmar; Geirsson, Reynir T.; Thorsteinsdottir, Unnur; Wallace, Leanne M.; Werge, Thomas M.; Thompson, Wesley K.; Yang, Jian; Velez Edwards, Digna R.; Nyegaard, Mette; Low, Siew-Kee; Zondervan, Krina T.; Missmer, Stacey A.; D'Hooghe, Thomas; Montgomery, Grant W.; Chasman, Daniel I.; Stefansson, Kari; Tung, Joyce Y.; Nyholt, Dale R.
2017-01-01
Endometriosis is a heritable hormone-dependent gynecological disorder, associated with severe pelvic pain and reduced fertility; however, its molecular mechanisms remain largely unknown. Here we perform a meta-analysis of 11 genome-wide association case-control data sets, totalling 17,045 endometriosis cases and 191,596 controls. In addition to replicating previously reported loci, we identify five novel loci significantly associated with endometriosis risk (P<5 × 10−8), implicating genes involved in sex steroid hormone pathways (FN1, CCDC170, ESR1, SYNE1 and FSHB). Conditional analysis identified five secondary association signals, including two at the ESR1 locus, resulting in 19 independent single nucleotide polymorphisms (SNPs) robustly associated with endometriosis, which together explain up to 5.19% of variance in endometriosis. These results highlight novel variants in or near specific genes with important roles in sex steroid hormone signalling and function, and offer unique opportunities for more targeted functional research efforts. PMID:28537267
Franks, Robert P; Bory, Christopher T
2015-01-01
Research on implementation science has increased significantly over the past decade. In particular, psychologists have looked closely at the value and importance of bridging the gap between science and practice. As evidence-based practices (EBPs) become more prevalent, concrete mechanisms are needed to bring these scientifically supported treatments and interventions to community-based settings. Intermediary and purveyor organizations (IPOs) have emerged in recent years that specialize in bringing research to practice. Using a framework developed by Franks (), this descriptive study surveyed respondents that self-identified as IPOs and focused on identifying shared definitions, functions, and activities. Results indicated that seven descriptive roles previously identified were supported by this survey and many common shared activities, goals, and functions across these organizations were observed. Further, these organizations appear to be influenced by the growing field of implementation science. Limitations and implications of this study are discussed. © 2015 Wiley Periodicals, Inc.
Statistical Coupling Analysis-Guided Library Design for the Discovery of Mutant Luciferases.
Liu, Mira D; Warner, Elliot A; Morrissey, Charlotte E; Fick, Caitlyn W; Wu, Taia S; Ornelas, Marya Y; Ochoa, Gabriela V; Zhang, Brendan S; Rathbun, Colin M; Porterfield, William B; Prescher, Jennifer A; Leconte, Aaron M
2018-02-06
Directed evolution has proven to be an invaluable tool for protein engineering; however, there is still a need for developing new approaches to continue to improve the efficiency and efficacy of these methods. Here, we demonstrate a new method for library design that applies a previously developed bioinformatic method, Statistical Coupling Analysis (SCA). SCA uses homologous enzymes to identify amino acid positions that are mutable and functionally important and engage in synergistic interactions between amino acids. We use SCA to guide a library of the protein luciferase and demonstrate that, in a single round of selection, we can identify luciferase mutants with several valuable properties. Specifically, we identify luciferase mutants that possess both red-shifted emission spectra and improved stability relative to those of the wild-type enzyme. We also identify luciferase mutants that possess a >50-fold change in specificity for modified luciferins. To understand the mutational origin of these improved mutants, we demonstrate the role of mutations at N229, S239, and G246 in altered function. These studies show that SCA can be used to guide library design and rapidly identify synergistic amino acid mutations from a small library.
NASA Technical Reports Server (NTRS)
Hochstein, L. I.
1992-01-01
Halobacterium saccharovorum synthesized ATP in response to a pH shift from 8 to 6.2. Synthesis was inhibited by carbonyl cyanide m-chloro-phenylhydrazone, dicyclohexylcarbodiimide, and azide. Nitrate, an inhibitor of the membrane-bound ATPase previously isolated from this organism, did not inhibit ATP synthesis. N-Ethymaleimide, which also inhibited this ATPase, stimulated the production of ATP. These observations suggested that H. saccharovorum synthesized and hydrolysed ATP using different enzymes and that the vacuolar-like ATPase activity previously described in H. saccharovorum was an ATPase whose function is yet to be identified.
Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Zou, Lihua; Gould, Joshua; Saksena, Gordon; Stransky, Nicolas; Rangel-Escareño, Claudia; Fernandez-Lopez, Juan Carlos; Hidalgo-Miranda, Alfredo; Melendez-Zajgla, Jorge; Hernández-Lemus, Enrique; Schwarz-Cruz y Celis, Angela; Imaz-Rosshandler, Ivan; Ojesina, Akinyemi I.; Jung, Joonil; Pedamallu, Chandra S.; Lander, Eric S.; Habermann, Thomas M.; Cerhan, James R.; Shipp, Margaret A.; Getz, Gad; Golub, Todd R.
2012-01-01
To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease. PMID:22343534
Myosin1D is an evolutionarily conserved regulator of animal left-right asymmetry.
Juan, Thomas; Géminard, Charles; Coutelis, Jean-Baptiste; Cerezo, Delphine; Polès, Sophie; Noselli, Stéphane; Fürthauer, Maximilian
2018-05-16
The establishment of left-right (LR) asymmetry is fundamental to animal development, but the identification of a unifying mechanism establishing laterality across different phyla has remained elusive. A cilia-driven, directional fluid flow is important for symmetry breaking in numerous vertebrates, including zebrafish. Alternatively, LR asymmetry can be established independently of cilia, notably through the intrinsic chirality of the acto-myosin cytoskeleton. Here, we show that Myosin1D (Myo1D), a previously identified regulator of Drosophila LR asymmetry, is essential for the formation and function of the zebrafish LR organizer (LRO), Kupffer's vesicle (KV). Myo1D controls the orientation of LRO cilia and interacts functionally with the planar cell polarity (PCP) pathway component VanGogh-like2 (Vangl2), to shape a productive LRO flow. Our findings identify Myo1D as an evolutionarily conserved regulator of animal LR asymmetry, and show that functional interactions between Myo1D and PCP are central to the establishment of animal LR asymmetry.
Mancuso, David J; Sims, Harold F; Han, Xianlin; Jenkins, Christopher M; Guan, Shao Ping; Yang, Kui; Moon, Sung Ho; Pietka, Terri; Abumrad, Nada A; Schlesinger, Paul H; Gross, Richard W
2007-11-30
Previously, we identified a novel calcium-independent phospholipase, designated calcium-independent phospholipase A(2) gamma (iPLA(2)gamma), which possesses dual mitochondrial and peroxisomal subcellular localization signals. To identify the roles of iPLA(2)gamma in cellular bioenergetics, we generated mice null for the iPLA(2)gamma gene by eliminating the active site of the enzyme through homologous recombination. Mice null for iPLA(2)gamma display multiple bioenergetic dysfunctional phenotypes, including 1) growth retardation, 2) cold intolerance, 3) reduced exercise endurance, 4) greatly increased mortality from cardiac stress after transverse aortic constriction, 5) abnormal mitochondrial function with a 65% decrease in ascorbate-induced Complex IV-mediated oxygen consumption, and 6) a reduction in myocardial cardiolipin content accompanied by an altered cardiolipin molecular species composition. We conclude that iPLA(2)gamma is essential for maintaining efficient bioenergetic mitochondrial function through tailoring mitochondrial membrane lipid metabolism and composition.
Gut vagal sensory signaling regulates hippocampus function through multi-order pathways.
Suarez, Andrea N; Hsu, Ted M; Liu, Clarissa M; Noble, Emily E; Cortella, Alyssa M; Nakamoto, Emily M; Hahn, Joel D; de Lartigue, Guillaume; Kanoski, Scott E
2018-06-05
The vagus nerve is the primary means of neural communication between the gastrointestinal (GI) tract and the brain. Vagally mediated GI signals activate the hippocampus (HPC), a brain region classically linked with memory function. However, the endogenous relevance of GI-derived vagal HPC communication is unknown. Here we utilize a saporin (SAP)-based lesioning procedure to reveal that selective GI vagal sensory/afferent ablation in rats impairs HPC-dependent episodic and spatial memory, effects associated with reduced HPC neurotrophic and neurogenesis markers. To determine the neural pathways connecting the gut to the HPC, we utilize monosynaptic and multisynaptic virus-based tracing methods to identify the medial septum as a relay connecting the medial nucleus tractus solitarius (where GI vagal afferents synapse) to dorsal HPC glutamatergic neurons. We conclude that endogenous GI-derived vagal sensory signaling promotes HPC-dependent memory function via a multi-order brainstem-septal pathway, thereby identifying a previously unknown role for the gut-brain axis in memory control.
Neural network classification of myoelectric signal for prosthesis control.
Kelly, M F; Parker, P A; Scott, R N
1991-12-01
An alternate approach to deriving control for multidegree of freedom prosthetic arms is considered. By analyzing a single-channel myoelectric signal (MES), we can extract information that can be used to identify different contraction patterns in the upper arm. These contraction patterns are generated by subjects without previous training and are naturally associated with specific functions. Using a set of normalized MES spectral features, we can identify contraction patterns for four arm functions, specifically extension and flexion of the elbow and pronation and supination of the forearm. Performing identification independent of signal power is advantageous because this can then be used as a means for deriving proportional rate control for a prosthesis. An artificial neural network implementation is applied in the classification task. By using three single-layer perceptron networks, the MES is classified, with the spectral representations as input features. Trials performed on five subjects with normal limbs resulted in an average classification performance level of 85% for the four functions. Copyright © 1991. Published by Elsevier Ltd.
ABCE1 Is a Highly Conserved RNA Silencing Suppressor
Kärblane, Kairi; Gerassimenko, Jelena; Nigul, Lenne; Piirsoo, Alla; Smialowska, Agata; Vinkel, Kadri; Kylsten, Per; Ekwall, Karl; Swoboda, Peter; Truve, Erkki; Sarmiento, Cecilia
2015-01-01
ATP-binding cassette sub-family E member 1 (ABCE1) is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference. PMID:25659154
Cappola, Thomas P; Matkovich, Scot J; Wang, Wei; van Booven, Derek; Li, Mingyao; Wang, Xuexia; Qu, Liming; Sweitzer, Nancy K; Fang, James C; Reilly, Muredach P; Hakonarson, Hakon; Nerbonne, Jeanne M; Dorn, Gerald W
2011-02-08
Common heart failure has a strong undefined heritable component. Two recent independent cardiovascular SNP array studies identified a common SNP at 1p36 in intron 2 of the HSPB7 gene as being associated with heart failure. HSPB7 resequencing identified other risk alleles but no functional gene variants. Here, we further show no effect of the HSPB7 SNP on cardiac HSPB7 mRNA levels or splicing, suggesting that the SNP marks the position of a functional variant in another gene. Accordingly, we used massively parallel platforms to resequence all coding exons of the adjacent CLCNKA gene, which encodes the K(a) renal chloride channel (ClC-K(a)). Of 51 exonic CLCNKA variants identified, one SNP (rs10927887, encoding Arg83Gly) was common, in linkage disequilibrium with the heart failure risk SNP in HSPB7, and associated with heart failure in two independent Caucasian referral populations (n = 2,606 and 1,168; combined P = 2.25 × 10(-6)). Individual genotyping of rs10927887 in the two study populations and a third independent heart failure cohort (combined n = 5,489) revealed an additive allele effect on heart failure risk that is independent of age, sex, and prior hypertension (odds ratio = 1.27 per allele copy; P = 8.3 × 10(-7)). Functional characterization of recombinant wild-type Arg83 and variant Gly83 ClC-K(a) chloride channel currents revealed ≈ 50% loss-of-function of the variant channel. These findings identify a common, functionally significant genetic risk factor for Caucasian heart failure. The variant CLCNKA risk allele, telegraphed by linked variants in the adjacent HSPB7 gene, uncovers a previously overlooked genetic mechanism affecting the cardio-renal axis.
Pairett, Autum N.; Serb, Jeanne M.
2013-01-01
Background The eye has evolved across 13 separate lineages of molluscs. Yet, there have been very few studies examining the molecular machinary underlying eye function of this group, which is due, in part, to a lack of genomic resources. The scallop (Bivalvia: Pectinidae) represents a compeling molluscan model to study photoreception due to its morphologically novel and separately evolved mirror-type eye. We sequenced the adult eye transcriptome of two scallop species to: 1) identify the phototransduction pathway components; 2) identify any additional light detection functions; and 3) test the hypothesis that molluscs possess genes not found in other animal lineages. Results A total of 3,039 contigs from the bay scallop, Argopecten irradians and 26,395 contigs from the sea scallop, Placopecten magellanicus were produced by 454 sequencing. Targeted BLAST searches and functional annotation using Gene Ontology (GO) terms and KEGG pathways identified transcripts from three light detection systems: two phototransduction pathways and the circadian clock, a previously unrecognized function of the scallop eye. By comparing the scallop transcriptomes to molluscan and non-molluscan genomes, we discovered that a large proportion of the transcripts (7,776 sequences) may be specific to the scallop lineage. Nearly one-third of these contain transmembrane protein domains, suggesting these unannotated transcripts may be sensory receptors. Conclusions Our data provide the most comprehensive transcriptomic resource currently available from a single molluscan eye type. Candidate genes potentially involved in sensory reception were identified, and are worthy of further investigation. This resource, combined with recent phylogenetic and genomic data, provides a strong foundation for future investigations of the function and evolution of molluscan photosensory systems in this morphologically and taxonomically diverse phylum. PMID:23922823
Notch activates Wnt-4 signalling to control medio-lateral patterning of the pronephros.
Naylor, Richard W; Jones, Elizabeth A
2009-11-01
Previous studies have highlighted a role for the Notch signalling pathway during pronephrogenesis in the amphibian Xenopus laevis, and in nephron development in the mammalian metanephros, yet a mechanism for this function remains elusive. Here, we further the understanding of how Notch signalling patterns the early X. laevis pronephros anlagen, a function that might be conserved in mammalian nephron segmentation. Our results indicate that early phase pronephric Notch signalling patterns the medio-lateral axis of the dorso-anterior pronephros anlagen, permitting the glomus and tubules to develop in isolation. We show that this novel function acts through the Notch effector gene hrt1 by upregulating expression of wnt4. Wnt-4 then patterns the proximal pronephric anlagen to establish the specific compartments that span the medio-lateral axis. We also identified pronephric expression of lunatic fringe and radical fringe that is temporally and spatially appropriate for a role in regulating Notch signalling in the dorso-anterior region of the pronephros anlagen. On the basis of these results, along with data from previous publications, we propose a mechanism by which the Notch signalling pathway regulates a Wnt-4 function that patterns the proximal pronephric anlagen.
Wang, Lubin; Zou, Feng; Shao, Yongcong; Ye, Enmao; Jin, Xiao; Tan, Shuwen; Hu, Dewen; Yang, Zheng
2014-12-01
The default mode network (DMN) plays an important role in the physiopathology of schizophrenia. Previous studies have suggested that the cerebellum participates in higher-order cognitive networks such as the DMN. However, the specific contribution of the cerebellum to the DMN abnormalities in schizophrenia has yet to be established. In this study, we investigated cerebellar functional connectivity differences between 60 patients with schizophrenia and 60 healthy controls from a public resting-state fMRI database. Seed-based correlation analysis was performed by using seeds from the left Crus I, right Crus I and Lobule IX, which have previously been identified as being involved in the DMN. Our results revealed that, compared with the healthy controls, the patients showed significantly reduced cerebellar functional connectivity with the thalamus and several frontal regions including the middle frontal gyrus, anterior cingulate cortex, and supplementary motor area. Moreover, the positive correlations between the strength of frontocerebellar and thalamocerebellar functional connectivity observed in the healthy subjects were diminished in the patients. Our findings implicate disruptive changes of the fronto-thalamo-cerebellar circuit in schizophrenia, which may provide further evidence for the "cognitive dysmetria" concept of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Li M; Turner, Gregory H; Friedman, Robert M; Zhang, Na; Gore, John C; Roe, Anna W; Avison, Malcolm J
2007-08-22
Although blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to explore human brain function, questions remain regarding the ultimate spatial resolution of positive BOLD fMRI, and indeed the extent to which functional maps revealed by positive BOLD correlate spatially with maps obtained with other high-spatial-resolution mapping techniques commonly used in animals, such as optical imaging of intrinsic signal (OIS) and single-unit electrophysiology. Here, we demonstrate that the positive BOLD signal at 9.4T can reveal the fine topography of individual fingerpads in single-condition activation maps in nonhuman primates. These digit maps are similar to maps obtained from the same animal using intrinsic optical imaging. Furthermore, BOLD fMRI reliably resolved submillimeter spatial shifts in activation in area 3b previously identified with OIS (Chen et al., 2003) as neural correlates of the "funneling illusion." These data demonstrate that at high field, high-spatial-resolution topographic maps can be achieved using the positive BOLD signal, weakening previous notions regarding the spatial specificity of the positive BOLD signal.
Moniodis, Jessie; Jones, Christopher G; Barbour, E Liz; Plummer, Julie A; Ghisalberti, Emilio L; Bohlmann, Joerg
2015-05-01
The fragrant heartwood oil of West Australian sandalwood (Santalum spicatum) contains a mixture of sesquiterpene olefins and alcohols, including variable levels of the valuable sesquiterpene alcohols, α- and β-santalol, and often high levels of E,E-farnesol. Transcriptome analysis revealed sequences for a nearly complete set of genes of the sesquiterpenoid biosynthetic pathway in this commercially valuable sandalwood species. Transcriptome sequences were produced from heartwood xylem tissue of a farnesol-rich individual tree. From the assembly of 12,537 contigs, seven different terpene synthases (TPSs), several cytochromes P450, and allylic phosphatases were identified, as well as transcripts of the mevalonic acid and methylerythritol phosphate pathways. Five of the S. spicatum TPS sequences were previously unknown. The full-length cDNA of SspiTPS4 was cloned and the enzyme functionally characterized as a multi-product sesquisabinene B synthase, which complements previous characterization of santalene and bisabolol synthases in S. spicatum. While SspiTPS4 and previously cloned sandalwood TPSs do not explain the prevalence of E,E-farnesol in S. spicatum, the genes identified in this and previous work can form a basis for future studies on natural variation of sandalwood terpenoid oil profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Nocardiosis in immunocompromised host presenting as cellulitis].
Asgeirsson, Hilmar; Sigurdardottir, Bryndis
2010-06-01
Nocardia is a rare pathogen of mainly immunocomprised patients. Only two cases of nocardiosis have previously been identified in Iceland. A 92-year-old male on glucocorticoid therapy with metastatic bladder cancer presented with two weeks history of progressive swelling and erythema of the hand and deteriorating cognitive functioning. A brain lesion and pulmonary nodules were identified and Nocardia farcinia was cultured from a hand abscess. The patient was initially treated with trimethoprim/sulfamethoxazole but because of rapid deterioration and old age an end-of-life decision was made. This case of nocardiosis illustrates the importance of uncommon opportunistic infections in immunocompromised Icelandic patients.
ANCA: Anharmonic Conformational Analysis of Biomolecular Simulations.
Parvatikar, Akash; Vacaliuc, Gabriel S; Ramanathan, Arvind; Chennubhotla, S Chakra
2018-05-08
Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature of functional dynamics of biomolecules. Although anharmonic events are rare, long-timescale (μs-ms and beyond) simulations facilitate probing of such events. We have previously developed quasi-anharmonic analysis to resolve higher-order spatial correlations and characterize anharmonicity in biomolecular simulations. In this article, we have extended this toolbox to resolve higher-order temporal correlations and built a scalable Python package called anharmonic conformational analysis (ANCA). ANCA has modules to: 1) measure anharmonicity in the form of higher-order statistics and its variation as a function of time, 2) output a storyboard representation of the simulations to identify key anharmonic conformational events, and 3) identify putative anharmonic conformational substates and visualization of transitions between these substates. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A functional genomics screen in planarians reveals regulators of whole-brain regeneration.
Roberts-Galbraith, Rachel H; Brubacher, John L; Newmark, Phillip A
2016-09-09
Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea . Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal's ability to regenerate its brain.
PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants.
Jin, Jinpu; Tian, Feng; Yang, De-Chang; Meng, Yu-Qi; Kong, Lei; Luo, Jingchu; Gao, Ge
2017-01-04
With the goal of providing a comprehensive, high-quality resource for both plant transcription factors (TFs) and their regulatory interactions with target genes, we upgraded plant TF database PlantTFDB to version 4.0 (http://planttfdb.cbi.pku.edu.cn/). In the new version, we identified 320 370 TFs from 165 species, presenting a more comprehensive genomic TF repertoires of green plants. Besides updating the pre-existing abundant functional and evolutionary annotation for identified TFs, we generated three new types of annotation which provide more directly clues to investigate functional mechanisms underlying: (i) a set of high-quality, non-redundant TF binding motifs derived from experiments; (ii) multiple types of regulatory elements identified from high-throughput sequencing data; (iii) regulatory interactions curated from literature and inferred by combining TF binding motifs and regulatory elements. In addition, we upgraded previous TF prediction server, and set up four novel tools for regulation prediction and functional enrichment analyses. Finally, we set up a novel companion portal PlantRegMap (http://plantregmap.cbi.pku.edu.cn) for users to access the regulation resource and analysis tools conveniently. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Hu, Jialu; Kehr, Birte; Reinert, Knut
2014-02-15
Owing to recent advancements in high-throughput technologies, protein-protein interaction networks of more and more species become available in public databases. The question of how to identify functionally conserved proteins across species attracts a lot of attention in computational biology. Network alignments provide a systematic way to solve this problem. However, most existing alignment tools encounter limitations in tackling this problem. Therefore, the demand for faster and more efficient alignment tools is growing. We present a fast and accurate algorithm, NetCoffee, which allows to find a global alignment of multiple protein-protein interaction networks. NetCoffee searches for a global alignment by maximizing a target function using simulated annealing on a set of weighted bipartite graphs that are constructed using a triplet approach similar to T-Coffee. To assess its performance, NetCoffee was applied to four real datasets. Our results suggest that NetCoffee remedies several limitations of previous algorithms, outperforms all existing alignment tools in terms of speed and nevertheless identifies biologically meaningful alignments. The source code and data are freely available for download under the GNU GPL v3 license at https://code.google.com/p/netcoffee/.
Physiological genomics of response to soil drying in diverse Arabidopsis accessions.
Des Marais, David L; McKay, John K; Richards, James H; Sen, Saunak; Wayne, Tierney; Juenger, Thomas E
2012-03-01
Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species.
Physiological Genomics of Response to Soil Drying in Diverse Arabidopsis Accessions[W][OA
Des Marais, David L.; McKay, John K.; Richards, James H.; Sen, Saunak; Wayne, Tierney; Juenger, Thomas E.
2012-01-01
Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species. PMID:22408074
Genova, Jennifer L.; Fehon, Richard G.
2003-01-01
One essential function of epithelia is to form a barrier between the apical and basolateral surfaces of the epithelium. In vertebrate epithelia, the tight junction is the primary barrier to paracellular flow across epithelia, whereas in invertebrate epithelia, the septate junction (SJ) provides this function. In this study, we identify new proteins that are required for a functional paracellular barrier in Drosophila. In addition to the previously known components Coracle (COR) and Neurexin (NRX), we show that four other proteins, Gliotactin, Neuroglian (NRG), and both the α and β subunits of the Na+/K+ ATPase, are required for formation of the paracellular barrier. In contrast to previous reports, we demonstrate that the Na pump is not localized basolaterally in epithelial cells, but instead is concentrated at the SJ. Data from immunoprecipitation and somatic mosaic studies suggest that COR, NRX, NRG, and the Na+/K+ ATPase form an interdependent complex. Furthermore, the observation that NRG, a Drosophila homologue of vertebrate neurofascin, is an SJ component is consistent with the notion that the invertebrate SJ is homologous to the vertebrate paranodal SJ. These findings have implications not only for invertebrate epithelia and barrier functions, but also for understanding of neuron–glial interactions in the mammalian nervous system. PMID:12782686
Genova, Jennifer L; Fehon, Richard G
2003-06-09
One essential function of epithelia is to form a barrier between the apical and basolateral surfaces of the epithelium. In vertebrate epithelia, the tight junction is the primary barrier to paracellular flow across epithelia, whereas in invertebrate epithelia, the septate junction (SJ) provides this function. In this study, we identify new proteins that are required for a functional paracellular barrier in Drosophila. In addition to the previously known components Coracle (COR) and Neurexin (NRX), we show that four other proteins, Gliotactin, Neuroglian (NRG), and both the alpha and beta subunits of the Na+/K+ ATPase, are required for formation of the paracellular barrier. In contrast to previous reports, we demonstrate that the Na pump is not localized basolaterally in epithelial cells, but instead is concentrated at the SJ. Data from immunoprecipitation and somatic mosaic studies suggest that COR, NRX, NRG, and the Na+/K+ ATPase form an interdependent complex. Furthermore, the observation that NRG, a Drosophila homologue of vertebrate neurofascin, is an SJ component is consistent with the notion that the invertebrate SJ is homologous to the vertebrate paranodal SJ. These findings have implications not only for invertebrate epithelia and barrier functions, but also for understanding of neuron-glial interactions in the mammalian nervous system.
Categorical perception of intonation contrasts: effects of listeners' language background.
Liu, Chang; Rodriguez, Amanda
2012-06-01
Intonation perception of English speech was examined for English- and Chinese-native listeners. F0 contour was manipulated from falling to rising patterns for the final words of three sentences. Listener's task was to identify and discriminate the intonation of each sentence (question versus statement). English and Chinese listeners had significant differences in the identification functions such as the categorical boundary and the slope. In the discrimination functions, Chinese listeners showed greater peakedness than English peers. The cross-linguistic differences in intonation perception were similar to the previous findings in perception of lexical tones, likely due to listeners' language background differences.
Lesions causing freezing of gait localize to a cerebellar functional network
Fasano, Alfonso; Laganiere, Simon E.; Lam, Susy; Fox, Michael D.
2016-01-01
Objective Freezing of gait is a disabling symptom in Parkinson’s disease and related disorders, but the brain regions involved in symptom generation remain unclear. Here we analyze brain lesions causing acute onset freezing of gait to identify regions causally involved in symptom generation. Methods Fourteen cases of lesion-induced freezing of gait were identified from the literature and lesions were mapped to a common brain atlas. Because lesion-induced symptoms can come from sites connected to the lesion location, not just the lesion location itself, we also identified brain regions functionally connected to each lesion location. This technique, termed lesion network mapping, has been recently shown to identify regions involved in symptom generation across a variety of lesion-induced disorders. Results Lesion location was heterogeneous and no single region could be considered necessary for symptom generation. However, over 90% (13/14) of lesions were functionally connected to a focal area in the dorsal medial cerebellum. This cerebellar area overlapped previously recognized regions that are activated by locomotor tasks, termed the cerebellar locomotor region. Connectivity to this region was specific to lesions causing freezing of gait compared to lesions causing other movement disorders (hemichorea or asterixis). Interpretation Lesions causing freezing of gait are located within a common functional network characterized by connectivity to the cerebellar locomotor region. These results based on causal brain lesions complement prior neuroimaging studies in Parkinson’s disease patients, advancing our understanding of the brain regions involved in freezing of gait. PMID:28009063
Lubin, Johnathan W; Rao, Timsi; Mandell, Edward K; Wuttke, Deborah S; Lundblad, Victoria
2013-03-01
Mutations that confer the loss of a single biochemical property (separation-of-function mutations) can often uncover a previously unknown role for a protein in a particular biological process. However, most mutations are identified based on loss-of-function phenotypes, which cannot differentiate between separation-of-function alleles vs. mutations that encode unstable/unfolded proteins. An alternative approach is to use overexpression dominant-negative (ODN) phenotypes to identify mutant proteins that disrupt function in an otherwise wild-type strain when overexpressed. This is based on the assumption that such mutant proteins retain an overall structure that is comparable to that of the wild-type protein and are able to compete with the endogenous protein (Herskowitz 1987). To test this, the in vivo phenotypes of mutations in the Est3 telomerase subunit from Saccharomyces cerevisiae were compared with the in vitro secondary structure of these mutant proteins as analyzed by circular-dichroism spectroscopy, which demonstrates that ODN is a more sensitive assessment of protein stability than the commonly used method of monitoring protein levels from extracts. Reverse mutagenesis of EST3, which targeted different categories of amino acids, also showed that mutating highly conserved charged residues to the oppositely charged amino acid had an increased likelihood of generating a severely defective est3(-) mutation, which nevertheless encoded a structurally stable protein. These results suggest that charge-swap mutagenesis directed at a limited subset of highly conserved charged residues, combined with ODN screening to eliminate partially unfolded proteins, may provide a widely applicable and efficient strategy for generating separation-of-function mutations.
Maturing Thalamocortical Functional Connectivity Across Development
Fair, Damien A.; Bathula, Deepti; Mills, Kathryn L.; Dias, Taciana G. Costa; Blythe, Michael S.; Zhang, Dongyang; Snyder, Abraham Z.; Raichle, Marcus E.; Stevens, Alexander A.; Nigg, Joel T.; Nagel, Bonnie J.
