Sample records for previously reported algorithm

  1. Interleaved diffusion-weighted EPI improved by adaptive partial-Fourier and multi-band multiplexed sensitivity-encoding reconstruction

    PubMed Central

    Chang, Hing-Chiu; Guhaniyogi, Shayan; Chen, Nan-kuei

    2014-01-01

    Purpose We report a series of techniques to reliably eliminate artifacts in interleaved echo-planar imaging (EPI) based diffusion weighted imaging (DWI). Methods First, we integrate the previously reported multiplexed sensitivity encoding (MUSE) algorithm with a new adaptive Homodyne partial-Fourier reconstruction algorithm, so that images reconstructed from interleaved partial-Fourier DWI data are free from artifacts even in the presence of either a) motion-induced k-space energy peak displacement, or b) susceptibility field gradient induced fast phase changes. Second, we generalize the previously reported single-band MUSE framework to multi-band MUSE, so that both through-plane and in-plane aliasing artifacts in multi-band multi-shot interleaved DWI data can be effectively eliminated. Results The new adaptive Homodyne-MUSE reconstruction algorithm reliably produces high-quality and high-resolution DWI, eliminating residual artifacts in images reconstructed with previously reported methods. Furthermore, the generalized MUSE algorithm is compatible with multi-band and high-throughput DWI. Conclusion The integration of the multi-band and adaptive Homodyne-MUSE algorithms significantly improves the spatial-resolution, image quality, and scan throughput of interleaved DWI. We expect that the reported reconstruction framework will play an important role in enabling high-resolution DWI for both neuroscience research and clinical uses. PMID:24925000

  2. A comparison between physicians and computer algorithms for form CMS-2728 data reporting.

    PubMed

    Malas, Mohammed Said; Wish, Jay; Moorthi, Ranjani; Grannis, Shaun; Dexter, Paul; Duke, Jon; Moe, Sharon

    2017-01-01

    CMS-2728 form (Medical Evidence Report) assesses 23 comorbidities chosen to reflect poor outcomes and increased mortality risk. Previous studies questioned the validity of physician reporting on forms CMS-2728. We hypothesize that reporting of comorbidities by computer algorithms identifies more comorbidities than physician completion, and, therefore, is more reflective of underlying disease burden. We collected data from CMS-2728 forms for all 296 patients who had incident ESRD diagnosis and received chronic dialysis from 2005 through 2014 at Indiana University outpatient dialysis centers. We analyzed patients' data from electronic medical records systems that collated information from multiple health care sources. Previously utilized algorithms or natural language processing was used to extract data on 10 comorbidities for a period of up to 10 years prior to ESRD incidence. These algorithms incorporate billing codes, prescriptions, and other relevant elements. We compared the presence or unchecked status of these comorbidities on the forms to the presence or absence according to the algorithms. Computer algorithms had higher reporting of comorbidities compared to forms completion by physicians. This remained true when decreasing data span to one year and using only a single health center source. The algorithms determination was well accepted by a physician panel. Importantly, algorithms use significantly increased the expected deaths and lowered the standardized mortality ratios. Using computer algorithms showed superior identification of comorbidities for form CMS-2728 and altered standardized mortality ratios. Adapting similar algorithms in available EMR systems may offer more thorough evaluation of comorbidities and improve quality reporting. © 2016 International Society for Hemodialysis.

  3. Efficient sequential and parallel algorithms for record linkage.

    PubMed

    Mamun, Abdullah-Al; Mi, Tian; Aseltine, Robert; Rajasekaran, Sanguthevar

    2014-01-01

    Integrating data from multiple sources is a crucial and challenging problem. Even though there exist numerous algorithms for record linkage or deduplication, they suffer from either large time needs or restrictions on the number of datasets that they can integrate. In this paper we report efficient sequential and parallel algorithms for record linkage which handle any number of datasets and outperform previous algorithms. Our algorithms employ hierarchical clustering algorithms as the basis. A key idea that we use is radix sorting on certain attributes to eliminate identical records before any further processing. Another novel idea is to form a graph that links similar records and find the connected components. Our sequential and parallel algorithms have been tested on a real dataset of 1,083,878 records and synthetic datasets ranging in size from 50,000 to 9,000,000 records. Our sequential algorithm runs at least two times faster, for any dataset, than the previous best-known algorithm, the two-phase algorithm using faster computation of the edit distance (TPA (FCED)). The speedups obtained by our parallel algorithm are almost linear. For example, we get a speedup of 7.5 with 8 cores (residing in a single node), 14.1 with 16 cores (residing in two nodes), and 26.4 with 32 cores (residing in four nodes). We have compared the performance of our sequential algorithm with TPA (FCED) and found that our algorithm outperforms the previous one. The accuracy is the same as that of this previous best-known algorithm.

  4. Efficient sequential and parallel algorithms for record linkage

    PubMed Central

    Mamun, Abdullah-Al; Mi, Tian; Aseltine, Robert; Rajasekaran, Sanguthevar

    2014-01-01

    Background and objective Integrating data from multiple sources is a crucial and challenging problem. Even though there exist numerous algorithms for record linkage or deduplication, they suffer from either large time needs or restrictions on the number of datasets that they can integrate. In this paper we report efficient sequential and parallel algorithms for record linkage which handle any number of datasets and outperform previous algorithms. Methods Our algorithms employ hierarchical clustering algorithms as the basis. A key idea that we use is radix sorting on certain attributes to eliminate identical records before any further processing. Another novel idea is to form a graph that links similar records and find the connected components. Results Our sequential and parallel algorithms have been tested on a real dataset of 1 083 878 records and synthetic datasets ranging in size from 50 000 to 9 000 000 records. Our sequential algorithm runs at least two times faster, for any dataset, than the previous best-known algorithm, the two-phase algorithm using faster computation of the edit distance (TPA (FCED)). The speedups obtained by our parallel algorithm are almost linear. For example, we get a speedup of 7.5 with 8 cores (residing in a single node), 14.1 with 16 cores (residing in two nodes), and 26.4 with 32 cores (residing in four nodes). Conclusions We have compared the performance of our sequential algorithm with TPA (FCED) and found that our algorithm outperforms the previous one. The accuracy is the same as that of this previous best-known algorithm. PMID:24154837

  5. Wearable EEG via lossless compression.

    PubMed

    Dufort, Guillermo; Favaro, Federico; Lecumberry, Federico; Martin, Alvaro; Oliver, Juan P; Oreggioni, Julian; Ramirez, Ignacio; Seroussi, Gadiel; Steinfeld, Leonardo

    2016-08-01

    This work presents a wearable multi-channel EEG recording system featuring a lossless compression algorithm. The algorithm, based in a previously reported algorithm by the authors, exploits the existing temporal correlation between samples at different sampling times, and the spatial correlation between different electrodes across the scalp. The low-power platform is able to compress, by a factor between 2.3 and 3.6, up to 300sps from 64 channels with a power consumption of 176μW/ch. The performance of the algorithm compares favorably with the best compression rates reported up to date in the literature.

  6. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning.

    PubMed

    Abràmoff, Michael David; Lou, Yiyue; Erginay, Ali; Clarida, Warren; Amelon, Ryan; Folk, James C; Niemeijer, Meindert

    2016-10-01

    To compare performance of a deep-learning enhanced algorithm for automated detection of diabetic retinopathy (DR), to the previously published performance of that algorithm, the Iowa Detection Program (IDP)-without deep learning components-on the same publicly available set of fundus images and previously reported consensus reference standard set, by three US Board certified retinal specialists. We used the previously reported consensus reference standard of referable DR (rDR), defined as International Clinical Classification of Diabetic Retinopathy moderate, severe nonproliferative (NPDR), proliferative DR, and/or macular edema (ME). Neither Messidor-2 images, nor the three retinal specialists setting the Messidor-2 reference standard were used for training IDx-DR version X2.1. Sensitivity, specificity, negative predictive value, area under the curve (AUC), and their confidence intervals (CIs) were calculated. Sensitivity was 96.8% (95% CI: 93.3%-98.8%), specificity was 87.0% (95% CI: 84.2%-89.4%), with 6/874 false negatives, resulting in a negative predictive value of 99.0% (95% CI: 97.8%-99.6%). No cases of severe NPDR, PDR, or ME were missed. The AUC was 0.980 (95% CI: 0.968-0.992). Sensitivity was not statistically different from published IDP sensitivity, which had a CI of 94.4% to 99.3%, but specificity was significantly better than the published IDP specificity CI of 55.7% to 63.0%. A deep-learning enhanced algorithm for the automated detection of DR, achieves significantly better performance than a previously reported, otherwise essentially identical, algorithm that does not employ deep learning. Deep learning enhanced algorithms have the potential to improve the efficiency of DR screening, and thereby to prevent visual loss and blindness from this devastating disease.

  7. Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed

    NASA Technical Reports Server (NTRS)

    Tian, Ye; Song, Qi; Cattafesta, Louis

    2005-01-01

    This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.

  8. An administrative data validation study of the accuracy of algorithms for identifying rheumatoid arthritis: the influence of the reference standard on algorithm performance.

    PubMed

    Widdifield, Jessica; Bombardier, Claire; Bernatsky, Sasha; Paterson, J Michael; Green, Diane; Young, Jacqueline; Ivers, Noah; Butt, Debra A; Jaakkimainen, R Liisa; Thorne, J Carter; Tu, Karen

    2014-06-23

    We have previously validated administrative data algorithms to identify patients with rheumatoid arthritis (RA) using rheumatology clinic records as the reference standard. Here we reassessed the accuracy of the algorithms using primary care records as the reference standard. We performed a retrospective chart abstraction study using a random sample of 7500 adult patients under the care of 83 family physicians contributing to the Electronic Medical Record Administrative data Linked Database (EMRALD) in Ontario, Canada. Using physician-reported diagnoses as the reference standard, we computed and compared the sensitivity, specificity, and predictive values for over 100 administrative data algorithms for RA case ascertainment. We identified 69 patients with RA for a lifetime RA prevalence of 0.9%. All algorithms had excellent specificity (>97%). However, sensitivity varied (75-90%) among physician billing algorithms. Despite the low prevalence of RA, most algorithms had adequate positive predictive value (PPV; 51-83%). The algorithm of "[1 hospitalization RA diagnosis code] or [3 physician RA diagnosis codes with ≥1 by a specialist over 2 years]" had a sensitivity of 78% (95% CI 69-88), specificity of 100% (95% CI 100-100), PPV of 78% (95% CI 69-88) and NPV of 100% (95% CI 100-100). Administrative data algorithms for detecting RA patients achieved a high degree of accuracy amongst the general population. However, results varied slightly from our previous report, which can be attributed to differences in the reference standards with respect to disease prevalence, spectrum of disease, and type of comparator group.

  9. Composeable Chat over Low-Bandwidth Intermittent Communication Links

    DTIC Science & Technology

    2007-04-01

    Compression (STC), introduced in this report, is a data compression algorithm intended to compress alphanumeric... Ziv - Lempel coding, the grandfather of most modern general-purpose file compression programs, watches for input symbol sequences that have previously... data . This section applies these techniques to create a new compression algorithm called Small Text Compression . Various sequence compression

  10. Investigating prior probabilities in a multiple hypothesis test for use in space domain awareness

    NASA Astrophysics Data System (ADS)

    Hardy, Tyler J.; Cain, Stephen C.

    2016-05-01

    The goal of this research effort is to improve Space Domain Awareness (SDA) capabilities of current telescope systems through improved detection algorithms. Ground-based optical SDA telescopes are often spatially under-sampled, or aliased. This fact negatively impacts the detection performance of traditionally proposed binary and correlation-based detection algorithms. A Multiple Hypothesis Test (MHT) algorithm has been previously developed to mitigate the effects of spatial aliasing. This is done by testing potential Resident Space Objects (RSOs) against several sub-pixel shifted Point Spread Functions (PSFs). A MHT has been shown to increase detection performance for the same false alarm rate. In this paper, the assumption of a priori probability used in a MHT algorithm is investigated. First, an analysis of the pixel decision space is completed to determine alternate hypothesis prior probabilities. These probabilities are then implemented into a MHT algorithm, and the algorithm is then tested against previous MHT algorithms using simulated RSO data. Results are reported with Receiver Operating Characteristic (ROC) curves and probability of detection, Pd, analysis.

  11. Semiannual Report, April 1, 1989 through September 30, 1989 (Institute for Computer Applications in Science and Engineering)

    DTIC Science & Technology

    1990-02-01

    noise. Tobias B. Orloff Work began on developing a high quality rendering algorithm based on the radiosity method. The algorithm is similar to...previous progressive radiosity algorithms except for the following improvements: 1. At each iteration vertex radiosities are computed using a modified scan...line approach, thus eliminating the quadratic cost associated with a ray tracing computation of vortex radiosities . 2. At each iteration the scene is

  12. A comparative intelligibility study of single-microphone noise reduction algorithms.

    PubMed

    Hu, Yi; Loizou, Philipos C

    2007-09-01

    The evaluation of intelligibility of noise reduction algorithms is reported. IEEE sentences and consonants were corrupted by four types of noise including babble, car, street and train at two signal-to-noise ratio levels (0 and 5 dB), and then processed by eight speech enhancement methods encompassing four classes of algorithms: spectral subtractive, sub-space, statistical model based and Wiener-type algorithms. The enhanced speech was presented to normal-hearing listeners for identification. With the exception of a single noise condition, no algorithm produced significant improvements in speech intelligibility. Information transmission analysis of the consonant confusion matrices indicated that no algorithm improved significantly the place feature score, significantly, which is critically important for speech recognition. The algorithms which were found in previous studies to perform the best in terms of overall quality, were not the same algorithms that performed the best in terms of speech intelligibility. The subspace algorithm, for instance, was previously found to perform the worst in terms of overall quality, but performed well in the present study in terms of preserving speech intelligibility. Overall, the analysis of consonant confusion matrices suggests that in order for noise reduction algorithms to improve speech intelligibility, they need to improve the place and manner feature scores.

  13. Computational complexity of algorithms for sequence comparison, short-read assembly and genome alignment.

    PubMed

    Baichoo, Shakuntala; Ouzounis, Christos A

    A multitude of algorithms for sequence comparison, short-read assembly and whole-genome alignment have been developed in the general context of molecular biology, to support technology development for high-throughput sequencing, numerous applications in genome biology and fundamental research on comparative genomics. The computational complexity of these algorithms has been previously reported in original research papers, yet this often neglected property has not been reviewed previously in a systematic manner and for a wider audience. We provide a review of space and time complexity of key sequence analysis algorithms and highlight their properties in a comprehensive manner, in order to identify potential opportunities for further research in algorithm or data structure optimization. The complexity aspect is poised to become pivotal as we will be facing challenges related to the continuous increase of genomic data on unprecedented scales and complexity in the foreseeable future, when robust biological simulation at the cell level and above becomes a reality. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Computational algebraic geometry for statistical modeling FY09Q2 progress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David C.; Rojas, Joseph Maurice; Pebay, Philippe Pierre

    2009-03-01

    This is a progress report on polynomial system solving for statistical modeling. This is a progress report on polynomial system solving for statistical modeling. This quarter we have developed our first model of shock response data and an algorithm for identifying the chamber cone containing a polynomial system in n variables with n+k terms within polynomial time - a significant improvement over previous algorithms, all having exponential worst-case complexity. We have implemented and verified the chamber cone algorithm for n+3 and are working to extend the implementation to handle arbitrary k. Later sections of this report explain chamber cones inmore » more detail; the next section provides an overview of the project and how the current progress fits into it.« less

  15. Ad hoc cost analysis of the new gastrointestinal bleeding algorithm in patients with ventricular assist device.

    PubMed

    Hirose, Hitoshi; Sarosiek, Konrad; Cavarocchi, Nicholas C

    2014-01-01

    Gastrointestinal bleed (GIB) is a known complication in patients receiving nonpulsatile ventricular assist devices (VAD). Previously, we reported a new algorithm for the workup of GIB in VAD patients using deep bowel enteroscopy. In this new algorithm, patients underwent fewer procedures, received less transfusions, and took less time to make the diagnosis than the traditional GIB algorithm group. Concurrently, we reviewed the cost-effectiveness of this new algorithm compared with the traditional workup. The procedure charges for the diagnosis and treatment of each episode of GIB was ~ $2,902 in the new algorithm group versus ~ $9,013 in the traditional algorithm group (p < 0.0001). Following the new algorithm in VAD patients with GIB resulted in fewer transfusions and diagnostic tests while attaining a substantial cost savings per episode of bleeding.

  16. Interface Generation and Compositional Verification in JavaPathfinder

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Pasareanu, Corina

    2009-01-01

    We present a novel algorithm for interface generation of software components. Given a component, our algorithm uses learning techniques to compute a permissive interface representing legal usage of the component. Unlike our previous work, this algorithm does not require knowledge about the component s environment. Furthermore, in contrast to other related approaches, our algorithm computes permissive interfaces even in the presence of non-determinism in the component. Our algorithm is implemented in the JavaPathfinder model checking framework for UML statechart components. We have also added support for automated assume-guarantee style compositional verification in JavaPathfinder, using component interfaces. We report on the application of the presented approach to the generation of interfaces for flight software components.

  17. Efficient algorithms for a class of partitioning problems

    NASA Technical Reports Server (NTRS)

    Iqbal, M. Ashraf; Bokhari, Shahid H.

    1990-01-01

    The problem of optimally partitioning the modules of chain- or tree-like tasks over chain-structured or host-satellite multiple computer systems is addressed. This important class of problems includes many signal processing and industrial control applications. Prior research has resulted in a succession of faster exact and approximate algorithms for these problems. Polynomial exact and approximate algorithms are described for this class that are better than any of the previously reported algorithms. The approach is based on a preprocessing step that condenses the given chain or tree structured task into a monotonic chain or tree. The partitioning of this monotonic take can then be carried out using fast search techniques.

  18. Erratum: Erratum: Denoising Phase Unwrapping Algorithm for Precise Phase Shifting Interferometry

    NASA Astrophysics Data System (ADS)

    Phuc, Phan Huy; Rhee, Hyug-Gyo; Ghim, Young-Sik

    2018-06-01

    This is a revision of the reference list reported in the original article. In order to clear the contribution of the previous work on the incremental breadth-first search (IBFS) method applied to the PUMA algorithm, we add one more reference to the existing reference list, as in this erratum. Page 83 : In this paper, we propose an algorithm that modifies the Boykov-Kolmogorov (BK) algorithm using the incremental breadth-first search (IBFS) method [27, 28] to find paths from the source to the sink of a graph. [28] S. Ali, H. Khan, I. Shaik and F. Ali, Int. J. Eng. and Technol. 7, 254 (2015).

  19. Crisis management during anaesthesia: hypotension.

    PubMed

    Morris, R W; Watterson, L M; Westhorpe, R N; Webb, R K

    2005-06-01

    Hypotension is commonly encountered in association with anaesthesia and surgery. Uncorrected and sustained it puts the brain, heart, kidneys, and the fetus in pregnancy at risk of permanent or even fatal damage. Its recognition and correction is time critical, especially in patients with pre-existing disease that compromises organ perfusion. To examine the role of a previously described core algorithm "COVER ABCD-A SWIFT CHECK", supplemented by a specific sub-algorithm for hypotension, in the management of hypotension when it occurs in association with anaesthesia. Reports of hypotension during anaesthesia were extracted and studied from the first 4000 incidents reported to the Australian Incident Monitoring Study (AIMS). The potential performance of the COVER ABCD algorithm and the sub-algorithm for hypotension was compared with the actual management as reported by the anaesthetist involved. There were 438 reports that mentioned hypotension, cardiovascular collapse, or cardiac arrest. In 17% of reports more than one cause was attributed and 550 causative events were identified overall. The most common causes identified were drugs (26%), regional anaesthesia (14%), and hypovolaemia (9%). Concomitant changes were reported in heart rate or rhythm in 39% and oxygen saturation or ventilation in 21% of reports. Cardiac arrest was documented in 25% of reports. As hypotension was frequently associated with abnormalities of other vital signs, it could not always be adequately addressed by a single algorithm. The sub-algorithm for hypotension is adequate when hypotension occurs in association with sinus tachycardia. However, when it occurs in association with bradycardia, non-sinus tachycardia, desaturation or signs of anaphylaxis or other problems, the sub-algorithm for hypotension recommends cross referencing to other relevant sub-algorithms. It was considered that, correctly applied, the core algorithm COVER ABCD would have diagnosed 18% of cases and led to resolution in two thirds of these. It was further estimated that completion of this followed by the specific sub-algorithm for hypotension would have led to earlier recognition of the problem and/or better management in 6% of cases compared with actual management reported. Pattern recognition in most cases enables anaesthetists to determine the cause and manage hypotension. However, an algorithm based approach is likely to improve the management of a small proportion of atypical but potentially life threatening cases. While an algorithm based approach will facilitate crisis management, the frequency of co-existing abnormalities in other vital signs means that all cases of hypotension cannot be dealt with using a single algorithm. Diagnosis, in particular, may potentially be assisted by cross referencing to the specific sub-algorithms for these.

  20. A study on the performance comparison of metaheuristic algorithms on the learning of neural networks

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2017-08-01

    The learning or training process of neural networks entails the task of finding the most optimal set of parameters, which includes translation vectors, dilation parameter, synaptic weights, and bias terms. Apart from the traditional gradient descent-based methods, metaheuristic methods can also be used for this learning purpose. Since the inception of genetic algorithm half a century ago, the last decade witnessed the explosion of a variety of novel metaheuristic algorithms, such as harmony search algorithm, bat algorithm, and whale optimization algorithm. Despite the proof of the no free lunch theorem in the discipline of optimization, a survey in the literature of machine learning gives contrasting results. Some researchers report that certain metaheuristic algorithms are superior to the others, whereas some others argue that different metaheuristic algorithms give comparable performance. As such, this paper aims to investigate if a certain metaheuristic algorithm will outperform the other algorithms. In this work, three metaheuristic algorithms, namely genetic algorithms, particle swarm optimization, and harmony search algorithm are considered. The algorithms are incorporated in the learning of neural networks and their classification results on the benchmark UCI machine learning data sets are compared. It is found that all three metaheuristic algorithms give similar and comparable performance, as captured in the average overall classification accuracy. The results corroborate the findings reported in the works done by previous researchers. Several recommendations are given, which include the need of statistical analysis to verify the results and further theoretical works to support the obtained empirical results.

  1. Random sequential adsorption of cubes

    NASA Astrophysics Data System (ADS)

    Cieśla, Michał; Kubala, Piotr

    2018-01-01

    Random packings built of cubes are studied numerically using a random sequential adsorption algorithm. To compare the obtained results with previous reports, three different models of cube orientation sampling were used. Also, three different cube-cube intersection algorithms were tested to find the most efficient one. The study focuses on the mean saturated packing fraction as well as kinetics of packing growth. Microstructural properties of packings were analyzed using density autocorrelation function.

  2. Rational application of adenosine deaminase activity in cerebrospinal fluid for the diagnosis of tuberculous meningitis.

    PubMed

    Parra-Ruiz, Jorge; Ramos, V; Dueñas, C; Coronado-Álvarez, N M; Cabo-Magadán, R; Portillo-Tuñón, V; Vinuesa, D; Muñoz-Medina, L; Hernández-Quero, J

    2015-10-01

    Tuberculous meningitis (TBM) is one of the most serious and difficult to diagnose manifestations of TB. An ADA value >9.5 IU/L has great sensitivity and specificity. However, all available studies have been conducted in areas of high endemicity, so we sought to determine the accuracy of ADA in a low endemicity area. This retrospective study included 190 patients (105 men) who had ADA tested in CSF for some reason. Patients were classified as probable/certain TBM or non-TBM based on clinical and Thwaite's criteria. Optimal ADA cutoff was established by ROC curves and a predictive algorithm based on ADA and other CSF biochemical parameters was generated. Eleven patients were classified as probable/certain TBM. In a low endemicity area, the best ADA cutoff was 11.5 IU/L with 91 % sensitivity and 77.7 % specificity. We also developed a predictive algorithm based on the combination of ADA (>11.5 IU/L), glucose (<65 mg/dL) and leukocytes (≥13.5 cell/mm(3)) with increased accuracy (Se: 91 % Sp: 88 %). Optimal ADA cutoff value in areas of low TB endemicity is higher than previously reported. Our algorithm is more accurate than ADA activity alone with better sensitivity and specificity than previously reported algorithms.

  3. Separation of pulsar signals from noise using supervised machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Bethapudi, S.; Desai, S.

    2018-04-01

    We evaluate the performance of four different machine learning (ML) algorithms: an Artificial Neural Network Multi-Layer Perceptron (ANN MLP), Adaboost, Gradient Boosting Classifier (GBC), and XGBoost, for the separation of pulsars from radio frequency interference (RFI) and other sources of noise, using a dataset obtained from the post-processing of a pulsar search pipeline. This dataset was previously used for the cross-validation of the SPINN-based machine learning engine, obtained from the reprocessing of the HTRU-S survey data (Morello et al., 2014). We have used the Synthetic Minority Over-sampling Technique (SMOTE) to deal with high-class imbalance in the dataset. We report a variety of quality scores from all four of these algorithms on both the non-SMOTE and SMOTE datasets. For all the above ML methods, we report high accuracy and G-mean for both the non-SMOTE and SMOTE cases. We study the feature importances using Adaboost, GBC, and XGBoost and also from the minimum Redundancy Maximum Relevance approach to report algorithm-agnostic feature ranking. From these methods, we find that the signal to noise of the folded profile to be the best feature. We find that all the ML algorithms report FPRs about an order of magnitude lower than the corresponding FPRs obtained in Morello et al. (2014), for the same recall value.

  4. Wavelet tree structure based speckle noise removal for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Liu, Xuan; Liu, Yang

    2018-02-01

    We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.

  5. Thermal buckling optimisation of composite plates using firefly algorithm

    NASA Astrophysics Data System (ADS)

    Kamarian, S.; Shakeri, M.; Yas, M. H.

    2017-07-01

    Composite plates play a very important role in engineering applications, especially in aerospace industry. Thermal buckling of such components is of great importance and must be known to achieve an appropriate design. This paper deals with stacking sequence optimisation of laminated composite plates for maximising the critical buckling temperature using a powerful meta-heuristic algorithm called firefly algorithm (FA) which is based on the flashing behaviour of fireflies. The main objective of present work was to show the ability of FA in optimisation of composite structures. The performance of FA is compared with the results reported in the previous published works using other algorithms which shows the efficiency of FA in stacking sequence optimisation of laminated composite structures.

  6. [Optimization of the parameters of microcirculatory structural adaptation model based on improved quantum-behaved particle swarm optimization algorithm].

    PubMed

    Pan, Qing; Yao, Jialiang; Wang, Ruofan; Cao, Ping; Ning, Gangmin; Fang, Luping

    2017-08-01

    The vessels in the microcirculation keep adjusting their structure to meet the functional requirements of the different tissues. A previously developed theoretical model can reproduce the process of vascular structural adaptation to help the study of the microcirculatory physiology. However, until now, such model lacks the appropriate methods for its parameter settings with subsequent limitation of further applications. This study proposed an improved quantum-behaved particle swarm optimization (QPSO) algorithm for setting the parameter values in this model. The optimization was performed on a real mesenteric microvascular network of rat. The results showed that the improved QPSO was superior to the standard particle swarm optimization, the standard QPSO and the previously reported Downhill algorithm. We conclude that the improved QPSO leads to a better agreement between mathematical simulation and animal experiment, rendering the model more reliable in future physiological studies.

  7. MCSCF wave functions for excited states of polar molecules - Application to BeO. [Multi-Configuration Self-Consistent Field

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Yarkony, D. R.

    1980-01-01

    A previously reported multi-configuration self-consistent field (MCSCF) algorithm based on the generalized Brillouin theorem is extended in order to treat the excited states of polar molecules. In particular, the algorithm takes into account the proper treatment of nonorthogonality in the space of single excitations and invokes, when necessary, a constrained optimization procedure to prevent the variational collapse of excited states. In addition, a configuration selection scheme (suitable for use in conjunction with extended configuration interaction methods) is proposed for the MCSCF procedure. The algorithm is used to study the low-lying singlet states of BeO, a system which has not previously been studied using an MCSCF procedure. MCSCF wave functions are obtained for three 1 Sigma + and two 1 Pi states. The 1 Sigma + results are juxtaposed with comparable results for MgO in order to assess the generality of the description presented here.

  8. Finite-element time-domain algorithms for modeling linear Debye and Lorentz dielectric dispersions at low frequencies.

    PubMed

    Stoykov, Nikolay S; Kuiken, Todd A; Lowery, Madeleine M; Taflove, Allen

    2003-09-01

    We present what we believe to be the first algorithms that use a simple scalar-potential formulation to model linear Debye and Lorentz dielectric dispersions at low frequencies in the context of finite-element time-domain (FETD) numerical solutions of electric potential. The new algorithms, which permit treatment of multiple-pole dielectric relaxations, are based on the auxiliary differential equation method and are unconditionally stable. We validate the algorithms by comparison with the results of a previously reported method based on the Fourier transform. The new algorithms should be useful in calculating the transient response of biological materials subject to impulsive excitation. Potential applications include FETD modeling of electromyography, functional electrical stimulation, defibrillation, and effects of lightning and impulsive electric shock.

  9. Mechanistic design data from ODOT instrumented pavement sites : phase II report.

    DOT National Transportation Integrated Search

    2017-03-01

    This investigation examined data obtained from three previously-instrumented pavement test sites in Oregon. Data processing algorithms and templates were developed for each test site that facilitated full processing of all the data to build databases...

  10. Mechanistic design data from ODOT instrumented pavement sites : phase 1 report.

    DOT National Transportation Integrated Search

    2017-03-01

    This investigation examined data obtained from three previously-instrumented pavement test sites in Oregon. Data processing algorithms and templates were developed for each test site that facilitated full processing of all the data to build databases...

  11. Construct validation of an interactive digital algorithm for ostomy care.

    PubMed

    Beitz, Janice M; Gerlach, Mary A; Schafer, Vickie

    2014-01-01

    The purpose of this study was to evaluate construct validity for a previously face and content validated Ostomy Algorithm using digital real-life clinical scenarios. A cross-sectional, mixed-methods Web-based survey design study was conducted. Two hundred ninety-seven English-speaking RNs completed the study; participants practiced in both acute care and postacute settings, with 1 expert ostomy nurse (WOC nurse) and 2 nonexpert nurses. Following written consent, respondents answered demographic questions and completed a brief algorithm tutorial. Participants were then presented with 7 ostomy-related digital scenarios consisting of real-life photos and pertinent clinical information. Respondents used the 11 assessment components of the digital algorithm to choose management options. Participant written comments about the scenarios and the research process were collected. The mean overall percentage of correct responses was 84.23%. Mean percentage of correct responses for respondents with a self-reported basic ostomy knowledge was 87.7%; for those with a self-reported intermediate ostomy knowledge was 85.88% and those who were self-reported experts in ostomy care achieved 82.77% correct response rate. Five respondents reported having no prior ostomy care knowledge at screening and achieved an overall 45.71% correct response rate. No negative comments regarding the algorithm were recorded by participants. The new standardized Ostomy Algorithm remains the only face, content, and construct validated digital clinical decision instrument currently available. Further research on application at the bedside while tracking patient outcomes is warranted.

  12. Navigating a ship with a broken compass: evaluating standard algorithms to measure patient safety.

    PubMed

    Hefner, Jennifer L; Huerta, Timothy R; McAlearney, Ann Scheck; Barash, Barbara; Latimer, Tina; Moffatt-Bruce, Susan D

    2017-03-01

    Agency for Healthcare Research and Quality (AHRQ) software applies standardized algorithms to hospital administrative data to identify patient safety indicators (PSIs). The objective of this study was to assess the validity of PSI flags and report reasons for invalid flagging. At a 6-hospital academic medical center, a retrospective analysis was conducted of all PSIs flagged in fiscal year 2014. A multidisciplinary PSI Quality Team reviewed each flagged PSI based on quarterly reports. The positive predictive value (PPV, the percent of clinically validated cases) was calculated for 12 PSI categories. The documentation for each reversed case was reviewed to determine the reasons for PSI reversal. Of 657 PSI flags, 185 were reversed. Seven PSI categories had a PPV below 75%. Four broad categories of reasons for reversal were AHRQ algorithm limitations (38%), coding misinterpretations (45%), present upon admission (10%), and documentation insufficiency (7%). AHRQ algorithm limitations included 2 subcategories: an "incident" was inherent to the procedure, or highly likely (eg, vascular tumor bleed), or an "incident" was nonsignificant, easily controlled, and/or no intervention was needed. These findings support previous research highlighting administrative data problems. Additionally, AHRQ algorithm limitations was an emergent category not considered in previous research. Herein we present potential solutions to address these issues. If, despite poor validity, US policy continues to rely on PSIs for incentive and penalty programs, improvements are needed in the quality of administrative data and the standardized PSI algorithms. These solutions require national motivation, research attention, and dissemination support. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Third Grade Students' Performance on Calculator and Calculator-Related Tasks. Technical Report No. 498.

    ERIC Educational Resources Information Center

    Weaver, J. Fred

    Refinements of work with calculator algorithms previously conducted by the author are reported. Work with "chaining" and the doing/undoing property in addition and subtraction was tested with 24 third-grade students. Results indicated the need for further instruction with both ideas. Students were able to manipulate the calculator keyboard, but…

  14. A multifaceted independent performance analysis of facial subspace recognition algorithms.

    PubMed

    Bajwa, Usama Ijaz; Taj, Imtiaz Ahmad; Anwar, Muhammad Waqas; Wang, Xuan

    2013-01-01

    Face recognition has emerged as the fastest growing biometric technology and has expanded a lot in the last few years. Many new algorithms and commercial systems have been proposed and developed. Most of them use Principal Component Analysis (PCA) as a base for their techniques. Different and even conflicting results have been reported by researchers comparing these algorithms. The purpose of this study is to have an independent comparative analysis considering both performance and computational complexity of six appearance based face recognition algorithms namely PCA, 2DPCA, A2DPCA, (2D)(2)PCA, LPP and 2DLPP under equal working conditions. This study was motivated due to the lack of unbiased comprehensive comparative analysis of some recent subspace methods with diverse distance metric combinations. For comparison with other studies, FERET, ORL and YALE databases have been used with evaluation criteria as of FERET evaluations which closely simulate real life scenarios. A comparison of results with previous studies is performed and anomalies are reported. An important contribution of this study is that it presents the suitable performance conditions for each of the algorithms under consideration.

  15. Syphilis testing in antenatal care: Policies and practices among laboratories in the Americas.

    PubMed

    Luu, Minh; Ham, Cal; Kamb, Mary L; Caffe, Sonja; Hoover, Karen W; Perez, Freddy

    2015-06-01

    To asses laboratory syphilis testing policies and practices among laboratories in the Americas. Laboratory directors or designees from PAHO member countries were invited to participate in a structured, electronically-delivered survey between March and August, 2014. Data on syphilis tests, algorithms, and quality control (QC) practices were analyzed, focusing on laboratories receiving specimens from antenatal clinics (ANCs). Surveys were completed by 69 laboratories representing 30 (86%) countries. Participating laboratories included 36 (52%) national or regional reference labs and 33 (48%) lower-level laboratories. Most (94%) were public sector facilities and 71% reported existence of a national algorithm for syphilis testing in pregnancy, usually involving both treponemal and non-treponemal testing (72%). Less than half (41%) used rapid syphilis tests (RSTs); and only seven laboratories representing five countries reported RSTs were included in the national algorithm for pregnant women. Most (83%) laboratories serving ANCs reported using some type of QC system; 68% of laboratories reported participation in external QC. Only 36% of laboratories reported data to national/local surveillance. Half of all laboratories serving ANC settings reported a stockout of one or more essential supplies during the previous year (median duration, 30days). Updating laboratory algorithms, improving testing standards, integrating data into existing surveillance, and improved procurement and distribution of commodities may be needed to ensure elimination of MTCT of syphilis in the Americas. Copyright © 2015. Published by Elsevier Ireland Ltd.

  16. Documenting the NASA Armstrong Flight Research Center Oblate Earth Simulation Equations of Motion and Integration Algorithm

    NASA Technical Reports Server (NTRS)

    Clarke, R.; Lintereur, L.; Bahm, C.

    2016-01-01

    A desire for more complete documentation of the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC), Edwards, California legacy code used in the core simulation has led to this e ort to fully document the oblate Earth six-degree-of-freedom equations of motion and integration algorithm. The authors of this report have taken much of the earlier work of the simulation engineering group and used it as a jumping-o point for this report. The largest addition this report makes is that each element of the equations of motion is traced back to first principles and at no point is the reader forced to take an equation on faith alone. There are no discoveries of previously unknown principles contained in this report; this report is a collection and presentation of textbook principles. The value of this report is that those textbook principles are herein documented in standard nomenclature that matches the form of the computer code DERIVC. Previous handwritten notes are much of the backbone of this work, however, in almost every area, derivations are explicitly shown to assure the reader that the equations which make up the oblate Earth version of the computer routine, DERIVC, are correct.

  17. Multiple intensity distributions from a single optical element

    NASA Astrophysics Data System (ADS)

    Berens, Michael; Bruneton, Adrien; Bäuerle, Axel; Traub, Martin; Wester, Rolf; Stollenwerk, Jochen; Loosen, Peter

    2013-09-01

    We report on an extension of the previously published two-step freeform optics tailoring algorithm using a Monge-Kantorovich mass transportation framework. The algorithm's ability to design multiple freeform surfaces allows for the inclusion of multiple distinct light paths and hence the implementation of multiple lighting functions in a single optical element. We demonstrate the procedure in the context of automotive lighting, in which a fog lamp and a daytime running lamp are integrated in a single optical element illuminated by two distinct groups of LEDs.

  18. Identification of genes related to proliferative diabetic retinopathy through RWR algorithm based on protein-protein interaction network.

    PubMed

    Zhang, Jian; Suo, Yan; Liu, Min; Xu, Xun

    2018-06-01

    Proliferative diabetic retinopathy (PDR) is one of the most common complications of diabetes and can lead to blindness. Proteomic studies have provided insight into the pathogenesis of PDR and a series of PDR-related genes has been identified but are far from fully characterized because the experimental methods are expensive and time consuming. In our previous study, we successfully identified 35 candidate PDR-related genes through the shortest-path algorithm. In the current study, we developed a computational method using the random walk with restart (RWR) algorithm and the protein-protein interaction (PPI) network to identify potential PDR-related genes. After some possible genes were obtained by the RWR algorithm, a three-stage filtration strategy, which includes the permutation test, interaction test and enrichment test, was applied to exclude potential false positives caused by the structure of PPI network, the poor interaction strength, and the limited similarity on gene ontology (GO) terms and biological pathways. As a result, 36 candidate genes were discovered by the method which was different from the 35 genes reported in our previous study. A literature review showed that 21 of these 36 genes are supported by previous experiments. These findings suggest the robustness and complementary effects of both our efforts using different computational methods, thus providing an alternative method to study PDR pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Parallel digital forensics infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexicomore » Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.« less

  20. Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera

    PubMed Central

    Xue, Bai; Choi, Stacey S.; Doble, Nathan; Werner, John S.

    2008-01-01

    A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a montaging algorithm that joins retinal images with overlapping common features without edge effects and (2) a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy of the cone density measurement algorithm is high, with >97% agreement for a simulated retinal image (of known density, with low contrast) and for AO images from normal eyes when compared with previously reported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore, useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt’s macular dystrophy and retinitis pigmentosa. PMID:17429482

  1. Falls event detection using triaxial accelerometry and barometric pressure measurement.

    PubMed

    Bianchi, Federico; Redmond, Stephen J; Narayanan, Michael R; Cerutti, Sergio; Celler, Branko G; Lovell, Nigel H

    2009-01-01

    A falls detection system, employing a Bluetooth-based wearable device, containing a triaxial accelerometer and a barometric pressure sensor, is described. The aim of this study is to evaluate the use of barometric pressure measurement, as a surrogate measure of altitude, to augment previously reported accelerometry-based falls detection algorithms. The accelerometry and barometric pressure signals obtained from the waist-mounted device are analyzed by a signal processing and classification algorithm to discriminate falls from activities of daily living. This falls detection algorithm has been compared to two existing algorithms which utilize accelerometry signals alone. A set of laboratory-based simulated falls, along with other tasks associated with activities of daily living (16 tests) were performed by 15 healthy volunteers (9 male and 6 female; age: 23.7 +/- 2.9 years; height: 1.74 +/- 0.11 m). The algorithm incorporating pressure information detected falls with the highest sensitivity (97.8%) and the highest specificity (96.7%).

  2. Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera

    NASA Astrophysics Data System (ADS)

    Xue, Bai; Choi, Stacey S.; Doble, Nathan; Werner, John S.

    2007-05-01

    A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a montaging algorithm that joins retinal images with overlapping common features without edge effects and (2) a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy of the cone density measurement algorithm is high, with >97% agreement for a simulated retinal image (of known density, with low contrast) and for AO images from normal eyes when compared with previously reported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore, useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt's macular dystrophy and retinitis pigmentosa.

  3. A Doppler centroid estimation algorithm for SAR systems optimized for the quasi-homogeneous source

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1989-01-01

    Radar signal processing applications frequently require an estimate of the Doppler centroid of a received signal. The Doppler centroid estimate is required for synthetic aperture radar (SAR) processing. It is also required for some applications involving target motion estimation and antenna pointing direction estimation. In some cases, the Doppler centroid can be accurately estimated based on available information regarding the terrain topography, the relative motion between the sensor and the terrain, and the antenna pointing direction. Often, the accuracy of the Doppler centroid estimate can be improved by analyzing the characteristics of the received SAR signal. This kind of signal processing is also referred to as clutterlock processing. A Doppler centroid estimation (DCE) algorithm is described which contains a linear estimator optimized for the type of terrain surface that can be modeled by a quasi-homogeneous source (QHS). Information on the following topics is presented: (1) an introduction to the theory of Doppler centroid estimation; (2) analysis of the performance characteristics of previously reported DCE algorithms; (3) comparison of these analysis results with experimental results; (4) a description and performance analysis of a Doppler centroid estimator which is optimized for a QHS; and (5) comparison of the performance of the optimal QHS Doppler centroid estimator with that of previously reported methods.

  4. Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer.