2010-01-01
Recent years have witnessed a surge of investigations examining functional brain organization using resting-state functional connectivity MRI (rs-fcMRI). To date, this method has been used to examine systems organization in typical and atypical developing populations. While the majority of these investigations have focused on cortical–cortical interactions, cortical–subcortical interactions also mature into adulthood. Innovative work by Zhang et al. (2008) in adults have identified methods that utilize rs-fcMRI and known thalamo-cortical topographic segregation to identify functional boundaries in the thalamus that are remarkably similar to known thalamic nuclear grouping. However, despite thalamic nuclei being well formed early in development, the developmental trajectory of functional thalamo-cortical relations remains unexplored. Thalamic maps generated by rs-fcMRI are based on functional relationships, and should modify with the dynamic thalamo-cortical changes that occur throughout maturation. To examine this possibility, we employed a strategy as previously described by Zhang et al. to a sample of healthy children, adolescents, and adults. We found strengthening functional connectivity of the cortex with dorsal/anterior subdivisions of the thalamus, with greater connectivity observed in adults versus children. Temporal lobe connectivity with ventral/midline/posterior subdivisions of the thalamus weakened with age. Changes in sensory and motor thalamo-cortical interactions were also identified but were limited. These findings are consistent with known anatomical and physiological cortical–subcortical changes over development. The methods and developmental context provided here will be important for understanding how cortical–subcortical interactions relate to models of typically developing behavior and developmental neuropsychiatric disorders. PMID:20514143
Martins-de-Souza, Daniel; Cassoli, Juliana S; Nascimento, Juliana M; Hensley, Kenneth; Guest, Paul C; Pinzon-Velasco, Andres M; Turck, Christoph W
2015-10-01
Collapsin response mediator protein-2 (CRMP2) is a CNS protein involved in neuronal development, axonal and neuronal growth, cell migration, and protein trafficking. Recent studies have linked perturbations in CRMP2 function to neurodegenerative disorders such as Alzheimer's disease, neuropathic pain, and Batten disease, and to psychiatric disorders such as schizophrenia. Like most proteins, CRMP2 functions though interactions with a molecular network of proteins and other molecules. Here, we have attempted to identify additional proteins of the CRMP2 interactome to provide further leads about its roles in neurological functions. We used a combined co-immunoprecipitation and shotgun proteomic approach in order to identify CRMP2 protein partners. We identified 78 CRMP2 protein partners not previously reported in public protein interaction databases. These were involved in seven biological processes, which included cell signaling, growth, metabolism, trafficking, and immune function, according to Gene Ontology classifications. Furthermore, 32 different molecular functions were found to be associated with these proteins, such as RNA binding, ribosomal functions, transporter activity, receptor activity, serine/threonine phosphatase activity, cell adhesion, cytoskeletal protein binding and catalytic activity. In silico pathway interactome construction revealed a highly connected network with the most overrepresented functions corresponding to semaphorin interactions, along with axon guidance and WNT5A signaling. Taken together, these findings suggest that the CRMP2 pathway is critical for regulating neuronal and synaptic architecture. Further studies along these lines might uncover novel biomarkers and drug targets for use in drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations
Beleva Guthrie, Violeta; Masica, David L; Fraser, Andrew; Federico, Joseph; Fan, Yunfan; Camps, Manel; Karchin, Rachel
2018-01-01
Abstract The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects. We present a method to construct these networks and to identify functionally interacting mutations in both extant and reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous β-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating information from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in the network, whereas preserving overall network community structure. The analysis does not require structural or biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure. PMID:29522102
GPCRs Direct Germline Development and Somatic Gonad Function in Planarians
Saberi, Amir; Beets, Isabel; Schoofs, Liliane; Newmark, Phillip A.
2016-01-01
Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development. PMID:27163480
GPCRs Direct Germline Development and Somatic Gonad Function in Planarians.
Saberi, Amir; Jamal, Ayana; Beets, Isabel; Schoofs, Liliane; Newmark, Phillip A
2016-05-01
Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development.
An Improved Flow Cytometry Method For Precise Quantitation Of Natural-Killer Cell Activity
NASA Technical Reports Server (NTRS)
Crucian, Brian; Nehlsen-Cannarella, Sandra; Sams, Clarence
2006-01-01
The ability to assess NK cell cytotoxicity using flow cytometry has been previously described and can serve as a powerful tool to evaluate effector immune function in the clinical setting. Previous methods used membrane permeable dyes to identify target cells. The use of these dyes requires great care to achieve optimal staining and results in a broad spectral emission that can make multicolor cytometry difficult. Previous methods have also used negative staining (the elimination of target cells) to identify effector cells. This makes a precise quantitation of effector NK cells impossible due to the interfering presence of T and B lymphocytes, and the data highly subjective to the variable levels of NK cells normally found in human peripheral blood. In this study an improved version of the standard flow cytometry assay for NK activity is described that has several advantages of previous methods. Fluorescent antibody staining (CD45FITC) is used to positively identify target cells in place of membranepermeable dyes. Fluorescent antibody staining of target cells is less labor intensive and more easily reproducible than membrane dyes. NK cells (true effector lymphocytes) are also positively identified by fluorescent antibody staining (CD56PE) allowing a simultaneous absolute count assessment of both NK cells and target cells. Dead cells are identified by membrane disruption using the DNA intercalating dye PI. Using this method, an exact NK:target ratio may be determined for each assessment, including quantitation of NK target complexes. Backimmunoscatter gating may be used to track live vs. dead Target cells via scatter properties. If desired, NK activity may then be normalized to standardized ratios for clinical comparisons between patients, making the determination of PBMC counts or NK cell percentages prior to testing unnecessary. This method provides an exact cytometric determination of NK activity that highly reproducible and may be suitable for routine use in the clinical setting.
Popescu, Sorina C.; Popescu, George V.; Bachan, Shawn; Zhang, Zimei; Seay, Montrell; Gerstein, Mark; Snyder, Michael; Dinesh-Kumar, S. P.
2007-01-01
Calmodulins (CaMs) are the most ubiquitous calcium sensors in eukaryotes. A number of CaM-binding proteins have been identified through classical methods, and many proteins have been predicted to bind CaMs based on their structural homology with known targets. However, multicellular organisms typically contain many CaM-like (CML) proteins, and a global identification of their targets and specificity of interaction is lacking. In an effort to develop a platform for large-scale analysis of proteins in plants we have developed a protein microarray and used it to study the global analysis of CaM/CML interactions. An Arabidopsis thaliana expression collection containing 1,133 ORFs was generated and used to produce proteins with an optimized medium-throughput plant-based expression system. Protein microarrays were prepared and screened with several CaMs/CMLs. A large number of previously known and novel CaM/CML targets were identified, including transcription factors, receptor and intracellular protein kinases, F-box proteins, RNA-binding proteins, and proteins of unknown function. Multiple CaM/CML proteins bound many binding partners, but the majority of targets were specific to one or a few CaMs/CMLs indicating that different CaM family members function through different targets. Based on our analyses, the emergent CaM/CML interactome is more extensive than previously predicted. Our results suggest that calcium functions through distinct CaM/CML proteins to regulate a wide range of targets and cellular activities. PMID:17360592
Schmidts, Miriam; Vodopiutz, Julia; Christou-Savina, Sonia; Cortés, Claudio R.; McInerney-Leo, Aideen M.; Emes, Richard D.; Arts, Heleen H.; Tüysüz, Beyhan; D’Silva, Jason; Leo, Paul J.; Giles, Tom C.; Oud, Machteld M.; Harris, Jessica A.; Koopmans, Marije; Marshall, Mhairi; Elçioglu, Nursel; Kuechler, Alma; Bockenhauer, Detlef; Moore, Anthony T.; Wilson, Louise C.; Janecke, Andreas R.; Hurles, Matthew E.; Emmet, Warren; Gardiner, Brooke; Streubel, Berthold; Dopita, Belinda; Zankl, Andreas; Kayserili, Hülya; Scambler, Peter J.; Brown, Matthew A.; Beales, Philip L.; Wicking, Carol; Duncan, Emma L.; Mitchison, Hannah M.
2013-01-01
Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery. PMID:24183451
Identification of herpesvirus proteins that contribute to G1/S arrest.
Paladino, Patrick; Marcon, Edyta; Greenblatt, Jack; Frappier, Lori
2014-04-01
Lytic infection by herpesviruses induces cell cycle arrest at the G1/S transition. This appears to be a function of multiple herpesvirus proteins, but only a minority of herpesvirus proteins have been examined for cell cycle effects. To gain a more comprehensive understanding of the viral proteins that contribute to G1/S arrest, we screened a library of over 200 proteins from herpes simplex virus type 1, human cytomegalovirus, and Epstein-Barr virus (EBV) for effects on the G1/S interface, using HeLa fluorescent, ubiquitination-based cell cycle indicator (Fucci) cells in which G1/S can be detected colorimetrically. Proteins from each virus were identified that induce accumulation of G1/S cells, predominantly tegument, early, and capsid proteins. The identification of several capsid proteins in this screen suggests that incoming viral capsids may function to modulate cellular processes. The cell cycle effects of selected EBV proteins were further verified and examined for effects on p53 and p21 as regulators of the G1/S transition. Two EBV replication proteins (BORF2 and BMRF1) were found to induce p53 but not p21, while a previously uncharacterized tegument protein (BGLF2) was found to induce p21 protein levels in a p53-independent manner. Proteomic analyses of BGLF2-interacting proteins identified interactions with the NIMA-related protein kinase (NEK9) and GEM-interacting protein (GMIP). Silencing of either NEK9 or GMIP induced p21 without affecting p53 and abrogated the ability of BGLF2 to further induce p21. Collectively, these results suggest multiple viral proteins contribute to G1/S arrest, including BGLF2, which induces p21 levels likely by interfering with the functions of NEK9 and GMIP. Most people are infected with multiple herpesviruses, whose proteins alter the infected cells in several ways. During lytic infection, the viral proteins block cell proliferation just before the cellular DNA replicates. We used a novel screening method to identify proteins from three different herpesviruses that contribute to this block. Several of the proteins we identified had previously unknown functions or were structural components of the virion. Subsets of these proteins from Epstein-Barr virus were studied for their effects on the cell cycle regulatory proteins p53 and p21, thereby identifying two proteins that induce p53 and one that induces p21 (BGLF2). We identified interactions of BGLF2 with two human proteins, both of which regulate p21, suggesting that BGLF2 induces p21 by interfering with the functions of these two host proteins. Our study indicates that multiple herpesvirus proteins contribute to the cell proliferation block, including components of the incoming virions.
Not all neuroligin 3 and 4X missense variants lead to significant functional inactivation.
Xu, Xiaojuan; Hu, Zhengmao; Zhang, Lusi; Liu, Hongfang; Cheng, Yuemei; Xia, Kun; Zhang, Xuehong
2017-09-01
Neuroligins are postsynaptic cell adhesion molecules that interact with neurexins to regulate the fine balance between excitation and inhibition of synapses. Recently, accumulating evidence, involving mutation analysis, cellular assays, and mouse models, has suggested that neuroligin (NLGN) mutations affect synapse maturation and function. Previously, four missense variations [p.G426S (NLGN3), p.G84R (NLGN4X), p.Q162K (NLGN4X), and p.A283T (NLGN4X)] in four different unrelated patients have been identified by PCR and direct sequencing. In this study, we analyzed the functional effect of these missense variations by in vitro experiment via the stable HEK293 cells expressing wild-type and mutant neuroligin. We found that the four mutations did not significantly impair the expression of neuroligin 3 and neuroligin 4X, and also did not measurably inhibit the neurexin 1-neuroligin interaction. These variants might play a modest role in the pathogenesis of autism or might simply be unreported infrequent polymorphisms. Our data suggest that these four previously described neuroligin mutations are not primary risk factors for autism.
INPP5E Preserves Genomic Stability through Regulation of Mitosis.
Sierra Potchanant, Elizabeth A; Cerabona, Donna; Sater, Zahi Abdul; He, Ying; Sun, Zejin; Gehlhausen, Jeff; Nalepa, Grzegorz
2017-03-15
The partially understood phosphoinositide signaling cascade regulates multiple aspects of cellular metabolism. Previous studies revealed that INPP5E, the inositol polyphosphate-5-phosphatase that is mutated in the developmental disorders Joubert and MORM syndromes, is essential for the function of the primary cilium and maintenance of phosphoinositide balance in nondividing cells. Here, we report that INPP5E further contributes to cellular homeostasis by regulating cell division. We found that silencing or genetic knockout of INPP5E in human and murine cells impairs the spindle assembly checkpoint, centrosome and spindle function, and maintenance of chromosomal integrity. Consistent with a cell cycle regulatory role, we found that INPP5E expression is cell cycle dependent, peaking at mitotic entry. INPP5E localizes to centrosomes, chromosomes, and kinetochores in early mitosis and shuttles to the midzone spindle at mitotic exit. Our findings identify the previously unknown, essential role of INPP5E in mitosis and prevention of aneuploidy, providing a new perspective on the function of this phosphoinositide phosphatase in health and development. Copyright © 2017 Sierra Potchanant et al.
An orthogonal oriented quadrature hexagonal image pyramid
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1987-01-01
An image pyramid has been developed with basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The pyramid operates on a hexagonal sample lattice. The set of seven basis functions consist of three even high-pass kernels, three odd high-pass kernels, and one low-pass kernel. The three even kernels are identified when rotated by 60 or 120 deg, and likewise for the odd. The seven basis functions occupy a point and a hexagon of six nearest neighbors on a hexagonal sample lattice. At the lowest level of the pyramid, the input lattice is the image sample lattice. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing sq rt 7 larger than the previous level, so that the number of coefficients is reduced by a factor of 7 at each level. The relationship between this image code and the processing architecture of the primate visual cortex is discussed.
O'Hurley, Gillian; Busch, Christer; Fagerberg, Linn; Hallström, Björn M.; Stadler, Charlotte; Tolf, Anna; Lundberg, Emma; Schwenk, Jochen M.; Jirström, Karin; Bjartell, Anders; Gallagher, William M.; Uhlén, Mathias; Pontén, Fredrik
2015-01-01
To better understand prostate function and disease, it is important to define and explore the molecular constituents that signify the prostate gland. The aim of this study was to define the prostate specific transcriptome and proteome, in comparison to 26 other human tissues. Deep sequencing of mRNA (RNA-seq) and immunohistochemistry-based protein profiling were combined to identify prostate specific gene expression patterns and to explore tissue biomarkers for potential clinical use in prostate cancer diagnostics. We identified 203 genes with elevated expression in the prostate, 22 of which showed more than five-fold higher expression levels compared to all other tissue types. In addition to previously well-known proteins we identified two poorly characterized proteins, TMEM79 and ACOXL, with potential to differentiate between benign and cancerous prostatic glands in tissue biopsies. In conclusion, we have applied a genome-wide analysis to identify the prostate specific proteome using transcriptomics and antibody-based protein profiling to identify genes with elevated expression in the prostate. Our data provides a starting point for further functional studies to explore the molecular repertoire of normal and diseased prostate including potential prostate cancer markers such as TMEM79 and ACOXL. PMID:26237329
Sanchez-Moreno, J; Bonnin, C M; González-Pinto, A; Amann, B L; Solé, B; Balanzá-Martinez, V; Arango, C; Jiménez, E; Tabarés-Seisdedos, R; Garcia-Portilla, M P; Ibáñez, A; Crespo, J M; Ayuso-Mateos, J L; Martinez-Aran, A; Torrent, C; Vieta, E
2018-05-03
The current investigation aimed at studying the sociodemographic, clinical, and neuropsychological variables related to functional outcome in a sample of euthymic patients with bipolar disorder(BD) presenting moderate-severe levels of functional impairment. Two-hundred and thirty-nine participants with BD disorders and with Functioning Assessment Short Test(FAST) scores equal or above 18 were administered a clinical and diagnostic interview, and the administration of mood measure scales and a comprehensive neuropsychological battery. Analyses involved preliminary Pearson bivariate correlations to identify sociodemographic and clinical variables associated with the FAST total score. Regarding neuropsychological variables, a principal component analysis (PCA) was performed to group the variables in orthogonal factors. Finally, a hierarchical multiple regression was run. The best fitting model for the variables associated with functioning was a linear combination of gender, age, estimated IQ, Hamilton Depression Rating Scale (HAM-D), number of previous manic episodes, Factor 1 and Factor 2 extracted from the PCA. The model, including all these previous variables, explained up to 29.4% of the observed variance. Male gender, older age, lower premorbid IQ, subdepressive symptoms, higher number of manic episodes, and lower performance in verbal memory, working memory, verbal fluency, and processing speed were associated with lower functioning in patients with BD. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Beleslin, Branko; Ostojic, Miodrag; Djordjevic-Dikic, Ana; Vukcevic, Vladan; Stojkovic, Sinisa; Nedeljkovic, Milan; Stankovic, Goran; Orlic, Dejan; Milic, Natasa; Stepanovic, Jelena; Giga, Vojislav; Saponjski, Jovica
2008-11-01
The aim of the study was to evaluate the relation between fractional flow reserve (FFR) and simultaneously evaluated coronary flow reserve by thermodilution (CFRthermo), with the improvement of left ventricular (LV) function in patients with previous myocardial infarction (MI) undergoing percutaneous coronary intervention (PCI). Study population consisted of 46 patients (mean age 53 +/- 7 years; 36 male) with previous MI and significant coronary stenosis undergoing PCI of infarct-related coronary artery. In all patients, we evaluated FFR and CFRthermo by single pressure/thermo wire during maximal hyperaemia before and immediately after PCI. We performed echocardiographic assessment of LV ejection fraction before and 6 months after PCI. Dobutamine stress echocardiography test was also performed before PCI. LV functional improvement was observed in 33/46 (72%) of patients. In patients with LV functional recovery in comparison with patients with no recovery, there was a significant difference in FFR before PCI (0.56 +/- 0.14 vs. 0.70 +/- 0.07, P < 0.001), improvement of FFR (0.35 +/- 0.14 vs. 0.21 +/- 0.07, P < 0.001), improvement of CFRthermo (1.3 +/- 0.6 vs. 0.5 +/- 0.3, P < 0.001), and CFRthermo after PCI (2.6 +/- 0.7 vs. 2.0 +/- 0.4, P < 0.001). When only parameters evaluated before PCI were taken into account, FFR before angioplasty (P = 0.001) and dobutamine-assessed viability (P = 0.006) were the most significant multivariate predictors of myocardial recovery. When all significant univariate parameters were evaluated, the most significant independent predictors for improvement in myocardial function were the improvement of CFRthermo during angioplasty (P < 0.001) and FFR before angioplasty (P = 0.002). Simultaneous evaluation of FFR and CFRthermo provide significant complementary data on the improvement in myocardial function in patients with previous MI. However, the evaluation of FFR before angioplasty identifies viable myocardium that may recover following revascularization and may be used as an alternative to non-invasive testing.
ERIC Educational Resources Information Center
Mattfeld, Aaron T.; Gluck, Mark A.; Stark, Craig E. L.
2011-01-01
The goal of the present study was to elucidate the role of the human striatum in learning via reward and punishment during an associative learning task. Previous studies have identified the striatum as a critical component in the neural circuitry of reward-related learning. It remains unclear, however, under what task conditions, and to what…
Molecular Basis of Autophagic Cell Death in Prostate Cancer
2009-03-01
lipid-binding proteinwith high affinity for phosphatidic acid (PA) and cardiolipin (CL). Previously, it has been shown that PA directly interacted...lyceride), PI (phosphatidylinositol), DAG (diacylglycerol), PI4P (PtdIns(4)P), PA ( phosphatidic acid ), PI4,5P2 (PtdIns(4,5)P2), PS (phosphatidylserine...with high affinity for phosphatidic acid and cardiolipin and less affinity for various phosphoinositides. Functional genomics analysis identified 5
ERIC Educational Resources Information Center
Rosa, Mireia; Puig, Olga; Lázaro, Luisa; Calvo, Rosa
2016-01-01
Previous studies have shown high rates of comorbid disorders in children and adolescents with autism spectrum disorder, but failed to compare them with general population and few of them have identified predictors of comorbidity. This study compared the rates of psychiatric disorders in 50 children and adolescents with autism spectrum disorder, 24…
Sex-specific mating pheromones in the nematode Panagrellus redivivus.
Choe, Andrea; Chuman, Tatsuji; von Reuss, Stephan H; Dossey, Aaron T; Yim, Joshua J; Ajredini, Ramadan; Kolawa, Adam A; Kaplan, Fatma; Alborn, Hans T; Teal, Peter E A; Schroeder, Frank C; Sternberg, Paul W; Edison, Arthur S
2012-12-18
Nematodes use an extensive chemical language based on glycosides of the dideoxysugar ascarylose for developmental regulation (dauer formation), male sex attraction, aggregation, and dispersal. However, no examples of a female- or hermaphrodite-specific sex attractant have been identified to date. In this study, we investigated the pheromone system of the gonochoristic sour paste nematode Panagrellus redivivus, which produces sex-specific attractants of the opposite sex. Activity-guided fractionation of the P. redivivus exometabolome revealed that males are strongly attracted to ascr#1 (also known as daumone), an ascaroside previously identified from Caenorhabditis elegans hermaphrodites. Female P. redivivus are repelled by high concentrations of ascr#1 but are specifically attracted to a previously unknown ascaroside that we named dhas#18, a dihydroxy derivative of the known ascr#18 and an ascaroside that features extensive functionalization of the lipid-derived side chain. Targeted profiling of the P. redivivus exometabolome revealed several additional ascarosides that did not induce strong chemotaxis. We show that P. redivivus females, but not males, produce the male-attracting ascr#1, whereas males, but not females, produce the female-attracting dhas#18. These results show that ascaroside biosynthesis in P. redivivus is highly sex-specific. Furthermore, the extensive side chain functionalization in dhas#18, which is reminiscent of polyketide-derived natural products, indicates unanticipated biosynthetic capabilities in nematodes.
Huber, Robert J; O'Day, Danton H
2011-08-01
The Dictyostelium discoideum homolog of mammalian cyclin dependent kinase 5 (Cdk5) has previously been shown to be required for optimal growth and differentiation in this model organism, however, the subcellular localization of the protein has not previously been studied. In this study, immunolocalizations and a GFP fusion construct localized Cdk5 predominantly to the nucleus of vegetative cells. Western blots showed that Cdk5 was present in both nuclear and non-nuclear fractions, suggesting a functional role in both cellular locales. During the early stages of mitosis, Cdk5 gradually moved from a punctate nucleoplasmic distribution to localize adjacent to the inner nuclear envelope. During anaphase and telophase, Cdk5 localized to the cytoplasm and was not detected in the nucleoplasm. Cdk5 returned to the nucleus during cytokinesis. Proteolytic activity has been shown to be a critical regulator of the cell cycle. Immunoprecipitations coupled with immunolocalizations identified puromycin-sensitive aminopeptidase A (PsaA) as a potential Cdk5 binding partner in Dictyostelium. Immunoprecipitations also identified two phosphotyrosine proteins (35 and 18 kDa) that may interact with Cdk5 in vivo. Together, this work provides new insight into the localization of Cdk5, its function during cell division, and its binding to a proteolytic enzyme in Dictyostelium.
Khat Use and Neurobehavioral Functions: Suggestions for Future Studies
Hoffman, Richard; al’Absi, Mustafa
2010-01-01
Although there is a rich body of research available regarding the effect of acute and chronic khat dosing in animal models, research on the behavioral and cognitive effects of khat in human subjects is not extensive and several of the available studies have been done only in the context of observational and single-case studies. In light of the absence of a substantial literature on the neurobehavioral deficits associated with khat use and to provide a context that could be used to identify themes for future research we review previous research that has focused on other stimulant drugs. This review highlights multiple areas of neurocognitive deficit that have been identified in previous studies of individuals who have been chronic users of stimulants, such as amphetamines and methamphetamines. The review highlights a substantial body of evidence demonstrating a wide range of learning and memory impairments including deficits that persist during abstinence from active drug use. This review does not imply a similar khat effect, but due to some similarities pharmacologically between the active components of khat (cathinone and cathine) and amphetamines, future studies examining these same domains of cognitive functioning in chronic khat users and abstinent khat users appears to be warranted, if possible using some of the same or similar laboratory measures. PMID:20553832
Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus
Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia
2009-01-01
SUMMARY Fungi are a rich source of bioactive secondary metabolites and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared to the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as a α-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes δ-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homolog, but instead was found to catalyze highly specific the synthesis of α-cuprenene. Co-expression of cop6 and the two monooxygenase genes next to it yields oxygenated α-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802
Huang, Huiyuan; Wang, Junjing; Seger, Carol; Lu, Min; Deng, Feng; Wu, Xiaoyan; He, Yuan; Niu, Chen; Wang, Jun; Huang, Ruiwang
2018-01-01
Long-term intensive gymnastic training can induce brain structural and functional reorganization. Previous studies have identified structural and functional network differences between world class gymnasts (WCGs) and non-athletes at the whole-brain level. However, it is still unclear how interactions within and between functional networks are affected by long-term intensive gymnastic training. We examined both intra- and inter-network functional connectivity of gymnasts relative to non-athletes using resting-state fMRI (R-fMRI). R-fMRI data were acquired from 13 WCGs and 14 non-athlete controls. Group-independent component analysis (ICA) was adopted to decompose the R-fMRI data into spatial independent components and associated time courses. An automatic component identification method was used to identify components of interest associated with resting-state networks (RSNs). We identified nine RSNs, the basal ganglia network (BG), sensorimotor network (SMN), cerebellum (CB), anterior and posterior default mode networks (aDMN/pDMN), left and right fronto-parietal networks (lFPN/rFPN), primary visual network (PVN), and extrastriate visual network (EVN). Statistical analyses revealed that the intra-network functional connectivity was significantly decreased within the BG, aDMN, lFPN, and rFPN, but increased within the EVN in the WCGs compared to the controls. In addition, the WCGs showed uniformly decreased inter-network functional connectivity between SMN and BG, CB, and PVN, BG and PVN, and pDMN and rFPN compared to the controls. We interpret this generally weaker intra- and inter-network functional connectivity in WCGs during the resting state as a result of greater efficiency in the WCGs' brain associated with long-term motor skill training.
Meeske, Alexander J; Rodrigues, Christopher D A; Brady, Jacqueline; Lim, Hoong Chuin; Bernhardt, Thomas G; Rudner, David Z
2016-01-01
The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell-cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes.
Brady, Jacqueline; Lim, Hoong Chuin; Bernhardt, Thomas G.; Rudner, David Z.
2016-01-01
The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell–cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes. PMID:26735940
High depth, whole-genome sequencing of cholera isolates from Haiti and the Dominican Republic.
Sealfon, Rachel; Gire, Stephen; Ellis, Crystal; Calderwood, Stephen; Qadri, Firdausi; Hensley, Lisa; Kellis, Manolis; Ryan, Edward T; LaRocque, Regina C; Harris, Jason B; Sabeti, Pardis C
2012-09-11
Whole-genome sequencing is an important tool for understanding microbial evolution and identifying the emergence of functionally important variants over the course of epidemics. In October 2010, a severe cholera epidemic began in Haiti, with additional cases identified in the neighboring Dominican Republic. We used whole-genome approaches to sequence four Vibrio cholerae isolates from Haiti and the Dominican Republic and three additional V. cholerae isolates to a high depth of coverage (>2000x); four of the seven isolates were previously sequenced. Using these sequence data, we examined the effect of depth of coverage and sequencing platform on genome assembly and identification of sequence variants. We found that 50x coverage is sufficient to construct a whole-genome assembly and to accurately call most variants from 100 base pair paired-end sequencing reads. Phylogenetic analysis between the newly sequenced and thirty-three previously sequenced V. cholerae isolates indicates that the Haitian and Dominican Republic isolates are closest to strains from South Asia. The Haitian and Dominican Republic isolates form a tight cluster, with only four variants unique to individual isolates. These variants are located in the CTX region, the SXT region, and the core genome. Of the 126 mutations identified that separate the Haiti-Dominican Republic cluster from the V. cholerae reference strain (N16961), 73 are non-synonymous changes, and a number of these changes cluster in specific genes and pathways. Sequence variant analyses of V. cholerae isolates, including multiple isolates from the Haitian outbreak, identify coverage-specific and technology-specific effects on variant detection, and provide insight into genomic change and functional evolution during an epidemic.
Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix
Byron, Adam; Humphries, Jonathan D.; Randles, Michael J.; Carisey, Alex; Murphy, Stephanie; Knight, David; Brenchley, Paul E.; Zent, Roy; Humphries, Martin J.
2014-01-01
The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. We used mass spectrometry-based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalog includes all previously identified glomerular components plus many new and abundant components. Relative protein quantification showed a dominance of collagen IV, collagen I, and laminin isoforms in the glomerular ECM together with abundant collagen VI and TINAGL1. Protein network analysis enabled the creation of a glomerular ECM interactome, which revealed a core of highly connected structural components. More than one half of the glomerular ECM proteome was validated using colocalization studies and data from the Human Protein Atlas. This study yields the greatest number of ECM proteins relative to previous investigations of whole glomerular extracts, highlighting the importance of sample enrichment. It also shows that the composition of glomerular ECM is far more complex than previously appreciated and suggests that many more ECM components may contribute to glomerular development and disease processes. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000456. PMID:24436468
Lau, Susanna KP; Lam, Ching-Wan; Curreem, Shirly OT; Lee, Kim-Chung; Lau, Candy CY; Chow, Wang-Ngai; Ngan, Antonio HY; To, Kelvin KW; Chan, Jasper FW; Hung, Ivan FN; Yam, Wing-Cheong; Yuen, Kwok-Yung; Woo, Patrick CY
2015-01-01
Although previous studies have reported the use of metabolomics for Mycobacterium species differentiation, little is known about the potential of extracellular metabolites of Mycobacterium tuberculosis (MTB) as specific biomarkers. Using an optimized ultrahigh performance liquid chromatography–electrospray ionization–quadruple time of flight–mass spectrometry (UHPLC–ESI–Q–TOF–MS) platform, we characterized the extracellular metabolomes of culture supernatant of nine MTB strains and nine non-tuberculous Mycobacterium (NTM) strains (four M. avium complex, one M. bovis Bacillus Calmette–Guérin (BCG), one M. chelonae, one M. fortuitum and two M. kansasii). Principal component analysis readily distinguished the metabolomes between MTB and NTM. Using multivariate and univariate analysis, 24 metabolites with significantly higher levels in MTB were identified. While seven metabolites were identified by tandem mass spectrometry (MS/MS), the other 17 metabolites were unidentified by MS/MS against database matching, suggesting that they may be potentially novel compounds. One metabolite was identified as dexpanthenol, the alcohol analog of pantothenic acid (vitamin B5), which was not known to be produced by bacteria previously. Four metabolites were identified as 1-tuberculosinyladenosine (1-TbAd), a product of the virulence-associated enzyme Rv3378c, and three previously undescribed derivatives of 1-TbAd. Two derivatives differ from 1-TbAd by the ribose group of the nucleoside while the other likely differs by the base. The remaining two metabolites were identified as a tetrapeptide, Val-His-Glu-His, and a monoacylglycerophosphoglycerol, phosphatidylglycerol (PG) (16∶0/0∶0), respectively. Further studies on the chemical structure and biosynthetic pathway of these MTB-specific metabolites would help understand their biological functions. Studies on clinical samples from tuberculosis patients are required to explore for their potential role as diagnostic biomarkers. PMID:26038762
Asymmetry after hamstring injury in English Premier League: issue resolved, or perhaps not?
Barreira, P; Drust, B; Robinson, M A; Vanrenterghem, J
2015-06-01
Hamstring injuries constitute one of the most concerning injuries in English Premier League football, due to its high primary incidence but also its recurrence. Functional methods assessing hamstring function during high-risk performance tasks such as sprinting are vital to identify potential risk factors. The purpose of this study was to assess horizontal force deficits during maximum sprint running on a non-motorized treadmill in football players with previous history of hamstring strains as a pre-season risk-assessment in a club setting. 17 male football players from one Premier League Club were divided into 2 groups, experimental (n=6, age=24.5±2.3 years) and control (n=11, age=21.3±1.2 years), according to history of previous hamstring injury. Participants performed a protocol including a 10-s maximum sprint on a non-motorized treadmill. Force deficits during acceleration phase and steady state phases of the sprint were assessed between limbs and between groups. The main outcome measures were horizontal and vertical peak forces during the acceleration phase or steady state. There were no significant differences in peak forces between previously injured and non-injured limbs, or between groups, challenging the ideas around functional force deficits in sprint running as a diagnostic measure of hamstring re-injury risk. © Georg Thieme Verlag KG Stuttgart · New York.
Loya, Travis J.; O’Rourke, Thomas W.; Reines, Daniel
2012-01-01
The yeast IMD2 gene encodes an enzyme involved in GTP synthesis. Its expression is controlled by guanine nucleotides through a set of alternate start sites and an intervening transcriptional terminator. In the off state, transcription results in a short non-coding RNA that starts upstream of the gene. Transcription terminates via the Nrd1-Nab3-Sen1 complex and is degraded by the nuclear exosome. Using a sensitive terminator read-through assay, we identified trans-acting Terminator Override (TOV) genes that operate this terminator. Four genes were identified: the RNA polymerase II phosphatase SSU72, the RNA polymerase II binding protein PCF11, the TRAMP subunit TRF4 and the hnRNP-like, NAB3. The TOV phenotype can be explained by the loss of function of these gene products as described in models in which termination and RNA degradation are coupled to the phosphorylation state of RNA polymerase II's repeat domain. The most interesting mutations were those found in NAB3, which led to the finding that the removal of merely three carboxy-terminal amino acids compromised Nab3's function. This region of previously unknown function is distant from the protein's well-known RNA binding and Nrd1 binding domains. Structural homology modeling suggests this Nab3 ‘tail’ forms an α-helical multimerization domain that helps assemble it onto an RNA substrate. PMID:22564898
Lanza, Amanda M.; Blazeck, John J.; Crook, Nathan C.; Alper, Hal S.
2012-01-01
Establishing causative links between protein functional domains and global gene regulation is critical for advancements in genetics, biotechnology, disease treatment, and systems biology. This task is challenging for multifunctional proteins when relying on traditional approaches such as gene deletions since they remove all domains simultaneously. Here, we describe a novel approach to extract quantitative, causative links by modulating the expression of a dominant mutant allele to create a function-specific competitive inhibition. Using the yeast histone acetyltransferase Gcn5p as a case study, we demonstrate the utility of this approach and (1) find evidence that Gcn5p is more involved in cell-wide gene repression, instead of the accepted gene activation associated with HATs, (2) identify previously unknown gene targets and interactions for Gcn5p-based acetylation, (3) quantify the strength of some Gcn5p-DNA associations, (4) demonstrate that this approach can be used to correctly identify canonical chromatin modifications, (5) establish the role of acetyltransferase activity on synthetic lethal interactions, and (6) identify new functional classes of genes regulated by Gcn5p acetyltransferase activity—all six of these major conclusions were unattainable by using standard gene knockout studies alone. We recommend that a graded dominant mutant approach be utilized in conjunction with a traditional knockout to study multifunctional proteins and generate higher-resolution data that more accurately probes protein domain function and influence. PMID:22558379
NASA Astrophysics Data System (ADS)
Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.
2014-02-01
This study aims to improve the performance of nuclear power plants (NPPs) transients training and identification using the latest advances of error back-propagation (EBP) learning algorithm. To this end, elements of EBP, including input data, initial weights, learning rate, cost function, activation function, and weights updating procedure are investigated and an efficient neural network is developed. Usefulness of modular networks is also examined and appropriate identifiers, one for each transient, are employed. Furthermore, the effect of transient type on transient identifier performance is illustrated. Subsequently, the developed transient identifier is applied to Bushehr nuclear power plant (BNPP). Seven types of the plant events are probed to analyze the ability of the proposed identifier. The results reveal that identification occurs very early with only five plant variables, whilst in the previous studies a larger number of variables (typically 15 to 20) were required. Modular networks facilitated identification due to its sole dependency on the sign of each network output signal. Fast training of input patterns, extendibility for identification of more transients and reduction of false identification are other advantageous of the proposed identifier. Finally, the balance between the correct answer to the trained transients (memorization) and reasonable response to the test transients (generalization) is improved, meeting one of the primary design criteria of identifiers.
Tarrant, Marie; Ware, James; Mohammed, Ahmed M
2009-07-07
Four- or five-option multiple choice questions (MCQs) are the standard in health-science disciplines, both on certification-level examinations and on in-house developed tests. Previous research has shown, however, that few MCQs have three or four functioning distractors. The purpose of this study was to investigate non-functioning distractors in teacher-developed tests in one nursing program in an English-language university in Hong Kong. Using item-analysis data, we assessed the proportion of non-functioning distractors on a sample of seven test papers administered to undergraduate nursing students. A total of 514 items were reviewed, including 2056 options (1542 distractors and 514 correct responses). Non-functioning options were defined as ones that were chosen by fewer than 5% of examinees and those with a positive option discrimination statistic. The proportion of items containing 0, 1, 2, and 3 functioning distractors was 12.3%, 34.8%, 39.1%, and 13.8% respectively. Overall, items contained an average of 1.54 (SD = 0.88) functioning distractors. Only 52.2% (n = 805) of all distractors were functioning effectively and 10.2% (n = 158) had a choice frequency of 0. Items with more functioning distractors were more difficult and more discriminating. The low frequency of items with three functioning distractors in the four-option items in this study suggests that teachers have difficulty developing plausible distractors for most MCQs. Test items should consist of as many options as is feasible given the item content and the number of plausible distractors; in most cases this would be three. Item analysis results can be used to identify and remove non-functioning distractors from MCQs that have been used in previous tests.
Estruch, Sara B.; Buzón, Víctor; Carbó, Laia R.; Schorova, Lenka; Lüders, Jens; Estébanez-Perpiñá, Eva
2012-01-01
Nuclear orphan receptor TLX (NR2E1) functions primarily as a transcriptional repressor and its pivotal role in brain development, glioblastoma, mental retardation and retinopathologies make it an attractive drug target. TLX is expressed in the neural stem cells (NSCs) of the subventricular zone and the hippocampus subgranular zone, regions with persistent neurogenesis in the adult brain, and functions as an essential regulator of NSCs maintenance and self-renewal. Little is known about the TLX social network of interactors and only few TLX coregulators are described. To identify and characterize novel TLX-binders and possible coregulators, we performed yeast-two-hybrid (Y2H) screens of a human adult brain cDNA library using different TLX constructs as baits. Our screens identified multiple clones of Atrophin-1 (ATN1), a previously described TLX interactor. In addition, we identified an interaction with the oncoprotein and zinc finger transcription factor BCL11A (CTIP1/Evi9), a key player in the hematopoietic system and in major blood-related malignancies. This interaction was validated by expression and coimmunoprecipitation in human cells. BCL11A potentiated the transrepressive function of TLX in an in vitro reporter gene assay. Our work suggests that BCL11A is a novel TLX coregulator that might be involved in TLX-dependent gene regulation in the brain. PMID:22675500
Estruch, Sara B; Buzón, Víctor; Carbó, Laia R; Schorova, Lenka; Lüders, Jens; Estébanez-Perpiñá, Eva
2012-01-01
Nuclear orphan receptor TLX (NR2E1) functions primarily as a transcriptional repressor and its pivotal role in brain development, glioblastoma, mental retardation and retinopathologies make it an attractive drug target. TLX is expressed in the neural stem cells (NSCs) of the subventricular zone and the hippocampus subgranular zone, regions with persistent neurogenesis in the adult brain, and functions as an essential regulator of NSCs maintenance and self-renewal. Little is known about the TLX social network of interactors and only few TLX coregulators are described. To identify and characterize novel TLX-binders and possible coregulators, we performed yeast-two-hybrid (Y2H) screens of a human adult brain cDNA library using different TLX constructs as baits. Our screens identified multiple clones of Atrophin-1 (ATN1), a previously described TLX interactor. In addition, we identified an interaction with the oncoprotein and zinc finger transcription factor BCL11A (CTIP1/Evi9), a key player in the hematopoietic system and in major blood-related malignancies. This interaction was validated by expression and coimmunoprecipitation in human cells. BCL11A potentiated the transrepressive function of TLX in an in vitro reporter gene assay. Our work suggests that BCL11A is a novel TLX coregulator that might be involved in TLX-dependent gene regulation in the brain.
Wei, Ying; Donate, Fernando; Juarez, Jose; Parry, Graham; Chen, Liqing; Meehan, Edward J.; Ahn, Richard W.; Ugolkov, Andrey; Dubrovskyi, Oleksii; O'Halloran, Thomas V.; Huang, Mingdong; Mazar, Andrew P.
2014-01-01
The urokinase plasminogen activator receptor (uPAR) plays a role in tumor progression and has been proposed as a target for the treatment of cancer. We recently described the development of a novel humanized monoclonal antibody that targets uPAR and has anti-tumor activity in multiple xenograft animal tumor models. This antibody, ATN-658, does not inhibit ligand binding (i.e. uPA and vitronectin) to uPAR and its mechanism of action remains unclear. As a first step in understanding the anti-tumor activity of ATN-658, we set out to identify the epitope on uPAR to which ATN-658 binds. Guided by comparisons between primate and human uPAR, epitope mapping studies were performed using several orthogonal techniques. Systematic site directed and alanine scanning mutagenesis identified the region of aa 268–275 of uPAR as the epitope for ATN-658. No known function has previously been attributed to this epitope Structural insights into epitope recognition were obtained from structural studies of the Fab fragment of ATN-658 bound to uPAR. The structure shows that the ATN-658 binds to the DIII domain of uPAR, close to the C-terminus of the receptor, corroborating the epitope mapping results. Intriguingly, when bound to uPAR, the complementarity determining region (CDR) regions of ATN-658 closely mimic the binding regions of the integrin CD11b (αM), a previously identified uPAR ligand thought to be involved in leukocyte rolling, migration and complement fixation with no known role in tumor progression of solid tumors. These studies reveal a new functional epitope on uPAR involved in tumor progression and demonstrate a previously unrecognized strategy for the therapeutic targeting of uPAR. PMID:24465541
Discriminant function sexing of fragmentary and complete femora: standards for contemporary Croatia.
Slaus, Mario; Strinović, Davor; Skavić, Josip; Petrovecki, Vedrana
2003-05-01
Determining sex is one of the first and most important steps in identifying decomposed corpses or skeletal remains. Previous studies have demonstrated that populations differ from each other in size and proportion and that these differences can affect metric assessment of sex. This paper establishes standards for determining sex from fragmentary and complete femurs in a modern Croatian population. The sample is composed of 195 femora (104 male and 91 female) from positively identified victims of the 1991 War in Croatia. Six discriminant functions were generated. one using seven variables, three using two variables, and two employing one variable. Results show that complete femora can be sexed with 94.4% accuracy. The same overall accuracy, with slight differences in male/female accuracy, was achieved using a combination of two variables defining the epiphyses, and with the variable maximum diameter of the femoral head.
Mutations of RNA splicing factors in hematological malignancies.
Shukla, Girish C; Singh, Jagjit
2017-11-28
Systematic large-scale cancer genomic studies have produced numerous significant findings. These studies have not only revealed new cancer-promoting genes, but they also have identified cancer-promoting functions of previously known "housekeeping" genes. These studies have identified numerous mutations in genes which play a fundamental role in nuclear precursor mRNA splicing. Somatic mutations and copy number variation in many of the splicing factors which participate in the formation of multiple spliceosomal complexes appear to play a role in many cancers and in particular in myelodysplastic syndromes (MDS). Mutated proteins seem to interfere with the recognition of the authentic splice sites (SS) leading to utilization of suboptimal alternative splicing sites generating aberrantly spliced mRNA isoforms. This short review is focusing on the function of the splice factors involved in the formation of splicing complexes and potential mechanisms which affect usage of the authentic splice site recognition. Copyright © 2017 Elsevier B.V. All rights reserved.
A functional genomics screen in planarians reveals regulators of whole-brain regeneration
Roberts-Galbraith, Rachel H; Brubacher, John L; Newmark, Phillip A
2016-01-01
Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea. Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal’s ability to regenerate its brain. DOI: http://dx.doi.org/10.7554/eLife.17002.001 PMID:27612384
The impact of low-frequency and rare variants on lipid levels
Surakka, Ida; Horikoshi, Momoko; Mägi, Reedik; Sarin, Antti-Pekka; Mahajan, Anubha; Lagou, Vasiliki; Marullo, Letizia; Ferreira, Teresa; Miraglio, Benjamin; Timonen, Sanna; Kettunen, Johannes; Pirinen, Matti; Karjalainen, Juha; Thorleifsson, Gudmar; Hägg, Sara; Hottenga, Jouke-Jan; Isaacs, Aaron; Ladenvall, Claes; Beekman, Marian; Esko, Tõnu; Ried, Janina S; Nelson, Christopher P; Willenborg, Christina; Gustafsson, Stefan; Westra, Harm-Jan; Blades, Matthew; de Craen, Anton JM; de Geus, Eco J; Deelen, Joris; Grallert, Harald; Hamsten, Anders; Havulinna, Aki S.; Hengstenberg, Christian; Houwing-Duistermaat, Jeanine J; Hyppönen, Elina; Karssen, Lennart C; Lehtimäki, Terho; Lyssenko, Valeriya; Magnusson, Patrik KE; Mihailov, Evelin; Müller-Nurasyid, Martina; Mpindi, John-Patrick; Pedersen, Nancy L; Penninx, Brenda WJH; Perola, Markus; Pers, Tune H; Peters, Annette; Rung, Johan; Smit, Johannes H; Steinthorsdottir, Valgerdur; Tobin, Martin D; Tsernikova, Natalia; van Leeuwen, Elisabeth M; Viikari, Jorma S; Willems, Sara M; Willemsen, Gonneke; Schunkert, Heribert; Erdmann, Jeanette; Samani, Nilesh J; Kaprio, Jaakko; Lind, Lars; Gieger, Christian; Metspalu, Andres; Slagboom, P Eline; Groop, Leif; van Duijn, Cornelia M; Eriksson, Johan G; Jula, Antti; Salomaa, Veikko; Boomsma, Dorret I; Power, Christine; Raitakari, Olli T; Ingelsson, Erik; Järvelin, Marjo-Riitta; Stefansson, Kari; Franke, Lude; Ikonen, Elina; Kallioniemi, Olli; Pietiäinen, Vilja; Lindgren, Cecilia M; Thorsteinsdottir, Unnur; Palotie, Aarno; McCarthy, Mark I; Morris, Andrew P; Prokopenko, Inga; Ripatti, Samuli
2016-01-01
Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes imputation in 62,166 samples, we identify association to lipids in 93 loci including 79 previously identified loci with new lead-SNPs, 10 new loci, 15 loci with a low-frequency and 10 loci with missense lead-SNPs, and, 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC, and APOE), or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2), explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for LDL-C and TC. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to re-sequencing. PMID:25961943
Identifying Few-Molecule Water Clusters with High Precision on Au(111) Surface.
Dong, Anning; Yan, Lei; Sun, Lihuan; Yan, Shichao; Shan, Xinyan; Guo, Yang; Meng, Sheng; Lu, Xinghua
2018-06-01
Revealing the nature of a hydrogen-bond network in water structures is one of the imperative objectives of science. With the use of a low-temperature scanning tunneling microscope, water clusters on a Au(111) surface were directly imaged with molecular resolution by a functionalized tip. The internal structures of the water clusters as well as the geometry variations with the increase of size were identified. In contrast to a buckled water hexamer predicted by previous theoretical calculations, our results present deterministic evidence for a flat configuration of water hexamers on Au(111), corroborated by density functional theory calculations with properly implemented van der Waals corrections. The consistency between the experimental observations and improved theoretical calculations not only renders the internal structures of absorbed water clusters unambiguously, but also directly manifests the crucial role of van der Waals interactions in constructing water-solid interfaces.
Kulén, Martina; Lindgren, Marie; Hansen, Sabine; Cairns, Andrew G; Grundström, Christin; Begum, Afshan; van der Lingen, Ingeborg; Brännström, Kristoffer; Hall, Michael; Sauer, Uwe H; Johansson, Jörgen; Sauer-Eriksson, A Elisabeth; Almqvist, Fredrik
2018-05-10
Listeria monocytogenes is a bacterial pathogen that controls much of its virulence through the transcriptional regulator PrfA. In this study, we describe structure-guided design and synthesis of a set of PrfA inhibitors based on ring-fused 2-pyridone heterocycles. Our most effective compound decreased virulence factor expression, reduced bacterial uptake into eukaryotic cells, and improved survival of chicken embryos infected with L. monocytogenes compared to previously identified compounds. Crystal structures identified an intraprotein "tunnel" as the main inhibitor binding site (A I ), where the compounds participate in an extensive hydrophobic network that restricts the protein's ability to form functional DNA-binding helix-turn-helix (HTH) motifs. Our studies also revealed a hitherto unsuspected structural plasticity of the HTH motif. In conclusion, we have designed 2-pyridone analogues that function as site-A I selective PrfA inhibitors with potent antivirulence properties.
Morais do Amaral, Alexandre; Antoniw, John; Rudd, Jason J.; Hammond-Kosack, Kim E.
2012-01-01
The Dothideomycete fungus Mycosphaerella graminicola is the causal agent of Septoria tritici blotch, a devastating disease of wheat leaves that causes dramatic decreases in yield. Infection involves an initial extended period of symptomless intercellular colonisation prior to the development of visible necrotic disease lesions. Previous functional genomics and gene expression profiling studies have implicated the production of secreted virulence effector proteins as key facilitators of the initial symptomless growth phase. In order to identify additional candidate virulence effectors, we re-analysed and catalogued the predicted protein secretome of M. graminicola isolate IPO323, which is currently regarded as the reference strain for this species. We combined several bioinformatic approaches in order to increase the probability of identifying truly secreted proteins with either a predicted enzymatic function or an as yet unknown function. An initial secretome of 970 proteins was predicted, whilst further stringent selection criteria predicted 492 proteins. Of these, 321 possess some functional annotation, the composition of which may reflect the strictly intercellular growth habit of this pathogen, leaving 171 with no functional annotation. This analysis identified a protein family encoding secreted peroxidases/chloroperoxidases (PF01328) which is expanded within all members of the family Mycosphaerellaceae. Further analyses were done on the non-annotated proteins for size and cysteine content (effector protein hallmarks), and then by studying the distribution of homologues in 17 other sequenced Dothideomycete fungi within an overall total of 91 predicted proteomes from fungal, oomycete and nematode species. This detailed M. graminicola secretome analysis provides the basis for further functional and comparative genomics studies. PMID:23236356
Juraeva, Dilafruz; Haenisch, Britta; Zapatka, Marc; Frank, Josef; Witt, Stephanie H; Mühleisen, Thomas W; Treutlein, Jens; Strohmaier, Jana; Meier, Sandra; Degenhardt, Franziska; Giegling, Ina; Ripke, Stephan; Leber, Markus; Lange, Christoph; Schulze, Thomas G; Mössner, Rainald; Nenadic, Igor; Sauer, Heinrich; Rujescu, Dan; Maier, Wolfgang; Børglum, Anders; Ophoff, Roel; Cichon, Sven; Nöthen, Markus M; Rietschel, Marcella; Mattheisen, Manuel; Brors, Benedikt
2014-06-01
In the present study, an integrated hierarchical approach was applied to: (1) identify pathways associated with susceptibility to schizophrenia; (2) detect genes that may be potentially affected in these pathways since they contain an associated polymorphism; and (3) annotate the functional consequences of such single-nucleotide polymorphisms (SNPs) in the affected genes or their regulatory regions. The Global Test was applied to detect schizophrenia-associated pathways using discovery and replication datasets comprising 5,040 and 5,082 individuals of European ancestry, respectively. Information concerning functional gene-sets was retrieved from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and the Molecular Signatures Database. Fourteen of the gene-sets or pathways identified in the discovery dataset were confirmed in the replication dataset. These include functional processes involved in transcriptional regulation and gene expression, synapse organization, cell adhesion, and apoptosis. For two genes, i.e. CTCF and CACNB2, evidence for association with schizophrenia was available (at the gene-level) in both the discovery study and published data from the Psychiatric Genomics Consortium schizophrenia study. Furthermore, these genes mapped to four of the 14 presently identified pathways. Several of the SNPs assigned to CTCF and CACNB2 have potential functional consequences, and a gene in close proximity to CACNB2, i.e. ARL5B, was identified as a potential gene of interest. Application of the present hierarchical approach thus allowed: (1) identification of novel biological gene-sets or pathways with potential involvement in the etiology of schizophrenia, as well as replication of these findings in an independent cohort; (2) detection of genes of interest for future follow-up studies; and (3) the highlighting of novel genes in previously reported candidate regions for schizophrenia.
Chen, Jinyun; Wu, Xifeng; Huang, Yujing; Chen, Wei; Brand, Randall E.; Killary, Ann M.; Sen, Subrata; Frazier, Marsha L.
2016-01-01
Biomarkers are critically needed for the early detection of pancreatic cancer (PC) are urgently needed. Our purpose was to identify a panel of genetic variants that, combined, can predict increased risk for early-onset PC and thereby identify individuals who should begin screening at an early age. Previously, we identified genes using a functional genomic approach that were aberrantly expressed in early pathways to PC tumorigenesis. We now report the discovery of single nucleotide polymorphisms (SNPs) in these genes associated with early age at diagnosis of PC using a two-phase study design. In silico and bioinformatics tools were used to examine functional relevance of the identified SNPs. Eight SNPs were consistently associated with age at diagnosis in the discovery phase, validation phase and pooled analysis. Further analysis of the joint effects of these 8 SNPs showed that, compared to participants carrying none of these unfavorable genotypes (median age at PC diagnosis 70 years), those carrying 1–2, 3–4, or 5 or more unfavorable genotypes had median ages at diagnosis of 64, 63, and 62 years, respectively (P = 3.0E–04). A gene-dosage effect was observed, with age at diagnosis inversely related to number of unfavorable genotypes (Ptrend = 1.0E–04). Using bioinformatics tools, we found that all of the 8 SNPs were predicted to play functional roles in the disruption of transcription factor and/or enhancer binding sites and most of them were expression quantitative trait loci (eQTL) of the target genes. The panel of genetic markers identified may serve as susceptibility markers for earlier PC diagnosis. PMID:27486767
NASA Astrophysics Data System (ADS)
Blums, Angela
The present study examines instructional approaches and cognitive factors involved in elementary school children's thinking and learning the Control of Variables Strategy (CVS), a critical aspect of scientific reasoning. Previous research has identified several features related to effective instruction of CVS, including using a guided learning approach, the use of self-reflective questions, and learning in individual and group contexts. The current study examined the roles of procedural and conceptual instruction in learning CVS and investigated the role of executive function in the learning process. Additionally, this study examined how learning to identify variables is a part of the CVS process. In two studies (individual and classroom experiments), 139 third, fourth, and fifth grade students participated in hands-on and paper and pencil CVS learning activities and, in each study, were assigned to either a procedural instruction, conceptual instruction, or control (no instruction) group. Participants also completed a series of executive function tasks. The study was carried out with two parts--Study 1 used an individual context and Study 2 was carried out in a group setting. Results indicated that procedural and conceptual instruction were more effective than no instruction, and the ability to identify variables was identified as a key piece to the CVS process. Executive function predicted ability to identify variables and predicted success on CVS tasks. Developmental differences were present, in that older children outperformed younger children on CVS tasks, and that conceptual instruction was slightly more effective for older children. Some differences between individual and group instruction were found, with those in the individual context showing some advantage over the those in the group setting in learning CVS concepts. Conceptual implications about scientific thinking and practical implications in science education are discussed.
Scriba, Thomas J; Carpenter, Chelsea; Pro, Sebastian Carrasco; Sidney, John; Musvosvi, Munyaradzi; Rozot, Virginie; Seumois, Grégory; Rosales, Sandy L; Vijayanand, Pandurangan; Goletti, Delia; Makgotlho, Edward; Hanekom, Willem; Hatherill, Mark; Peters, Bjoern; Sette, Alessandro; Arlehamn, Cecilia S Lindestam
2017-09-15
Individuals with a history of tuberculosis (TB) disease are at elevated risk of disease recurrence. The underlying cause is not known, but one explanation is that previous disease results in less-effective immunity against Mycobacterium tuberculosis (Mtb). We hypothesized that the repertoire of Mtb-derived epitopes recognized by T cells from individuals with latent Mtb infection differs as a function of previous diagnosis of active TB disease. T-cell responses to peptide pools in samples collected from an adult screening and an adolescent validation cohort were measured by IFN-γ enzyme-linked immunospot assay or intracellular cytokine staining. We identified a set of "type 2" T-cell epitopes that were recognized at 10-fold-lower levels in Mtb-infected individuals with a history of TB disease less than 6 years ago than in those without previous TB. By contrast, "type 1" epitopes were recognized equally well in individuals with or without previous TB. The differential epitope recognition was not due to differences in HLA class II binding, memory phenotypes, or gene expression in the responding T cells. Instead, "TB disease history-sensitive" type 2 epitopes were significantly (P < 0.0001) more homologous to sequences from bacteria found in the human microbiome than type 1 epitopes. Preferential loss of T-cell reactivity to Mtb epitopes that are homologous to bacteria in the microbiome in persons with previous TB disease may reflect long-term effects of antibiotic TB treatment on the microbiome.
Simpson, Gloria A; Colpe, Lisa; Greenspan, Stanley
2003-01-01
In order to measure the prevalence of developmental delay among US infants and children, two types of questions were asked of parents in the 1994-95 National Health Interview Survey on Disability (NHIS-D). To measure functional delay (FD), questions from the Functional Developmental Growth Chart (FDQ), which measures specific age-appropriate tasks, were used. General delay (GD) was defined using the general type of questions about developmental delay that had been used in previous surveys. Using a nationally representative sample of 15 291 infants and children aged 4-59 months from the NHIS-D, analyses revealed that, according to these questions, approximately 3.3% had FD and 3.4% of the children had GD. However, only one-third of the children were identified by both sets of questions. Thus, two-thirds of the children identified as having FD were not recognised by their parents as having a delay. Conversely, many parents responded to the GD questions indicating that their child had a delay, but failed to indicate that their child had a functional problem. In addition, only 17% of the children with FD and 31% of those with GD were receiving special services. Multivariable logistic regression analyses found that children with both FD and GD were more likely to be male and to be living in families with incomes below 200% of the poverty level. The findings suggest that the general types of developmental delay questions used in national surveys may not identify children with functional delays. As parents failed to identify these children, it is possible that many of these children may be slipping through paediatric surveillance. Further research to evaluate the use of these measures in population surveys is recommended.
Screening for autism identifies behavioral disorders in children functional defecation disorders.
Kuizenga-Wessel, Sophie; Di Lorenzo, Carlo; Nicholson, Lisa M; Butter, Eric M; Ratliff-Schaub, Karen L; Benninga, Marc A; Williams, Kent C
2016-10-01
This study prospectively assessed whether positive screening surveys for autism spectrum disorders (ASDs) in children with functional defecation disorders (FDDs) accurately identify ASD. Parents of children (4-12 years) who met Rome III criteria for functional constipation (FC), FC with fecal incontinence (FI) and functional nonretentive FI (FNRFI) completed two ASD screening surveys. Children with positive screens were referred for psychological evaluation, and a year later, follow-up surveys were conducted. Of the 97 study participants, 30.9 % were diagnosed with FC, 62.9 % with FC with FI, and 6.2 % with FNRFI. ASD surveys were positive for 27 children (27.8 %). New DSM diagnoses were made in 10 out of the 15 children that completed further evaluation. Two (2.1 %) met criteria for ASD, and 12 (12.4 %) met criteria for other behavioral disorders. Average SRS and SCQ-L scores were higher in subjects with FC with FI as compared to FC alone and in those who reported no improvement versus those who reported improvement 1 year later. While positive ASD screening surveys did not correctly identify ASD in the majority, it did help to identify other unrecognized behavioral disorders in children with FDD. High screening scores were more common in children with FC with FI and in children with poorer responses to current medical treatments. •A prior study found that 29 % of children with FDD scored positive on ASD screening questionnaires. •Whether positive screens correctly identify ASD in children with FDD is unknown. What is New: •This study shows that positive ASD screens do not correctly identify ASD in children with FDD. However, the use of ASD screening questionnaires can identify previously unrecognized and untreated behavioral/developmental disorders in children with FDD. •High screening scores are more common in children with FC with FI and in children with poorer responses to current medical treatments.
Constituents and functional implications of the rat default mode network.
Hsu, Li-Ming; Liang, Xia; Gu, Hong; Brynildsen, Julia K; Stark, Jennifer A; Ash, Jessica A; Lin, Ching-Po; Lu, Hanbing; Rapp, Peter R; Stein, Elliot A; Yang, Yihong
2016-08-02
The default mode network (DMN) has been suggested to support a variety of self-referential functions in humans and has been fractionated into subsystems based on distinct responses to cognitive tasks and functional connectivity architecture. Such subsystems are thought to reflect functional hierarchy and segregation within the network. Because preclinical models can inform translational studies of neuropsychiatric disorders, partitioning of the DMN in nonhuman species, which has previously not been reported, may inform both physiology and pathophysiology of the human DMN. In this study, we sought to identify constituents of the rat DMN using resting-state functional MRI (rs-fMRI) and diffusion tensor imaging. After identifying DMN using a group-level independent-component analysis on the rs-fMRI data, modularity analyses fractionated the DMN into an anterior and a posterior subsystem, which were further segregated into five modules. Diffusion tensor imaging tractography demonstrates a close relationship between fiber density and the functional connectivity between DMN regions, and provides anatomical evidence to support the detected DMN subsystems. Finally, distinct modulation was seen within and between these DMN subcomponents using a neurocognitive aging model. Taken together, these results suggest that, like the human DMN, the rat DMN can be partitioned into several subcomponents that may support distinct functions. These data encourage further investigation into the neurobiological mechanisms of DMN processing in preclinical models of both normal and disease states.
Roche, John P.; Alsharif, Peter; Graf, Ethan R.