    PubMed

    Setia, Kanav; Whitfield, James D

    2018-04-28

    Present quantum computers often work with distinguishable qubits as their computational units. In order to simulate indistinguishable fermionic particles, it is first required to map the fermionic state to the state of the qubits. The Bravyi-Kitaev Superfast (BKSF) algorithm can be used to accomplish this mapping. The BKSF mapping has connections to quantum error correction and opens the door to new ways of understanding fermionic simulation in a topological context. Here, we present the first detailed exposition of the BKSF algorithm for molecular simulation. We provide the BKSF transformed qubit operators and report on our implementation of the BKSF fermion-to-qubits transform in OpenFermion. In this initial study of a hydrogen molecule we have compared BKSF, Jordan-Wigner, and Bravyi-Kitaev transforms under the Trotter approximation. The gate count to implement BKSF is lower than Jordan-Wigner but higher than Bravyi-Kitaev. We considered different orderings of the exponentiated terms and found lower Trotter errors than the previously reported for Jordan-Wigner and Bravyi-Kitaev algorithms. These results open the door to the further study of the BKSF algorithm for quantum simulation.

  5. Greedy Algorithms for Nonnegativity-Constrained Simultaneous Sparse Recovery

    PubMed Central

    Kim, Daeun; Haldar, Justin P.

    2016-01-01

    This work proposes a family of greedy algorithms to jointly reconstruct a set of vectors that are (i) nonnegative and (ii) simultaneously sparse with a shared support set. The proposed algorithms generalize previous approaches that were designed to impose these constraints individually. Similar to previous greedy algorithms for sparse recovery, the proposed algorithms iteratively identify promising support indices. In contrast to previous approaches, the support index selection procedure has been adapted to prioritize indices that are consistent with both the nonnegativity and shared support constraints. Empirical results demonstrate for the first time that the combined use of simultaneous sparsity and nonnegativity constraints can substantially improve recovery performance relative to existing greedy algorithms that impose less signal structure. PMID:26973368

  6. Trust index based fault tolerant multiple event localization algorithm for WSNs.

    PubMed

    Xu, Xianghua; Gao, Xueyong; Wan, Jian; Xiong, Naixue

    2011-01-01

    This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms.

  7. Trust Index Based Fault Tolerant Multiple Event Localization Algorithm for WSNs

    PubMed Central

    Xu, Xianghua; Gao, Xueyong; Wan, Jian; Xiong, Naixue

    2011-01-01

    This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms. PMID:22163972

  8. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging.

    PubMed

    Jiang, J; Hall, T J

    2007-07-07

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s(-1)) that exceed our previous methods.

  9. Space Shuttle propulsion parameter estimation using optimal estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This fourth monthly progress report again contains corrections and additions to the previously submitted reports. The additions include a simplified SRB model that is directly incorporated into the estimation algorithm and provides the required partial derivatives. The resulting partial derivatives are analytical rather than numerical as would be the case using the SOBER routines. The filter and smoother routine developments have continued. These routines are being checked out.

  10. Automated neurovascular tracing and analysis of the knife-edge scanning microscope Rat Nissl data set using a computing cluster.

    PubMed

    Sungjun Lim; Nowak, Michael R; Yoonsuck Choe

    2016-08-01

    We present a novel, parallelizable algorithm capable of automatically reconstructing and calculating anatomical statistics of cerebral vascular networks embedded in large volumes of Rat Nissl-stained data. In this paper, we report the results of our method using Rattus somatosensory cortical data acquired using Knife-Edge Scanning Microscopy. Our algorithm performs the reconstruction task with averaged precision, recall, and F2-score of 0.978, 0.892, and 0.902 respectively. Calculated anatomical statistics show some conformance to values previously reported. The results that can be obtained from our method are expected to help explicate the relationship between the structural organization of the microcirculation and normal (and abnormal) cerebral functioning.

  11. A homotopy algorithm for digital optimal projection control GASD-HADOC

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.

    1993-01-01

    The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.

  12. Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip.

    PubMed

    Paesani, S; Gentile, A A; Santagati, R; Wang, J; Wiebe, N; Tew, D P; O'Brien, J L; Thompson, M G

    2017-03-10

    Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shor's factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability for near-term, nonfault tolerant, quantum devices. Here we report experimental results demonstrating that this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum phase estimation and use it to simulate molecular energies on a silicon quantum photonic device. The approach is verified to be well suited for prethreshold quantum processors by investigating its superior robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a promising route to unlock the power of quantum phase estimation much sooner than previously believed.

  13. Coevolving memetic algorithms: a review and progress report.

    PubMed

    Smith, Jim E

    2007-02-01

    Coevolving memetic algorithms are a family of metaheuristic search algorithms in which a rule-based representation of local search (LS) is coadapted alongside candidate solutions within a hybrid evolutionary system. Simple versions of these systems have been shown to outperform other nonadaptive memetic and evolutionary algorithms on a range of problems. This paper presents a rationale for such systems and places them in the context of other recent work on adaptive memetic algorithms. It then proposes a general structure within which a population of LS algorithms can be evolved in tandem with the solutions to which they are applied. Previous research started with a simple self-adaptive system before moving on to more complex models. Results showed that the algorithm was able to discover and exploit certain forms of structure and regularities within the problems. This "metalearning" of problem features provided a means of creating highly scalable algorithms. This work is briefly reviewed to highlight some of the important findings and behaviors exhibited. Based on this analysis, new results are then presented from systems with more flexible representations, which, again, show significant improvements. Finally, the current state of, and future directions for, research in this area is discussed.

  14. Improving the efficiency of a user-driven learning system with reconfigurable hardware. Application to DNA splicing.

    PubMed

    Lemoine, E; Merceron, D; Sallantin, J; Nguifo, E M

    1999-01-01

    This paper describes a new approach to problem solving by splitting up problem component parts between software and hardware. Our main idea arises from the combination of two previously published works. The first one proposed a conceptual environment of concept modelling in which the machine and the human expert interact. The second one reported an algorithm based on reconfigurable hardware system which outperforms any kind of previously published genetic data base scanning hardware or algorithms. Here we show how efficient the interaction between the machine and the expert is when the concept modelling is based on reconfigurable hardware system. Their cooperation is thus achieved with an real time interaction speed. The designed system has been partially applied to the recognition of primate splice junctions sites in genetic sequences.

  15. Case reports to suggest an algorithm for management of total fertilisation failure prior to use of donor gametes.

    PubMed

    Nicopoullos, James D M; Whitney, E; Wells, V; Batha, S; Faris, R; Abdalla, H

    2015-11-01

    Total fertilisation failure (TFF), even with intracytoplasmic sperm injection (ICSI), occurs in approximately 3 % of cycles, can be recurrent and the exact cause is difficult to elucidate. Differentiation between oocyte and sperm-related cause of TFF is possible using mouse oocyte-activation techniques, but is not an option within most clinical settings. Therefore, the management of these couples is clinically driven, and the endpoint, if recurrent, is often the use of donor gametes. However, with the invariable lack of a definitive cause of TFF, any decision between the use of donor sperm or oocytes remains an emotive one. We present two case reports demonstrating the importance of appropriate investigation, activation techniques (mechanical and chemical) and clinical management options to develop a clinical algorithm prior to the use of donor gametes. This study is composed of two case reports of assisted reproduction investigation and treatment within an assisted conception unit for couples with recurrent total fertilisation failure. Using appropriate investigation (endocrine, urological and embryological) and treatments (ICSI, IMSI, oocyte-activation techniques), a fertilisation rate of 48 % was achieved in two cycles in couples following a total of nine previous cycles (and 200 previously collected eggs) with TFF. Oocyte activation requires the triggering of intracellular calcium oscillations by the release of a sperm-specific factor (phospholipase C zeta (PLCζ)) into the oocyte cytoplasm. Although, PLCζ deficiencies have been demonstrated as putative causes of failed activation, impaired oocyte responsiveness may also be a factor. The use of donor gametes is often recommended and is often the required endpoint of treatment. However, these reports outline a clinical algorithm that potentially offers success without donation, and also offers a systematic approach to help decide whether donor oocytes or sperm should be recommended.

  16. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    PubMed

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  17. Automated spike sorting algorithm based on Laplacian eigenmaps and k-means clustering.

    PubMed

    Chah, E; Hok, V; Della-Chiesa, A; Miller, J J H; O'Mara, S M; Reilly, R B

    2011-02-01

    This study presents a new automatic spike sorting method based on feature extraction by Laplacian eigenmaps combined with k-means clustering. The performance of the proposed method was compared against previously reported algorithms such as principal component analysis (PCA) and amplitude-based feature extraction. Two types of classifier (namely k-means and classification expectation-maximization) were incorporated within the spike sorting algorithms, in order to find a suitable classifier for the feature sets. Simulated data sets and in-vivo tetrode multichannel recordings were employed to assess the performance of the spike sorting algorithms. The results show that the proposed algorithm yields significantly improved performance with mean sorting accuracy of 73% and sorting error of 10% compared to PCA which combined with k-means had a sorting accuracy of 58% and sorting error of 10%.A correction was made to this article on 22 February 2011. The spacing of the title was amended on the abstract page. No changes were made to the article PDF and the print version was unaffected.

  18. Community-based benchmarking improves spike rate inference from two-photon calcium imaging data.

    PubMed

    Berens, Philipp; Freeman, Jeremy; Deneux, Thomas; Chenkov, Nikolay; McColgan, Thomas; Speiser, Artur; Macke, Jakob H; Turaga, Srinivas C; Mineault, Patrick; Rupprecht, Peter; Gerhard, Stephan; Friedrich, Rainer W; Friedrich, Johannes; Paninski, Liam; Pachitariu, Marius; Harris, Kenneth D; Bolte, Ben; Machado, Timothy A; Ringach, Dario; Stone, Jasmine; Rogerson, Luke E; Sofroniew, Nicolas J; Reimer, Jacob; Froudarakis, Emmanouil; Euler, Thomas; Román Rosón, Miroslav; Theis, Lucas; Tolias, Andreas S; Bethge, Matthias

    2018-05-01

    In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike rate inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.

  19. User Guide for Compressible Flow Toolbox Version 2.1 for Use With MATLAB(Registered Trademark); Version 7

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.

  20. Parameter optimization of electrochemical machining process using black hole algorithm

    NASA Astrophysics Data System (ADS)

    Singh, Dinesh; Shukla, Rajkamal

    2017-12-01

    Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.

  1. A histogram-free multicanonical Monte Carlo algorithm for the construction of analytical density of states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenbach, Markus; Li, Ying Wai

    We report a new multicanonical Monte Carlo (MC) algorithm to obtain the density of states (DOS) for physical systems with continuous state variables in statistical mechanics. Our algorithm is able to obtain an analytical form for the DOS expressed in a chosen basis set, instead of a numerical array of finite resolution as in previous variants of this class of MC methods such as the multicanonical (MUCA) sampling and Wang-Landau (WL) sampling. This is enabled by storing the visited states directly in a data set and avoiding the explicit collection of a histogram. This practice also has the advantage ofmore » avoiding undesirable artificial errors caused by the discretization and binning of continuous state variables. Our results show that this scheme is capable of obtaining converged results with a much reduced number of Monte Carlo steps, leading to a significant speedup over existing algorithms.« less

  2. Harmony search algorithm: application to the redundancy optimization problem

    NASA Astrophysics Data System (ADS)

    Nahas, Nabil; Thien-My, Dao

    2010-09-01

    The redundancy optimization problem is a well known NP-hard problem which involves the selection of elements and redundancy levels to maximize system performance, given different system-level constraints. This article presents an efficient algorithm based on the harmony search algorithm (HSA) to solve this optimization problem. The HSA is a new nature-inspired algorithm which mimics the improvization process of music players. Two kinds of problems are considered in testing the proposed algorithm, with the first limited to the binary series-parallel system, where the problem consists of a selection of elements and redundancy levels used to maximize the system reliability given various system-level constraints; the second problem for its part concerns the multi-state series-parallel systems with performance levels ranging from perfect operation to complete failure, and in which identical redundant elements are included in order to achieve a desirable level of availability. Numerical results for test problems from previous research are reported and compared. The results of HSA showed that this algorithm could provide very good solutions when compared to those obtained through other approaches.

  3. Robust rotational-velocity-Verlet integration methods.

    PubMed

    Rozmanov, Dmitri; Kusalik, Peter G

    2010-05-01

    Two rotational integration algorithms for rigid-body dynamics are proposed in velocity-Verlet formulation. The first method uses quaternion dynamics and was derived from the original rotational leap-frog method by Svanberg [Mol. Phys. 92, 1085 (1997)]; it produces time consistent positions and momenta. The second method is also formulated in terms of quaternions but it is not quaternion specific and can be easily adapted for any other orientational representation. Both the methods are tested extensively and compared to existing rotational integrators. The proposed integrators demonstrated performance at least at the level of previously reported rotational algorithms. The choice of simulation parameters is also discussed.

  4. Robust rotational-velocity-Verlet integration methods

    NASA Astrophysics Data System (ADS)

    Rozmanov, Dmitri; Kusalik, Peter G.

    2010-05-01

    Two rotational integration algorithms for rigid-body dynamics are proposed in velocity-Verlet formulation. The first method uses quaternion dynamics and was derived from the original rotational leap-frog method by Svanberg [Mol. Phys. 92, 1085 (1997)]; it produces time consistent positions and momenta. The second method is also formulated in terms of quaternions but it is not quaternion specific and can be easily adapted for any other orientational representation. Both the methods are tested extensively and compared to existing rotational integrators. The proposed integrators demonstrated performance at least at the level of previously reported rotational algorithms. The choice of simulation parameters is also discussed.

  5. Relation Between Estimated Cardiorespiratory Fitness and Atrial Fibrillation (from the Reasons for Geographic and Racial Differences in Stroke Study).

    PubMed

    Bose, Abhishek; O'Neal, Wesley T; Bennett, Aleena; Judd, Suzanne E; Qureshi, Waqas T; Sui, Xuemei; Howard, Virginia J; Howard, George; Soliman, Elsayed Z

    2017-06-01

    Estimated cardiorespiratory fitness (e-CRF) based on readily available clinical and self-reported data is a promising alternative to the costly traditional assessment of CRF using exercise equipment, but its role as a predictor for incident atrial fibrillation (AF) is unclear. This study included 10,126 participants (54.5% women, 35% African-American, mean age 63.2 years) from the Reasons for Geographic and Racial Differences in Stroke study who were free of AF at baseline. Baseline (2003 to 2007) e-CRF was determined using a previously validated nonexercise algorithm. Incident AF cases were identified at a follow-up examination by electrocardiogram and self-reported medical history of previous physician diagnosis. After a median follow-up of 9.4 years, 906 participants (8.9%) developed AF. In a multivariable logistic regression model adjusted for sociodemographics and baseline cardiovascular disease risk factors as well as incident coronary heart disease, heart failure, and stroke, each 1-metabolic equivalent of task increase in e-CRF was associated with a 5% lower risk of AF development (odds ratio [95% CI] 0.95 [0.92 to 0.99]; p = 0.0129). This association was stronger in women (OR [95% CI] 0.85 (0.79, 0.92) than in men (OR (95% CI) 0.88 (0.84, 0.93), interaction p value = 0.05. No significant interactions by age, race, history of cardiovascular disease, or physical limitations were observed. In conclusion, e-CRF using a nonexercise algorithm is a useful predictor of incident AF, which is consistent with previous reports using traditional CRF. This suggests that e-CRF using nonexercise algorithms may serve as a useful alternative to CRF measured by costly and time-consuming exercise testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A Nonlinear, Human-Centered Approach to Motion Cueing with a Neurocomputing Solver

    NASA Technical Reports Server (NTRS)

    Telban, Robert J.; Cardullo, Frank M.; Houck, Jacob A.

    2002-01-01

    This paper discusses the continuation of research into the development of new motion cueing algorithms first reported in 1999. In this earlier work, two viable approaches to motion cueing were identified: the coordinated adaptive washout algorithm or 'adaptive algorithm', and the 'optimal algorithm'. In this study, a novel approach to motion cueing is discussed that would combine features of both algorithms. The new algorithm is formulated as a linear optimal control problem, incorporating improved vestibular models and an integrated visual-vestibular motion perception model previously reported. A control law is generated from the motion platform states, resulting in a set of nonlinear cueing filters. The time-varying control law requires the matrix Riccati equation to be solved in real time. Therefore, in order to meet the real time requirement, a neurocomputing approach is used to solve this computationally challenging problem. Single degree-of-freedom responses for the nonlinear algorithm were generated and compared to the adaptive and optimal algorithms. Results for the heave mode show the nonlinear algorithm producing a motion cue with a time-varying washout, sustaining small cues for a longer duration and washing out larger cues more quickly. The addition of the optokinetic influence from the integrated perception model was shown to improve the response to a surge input, producing a specific force response with no steady-state washout. Improved cues are also observed for responses to a sway input. Yaw mode responses reveal that the nonlinear algorithm improves the motion cues by reducing the magnitude of negative cues. The effectiveness of the nonlinear algorithm as compared to the adaptive and linear optimal algorithms will be evaluated on a motion platform, the NASA Langley Research Center Visual Motion Simulator (VMS), and ultimately the Cockpit Motion Facility (CMF) with a series of pilot controlled maneuvers. A proposed experimental procedure is discussed. The results of this evaluation will be used to assess motion cueing performance.

  7. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Hall, T. J.

    2007-07-01

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows® system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s-1) that exceed our previous methods.

  8. Crisis management during anaesthesia: the development of an anaesthetic crisis management manual

    PubMed Central

    Runciman, W; Kluger, M; Morris, R; Paix, A; Watterson, L; Webb, R

    2005-01-01

    Background: All anaesthetists have to handle life threatening crises with little or no warning. However, some cognitive strategies and work practices that are appropriate for speed and efficiency under normal circumstances may become maladaptive in a crisis. It was judged in a previous study that the use of a structured "core" algorithm (based on the mnemonic COVER ABCD–A SWIFT CHECK) would diagnose and correct the problem in 60% of cases and provide a functional diagnosis in virtually all of the remaining 40%. It was recommended that specific sub-algorithms be developed for managing the problems underlying the remaining 40% of crises and assembled in an easy-to-use manual. Sub-algorithms were therefore developed for these problems so that they could be checked for applicability and validity against the first 4000 anaesthesia incidents reported to the Australian Incident Monitoring Study (AIMS). Methods: The need for 24 specific sub-algorithms was identified. Teams of practising anaesthetists were assembled and sets of incidents relevant to each sub-algorithm were identified from the first 4000 reported to AIMS. Based largely on successful strategies identified in these reports, a set of 24 specific sub-algorithms was developed for trial against the 4000 AIMS reports and assembled into an easy-to-use manual. A process was developed for applying each component of the core algorithm COVER at one of four levels (scan-check-alert/ready-emergency) according to the degree of perceived urgency, and incorporated into the manual. The manual was disseminated at a World Congress and feedback was obtained. Results: Each of the 24 specific crisis management sub-algorithms was tested against the relevant incidents among the first 4000 reported to AIMS and compared with the actual management by the anaesthetist at the time. It was judged that, if the core algorithm had been correctly applied, the appropriate sub-algorithm would have been resolved better and/or faster in one in eight of all incidents, and would have been unlikely to have caused harm to any patient. The descriptions of the validation of each of the 24 sub-algorithms constitute the remaining 24 papers in this set. Feedback from five meetings each attended by 60–100 anaesthetists was then collated and is included. Conclusion: The 24 sub-algorithms developed form the basis for developing a rational evidence-based approach to crisis management during anaesthesia. The COVER component has been found to be satisfactory in real life resuscitation situations and the sub-algorithms have been used successfully for several years. It would now be desirable for carefully designed simulator based studies, using naive trainees at the start of their training, to systematically examine the merits and demerits of various aspects of the sub-algorithms. It would seem prudent that these sub-algorithms be regarded, for the moment, as decision aids to support and back up clinicians' natural responses to a crisis when all is not progressing as expected. PMID:15933282

  9. Crisis management during anaesthesia: the development of an anaesthetic crisis management manual.

    PubMed

    Runciman, W B; Kluger, M T; Morris, R W; Paix, A D; Watterson, L M; Webb, R K

    2005-06-01

    All anaesthetists have to handle life threatening crises with little or no warning. However, some cognitive strategies and work practices that are appropriate for speed and efficiency under normal circumstances may become maladaptive in a crisis. It was judged in a previous study that the use of a structured "core" algorithm (based on the mnemonic COVER ABCD-A SWIFT CHECK) would diagnose and correct the problem in 60% of cases and provide a functional diagnosis in virtually all of the remaining 40%. It was recommended that specific sub-algorithms be developed for managing the problems underlying the remaining 40% of crises and assembled in an easy-to-use manual. Sub-algorithms were therefore developed for these problems so that they could be checked for applicability and validity against the first 4000 anaesthesia incidents reported to the Australian Incident Monitoring Study (AIMS). The need for 24 specific sub-algorithms was identified. Teams of practising anaesthetists were assembled and sets of incidents relevant to each sub-algorithm were identified from the first 4000 reported to AIMS. Based largely on successful strategies identified in these reports, a set of 24 specific sub-algorithms was developed for trial against the 4000 AIMS reports and assembled into an easy-to-use manual. A process was developed for applying each component of the core algorithm COVER at one of four levels (scan-check-alert/ready-emergency) according to the degree of perceived urgency, and incorporated into the manual. The manual was disseminated at a World Congress and feedback was obtained. Each of the 24 specific crisis management sub-algorithms was tested against the relevant incidents among the first 4000 reported to AIMS and compared with the actual management by the anaesthetist at the time. It was judged that, if the core algorithm had been correctly applied, the appropriate sub-algorithm would have been resolved better and/or faster in one in eight of all incidents, and would have been unlikely to have caused harm to any patient. The descriptions of the validation of each of the 24 sub-algorithms constitute the remaining 24 papers in this set. Feedback from five meetings each attended by 60-100 anaesthetists was then collated and is included. The 24 sub-algorithms developed form the basis for developing a rational evidence-based approach to crisis management during anaesthesia. The COVER component has been found to be satisfactory in real life resuscitation situations and the sub-algorithms have been used successfully for several years. It would now be desirable for carefully designed simulator based studies, using naive trainees at the start of their training, to systematically examine the merits and demerits of various aspects of the sub-algorithms. It would seem prudent that these sub-algorithms be regarded, for the moment, as decision aids to support and back up clinicians' natural responses to a crisis when all is not progressing as expected.