2015-01-01
At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction. Rab3 has been extensively studied for its role in the synaptic vesicle cycle; however, the mechanism by which Rab3 controls active zone development remains unknown. To explore this mechanism, we conducted a mutational analysis to determine the molecular and structural requirements of Rab3 function at Drosophila synapses. We find that GTP-binding is required for Rab3 to traffick to synapses and distribute active zone components across release sites. Conversely, the hydrolytic activity of Rab3 is unnecessary for this function. Through a structure-function analysis we identify specific residues within the effector-binding switch regions that are required for Rab3 function and determine that membrane attachment is essential. Our findings suggest that Rab3 controls the distribution of active zone components via a vesicle docking mechanism that is consistent with standard Rab protein function. PMID:26317909
Sparse representation of whole-brain fMRI signals for identification of functional networks.
Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming
2015-02-01
There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.
BIOLOGICAL NETWORK EXPLORATION WITH CYTOSCAPE 3
Su, Gang; Morris, John H.; Demchak, Barry; Bader, Gary D.
2014-01-01
Cytoscape is one of the most popular open-source software tools for the visual exploration of biomedical networks composed of protein, gene and other types of interactions. It offers researchers a versatile and interactive visualization interface for exploring complex biological interconnections supported by diverse annotation and experimental data, thereby facilitating research tasks such as predicting gene function and pathway construction. Cytoscape provides core functionality to load, visualize, search, filter and save networks, and hundreds of Apps extend this functionality to address specific research needs. The latest generation of Cytoscape (version 3.0 and later) has substantial improvements in function, user interface and performance relative to previous versions. This protocol aims to jump-start new users with specific protocols for basic Cytoscape functions, such as installing Cytoscape and Cytoscape Apps, loading data, visualizing and navigating the network, visualizing network associated data (attributes) and identifying clusters. It also highlights new features that benefit experienced users. PMID:25199793
Sharpee, William; Oh, Yeonyee; Yi, Mihwa; Franck, William; Eyre, Alex; Okagaki, Laura H; Valent, Barbara; Dean, Ralph A
2017-08-01
Phytopathogenic microorganisms, including the fungal pathogen Magnaporthe oryzae, secrete a myriad of effector proteins to facilitate infection. Utilizing the transient expression of candidate effectors in the leaves of the model plant Nicotiana benthamiana, we identified 11 suppressors of plant cell death (SPD) effectors from M. oryzae that were able to block the host cell death reaction induced by Nep1. Ten of these 11 were also able to suppress BAX-mediated plant cell death. Five of the 11 SPD genes have been identified previously as either essential for the pathogenicity of M. oryzae, secreted into the plant during disease development, or as suppressors or homologues of other characterized suppressors. In addition, of the remaining six, we showed that SPD8 (previously identified as BAS162) was localized to the rice cytoplasm in invaded and surrounding uninvaded cells during biotrophic invasion. Sequence analysis of the 11 SPD genes across 43 re-sequenced M. oryzae genomes revealed that SPD2, SPD4 and SPD7 have nucleotide polymorphisms amongst the isolates. SPD4 exhibited the highest level of nucleotide diversity of any currently known effector from M. oryzae in addition to the presence/absence polymorphisms, suggesting that this gene is potentially undergoing selection to avoid recognition by the host. Taken together, we have identified a series of effectors, some of which were previously unknown or whose function was unknown, that probably act at different stages of the infection process and contribute to the virulence of M. oryzae. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Uddin, Raihan; Singh, Shiva M.
2017-01-01
As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in “learning and memory” related functions and pathways. Subsequent differential network analysis of this “learning and memory” module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they provide a new insight and generate new hypotheses into the molecular mechanisms responsible for age associated learning impairment, including spatial learning. PMID:29066959
Uddin, Raihan; Singh, Shiva M
2017-01-01
As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in "learning and memory" related functions and pathways. Subsequent differential network analysis of this "learning and memory" module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they provide a new insight and generate new hypotheses into the molecular mechanisms responsible for age associated learning impairment, including spatial learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagues, A.
Beauty quark production in ep collisions is being studied at HERA. The latest results in deep inelastic scattering (DIS) and photoproduction (PHP) regime performed by the ZEUS and HI experiments are presented here. The first measurement exploits the potential of the ZEUS mi-crovertex detector to identify beauty in PHP dijet events in an inclusive analysis. In the second measurement, beauty quarks were identified through their decays into muons. Finally, two measurements of the beauty contribution to the proton structure function, F{sub 2}{sup b???b}, in DIS are presented. The four measurements are consistent with previous results and are reasonably well describedmore » by QCD predictions.« less
Panser, Karin; Tirian, Laszlo; Schulze, Florian; Villalba, Santiago; Jefferis, Gregory S X E; Bühler, Katja; Straw, Andrew D
2016-08-08
Identifying distinct anatomical structures within the brain and developing genetic tools to target them are fundamental steps for understanding brain function. We hypothesize that enhancer expression patterns can be used to automatically identify functional units such as neuropils and fiber tracts. We used two recent, genome-scale Drosophila GAL4 libraries and associated confocal image datasets to segment large brain regions into smaller subvolumes. Our results (available at https://strawlab.org/braincode) support this hypothesis because regions with well-known anatomy, namely the antennal lobes and central complex, were automatically segmented into familiar compartments. The basis for the structural assignment is clustering of voxels based on patterns of enhancer expression. These initial clusters are agglomerated to make hierarchical predictions of structure. We applied the algorithm to central brain regions receiving input from the optic lobes. Based on the automated segmentation and manual validation, we can identify and provide promising driver lines for 11 previously identified and 14 novel types of visual projection neurons and their associated optic glomeruli. The same strategy can be used in other brain regions and likely other species, including vertebrates. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
An examination of automation and robotics in the context of Space Station operations
NASA Technical Reports Server (NTRS)
Criswell, David R.; Lee, Douglas S.; Ragusa, James; Starks, Scott A.; Woodruff, John; Paules, Granville
1988-01-01
A NASA-sponsored review of Space Station automation and robotics (A&R) applications from an operations and utilization perspective is presented. The goals of the A&R panel and this report are to identify major suggestions for advanced A&R operations application in Space Station as well as key technologies that have emerged or gained prominence since the completion of previous reports; to review and incorporate the range of possible Space Station A&R applications into a framework for evaluation of A&R opportunities; and to propose incentives for the government, work packages, and subcontractors to more aggressively identify, evaluate, and incorporate advanced A&R in Space Station Operations. The suggestions for A&R focused on narrow objectives using a conservative approach tuned to Space Station at IOC and limiting the Station's growth capabilities. A more aggressive stance is to identify functional needs over the Program's life, exploit and leverage available technology, and develop the key advanced technologies permitting effective use of A&R. The challenge is to systematically identify candidate functions to be automated, provide ways to create solutions resulting in savings or increased capabilities, and offer incentives that will promote the automation.
Studies of thermal wave phenomena on the Jovian planets
NASA Technical Reports Server (NTRS)
Deming, Drake
1991-01-01
Ground-based and Voyager observations of Jupiter provided evidence that the tropospheric temperature shows global-scale longitudinal variations which are often wavelike in character. The investigation is presented which is directed toward obtaining additional ground-based data in IR spectral bands whose contribution functions are optimized for specific atmospheric regions, in order to confirm the previous results, and to identify the nature and physical significance of wavelike longitudinal temperature fluctuations on the Jovian planets.
2011-06-15
Army AAA Report No. A-2009-0226- FFM , “Examination of Federal Financial Management Improvement Act Compliance - Test Validation General Fund Enterprise...Business System Release 1.2,” September 30, 2009 AAA Report No. A-2009-0231- FFM , “General Fund Enterprise Business System - Federal Financial...Management Improvement Act Compliance Examination of Release 1.3 Functionality,” September 30, 2009 AAA Report No. A-2009-0232- FFM , “General Fund
Functional impairment matters in the screening and diagnosis of gaming disorder
Billieux, Joël; King, Daniel L.; Higuchi, Susumu; Achab, Sophia; Bowden-Jones, Henrietta; Hao, Wei; Long, Jiang; Lee, Hae Kook; Potenza, Marc N.; Saunders, John B.; Poznyak, Vladimir
2017-01-01
This commentary responds to Aarseth et al.’s (in press) criticisms that the ICD-11 Gaming Disorder proposal would result in “moral panics around the harm of video gaming” and “the treatment of abundant false-positive cases.” The ICD-11 Gaming Disorder avoids potential “overpathologizing” with its explicit reference to functional impairment caused by gaming and therefore improves upon a number of flawed previous approaches to identifying cases with suspected gaming-related harms. We contend that moral panics are more likely to occur and be exacerbated by misinformation and lack of understanding, rather than proceed from having a clear diagnostic system. PMID:28816514
Functional impairment matters in the screening and diagnosis of gaming disorder.
Billieux, Joël; King, Daniel L; Higuchi, Susumu; Achab, Sophia; Bowden-Jones, Henrietta; Hao, Wei; Long, Jiang; Lee, Hae Kook; Potenza, Marc N; Saunders, John B; Poznyak, Vladimir
2017-09-01
This commentary responds to Aarseth et al.'s (in press) criticisms that the ICD-11 Gaming Disorder proposal would result in "moral panics around the harm of video gaming" and "the treatment of abundant false-positive cases." The ICD-11 Gaming Disorder avoids potential "overpathologizing" with its explicit reference to functional impairment caused by gaming and therefore improves upon a number of flawed previous approaches to identifying cases with suspected gaming-related harms. We contend that moral panics are more likely to occur and be exacerbated by misinformation and lack of understanding, rather than proceed from having a clear diagnostic system.
Campbell, Liam; Turner, Simon R.
2017-01-01
Rapid Alkalinization Factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth. Although RALF peptides have been identified within many species, a single wide-ranging phylogenetic analysis of the family across the plant kingdom has not yet been undertaken. Here, we identified RALF proteins from 51 plant species that represent a variety of land plant lineages. The inferred evolutionary history of the 795 identified RALFs suggests that the family has diverged into four major clades. We found that much of the variation across the family exists within the mature peptide region, suggesting clade-specific functional diversification. Clades I, II, and III contain the features that have been identified as important for RALF activity, including the RRXL cleavage site and the YISY motif required for receptor binding. In contrast, members of clades IV that represent a third of the total dataset, is highly diverged and lacks these features that are typical of RALFs. Members of clade IV also exhibit distinct expression patterns and physico-chemical properties. These differences suggest a functional divergence of clades and consequently, we propose that the peptides within clade IV are not true RALFs, but are more accurately described as RALF-related peptides. Expansion of this RALF–related clade in the Brassicaceae is responsible for the large number of RALF genes that have been previously described in Arabidopsis thaliana. Future experimental work will help to establish the nature of the relationship between the true RALFs and the RALF-related peptides, and whether they function in a similar manner. PMID:28174582
Outcome dependency alters the neural substrates of impression formation
Ames, Daniel L.; Fiske, Susan T.
2015-01-01
How do people maintain consistent impressions of other people when other people are often inconsistent? The present research addresses this question by combining recent neuroscientific insights with ecologically meaningful behavioral methods. Participants formed impressions of real people whom they met in a personally involving situation. fMRI and supporting behavioral data revealed that outcome dependency (i.e., depending on another person for a desired outcome) alters previously identified neural dynamics of impression formation. Consistent with past research, a functional localizer identified a region of dorsomedial PFC previously linked to social impression formation. In the main task, this ROI revealed the predicted patterns of activity across outcome dependency conditions: greater BOLD response when information confirmed (vs. violated) social expectations if participants were outcome-independent and the reverse pattern if participants were outcome-dependent. We suggest that, although social perceivers often discount expectancy-disconfirming information as noise, being dependent on another person for a desired outcome focuses impression-formation processing on the most diagnostic information, rather than on the most tractable information. PMID:23850465
Sogi, Kimberly M; Holsclaw, Cynthia M; Fragiadakis, Gabriela K; Nomura, Daniel K; Leary, Julie A; Bertozzi, Carolyn R
2016-11-11
Sulfomenaquinone (SMK) is a recently identified metabolite that is unique to the Mycobacterium tuberculosis (M. tuberculosis) complex and is shown to modulate its virulence. Here, we report the identification of the SMK biosynthetic operon that, in addition to a previously identified sulfotransferase stf3, includes a putative cytochrome P450 gene (cyp128) and a gene of unknown function, rv2269c. We demonstrate that cyp128 and stf3 are sufficient for the biosynthesis of SMK from menaquinone and rv2269c exhibits promoter activity in M. tuberculosis. Loss of Stf3 expression, but not that of Cyp128, is correlated with elevated levels of menaquinone-9, an essential component in the electron-transport chain in M. tuberculosis. Finally, we showed in a mouse model of infection that the loss of cyp128 exhibits a hypervirulent phenotype similar to that in previous studies of the stf3 mutant. These findings provide a platform for defining the molecular basis of SMK's role in M. tuberculosis pathogenesis.
Lindström, Riitta; Lindholm, Päivi; Palgi, Mari; Saarma, Mart; Heino, Tapio I
2017-06-02
Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) and Cerebral Dopamine Neurotrophic Factor (CDNF) form an evolutionarily conserved family of neurotrophic factors. Orthologues for MANF/CDNF are the only neurotrophic factors as yet identified in invertebrates with conserved amino acid sequence. Previous studies indicate that mammalian MANF and CDNF support and protect brain dopaminergic system in non-cell-autonomous manner. However, MANF has also been shown to function intracellularly in the endoplasmic reticulum. To date, the knowledge on the interacting partners of MANF/CDNF and signaling pathways they activate is rudimentary. Here, we have employed the Drosophila genetics to screen for potential interaction partners of Drosophila Manf (DmManf) in vivo. We first show that DmManf plays a role in the development of Drosophila wing. We exploited this function by using Drosophila UAS-RNAi lines and discovered novel genetic interactions of DmManf with genes known to function in the mitochondria. We also found evidence of an interaction between DmManf and the Drosophila homologue encoding Ku70, the closest structural homologue of SAP domain of mammalian MANF. In addition to the previously known functions of MANF/CDNF protein family, DmManf also interacts with mitochondria-related genes. Our data supports the functional importance of these evolutionarily significant proteins and provides new insights for the future studies.
In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters.
Hama, Kotaro; Provost, Elayne; Baranowski, Timothy C; Rubinstein, Amy L; Anderson, Jennifer L; Leach, Steven D; Farber, Steven A
2009-02-01
Optical clarity of larvae makes the zebrafish ideal for real-time analyses of vertebrate organ function through the use of fluorescent reporters of enzymatic activities. A key function of digestive organs is to couple the generation of enzymes with mechanical processes that enable nutrient availability and absorption. However, it has been extremely difficult, and in many cases not possible, to directly observe digestive processes in a live vertebrate. Here we describe a new method to visualize intestinal protein and lipid processing simultaneously in live zebrafish larvae using a quenched fluorescent protein (EnzChek) and phospholipid (PED6). By employing these reagents, we found that wild-type larvae exhibit significant variation in intestinal phospholipase and protease activities within a group but display a strong correlation between the activities within individuals. Furthermore, we found that pancreas function is essential for larval digestive protease activity but not for larval intestinal phospholipase activity. Although fat-free (ffr) mutant larvae were previously described to exhibit impaired lipid processes, we found they also had significantly reduced protease activity. Finally, we selected and evaluated compounds that were previously suggested to have altered phospholipase activity and are known or suspected to have inflammatory effects in the intestinal tract including nonsteroidal anti-inflammatory drugs, and identified a compound that significantly increases intestinal phospholipid processing. Thus the multiple fluorescent reporter-based methodology facilitates the rapid analysis of digestive organ function in live zebrafish larvae.
Lutz, Sharon M; Cho, Michael H; Young, Kendra; Hersh, Craig P; Castaldi, Peter J; McDonald, Merry-Lynn; Regan, Elizabeth; Mattheisen, Manuel; DeMeo, Dawn L; Parker, Margaret; Foreman, Marilyn; Make, Barry J; Jensen, Robert L; Casaburi, Richard; Lomas, David A; Bhatt, Surya P; Bakke, Per; Gulsvik, Amund; Crapo, James D; Beaty, Terri H; Laird, Nan M; Lange, Christoph; Hokanson, John E; Silverman, Edwin K
2015-12-03
Pulmonary function decline is a major contributor to morbidity and mortality among smokers. Post bronchodilator FEV1 and FEV1/FVC ratio are considered the standard assessment of airflow obstruction. We performed a genome-wide association study (GWAS) in 9919 current and former smokers in the COPDGene study (6659 non-Hispanic Whites [NHW] and 3260 African Americans [AA]) to identify associations with spirometric measures (post-bronchodilator FEV1 and FEV1/FVC). We also conducted meta-analysis of FEV1 and FEV1/FVC GWAS in the COPDGene, ECLIPSE, and GenKOLS cohorts (total n = 13,532). Among NHW in the COPDGene cohort, both measures of pulmonary function were significantly associated with SNPs at the 15q25 locus [containing CHRNA3/5, AGPHD1, IREB2, CHRNB4] (lowest p-value = 2.17 × 10(-11)), and FEV1/FVC was associated with a genomic region on chromosome 4 [upstream of HHIP] (lowest p-value = 5.94 × 10(-10)); both regions have been previously associated with COPD. For the meta-analysis, in addition to confirming associations to the regions near CHRNA3/5 and HHIP, genome-wide significant associations were identified for FEV1 on chromosome 1 [TGFB2] (p-value = 8.99 × 10(-9)), 9 [DBH] (p-value = 9.69 × 10(-9)) and 19 [CYP2A6/7] (p-value = 3.49 × 10(-8)) and for FEV1/FVC on chromosome 1 [TGFB2] (p-value = 8.99 × 10(-9)), 4 [FAM13A] (p-value = 3.88 × 10(-12)), 11 [MMP3/12] (p-value = 3.29 × 10(-10)) and 14 [RIN3] (p-value = 5.64 × 10(-9)). In a large genome-wide association study of lung function in smokers, we found genome-wide significant associations at several previously described loci with lung function or COPD. We additionally identified a novel genome-wide significant locus with FEV1 on chromosome 9 [DBH] in a meta-analysis of three study populations.
Manichaikul, Ani; Hoffman, Eric A.; Smolonska, Joanna; Gao, Wei; Cho, Michael H.; Baumhauer, Heather; Budoff, Matthew; Austin, John H. M.; Washko, George R.; Carr, J. Jeffrey; Kaufman, Joel D.; Pottinger, Tess; Powell, Charles A.; Wijmenga, Cisca; Zanen, Pieter; Groen, Harry J. M.; Postma, Dirkje S.; Wanner, Adam; Rouhani, Farshid N.; Brantly, Mark L.; Powell, Rhea; Smith, Benjamin M.; Rabinowitz, Dan; Raffel, Leslie J.; Hinckley Stukovsky, Karen D.; Crapo, James D.; Beaty, Terri H.; Hokanson, John E.; Silverman, Edwin K.; Dupuis, Josée; O’Connor, George T.; Boezen, H. Marike; Rich, Stephen S.
2014-01-01
Rationale: Pulmonary emphysema overlaps partially with spirometrically defined chronic obstructive pulmonary disease and is heritable, with moderately high familial clustering. Objectives: To complete a genome-wide association study (GWAS) for the percentage of emphysema-like lung on computed tomography in the Multi-Ethnic Study of Atherosclerosis (MESA) Lung/SNP Health Association Resource (SHARe) Study, a large, population-based cohort in the United States. Methods: We determined percent emphysema and upper-lower lobe ratio in emphysema defined by lung regions less than −950 HU on cardiac scans. Genetic analyses were reported combined across four race/ethnic groups: non-Hispanic white (n = 2,587), African American (n = 2,510), Hispanic (n = 2,113), and Chinese (n = 704) and stratified by race and ethnicity. Measurements and Main Results: Among 7,914 participants, we identified regions at genome-wide significance for percent emphysema in or near SNRPF (rs7957346; P = 2.2 × 10−8) and PPT2 (rs10947233; P = 3.2 × 10−8), both of which replicated in an additional 6,023 individuals of European ancestry. Both single-nucleotide polymorphisms were previously implicated as genes influencing lung function, and analyses including lung function revealed independent associations for percent emphysema. Among Hispanics, we identified a genetic locus for upper-lower lobe ratio near the α-mannosidase–related gene MAN2B1 (rs10411619; P = 1.1 × 10−9; minor allele frequency [MAF], 4.4%). Among Chinese, we identified single-nucleotide polymorphisms associated with upper-lower lobe ratio near DHX15 (rs7698250; P = 1.8 × 10−10; MAF, 2.7%) and MGAT5B (rs7221059; P = 2.7 × 10−8; MAF, 2.6%), which acts on α-linked mannose. Among African Americans, a locus near a third α-mannosidase–related gene, MAN1C1 (rs12130495; P = 9.9 × 10−6; MAF, 13.3%) was associated with percent emphysema. Conclusions: Our results suggest that some genes previously identified as influencing lung function are independently associated with emphysema rather than lung function, and that genes related to α-mannosidase may influence risk of emphysema. PMID:24383474
Ross, Jana; Murphy, Dominic; Armour, Cherie
2018-05-28
Network analysis is a relatively new methodology for studying psychological disorders. It focuses on the associations between individual symptoms which are hypothesized to mutually interact with each other. The current study represents the first network analysis conducted with treatment-seeking military veterans in UK. The study aimed to examine the network structure of posttraumatic stress disorder (PTSD) symptoms and four domains of functional impairment by identifying the most central (i.e., important) symptoms of PTSD and by identifying those symptoms of PTSD that are related to functional impairment. Participants were 331 military veterans with probable PTSD. In the first step, a network of PTSD symptoms based on the PTSD Checklist for DSM-5 was estimated. In the second step, functional impairment items were added to the network. The most central symptoms of PTSD were recurrent thoughts, nightmares, negative emotional state, detachment and exaggerated startle response. Functional impairment was related to a number of different PTSD symptoms. Impairments in close relationships were associated primarily with the negative alterations in cognitions and mood symptoms and impairments in home management were associated primarily with the reexperiencing symptoms. The results are discussed in relation to previous PTSD network studies and include implications for clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.
Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia
Kuhn, Viktoria; Diederich, Lukas; Keller, T.C. Stevenson; Kramer, Christian M.; Lückstädt, Wiebke; Panknin, Christina; Suvorava, Tatsiana; Isakson, Brant E.; Kelm, Malte
2017-01-01
Abstract Significance: Recent clinical evidence identified anemia to be correlated with severe complications of cardiovascular disease (CVD) such as bleeding, thromboembolic events, stroke, hypertension, arrhythmias, and inflammation, particularly in elderly patients. The underlying mechanisms of these complications are largely unidentified. Recent Advances: Previously, red blood cells (RBCs) were considered exclusively as transporters of oxygen and nutrients to the tissues. More recent experimental evidence indicates that RBCs are important interorgan communication systems with additional functions, including participation in control of systemic nitric oxide metabolism, redox regulation, blood rheology, and viscosity. In this article, we aim to revise and discuss the potential impact of these noncanonical functions of RBCs and their dysfunction in the cardiovascular system and in anemia. Critical Issues: The mechanistic links between changes of RBC functional properties and cardiovascular complications related to anemia have not been untangled so far. Future Directions: To allow a better understanding of the complications associated with anemia in CVD, basic and translational science studies should be focused on identifying the role of noncanonical functions of RBCs in the cardiovascular system and on defining intrinsic and/or systemic dysfunction of RBCs in anemia and its relationship to CVD both in animal models and clinical settings. Antioxid. Redox Signal. 26, 718–742. PMID:27889956
Carter, Frances A; Bell, Caroline J; Ali, Anthony N; McKenzie, Janice; Wilkinson, Timothy J
2014-07-18
No previous studies have systematically assessed the psychological functioning of medical students following a major disaster. To describe the psychological functioning of medical students following the earthquakes in Canterbury, New Zealand, and identify predictors of adverse psychological functioning. 7 months following the most severe earthquake, medical students completed the Depression, Anxiety and Stress Scale (DASS), the Post-Traumatic Stress Disorder Checklist, the Eysenck Personality Questionnaire, the Connor Davidson Resilience Scale, the Work and Adjustment Scale, and Likert scales assessing psychological functioning at worst and currently. A substantial minority of medical students reported moderate-extreme difficulties on the DASS subscales 7 months following the most severe earthquake (Depression =12%; Anxiety =9%; Stress =10%). Multiple linear modelling produced a model that predicted 27% of the variance in total scores on the DASS. Variables contributing significantly to the model were: year of medical course, presence of mental health problems prior to the earthquakes, not being New Zealand European, and being higher on retrospectively rated neuroticism prior to the earthquakes. Around 10% of medical students experienced moderate-extreme psychological difficulties 7 months following the most severe earthquake on 22 February 2011. Specific groups at high risk for ongoing psychological symptomatology were able to be identified.
1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life
Mukherjee, Supratim; Seshadri, Rekha; Varghese, Neha J.; ...
2017-06-12
We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster withmore » potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.« less
Sisk, Matthew L.; Shea, John J.
2011-01-01
Despite a body of literature focusing on the functionality of modern and stylistically distinct projectile points, comparatively little attention has been paid to quantifying the functionality of the early stages of projectile use. Previous work identified a simple ballistics measure, the Tip Cross-Sectional Area, as a way of determining if a given class of stone points could have served as effective projectile armatures. Here we use this in combination with an alternate measure, the Tip Cross-Sectional Perimeter, a more accurate proxy of the force needed to penetrate a target to a lethal depth. The current study discusses this measure and uses it to analyze a collection of measurements from African Middle Stone Age pointed stone artifacts. Several point types that were rejected in previous studies are statistically indistinguishable from ethnographic projectile points using this new measure. The ramifications of this finding for a Middle Stone Age origin of complex projectile technology is discussed. PMID:21755048
More than meets the eye: the role of self-identity in decoding complex emotional states.
Stevenson, Michael T; Soto, José A; Adams, Reginald B
2012-10-01
Folk wisdom asserts that "the eyes are the window to the soul," and empirical science corroborates a prominent role for the eyes in the communication of emotion. Herein we examine variation in the ability to "read" the eyes of others as a function of social group membership, employing a widely used emotional state decoding task: "Reading the Mind in Eyes." This task has documented impaired emotional state decoding across racial groups, with cross-race performance on par with that previously reported as a function of autism spectrum disorders. The present study extended this work by examining the moderating role of social identity in such impairments. For college students more highly identified with their university, cross-race performance differences were not found for judgments of "same-school" eyes but remained for "rival-school" eyes. These findings suggest that impaired emotional state decoding across groups may thus be more amenable to remediation than previously realized.
1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Supratim; Seshadri, Rekha; Varghese, Neha J.
We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster withmore » potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.« less
A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease.
Huang, Kuan-Lin; Marcora, Edoardo; Pimenova, Anna A; Di Narzo, Antonio F; Kapoor, Manav; Jin, Sheng Chih; Harari, Oscar; Bertelsen, Sarah; Fairfax, Benjamin P; Czajkowski, Jake; Chouraki, Vincent; Grenier-Boley, Benjamin; Bellenguez, Céline; Deming, Yuetiva; McKenzie, Andrew; Raj, Towfique; Renton, Alan E; Budde, John; Smith, Albert; Fitzpatrick, Annette; Bis, Joshua C; DeStefano, Anita; Adams, Hieab H H; Ikram, M Arfan; van der Lee, Sven; Del-Aguila, Jorge L; Fernandez, Maria Victoria; Ibañez, Laura; Sims, Rebecca; Escott-Price, Valentina; Mayeux, Richard; Haines, Jonathan L; Farrer, Lindsay A; Pericak-Vance, Margaret A; Lambert, Jean Charles; van Duijn, Cornelia; Launer, Lenore; Seshadri, Sudha; Williams, Julie; Amouyel, Philippe; Schellenberg, Gerard D; Zhang, Bin; Borecki, Ingrid; Kauwe, John S K; Cruchaga, Carlos; Hao, Ke; Goate, Alison M
2017-08-01
A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function.
Rassart, Jessica; Luyckx, Koen; Goossens, Eva; Oris, Leen; Apers, Silke; Moons, Philip
2016-06-01
This study aimed (1) to identify different personality types in adolescents with congenital heart disease (CHD), and (2) to relate these personality types to psychosocial functioning and several domains of perceived health, both concurrently and prospectively. Hence, this study aimed to expand previous research by adopting a person-centered approach to personality through focusing on personality types rather than singular traits. Adolescents with CHD were selected from the database of pediatric and congenital cardiology of the University Hospitals Leuven. A total of 366 adolescents (15-20 years old) with CHD participated at time 1. These adolescents completed questionnaires on the Big Five personality traits, depressive symptoms, loneliness, and generic and disease-specific domains of health. Nine months later, 313 patients again completed questionnaires. Cluster analysis at time 1 revealed three personality types: resilients (37 %), undercontrollers (34 %), and overcontrollers (29 %), closely resembling typologies obtained in previous community samples. Resilients, under-, and overcontrollers did not differ in terms of disease complexity, but differed on depressive symptoms, loneliness, and generic and disease-specific domains of perceived health at both time-points. Overall, resilients showed the most favorable outcomes and overcontrollers the poorest, with undercontrollers scoring in-between. Personality assessment can help clinicians in identifying adolescents at risk for physical and psychosocial difficulties later in time. In this study, both over- and undercontrollers were identified as high-risk groups. Our findings show that both personality traits and types should be taken into account to obtain a detailed view on the associations between personality and health.
Lam, Winnie W M; Chan, Keith C C
2012-04-01
Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation, PCIFI was used to identify protein complexes in real PPI network data and the protein complexes it found were matched against those that were previously known in MIPS. The results show that PCIFI can be an effective technique for the identification of protein complexes. The protein complexes it found can match more known protein complexes with a smaller false-alarm rate and can provide useful insights into the understanding of the functional interdependence relationships between proteins in protein complexes.
Natural killer cell receptor genes in the family Equidae: not only Ly49.
Futas, Jan; Horin, Petr
2013-01-01
Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of NKR genes.
Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49
Futas, Jan; Horin, Petr
2013-01-01
Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of NKR genes. PMID:23724088
Carré, Aurore; Hamza, Rasha T.; Kariyawasam, Dulanjalee; Guillot, Loïc; Teissier, Raphaël; Tron, Elodie; Castanet, Mireille; Dupuy, Corinne; El Kholy, Mohamed; Polak, Michel
2014-01-01
Background: Homozygous loss-of-function mutations in the FOXE1 gene have been reported in several patients with partial or complete Bamforth–Lazarus syndrome: congenital hypothyroidism (CH) with thyroid dysgenesis (usually athyreosis), cleft palate, spiky hair, with or without choanal atresia, and bifid epiglottis. Here, our objective was to evaluate potential functional consequences of a FOXE1 mutation in a patient with a similar clinical phenotype. Methods: FOXE1 was sequenced in eight patients with thyroid dysgenesis and cleft palate. Transient transfection was performed in HEK293 cells using the thyroglobulin (TG) and thyroid peroxidase (TPO) promoters in luciferase reporter plasmids to assess the functional impact of the FOXE1 mutations. Primary human thyrocytes transfected with wild type and mutant FOXE1 served to assess the impact of the mutation on endogenous TG and TPO expression. Results: We identified and characterized the function of a new homozygous FOXE1 missense mutation (p.R73S) in a boy with a typical phenotype (athyreosis, cleft palate, and partial choanal atresia). This new mutation located within the forkhead domain was inherited from the heterozygous healthy consanguineous parents. In vitro functional studies in HEK293 cells showed that this mutant gene enhanced the activity of the TG and TPO gene promoters (1.5-fold and 1.7-fold respectively vs. wild type FOXE1; p<0.05), unlike the five mutations previously reported in Bamforth–Lazarus syndrome. The gain-of-function effect of the FOXE1-p.R73S mutant gene was confirmed by an increase in endogenous TG production in primary human thyrocytes. Conclusion: We identified a new homozygous FOXE1 mutation responsible for enhanced expression of the TG and TPO genes in a boy whose phenotype is similar to that reported previously in patients with loss-of-function FOXE1 mutations. This finding further delineates the role for FOXE1 in both thyroid and palate development, and shows that enhanced gene activity should be considered among the mechanisms underlying Bamforth–Lazarus syndrome. PMID:24219130
Using Functional Signature Ontology (FUSION) to Identify Mechanisms of Action for Natural Products
Potts, Malia B.; Kim, Hyun Seok; Fisher, Kurt W.; Hu, Youcai; Carrasco, Yazmin P.; Bulut, Gamze Betul; Ou, Yi-Hung; Herrera-Herrera, Mireya L.; Cubillos, Federico; Mendiratta, Saurabh; Xiao, Guanghua; Hofree, Matan; Ideker, Trey; Xie, Yang; Huang, Lily Jun-shen; Lewis, Robert E.; MacMillan, John B.; White, Michael A.
2014-01-01
A challenge for biomedical research is the development of pharmaceuticals that appropriately target disease mechanisms. Natural products can be a rich source of bioactive chemicals for medicinal applications but can act through unknown mechanisms and can be difficult to produce or obtain. To address these challenges, we developed a new marine-derived, renewable natural products resource and a method for linking bioactive derivatives of this library to the proteins and biological processes that they target in cells. We used cell-based screening and computational analysis to match gene expression signatures produced by natural products to those produced by siRNA and synthetic microRNA libraries. With this strategy, we matched proteins and microRNAs with diverse biological processes and also identified putative protein targets and mechanisms of action for several previously undescribed marine-derived natural products. We confirmed mechanistic relationships for selected short-interfering RNAs, microRNAs, and compounds with functional roles in autophagy, chemotaxis mediated by discoidin domain receptor 2, or activation of the kinase AKT. Thus, this approach may be an effective method for screening new drugs while simultaneously identifying their targets. PMID:24129700
Integrated analysis of germline and somatic variants in ovarian cancer.
Kanchi, Krishna L; Johnson, Kimberly J; Lu, Charles; McLellan, Michael D; Leiserson, Mark D M; Wendl, Michael C; Zhang, Qunyuan; Koboldt, Daniel C; Xie, Mingchao; Kandoth, Cyriac; McMichael, Joshua F; Wyczalkowski, Matthew A; Larson, David E; Schmidt, Heather K; Miller, Christopher A; Fulton, Robert S; Spellman, Paul T; Mardis, Elaine R; Druley, Todd E; Graubert, Timothy A; Goodfellow, Paul J; Raphael, Benjamin J; Wilson, Richard K; Ding, Li
2014-01-01
We report the first large-scale exome-wide analysis of the combined germline-somatic landscape in ovarian cancer. Here we analyse germline and somatic alterations in 429 ovarian carcinoma cases and 557 controls. We identify 3,635 high confidence, rare truncation and 22,953 missense variants with predicted functional impact. We find germline truncation variants and large deletions across Fanconi pathway genes in 20% of cases. Enrichment of rare truncations is shown in BRCA1, BRCA2 and PALB2. In addition, we observe germline truncation variants in genes not previously associated with ovarian cancer susceptibility (NF1, MAP3K4, CDKN2B and MLL3). Evidence for loss of heterozygosity was found in 100 and 76% of cases with germline BRCA1 and BRCA2 truncations, respectively. Germline-somatic interaction analysis combined with extensive bioinformatics annotation identifies 222 candidate functional germline truncation and missense variants, including two pathogenic BRCA1 and 1 TP53 deleterious variants. Finally, integrated analyses of germline and somatic variants identify significantly altered pathways, including the Fanconi, MAPK and MLL pathways.
Ainsztein, Alexandra M.; Kandels-Lewis, Stefanie E.; Mackay, Alastair M.; Earnshaw, William C.
1998-01-01
The inner centromere protein (INCENP) has a modular organization, with domains required for chromosomal and cytoskeletal functions concentrated near the amino and carboxyl termini, respectively. In this study we have identified an autonomous centromere- and midbody-targeting module in the amino-terminal 68 amino acids of INCENP. Within this module, we have identified two evolutionarily conserved amino acid sequence motifs: a 13–amino acid motif that is required for targeting to centromeres and transfer to the spindle, and an 11–amino acid motif that is required for transfer to the spindle by molecules that have targeted previously to the centromere. To begin to understand the mechanisms of INCENP function in mitosis, we have performed a yeast two-hybrid screen for interacting proteins. These and subsequent in vitro binding experiments identify a physical interaction between INCENP and heterochromatin protein HP1Hsα. Surprisingly, this interaction does not appear to be involved in targeting INCENP to the centromeric heterochromatin, but may instead have a role in its transfer from the chromosomes to the anaphase spindle. PMID:9864353
Analysis of the gene coding for the BRCA2-interacting protein PALB2 in hereditary prostate cancer.
Tischkowitz, Marc; Sabbaghian, Nelly; Ray, Anna M; Lange, Ethan M; Foulkes, William D; Cooney, Kathleen A
2008-05-01
The genetic basis of susceptibility to prostate cancer (PRCA) remains elusive. Mutations in BRCA2 have been associated with increased prostate cancer risk and account for around 2% of young onset (<56 years) prostate cancer cases. PALB2 is a recently identified breast cancer susceptibility gene whose protein is closely associated with BRCA2 and is essential for BRCA2 anchorage to nuclear structures. This functional relationship made PALB2 a candidate PRCA susceptibility gene. We sequenced PALB2 in probands from 95 PRCA families, 77 of which had two or more cases of early onset PRCA (age at diagnosis <55 years), and the remaining 18 had one case of early onset PRCA and five or more total cases of PRCA. Two previously unreported variants, K18R and V925L were identified, neither of which is in a known PALB2 functional domain and both of which are unlikely to be pathogenic. No truncating mutations were identified. These results indicate that deleterious PALB2 mutations are unlikely to play a significant role in hereditary prostate cancer.
Gu, Yue; Miao, Shuo; Han, Junxia; Liang, Zhenhu; Ouyang, Gaoxiang; Yang, Jian; Li, Xiaoli
2018-06-01
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder affecting children and adults. Previous studies found that functional near-infrared spectroscopy (fNIRS) can reveal significant group differences in several brain regions between ADHD children and healthy controls during working memory tasks. This study aimed to use fNIRS activation patterns to identify ADHD children from healthy controls. FNIRS signals from 25 ADHD children and 25 healthy controls performing the n-back task were recorded; then, multivariate pattern analysis was used to discriminate ADHD individuals from healthy controls, and classification performance was evaluated for significance by the permutation test. The results showed that 86.0% ([Formula: see text]) of participants can be correctly classified in leave-one-out cross-validation. The most discriminative brain regions included the bilateral dorsolateral prefrontal cortex, inferior medial prefrontal cortex, right posterior prefrontal cortex, and right temporal cortex. This study demonstrated that, in a small sample, multivariate pattern analysis can effectively identify ADHD children from healthy controls based on fNIRS signals, which argues for the potential utility of fNIRS in future assessments.
Foglieni, Chiara; Pagano, Katiuscia; Lessi, Marco; Bugatti, Antonella; Moroni, Elisabetta; Pinessi, Denise; Resovi, Andrea; Ribatti, Domenico; Bertini, Sabrina; Ragona, Laura; Bellina, Fabio; Rusnati, Marco; Colombo, Giorgio; Taraboletti, Giulia
2016-01-01
The FGFs/FGFRs system is a recognized actionable target for therapeutic approaches aimed at inhibiting tumor growth, angiogenesis, metastasis, and resistance to therapy. We previously identified a non-peptidic compound (SM27) that retains the structural and functional properties of the FGF2-binding sequence of thrombospondin-1 (TSP-1), a major endogenous inhibitor of angiogenesis. Here we identified new small molecule inhibitors of FGF2 based on the initial lead. A similarity-based screening of small molecule libraries, followed by docking calculations and experimental studies, allowed selecting 7 bi-naphthalenic compounds that bound FGF2 inhibiting its binding to both heparan sulfate proteoglycans and FGFR-1. The compounds inhibit FGF2 activity in in vitro and ex vivo models of angiogenesis, with improved potency over SM27. Comparative analysis of the selected hits, complemented by NMR and biochemical analysis of 4 newly synthesized functionalized phenylamino-substituted naphthalenes, allowed identifying the minimal stereochemical requirements to improve the design of naphthalene sulfonates as FGF2 inhibitors. PMID:27000667
Functional polymorphisms associated with human muscle size and strength.
Thompson, Paul D; Moyna, Niall; Seip, Richard; Price, Thomas; Clarkson, Priscilla; Angelopoulos, Theodore; Gordon, Paul; Pescatello, Linda; Visich, Paul; Zoeller, Robert; Devaney, Joseph M; Gordish, Heather; Bilbie, Stephen; Hoffman, Eric P
2004-07-01
Skeletal muscle is critically important to human performance and health, but little is known of the genetic factors influencing muscle size, strength, and its response to exercise training. The Functional single nucleotide polymorphisms (SNP) Associated with Muscle Size and Strength, or FAMuSS, Study is a multicenter, NIH-funded program to examine the influence of gene polymorphisms on skeletal muscle size and strength before and after resistance exercise training. One thousand men and women, age 18 - 40 yr, will train their nondominant arm for 12 wk. Skeletal muscle size (magnetic resonance imaging) and isometric and dynamic strength will be measured before and after training. Individuals whose baseline values or response to training deviate > or = 1.5 SD will be defined as outliers and examined for genetic variants. Initially candidate genes previously associated with muscle performance will be examined, but the study will ultimately attempt to identify genes associated with muscle performance. FAMuSS should help identify genetic factors associated with muscle performance and the response to exercise training. Such insight should contribute to our ability to predict the individual response to exercise training but may also contribute to understanding better muscle physiology, to identifying individuals who are susceptible to muscle loss with environmental challenge, and to developing pharmacologic agents capable of preserving muscle size and function.
Boes, Aaron D; Fischer, David; Geerling, Joel C; Bruss, Joel; Saper, Clifford B; Fox, Michael D
2018-05-29
The hypothalamus is a central hub for regulating sleep-wake patterns, the circuitry of which has been investigated extensively in experimental animals. This work has identified a wake-promoting region in the posterior hypothalamus, with connections to other wake-promoting regions, and a sleep-promoting region in the anterior hypothalamus, with inhibitory projections to the posterior hypothalamus. It is unclear whether a similar organization exists in humans. Here, we use anatomical landmarks to identify homologous sleep and wake-promoting regions of the human hypothalamus and investigate their functional relationships using resting-state functional connectivity MRI in healthy awake participants. First, we identify a negative correlation (anticorrelation) between the anterior and posterior hypothalamus, two regions with opposing roles in sleep-wake regulation. Next, we show that hypothalamic connectivity predicts a pattern of regional sleep-wake changes previously observed in humans. Specifically, regions that are more positively correlated with the posterior hypothalamus and more negatively correlated with the anterior hypothalamus correspond to regions with the greatest change in cerebral blood flow between sleep-wake states. Taken together, these findings provide preliminary evidence relating a hypothalamic circuit investigated in animals to sleep-wake neuroimaging results in humans, with implications for our understanding of human sleep-wake regulation and the functional significance of anticorrelations.
Biallelic inactivation of REV7 is associated with Fanconi anemia.
Bluteau, Dominique; Masliah-Planchon, Julien; Clairmont, Connor; Rousseau, Alix; Ceccaldi, Raphael; Dubois d'Enghien, Catherine; Bluteau, Olivier; Cuccuini, Wendy; Gachet, Stéphanie; Peffault de Latour, Régis; Leblanc, Thierry; Socié, Gérard; Baruchel, André; Stoppa-Lyonnet, Dominique; D'Andrea, Alan D; Soulier, Jean
2016-09-01
Fanconi anemia (FA) is a recessive genetic disease characterized by congenital abnormalities, chromosome instability, progressive bone marrow failure (BMF), and a strong predisposition to cancer. Twenty FA genes have been identified, and the FANC proteins they encode cooperate in a common pathway that regulates DNA crosslink repair and replication fork stability. We identified a child with severe BMF who harbored biallelic inactivating mutations of the translesion DNA synthesis (TLS) gene REV7 (also known as MAD2L2), which encodes the mutant REV7 protein REV7-V85E. Patient-derived cells demonstrated an extended FA phenotype, which included increased chromosome breaks and G2/M accumulation upon exposure to DNA crosslinking agents, γH2AX and 53BP1 foci accumulation, and enhanced p53/p21 activation relative to cells derived from healthy patients. Expression of WT REV7 restored normal cellular and functional phenotypes in the patient's cells, and CRISPR/Cas9 inactivation of REV7 in a non-FA human cell line produced an FA phenotype. Finally, silencing Rev7 in primary hematopoietic cells impaired progenitor function, suggesting that the DNA repair defect underlies the development of BMF in FA. Taken together, our genetic and functional analyses identified REV7 as a previously undescribed FA gene, which we term FANCV.
Biallelic inactivation of REV7 is associated with Fanconi anemia
Masliah-Planchon, Julien; Clairmont, Connor; Rousseau, Alix; Ceccaldi, Raphael; Dubois d’Enghien, Catherine; Bluteau, Olivier; Cuccuini, Wendy; Gachet, Stéphanie; Peffault de Latour, Régis; Leblanc, Thierry; Socié, Gérard; Baruchel, André; Stoppa-Lyonnet, Dominique; D’Andrea, Alan D.
2016-01-01
Fanconi anemia (FA) is a recessive genetic disease characterized by congenital abnormalities, chromosome instability, progressive bone marrow failure (BMF), and a strong predisposition to cancer. Twenty FA genes have been identified, and the FANC proteins they encode cooperate in a common pathway that regulates DNA crosslink repair and replication fork stability. We identified a child with severe BMF who harbored biallelic inactivating mutations of the translesion DNA synthesis (TLS) gene REV7 (also known as MAD2L2), which encodes the mutant REV7 protein REV7-V85E. Patient-derived cells demonstrated an extended FA phenotype, which included increased chromosome breaks and G2/M accumulation upon exposure to DNA crosslinking agents, γH2AX and 53BP1 foci accumulation, and enhanced p53/p21 activation relative to cells derived from healthy patients. Expression of WT REV7 restored normal cellular and functional phenotypes in the patient’s cells, and CRISPR/Cas9 inactivation of REV7 in a non-FA human cell line produced an FA phenotype. Finally, silencing Rev7 in primary hematopoietic cells impaired progenitor function, suggesting that the DNA repair defect underlies the development of BMF in FA. Taken together, our genetic and functional analyses identified REV7 as a previously undescribed FA gene, which we term FANCV. PMID:27500492
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, T.W.; Chantler, S.E.; Kahn, M.L.
ADPglucose pyrophosphorylase (glucose-1-phosphate adenylytransferase; AD P:{alpha}-D-glucose-1-phosphate adenylyltransferase, EC 2.7.7.27) catalyzes a key regulatory step in {alpha}-glucan synthesis in bacteria and higher plants. We have previously shown that the expression of the cDNA sequences of the potato tuber large (LS) and small (SS) subunits yielded a functional heterotetrameric enzyme capable of complementing a mutation in the single AGP (glgC) structural gene of Escherichia coli. This heterologous complementation provides a powerful genetic approach to obtain biochemical information on the specific roles of LS and SS in enzyme function. By mutagenizing the LS cDNA with hydroxylamine and then coexpressing with wild-type SS inmore » an E. coli glgC{sup {minus}} strain, >350 mutant colonies were identified that were impaired in glycogen production. One mutant exhibited enzymatic and antigen levels comparable to the wild-type recombinant enzyme but required 45-fold greater levels of the activator 3-phosphoglycerate for maximum activity. Sequence analysis identified a single nucleotide change that resulted in the change of Pro-52 to Leu. This heterologous genetic system provides and efficient means to identify residues important for catalysis and allosteric functioning and should lead to novel approaches to increase plant productivity. 31 refs., 4 figs., 1 tab.« less
Cotter, Jack; Bartholomeusz, Cali; Papas, Alicia; Allott, Kelly; Nelson, Barnaby; Yung, Alison R; Thompson, Andrew
2017-01-01
Social and role functioning are compromised for the majority of individuals at ultra-high risk of psychosis, and it is important to identify factors that contribute to this functional decline. This study aimed to investigate social cognitive abilities, which have previously been linked to functioning in schizophrenia, as potential factors that impact social, role and global functioning in ultra-high risk patients. A total of 30 ultra-high risk patients were recruited from an established at-risk clinical service in Melbourne, Australia, and completed a battery of social cognitive, neurocognitive, clinical and functioning measures. We examined the relationships between all four core domains of social cognition (emotion recognition, theory of mind, social perception and attributional style), neurocognitive, clinical and demographic variables with three measures of functioning (the Global Functioning Social and Role scales and the Social and Occupational Functioning Assessment Scale) using correlational and multiple regression analyses. Performance on a visual theory of mind task (visual jokes task) was significantly correlated with both concurrent role ( r = 0.425, p = 0.019) and global functioning ( r = 0.540, p = 0.002). In multivariate analyses, it also accounted for unique variance in global, but not role functioning after adjusting for negative symptoms and stress. Social functioning was not associated with performance on any of the social cognition tasks. Among specific social cognitive abilities, only a test of theory of mind was associated with functioning in our ultra-high risk sample. Further longitudinal research is needed to examine the impact of social cognitive deficits on long-term functional outcome in the ultra-high risk group. Identifying social cognitive abilities that significantly impact functioning is important to inform the development of targeted intervention programmes for ultra-high risk individuals.
Co-acting gene networks predict TRAIL responsiveness of tumour cells with high accuracy.
O'Reilly, Paul; Ortutay, Csaba; Gernon, Grainne; O'Connell, Enda; Seoighe, Cathal; Boyce, Susan; Serrano, Luis; Szegezdi, Eva
2014-12-19
Identification of differentially expressed genes from transcriptomic studies is one of the most common mechanisms to identify tumor biomarkers. This approach however is not well suited to identify interaction between genes whose protein products potentially influence each other, which limits its power to identify molecular wiring of tumour cells dictating response to a drug. Due to the fact that signal transduction pathways are not linear and highly interlinked, the biological response they drive may be better described by the relative amount of their components and their functional relationships than by their individual, absolute expression. Gene expression microarray data for 109 tumor cell lines with known sensitivity to the death ligand cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was used to identify genes with potential functional relationships determining responsiveness to TRAIL-induced apoptosis. The machine learning technique Random Forest in the statistical environment "R" with backward elimination was used to identify the key predictors of TRAIL sensitivity and differentially expressed genes were identified using the software GeneSpring. Gene co-regulation and statistical interaction was assessed with q-order partial correlation analysis and non-rejection rate. Biological (functional) interactions amongst the co-acting genes were studied with Ingenuity network analysis. Prediction accuracy was assessed by calculating the area under the receiver operator curve using an independent dataset. We show that the gene panel identified could predict TRAIL-sensitivity with a very high degree of sensitivity and specificity (AUC=0·84). The genes in the panel are co-regulated and at least 40% of them functionally interact in signal transduction pathways that regulate cell death and cell survival, cellular differentiation and morphogenesis. Importantly, only 12% of the TRAIL-predictor genes were differentially expressed highlighting the importance of functional interactions in predicting the biological response. The advantage of co-acting gene clusters is that this analysis does not depend on differential expression and is able to incorporate direct- and indirect gene interactions as well as tissue- and cell-specific characteristics. This approach (1) identified a descriptor of TRAIL sensitivity which performs significantly better as a predictor of TRAIL sensitivity than any previously reported gene signatures, (2) identified potential novel regulators of TRAIL-responsiveness and (3) provided a systematic view highlighting fundamental differences between the molecular wiring of sensitive and resistant cell types.
Mo, Ran; Yang, Mingkun; Chen, Zhuo; Cheng, Zhongyi; Yi, Xingling; Li, Chongyang; He, Chenliu; Xiong, Qian; Chen, Hui; Wang, Qiang; Ge, Feng
2015-02-06
Cyanobacteria are the oldest known life form inhabiting Earth and the only prokaryotes capable of performing oxygenic photosynthesis. Synechocystis sp. PCC 6803 (Synechocystis) is a model cyanobacterium used extensively in research on photosynthesis and environmental adaptation. Posttranslational protein modification by lysine acetylation plays a critical regulatory role in both eukaryotes and prokaryotes; however, its extent and function in cyanobacteria remain unexplored. Herein, we performed a global acetylome analysis on Synechocystis through peptide prefractionation, antibody enrichment, and high accuracy LC-MS/MS analysis; identified 776 acetylation sites on 513 acetylated proteins; and functionally categorized them into an interaction map showing their involvement in various biological processes. Consistent with previous reports, a large fraction of the acetylation sites are present on proteins involved in cellular metabolism. Interestingly, for the first time, many proteins involved in photosynthesis, including the subunits of phycocyanin (CpcA, CpcB, CpcC, and CpcG) and allophycocyanin (ApcA, ApcB, ApcD, ApcE, and ApcF), were found to be lysine acetylated, suggesting that lysine acetylation may play regulatory roles in the photosynthesis process. Six identified acetylated proteins associated with photosynthesis and carbon metabolism were further validated by immunoprecipitation and Western blotting. Our data provide the first global survey of lysine acetylation in cyanobacteria and reveal previously unappreciated roles of lysine acetylation in the regulation of photosynthesis. The provided data set may serve as an important resource for the functional analysis of lysine acetylation in cyanobacteria and facilitate the elucidation of the entire metabolic networks and photosynthesis process in this model cyanobacterium.
Architecture of the human interactome defines protein communities and disease networks
Huttlin, Edward L.; Bruckner, Raphael J.; Paulo, Joao A.; Cannon, Joe R.; Ting, Lily; Baltier, Kurt; Colby, Greg; Gebreab, Fana; Gygi, Melanie P.; Parzen, Hannah; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Pontano-Vaites, Laura; Swarup, Sharan; White, Anne E.; Schweppe, Devin K.; Rad, Ramin; Erickson, Brian K.; Obar, Robert A.; Guruharsha, K.G.; Li, Kejie; Artavanis-Tsakonas, Spyros; Gygi, Steven P.; Harper, J. Wade
2017-01-01
The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidation of how genome variation contributes to disease1–3. Here, we present BioPlex 2.0 (Biophysical Interactions of ORFEOME-derived complexes), which employs robust affinity purification-mass spectrometry (AP-MS) methodology4 to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein coding genes from the human genome, and constitutes the largest such network to date. With >56,000 candidate interactions, BioPlex 2.0 contains >29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering (MCL)5 of interacting proteins identified more than 1300 protein communities representing diverse cellular activities. Genes essential for cell fitness6,7 are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization. PMID:28514442
Proteomic analysis of human aqueous humor using multidimensional protein identification technology
Richardson, Matthew R.; Price, Marianne O.; Price, Francis W.; Pardo, Jennifer C.; Grandin, Juan C.; You, Jinsam; Wang, Mu
2009-01-01
Aqueous humor (AH) supports avascular tissues in the anterior segment of the eye, maintains intraocular pressure, and potentially influences the pathogenesis of ocular diseases. Nevertheless, the AH proteome is still poorly defined despite several previous efforts, which were hindered by interfering high abundance proteins, inadequate animal models, and limited proteomic technologies. To facilitate future investigations into AH function, the AH proteome was extensively characterized using an advanced proteomic approach. Samples from patients undergoing cataract surgery were pooled and depleted of interfering abundant proteins and thereby divided into two fractions: albumin-bound and albumin-depleted. Multidimensional Protein Identification Technology (MudPIT) was utilized for each fraction; this incorporates strong cation exchange chromatography to reduce sample complexity before reversed-phase liquid chromatography and tandem mass spectrometric analysis. Twelve proteins had multi-peptide, high confidence identifications in the albumin-bound fraction and 50 proteins had multi-peptide, high confidence identifications in the albumin-depleted fraction. Gene ontological analyses were performed to determine which cellular components and functions were enriched. Many proteins were previously identified in the AH and for several their potential role in the AH has been investigated; however, the majority of identified proteins were novel and only speculative roles can be suggested. The AH was abundant in anti-oxidant and immunoregulatory proteins as well as anti-angiogenic proteins, which may be involved in maintaining the avascular tissues. This is the first known report to extensively characterize and describe the human AH proteome and lays the foundation for future work regarding its function in homeostatic and pathologic states. PMID:20019884
Machida, Takeshi; Ishibashi, Akiko; Kirino, Ai; Sato, Jun-ichi; Kawasaki, Shinji; Niimura, Youichi; Honjoh, Ken-ichi; Miyamoto, Takahisa
2012-01-01
Chloroplast NADPH-dependent thioredoxin reductase (NTRC) catalyzes the reduction of 2-Cys peroxiredoxin (2-Cys Prx) and, thus, probably functions as an antioxidant system. The functions of the enzyme in oxidative and salt stresses have been reported previously. We have previously identified and characterized NTRC in Chlorella vulgaris. In the present study, we isolated a full-length cDNA clone encoding 2-Cys Prx from C. vulgaris and investigated the involvement of Chlorella NTRC/2-Cys Prx system in several environmental stress tolerances by using yeast as a eukaryotic model. Deduced Chlorella 2-Cys Prx was homologous to those of chloroplast 2-Cys Prxs from plants, and two conserved cysteine residues were found in the deduced sequence. Enzyme assay showed that recombinant mature C. vulgaris NTRC (mCvNTRC) transferred electrons from NADPH to recombinant mature C. vulgaris 2-Cys Prx (mCvPrx), and mCvPrx decomposed hydrogen peroxide, tert-butyl hydroperoxide, and peroxynitrite by cooperating with mCvNTRC. Based on the results, the mCvNTRC/mCvPrx antioxidant system was identified in Chlorella. The antioxidant system genes were expressed in yeast separately or coordinately. Stress tolerances of yeast against freezing, heat, and menadione-induced oxidative stresses were significantly improved by expression of mCvNTRC, and the elevated tolerances were more significant when both mCvNTRC and mCvPrx were co-expressed. Our results reveal a novel feature of NTRC: it functions as an antioxidant system with 2-Cys Prx in freezing and heat stress tolerances. PMID:23029353
Functional analysis of the plant disease resistance gene Pto using DNA shuffling.
Bernal, Adriana J; Pan, Qilin; Pollack, Jeff; Rose, Laura; Kozik, Alexander; Willits, Neil; Luo, Yao; Guittet, Muriel; Kochetkova, Elena; Michelmore, Richard W
2005-06-17
Pto is a serine/threonine kinase that mediates resistance in tomato to strains of Pseudomonas syringae pv. tomato expressing the (a)virulence proteins AvrPto or AvrPtoB. DNA shuffling was used as a combinatorial in vitro genetic approach to dissect the functional regions of Pto. The Pto gene was shuffled with four of its paralogs from a resistant haplotype to create a library of recombinant products that was screened for interaction with AvrPto in yeast. All interacting clones and a representative sample of noninteracting clones were sequenced, and their ability to signal downstream was tested by the elicitation of a hypersensitive response in an AvrPto-dependent or -independent manner in planta. Eight candidate regions important for binding to AvrPto or for downstream signaling were identified by statistical correlations between individual amino acid positions and phenotype. A subset of the regions had previously been identified as important for recognition, confirming the validity of the shuffling approach. Three novel regions important for Pto function were validated by site-directed mutagenesis. Several chimeras and point mutants exhibited a differential interaction with (a)virulence proteins in the AvrPto and VirPphA family, demonstrating distinct binding requirements for different ligands. Additionally, the identification of chimeras that are both constitutively active as well as capable of binding AvrPto indicates that elicitation of downstream signaling does not involve a conformational change that precludes binding of AvrPto, as previously hypothesized. The correlations between phenotypes and variation generated by DNA shuffling paralleled natural variation observed between orthologs of Pto from Lycopersicon spp.
Karásková, Martina; Gunišová, Stanislava; Herrmannová, Anna; Wagner, Susan; Munzarová, Vanda; Valášek, Leoš Shivaya
2012-01-01
In eukaryotes, for a protein to be synthesized, the 40 S subunit has to first scan the 5′-UTR of the mRNA until it has encountered the AUG start codon. Several initiation factors that ensure high fidelity of AUG recognition were identified previously, including eIF1A, eIF1, eIF2, and eIF5. In addition, eIF3 was proposed to coordinate their functions in this process as well as to promote their initial binding to 40 S subunits. Here we subjected several previously identified segments of the N-terminal domain (NTD) of the eIF3c/Nip1 subunit, which mediates eIF3 binding to eIF1 and eIF5, to semirandom mutagenesis to investigate the molecular mechanism of eIF3 involvement in these reactions. Three major classes of mutant substitutions or internal deletions were isolated that affect either the assembly of preinitiation complexes (PICs), scanning for AUG, or both. We show that eIF5 binds to the extreme c/Nip1-NTD (residues 1–45) and that impairing this interaction predominantly affects the PIC formation. eIF1 interacts with the region (60–137) that immediately follows, and altering this contact deregulates AUG recognition. Together, our data indicate that binding of eIF1 to the c/Nip1-NTD is equally important for its initial recruitment to PICs and for its proper functioning in selecting the translational start site. PMID:22718758
Soundarapandian, Mangala M.; Selvaraj, Vimal; Lo, U-Ging; Golub, Mari S.; Feldman, Daniel H.; Pleasure, David E.; Deng, Wenbin
2011-01-01
Basic helix-loop-helix transcription factors Olig1 and Olig2 critically regulate oligodendrocyte development. Initially identified as a downstream effector of Olig1, an oligodendrocyte-specific zinc finger transcription repressor, Zfp488, cooperates with Olig2 function. Although Zfp488 is required for oligodendrocyte precursor formation and differentiation during embryonic development, its role in oligodendrogenesis of adult neural progenitor cells is not known. In this study, we tested whether Zfp488 could promote an oligodendrogenic fate in adult subventricular zone (SVZ) neural stem/progenitor cells (NSPCs). Using a cuprizone-induced demyelination model in mice, we examined the effect of retrovirus-mediated Zfp488 overexpression in SVZ NSPCs. Our results showed that Zfp488 efficiently promoted the differentiation of the SVZ NSPCs into mature oligodendrocytes in vivo. After cuprizone-induced demyelination injury, Zfp488-transduced mice also showed significant restoration of motor function to levels comparable to control mice. Together, these findings identify a previously unreported role for Zfp488 in adult oligodendrogenesis and functional remyelination after injury. PMID:22355521
Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II
Ateh, Eugene; Oashi, Taiji; Lu, Wuyuan; Huang, Jing; Diepeveen-de Buin, Marlies; Bryant, Joseph; Breukink, Eefjan; MacKerell, Alexander D.; de Leeuw, Erik P. H.
2013-01-01
We have previously reported on the functional interaction of Lipid II with human alpha-defensins, a class of antimicrobial peptides. Lipid II is an essential precursor for bacterial cell wall biosynthesis and an ideal and validated target for natural antibiotic compounds. Using a combination of structural, functional and in silico analyses, we present here the molecular basis for defensin-Lipid II binding. Based on the complex of Lipid II with Human Neutrophil peptide-1, we could identify and characterize chemically diverse low-molecular weight compounds that mimic the interactions between HNP-1 and Lipid II. Lead compound BAS00127538 was further characterized structurally and functionally; it specifically interacts with the N-acetyl muramic acid moiety and isoprenyl tail of Lipid II, targets cell wall synthesis and was protective in an in vivo model for sepsis. For the first time, we have identified and characterized low molecular weight synthetic compounds that target Lipid II with high specificity and affinity. Optimization of these compounds may allow for their development as novel, next generation therapeutic agents for the treatment of Gram-positive pathogenic infections. PMID:24244161
Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks.
Dvornek, Nicha C; Ventola, Pamela; Pelphrey, Kevin A; Duncan, James S
2017-09-01
Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However, current efforts that have identified ASD with high accuracy were limited to homogeneous, small datasets, while classification results for heterogeneous, multi-site data have shown much lower accuracy. In this paper, we propose the use of recurrent neural networks with long short-term memory (LSTMs) for classification of individuals with ASD and typical controls directly from the resting-state fMRI time-series. We used the entire large, multi-site Autism Brain Imaging Data Exchange (ABIDE) I dataset for training and testing the LSTM models. Under a cross-validation framework, we achieved classification accuracy of 68.5%, which is 9% higher than previously reported methods that used fMRI data from the whole ABIDE cohort. Finally, we presented interpretation of the trained LSTM weights, which highlight potential functional networks and regions that are known to be implicated in ASD.
NASA Astrophysics Data System (ADS)
Lourenço Neto, M.; Agra, K. L.; Suassuna Filho, J.; Jorge, F. E.
2018-03-01
Time-dependent density functional theory (TDDFT) calculations of electronic transitions have been widely used to determine molecular structures. The excitation wavelengths and oscillator strengths obtained with the hybrid exchange-correlation functional B3LYP in conjunction with the ADZP basis set are employed to simulate the UV-Vis spectra of eight phenolic acids. Experimental and theoretical UV-Vis spectra reported previously in the literature are compared with our results. The fast, sensitive and non-destructive technique of photoacoustic spectroscopy (PAS) is used to determine the UV-Vis spectra of four Brazilian tropical fresh fruits in natura. Then, the PAS along with the TDDFT results are for the first time used to investigate and identify the presence of phenolic acids in the fruits studied in this work. This theoretical method with this experimental technique show to be a powerful and cheap tool to detect the existence of phenolic acids in fruits, vegetables, cereals, and grains. Comparison with high performance liquid chromatography results, when available, is also carried out.
Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks
Dvornek, Nicha C.; Ventola, Pamela; Pelphrey, Kevin A.; Duncan, James S.
2017-01-01
Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However, current efforts that have identified ASD with high accuracy were limited to homogeneous, small datasets, while classification results for heterogeneous, multi-site data have shown much lower accuracy. In this paper, we propose the use of recurrent neural networks with long short-term memory (LSTMs) for classification of individuals with ASD and typical controls directly from the resting-state fMRI time-series. We used the entire large, multi-site Autism Brain Imaging Data Exchange (ABIDE) I dataset for training and testing the LSTM models. Under a cross-validation framework, we achieved classification accuracy of 68.5%, which is 9% higher than previously reported methods that used fMRI data from the whole ABIDE cohort. Finally, we presented interpretation of the trained LSTM weights, which highlight potential functional networks and regions that are known to be implicated in ASD. PMID:29104967
Establishing the role of rare coding variants in known Parkinson's disease risk loci.
Jansen, Iris E; Gibbs, J Raphael; Nalls, Mike A; Price, T Ryan; Lubbe, Steven; van Rooij, Jeroen; Uitterlinden, André G; Kraaij, Robert; Williams, Nigel M; Brice, Alexis; Hardy, John; Wood, Nicholas W; Morris, Huw R; Gasser, Thomas; Singleton, Andrew B; Heutink, Peter; Sharma, Manu
2017-11-01
Many common genetic factors have been identified to contribute to Parkinson's disease (PD) susceptibility, improving our understanding of the related underlying biological mechanisms. The involvement of rarer variants in these loci has been poorly studied. Using International Parkinson's Disease Genomics Consortium data sets, we performed a comprehensive study to determine the impact of rare variants in 23 previously published genome-wide association studies (GWAS) loci in PD. We applied Prix fixe to select the putative causal genes underneath the GWAS peaks, which was based on underlying functional similarities. The Sequence Kernel Association Test was used to analyze the joint effect of rare, common, or both types of variants on PD susceptibility. All genes were tested simultaneously as a gene set and each gene individually. We observed a moderate association of common variants, confirming the involvement of the known PD risk loci within our genetic data sets. Focusing on rare variants, we identified additional association signals for LRRK2, STBD1, and SPATA19. Our study suggests an involvement of rare variants within several putatively causal genes underneath previously identified PD GWAS peaks. Copyright © 2017 Elsevier Inc. All rights reserved.
Allosteric binding sites in Rab11 for potential drug candidates
2018-01-01
Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously. PMID:29874286
Bae, Nancy S.; Seberg, Andrew P.; Carroll, Leslie P.; Swanson, Mark J.
2017-01-01
The yeast Saccharomyces cerevisiae responds to amino acid deprivation by activating a pathway conserved in eukaryotes to overcome the starvation stress. We have screened the entire yeast heterozygous deletion collection to identify strains haploinsufficient for growth in the presence of sulfometuron methyl, which causes starvation for isoleucine and valine. We have discovered that cells devoid of MET15 are sensitive to sulfometuron methyl, and loss of heterozygosity at the MET15 locus can complicate screening the heterozygous deletion collection. We identified 138 cases of loss of heterozygosity in this screen. After eliminating the issues of the MET15 loss of heterozygosity, strains isolated from the collection were retested on sulfometuron methyl. To determine the general effect of the mutations for a starvation response, SMM-sensitive strains were tested for the ability to grow in the presence of canavanine, which induces arginine starvation, and strains that were MET15 were also tested for growth in the presence of ethionine, which causes methionine starvation. Many of the genes identified in our study were not previously identified as starvation-responsive genes, including a number of essential genes that are not easily screened in a systematic way. The genes identified span a broad range of biological functions, including many involved in some level of gene expression. Several unnamed proteins have also been identified, giving a clue as to possible functions of the encoded proteins. PMID:28209762
Prediction of new ground-state crystal structure of T a2O5
NASA Astrophysics Data System (ADS)
Yang, Yong; Kawazoe, Yoshiyuki
2018-03-01
Tantalum pentoxide (T a2O5 ) is a wide-gap semiconductor which has important technological applications. Despite the enormous efforts from both experimental and theoretical studies, the ground-state crystal structure of T a2O5 is not yet uniquely determined. Based on first-principles calculations in combination with evolutionary algorithm, we identify a triclinic phase of T a2O5 , which is energetically much more stable than any phases or structural models reported previously. Characterization of the static and dynamical properties of the phase reveals the common features shared with previous metastable phases of T a2O5 . In particular, we show that the d spacing of ˜3.8 Å found in the x-ray diffraction patterns of many previous experimental works is actually the radius of the second Ta-Ta coordination shell as defined by radial distribution functions.
Proteomic analysis of the venom from the scorpion Mesobuthus martensii.
Xu, Xiaobo; Duan, Zhigui; Di, Zhiyong; He, Yawen; Li, Jianglin; Li, Zhongjie; Xie, Chunliang; Zeng, Xiongzhi; Cao, Zhijian; Wu, Yingliang; Liang, Songping; Li, Wenxin
2014-06-25
The scorpion Mesobuthus martensii is the most populous species in eastern Asian countries, and several toxic components have been identified from their venoms. Nevertheless, a complete proteomic profile of the venom of M. martensii is still not available. In this study, the venom of M. martensii was analyzed by comprehensive proteomic approaches. 153 fractions were isolated from the M. martensii venom by 2-DE, SDS-PAGE and RP-HPLC. The ESI-Q-TOF MS results of all fractions were used to search the scorpion genomic and transcriptomic databases. Totally, 227 non-redundant protein sequences were unambiguously identified, composed of 134 previously known and 93 previously unknown proteins. Among 134 previously known proteins, 115 proteins were firstly confirmed from the M. martensii crude venom and 19 toxins were confirmed once again, involving 43 typical toxins, 7 atypical toxins, 12 venom enzymes and 72 cell associated proteins. In typical toxins, 7 novel-toxin sequences were identified, including 3 Na(+)-channel toxins, 3K(+)-channel toxins and 1 no-annotation toxin. These results increased 230% (115/50) venom components compared with previous studies from the M. martensii venom, especially 50% (24/48) typical toxins. Additionally, a mass fingerprint obtained by MALDI-TOF MS indicated that the scorpion venom contained more than 200 different molecular mass components. This work firstly gave a systematic investigation of the M. martensii venom by combined proteomics strategy coupled with genomics and transcriptomics. A large number of protein components were unambiguously identified from the venom of M. martensii, most of which were confirmed for the first time. We also contributed 7 novel-toxin sequences and 93 protein sequences previously unknown to be part of the venom, for which we assigned potential biological functions. Besides, we obtained a mass fingerprint of the M. martensii venom. Together, our study not only provides the most comprehensive catalog of the molecular diversity of the M. martensii venom at the proteomic level, but also enriches the composition information of scorpion venom. Copyright © 2014 Elsevier B.V. All rights reserved.
Tudor, Catalina O; Ross, Karen E; Li, Gang; Vijay-Shanker, K; Wu, Cathy H; Arighi, Cecilia N
2015-01-01
Protein phosphorylation is a reversible post-translational modification where a protein kinase adds a phosphate group to a protein, potentially regulating its function, localization and/or activity. Phosphorylation can affect protein-protein interactions (PPIs), abolishing interaction with previous binding partners or enabling new interactions. Extracting phosphorylation information coupled with PPI information from the scientific literature will facilitate the creation of phosphorylation interaction networks of kinases, substrates and interacting partners, toward knowledge discovery of functional outcomes of protein phosphorylation. Increasingly, PPI databases are interested in capturing the phosphorylation state of interacting partners. We have previously developed the eFIP (Extracting Functional Impact of Phosphorylation) text mining system, which identifies phosphorylated proteins and phosphorylation-dependent PPIs. In this work, we present several enhancements for the eFIP system: (i) text mining for full-length articles from the PubMed Central open-access collection; (ii) the integration of the RLIMS-P 2.0 system for the extraction of phosphorylation events with kinase, substrate and site information; (iii) the extension of the PPI module with new trigger words/phrases describing interactions and (iv) the addition of the iSimp tool for sentence simplification to aid in the matching of syntactic patterns. We enhance the website functionality to: (i) support searches based on protein roles (kinases, substrates, interacting partners) or using keywords; (ii) link protein entities to their corresponding UniProt identifiers if mapped and (iii) support visual exploration of phosphorylation interaction networks using Cytoscape. The evaluation of eFIP on full-length articles achieved 92.4% precision, 76.5% recall and 83.7% F-measure on 100 article sections. To demonstrate eFIP for knowledge extraction and discovery, we constructed phosphorylation-dependent interaction networks involving 14-3-3 proteins identified from cancer-related versus diabetes-related articles. Comparison of the phosphorylation interaction network of kinases, phosphoproteins and interactants obtained from eFIP searches, along with enrichment analysis of the protein set, revealed several shared interactions, highlighting common pathways discussed in the context of both diseases. © The Author(s) 2015. Published by Oxford University Press.
Wilke, Thomas; Boettger, Bjoern; Berg, Bjoern; Groth, Antje; Mueller, Sabrina; Botteman, Marc; Yu, Shengsheng; Fuchs, Andreas; Maywald, Ulf
2015-01-01
This analysis was conducted to investigate urinary tract infection (UTI) incidence among Type 2 Diabetes mellitus (T2DM) patients in Germany in a real-world setting and to identify risk factors associated with UTI incidence/recurrence. Our cohort study was conducted based on an anonymized dataset from a regional German sickness fund (2010-2012). A UTI event was mainly identified through observed outpatient/inpatient UTI diagnoses. We reported the number of UTI events per 1000 patient-years. Furthermore, the proportion of patients affected by ≥1 and ≥2 UTI events in the observational period was separately reported. Finally, three multivariate Cox regression analyses were conducted to identify factors that may be associated with UTI event risk or recurrent UTI event risk. A total of 456,586 T2DM-prevalent patients were identified (mean age 72.8years, 56.1% female, mean Charlson Comorbidity Index (CCI) of 7.3). Overall, the UTI event rate was 87.3 events per 1000 patient-years (111.8/55.8 per 1000 patient-years for women/men (p<0.001)). The highest UTI event rates were observed for those aged >89years. After 730days after first observed T2DM diagnosis, the proportion of women/men still UTI-event-free was 80.9%/90.2% (p<0.001). Most important factors associated with UTI risk in our three models were older age (Hazard Ratio (HR)=1.56-1.70 for >79years), female gender (HR=1.38-1.57), UTIs in the previous two years (HR=2.77-5.94), number of comorbidities as measured by the CCI (HR=1.32-1.52 for CCI>6) and at least one cystoscopy in the previous year (HR=2.06-5.48). Furthermore, high HbA1c values in the previous year (HR=1.29-1.4 referring to HbA1c>9.5%) and a poor kidney function (HR=1.11-1.211 referring to glomerular filtration rate (GFR)<60ml/min) increased the UTI event risk. Our study confirms that UTI event risk is high in T2DM patients. Older female patients having experienced previous UTIs face an above-average UTI risk, especially if these risk factors are associated with poor glycemic control and poor kidney function. Copyright © 2015 Elsevier Inc. All rights reserved.
Novel interactive partners of neuroligin 3: new aspects for pathogenesis of autism.
Shen, Chen; Huo, Li-rong; Zhao, Xin-liang; Wang, Pei-rong; Zhong, Nanbert
2015-05-01
Autism is a neurodevelopmental disorder with a strong genetic predisposition. Neurolign 3 (NLGN3) as a postsynaptic transmembrane protein, functions in both neuron synaptogenesis and glia-neuron communications. Previously, a gain of function mutation (R451C) in NLGN3 was identified in autistic patients, which illustrates the involvement of NLGN3 in autism pathogenesis. As proper synaptic targeting and functioning are controlled by intracellular protein interactions, in the current study, we tried to discover the intracellular regulation network in which NLGN3 might be involved by a yeast two-hybrid-based interactor identification. Fifty-one protein candidate partners were identified after screening a human fetal complementary DNA (cDNA) library with an intracellular fragment of NLGN3. The interactions of NLGN3 with a subset of candidates, including EEF1A1, FLNA, ITPRIP, CYP11A1, MT-CO2, GPR175, ACOT2, and QPRT, were further validated in human neuroblastoma cells or brain tissues. Furthermore, our study suggested that NLGN3 was functioning in cytosolic calcium balance and participating in calcium-regulated cellular processes. Our findings of novel NLGN3 binding partners provide evidences of involvement of NLGN3 in multiple biological pathways, especially calcium regulating and mitochondrial function, thus suggesting further significance. This new data not only leads to a better understanding of the physiological functions of NLGN3, but also provide new aspects for pathogenesis of autism.
Gain-of-function mutations in beet DODA2 identify key residues for betalain pigment evolution.
Bean, Alexander; Sunnadeniya, Rasika; Akhavan, Neda; Campbell, Annabelle; Brown, Matthew; Lloyd, Alan
2018-05-13
The key enzymatic step in betalain biosynthesis involves conversion of l-3,4-dihydroxyphenylalanine (l-DOPA) to betalamic acid. One class of enzymes capable of this is 3,4-dihydroxyphenylalanine 4,5-dioxygenase (DODA). In betalain-producing species, multiple paralogs of this gene are maintained. This study demonstrates which paralogs function in the betalain pathway and determines the residue changes required to evolve a betalain-nonfunctional DODA into a betalain-functional DODA. Functionalities of two pairs of DODAs were tested by expression in beets, Arabidopsis and yeast, and gene silencing was performed by virus-induced gene silencing. Site-directed mutagenesis identified amino acid residues essential for betalamic acid production. Beta vulgaris and Mirabilis jalapa both possess a DODA1 lineage that functions in the betalain pathway and at least one other lineage, DODA2, that does not. Site-directed mutagenesis resulted in betalain biosynthesis by a previously nonfunctional DODA, revealing key residues required for evolution of the betalain pathway. Divergent functionality of DODA paralogs, one clade involved in betalain biosynthesis but others not, is present in various Caryophyllales species. A minimum of seven amino acid residue changes conferred betalain enzymatic activity to a betalain-nonfunctional DODA paralog, providing insight into the evolution of the betalain pigment pathway in plants. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Biervoye, Aurélie; Meert, Gaëlle; Apperly, Ian A.; Samson, Dana
2018-01-01
Every day, we engage in social interactions with other people which require understanding their as well as our own mental states. Such capacity is commonly referred to as Theory of Mind (ToM). Disturbances of ToM are often reported in diverse pathologies which affect brain functioning and lead to problems in social interactions. Identifying ToM deficits is thus crucial to guide the clinicians in the establishment of adequate rehabilitation strategies for patients. Previous studies have demonstrated that ToM is not a unitary function yet currently there are very few standardized tests which allow identifying the type of cognitive processes affected when a patient exhibits a ToM deficit. In the current study, we present two belief reasoning tasks which have been used in previous research to disentangle two types of processes involved in belief reasoning: self-perspective inhibition and the spontaneous inference of another person’s belief. A three-step procedure was developed to provide clinicians with the tools to interpret the patients’ performances on the tasks. First, these tasks were standardized and normative data was collected on a sample of 124 healthy participants aged between 18 and 74. Data collected showed a decrease in performance as a function of age only in the task that loaded most in spontaneous other-perspective demands. There was however no effect of gender or educational level. Cut-off scores to identify deficits were then calculated for the different age groups separately. Secondly, the three-step procedure was applied to 21 brain-damaged patients and showed a large diversity of profiles, including selective deficits of the two targeted ToM processes. The diversity of profiles shows the importance to take into account the multiple facets of ToM during the diagnosis and rehabilitation of patients with suspected ToM deficits. PMID:29381730
Ali, Bassam R; Xu, Huifang; Akawi, Nadia A; John, Anne; Karuvantevida, Noushad S; Langer, Ruth; Al-Gazali, Lihadh; Leitinger, Birgit
2010-06-01
Spondylo-meta-epiphyseal dysplasia (SMED) with short limbs and abnormal calcifications (SMED-SL) is a rare, autosomal recessive human growth disorder, characterized by disproportionate short stature, short limbs, short broad fingers, abnormal metaphyses and epiphyses, platyspondyly and premature calcifications. Recently, three missense mutations and one splice-site mutation in the DDR2 gene were identified as causative genetic defects for SMED-SL, but the underlying cellular and biochemical mechanisms were not explored. Here we report a novel DDR2 missense mutation, c.337G>A (p.E113K), that causes SMED-SL in two siblings in the United Arab Emirates. Another DDR2 missense mutation, c.2254C>T (p.R752C), matching one of the previously reported SMED-SL mutations, was found in a second affected family. DDR2 is a plasma membrane receptor tyrosine kinase that functions as a collagen receptor. We expressed DDR2 constructs with the identified point mutations in human cell lines and evaluated their localization and functional properties. We found that all SMED-SL missense mutants were defective in collagen-induced receptor activation and that the three previously reported mutants (p.T713I, p.I726R and p.R752C) were retained in the endoplasmic reticulum. The novel mutant (p.E113K), in contrast, trafficked normally, like wild-type DDR2, but failed to bind collagen. This finding is in agreement with our recent structural data identifying Glu113 as an important amino acid in the DDR2 ligand-binding site. Our data thus demonstrate that SMED-SL can result from at least two different loss-of-function mechanisms: namely defects in DDR2 targeting to the plasma membrane or the loss of its ligand-binding activity.
Ali, Bassam R.; Xu, Huifang; Akawi, Nadia A.; John, Anne; Karuvantevida, Noushad S.; Langer, Ruth; Al-Gazali, Lihadh; Leitinger, Birgit
2010-01-01
Spondylo-meta-epiphyseal dysplasia (SMED) with short limbs and abnormal calcifications (SMED-SL) is a rare, autosomal recessive human growth disorder, characterized by disproportionate short stature, short limbs, short broad fingers, abnormal metaphyses and epiphyses, platyspondyly and premature calcifications. Recently, three missense mutations and one splice-site mutation in the DDR2 gene were identified as causative genetic defects for SMED-SL, but the underlying cellular and biochemical mechanisms were not explored. Here we report a novel DDR2 missense mutation, c.337G>A (p.E113K), that causes SMED-SL in two siblings in the United Arab Emirates. Another DDR2 missense mutation, c.2254C>T (p.R752C), matching one of the previously reported SMED-SL mutations, was found in a second affected family. DDR2 is a plasma membrane receptor tyrosine kinase that functions as a collagen receptor. We expressed DDR2 constructs with the identified point mutations in human cell lines and evaluated their localization and functional properties. We found that all SMED-SL missense mutants were defective in collagen-induced receptor activation and that the three previously reported mutants (p.T713I, p.I726R and p.R752C) were retained in the endoplasmic reticulum. The novel mutant (p.E113K), in contrast, trafficked normally, like wild-type DDR2, but failed to bind collagen. This finding is in agreement with our recent structural data identifying Glu113 as an important amino acid in the DDR2 ligand-binding site. Our data thus demonstrate that SMED-SL can result from at least two different loss-of-function mechanisms: namely defects in DDR2 targeting to the plasma membrane or the loss of its ligand-binding activity. PMID:20223752
Mills, Kathryn L.; Bathula, Deepti; Dias, Taciana G. Costa; Iyer, Swathi P.; Fenesy, Michelle C.; Musser, Erica D.; Stevens, Corinne A.; Thurlow, Bria L.; Carpenter, Samuel D.; Nagel, Bonnie J.; Nigg, Joel T.; Fair, Damien A.
2012-01-01
Introduction: Attention deficit hyperactivity disorder (ADHD) captures a heterogeneous group of children, who are characterized by a range of cognitive and behavioral symptoms. Previous resting-state functional connectivity MRI (rs-fcMRI) studies have sought to understand the neural correlates of ADHD by comparing connectivity measurements between those with and without the disorder, focusing primarily on cortical–striatal circuits mediated by the thalamus. To integrate the multiple phenotypic features associated with ADHD and help resolve its heterogeneity, it is helpful to determine how specific circuits relate to unique cognitive domains of the ADHD syndrome. Spatial working memory has been proposed as a key mechanism in the pathophysiology of ADHD. Methods: We correlated the rs-fcMRI of five thalamic regions of interest (ROIs) with spatial span working memory scores in a sample of 67 children aged 7–11 years [ADHD and typically developing children (TDC)]. In an independent dataset, we then examined group differences in thalamo-striatal functional connectivity between 70 ADHD and 89 TDC (7–11 years) from the ADHD-200 dataset. Thalamic ROIs were created based on previous methods that utilize known thalamo-cortical loops and rs-fcMRI to identify functional boundaries in the thalamus. Results/Conclusion: Using these thalamic regions, we found atypical rs-fcMRI between specific thalamic groupings with the basal ganglia. To identify the thalamic connections that relate to spatial working memory in ADHD, only connections identified in both the correlational and comparative analyses were considered. Multiple connections between the thalamus and basal ganglia, particularly between medial and anterior dorsal thalamus and the putamen, were related to spatial working memory and also altered in ADHD. These thalamo-striatal disruptions may be one of multiple atypical neural and cognitive mechanisms that relate to the ADHD clinical phenotype. PMID:22291667
Characterisation of chicken TES and its role in cell spreading and motility.
Griffith, Elen; Coutts, Amanda S; Black, Donald M
2004-03-01
Previously we identified TES as a candidate tumour suppressor gene that is located at human chromosome 7q31.1. More recently, we and others have shown TES to encode a novel LIM domain protein that localises to focal adhesions. Here, we present the cloning and functional analysis of the chicken orthologue of TES, cTES. The TES proteins are highly conserved between chicken and human, showing 89% identity at the amino acid level. We show that the cTES protein localised at focal adhesions, actin stress fibres, and sites of cell-cell contact, and GST-cTES can pull-down zyxin and actin. To investigate a functional role for cTES, we looked at the effect of its overexpression on cell spreading and cell motility. Cells overexpressing cTES showed increased cell spreading on fibronectin, and decreased cell motility, compared to RCAS vector transfected control cells. The data from our studies with cTES support our previous findings with human TES and further implicate TES as a member of a complex of proteins that function together to regulate cell adhesion and additionally demonstrate a role for TES in cell motility. Copyright 2004 Wiley-Liss, Inc.
Zhang, Ying-Ying; Li, Hai-Xia; Chen, Yin-Ying; Fang, Hong; Yu, Ya-Nan; Liu, Jun; Jing, Zhi-Wei; Wang, Zhong; Wang, Yong-Yan
2014-03-01
Cerebral ischemia is considered to be a highly complex disease resulting from the complicated interplay of multiple pathways. Disappointedly, most of the previous studies were limited to a single gene or a single pathway. The extent to which all involved pathways are translated into fusing mechanisms of a combination therapy is of fundamental importance. We report an integrative strategy to reveal the additive mechanism that a combination (BJ) of compound baicalin (BA) and jasminoidin (JA) fights against cerebral ischemia based on variation of pathways and functional communities. We identified six pathways of BJ group that shared diverse additive index from 0.09 to 1, which assembled broad cross talks from seven pathways of BA and 16 pathways of JA both at horizontal and vertical levels. Besides a total of 60 overlapping functions as a robust integration background among the three groups based on significantly differential subnetworks, additive mechanism with strong confidence by networks altered functions. These results provide strong evidence that the additive mechanism is more complex than previously appreciated, and an integrative analysis of pathways may suggest an important paradigm for revealing pharmacological mechanisms underlying drug combinations. © 2013 John Wiley & Sons Ltd.
Large-scale topology and the default mode network in the mouse connectome
Stafford, James M.; Jarrett, Benjamin R.; Miranda-Dominguez, Oscar; Mills, Brian D.; Cain, Nicholas; Mihalas, Stefan; Lahvis, Garet P.; Lattal, K. Matthew; Mitchell, Suzanne H.; David, Stephen V.; Fryer, John D.; Nigg, Joel T.; Fair, Damien A.
2014-01-01
Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans. PMID:25512496
cncRNAs: Bi-functional RNAs with protein coding and non-coding functions
Kumari, Pooja; Sampath, Karuna
2015-01-01
For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as ‘cncRNAs’, have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions. PMID:26498036
Casco-Robles, Martin Miguel; Miura, Tomoya; Chiba, Chikafumi
2015-06-01
The adult newt has the ability to regenerate the neural retina following injury, a process achieved primarily by the retinal pigment epithelium (RPE). To deliver exogenous genes to the RPE for genetic manipulation of regenerative events, we isolated the newt RPE65 promoter region by genome walking. First, we cloned the 2.8 kb RPE65 promoter from the newt, Cynops pyrrhogaster. Sequence analysis revealed several conserved regulatory elements described previously in mouse and human RPE65 promoters. Second, having previously established an I-SceI-mediated transgenic protocol for the newt, we used it here to examine the -657 bp proximal promoter of RPE65. The promoter assay used with F0 transgenic newts confirmed transgene expression of mCherry fluorescent protein in the RPE. Using bioinformatic tools and the TRANSFAC database, we identified a 340 bp CpG island located between -635 and -296 bp in the promoter; this region contains response elements for the microphthalmia-associated transcription factor known as MITF (CACGTG, CATGTG), and E-boxes (CANNTG). Sex-determining region box 9 (or SOX9) response element previously reported in the regulation of RPE genes (including RPE65) was also identified in the newt RPE65 promoter. Third, we identified DNA motif boxes in the newt RPE65 promoter that are conserved among other vertebrates. The newt RPE65 promoter is an invaluable tool for site-specific delivery of exogenous genes or genetic manipulation systems for the study of retinal regeneration in this animal.
An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock.