  10. Sensitivity of NTCP parameter values against a change of dose calculation algorithm.

    PubMed

    Brink, Carsten; Berg, Martin; Nielsen, Morten

    2007-09-01

    Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis with those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models.

  11. Sensitivity of NTCP parameter values against a change of dose calculation algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brink, Carsten; Berg, Martin; Nielsen, Morten

    2007-09-15

    Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis withmore » those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models.« less

  12. Detection of QT prolongation using a novel electrocardiographic analysis algorithm applying intelligent automation: prospective blinded evaluation using the Cardiac Safety Research Consortium electrocardiographic database.

    PubMed

    Green, Cynthia L; Kligfield, Paul; George, Samuel; Gussak, Ihor; Vajdic, Branislav; Sager, Philip; Krucoff, Mitchell W

    2012-03-01

    The Cardiac Safety Research Consortium (CSRC) provides both "learning" and blinded "testing" digital electrocardiographic (ECG) data sets from thorough QT (TQT) studies annotated for submission to the US Food and Drug Administration (FDA) to developers of ECG analysis technologies. This article reports the first results from a blinded testing data set that examines developer reanalysis of original sponsor-reported core laboratory data. A total of 11,925 anonymized ECGs including both moxifloxacin and placebo arms of a parallel-group TQT in 181 subjects were blindly analyzed using a novel ECG analysis algorithm applying intelligent automation. Developer-measured ECG intervals were submitted to CSRC for unblinding, temporal reconstruction of the TQT exposures, and statistical comparison to core laboratory findings previously submitted to FDA by the pharmaceutical sponsor. Primary comparisons included baseline-adjusted interval measurements, baseline- and placebo-adjusted moxifloxacin QTcF changes (ddQTcF), and associated variability measures. Developer and sponsor-reported baseline-adjusted data were similar with average differences <1 ms for all intervals. Both developer- and sponsor-reported data demonstrated assay sensitivity with similar ddQTcF changes. Average within-subject SD for triplicate QTcF measurements was significantly lower for developer- than sponsor-reported data (5.4 and 7.2 ms, respectively; P < .001). The virtually automated ECG algorithm used for this analysis produced similar yet less variable TQT results compared with the sponsor-reported study, without the use of a manual core laboratory. These findings indicate that CSRC ECG data sets can be useful for evaluating novel methods and algorithms for determining drug-induced QT/QTc prolongation. Although the results should not constitute endorsement of specific algorithms by either CSRC or FDA, the value of a public domain digital ECG warehouse to provide prospective, blinded comparisons of ECG technologies applied for QT/QTc measurement is illustrated. Copyright © 2012 Mosby, Inc. All rights reserved.

  13. Detection of QT prolongation using a novel ECG analysis algorithm applying intelligent automation: Prospective blinded evaluation using the Cardiac Safety Research Consortium ECG database

    PubMed Central

    Green, Cynthia L.; Kligfield, Paul; George, Samuel; Gussak, Ihor; Vajdic, Branislav; Sager, Philip; Krucoff, Mitchell W.

    2013-01-01

    Background The Cardiac Safety Research Consortium (CSRC) provides both “learning” and blinded “testing” digital ECG datasets from thorough QT (TQT) studies annotated for submission to the US Food and Drug Administration (FDA) to developers of ECG analysis technologies. This manuscript reports the first results from a blinded “testing” dataset that examines Developer re-analysis of original Sponsor-reported core laboratory data. Methods 11,925 anonymized ECGs including both moxifloxacin and placebo arms of a parallel-group TQT in 191 subjects were blindly analyzed using a novel ECG analysis algorithm applying intelligent automation. Developer measured ECG intervals were submitted to CSRC for unblinding, temporal reconstruction of the TQT exposures, and statistical comparison to core laboratory findings previously submitted to FDA by the pharmaceutical sponsor. Primary comparisons included baseline-adjusted interval measurements, baseline- and placebo-adjusted moxifloxacin QTcF changes (ddQTcF), and associated variability measures. Results Developer and Sponsor-reported baseline-adjusted data were similar with average differences less than 1 millisecond (ms) for all intervals. Both Developer and Sponsor-reported data demonstrated assay sensitivity with similar ddQTcF changes. Average within-subject standard deviation for triplicate QTcF measurements was significantly lower for Developer than Sponsor-reported data (5.4 ms and 7.2 ms, respectively; p<0.001). Conclusion The virtually automated ECG algorithm used for this analysis produced similar yet less variable TQT results compared to the Sponsor-reported study, without the use of a manual core laboratory. These findings indicate CSRC ECG datasets can be useful for evaluating novel methods and algorithms for determining QT/QTc prolongation by drugs. While the results should not constitute endorsement of specific algorithms by either CSRC or FDA, the value of a public domain digital ECG warehouse to provide prospective, blinded comparisons of ECG technologies applied for QT/QTc measurement is illustrated. PMID:22424006

  14. Adaptive-weighted Total Variation Minimization for Sparse Data toward Low-dose X-ray Computed Tomography Image Reconstruction

    PubMed Central

    Liu, Yan; Ma, Jianhua; Fan, Yi; Liang, Zhengrong

    2012-01-01

    Previous studies have shown that by minimizing the total variation (TV) of the to-be-estimated image with some data and other constraints, a piecewise-smooth X-ray computed tomography (CT) can be reconstructed from sparse-view projection data without introducing noticeable artifacts. However, due to the piecewise constant assumption for the image, a conventional TV minimization algorithm often suffers from over-smoothness on the edges of the resulting image. To mitigate this drawback, we present an adaptive-weighted TV (AwTV) minimization algorithm in this paper. The presented AwTV model is derived by considering the anisotropic edge property among neighboring image voxels, where the associated weights are expressed as an exponential function and can be adaptively adjusted by the local image-intensity gradient for the purpose of preserving the edge details. Inspired by the previously-reported TV-POCS (projection onto convex sets) implementation, a similar AwTV-POCS implementation was developed to minimize the AwTV subject to data and other constraints for the purpose of sparse-view low-dose CT image reconstruction. To evaluate the presented AwTV-POCS algorithm, both qualitative and quantitative studies were performed by computer simulations and phantom experiments. The results show that the presented AwTV-POCS algorithm can yield images with several noticeable gains, in terms of noise-resolution tradeoff plots and full width at half maximum values, as compared to the corresponding conventional TV-POCS algorithm. PMID:23154621

  15. Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction.

    PubMed

    Liu, Yan; Ma, Jianhua; Fan, Yi; Liang, Zhengrong

    2012-12-07

    Previous studies have shown that by minimizing the total variation (TV) of the to-be-estimated image with some data and other constraints, piecewise-smooth x-ray computed tomography (CT) can be reconstructed from sparse-view projection data without introducing notable artifacts. However, due to the piecewise constant assumption for the image, a conventional TV minimization algorithm often suffers from over-smoothness on the edges of the resulting image. To mitigate this drawback, we present an adaptive-weighted TV (AwTV) minimization algorithm in this paper. The presented AwTV model is derived by considering the anisotropic edge property among neighboring image voxels, where the associated weights are expressed as an exponential function and can be adaptively adjusted by the local image-intensity gradient for the purpose of preserving the edge details. Inspired by the previously reported TV-POCS (projection onto convex sets) implementation, a similar AwTV-POCS implementation was developed to minimize the AwTV subject to data and other constraints for the purpose of sparse-view low-dose CT image reconstruction. To evaluate the presented AwTV-POCS algorithm, both qualitative and quantitative studies were performed by computer simulations and phantom experiments. The results show that the presented AwTV-POCS algorithm can yield images with several notable gains, in terms of noise-resolution tradeoff plots and full-width at half-maximum values, as compared to the corresponding conventional TV-POCS algorithm.

  16. Full self-consistency in the Fermi-orbital self-interaction correction

    NASA Astrophysics Data System (ADS)

    Yang, Zeng-hui; Pederson, Mark R.; Perdew, John P.

    2017-05-01

    The Perdew-Zunger self-interaction correction cures many common problems associated with semilocal density functionals, but suffers from a size-extensivity problem when Kohn-Sham orbitals are used in the correction. Fermi-Löwdin-orbital self-interaction correction (FLOSIC) solves the size-extensivity problem, allowing its use in periodic systems and resulting in better accuracy in finite systems. Although the previously published FLOSIC algorithm Pederson et al., J. Chem. Phys. 140, 121103 (2014)., 10.1063/1.4869581 appears to work well in many cases, it is not fully self-consistent. This would be particularly problematic for systems where the occupied manifold is strongly changed by the correction. In this paper, we demonstrate a different algorithm for FLOSIC to achieve full self-consistency with only marginal increase of computational cost. The resulting total energies are found to be lower than previously reported non-self-consistent results.

  17. An Automated Method to Generate e-Learning Quizzes from Online Language Learner Writing

    ERIC Educational Resources Information Center

    Flanagan, Brendan; Yin, Chengjiu; Hirokawa, Sachio; Hashimoto, Kiyota; Tabata, Yoshiyuki

    2013-01-01

    In this paper, the entries of Lang-8, which is a Social Networking Site (SNS) site for learning and practicing foreign languages, were analyzed and found to contain similar rates of errors for most error categories reported in previous research. These similarly rated errors were then processed using an algorithm to determine corrections suggested…

  18. FT-mid-IR spectroscopic investigation of fiber maturity and crystallinity at single boll level and a comparison with XRD approach

    USDA-ARS?s Scientific Manuscript database

    In previous study, we have reported the development of simple algorithms for determining fiber maturity and crystallinity from Fourier transform (FT) -mid-infrared (IR) measurement. Due to its micro-sampling feature, we were able to assess the fiber maturity and crystallinity at different portions o...

  19. MiniBooNE Neutrino Physics at the University of Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancu, Ion

    2007-04-27

    This report summarizes the activities conducted by the UA group under the auspices of the DoE/EPSCoR grant number DE--FG02--04ER46112 since the date of the previous progress report, i.e., since November 2005. It also provides a final report of the accomplishments achieved during the entire period of this grant (February 2004 to January 2007). The grant has fully supported the work of Dr. Yong Liu (postdoctoral research assistant -- in residence at Fermilab) on the MiniBooNE reconstruction and particle identification (PID) algorithms.

  20. Multi-period project portfolio selection under risk considerations and stochastic income

    NASA Astrophysics Data System (ADS)

    Tofighian, Ali Asghar; Moezzi, Hamid; Khakzar Barfuei, Morteza; Shafiee, Mahmood

    2018-02-01

    This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, considering risks, stochastic incomes, and possibility of investing extra budget in each time period. Due to the complexity of the problem, an effective meta-heuristic method hybridized with a local search procedure is presented to solve the problem. The algorithm is based on genetic algorithm (GA), which is a prominent method to solve this type of problems. The GA is enhanced by a new solution representation and well selected operators. It also is hybridized with a local search mechanism to gain better solution in shorter time. The performance of the proposed algorithm is then compared with well-known algorithms, like basic genetic algorithm (GA), particle swarm optimization (PSO), and electromagnetism-like algorithm (EM-like) by means of some prominent indicators. The computation results show the superiority of the proposed algorithm in terms of accuracy, robustness and computation time. At last, the proposed algorithm is wisely combined with PSO to improve the computing time considerably.

  1. Dependence of Adaptive Cross-correlation Algorithm Performance on the Extended Scene Image Quality

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2008-01-01

    Recently, we reported an adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels between two extended-scene sub-images captured by a Shack-Hartmann wavefront sensor. It determines the positions of all extended-scene image cells relative to a reference cell in the same frame using an FFT-based iterative image-shifting algorithm. It works with both point-source spot images as well as extended scene images. We have demonstrated previously based on some measured images that the ACC algorithm can determine image shifts with as high an accuracy as 0.01 pixel for shifts as large 3 pixels, and yield similar results for both point source spot images and extended scene images. The shift estimate accuracy of the ACC algorithm depends on illumination level, background, and scene content in addition to the amount of the shift between two image cells. In this paper we investigate how the performance of the ACC algorithm depends on the quality and the frequency content of extended scene images captured by a Shack-Hatmann camera. We also compare the performance of the ACC algorithm with those of several other approaches, and introduce a failsafe criterion for the ACC algorithm-based extended scene Shack-Hatmann sensors.

  2. Innovative signal processing for Johnson Noise thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezell, N. Dianne Bull; Britton, Jr, Charles L.; Roberts, Michael

    This report summarizes the newly developed algorithm that subtracted the Electromagnetic Interference (EMI). The EMI performance is very important to this measurement because any interference in the form on pickup from external signal sources from such as fluorescent lighting ballasts, motors, etc. can skew the measurement. Two methods of removing EMI were developed and tested at various locations. This report also summarizes the testing performed at different facilities outside Oak Ridge National Laboratory using both EMI removal techniques. The first EMI removal technique reviewed in previous milestone reports and therefore this report will detail the second method.

  3. Comparison of trend analyses for Umkehr data using new and previous inversion algorithms

    NASA Technical Reports Server (NTRS)

    Reinsel, Gregory C.; Tam, Wing-Kuen; Ying, Lisa H.

    1994-01-01

    Ozone vertical profile Umkehr data for layers 3-9 obtained from 12 stations, using both previous and new inversion algorithms, were analyzed for trends. The trends estimated for the Umkehr data from the two algorithms were compared using two data periods, 1968-1991 and 1977-1991. Both nonseasonal and seasonal trend models were fitted. The overall annual trends are found to be significantly negative, of the order of -5% per decade, for layers 7 and 8 using both inversion algorithms. The largest negative trends occur in these layers under the new algorithm, whereas in the previous algorithm the most negative trend occurs in layer 9. The trend estimates, both annual and seasonal, are substantially different between the two algorithms mainly for layers 3, 4, and 9, where trends from the new algorithm data are about 2% per decade less negative, with less appreciable differences in layers 7 and 8. The trend results from the two data periods are similar, except for layer 3 where trends become more negative, by about -2% per decade, for 1977-1991.

  4. A comparison of kinematic algorithms to estimate gait events during overground running.

    PubMed

    Smith, Laura; Preece, Stephen; Mason, Duncan; Bramah, Christopher

    2015-01-01

    The gait cycle is frequently divided into two distinct phases, stance and swing, which can be accurately determined from ground reaction force data. In the absence of such data, kinematic algorithms can be used to estimate footstrike and toe-off. The performance of previously published algorithms is not consistent between studies. Furthermore, previous algorithms have not been tested at higher running speeds nor used to estimate ground contact times. Therefore the purpose of this study was to both develop a new, custom-designed, event detection algorithm and compare its performance with four previously tested algorithms at higher running speeds. Kinematic and force data were collected on twenty runners during overground running at 5.6m/s. The five algorithms were then implemented and estimated times for footstrike, toe-off and contact time were compared to ground reaction force data. There were large differences in the performance of each algorithm. The custom-designed algorithm provided the most accurate estimation of footstrike (True Error 1.2 ± 17.1 ms) and contact time (True Error 3.5 ± 18.2 ms). Compared to the other tested algorithms, the custom-designed algorithm provided an accurate estimation of footstrike and toe-off across different footstrike patterns. The custom-designed algorithm provides a simple but effective method to accurately estimate footstrike, toe-off and contact time from kinematic data. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Detections of Propellers in Saturn's Rings using Machine Learning: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Gordon, Mitchell K.; Showalter, Mark R.; Odess, Jennifer; Del Villar, Ambi; LaMora, Andy; Paik, Jin; Lakhani, Karim; Sergeev, Rinat; Erickson, Kristen; Galica, Carol; Grayzeck, Edwin; Morgan, Thomas; Knopf, William

    2015-11-01

    We report on the initial analysis of the output of a tool designed to identify persistent, non-axisymmetric features in the rings of Saturn. This project introduces a new paradigm for scientific software development. The preliminary results include what appear to be new detections of propellers in the rings of Saturn.The Planetary Data System (PDS), working with the NASA Tournament Lab (NTL), Crowd Innovation Lab at Harvard University, and the Topcoder community at Appirio, Inc., under the umbrella “Cassini Rings Challenge”, sponsored a set of competitions employing crowd sourcing and machine learning to develop a tool which could be made available to the community at large. The Challenge was tackled by running a series of separate contests to solve individual tasks prior to the major machine learning challenge. Each contest was comprised of a set of requirements, a timeline, one or more prizes, and other incentives, and was posted by Appirio to the Topcoder Community. In the case of the machine learning challenge (a “Marathon Challenge” on the Topcoder platform), members competed against each other by submitting solutions that were scored in real time and posted to a public leader-board by a scoring algorithm developed by Appirio for this contest.The current version of the algorithm was run against ~30,000 of the highest resolution Cassini ISS images. That set included 668 images with a total of 786 features previously identified as propellers in the main rings. The tool identified 81% of those previously identified propellers. In a preliminary, close examination of 130 detections identified by the tool, we determined that of the 130 detections, 11 were previously identified propeller detections, 5 appear to be new detections of known propellers, and 4 appear to be detections of propellers which have not been seen previously. A total of 20 valid detections from 130 candidates implies a relatively high false positive rate which we hope to reduce by further algorithm development. The machine learning aspect of the algorithm means that as our set of verified detections increases so does the pool of “ground-truth” data used to train the algorithm for future use.

  6. Current Performance Characteristics of NASA Langley Research Center's Cockpit Motion Base and Standardized Test Procedure for Future Performance Characterization

    NASA Technical Reports Server (NTRS)

    Cowen, Brandon; Stringer, Mary T.; Hutchinson, Brian K.; Davidson, Paul C.; Gupton, Lawrence E.

    2014-01-01

    This report documents the updated performance characteristics of NASA Langley Research Center's (LaRC) Cockpit Motion Base (CMB) after recent revisions that were made to its inner-loop, feedback control law. The modifications to the control law will be briefly described. The performance of the Cockpit Motion Facility (CMF) will be presented. A short graphical comparison to the previous control law can be found in the appendix of this report. The revised controller will be shown to yield reduced parasitic accelerations with respect to the previous controller. Metrics based on the AGARD Advisory Report No. 144 are used to assess the overall system performance due to its recent control algorithm modification. This report also documents the standardized simulator test procedure which can be used in the future to evaluate potential updates to the control law.

  7. Novel linkage disequilibrium clustering algorithm identifies new lupus genes on meta-analysis of GWAS datasets.

    PubMed

    Saeed, Mohammad

    2017-05-01

    Systemic lupus erythematosus (SLE) is a complex disorder. Genetic association studies of complex disorders suffer from the following three major issues: phenotypic heterogeneity, false positive (type I error), and false negative (type II error) results. Hence, genes with low to moderate effects are missed in standard analyses, especially after statistical corrections. OASIS is a novel linkage disequilibrium clustering algorithm that can potentially address false positives and negatives in genome-wide association studies (GWAS) of complex disorders such as SLE. OASIS was applied to two SLE dbGAP GWAS datasets (6077 subjects; ∼0.75 million single-nucleotide polymorphisms). OASIS identified three known SLE genes viz. IFIH1, TNIP1, and CD44, not previously reported using these GWAS datasets. In addition, 22 novel loci for SLE were identified and the 5 SLE genes previously reported using these datasets were verified. OASIS methodology was validated using single-variant replication and gene-based analysis with GATES. This led to the verification of 60% of OASIS loci. New SLE genes that OASIS identified and were further verified include TNFAIP6, DNAJB3, TTF1, GRIN2B, MON2, LATS2, SNX6, RBFOX1, NCOA3, and CHAF1B. This study presents the OASIS algorithm, software, and the meta-analyses of two publicly available SLE GWAS datasets along with the novel SLE genes. Hence, OASIS is a novel linkage disequilibrium clustering method that can be universally applied to existing GWAS datasets for the identification of new genes.

  8. Vision-based guidance for an automated roving vehicle

    NASA Technical Reports Server (NTRS)

    Griffin, M. D.; Cunningham, R. T.; Eskenazi, R.

    1978-01-01

    A controller designed to guide an automated vehicle to a specified target without external intervention is described. The intended application is to the requirements of planetary exploration, where substantial autonomy is required because of the prohibitive time lags associated with closed-loop ground control. The guidance algorithm consists of a set of piecewise-linear control laws for velocity and steering commands, and is executable in real time with fixed-point arithmetic. The use of a previously-reported object tracking algorithm for the vision system to provide position feedback data is described. Test results of the control system on a breadboard rover at the Jet Propulsion Laboratory are included.

  9. Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks

    PubMed Central

    2011-01-01

    Background Network inference methods reconstruct mathematical models of molecular or genetic networks directly from experimental data sets. We have previously reported a mathematical method which is exclusively data-driven, does not involve any heuristic decisions within the reconstruction process, and deliveres all possible alternative minimal networks in terms of simple place/transition Petri nets that are consistent with a given discrete time series data set. Results We fundamentally extended the previously published algorithm to consider catalysis and inhibition of the reactions that occur in the underlying network. The results of the reconstruction algorithm are encoded in the form of an extended Petri net involving control arcs. This allows the consideration of processes involving mass flow and/or regulatory interactions. As a non-trivial test case, the phosphate regulatory network of enterobacteria was reconstructed using in silico-generated time-series data sets on wild-type and in silico mutants. Conclusions The new exact algorithm reconstructs extended Petri nets from time series data sets by finding all alternative minimal networks that are consistent with the data. It suggested alternative molecular mechanisms for certain reactions in the network. The algorithm is useful to combine data from wild-type and mutant cells and may potentially integrate physiological, biochemical, pharmacological, and genetic data in the form of a single model. PMID:21762503

  10. Using a Portfolio of Algorithms for Planning and Scheduling

    NASA Technical Reports Server (NTRS)

    Sherwood, Robert; Knight, Russell; Rabideau, Gregg; Chien, Steve; Tran, Daniel; Engelhardt, Barbara

    2003-01-01

    The Automated Scheduling and Planning Environment (ASPEN) software system, aspects of which have been reported in several previous NASA Tech Briefs articles, includes a subsystem that utilizes a portfolio of heuristic algorithms that work synergistically to solve problems. The nature of the synergy of the specific algorithms is that their likelihoods of success are negatively correlated: that is, when a combination of them is used to solve a problem, the probability that at least one of them will succeed is greater than the sum of probabilities of success of the individual algorithms operating independently of each other. In ASPEN, the portfolio of algorithms is used in a planning process of the iterative repair type, in which conflicts are detected and addressed one at a time until either no conflicts exist or a user-defined time limit has been exceeded. At each choice point (e.g., selection of conflict; selection of method of resolution of conflict; or choice of move, addition, or deletion) ASPEN makes a stochastic choice of a combination of algorithms from the portfolio. This approach makes it possible for the search to escape from looping and from solutions that are locally but not globally optimum.

  11. Algorithm for Simulating Atmospheric Turbulence and Aeroelastic Effects on Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Ercole, Anthony V.; Cardullo, Frank M.; Kelly, Lon C.; Houck, Jacob A.

    2012-01-01

    Atmospheric turbulence produces high frequency accelerations in aircraft, typically greater than the response to pilot input. Motion system equipped flight simulators must present cues representative of the aircraft response to turbulence in order to maintain the integrity of the simulation. Currently, turbulence motion cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. This report presents a new turbulence motion cueing algorithm, referred to as the augmented turbulence channel. Like the previous turbulence algorithms, the output of the channel only augments the vertical degree of freedom of motion. This algorithm employs a parallel aircraft model and an optional high bandwidth cueing filter. Simulation of aeroelastic effects is also an area where frequency content must be preserved by the cueing algorithm. The current aeroelastic implementation uses a similar secondary channel that supplements the primary motion cue. Two studies were conducted using the NASA Langley Visual Motion Simulator and Cockpit Motion Facility to evaluate the effect of the turbulence channel and aeroelastic model on pilot control input. Results indicate that the pilot is better correlated with the aircraft response, when the augmented channel is in place.

  12. A Comparison of Prose and Algorithms for Presenting Complex Instructions. Document Design Project, Technical Report No. 17.

    ERIC Educational Resources Information Center

    Holland, V. Melissa; Rose, Andrew

    Complex conditional instructions ("if X, then do Y") are prevalent in public documents, where they typically appear in prose form. Results of two previous studies have shown that conditional instructions become very difficult to process as the structure becomes more complex. A study was designed to investigate whether this difficulty can…

  13. Improvements to Busquet's Non LTE algorithm in NRL's Hydro code

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Colombant, D.

    1996-11-01

    Implementation of the Non LTE model RADIOM (M. Busquet, Phys. Fluids B, 5, 4191 (1993)) in NRL's RAD2D Hydro code in conservative form was reported previously(M. Klapisch et al., Bull. Am. Phys. Soc., 40, 1806 (1995)).While the results were satisfactory, the algorithm was slow and not always converging. We describe here modifications that address the latter two shortcomings. This method is quicker and more stable than the original. It also gives information about the validity of the fitting. It turns out that the number and distribution of groups in the multigroup diffusion opacity tables - a basis for the computation of radiation effects in the ionization balance in RADIOM- has a large influence on the robustness of the algorithm. These modifications give insight about the algorithm, and allow to check that the obtained average charge state is the true average. In addition, code optimization resulted in greatly reduced computing time: The ratio of Non LTE to LTE computing times being now between 1.5 and 2.

  14. TinyOS-based quality of service management in wireless sensor networks

    USGS Publications Warehouse

    Peterson, N.; Anusuya-Rangappa, L.; Shirazi, B.A.; Huang, R.; Song, W.-Z.; Miceli, M.; McBride, D.; Hurson, A.; LaHusen, R.

    2009-01-01

    Previously the cost and extremely limited capabilities of sensors prohibited Quality of Service (QoS) implementations in wireless sensor networks. With advances in technology, sensors are becoming significantly less expensive and the increases in computational and storage capabilities are opening the door for new, sophisticated algorithms to be implemented. Newer sensor network applications require higher data rates with more stringent priority requirements. We introduce a dynamic scheduling algorithm to improve bandwidth for high priority data in sensor networks, called Tiny-DWFQ. Our Tiny-Dynamic Weighted Fair Queuing scheduling algorithm allows for dynamic QoS for prioritized communications by continually adjusting the treatment of communication packages according to their priorities and the current level of network congestion. For performance evaluation, we tested Tiny-DWFQ, Tiny-WFQ (traditional WFQ algorithm implemented in TinyOS), and FIFO queues on an Imote2-based wireless sensor network and report their throughput and packet loss. Our results show that Tiny-DWFQ performs better in all test cases. ?? 2009 IEEE.

  15. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  16. Analytical procedures for estimating structural response to acoustic fields generated by advanced launch systems, phase 2

    NASA Technical Reports Server (NTRS)

    Elishakoff, Isaac; Lin, Y. K.; Zhu, Li-Ping; Fang, Jian-Jie; Cai, G. Q.

    1994-01-01

    This report supplements a previous report of the same title submitted in June, 1992. It summarizes additional analytical techniques which have been developed for predicting the response of linear and nonlinear structures to noise excitations generated by large propulsion power plants. The report is divided into nine chapters. The first two deal with incomplete knowledge of boundary conditions of engineering structures. The incomplete knowledge is characterized by a convex set, and its diagnosis is formulated as a multi-hypothesis discrete decision-making algorithm with attendant criteria of adaptive termination.

  17. Effect of symptom-based risk stratification on the costs of managing patients with chronic rhinosinusitis symptoms.

    PubMed

    Tan, Bruce K; Lu, Guanning; Kwasny, Mary J; Hsueh, Wayne D; Shintani-Smith, Stephanie; Conley, David B; Chandra, Rakesh K; Kern, Robert C; Leung, Randy

    2013-11-01

    Current symptom criteria poorly predict a diagnosis of chronic rhinosinusitis (CRS) resulting in excessive treatment of patients with presumed CRS. The objective of this study was analyze the positive predictive value of individual symptoms, or symptoms in combination, in patients with CRS symptoms and examine the costs of the subsequent diagnostic algorithm using a decision tree-based cost analysis. We analyzed previously collected patient-reported symptoms from a cross-sectional study of patients who had received a computed tomography (CT) scan of their sinuses at a tertiary care otolaryngology clinic for evaluation of CRS symptoms to calculate the positive predictive value of individual symptoms. Classification and regression tree (CART) analysis then optimized combinations of symptoms and thresholds to identify CRS patients. The calculated positive predictive values were applied to a previously developed decision tree that compared an upfront CT (uCT) algorithm against an empiric medical therapy (EMT) algorithm with further analysis that considered the availability of point of care (POC) imaging. The positive predictive value of individual symptoms ranged from 0.21 for patients reporting forehead pain and to 0.69 for patients reporting hyposmia. The CART model constructed a dichotomous model based on forehead pain, maxillary pain, hyposmia, nasal discharge, and facial pain (C-statistic 0.83). If POC CT were available, median costs ($64-$415) favored using the upfront CT for all individual symptoms. If POC CT was unavailable, median costs favored uCT for most symptoms except intercanthal pain (-$15), hyposmia (-$100), and discolored nasal discharge (-$24), although these symptoms became equivocal on cost sensitivity analysis. The three-tiered CART model could subcategorize patients into tiers where uCT was always favorable (median costs: $332-$504) and others for which EMT was always favorable (median costs -$121 to -$275). The uCT algorithm was always more costly if the nasal endoscopy was positive. Among patients with classic CRS symptoms, the frequency of individual symptoms varied the likelihood of a CRS diagnosis marginally. Only hyposmia, the absence of facial pain, and discolored discharge sufficiently increased the likelihood of diagnosis to potentially make EMT less costly. The development of an evidence-based, multisymptom-based risk stratification model could substantially affect the management costs of the subsequent diagnostic algorithm. © 2013 ARS-AAOA, LLC.

  18. Three-dimensional representations of salt-dome margins at four active strategic petroleum reserve sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rautman, Christopher Arthur; Stein, Joshua S.

    2003-01-01

    Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. Thismore » algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.« less

  19. A new algorithm for attitude-independent magnetometer calibration

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Shuster, Malcolm D.

    1994-01-01

    A new algorithm is developed for inflight magnetometer bias determination without knowledge of the attitude. This algorithm combines the fast convergence of a heuristic algorithm currently in use with the correct treatment of the statistics and without discarding data. The algorithm performance is examined using simulated data and compared with previous algorithms.

  20. Medicaid beneficiaries in california reported less positive experiences when assigned to a managed care plan.

    PubMed

    McDonnell, Diana D; Graham, Carrie L

    2015-03-01

    In 2011 California began transitioning approximately 340,000 seniors and people with disabilities from Medicaid fee-for-service (FFS) to Medicaid managed care plans. When beneficiaries did not actively choose a managed care plan, the state assigned them to one using an algorithm based on their previous FFS primary and specialty care use. When no clear link could be established, beneficiaries were assigned by default to a managed care plan based on weighted randomization. In this article we report the results of a telephone survey of 1,521 seniors and people with disabilities enrolled in Medi-Cal (California Medicaid) and who were recently transitioned to a managed care plan. We found that 48 percent chose their own plan, 11 percent were assigned to a plan by algorithm, and 41 percent were assigned to a plan by default. People in the latter two categories reported being similarly less positive about their experiences compared to beneficiaries who actively chose a plan. Many states in addition to California are implementing mandatory transitions of Medicaid-only beneficiaries to managed care plans. Our results highlight the importance of encouraging beneficiaries to actively choose their health plan; when beneficiaries do not choose, states should employ robust intelligent assignment algorithms. Project HOPE—The People-to-People Health Foundation, Inc.

  1. THRESHOLD LOGIC.

    DTIC Science & Technology

    synthesis procedures; a ’best’ method is definitely established. (2) ’Symmetry Types for Threshold Logic’ is a tutorial expositon including a careful...development of the Goto-Takahasi self-dual type ideas. (3) ’Best Threshold Gate Decisions’ reports a comparison, on the 2470 7-argument threshold ...interpretation is shown best. (4) ’ Threshold Gate Networks’ reviews the previously discussed 2-algorithm in geometric terms, describes our FORTRAN

  2. Transactive Control of Commercial Building HVAC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbin, Charles D.; Makhmalbaf, Atefe; Huang, Sen

    This document details the development and testing of market-based transactive controls for building heating, ventilating and air conditioning (HVAC) systems. These controls are intended to serve the purposes of reducing electricity use through conservation, reducing peak building electric demand, and providing demand flexibility to assist with power system operations. This report is the summary of the first year of work conducted under Phase 1 of the Clean Energy and Transactive Campus Project. The methods and techniques described here were first investigated in simulation, and then subsequently deployed to a physical testbed on the Pacific Northwest National Laboratory (PNNL) campus formore » validation. In this report, we describe the models and control algorithms we have developed, testing of the control algorithms in simulation, and deployment to a physical testbed. Results from physical experiments support previous simulation findings, and provide insights for further improvement.« less

  3. Tracking control of concentration profiles in a fed-batch bioreactor using a linear algebra methodology.

    PubMed

    Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan

    2015-07-01

    Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. MPLNET V3 Cloud and Planetary Boundary Layer Detection

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.

    2016-01-01

    The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.

  5. Modeling of video traffic in packet networks, low rate video compression, and the development of a lossy+lossless image compression algorithm

    NASA Technical Reports Server (NTRS)

    Sayood, K.; Chen, Y. C.; Wang, X.

    1992-01-01

    During this reporting period we have worked on three somewhat different problems. These are modeling of video traffic in packet networks, low rate video compression, and the development of a lossy + lossless image compression algorithm, which might have some application in browsing algorithms. The lossy + lossless scheme is an extension of work previously done under this grant. It provides a simple technique for incorporating browsing capability. The low rate coding scheme is also a simple variation on the standard discrete cosine transform (DCT) coding approach. In spite of its simplicity, the approach provides surprisingly high quality reconstructions. The modeling approach is borrowed from the speech recognition literature, and seems to be promising in that it provides a simple way of obtaining an idea about the second order behavior of a particular coding scheme. Details about these are presented.

  6. LS-CAP: an algorithm for identifying cytogenetic aberrations in hepatocellular carcinoma using microarray data.

    PubMed

    He, Xianmin; Wei, Qing; Sun, Meiqian; Fu, Xuping; Fan, Sichang; Li, Yao

    2006-05-01

    Biological techniques such as Array-Comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH) and affymetrix single nucleotide pleomorphism (SNP) array have been used to detect cytogenetic aberrations. However, on genomic scale, these techniques are labor intensive and time consuming. Comparative genomic microarray analysis (CGMA) has been used to identify cytogenetic changes in hepatocellular carcinoma (HCC) using gene expression microarray data. However, CGMA algorithm can not give precise localization of aberrations, fails to identify small cytogenetic changes, and exhibits false negatives and positives. Locally un-weighted smoothing cytogenetic aberrations prediction (LS-CAP) based on local smoothing and binomial distribution can be expected to address these problems. LS-CAP algorithm was built and used on HCC microarray profiles. Eighteen cytogenetic abnormalities were identified, among them 5 were reported previously, and 12 were proven by CGH studies. LS-CAP effectively reduced the false negatives and positives, and precisely located small fragments with cytogenetic aberrations.

  7. Evolution of semilocal string networks. II. Velocity estimators

    NASA Astrophysics Data System (ADS)

    Lopez-Eiguren, A.; Urrestilla, J.; Achúcarro, A.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-07-01

    We continue a comprehensive numerical study of semilocal string networks and their cosmological evolution. These can be thought of as hybrid networks comprised of (nontopological) string segments, whose core structure is similar to that of Abelian Higgs vortices, and whose ends have long-range interactions and behavior similar to that of global monopoles. Our study provides further evidence of a linear scaling regime, already reported in previous studies, for the typical length scale and velocity of the network. We introduce a new algorithm to identify the position of the segment cores. This allows us to determine the length and velocity of each individual segment and follow their evolution in time. We study the statistical distribution of segment lengths and velocities for radiation- and matter-dominated evolution in the regime where the strings are stable. Our segment detection algorithm gives higher length values than previous studies based on indirect detection methods. The statistical distribution shows no evidence of (anti)correlation between the speed and the length of the segments.

  8. Efficient Record Linkage Algorithms Using Complete Linkage Clustering.

    PubMed

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times.

  9. Efficient Record Linkage Algorithms Using Complete Linkage Clustering

    PubMed Central

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times. PMID:27124604

  10. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Anirban; Wen, Wei; Martinez Saez, Enrique

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  11. Duration analysis using matching pursuit algorithm reveals longer bouts of gamma rhythm.

    PubMed

    Chandran Ks, Subhash; Seelamantula, Chandra Sekhar; Ray, Supratim

    2018-03-01

    The gamma rhythm (30-80 Hz), often associated with high-level cortical functions, is believed to provide a temporal reference frame for spiking activity, for which it should have a stable center frequency and linear phase for an extended duration. However, recent studies that have estimated the power and phase of gamma as a function of time suggest that gamma occurs in short bursts and lacks the temporal structure required to act as a reference frame. Here, we show that the bursty appearance of gamma arises from the variability in the spectral estimator used in these studies. To overcome this problem, we use another duration estimator based on a matching pursuit algorithm that robustly estimates the duration of gamma in simulated data. Applying this algorithm to gamma oscillations recorded from implanted microelectrodes in the primary visual cortex of awake monkeys, we show that the median gamma duration is greater than 300 ms, which is three times longer than previously reported values. NEW & NOTEWORTHY Gamma oscillations (30-80 Hz) have been hypothesized to provide a temporal reference frame for coordination of spiking activity, but recent studies have shown that gamma occurs in very short bursts. We show that existing techniques have severely underestimated the rhythm duration, use a technique based on the Matching Pursuit algorithm, which provides a robust estimate of the duration, and show that the median duration of gamma is greater than 300 ms, much longer than previous estimates.

  12. Duration analysis using matching pursuit algorithm reveals longer bouts of gamma rhythm

    PubMed Central

    Chandran KS, Subhash; Seelamantula, Chandra Sekhar

    2018-01-01

    The gamma rhythm (30–80 Hz), often associated with high-level cortical functions, is believed to provide a temporal reference frame for spiking activity, for which it should have a stable center frequency and linear phase for an extended duration. However, recent studies that have estimated the power and phase of gamma as a function of time suggest that gamma occurs in short bursts and lacks the temporal structure required to act as a reference frame. Here, we show that the bursty appearance of gamma arises from the variability in the spectral estimator used in these studies. To overcome this problem, we use another duration estimator based on a matching pursuit algorithm that robustly estimates the duration of gamma in simulated data. Applying this algorithm to gamma oscillations recorded from implanted microelectrodes in the primary visual cortex of awake monkeys, we show that the median gamma duration is greater than 300 ms, which is three times longer than previously reported values. NEW & NOTEWORTHY Gamma oscillations (30–80 Hz) have been hypothesized to provide a temporal reference frame for coordination of spiking activity, but recent studies have shown that gamma occurs in very short bursts. We show that existing techniques have severely underestimated the rhythm duration, use a technique based on the Matching Pursuit algorithm, which provides a robust estimate of the duration, and show that the median duration of gamma is greater than 300 ms, much longer than previous estimates. PMID:29118193

  13. A Coherent VLSI Environment

    DTIC Science & Technology

    1987-03-31

    processors . The symmetry-breaking algorithms give efficient ways to convert probabilistic algorithms to deterministic algorithms. Some of the...techniques have been applied to construct several efficient linear- processor algorithms for graph problems, including an O(lg* n)-time algorithm for (A + 1...On n-node graphs, the algorithm works in O(log 2 n) time using only n processors , in contrast to the previous best algorithm which used about n3

  14. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning.

    PubMed

    Chetty, Indrin J; Curran, Bruce; Cygler, Joanna E; DeMarco, John J; Ezzell, Gary; Faddegon, Bruce A; Kawrakow, Iwan; Keall, Paul J; Liu, Helen; Ma, C M Charlie; Rogers, D W O; Seuntjens, Jan; Sheikh-Bagheri, Daryoush; Siebers, Jeffrey V

    2007-12-01

    The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for improved dose distributions to influence treatment outcomes, the long calculation times previously associated with MC simulation rendered this method impractical for routine clinical treatment planning. However, the development of faster codes optimized for radiotherapy calculations and improvements in computer processor technology have substantially reduced calculation times to, in some instances, within minutes on a single processor. These advances have motivated several major treatment planning system vendors to embark upon the path of MC techniques. Several commercial vendors have already released or are currently in the process of releasing MC algorithms for photon and/or electron beam treatment planning. Consequently, the accessibility and use of MC treatment planning algorithms may well become widespread in the radiotherapy community. With MC simulation, dose is computed stochastically using first principles; this method is therefore quite different from conventional dose algorithms. Issues such as statistical uncertainties, the use of variance reduction techniques, the ability to account for geometric details in the accelerator treatment head simulation, and other features, are all unique components of a MC treatment planning algorithm. Successful implementation by the clinical physicist of such a system will require an understanding of the basic principles of MC techniques. The purpose of this report, while providing education and review on the use of MC simulation in radiotherapy planning, is to set out, for both users and developers, the salient issues associated with clinical implementation and experimental verification of MC dose algorithms. As the MC method is an emerging technology, this report is not meant to be prescriptive. Rather, it is intended as a preliminary report to review the tenets of the MC method and to provide the framework upon which to build a comprehensive program for commissioning and routine quality assurance of MC-based treatment planning systems.

  15. Comparison of the accuracy of three algorithms in predicting accessory pathways among adult Wolff-Parkinson-White syndrome patients.