Agrawal, Parul; Hardin, Paul E
2016-12-07
Circadian clocks in eukaryotes keep time via cell-autonomous transcriptional feedback loops. A well-characterized example of such a transcriptional feedback loop is in Drosophila, where CLOCK-CYCLE (CLK-CYC) complexes activate transcription of period (per) and timeless (tim) genes, rising levels of PER-TIM complexes feed-back to repress CLK-CYC activity, and degradation of PER and TIM permits the next cycle of CLK-CYC transcription. The timing of CLK-CYC activation and PER-TIM repression is regulated posttranslationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Previous behavioral screens identified several kinases that control CLK, PER, and TIM levels, subcellular localization, and/or activity, but two phosphatases that function within the clock were identified through the analysis of candidate genes from other pathways or model systems. To identify phosphatases that play a role in the clock, we screened clock cell-specific RNA interference (RNAi) knockdowns of all annotated protein phosphatases and protein phosphatase regulators in Drosophila for altered activity rhythms. This screen identified 19 protein phosphatases that lengthened or shortened the circadian period by ≥1 hr (p ≤ 0.05 compared to controls) or were arrhythmic. Additional RNAi lines, transposon inserts, overexpression, and loss-of-function mutants were tested to independently confirm these RNAi phenotypes. Based on genetic validation and molecular analysis, 15 viable protein phosphatases remain for future studies. These candidates are expected to reveal novel features of the circadian timekeeping mechanism in Drosophila that are likely to be conserved in all animals including humans. Copyright © 2016 Agrawal and Hardin.
Electronic health record analysis via deep poisson factor models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henao, Ricardo; Lu, James T.; Lucas, Joseph E.
Electronic Health Record (EHR) phenotyping utilizes patient data captured through normal medical practice, to identify features that may represent computational medical phenotypes. These features may be used to identify at-risk patients and improve prediction of patient morbidity and mortality. We present a novel deep multi-modality architecture for EHR analysis (applicable to joint analysis of multiple forms of EHR data), based on Poisson Factor Analysis (PFA) modules. Each modality, composed of observed counts, is represented as a Poisson distribution, parameterized in terms of hidden binary units. In-formation from different modalities is shared via a deep hierarchy of common hidden units. Activationmore » of these binary units occurs with probability characterized as Bernoulli-Poisson link functions, instead of more traditional logistic link functions. In addition, we demon-strate that PFA modules can be adapted to discriminative modalities. To compute model parameters, we derive efficient Markov Chain Monte Carlo (MCMC) inference that scales efficiently, with significant computational gains when compared to related models based on logistic link functions. To explore the utility of these models, we apply them to a subset of patients from the Duke-Durham patient cohort. We identified a cohort of over 12,000 patients with Type 2 Diabetes Mellitus (T2DM) based on diagnosis codes and laboratory tests out of our patient population of over 240,000. Examining the common hidden units uniting the PFA modules, we identify patient features that represent medical concepts. Experiments indicate that our learned features are better able to predict mortality and morbidity than clinical features identified previously in a large-scale clinical trial.« less
Electronic health record analysis via deep poisson factor models
Henao, Ricardo; Lu, James T.; Lucas, Joseph E.; ...
2016-01-01
Electronic Health Record (EHR) phenotyping utilizes patient data captured through normal medical practice, to identify features that may represent computational medical phenotypes. These features may be used to identify at-risk patients and improve prediction of patient morbidity and mortality. We present a novel deep multi-modality architecture for EHR analysis (applicable to joint analysis of multiple forms of EHR data), based on Poisson Factor Analysis (PFA) modules. Each modality, composed of observed counts, is represented as a Poisson distribution, parameterized in terms of hidden binary units. In-formation from different modalities is shared via a deep hierarchy of common hidden units. Activationmore » of these binary units occurs with probability characterized as Bernoulli-Poisson link functions, instead of more traditional logistic link functions. In addition, we demon-strate that PFA modules can be adapted to discriminative modalities. To compute model parameters, we derive efficient Markov Chain Monte Carlo (MCMC) inference that scales efficiently, with significant computational gains when compared to related models based on logistic link functions. To explore the utility of these models, we apply them to a subset of patients from the Duke-Durham patient cohort. We identified a cohort of over 12,000 patients with Type 2 Diabetes Mellitus (T2DM) based on diagnosis codes and laboratory tests out of our patient population of over 240,000. Examining the common hidden units uniting the PFA modules, we identify patient features that represent medical concepts. Experiments indicate that our learned features are better able to predict mortality and morbidity than clinical features identified previously in a large-scale clinical trial.« less
Proteome analysis identifies L1CAM/CD171 and DPP4/CD26 as novel markers of human skin mast cells.
Gschwandtner, M; Paulitschke, V; Mildner, M; Brunner, P M; Hacker, S; Eisenwort, G; Sperr, W R; Valent, P; Gerner, C; Tschachler, E
2017-01-01
The function of skin mast cells has been well documented in IgE-mediated allergic reactions, whereas other mast cell functions are poorly defined. This study aimed at identifying novel mast cell proteins by proteome analysis of primary human skin mast cells. The proteome of skin mast cells was compared to other cell types and analyzed using bioinformatics. The expression and function of two proteins hitherto not described in skin mast cells was investigated in isolated mast cells as well as in mast cells in situ. Within the mast cell proteome, we identified 49 highly expressed proteins previously not described in mast cells; 21 of these proteins were found to be selectively expressed in mast cells. Two proteins, the neural cell adhesion molecule L1 and dipeptidyl peptidase 4, were further studied. L1 was found to be highly expressed in mast cells in normal, psoriasis, and mastocytosis skin. Dipeptidyl peptidase 4 was found to be expressed in mast cells in normal, psoriasis, and mastocytosis skin as well as in bone marrow mast cells in patients with systemic mastocytosis. In normal skin, mast cells were identified as a major source of dipeptidyl peptidase 4 and we also found that skin mast cells and fibroblasts secrete an active form of this enzyme. In a systematic proteomics approach we identified two novel mast cell proteins potentially relevant to skin homeostasis: neural cell adhesion molecule L1 and dipeptidyl peptidase 4. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A transposon-based genetic screen in mice identifies genes altered in colorectal cancer.
Starr, Timothy K; Allaei, Raha; Silverstein, Kevin A T; Staggs, Rodney A; Sarver, Aaron L; Bergemann, Tracy L; Gupta, Mihir; O'Sullivan, M Gerard; Matise, Ilze; Dupuy, Adam J; Collier, Lara S; Powers, Scott; Oberg, Ann L; Asmann, Yan W; Thibodeau, Stephen N; Tessarollo, Lino; Copeland, Neal G; Jenkins, Nancy A; Cormier, Robert T; Largaespada, David A
2009-03-27
Human colorectal cancers (CRCs) display a large number of genetic and epigenetic alterations, some of which are causally involved in tumorigenesis (drivers) and others that have little functional impact (passengers). To help distinguish between these two classes of alterations, we used a transposon-based genetic screen in mice to identify candidate genes for CRC. Mice harboring mutagenic Sleeping Beauty (SB) transposons were crossed with mice expressing SB transposase in gastrointestinal tract epithelium. Most of the offspring developed intestinal lesions, including intraepithelial neoplasia, adenomas, and adenocarcinomas. Analysis of over 16,000 transposon insertions identified 77 candidate CRC genes, 60 of which are mutated and/or dysregulated in human CRC and thus are most likely to drive tumorigenesis. These genes include APC, PTEN, and SMAD4. The screen also identified 17 candidate genes that had not previously been implicated in CRC, including POLI, PTPRK, and RSPO2.
A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers.
Berger, Ashton C; Korkut, Anil; Kanchi, Rupa S; Hegde, Apurva M; Lenoir, Walter; Liu, Wenbin; Liu, Yuexin; Fan, Huihui; Shen, Hui; Ravikumar, Visweswaran; Rao, Arvind; Schultz, Andre; Li, Xubin; Sumazin, Pavel; Williams, Cecilia; Mestdagh, Pieter; Gunaratne, Preethi H; Yau, Christina; Bowlby, Reanne; Robertson, A Gordon; Tiezzi, Daniel G; Wang, Chen; Cherniack, Andrew D; Godwin, Andrew K; Kuderer, Nicole M; Rader, Janet S; Zuna, Rosemary E; Sood, Anil K; Lazar, Alexander J; Ojesina, Akinyemi I; Adebamowo, Clement; Adebamowo, Sally N; Baggerly, Keith A; Chen, Ting-Wen; Chiu, Hua-Sheng; Lefever, Steve; Liu, Liang; MacKenzie, Karen; Orsulic, Sandra; Roszik, Jason; Shelley, Carl Simon; Song, Qianqian; Vellano, Christopher P; Wentzensen, Nicolas; Weinstein, John N; Mills, Gordon B; Levine, Douglas A; Akbani, Rehan
2018-04-09
We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified subtypes with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molecular features, we identified five prognostic subtypes and developed a decision tree that classified patients into the subtypes based on just six features that are assessable in clinical laboratories. Copyright © 2018 Elsevier Inc. All rights reserved.
A whole organism screen identifies novel regulators of fat storage
Lemieux, George A.; Liu, Jason; Mayer, Nasima; Bainton, Roland J.; Ashrafi, Kaveh; Werb, Zena
2011-01-01
The regulation of energy homeostasis integrates diverse biological processes ranging from behavior to metabolism and is linked fundamentally to numerous disease states. To identify new molecules that can bypass homeostatic compensatory mechanisms of energy balance in intact animals, we screened for small molecule modulators of C. elegans fat content. We report on several molecules that modulate fat storage without obvious deleterious effects on feeding, growth, and reproduction. A subset of these compounds also altered fat storage in mammalian and insect cell culture. We found that one of the newly identified compounds exerts its effects in C. elegans through a pathway that requires novel functions of an AMP-activated kinase catalytic subunit and a transcription factor previously unassociated with fat regulation. Thus, our strategy identifies small molecules that are effective within the context of intact animals and reveals relationships between new pathways that operate across phyla to influence energy homeostasis. PMID:21390037
Ambegaokar, Surendra S.; Jackson, George R.
2011-01-01
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation. PMID:21949350
Holmans, Peter; Moskvina, Valentina; Jones, Lesley; Sharma, Manu; Vedernikov, Alexey; Buchel, Finja; Sadd, Mohamad; Bras, Jose M.; Bettella, Francesco; Nicolaou, Nayia; Simón-Sánchez, Javier; Mittag, Florian; Gibbs, J. Raphael; Schulte, Claudia; Durr, Alexandra; Guerreiro, Rita; Hernandez, Dena; Brice, Alexis; Stefánsson, Hreinn; Majamaa, Kari; Gasser, Thomas; Heutink, Peter; Wood, Nicholas W.; Martinez, Maria; Singleton, Andrew B.; Nalls, Michael A.; Hardy, John; Morris, Huw R.; Williams, Nigel M.; Arepalli, Sampath; Barker, Roger; Barrett, Jeffrey; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M.A.; Biffi, Alessandro; Bloem, Bas; Brice, Alexis; Bochdanovits, Zoltan; Bonin, Michael; Bras, Jose M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, Jonathan M.; Corvol, Jen-Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean Francois; Deloukas, Panagiotis; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Durr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Gao, Jianjun; Gardner, Michelle; Gasser, Thomas; Gibbs, J. Raphael; Goate, Alison; Gray, Emma; Guerreiro, Rita; Gústafsson, Ómar; Hardy, John; Harris, Clare; Hernandez, Dena G.; Heutink, Peter; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holmans, Peter; Holton, Janice; Hu, Michele; Huber, Heiko; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Langford, Cordelia; Lees, Andrew; Lesage, Suzanne; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; Martinez, Maria; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw; Morrison, Karen E.; Moskvina, Valentina; Mudanohwo, Ese; Nalls, Michael A.; Pearson, Justin; Perlmutter, Joel S.; Pétursson, Hjörvar; Plagnol, Vincent; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Saad, Mohamad; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Sharma, Manu; Shaw, Karen; Sheerin, Una-Marie; Shoulson, Ira; Schulte, Claudia; Sidransky, Ellen; Simón-Sánchez, Javier; Singleton, Andrew B.; Smith, Colin; Stefánsson, Hreinn; Stefánsson, Kári; Steinberg, Stacy; Stockton, Joanna D.; Sveinbjornsdottir, Sigurlaug; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Wood, Nicholas
2013-01-01
Parkinson's disease (PD) is the second most common neurodegenerative disease affecting 1–2% in people >60 and 3–4% in people >80. Genome-wide association (GWA) studies have now implicated significant evidence for association in at least 18 genomic regions. We have studied a large PD-meta analysis and identified a significant excess of SNPs (P < 1 × 10−16) that are associated with PD but fall short of the genome-wide significance threshold. This result was independent of variants at the 18 previously implicated regions and implies the presence of additional polygenic risk alleles. To understand how these loci increase risk of PD, we applied a pathway-based analysis, testing for biological functions that were significantly enriched for genes containing variants associated with PD. Analysing two independent GWA studies, we identified that both had a significant excess in the number of functional categories enriched for PD-associated genes (minimum P = 0.014 and P = 0.006, respectively). Moreover, 58 categories were significantly enriched for associated genes in both GWA studies (P < 0.001), implicating genes involved in the ‘regulation of leucocyte/lymphocyte activity’ and also ‘cytokine-mediated signalling’ as conferring an increased susceptibility to PD. These results were unaltered by the exclusion of all 178 genes that were present at the 18 genomic regions previously reported to be strongly associated with PD (including the HLA locus). Our findings, therefore, provide independent support to the strong association signal at the HLA locus and imply that the immune-related genetic susceptibility to PD is likely to be more widespread in the genome than previously appreciated. PMID:23223016
Transcriptomic Assessment of Isozymes in the Biphenyl Pathway of Rhodococcus sp. Strain RHA1†
Gonçalves, Edmilson R.; Hara, Hirofumi; Miyazawa, Daisuke; Davies, Julian E.; Eltis, Lindsay D.; Mohn, William W.
2006-01-01
Rhodococcus sp. RHA1 grows on a broad range of aromatic compounds and vigorously degrades polychlorinated biphenyls (PCBs). Previous work identified RHA1 genes encoding multiple isozymes for most of the seven steps of the biphenyl (BPH) pathway, provided evidence for coexpression of some of these isozymes, and indicated the involvement of some of these enzymes in the degradation of BPH, ethylbenzene (ETB), and PCBs. To investigate the expression of these isozymes and better understand how they contribute to the robust degradative capacity of RHA1, we comprehensively analyzed the 9.7-Mb genome of RHA1 for BPH pathway genes and characterized the transcriptome of RHA1 growing on benzoate (BEN), BPH, and ETB. Sequence analyses revealed 54 potential BPH pathway genes, including 28 not previously reported. Transcriptomic analysis with a DNA microarray containing 70-mer probes for 8,213 RHA1 genes revealed a suite of 320 genes of diverse functions that were upregulated during growth both on BPH and on ETB, relative to growth on the control substrate, pyruvate. By contrast, only 65 genes were upregulated during growth on BEN. Quantitative PCR assays confirmed microarray results for selected genes and indicated that some of the catabolic genes were upregulated over 10,000-fold. Our analysis suggests that up to 22 enzymes, including 8 newly identified ones, may function in the BPH pathway of RHA1. The relative expression levels of catabolic genes did not differ for BPH and ETB, suggesting a common regulatory mechanism. This study delineated a suite of catabolic enzymes for biphenyl and alkyl-benzenes in RHA1, which is larger than previously recognized and which may serve as a model for catabolism in other environmentally important bacteria having large genomes. PMID:16957245
Sex-Based Differences in Skeletal Muscle Kinetics and Fiber-Type Composition
Haizlip, K. M.; Harrison, B. C.
2015-01-01
Previous studies have identified over 3,000 genes that are differentially expressed in male and female skeletal muscle. Here, we review the sex-based differences in skeletal muscle fiber composition, myosin heavy chain expression, contractile function, and the regulation of these physiological differences by thyroid hormone, estrogen, and testosterone. The findings presented lay the basis for the continued work needed to fully understand the skeletal muscle differences between males and females. PMID:25559153
Genetic interaction studies are a powerful approach to identify functional interactions between genes. This approach can reveal networks of regulatory hubs and connect uncharacterized genes to well-studied pathways. However, this approach has previously been limited to simple gene inactivation studies. Here, we present an orthogonal CRISPR/Cas-mediated genetic interaction approach that allows the systematic activation of one gene while simultaneously knocking out a second gene in the same cell.
In vivo stem cell transplantation using reduced cell numbers.
Tsutsui, Takeo W
2015-01-01
Dental pulp stem cell (DPSC) characterization is essential for regeneration of a dentin/pulp like complex in vivo. This is especially important for identifying the potential of DPSCs to function as stem cells. Previously reported DPSC transplantation methods have used with huge numbers of cells, along with hydroxyapatite/tricalcium phosphate (HA/TCP), gelatin and fibrin, and collagen scaffolds. This protocol describe a transplantation protocol that uses fewer cells and a temperature-responsive cell culture dish.
Wright, Christine M.; Chovatiya, Raj J.; Jameson, Nora E.; Turner, David M.; Zhu, Guangyu; Werner, Stefan; Huryn, Donna M.; Pipas, James M.; Day, Billy W.; Wipf, Peter; Brodsky, Jeffrey L.
2008-01-01
The Hsp70 molecular chaperones are ATPases that play critical roles in the pathogenesis of many human diseases, including breast cancer. Hsp70 ATP hydrolysis is relatively weak, but is stimulated by J domain-containing proteins. We identified pyrimidinone-peptoid hybrid molecules that inhibit cell proliferation with greater potency than previously described Hsp70 modulators. In many cases, anti-proliferative activity correlated with inhibition of J domain stimulation of Hsp70. PMID:18164205
Repeatable Reverse Engineering with the Platform for Architecture-Neutral Dynamic Analysis
2015-09-18
record and replay functionality: on a live execution, the amount of compute resources needed to identify and halt on every memory access and inspect...and iteratively, running a replay of the previously gathered recording over and over to construct a deeper understanding of the important aspects of...system events happen during the replay . A second analysis pass over the replay might focus in on the activity of a particular program or a portion of the
Characterization and inhibition of a cholecystokinin-inactivating serine peptidase.
Rose, C; Vargas, F; Facchinetti, P; Bourgeat, P; Bambal, R B; Bishop, P B; Chan, S M; Moore, A N; Ganellin, C R; Schwartz, J C
1996-04-04
A cholecystokinin (CCK)-inactivating peptidase was purified and identified as a membrane-bound isoform of tripeptidyl peptidase II (EC 3.4.14.10), a cytosolic subtilisin-like peptidase of previously unknown functions. The peptidase was found in neurons responding to cholecystokinin, as well as in non-neuronal cells. Butabindide, a potent and specific inhibitor, was designed and shown to protect endogenous cholecystokinin from inactivation and to display pro-satiating effects mediated by the CCKA receptor.
2014-01-01
Background X-linked intellectual disability (XLID) is a group of genetically heterogeneous disorders characterized by substantial impairment in cognitive abilities, social and behavioral adaptive skills. Next generation sequencing technologies have become a powerful approach for identifying molecular gene mutations relevant for diagnosis. Methods & objectives Enrichment of X-chromosome specific exons and massively parallel sequencing was performed for identifying the causative mutations in 14 Finnish families, each of them having several males affected with intellectual disability of unknown cause. Results We found four novel mutations in known XLID genes. Two mutations; one previously reported missense mutation (c.1111C > T), and one novel frameshift mutation (c. 990_991insGCTGC) were identified in SLC16A2, a gene that has been linked to Allan-Herndon-Dudley syndrome (AHDS). One novel missense mutation (c.1888G > C) was found in GRIA3 and two novel splice donor site mutations (c.357 + 1G > C and c.985 + 1G > C) were identified in the DLG3 gene. One missense mutation (c.1321C > T) was identified in the candidate gene ZMYM3 in three affected males with a previously unrecognized syndrome characterized by unique facial features, aortic stenosis and hypospadia was detected. All of the identified mutations segregated in the corresponding families and were absent in > 100 Finnish controls and in the publicly available databases. In addition, a previously reported benign variant (c.877G > A) in SYP was identified in a large family with nine affected males in three generations, who have a syndromic phenotype. Conclusions All of the mutations found in this study are being reported for the first time in Finnish families with several affected male patients whose etiological diagnoses have remained unknown to us, in some families, for more than 30 years. This study illustrates the impact of X-exome sequencing to identify rare gene mutations and the challenges of interpreting the results. Further functional studies are required to confirm the cause of the syndromic phenotypes associated with ZMYM3 and SYP in this study. PMID:24721225
Co-expression Network Approach to Studying the Effects of Botulinum Neurotoxin-A.
Mukund, Kavitha; Ward, Samuel R; Lieber, Richard L; Subramaniam, Shankar
2017-10-16
Botulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications.The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into 5 groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes- Dclk1 and Ostalpha within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous workBotulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications.The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into 5 groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes- Dclk1 and Ostalpha within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous work.
Wang, Gaofeng; van der Walt, Joelle M.; Mayhew, Gregory; Li, Yi-Ju; Züchner, Stephan; Scott, William K.; Martin, Eden R.; Vance, Jeffery M.
2008-01-01
Parkinson disease (PD) is a common neurodegenerative disorder caused by environmental and genetic factors. We have previously shown linkage of PD to chromosome 8p. Subsequently, fibroblast growth factor 20 (FGF20) at 8p21.3–22 was identified as a risk factor in several association studies. To identify the risk-conferring polymorphism in FGF20, we performed genetic and functional analysis of single-nucleotide polymorphisms within the gene. In a sample of 729 nuclear families with 1089 affected and 1165 unaffected individuals, the strongest evidence of association came from rs12720208 in the 3′ untranslated region of FGF20. We show in several functional assays that the risk allele for rs12720208 disrupts a binding site for microRNA-433, increasing translation of FGF20 in vitro and in vivo. In a cell-based system and in PD brains, this increase in translation of FGF20 is correlated with increased α-synuclein expression, which has previously been shown to cause PD through both overexpression and point mutations. We suggest a novel mechanism of action for PD risk in which the modulation of the susceptibility gene's translation by common variations interfere with the regulation mechanisms of microRNA. We propose this is likely to be a common mechanism of genetic modulation of individual susceptibility to complex disease. PMID:18252210
Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM.
Zhang-James, Yanli; Faraone, Stephen V
2016-07-01
Genetic studies of human aggression have mainly focused on known candidate genes and pathways regulating serotonin and dopamine signaling and hormonal functions. These studies have taught us much about the genetics of human aggression, but no genetic locus has yet achieved genome-significance. We here present a review based on a paradoxical hypothesis that studies of rare, functional genetic variations can lead to a better understanding of the molecular mechanisms underlying complex multifactorial disorders such as aggression. We examined all aggression phenotypes catalogued in Online Mendelian Inheritance in Man (OMIM), an Online Catalog of Human Genes and Genetic Disorders. We identified 95 human disorders that have documented aggressive symptoms in at least one individual with a well-defined genetic variant. Altogether, we retrieved 86 causal genes. Although most of these genes had not been implicated in human aggression by previous studies, the most significantly enriched canonical pathways had been previously implicated in aggression (e.g., serotonin and dopamine signaling). Our findings provide strong evidence to support the causal role of these pathways in the pathogenesis of aggression. In addition, the novel genes and pathways we identified suggest additional mechanisms underlying the origins of human aggression. Genome-wide association studies with very large samples will be needed to determine if common variants in these genes are risk factors for aggression. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Identification and classification of hubs in brain networks.
Sporns, Olaf; Honey, Christopher J; Kötter, Rolf
2007-10-17
Brain regions in the mammalian cerebral cortex are linked by a complex network of fiber bundles. These inter-regional networks have previously been analyzed in terms of their node degree, structural motif, path length and clustering coefficient distributions. In this paper we focus on the identification and classification of hub regions, which are thought to play pivotal roles in the coordination of information flow. We identify hubs and characterize their network contributions by examining motif fingerprints and centrality indices for all regions within the cerebral cortices of both the cat and the macaque. Motif fingerprints capture the statistics of local connection patterns, while measures of centrality identify regions that lie on many of the shortest paths between parts of the network. Within both cat and macaque networks, we find that a combination of degree, motif participation, betweenness centrality and closeness centrality allows for reliable identification of hub regions, many of which have previously been functionally classified as polysensory or multimodal. We then classify hubs as either provincial (intra-cluster) hubs or connector (inter-cluster) hubs, and proceed to show that lesioning hubs of each type from the network produces opposite effects on the small-world index. Our study presents an approach to the identification and classification of putative hub regions in brain networks on the basis of multiple network attributes and charts potential links between the structural embedding of such regions and their functional roles.
Prasad, Kasavajhala V. S. K.; Abdel-Hameed, Amira A. E.; Xing, Denghui; Reddy, Anireddy S. N.
2016-01-01
Abiotic and biotic stresses cause significant yield losses in all crops. Acquisition of stress tolerance in plants requires rapid reprogramming of gene expression. SR1/CAMTA3, a member of signal responsive transcription factors (TFs), functions both as a positive and a negative regulator of biotic stress responses and as a positive regulator of cold stress-induced gene expression. Using high throughput RNA-seq, we identified ~3000 SR1-regulated genes. Promoters of about 60% of the differentially expressed genes have a known DNA binding site for SR1, suggesting that they are likely direct targets. Gene ontology analysis of SR1-regulated genes confirmed previously known functions of SR1 and uncovered a potential role for this TF in salt stress. Our results showed that SR1 mutant is more tolerant to salt stress than the wild type and complemented line. Improved tolerance of sr1 seedlings to salt is accompanied with the induction of salt-responsive genes. Furthermore, ChIP-PCR results showed that SR1 binds to promoters of several salt-responsive genes. These results suggest that SR1 acts as a negative regulator of salt tolerance by directly repressing the expression of salt-responsive genes. Overall, this study identified SR1-regulated genes globally and uncovered a previously uncharacterized role for SR1 in salt stress response. PMID:27251464
Lu, Hengyu; Villafane, Nicole; Dogruluk, Turgut; Grzeskowiak, Caitlin L; Kong, Kathleen; Tsang, Yiu Huen; Zagorodna, Oksana; Pantazi, Angeliki; Yang, Lixing; Neill, Nicholas J; Kim, Young Won; Creighton, Chad J; Verhaak, Roel G; Mills, Gordon B; Park, Peter J; Kucherlapati, Raju; Scott, Kenneth L
2017-07-01
Oncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, BCR-ABL1, EML4-ALK , and ETV6-NTRK3, as well as 20 previously uncharacterized fusion genes identified in The Cancer Genome Atlas datasets. In addition to confirming oncogenic activity of the known fusion oncogenes engineered by our construction strategy, we validated five novel fusion genes involving MET, NTRK2 , and BRAF kinases that exhibited potent transforming activity and conferred sensitivity to FDA-approved kinase inhibitors. Our fusion construction strategy also enabled domain-function studies of BRAF fusion genes. Our results confirmed other reports that the transforming activity of BRAF fusions results from truncation-mediated loss of inhibitory domains within the N-terminus of the BRAF protein. BRAF mutations residing within this inhibitory region may provide a means for BRAF activation in cancer, therefore we leveraged the modular design of our fusion gene construction methodology to screen N-terminal domain mutations discovered in tumors that are wild-type at the BRAF mutation hotspot, V600. We identified an oncogenic mutation, F247L, whose expression robustly activated the MAPK pathway and sensitized cells to BRAF and MEK inhibitors. When applied broadly, these tools will facilitate rapid fusion gene construction for subsequent functional characterization and translation into personalized treatment strategies. Cancer Res; 77(13); 3502-12. ©2017 AACR . ©2017 American Association for Cancer Research.
Lovelock, Paul K; Spurdle, Amanda B; Mok, Myth T S; Farrugia, Daniel J; Lakhani, Sunil R; Healey, Sue; Arnold, Stephen; Buchanan, Daniel; Couch, Fergus J; Henderson, Beric R; Goldgar, David E; Tavtigian, Sean V; Chenevix-Trench, Georgia; Brown, Melissa A
2007-01-01
Many of the DNA sequence variants identified in the breast cancer susceptibility gene BRCA1 remain unclassified in terms of their potential pathogenicity. Both multifactorial likelihood analysis and functional approaches have been proposed as a means to elucidate likely clinical significance of such variants, but analysis of the comparative value of these methods for classifying all sequence variants has been limited. We have compared the results from multifactorial likelihood analysis with those from several functional analyses for the four BRCA1 sequence variants A1708E, G1738R, R1699Q, and A1708V. Our results show that multifactorial likelihood analysis, which incorporates sequence conservation, co-inheritance, segregation, and tumour immunohistochemical analysis, may improve classification of variants. For A1708E, previously shown to be functionally compromised, analysis of oestrogen receptor, cytokeratin 5/6, and cytokeratin 14 tumour expression data significantly strengthened the prediction of pathogenicity, giving a posterior probability of pathogenicity of 99%. For G1738R, shown to be functionally defective in this study, immunohistochemistry analysis confirmed previous findings of inconsistent 'BRCA1-like' phenotypes for the two tumours studied, and the posterior probability for this variant was 96%. The posterior probabilities of R1699Q and A1708V were 54% and 69%, respectively, only moderately suggestive of increased risk. Interestingly, results from functional analyses suggest that both of these variants have only partial functional activity. R1699Q was defective in foci formation in response to DNA damage and displayed intermediate transcriptional transactivation activity but showed no evidence for centrosome amplification. In contrast, A1708V displayed an intermediate transcriptional transactivation activity and a normal foci formation response in response to DNA damage but induced centrosome amplification. These data highlight the need for a range of functional studies to be performed in order to identify variants with partially compromised function. The results also raise the possibility that A1708V and R1699Q may be associated with a low or moderate risk of cancer. While data pooling strategies may provide more information for multifactorial analysis to improve the interpretation of the clinical significance of these variants, it is likely that the development of current multifactorial likelihood approaches and the consideration of alternative statistical approaches will be needed to determine whether these individually rare variants do confer a low or moderate risk of breast cancer.
Enhanced disease characterization through multi network functional normalization in fMRI.
Çetin, Mustafa S; Khullar, Siddharth; Damaraju, Eswar; Michael, Andrew M; Baum, Stefi A; Calhoun, Vince D
2015-01-01
Conventionally, structural topology is used for spatial normalization during the pre-processing of fMRI. The co-existence of multiple intrinsic networks which can be detected in the resting brain are well-studied. Also, these networks exhibit temporal and spatial modulation during cognitive task vs. rest which shows the existence of common spatial excitation patterns between these identified networks. Previous work (Khullar et al., 2011) has shown that structural and functional data may not have direct one-to-one correspondence and functional activation patterns in a well-defined structural region can vary across subjects even for a well-defined functional task. The results of this study and the existence of the neural activity patterns in multiple networks motivates us to investigate multiple resting-state networks as a single fusion template for functional normalization for multi groups of subjects. We extend the previous approach (Khullar et al., 2011) by co-registering multi group of subjects (healthy control and schizophrenia patients) and by utilizing multiple resting-state networks (instead of just one) as a single fusion template for functional normalization. In this paper we describe the initial steps toward using multiple resting-state networks as a single fusion template for functional normalization. A simple wavelet-based image fusion approach is presented in order to evaluate the feasibility of combining multiple functional networks. Our results showed improvements in both the significance of group statistics (healthy control and schizophrenia patients) and the spatial extent of activation when a multiple resting-state network applied as a single fusion template for functional normalization after the conventional structural normalization. Also, our results provided evidence that the improvement in significance of group statistics lead to better accuracy results for classification of healthy controls and schizophrenia patients.
Eleven loci with new reproducible genetic associations with allergic disease risk.
Ferreira, Manuel A R; Vonk, Judith M; Baurecht, Hansjörg; Marenholz, Ingo; Tian, Chao; Hoffman, Joshua D; Helmer, Quinta; Tillander, Annika; Ullemar, Vilhelmina; Lu, Yi; Rüschendorf, Franz; Hinds, David A; Hübner, Norbert; Weidinger, Stephan; Magnusson, Patrik K E; Jorgenson, Eric; Lee, Young-Ae; Boomsma, Dorret I; Karlsson, Robert; Almqvist, Catarina; Koppelman, Gerard H; Paternoster, Lavinia
2018-04-19
A recent genome-wide association study (GWAS) identified 99 loci that contain genetic risk variants shared between asthma, hay fever, and eczema. Many more risk loci shared between these common allergic diseases remain to be discovered, which could point to new therapeutic opportunities. We sought to identify novel risk loci shared between asthma, hay fever, and eczema by applying a gene-based test of association to results from a published GWAS that included data from 360,838 subjects. We used approximate conditional analysis to adjust the results from the published GWAS for the effects of the top risk variants identified in that study. We then analyzed the adjusted GWAS results with the EUGENE gene-based approach, which combines evidence for association with disease risk across regulatory variants identified in different tissues. Novel gene-based associations were followed up in an independent sample of 233,898 subjects from the UK Biobank study. Of the 19,432 genes tested, 30 had a significant gene-based association at a Bonferroni-corrected P value of 2.5 × 10 -6 . Of these, 20 were also significantly associated (P < .05/30 = .0016) with disease risk in the replication sample, including 19 that were located in 11 loci not reported to contain allergy risk variants in previous GWASs. Among these were 9 genes with a known function that is directly relevant to allergic disease: FOSL2, VPRBP, IPCEF1, PRR5L, NCF4, APOBR, IL27, ATXN2L, and LAT. For 4 genes (eg, ATXN2L), a genetically determined decrease in gene expression was associated with decreased allergy risk, and therefore drugs that inhibit gene expression or function are predicted to ameliorate disease symptoms. The opposite directional effect was observed for 14 genes, including IL27, a cytokine known to suppress T H 2 responses. Using a gene-based approach, we identified 11 risk loci for allergic disease that were not reported in previous GWASs. Functional studies that investigate the contribution of the 19 associated genes to the pathophysiology of allergic disease and assess their therapeutic potential are warranted. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Self-Complementarity within Proteins: Bridging the Gap between Binding and Folding
Basu, Sankar; Bhattacharyya, Dhananjay; Banerjee, Rahul
2012-01-01
Complementarity, in terms of both shape and electrostatic potential, has been quantitatively estimated at protein-protein interfaces and used extensively to predict the specific geometry of association between interacting proteins. In this work, we attempted to place both binding and folding on a common conceptual platform based on complementarity. To that end, we estimated (for the first time to our knowledge) electrostatic complementarity (Em) for residues buried within proteins. Em measures the correlation of surface electrostatic potential at protein interiors. The results show fairly uniform and significant values for all amino acids. Interestingly, hydrophobic side chains also attain appreciable complementarity primarily due to the trajectory of the main chain. Previous work from our laboratory characterized the surface (or shape) complementarity (Sm) of interior residues, and both of these measures have now been combined to derive two scoring functions to identify the native fold amid a set of decoys. These scoring functions are somewhat similar to functions that discriminate among multiple solutions in a protein-protein docking exercise. The performances of both of these functions on state-of-the-art databases were comparable if not better than most currently available scoring functions. Thus, analogously to interfacial residues of protein chains associated (docked) with specific geometry, amino acids found in the native interior have to satisfy fairly stringent constraints in terms of both Sm and Em. The functions were also found to be useful for correctly identifying the same fold for two sequences with low sequence identity. Finally, inspired by the Ramachandran plot, we developed a plot of Sm versus Em (referred to as the complementarity plot) that identifies residues with suboptimal packing and electrostatics which appear to be correlated to coordinate errors. PMID:22713576
Self-complementarity within proteins: bridging the gap between binding and folding.
Basu, Sankar; Bhattacharyya, Dhananjay; Banerjee, Rahul
2012-06-06
Complementarity, in terms of both shape and electrostatic potential, has been quantitatively estimated at protein-protein interfaces and used extensively to predict the specific geometry of association between interacting proteins. In this work, we attempted to place both binding and folding on a common conceptual platform based on complementarity. To that end, we estimated (for the first time to our knowledge) electrostatic complementarity (Em) for residues buried within proteins. Em measures the correlation of surface electrostatic potential at protein interiors. The results show fairly uniform and significant values for all amino acids. Interestingly, hydrophobic side chains also attain appreciable complementarity primarily due to the trajectory of the main chain. Previous work from our laboratory characterized the surface (or shape) complementarity (Sm) of interior residues, and both of these measures have now been combined to derive two scoring functions to identify the native fold amid a set of decoys. These scoring functions are somewhat similar to functions that discriminate among multiple solutions in a protein-protein docking exercise. The performances of both of these functions on state-of-the-art databases were comparable if not better than most currently available scoring functions. Thus, analogously to interfacial residues of protein chains associated (docked) with specific geometry, amino acids found in the native interior have to satisfy fairly stringent constraints in terms of both Sm and Em. The functions were also found to be useful for correctly identifying the same fold for two sequences with low sequence identity. Finally, inspired by the Ramachandran plot, we developed a plot of Sm versus Em (referred to as the complementarity plot) that identifies residues with suboptimal packing and electrostatics which appear to be correlated to coordinate errors. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Chandran, Anil Kumar Nalini; Yoo, Yo-Han; Cao, Peijian; Sharma, Rita; Sharma, Manoj; Dardick, Christopher; Ronald, Pamela C; Jung, Ki-Hong
2016-12-01
Protein kinases catalyze the transfer of a phosphate moiety from a phosphate donor to the substrate molecule, thus playing critical roles in cell signaling and metabolism. Although plant genomes contain more than 1000 genes that encode kinases, knowledge is limited about the function of each of these kinases. A major obstacle that hinders progress towards kinase characterization is functional redundancy. To address this challenge, we previously developed the rice kinase database (RKD) that integrated omics-scale data within a phylogenetics context. An updated version of rice kinase database (RKD) that contains metadata derived from NCBI GEO expression datasets has been developed. RKD 2.0 facilitates in-depth transcriptomic analyses of kinase-encoding genes in diverse rice tissues and in response to biotic and abiotic stresses and hormone treatments. We identified 261 kinases specifically expressed in particular tissues, 130 that are significantly up- regulated in response to biotic stress, 296 in response to abiotic stress, and 260 in response to hormones. Based on this update and Pearson correlation coefficient (PCC) analysis, we estimated that 19 out of 26 genes characterized through loss-of-function studies confer dominant functions. These were selected because they either had paralogous members with PCC values of <0.5 or had no paralog. Compared with the previous version of RKD, RKD 2.0 enables more effective estimations of functional redundancy or dominance because it uses comprehensive expression profiles rather than individual profiles. The integrated analysis of RKD with PCC establishes a single platform for researchers to select rice kinases for functional analyses.
Mosher, M J; Melton, P E; Stapleton, P; Schanfield, M S; Crawford, M H
2016-04-01
DNA methylation is the most widely studied of epigenetic mechanisms, with environmental effects recorded through patterned attachments of methyl groups along the DNA that are capable of modifying gene expression without altering the DNA sequencing. The degree to which these patterns of DNA methylation are heritable, the expected range of normality across populations, and the phenotypic relevance of pattern variation remain unclear. Genes regulating metabolic pathways appear to be vulnerable to ongoing nutritional programming over the life course, as dietary nutrients are significant environmental determinants of DNA methylation, supplying both the methyl groups and energy to generate the methylation process. Here we examine methylation patterns along a region of the metabolic gene leptin (LEP). LEP's putative functions include regulation of energy homeostasis, with its signals affecting energy intake and expenditure, adipogenesis and energy storage, lipid and glucose metabolism, bone metabolism, and reproductive endocrine function. A pattern of differential methylation across CpG sites of the LEP core promoter has been previously identified; however, any consistency of pattern or its phenotypic significance is not fully elucidated among populations. Using DNA extracted from unfractionated white blood cells of peripheral blood samples, our pilot study, divided into two parts, examined the significance of variation in DNA methylation patterns along the leptin core promoter in four populations (phase 1) and used biomarkers reflecting leptin's functional process in two of those populations, western Buryat of Siberia and the Mennonite of central Kansas, to investigate the relevance of the ethnic variation identified in the DNA methylation (phase 2). LEP's core promoter region contains both the binding site for C/EBPα (CCAAT/enhancer binding protein alpha), which tempers the final step in adipocyte maturity and capacity to synthesize leptin, and the TATA motif controlling leptin synthesis. Previous studies report that increased methylation in this region is correlated to decreased gene expression, suggesting tissue-specific methylation variation at this region ( Melzner et al. 2002 ). We hypothesized that evidence of nutritional epigenetic programming would be identified through variation in patterns of DNA methylation and that functional relevance of that variation among populations would be identified through biomarkers that reflect leptin's metabolic signals: serum leptin levels, lipoproteins of the lipid transport system, and anthropometric measures. In phase 1, our combined analyses of 313 individuals documented a distinct and consistent overall pattern of differential DNA methylation across seven CpG sites of LEP core promoter in all ethnicities and both sexes. This pattern replicates those identified in previous studies, suggesting a conserved core promoter region across populations. Phase 2 analyses of two of the four populations (n = 239), correlating methylation at the C/EBPα transcription binding site (TBS) with metabolic and anthropometric biomarkers reflecting LEP roles, showed that stature, which reflects bone growth and remodeling, was significantly and inversely correlated with the percentage of DNA methylation at this site in both sexes. We suggest that variation in DNA methylation along the LEP core promoter plays a substantial role in energy signals affecting both adipogenesis and bone metabolism.
NASA Technical Reports Server (NTRS)
Weinberg, I.; Stupica, J. W.; Swartz, C. K.; Goradia, C.
1986-01-01
Lithium-counterdoped n(+)p silicon solar cells were irradiated by 10-MeV protons, and their performance was determined as a function of fluence. It was found that the cell with the highest lithium concentration exhibited the higher radiation resistance. Deep-level transient spectroscopy studies of deep-level defects were used to identify two lithium-related defects. Defect energy levels obtained after the present 10-MeV irradiations were found to be markedly different than those observed after previous 1-MeV electron irradiations. However, the present DLTS data are consistent with previous suggestion by Weinberg et al. (1984) of a lithium-oxygen interaction which tends to inhibit formation of an interstitial boron-oxygen defect.
Peterson, L W; Hardin, M; Nitsch, M J
1995-05-01
Primary care physicians can be instrumental in the initial identification of potential sexual, emotional, and physical abuse of children. We reviewed the use of children's artwork as a method of communicating individual and family functioning. A quantitative method of analyzing children's artwork provides more reliability and validity than some methods used previously. A new scoring system was developed that uses individual human figure drawings and kinetic family drawings. This scoring system was based on research with 842 children (341 positively identified as sexually molested, 252 positively not sexually molested but having emotional or behavioral problems, and 249 "normal" public school children). This system is more comprehensive than previous systems of assessment of potential abuse.
Identifying disease-related subnetwork connectome biomarkers by sparse hypergraph learning.
Zu, Chen; Gao, Yue; Munsell, Brent; Kim, Minjeong; Peng, Ziwen; Cohen, Jessica R; Zhang, Daoqiang; Wu, Guorong
2018-06-14
The functional brain network has gained increased attention in the neuroscience community because of its ability to reveal the underlying architecture of human brain. In general, majority work of functional network connectivity is built based on the correlations between discrete-time-series signals that link only two different brain regions. However, these simple region-to-region connectivity models do not capture complex connectivity patterns between three or more brain regions that form a connectivity subnetwork, or subnetwork for short. To overcome this current limitation, a hypergraph learning-based method is proposed to identify subnetwork differences between two different cohorts. To achieve our goal, a hypergraph is constructed, where each vertex represents a subject and also a hyperedge encodes a subnetwork with similar functional connectivity patterns between different subjects. Unlike previous learning-based methods, our approach is designed to jointly optimize the weights for all hyperedges such that the learned representation is in consensus with the distribution of phenotype data, i.e. clinical labels. In order to suppress the spurious subnetwork biomarkers, we further enforce a sparsity constraint on the hyperedge weights, where a larger hyperedge weight indicates the subnetwork with the capability of identifying the disorder condition. We apply our hypergraph learning-based method to identify subnetwork biomarkers in Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). A comprehensive quantitative and qualitative analysis is performed, and the results show that our approach can correctly classify ASD and ADHD subjects from normal controls with 87.65 and 65.08% accuracies, respectively.
Crayton, Elise; Wolfe, Charles; Douiri, Abdel
2018-01-01
Objective We aim to identify and critically appraise clinical prediction models of mortality and function following ischaemic stroke. Methods Electronic databases, reference lists, citations were searched from inception to September 2015. Studies were selected for inclusion, according to pre-specified criteria and critically appraised by independent, blinded reviewers. The discrimination of the prediction models was measured by the area under the curve receiver operating characteristic curve or c-statistic in random effects meta-analysis. Heterogeneity was measured using I2. Appropriate appraisal tools and reporting guidelines were used in this review. Results 31395 references were screened, of which 109 articles were included in the review. These articles described 66 different predictive risk models. Appraisal identified poor methodological quality and a high risk of bias for most models. However, all models precede the development of reporting guidelines for prediction modelling studies. Generalisability of models could be improved, less than half of the included models have been externally validated(n = 27/66). 152 predictors of mortality and 192 predictors and functional outcome were identified. No studies assessing ability to improve patient outcome (model impact studies) were identified. Conclusions Further external validation and model impact studies to confirm the utility of existing models in supporting decision-making is required. Existing models have much potential. Those wishing to predict stroke outcome are advised to build on previous work, to update and adapt validated models to their specific contexts opposed to designing new ones. PMID:29377923
Toffano-Nioche, Claire; Gautheret, Daniel; Leclerc, Fabrice
2015-01-01
A structural and functional classification of H/ACA and H/ACA-like motifs is obtained from the analysis of the H/ACA guide RNAs which have been identified previously in the genomes of Euryarchaea (Pyrococcus) and Crenarchaea (Pyrobaculum). A unified structure/function model is proposed based on the common structural determinants shared by H/ACA and H/ACA-like motifs in both Euryarchaea and Crenarchaea. Using a computational approach, structural and energetic rules for the guide:target RNA-RNA interactions are derived from structural and functional data on the H/ACA RNP particles. H/ACA(-like) motifs found in Pyrococcus are evaluated through the classification and their biological relevance is discussed. Extra-ribosomal targets found in both Pyrococcus and Pyrobaculum might support the hypothesis of a gene regulation mediated by H/ACA(-like) guide RNAs in archaea. PMID:26240384
Gracitelli, Guilherme C; Meric, Gokhan; Briggs, Dustin T; Pulido, Pamela A; McCauley, Julie C; Belloti, João Carlos; Bugbee, William D
2015-04-01
In most treatment algorithms, osteochondral allograft (OCA) transplantation is regarded as an alternative salvage procedure when other, previous reparative treatments have failed. To compare the outcomes of a retrospective matched-pair cohort of (1) primary OCA transplantation and (2) OCA transplantation after failure of previous subchondral marrow stimulation. Cohort study; Level of evidence, 3. An OCA database was used to identify 46 knees that had OCA transplantation performed as a primary treatment (group 1) and 46 knees that underwent OCA transplantation after failure of previous subchondral marrow stimulation (group 2). All patients had a minimum of 2 years' follow-up. Patients in each group were matched for age (±5 years), diagnosis (osteochondral lesion, degenerative chondral lesion, traumatic chondral injury), and graft size (small, <5 cm2; medium, 5-10 cm2; large, >10 cm2). The groups had similar body mass indexes, sex distributions, and graft locations (femoral condyle, patella, and trochlea. The number and type of further surgeries after the OCA transplantation were assessed; failure was defined as any reoperation resulting in removal of the graft. Functional outcomes were evaluated by use of the modified Merle d'Aubigné-Postel (18-point) scale, International Knee Documentation Committee (IKDC) subjective knee evaluation form, Knee injury and Osteoarthritis Outcomes Score (KOOS), and the Knee Society function (KS-F) scale. Patient satisfaction, according to a 5-point scale from "extremely satisfied" to "dissatisfied," was recorded at the latest follow-up. Eleven of 46 knees (24%) in group 1 had reoperations, compared with 20 of 46 knees (44%) in group 2 (P = .04). The OCA was classified as a failure in 5 knees (11%) in group 1 and 7 knees (15%) in group 2 (P = .53). At 10 years of follow-up, survivorship of the graft was 87.4% and 86% in groups 1 and 2, respectively. Both groups showed improvement in pain and function on all subjective scores from preoperatively to the latest follow-up (all P < .001). Results showed that 87% of patients in group 1 and 97% in group 2 were "satisfied" or "extremely satisfied" with the OCA transplantation. Favorable results were shown in both groups with significant improvement of functional scores and excellent survivorship. Despite the higher reoperation rate in the previously treated group, previous subchondral marrow stimulation did not adversely affect the survivorship and functional outcome of OCA transplantation. © 2015 The Author(s).
Petyuk, Vladislav A.; Qian, Wei-Jun; Hinault, Charlotte; Gritsenko, Marina A.; Singhal, Mudita; Monroe, Matthew E.; Camp, David G.; Kulkarni, Rohit N.; Smith, Richard D.
2009-01-01
The pancreatic islets of Langerhans, and especially the insulin-producing beta cells, play a central role in the maintenance of glucose homeostasis. Alterations in the expression of multiple proteins in the islets that contribute to the maintenance of islet function are likely to underlie the pathogenesis of type 2 diabetes. To identify proteins that constitute the islet proteome, we provide the first comprehensive proteomic characterization of pancreatic islets for mouse, the most commonly used animal model in diabetes research. Using strong cation exchange fractionation coupled with reversed phase LC-MS/MS we report the confident identification of 17,350 different tryptic peptides covering 2,612 proteins having at least two unique peptides per protein. The dataset also identified ~60 post-translationally modified peptides including oxidative modifications and phosphorylation. While many of the identified phosphorylation sites corroborate those previously known, the oxidative modifications observed on cysteinyl residues reveal potentially novel information suggesting a role for oxidative stress in islet function. Comparative analysis with 15 available proteomic datasets from other mouse tissues and cells revealed a set of 133 proteins predominantly expressed in pancreatic islets. This unique set of proteins, in addition to those with known functions such as peptide hormones secreted from the islets, contains several proteins with as yet unknown functions. The mouse islet protein and peptide database accessible at http://ncrr.pnl.gov, provides an important reference resource for the research community to facilitate research in the diabetes and metabolism fields. PMID:18570455
Xue, You-Lin; Wang, Hao; Riedy, Michael; Roberts, Brittany-Lee; Sun, Yuna; Song, Yong-Bo; Jones, Gary W; Masison, Daniel C; Song, Youtao
2018-05-01
Genetic screens using Saccharomyces cerevisiae have identified an array of Hsp40 (Ydj1p) J-domain mutants that are impaired in the ability to cure the yeast [URE3] prion through disrupting functional interactions with Hsp70. However, biochemical analysis of some of these Hsp40 J-domain mutants has so far failed to provide major insight into the specific functional changes in Hsp40-Hsp70 interactions. To explore the detailed structural and dynamic properties of the Hsp40 J-domain, 20 ns molecular dynamic simulations of 4 mutants (D9A, D36A, A30T, and F45S) and wild-type J-domain were performed, followed by Hsp70 docking simulations. Results demonstrated that although the Hsp70 interaction mechanism of the mutants may vary, the major structural change was targeted to the critical HPD motif of the J-domain. Our computational analysis fits well with previous yeast genetics studies regarding highlighting the importance of J-domain function in prion propagation. During the molecular dynamics simulations several important residues were identified and predicted to play an essential role in J-domain structure. Among these residues, Y26 and F45 were confirmed, using both in silico and in vivo methods, as being critical for Ydj1p function.
Chen, Pei-Chun; Olson, Erik M; Zhou, Qing; Kryukova, Yelena; Sampson, Heidi M; Thomas, David Y; Shyng, Show-Ling
2013-07-19
ATP-sensitive potassium (KATP) channels consisting of sulfonylurea receptor 1 (SUR1) and the potassium channel Kir6.2 play a key role in insulin secretion by coupling metabolic signals to β-cell membrane potential. Mutations in SUR1 and Kir6.2 that impair channel trafficking to the cell surface lead to loss of channel function and congenital hyperinsulinism. We report that carbamazepine, an anticonvulsant, corrects the trafficking defects of mutant KATP channels previously identified in congenital hyperinsulinism. Strikingly, of the 19 SUR1 mutations examined, only those located in the first transmembrane domain of SUR1 responded to the drug. We show that unlike that reported for several other protein misfolding diseases, carbamazepine did not correct KATP channel trafficking defects by activating autophagy; rather, it directly improved the biogenesis efficiency of mutant channels along the secretory pathway. In addition to its effect on channel trafficking, carbamazepine also inhibited KATP channel activity. Upon subsequent removal of carbamazepine, however, the function of rescued channels was recovered. Importantly, combination of the KATP channel opener diazoxide and carbamazepine led to enhanced mutant channel function without carbamazepine washout. The corrector effect of carbamazepine on mutant KATP channels was also demonstrated in rat and human β-cells with an accompanying increase in channel activity. Our findings identify carbamazepine as a novel small molecule corrector that may be used to restore KATP channel expression and function in a subset of congenital hyperinsulinism patients.
Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line
2011-01-01
Background When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. Results A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. Conclusions The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells. PMID:22111699
Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi
Möller, Inga; Murali, Rajmohan; Müller, Hansgeorg; Wiesner, Thomas; Jackett, Louise A; Scholz, Simone L; Cosgarea, Ioana; van de Nes, Johannes AP; Sucker, Antje; Hillen, Uwe; Schilling, Bastian; Paschen, Annette; Kutzner, Heinz; Rütten, Arno; Böckers, Martin; Scolyer, Richard A; Schadendorf, Dirk; Griewank, Klaus G
2017-01-01
Blue nevi are common melanocytic tumors arising in the dermal layer of the skin. Similar to uveal melanomas, blue nevi frequently harbor GNAQ and GNA11 mutations. Recently, recurrent CYSLTR2 and PLCB4 mutations were identified in uveal melanomas not harboring GNAQ or GNA11 mutations. All four genes (GNAQ, GNA11, CYSLTR2, and PLCB4) code for proteins involved in the same signaling pathway, which is activated by mutations in these genes. Given the related functional consequences of these mutations and the known genetic similarities between uveal melanoma and blue nevi, we analyzed a cohort of blue nevi to investigate whether CYSLTR2 and PLCB4 mutations occur in tumors lacking GNAQ or GNA11 mutations (as in uveal melanoma). A targeted next-generation sequencing assay covering known activating mutations in GNAQ, GNA11, CYSLTR2, PLCB4, KIT, NRAS, and BRAF was applied to 103 blue nevi. As previously reported, most blue nevi were found to harbor activating mutations in GNAQ (59%, n = 61), followed by less frequent mutations in GNA11 (16%, n = 17). Additionally, one BRAF (1%) and three NRAS (3%) mutations were detected. In three tumors (3%) harboring none of the aforementioned gene alterations, CYSLTR2 mutations were identified. All three CYSLTR2 mutations were the same c.386T > A, L129Q mutation previously identified in uveal melanoma that has been shown to lead to increased receptor activation and signaling. In summary, our study identifies CYSLTR2 L129Q alterations as a previously unrecognized activating mutation in blue nevi, occuring in a mutually exclusive fashion with known GNAQ and GNA11 mutations. Similar to GNAQ and GNA11 mutations, CYSLTR2 mutations, when present, are likely defining pathogenetic events in blue nevi. PMID:27934878
Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi.
Möller, Inga; Murali, Rajmohan; Müller, Hansgeorg; Wiesner, Thomas; Jackett, Louise A; Scholz, Simone L; Cosgarea, Ioana; van de Nes, Johannes Ap; Sucker, Antje; Hillen, Uwe; Schilling, Bastian; Paschen, Annette; Kutzner, Heinz; Rütten, Arno; Böckers, Martin; Scolyer, Richard A; Schadendorf, Dirk; Griewank, Klaus G
2017-03-01
Blue nevi are common melanocytic tumors arising in the dermal layer of the skin. Similar to uveal melanomas, blue nevi frequently harbor GNAQ and GNA11 mutations. Recently, recurrent CYSLTR2 and PLCB4 mutations were identified in uveal melanomas not harboring GNAQ or GNA11 mutations. All four genes (GNAQ, GNA11, CYSLTR2, and PLCB4) code for proteins involved in the same signaling pathway, which is activated by mutations in these genes. Given the related functional consequences of these mutations and the known genetic similarities between uveal melanoma and blue nevi, we analyzed a cohort of blue nevi to investigate whether CYSLTR2 and PLCB4 mutations occur in tumors lacking GNAQ or GNA11 mutations (as in uveal melanoma). A targeted next-generation sequencing assay covering known activating mutations in GNAQ, GNA11, CYSLTR2, PLCB4, KIT, NRAS, and BRAF was applied to 103 blue nevi. As previously reported, most blue nevi were found to harbor activating mutations in GNAQ (59%, n=61), followed by less frequent mutations in GNA11 (16%, n=17). Additionally, one BRAF (1%) and three NRAS (3%) mutations were detected. In three tumors (3%) harboring none of the aforementioned gene alterations, CYSLTR2 mutations were identified. All three CYSLTR2 mutations were the same c.386T>A, L129Q mutation previously identified in uveal melanoma that has been shown to lead to increased receptor activation and signaling. In summary, our study identifies CYSLTR2 L129Q alterations as a previously unrecognized activating mutation in blue nevi, occuring in a mutually exclusive fashion with known GNAQ and GNA11 mutations. Similar to GNAQ and GNA11 mutations, CYSLTR2 mutations, when present, are likely defining pathogenetic events in blue nevi.
Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes
Minic, Zoran; Jamet, Elisabeth; San-Clemente, Hélène; Pelletier, Sandra; Renou, Jean-Pierre; Rihouey, Christophe; Okinyo, Denis PO; Proux, Caroline; Lerouge, Patrice; Jouanin, Lise
2009-01-01
Background Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. Results Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. Conclusion Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins. PMID:19149885
Lee, Patricia; Ng, Hwee L.; Yang, Otto O.
2012-01-01
Human immunodeficiency virus type 1 (HIV-1) Nef downregulates major histocompatibility complex class I (MHC-I), impairing the clearance of infected cells by CD8+ cytotoxic T lymphocytes (CTLs). While sequence motifs mediating this function have been determined by in vitro mutagenesis studies of laboratory-adapted HIV-1 molecular clones, it is unclear whether the highly variable Nef sequences of primary isolates in vivo rely on the same sequence motifs. To address this issue, nef quasispecies from nine chronically HIV-1-infected persons were examined for sequence evolution and altered MHC-I downregulatory function under Gag-specific CTL immune pressure in vitro. This selection resulted in decreased nef diversity and strong purifying selection. Site-by-site analysis identified 13 codons undergoing purifying selection and 1 undergoing positive selection. Of the former, only 6 have been reported to have roles in Nef function, including 4 associated with MHC-I downregulation. Functional testing of naturally occurring in vivo polymorphisms at the 7 sites with no previously known functional role revealed 3 mutations (A84D, Y135F, and G140R) that ablated MHC-I downregulation and 3 (N52A, S169I, and V180E) that partially impaired MHC-I downregulation. Globally, the CTL pressure in vitro selected functional Nef from the in vivo quasispecies mixtures that predominately lacked MHC-I downregulatory function at the baseline. Overall, these data demonstrate that CTL pressure exerts a strong purifying selective pressure for MHC-I downregulation and identifies novel functional motifs present in Nef sequences in vivo. PMID:22553319
NASA Astrophysics Data System (ADS)
Maćkowiak-Pawłowska, Maja; Przybyła, Piotr
2018-05-01
The incomplete particle identification limits the experimentally-available phase space region for identified particle analysis. This problem affects ongoing fluctuation and correlation studies including the search for the critical point of strongly interacting matter performed on SPS and RHIC accelerators. In this paper we provide a procedure to obtain nth order moments of the multiplicity distribution using the identity method, generalising previously published solutions for n=2 and n=3. Moreover, we present an open source software implementation of this computation, called Idhim, that allows one to obtain the true moments of identified particle multiplicity distributions from the measured ones provided the response function of the detector is known.
Krunic, Aleksandar L; Stone, Kristina L; Simpson, Michael A; McGrath, John A
2013-01-01
Acral peeling skin syndrome (APSS) is a clinically and genetically heterogeneous disorder. We used whole-exome sequencing to identify the molecular basis of APSS in a consanguineous Jordanian-American pedigree. We identified a homozygous nonsense mutation (p.Lys22X) in the CSTA gene, encoding cystatin A, that was confirmed using Sanger sequencing. Cystatin A is a protease inhibitor found in the cornified cell envelope, and loss-of-function mutations have previously been reported in two cases of exfoliative ichthyosis. Our study expands the molecular pathology of APSS and demonstrates the value of next-generation sequencing in the genetic characterization of inherited skin diseases. © 2013 Wiley Periodicals, Inc.
The Bisphenol A analogue Bisphenol S binds to K-Ras4B--implications for 'BPA-free' plastics.
Schöpel, Miriam; Herrmann, Christian; Scherkenbeck, Jürgen; Stoll, Raphael
2016-02-01
K-Ras4B is a small GTPase that belongs to the Ras superfamily of guanine nucleotide-binding proteins. GTPases function as molecular switches in cells and are key players in intracellular signalling. Ras has been identified as an oncogene and is mutated in more than 20% of human cancers. Here, we report that Bisphenol S binds into a binding pocket of K-Ras4B previously identified for various low molecular weight compounds. Our results advocate for more comprehensive safety studies on the toxicity of Bisphenol S, as it is frequently used for Bisphenol A-free food containers. © 2016 Federation of European Biochemical Societies.