    PubMed

    Maden, Orhan; Balci, Kevser Gülcihan; Selcuk, Mehmet Timur; Balci, Mustafa Mücahit; Açar, Burak; Unal, Sefa; Kara, Meryem; Selcuk, Hatice

    2015-12-01

    The aim of this study was to investigate the accuracy of three algorithms in predicting accessory pathway locations in adult patients with Wolff-Parkinson-White syndrome in Turkish population. A total of 207 adult patients with Wolff-Parkinson-White syndrome were retrospectively analyzed. The most preexcited 12-lead electrocardiogram in sinus rhythm was used for analysis. Two investigators blinded to the patient data used three algorithms for prediction of accessory pathway location. Among all locations, 48.5% were left-sided, 44% were right-sided, and 7.5% were located in the midseptum or anteroseptum. When only exact locations were accepted as match, predictive accuracy for Chiang was 71.5%, 72.4% for d'Avila, and 71.5% for Arruda. The percentage of predictive accuracy of all algorithms did not differ between the algorithms (p = 1.000; p = 0.875; p = 0.885, respectively). The best algorithm for prediction of right-sided, left-sided, and anteroseptal and midseptal accessory pathways was Arruda (p < 0.001). Arruda was significantly better than d'Avila in predicting adjacent sites (p = 0.035) and the percent of the contralateral site prediction was higher with d'Avila than Arruda (p = 0.013). All algorithms were similar in predicting accessory pathway location and the predicted accuracy was lower than previously reported by their authors. However, according to the accessory pathway site, the algorithm designed by Arruda et al. showed better predictions than the other algorithms and using this algorithm may provide advantages before a planned ablation.

  16. A stochastic multiple imputation algorithm for missing covariate data in tree-structured survival analysis.

    PubMed

    Wallace, Meredith L; Anderson, Stewart J; Mazumdar, Sati

    2010-12-20

    Missing covariate data present a challenge to tree-structured methodology due to the fact that a single tree model, as opposed to an estimated parameter value, may be desired for use in a clinical setting. To address this problem, we suggest a multiple imputation algorithm that adds draws of stochastic error to a tree-based single imputation method presented by Conversano and Siciliano (Technical Report, University of Naples, 2003). Unlike previously proposed techniques for accommodating missing covariate data in tree-structured analyses, our methodology allows the modeling of complex and nonlinear covariate structures while still resulting in a single tree model. We perform a simulation study to evaluate our stochastic multiple imputation algorithm when covariate data are missing at random and compare it to other currently used methods. Our algorithm is advantageous for identifying the true underlying covariate structure when complex data and larger percentages of missing covariate observations are present. It is competitive with other current methods with respect to prediction accuracy. To illustrate our algorithm, we create a tree-structured survival model for predicting time to treatment response in older, depressed adults. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Combined algorithmic and GPU acceleration for ultra-fast circular conebeam backprojection

    NASA Astrophysics Data System (ADS)

    Brokish, Jeffrey; Sack, Paul; Bresler, Yoram

    2010-04-01

    In this paper, we describe the first implementation and performance of a fast O(N3logN) hierarchical backprojection algorithm for cone beam CT with a circular trajectory1,developed on a modern Graphics Processing Unit (GPU). The resulting tomographic backprojection system for 3D cone beam geometry combines speedup through algorithmic improvements provided by the hierarchical backprojection algorithm with speedup from a massively parallel hardware accelerator. For data parameters typical in diagnostic CT and using a mid-range GPU card, we report reconstruction speeds of up to 360 frames per second, and relative speedup of almost 6x compared to conventional backprojection on the same hardware. The significance of these results is twofold. First, they demonstrate that the reduction in operation counts demonstrated previously for the FHBP algorithm can be translated to a comparable run-time improvement in a massively parallel hardware implementation, while preserving stringent diagnostic image quality. Second, the dramatic speedup and throughput numbers achieved indicate the feasibility of systems based on this technology, which achieve real-time 3D reconstruction for state-of-the art diagnostic CT scanners with small footprint, high-reliability, and affordable cost.

  18. Crisis management during anaesthesia: embolism

    PubMed Central

    Williamson, J; Helps, S; Westhorpe, R; Mackay, P

    2005-01-01

    Background: Embolism with gas, thrombus, fat, amniotic fluid, or particulate matter may occur suddenly and unexpectedly during anaesthesia, posing a diagnostic and management problem for the anaesthetist. Objectives: To examine the role of a previously described core algorithm "COVER ABCD–A SWIFT CHECK" supplemented by a specific sub-algorithm for embolism, in the management of embolism occurring in association with anaesthesia. Methods: The potential performance of this structured approach for each of the relevant incidents among the first 4000 reported to the Australian Incident Monitoring Study (AIMS) was compared with the actual management as reported by the anaesthetists involved. Results: Among the first 4000 incidents reported to AIMS, 38 reports of embolism were found. A sudden fall in end-tidal carbon dioxide and oxygen saturation were the cardinal signs of embolism, each occurring in about two thirds of cases, with hypotension and electrocardiographic changes each occurring in about one third of cases. Conclusion: The potential value of an explicit structured approach to the diagnosis and management of embolism was assessed in the light of AIMS reports. It was considered that, correctly applied, it potentially would have led to earlier recognition of the problem and/or better management in over 40% of cases. PMID:15933290

  19. Evaluation of an Algorithm to Predict Menstrual-Cycle Phase at the Time of Injury.

    PubMed

    Tourville, Timothy W; Shultz, Sandra J; Vacek, Pamela M; Knudsen, Emily J; Bernstein, Ira M; Tourville, Kelly J; Hardy, Daniel M; Johnson, Robert J; Slauterbeck, James R; Beynnon, Bruce D

    2016-01-01

    Women are 2 to 8 times more likely to sustain an anterior cruciate ligament (ACL) injury than men, and previous studies indicated an increased risk for injury during the preovulatory phase of the menstrual cycle (MC). However, investigations of risk rely on retrospective classification of MC phase, and no tools for this have been validated. To evaluate the accuracy of an algorithm for retrospectively classifying MC phase at the time of a mock injury based on MC history and salivary progesterone (P4) concentration. Descriptive laboratory study. Research laboratory. Thirty-one healthy female collegiate athletes (age range, 18-24 years) provided serum or saliva (or both) samples at 8 visits over 1 complete MC. Self-reported MC information was obtained on a randomized date (1-45 days) after mock injury, which is the typical timeframe in which researchers have access to ACL-injured study participants. The MC phase was classified using the algorithm as applied in a stand-alone computational fashion and also by 4 clinical experts using the algorithm and additional subjective hormonal history information to help inform their decision. To assess algorithm accuracy, phase classifications were compared with the actual MC phase at the time of mock injury (ascertained using urinary luteinizing hormone tests and serial serum P4 samples). Clinical expert and computed classifications were compared using κ statistics. Fourteen participants (45%) experienced anovulatory cycles. The algorithm correctly classified MC phase for 23 participants (74%): 22 (76%) of 29 who were preovulatory/anovulatory and 1 (50%) of 2 who were postovulatory. Agreement between expert and algorithm classifications ranged from 80.6% (κ = 0.50) to 93% (κ = 0.83). Classifications based on same-day saliva sample and optimal P4 threshold were the same as those based on MC history alone (87.1% correct). Algorithm accuracy varied during the MC but at no time were both sensitivity and specificity levels acceptable. These findings raise concerns about the accuracy of previous retrospective MC-phase classification systems, particularly in a population with a high occurrence of anovulatory cycles.

  20. Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; hide

    2014-01-01

    Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).

  1. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.

    PubMed

    Audain, Enrique; Uszkoreit, Julian; Sachsenberg, Timo; Pfeuffer, Julianus; Liang, Xiao; Hermjakob, Henning; Sanchez, Aniel; Eisenacher, Martin; Reinert, Knut; Tabb, David L; Kohlbacher, Oliver; Perez-Riverol, Yasset

    2017-01-06

    In mass spectrometry-based shotgun proteomics, protein identifications are usually the desired result. However, most of the analytical methods are based on the identification of reliable peptides and not the direct identification of intact proteins. Thus, assembling peptides identified from tandem mass spectra into a list of proteins, referred to as protein inference, is a critical step in proteomics research. Currently, different protein inference algorithms and tools are available for the proteomics community. Here, we evaluated five software tools for protein inference (PIA, ProteinProphet, Fido, ProteinLP, MSBayesPro) using three popular database search engines: Mascot, X!Tandem, and MS-GF+. All the algorithms were evaluated using a highly customizable KNIME workflow using four different public datasets with varying complexities (different sample preparation, species and analytical instruments). We defined a set of quality control metrics to evaluate the performance of each combination of search engines, protein inference algorithm, and parameters on each dataset. We show that the results for complex samples vary not only regarding the actual numbers of reported protein groups but also concerning the actual composition of groups. Furthermore, the robustness of reported proteins when using databases of differing complexities is strongly dependant on the applied inference algorithm. Finally, merging the identifications of multiple search engines does not necessarily increase the number of reported proteins, but does increase the number of peptides per protein and thus can generally be recommended. Protein inference is one of the major challenges in MS-based proteomics nowadays. Currently, there are a vast number of protein inference algorithms and implementations available for the proteomics community. Protein assembly impacts in the final results of the research, the quantitation values and the final claims in the research manuscript. Even though protein inference is a crucial step in proteomics data analysis, a comprehensive evaluation of the many different inference methods has never been performed. Previously Journal of proteomics has published multiple studies about other benchmark of bioinformatics algorithms (PMID: 26585461; PMID: 22728601) in proteomics studies making clear the importance of those studies for the proteomics community and the journal audience. This manuscript presents a new bioinformatics solution based on the KNIME/OpenMS platform that aims at providing a fair comparison of protein inference algorithms (https://github.com/KNIME-OMICS). Six different algorithms - ProteinProphet, MSBayesPro, ProteinLP, Fido and PIA- were evaluated using the highly customizable workflow on four public datasets with varying complexities. Five popular database search engines Mascot, X!Tandem, MS-GF+ and combinations thereof were evaluated for every protein inference tool. In total >186 proteins lists were analyzed and carefully compare using three metrics for quality assessments of the protein inference results: 1) the numbers of reported proteins, 2) peptides per protein, and the 3) number of uniquely reported proteins per inference method, to address the quality of each inference method. We also examined how many proteins were reported by choosing each combination of search engines, protein inference algorithms and parameters on each dataset. The results show that using 1) PIA or Fido seems to be a good choice when studying the results of the analyzed workflow, regarding not only the reported proteins and the high-quality identifications, but also the required runtime. 2) Merging the identifications of multiple search engines gives almost always more confident results and increases the number of peptides per protein group. 3) The usage of databases containing not only the canonical, but also known isoforms of proteins has a small impact on the number of reported proteins. The detection of specific isoforms could, concerning the question behind the study, compensate for slightly shorter reports using the parsimonious reports. 4) The current workflow can be easily extended to support new algorithms and search engine combinations. Copyright © 2016. Published by Elsevier B.V.

  2. PDF text classification to leverage information extraction from publication reports.

    PubMed

    Bui, Duy Duc An; Del Fiol, Guilherme; Jonnalagadda, Siddhartha

    2016-06-01

    Data extraction from original study reports is a time-consuming, error-prone process in systematic review development. Information extraction (IE) systems have the potential to assist humans in the extraction task, however majority of IE systems were not designed to work on Portable Document Format (PDF) document, an important and common extraction source for systematic review. In a PDF document, narrative content is often mixed with publication metadata or semi-structured text, which add challenges to the underlining natural language processing algorithm. Our goal is to categorize PDF texts for strategic use by IE systems. We used an open-source tool to extract raw texts from a PDF document and developed a text classification algorithm that follows a multi-pass sieve framework to automatically classify PDF text snippets (for brevity, texts) into TITLE, ABSTRACT, BODYTEXT, SEMISTRUCTURE, and METADATA categories. To validate the algorithm, we developed a gold standard of PDF reports that were included in the development of previous systematic reviews by the Cochrane Collaboration. In a two-step procedure, we evaluated (1) classification performance, and compared it with machine learning classifier, and (2) the effects of the algorithm on an IE system that extracts clinical outcome mentions. The multi-pass sieve algorithm achieved an accuracy of 92.6%, which was 9.7% (p<0.001) higher than the best performing machine learning classifier that used a logistic regression algorithm. F-measure improvements were observed in the classification of TITLE (+15.6%), ABSTRACT (+54.2%), BODYTEXT (+3.7%), SEMISTRUCTURE (+34%), and MEDADATA (+14.2%). In addition, use of the algorithm to filter semi-structured texts and publication metadata improved performance of the outcome extraction system (F-measure +4.1%, p=0.002). It also reduced of number of sentences to be processed by 44.9% (p<0.001), which corresponds to a processing time reduction of 50% (p=0.005). The rule-based multi-pass sieve framework can be used effectively in categorizing texts extracted from PDF documents. Text classification is an important prerequisite step to leverage information extraction from PDF documents. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Performance analysis of a fault inferring nonlinear detection system algorithm with integrated avionics flight data

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.; Morrell, F. R.

    1985-01-01

    This paper presents the performance analysis results of a fault inferring nonlinear detection system (FINDS) using integrated avionics sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment. First, an overview of the FINDS algorithm structure is given. Then, aircraft state estimate time histories and statistics for the flight data sensors are discussed. This is followed by an explanation of modifications made to the detection and decision functions in FINDS to improve false alarm and failure detection performance. Next, the failure detection and false alarm performance of the FINDS algorithm are analyzed by injecting bias failures into fourteen sensor outputs over six repetitive runs of the five minutes of flight data. Results indicate that the detection speed, failure level estimation, and false alarm performance show a marked improvement over the previously reported simulation runs. In agreement with earlier results, detection speed is faster for filter measurement sensors such as MLS than for filter input sensors such as flight control accelerometers. Finally, the progress in modifications of the FINDS algorithm design to accommodate flight computer constraints is discussed.

  4. Inferring Gene Regulatory Networks by Singular Value Decomposition and Gravitation Field Algorithm

    PubMed Central

    Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms. PMID:23226565

  5. Context Modeler for Wavelet Compression of Spectral Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron; Xie, Hua; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    A context-modeling sub-algorithm has been developed as part of an algorithm that effects three-dimensional (3D) wavelet-based compression of hyperspectral image data. The context-modeling subalgorithm, hereafter denoted the context modeler, provides estimates of probability distributions of wavelet-transformed data being encoded. These estimates are utilized by an entropy coding subalgorithm that is another major component of the compression algorithm. The estimates make it possible to compress the image data more effectively than would otherwise be possible. The following background discussion is prerequisite to a meaningful summary of the context modeler. This discussion is presented relative to ICER-3D, which is the name attached to a particular compression algorithm and the software that implements it. The ICER-3D software is summarized briefly in the preceding article, ICER-3D Hyperspectral Image Compression Software (NPO-43238). Some aspects of this algorithm were previously described, in a slightly more general context than the ICER-3D software, in "Improving 3D Wavelet-Based Compression of Hyperspectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. In turn, ICER-3D is a product of generalization of ICER, another previously reported algorithm and computer program that can perform both lossless and lossy wavelet-based compression and decompression of gray-scale-image data. In ICER-3D, hyperspectral image data are decomposed using a 3D discrete wavelet transform (DWT). Following wavelet decomposition, mean values are subtracted from spatial planes of spatially low-pass subbands prior to encoding. The resulting data are converted to sign-magnitude form and compressed. In ICER-3D, compression is progressive, in that compressed information is ordered so that as more of the compressed data stream is received, successive reconstructions of the hyperspectral image data are of successively higher overall fidelity.

  6. Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods.

    PubMed

    Patel, Tejal A; Puppala, Mamta; Ogunti, Richard O; Ensor, Joe E; He, Tiancheng; Shewale, Jitesh B; Ankerst, Donna P; Kaklamani, Virginia G; Rodriguez, Angel A; Wong, Stephen T C; Chang, Jenny C

    2017-01-01

    A key challenge to mining electronic health records for mammography research is the preponderance of unstructured narrative text, which strikingly limits usable output. The imaging characteristics of breast cancer subtypes have been described previously, but without standardization of parameters for data mining. The authors searched the enterprise-wide data warehouse at the Houston Methodist Hospital, the Methodist Environment for Translational Enhancement and Outcomes Research (METEOR), for patients with Breast Imaging Reporting and Data System (BI-RADS) category 5 mammogram readings performed between January 2006 and May 2015 and an available pathology report. The authors developed natural language processing (NLP) software algorithms to automatically extract mammographic and pathologic findings from free text mammogram and pathology reports. The correlation between mammographic imaging features and breast cancer subtype was analyzed using one-way analysis of variance and the Fisher exact test. The NLP algorithm was able to obtain key characteristics for 543 patients who met the inclusion criteria. Patients with estrogen receptor-positive tumors were more likely to have spiculated margins (P = .0008), and those with tumors that overexpressed human epidermal growth factor receptor 2 (HER2) were more likely to have heterogeneous and pleomorphic calcifications (P = .0078 and P = .0002, respectively). Mammographic imaging characteristics, obtained from an automated text search and the extraction of mammogram reports using NLP techniques, correlated with pathologic breast cancer subtype. The results of the current study validate previously reported trends assessed by manual data collection. Furthermore, NLP provides an automated means with which to scale up data extraction and analysis for clinical decision support. Cancer 2017;114-121. © 2016 American Cancer Society. © 2016 American Cancer Society.

  7. Accelerating navigation in the VecGeom geometry modeller

    NASA Astrophysics Data System (ADS)

    Wenzel, Sandro; Zhang, Yang; pre="for the"> VecGeom Developers,

    2017-10-01

    The VecGeom geometry library is a relatively recent effort aiming to provide a modern and high performance geometry service for particle detector simulation in hierarchical detector geometries common to HEP experiments. One of its principal targets is the efficient use of vector SIMD hardware instructions to accelerate geometry calculations for single track as well as multi-track queries. Previously, excellent performance improvements compared to Geant4/ROOT could be reported for elementary geometry algorithms at the level of single shape queries. In this contribution, we will focus on the higher level navigation algorithms in VecGeom, which are the most important components as seen from the simulation engines. We will first report on our R&D effort and developments to implement SIMD enhanced data structures to speed up the well-known “voxelised” navigation algorithms, ubiquitously used for particle tracing in complex detector modules consisting of many daughter parts. Second, we will discuss complementary new approaches to improve navigation algorithms in HEP. These ideas are based on a systematic exploitation of static properties of the detector layout as well as automatic code generation and specialisation of the C++ navigator classes. Such specialisations reduce the overhead of generic- or virtual function based algorithms and enhance the effectiveness of the SIMD vector units. These novel approaches go well beyond the existing solutions available in Geant4 or TGeo/ROOT, achieve a significantly superior performance, and might be of interest for a wide range of simulation backends (GeantV, Geant4). We exemplify this with concrete benchmarks for the CMS and ALICE detectors.

  8. Physiological Parameter Monitoring from Optical Recordings with a Mobile Phone

    PubMed Central

    Scully, Christopher G.; Lee, Jinseok; Meyer, Joseph; Gorbach, Alexander M.; Granquist-Fraser, Domhnull; Mendelson, Yitzhak

    2012-01-01

    We show that a mobile phone can serve as an accurate monitor for several physiological variables, based on its ability to record and analyze the varying color signals of a fingertip placed in contact with its optical sensor. We confirm the accuracy of measurements of breathing rate, cardiac R-R intervals, and blood oxygen saturation, by comparisons to standard methods for making such measurements (respiration belts, ECGs, and pulse-oximeters, respectively). Measurement of respiratory rate uses a previously reported algorithm developed for use with a pulse-oximeter, based on amplitude and frequency modulation sequences within the light signal. We note that this technology can also be used with recently developed algorithms for detection of atrial fibrillation or blood loss. PMID:21803676

  9. Research and Development of Automated Eddy Current Testing for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Carver, Kyle L.; Saulsberry, Regor L.; Nichols, Charles T.; Spencer, Paul R.; Lucero, Ralph E.

    2012-01-01

    Eddy current testing (ET) was used to scan bare metallic liners used in the fabrication of composite overwrapped pressure vessels (COPVs) for flaws which could result in premature failure of the vessel. The main goal of the project was to make improvements in the areas of scan signal to noise ratio, sensitivity of flaw detection, and estimation of flaw dimensions. Scan settings were optimized resulting in an increased signal to noise ratio. Previously undiscovered flaw indications were observed and investigated. Threshold criteria were determined for the system software's flaw report and estimation of flaw dimensions were brought to an acceptable level of accuracy. Computer algorithms were written to import data for filtering and a numerical derivative filtering algorithm was evaluated.

  10. Optimal Use of Available Claims to Identify a Medicare Population Free of Coronary Heart Disease

    PubMed Central

    Kent, Shia T.; Safford, Monika M.; Zhao, Hong; Levitan, Emily B.; Curtis, Jeffrey R.; Kilpatrick, Ryan D.; Kilgore, Meredith L.; Muntner, Paul

    2015-01-01

    We examined claims-based approaches for identifying a study population free of coronary heart disease (CHD) using data from 8,937 US blacks and whites enrolled during 2003–2007 in a prospective cohort study linked to Medicare claims. Our goal was to minimize the percentage of persons at study entry with self-reported CHD (previous myocardial infarction or coronary revascularization). We assembled 6 cohorts without CHD claims by requiring 6 months, 1 year, or 2 years of continuous Medicare fee-for-service insurance coverage prior to study entry and using either a fixed-window or all-available look-back period. We examined adding CHD-related claims to our “base algorithm,” which included claims for myocardial infarction and coronary revascularization. Using a 6-month fixed-window look-back period, 17.8% of participants without claims in the base algorithm reported having CHD. This was reduced to 3.6% using an all-available look-back period and adding other CHD claims to the base algorithm. Among cohorts using all-available look-back periods, increasing the length of continuous coverage from 6 months to 1 or 2 years reduced the sample size available without lowering the percentage of persons with self-reported CHD. This analysis demonstrates approaches for developing a CHD-free cohort using Medicare claims. PMID:26443420

  11. A new effective operator for the hybrid algorithm for solving global optimisation problems

    NASA Astrophysics Data System (ADS)

    Duc, Le Anh; Li, Kenli; Nguyen, Tien Trong; Yen, Vu Minh; Truong, Tung Khac

    2018-04-01

    Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms.

  12. Science of Decision Making: A Data-Modeling Approach

    DTIC Science & Technology

    2013-10-01

    were separated on a capillary column using the Dionex UltiMate 3000 (Sunnyvale, CA). The resolved peptides were then sprayed into a linear ion trap...database (3–5). These algorithms assign a peptide sequence, along with a matching score of the experimental ion product mass spectrum, to a theoretical ion ...Bacterial Sample Processing Samples were prepared for liquid chromatography (LC) tandem MS (LC– MS/MS) in a similar manner to that previously reported

  13. Locomotion With Loads: Practical Techniques for Predicting Performance Outcomes

    DTIC Science & Technology

    2015-05-01

    running velocities by 13 and 18% for all-out 80- and 400 - meter runs. More recently, Alcaraz et al. (2008) reported only 3% reductions in brief, all... sprint running speeds to be predicted to within 6.0% in both laboratory and field settings. Respective load-carriage algorithms for walking energy...Objective Two: Sprint Running Speed Previous Scientific Efforts: The scientific literature on the basis of brief, all-out running performance is

  14. Symbolic Computation of Strongly Connected Components Using Saturation

    NASA Technical Reports Server (NTRS)

    Zhao, Yang; Ciardo, Gianfranco

    2010-01-01

    Finding strongly connected components (SCCs) in the state-space of discrete-state models is a critical task in formal verification of LTL and fair CTL properties, but the potentially huge number of reachable states and SCCs constitutes a formidable challenge. This paper is concerned with computing the sets of states in SCCs or terminal SCCs of asynchronous systems. Because of its advantages in many applications, we employ saturation on two previously proposed approaches: the Xie-Beerel algorithm and transitive closure. First, saturation speeds up state-space exploration when computing each SCC in the Xie-Beerel algorithm. Then, our main contribution is a novel algorithm to compute the transitive closure using saturation. Experimental results indicate that our improved algorithms achieve a clear speedup over previous algorithms in some cases. With the help of the new transitive closure computation algorithm, up to 10(exp 150) SCCs can be explored within a few seconds.

  15. Adapting sensory data for multiple robots performing spill cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storjohann, K.; Saltzen, E.

    1990-09-01

    This paper describes a possible method of converting a single performing robot algorithm into a multiple performing robot algorithm without the need to modify previously written codes. The algorithm to be converted involves spill detection and clean up by the HERMIES-III mobile robot. In order to achieve the goal of multiple performing robots with this algorithm, two steps are taken. First, the task is formally divided into two sub-tasks, spill detection and spill clean-up, the former of which is allocated to the added performing robot, HERMIES-IIB. Second, a inverse perspective mapping, is applied to the data acquired by the newmore » performing robot (HERMIES-IIB), allowing the data to be processed by the previously written algorithm without re-writing the code. 6 refs., 4 figs.« less

  16. Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.; Deo, R. C.; Carro-Calvo, L.; Saavedra-Moreno, B.

    2016-07-01

    Long-term air temperature prediction is of major importance in a large number of applications, including climate-related studies, energy, agricultural, or medical. This paper examines the performance of two Machine Learning algorithms (Support Vector Regression (SVR) and Multi-layer Perceptron (MLP)) in a problem of monthly mean air temperature prediction, from the previous measured values in observational stations of Australia and New Zealand, and climate indices of importance in the region. The performance of the two considered algorithms is discussed in the paper and compared to alternative approaches. The results indicate that the SVR algorithm is able to obtain the best prediction performance among all the algorithms compared in the paper. Moreover, the results obtained have shown that the mean absolute error made by the two algorithms considered is significantly larger for the last 20 years than in the previous decades, in what can be interpreted as a change in the relationship among the prediction variables involved in the training of the algorithms.

  17. Abbreviation definition identification based on automatic precision estimates.

    PubMed

    Sohn, Sunghwan; Comeau, Donald C; Kim, Won; Wilbur, W John

    2008-09-25

    The rapid growth of biomedical literature presents challenges for automatic text processing, and one of the challenges is abbreviation identification. The presence of unrecognized abbreviations in text hinders indexing algorithms and adversely affects information retrieval and extraction. Automatic abbreviation definition identification can help resolve these issues. However, abbreviations and their definitions identified by an automatic process are of uncertain validity. Due to the size of databases such as MEDLINE only a small fraction of abbreviation-definition pairs can be examined manually. An automatic way to estimate the accuracy of abbreviation-definition pairs extracted from text is needed. In this paper we propose an abbreviation definition identification algorithm that employs a variety of strategies to identify the most probable abbreviation definition. In addition our algorithm produces an accuracy estimate, pseudo-precision, for each strategy without using a human-judged gold standard. The pseudo-precisions determine the order in which the algorithm applies the strategies in seeking to identify the definition of an abbreviation. On the Medstract corpus our algorithm produced 97% precision and 85% recall which is higher than previously reported results. We also annotated 1250 randomly selected MEDLINE records as a gold standard. On this set we achieved 96.5% precision and 83.2% recall. This compares favourably with the well known Schwartz and Hearst algorithm. We developed an algorithm for abbreviation identification that uses a variety of strategies to identify the most probable definition for an abbreviation and also produces an estimated accuracy of the result. This process is purely automatic.

  18. Scalable Domain Decomposed Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    O'Brien, Matthew Joseph

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.

  19. ECG Sensor Card with Evolving RBP Algorithms for Human Verification.

    PubMed

    Tseng, Kuo-Kun; Huang, Huang-Nan; Zeng, Fufu; Tu, Shu-Yi

    2015-08-21

    It is known that cardiac and respiratory rhythms in electrocardiograms (ECGs) are highly nonlinear and non-stationary. As a result, most traditional time-domain algorithms are inadequate for characterizing the complex dynamics of the ECG. This paper proposes a new ECG sensor card and a statistical-based ECG algorithm, with the aid of a reduced binary pattern (RBP), with the aim of achieving faster ECG human identity recognition with high accuracy. The proposed algorithm has one advantage that previous ECG algorithms lack-the waveform complex information and de-noising preprocessing can be bypassed; therefore, it is more suitable for non-stationary ECG signals. Experimental results tested on two public ECG databases (MIT-BIH) from MIT University confirm that the proposed scheme is feasible with excellent accuracy, low complexity, and speedy processing. To be more specific, the advanced RBP algorithm achieves high accuracy in human identity recognition and is executed at least nine times faster than previous algorithms. Moreover, based on the test results from a long-term ECG database, the evolving RBP algorithm also demonstrates superior capability in handling long-term and non-stationary ECG signals.

  20. Spectral Learning for Supervised Topic Models.

    PubMed

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  1. A Hybrid alldifferent-Tabu Search Algorithm for Solving Sudoku Puzzles

    PubMed Central

    Crawford, Broderick; Paredes, Fernando; Norero, Enrique

    2015-01-01

    The Sudoku problem is a well-known logic-based puzzle of combinatorial number-placement. It consists in filling a n 2 × n 2 grid, composed of n columns, n rows, and n subgrids, each one containing distinct integers from 1 to n 2. Such a puzzle belongs to the NP-complete collection of problems, to which there exist diverse exact and approximate methods able to solve it. In this paper, we propose a new hybrid algorithm that smartly combines a classic tabu search procedure with the alldifferent global constraint from the constraint programming world. The alldifferent constraint is known to be efficient for domain filtering in the presence of constraints that must be pairwise different, which are exactly the kind of constraints that Sudokus own. This ability clearly alleviates the work of the tabu search, resulting in a faster and more robust approach for solving Sudokus. We illustrate interesting experimental results where our proposed algorithm outperforms the best results previously reported by hybrids and approximate methods. PMID:26078751

  2. Automatic Tracking Algorithm in Coaxial Near-Infrared Laser Ablation Endoscope for Fetus Surgery

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Yamanaka, Noriaki; Masamune, Ken

    2014-07-01

    This article reports a stable vessel object tracking method for the treatment of twin-to-twin transfusion syndrome based on our previous 2 DOF endoscope. During the treatment of laser coagulation, it is necessary to focus on the exact position of the target object, however it moves by the mother's respiratory motion and still remains a challenge to obtain and track the position precisely. In this article, an algorithm which uses features from accelerated segment test (FAST) to extract the features and optical flow as the object tracking method, is proposed to deal with above problem. Further, we experimentally simulate the movement due to the mother's respiration, and the results of position errors and similarity verify the effectiveness of the proposed tracking algorithm for laser ablation endoscopy in-vitro and under water considering two influential factors. At average, the errors are about 10 pixels and the similarity over 0.92 are obtained in the experiments.

  3. A Hybrid alldifferent-Tabu Search Algorithm for Solving Sudoku Puzzles.

    PubMed

    Soto, Ricardo; Crawford, Broderick; Galleguillos, Cristian; Paredes, Fernando; Norero, Enrique

    2015-01-01

    The Sudoku problem is a well-known logic-based puzzle of combinatorial number-placement. It consists in filling a n(2) × n(2) grid, composed of n columns, n rows, and n subgrids, each one containing distinct integers from 1 to n(2). Such a puzzle belongs to the NP-complete collection of problems, to which there exist diverse exact and approximate methods able to solve it. In this paper, we propose a new hybrid algorithm that smartly combines a classic tabu search procedure with the alldifferent global constraint from the constraint programming world. The alldifferent constraint is known to be efficient for domain filtering in the presence of constraints that must be pairwise different, which are exactly the kind of constraints that Sudokus own. This ability clearly alleviates the work of the tabu search, resulting in a faster and more robust approach for solving Sudokus. We illustrate interesting experimental results where our proposed algorithm outperforms the best results previously reported by hybrids and approximate methods.

  4. Benchmarking database performance for genomic data.

    PubMed

    Khushi, Matloob

    2015-06-01

    Genomic regions represent features such as gene annotations, transcription factor binding sites and epigenetic modifications. Performing various genomic operations such as identifying overlapping/non-overlapping regions or nearest gene annotations are common research needs. The data can be saved in a database system for easy management, however, there is no comprehensive database built-in algorithm at present to identify overlapping regions. Therefore I have developed a novel region-mapping (RegMap) SQL-based algorithm to perform genomic operations and have benchmarked the performance of different databases. Benchmarking identified that PostgreSQL extracts overlapping regions much faster than MySQL. Insertion and data uploads in PostgreSQL were also better, although general searching capability of both databases was almost equivalent. In addition, using the algorithm pair-wise, overlaps of >1000 datasets of transcription factor binding sites and histone marks, collected from previous publications, were reported and it was found that HNF4G significantly co-locates with cohesin subunit STAG1 (SA1).Inc. © 2015 Wiley Periodicals, Inc.

  5. Wiener filter preprocessing for OFDM systems in the presence of both nonstationary and stationary phase noises

    NASA Astrophysics Data System (ADS)

    Zhong, Ke; Lei, Xia; Li, Shaoqian

    2013-12-01

    Statistics-based intercarrier interference (ICI) mitigation algorithm is proposed for orthogonal frequency division multiplexing systems in presence of both nonstationary and stationary phase noises. By utilizing the statistics of phase noise, which can be obtained from measurements or data sheets, a Wiener filter preprocessing algorithm for ICI mitigation is proposed. The proposed algorithm can be regarded as a performance-improving technique for the previous researches on phase noise cancelation. Simulation results show that the proposed algorithm can effectively mitigate ICI and lower the error floor, and therefore significantly improve the performances of previous researches on phase noise cancelation, especially in the presence of severe phase noise.

  6. Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.

    PubMed

    Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F

    2011-03-01

    This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.

  7. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.

    PubMed

    Bertomeu-Motos, Arturo; Blanco, Andrea; Badesa, Francisco J; Barios, Juan A; Zollo, Loredana; Garcia-Aracil, Nicolas

    2018-02-20

    End-effector robots are commonly used in robot-assisted neuro-rehabilitation therapies for upper limbs where the patient's hand can be easily attached to a splint. Nevertheless, they are not able to estimate and control the kinematic configuration of the upper limb during the therapy. However, the Range of Motion (ROM) together with the clinical assessment scales offers a comprehensive assessment to the therapist. Our aim is to present a robust and stable kinematic reconstruction algorithm to accurately measure the upper limb joints using only an accelerometer placed onto the upper arm. The proposed algorithm is based on the inverse of the augmented Jaciobian as the algorithm (Papaleo, et al., Med Biol Eng Comput 53(9):815-28, 2015). However, the estimation of the elbow joint location is performed through the computation of the rotation measured by the accelerometer during the arm movement, making the algorithm more robust against shoulder movements. Furthermore, we present a method to compute the initial configuration of the upper limb necessary to start the integration method, a protocol to manually measure the upper arm and forearm lengths, and a shoulder position estimation. An optoelectronic system was used to test the accuracy of the proposed algorithm whilst healthy subjects were performing upper limb movements holding the end effector of the seven Degrees of Freedom (DoF) robot. In addition, the previous and the proposed algorithms were studied during a neuro-rehabilitation therapy assisted by the 'PUPArm' planar robot with three post-stroke patients. The proposed algorithm reports a Root Mean Square Error (RMSE) of 2.13cm in the elbow joint location and 1.89cm in the wrist joint location with high correlation. These errors lead to a RMSE about 3.5 degrees (mean of the seven joints) with high correlation in all the joints with respect to the real upper limb acquired through the optoelectronic system. Then, the estimation of the upper limb joints through both algorithms reveal an instability on the previous when shoulder movement appear due to the inevitable trunk compensation in post-stroke patients. The proposed algorithm is able to accurately estimate the human upper limb joints during a neuro-rehabilitation therapy assisted by end-effector robots. In addition, the implemented protocol can be followed in a clinical environment without optoelectronic systems using only one accelerometer attached in the upper arm. Thus, the ROM can be perfectly determined and could become an objective assessment parameter for a comprehensive assessment.

  8. Discrete retardance second harmonic generation ellipsometry.

    PubMed

    Dehen, Christopher J; Everly, R Michael; Plocinik, Ryan M; Hedderich, Hartmut G; Simpson, Garth J

    2007-01-01

    A new instrument was constructed to perform discrete retardance nonlinear optical ellipsometry (DR-NOE). The focus of the design was to perform second harmonic generation NOE while maximizing sample and application flexibility and minimizing data acquisition time. The discrete retardance configuration results in relatively simple computational algorithms for performing nonlinear optical ellipsometric analysis. NOE analysis of a disperse red 19 monolayer yielded results that were consistent with previously reported values for the same surface system, but with significantly reduced acquisition times.

  9. Development and Evaluation of New Products for the Far-Forward Care of Combat Casualities With Acute Lung Injury

    DTIC Science & Technology

    2007-02-01

    ventilator was modified to administer chlorine. Lastly, we returned to the “ dry ” fluid management algorithm from our phase one studies, as volume loading...indicated, additional buprenorphine (Buprenex) 0.3 mg/kg IM was given for pain. The animals were transported to the ICU and mechanically ventilated (see...Ventilator Management below). General ICU care was similar to that reported previously, with the following exceptions. Fluid management followed

  10. Locomotion with Loads: Practical Techniques for Predicting Performance Outcomes

    DTIC Science & Technology

    2013-05-01

    Lotens (1992) who reported that a load equal to 21% of body weight reduced all-out running velocities by 13 and 18% for all-out 80- and 400 - meter runs...hypothesize second that the speed-load carriage algorithms will allow load- induced decrements in all-out sprint running speeds to be predicted to within...1968; Santee et al., 2001) may then be explored in the context of the model. Objective Two: Sprint Running Speed Previous Scientific Efforts

  11. Combination of culture, antigen and toxin detection, and cytotoxin neutralization assay for optimal Clostridium difficile diagnostic testing

    PubMed Central

    Alfa, Michelle J; Sepehri, Shadi

    2013-01-01

    BACKGROUND: There has been a growing interest in developing an appropriate laboratory diagnostic algorithm for Clostridium difficile, mainly as a result of increases in both the number and severity of cases of C difficile infection in the past decade. A C difficile diagnostic algorithm is necessary because diagnostic kits, mostly for the detection of toxins A and B or glutamate dehydrogenase (GDH) antigen, are not sufficient as stand-alone assays for optimal diagnosis of C difficile infection. In addition, conventional reference methods for C difficile detection (eg, toxigenic culture and cytotoxin neutralization [CTN] assays) are not routinely practiced in diagnostic laboratory settings. OBJECTIVE: To review the four-step algorithm used at Diagnostic Services of Manitoba sites for the laboratory diagnosis of toxigenic C difficile. RESULT: One year of retrospective C difficile data using the proposed algorithm was reported. Of 5695 stool samples tested, 9.1% (n=517) had toxigenic C difficile. Sixty per cent (310 of 517) of toxigenic C difficile stools were detected following the first two steps of the algorithm. CTN confirmation of GDH-positive, toxin A- and B-negative assays resulted in detection of an additional 37.7% (198 of 517) of toxigenic C difficile. Culture of the third specimen, from patients who had two previous negative specimens, detected an additional 2.32% (12 of 517) of toxigenic C difficile samples. DISCUSSION: Using GDH antigen as the screening and toxin A and B as confirmatory test for C difficile, 85% of specimens were reported negative or positive within 4 h. Without CTN confirmation for GDH antigen and toxin A and B discordant results, 37% (195 of 517) of toxigenic C difficile stools would have been missed. Following the algorithm, culture was needed for only 2.72% of all specimens submitted for C difficile testing. CONCLUSION: The overview of the data illustrated the significance of each stage of this four-step C difficile algorithm and emphasized the value of using CTN assay and culture as parts of an algorithm that ensures accurate diagnosis of toxigenic C difficile. PMID:24421808

  12. Experimental evaluation of certification trails using abstract data type validation

    NASA Technical Reports Server (NTRS)

    Wilson, Dwight S.; Sullivan, Gregory F.; Masson, Gerald M.

    1993-01-01

    Certification trails are a recently introduced and promising approach to fault-detection and fault-tolerance. Recent experimental work reveals many cases in which a certification-trail approach allows for significantly faster program execution time than a basic time-redundancy approach. Algorithms for answer-validation of abstract data types allow a certification trail approach to be used for a wide variety of problems. An attempt to assess the performance of algorithms utilizing certification trails on abstract data types is reported. Specifically, this method was applied to the following problems: heapsort, Hullman tree, shortest path, and skyline. Previous results used certification trails specific to a particular problem and implementation. The approach allows certification trails to be localized to 'data structure modules,' making the use of this technique transparent to the user of such modules.

  13. Accurate condensed history Monte Carlo simulation of electron transport. II. Application to ion chamber response simulations.

    PubMed

    Kawrakow, I

    2000-03-01

    In this report the condensed history Monte Carlo simulation of electron transport and its application to the calculation of ion chamber response is discussed. It is shown that the strong step-size dependencies and lack of convergence to the correct answer previously observed are the combined effect of the following artifacts caused by the EGS4/PRESTA implementation of the condensed history technique: dose underprediction due to PRESTA'S pathlength correction and lateral correlation algorithm; dose overprediction due to the boundary crossing algorithm; dose overprediction due to the breakdown of the fictitious cross section method for sampling distances between discrete interaction and the inaccurate evaluation of energy-dependent quantities. These artifacts are now understood quantitatively and analytical expressions for their effect are given.

  14. Using landscape topology to compare continuous metaheuristics: a framework and case study on EDAs and ridge structure.

    PubMed

    Morgan, R; Gallagher, M

    2012-01-01

    In this paper we extend a previously proposed randomized landscape generator in combination with a comparative experimental methodology to study the behavior of continuous metaheuristic optimization algorithms. In particular, we generate two-dimensional landscapes with parameterized, linear ridge structure, and perform pairwise comparisons of algorithms to gain insight into what kind of problems are easy and difficult for one algorithm instance relative to another. We apply this methodology to investigate the specific issue of explicit dependency modeling in simple continuous estimation of distribution algorithms. Experimental results reveal specific examples of landscapes (with certain identifiable features) where dependency modeling is useful, harmful, or has little impact on mean algorithm performance. Heat maps are used to compare algorithm performance over a large number of landscape instances and algorithm trials. Finally, we perform a meta-search in the landscape parameter space to find landscapes which maximize the performance between algorithms. The results are related to some previous intuition about the behavior of these algorithms, but at the same time lead to new insights into the relationship between dependency modeling in EDAs and the structure of the problem landscape. The landscape generator and overall methodology are quite general and extendable and can be used to examine specific features of other algorithms.

  15. Automated segmentation of oral mucosa from wide-field OCT images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Goldan, Ryan N.; Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine F.; Lane, Pierre

    2016-03-01

    Optical Coherence Tomography (OCT) can discriminate morphological tissue features important for oral cancer detection such as the presence or absence of basement membrane and epithelial thickness. We previously reported an OCT system employing a rotary-pullback catheter capable of in vivo, rapid, wide-field (up to 90 x 2.5mm2) imaging in the oral cavity. Due to the size and complexity of these OCT data sets, rapid automated image processing software that immediately displays important tissue features is required to facilitate prompt bed-side clinical decisions. We present an automated segmentation algorithm capable of detecting the epithelial surface and basement membrane in 3D OCT images of the oral cavity. The algorithm was trained using volumetric OCT data acquired in vivo from a variety of tissue types and histology-confirmed pathologies spanning normal through cancer (8 sites, 21 patients). The algorithm was validated using a second dataset of similar size and tissue diversity. We demonstrate application of the algorithm to an entire OCT volume to map epithelial thickness, and detection of the basement membrane, over the tissue surface. These maps may be clinically useful for delineating pre-surgical tumor margins, or for biopsy site guidance.

  16. Improving strand pairing prediction through exploring folding cooperativity

    PubMed Central

    Jeong, Jieun; Berman, Piotr; Przytycka, Teresa M.

    2008-01-01

    The topology of β-sheets is defined by the pattern of hydrogen-bonded strand pairing. Therefore, predicting hydrogen bonded strand partners is a fundamental step towards predicting β-sheet topology. At the same time, finding the correct partners is very difficult due to long range interactions involved in strand pairing. Additionally, patterns of aminoacids observed in β-sheet formations are very general and therefore difficult to use for computational recognition of specific contacts between strands. In this work, we report a new strand pairing algorithm. To address above mentioned difficulties, our algorithm attempts to mimic elements of the folding process. Namely, in addition to ensuring that the predicted hydrogen bonded strand pairs satisfy basic global consistency constraints, it takes into account hypothetical folding pathways. Consistently with this view, introducing hydrogen bonds between a pair of strands changes the probabilities of forming hydrogen bonds between other pairs of strand. We demonstrate that this approach provides an improvement over previously proposed algorithms. We also compare the performance of this method to that of a global optimization algorithm that poses the problem as integer linear programming optimization problem and solves it using ILOG CPLEX™ package. PMID:18989036

  17. Changes in prescribed doses for the Seattle neutron therapy system

    NASA Astrophysics Data System (ADS)

    Popescu, A.

    2008-06-01

    From the beginning of the neutron therapy program at the University of Washington Medical Center, the neutron dose distribution in tissue has been calculated using an in-house treatment planning system called PRISM. In order to increase the accuracy of the absorbed dose calculations, two main improvements were made to the PRISM treatment planning system: (a) the algorithm was changed by the addition of an analytical expression of the central axis wedge factor dependence with field size and depth developed at UWMC. Older versions of the treatment-planning algorithm used a constant central axis wedge factor; (b) a complete newly commissioned set of measured data was introduced in the latest version of PRISM. The new version of the PRISM algorithm allowed for the use of the wedge profiles measured at different depths instead of one wedge profile measured at one depth. The comparison of the absorbed dose calculations using the old and the improved algorithm showed discrepancies mainly due to the missing central axis wedge factor dependence with field size and depth and due to the absence of the wedge profiles at depths different from 10 cm. This study concludes that the previously reported prescribed doses for neutron therapy should be changed.

  18. Measurement of signal use and vehicle turns as indication of driver cognition.

    PubMed

    Wallace, Bruce; Goubran, Rafik; Knoefel, Frank

    2014-01-01

    This paper uses data analytics to provide a method for the measurement of a key driving task, turn signal usage as a measure of an automatic over-learned cognitive function drivers. The paper augments previously reported more complex executive function cognition measures by proposing an algorithm that analyzes dashboard video to detect turn indicator use with 100% accuracy without any false positives. The paper proposes two algorithms that determine the actual turns made on a trip. The first through analysis of GPS location traces for the vehicle, locating 73% of the turns made with a very low false positive rate of 3%. A second algorithm uses GIS tools to retroactively create turn by turn directions. Fusion of GIS and GPS information raises performance to 77%. The paper presents the algorithm required to measure signal use for actual turns by realigning the 0.2Hz GPS data, 30fps video and GIS turn events. The result is a measure that can be tracked over time and changes in the driver's performance can result in alerts to the driver, caregivers or clinicians as indication of cognitive change. A lack of decline can also be shared as reassurance.

  19. Data Mining for Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Biswas, Gautam; Mack, Daniel; Mylaraswamy, Dinkar; Bharadwaj, Raj

    2013-01-01

    The Vehicle Integrated Prognostics Reasoner (VIPR) program describes methods for enhanced diagnostics as well as a prognostic extension to current state of art Aircraft Diagnostic and Maintenance System (ADMS). VIPR introduced a new anomaly detection function for discovering previously undetected and undocumented situations, where there are clear deviations from nominal behavior. Once a baseline (nominal model of operations) is established, the detection and analysis is split between on-aircraft outlier generation and off-aircraft expert analysis to characterize and classify events that may not have been anticipated by individual system providers. Offline expert analysis is supported by data curation and data mining algorithms that can be applied in the contexts of supervised learning methods and unsupervised learning. In this report, we discuss efficient methods to implement the Kolmogorov complexity measure using compression algorithms, and run a systematic empirical analysis to determine the best compression measure. Our experiments established that the combination of the DZIP compression algorithm and CiDM distance measure provides the best results for capturing relevant properties of time series data encountered in aircraft operations. This combination was used as the basis for developing an unsupervised learning algorithm to define "nominal" flight segments using historical flight segments.

  20. ExSTraCS 2.0: Description and Evaluation of a Scalable Learning Classifier System.

    PubMed

    Urbanowicz, Ryan J; Moore, Jason H

    2015-09-01

    Algorithmic scalability is a major concern for any machine learning strategy in this age of 'big data'. A large number of potentially predictive attributes is emblematic of problems in bioinformatics, genetic epidemiology, and many other fields. Previously, ExS-TraCS was introduced as an extended Michigan-style supervised learning classifier system that combined a set of powerful heuristics to successfully tackle the challenges of classification, prediction, and knowledge discovery in complex, noisy, and heterogeneous problem domains. While Michigan-style learning classifier systems are powerful and flexible learners, they are not considered to be particularly scalable. For the first time, this paper presents a complete description of the ExS-TraCS algorithm and introduces an effective strategy to dramatically improve learning classifier system scalability. ExSTraCS 2.0 addresses scalability with (1) a rule specificity limit, (2) new approaches to expert knowledge guided covering and mutation mechanisms, and (3) the implementation and utilization of the TuRF algorithm for improving the quality of expert knowledge discovery in larger datasets. Performance over a complex spectrum of simulated genetic datasets demonstrated that these new mechanisms dramatically improve nearly every performance metric on datasets with 20 attributes and made it possible for ExSTraCS to reliably scale up to perform on related 200 and 2000-attribute datasets. ExSTraCS 2.0 was also able to reliably solve the 6, 11, 20, 37, 70, and 135 multiplexer problems, and did so in similar or fewer learning iterations than previously reported, with smaller finite training sets, and without using building blocks discovered from simpler multiplexer problems. Furthermore, ExS-TraCS usability was made simpler through the elimination of previously critical run parameters.

  1. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2012-01-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  2. A genetic algorithm for replica server placement

    NASA Astrophysics Data System (ADS)

    Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl

    2011-12-01

    Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.

  3. Classification of small lesions on dynamic breast MRI: Integrating dimension reduction and out-of-sample extension into CADx methodology

    PubMed Central

    Nagarajan, Mahesh B.; Huber, Markus B.; Schlossbauer, Thomas; Leinsinger, Gerda; Krol, Andrzej; Wismüller, Axel

    2014-01-01

    Objective While dimension reduction has been previously explored in computer aided diagnosis (CADx) as an alternative to feature selection, previous implementations of its integration into CADx do not ensure strict separation between training and test data required for the machine learning task. This compromises the integrity of the independent test set, which serves as the basis for evaluating classifier performance. Methods and Materials We propose, implement and evaluate an improved CADx methodology where strict separation is maintained. This is achieved by subjecting the training data alone to dimension reduction; the test data is subsequently processed with out-of-sample extension methods. Our approach is demonstrated in the research context of classifying small diagnostically challenging lesions annotated on dynamic breast magnetic resonance imaging (MRI) studies. The lesions were dynamically characterized through topological feature vectors derived from Minkowski functionals. These feature vectors were then subject to dimension reduction with different linear and non-linear algorithms applied in conjunction with out-of-sample extension techniques. This was followed by classification through supervised learning with support vector regression. Area under the receiver-operating characteristic curve (AUC) was evaluated as the metric of classifier performance. Results Of the feature vectors investigated, the best performance was observed with Minkowski functional ’perimeter’ while comparable performance was observed with ’area’. Of the dimension reduction algorithms tested with ’perimeter’, the best performance was observed with Sammon’s mapping (0.84 ± 0.10) while comparable performance was achieved with exploratory observation machine (0.82 ± 0.09) and principal component analysis (0.80 ± 0.10). Conclusions The results reported in this study with the proposed CADx methodology present a significant improvement over previous results reported with such small lesions on dynamic breast MRI. In particular, non-linear algorithms for dimension reduction exhibited better classification performance than linear approaches, when integrated into our CADx methodology. We also note that while dimension reduction techniques may not necessarily provide an improvement in classification performance over feature selection, they do allow for a higher degree of feature compaction. PMID:24355697

  4. A Performance Evaluation of Lightning-NO Algorithms in CMAQ

    EPA Science Inventory

    In the Community Multiscale Air Quality (CMAQv5.2) model, we have implemented two algorithms for lightning NO production; one algorithm is based on the hourly observed cloud-to-ground lightning strike data from National Lightning Detection Network (NLDN) to replace the previous m...

  5. Derivation of a regional active-optical reflectance sensor corn algorithm

    USDA-ARS?s Scientific Manuscript database

    Active-optical reflectance sensor (AORS) algorithms developed for in-season corn (Zea mays L.) N management have traditionally been derived using sub-regional scale information. However, studies have shown these previously developed AORS algorithms are not consistently accurate when used on a region...

  6. An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method

    NASA Astrophysics Data System (ADS)

    Nouizi, F.; Erkol, H.; Luk, A.; Marks, M.; Unlu, M. B.; Gulsen, G.

    2016-10-01

    We previously introduced photo-magnetic imaging (PMI), an imaging technique that illuminates the medium under investigation with near-infrared light and measures the induced temperature increase using magnetic resonance thermometry (MRT). Using a multiphysics solver combining photon migration and heat diffusion, PMI models the spatiotemporal distribution of temperature variation and recovers high resolution optical absorption images using these temperature maps. In this paper, we present a new fast non-iterative reconstruction algorithm for PMI. This new algorithm uses analytic methods during the resolution of the forward problem and the assembly of the sensitivity matrix. We validate our new analytic-based algorithm with the first generation finite element method (FEM) based reconstruction algorithm previously developed by our team. The validation is performed using, first synthetic data and afterwards, real MRT measured temperature maps. Our new method accelerates the reconstruction process 30-fold when compared to a single iteration of the FEM-based algorithm.

  7. Crisis management during anaesthesia: myocardial ischaemia and infarction.

    PubMed

    Ludbrook, G L; Webb, R K; Currie, M; Watterson, L M

    2005-06-01

    Myocardial ischaemia and infarction are significant perioperative complications which are associated with poor patient outcome. Anaesthetic practice should therefore focus, particularly in the at risk patient, on their prevention, their accurate detection, on the identification of precipitating factors, and on rapid effective management. To examine the role of a previously described core algorithm "COVER ABCD-A SWIFT CHECK" supplemented by a specific sub-algorithm for myocardial ischaemia and infarction in the management of myocardial ischaemia and/or infarction occurring in association with anaesthesia. The potential performance of this structured approach for each of the relevant incidents among the first 4000 reported to the Australian Incident Monitoring Study (AIMS) was compared with the actual management as reported by the anaesthetists involved. Of the 125 incidents retrieved from the 4000 reports, 40 (1%) were considered to demonstrate myocardial infarction or ischaemia. The use of the structured approach described in this paper would have led to appropriate management in 90% of cases, with the remaining 10% requiring other sub-algorithms. It was considered that the application of this structured approach would have led to earlier recognition and/or better management of the problem in 45% of cases. Close and continuous monitoring of patients at risk of myocardial ischaemia during anaesthesia is necessary, using optimal ECG lead configurations, but sensitivity of this monitoring is not 100%. Coronary vasodilatation with glyceryl trinitrate (GTN) should not be withheld when indicated and the early use of beta blocking drugs should be considered even with normal blood pressures and heart rates.

  8. On Super-Resolution and the MUSIC Algorithm,

    DTIC Science & Technology

    1985-05-01

    SUPER-RESOLUTION AND THE MUSIC ALGORITHM AUTHOR: G D de Villiers DATE: May 1985 SUMMARY Simulation results for phased array signal processing using...the MUSIC algorithm are presented. The model used is more realistic than previous ones and it gives an indication as to how the algorithm would perform...resolution ON SUPER-RESOLUTION AND THE MUSIC ALGORITHM 1. INTRODUCTION At present there is a considerable amount of interest in "high-resolution" b

  9. Four (Algorithms) in One (Bag): An Integrative Framework of Knowledge for Teaching the Standard Algorithms of the Basic Arithmetic Operations

    ERIC Educational Resources Information Center

    Raveh, Ira; Koichu, Boris; Peled, Irit; Zaslavsky, Orit

    2016-01-01

    In this article we present an integrative framework of knowledge for teaching the standard algorithms of the four basic arithmetic operations. The framework is based on a mathematical analysis of the algorithms, a connectionist perspective on teaching mathematics and an analogy with previous frameworks of knowledge for teaching arithmetic…

  10. Protein structure prediction with local adjust tabu search algorithm

    PubMed Central

    2014-01-01

    Background Protein folding structure prediction is one of the most challenging problems in the bioinformatics domain. Because of the complexity of the realistic protein structure, the simplified structure model and the computational method should be adopted in the research. The AB off-lattice model is one of the simplification models, which only considers two classes of amino acids, hydrophobic (A) residues and hydrophilic (B) residues. Results The main work of this paper is to discuss how to optimize the lowest energy configurations in 2D off-lattice model and 3D off-lattice model by using Fibonacci sequences and real protein sequences. In order to avoid falling into local minimum and faster convergence to the global minimum, we introduce a novel method (SATS) to the protein structure problem, which combines simulated annealing algorithm and tabu search algorithm. Various strategies, such as the new encoding strategy, the adaptive neighborhood generation strategy and the local adjustment strategy, are adopted successfully for high-speed searching the optimal conformation corresponds to the lowest energy of the protein sequences. Experimental results show that some of the results obtained by the improved SATS are better than those reported in previous literatures, and we can sure that the lowest energy folding state for short Fibonacci sequences have been found. Conclusions Although the off-lattice models is not very realistic, they can reflect some important characteristics of the realistic protein. It can be found that 3D off-lattice model is more like native folding structure of the realistic protein than 2D off-lattice model. In addition, compared with some previous researches, the proposed hybrid algorithm can more effectively and more quickly search the spatial folding structure of a protein chain. PMID:25474708

  11. Simulation optimization of PSA-threshold based prostate cancer screening policies

    PubMed Central

    Zhang, Jingyu; Denton, Brian T.; Shah, Nilay D.; Inman, Brant A.

    2013-01-01

    We describe a simulation optimization method to design PSA screening policies based on expected quality adjusted life years (QALYs). Our method integrates a simulation model in a genetic algorithm which uses a probabilistic method for selection of the best policy. We present computational results about the efficiency of our algorithm. The best policy generated by our algorithm is compared to previously recommended screening policies. Using the policies determined by our model, we present evidence that patients should be screened more aggressively but for a shorter length of time than previously published guidelines recommend. PMID:22302420

  12. A class of least-squares filtering and identification algorithms with systolic array architectures

    NASA Technical Reports Server (NTRS)

    Kalson, Seth Z.; Yao, Kung

    1991-01-01

    A unified approach is presented for deriving a large class of new and previously known time- and order-recursive least-squares algorithms with systolic array architectures, suitable for high-throughput-rate and VLSI implementations of space-time filtering and system identification problems. The geometrical derivation given is unique in that no assumption is made concerning the rank of the sample data correlation matrix. This method utilizes and extends the concept of oblique projections, as used previously in the derivations of the least-squares lattice algorithms. Exponentially weighted least-squares criteria are considered for both sliding and growing memory.

  13. A bioinspired collision detection algorithm for VLSI implementation

    NASA Astrophysics Data System (ADS)

    Cuadri, J.; Linan, G.; Stafford, R.; Keil, M. S.; Roca, E.

    2005-06-01

    In this paper a bioinspired algorithm for collision detection is proposed, based on previous models of the locust (Locusta migratoria) visual system reported by F.C. Rind and her group, in the University of Newcastle-upon-Tyne. The algorithm is suitable for VLSI implementation in standard CMOS technologies as a system-on-chip for automotive applications. The working principle of the algorithm is to process a video stream that represents the current scenario, and to fire an alarm whenever an object approaches on a collision course. Moreover, it establishes a scale of warning states, from no danger to collision alarm, depending on the activity detected in the current scenario. In the worst case, the minimum time before collision at which the model fires the collision alarm is 40 msec (1 frame before, at 25 frames per second). Since the average time to successfully fire an airbag system is 2 msec, even in the worst case, this algorithm would be very helpful to more efficiently arm the airbag system, or even take some kind of collision avoidance countermeasures. Furthermore, two additional modules have been included: a "Topological Feature Estimator" and an "Attention Focusing Algorithm". The former takes into account the shape of the approaching object to decide whether it is a person, a road line or a car. This helps to take more adequate countermeasures and to filter false alarms. The latter centres the processing power into the most active zones of the input frame, thus saving memory and processing time resources.

  14. AdaBoost-based on-line signature verifier

    NASA Astrophysics Data System (ADS)

    Hongo, Yasunori; Muramatsu, Daigo; Matsumoto, Takashi

    2005-03-01

    Authentication of individuals is rapidly becoming an important issue. The authors previously proposed a Pen-input online signature verification algorithm. The algorithm considers a writer"s signature as a trajectory of pen position, pen pressure, pen azimuth, and pen altitude that evolve over time, so that it is dynamic and biometric. Many algorithms have been proposed and reported to achieve accuracy for on-line signature verification, but setting the threshold value for these algorithms is a problem. In this paper, we introduce a user-generic model generated by AdaBoost, which resolves this problem. When user- specific models (one model for each user) are used for signature verification problems, we need to generate the models using only genuine signatures. Forged signatures are not available because imposters do not give forged signatures for training in advance. However, we can make use of another's forged signature in addition to the genuine signatures for learning by introducing a user generic model. And Adaboost is a well-known classification algorithm, making final decisions depending on the sign of the output value. Therefore, it is not necessary to set the threshold value. A preliminary experiment is performed on a database consisting of data from 50 individuals. This set consists of western-alphabet-based signatures provide by a European research group. In this experiment, our algorithm gives an FRR of 1.88% and an FAR of 1.60%. Since no fine-tuning was done, this preliminary result looks very promising.

  15. Learning receptor positions from imperfectly known motions

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Mulligan, Jeffrey B.

    1990-01-01

    An algorithm is described for learning image interpolation functions for sensor arrays whose sensor positions are somewhat disordered. The learning is based on failures of translation invariance, so it does not require knowledge of the images being presented to the visual system. Previously reported implementations of the method assumed the visual system to have precise knowledge of the translations. It is demonstrated that translation estimates computed from the imperfectly interpolated images can have enough accuracy to allow the learning process to converge to a correct interpolation.

  16. Crisis management during anaesthesia: obstruction of the natural airway.

    PubMed

    Visvanathan, T; Kluger, M T; Webb, R K; Westhorpe, R N

    2005-06-01

    Obstruction of the natural airway, while usually easily recognised and managed, may present simply as desaturation, have an unexpected cause, be very difficult to manage, and have serious consequences for the patient. To examine the role of a previously described core algorithm "COVER ABCD-A SWIFT CHECK", supplemented by a specific sub-algorithm for obstruction of the natural airway, in the management of acute airway obstruction occurring in association with anaesthesia. The potential performance for this structured approach for each of the relevant incidents among the first 4000 reported to the Australian Incident Monitoring Study (AIMS) was compared with the actual management as reported by the anaesthetists involved. There were 62 relevant incidents among the first 4000 reports to the AIMS. It was considered that the correct use of the structured approach would have led to earlier recognition of the problem and/or better management in 11% of cases. Airway management is a fundamental anaesthetic responsibility and skill. Airway obstruction demands a rapid and organised approach to its diagnosis and management and undue delay usually results in desaturation and a potential threat to life. An uncomplicated pre-learned sequence of airway rescue instructions is an essential part of every anaesthetist's clinical practice requirements.

  17. Military, Charter, Unreported Domestic Traffic and General Aviation 1976, 1984, 1992, and 2015 Emission Scenarios

    NASA Technical Reports Server (NTRS)

    Mortlock, Alan; VanAlstyne, Richard

    1998-01-01

    The report describes development of databases estimating aircraft engine exhaust emissions for the years 1976 and 1984 from global operations of Military, Charter, historic Soviet and Chinese, Unreported Domestic traffic, and General Aviation (GA). These databases were developed under the National Aeronautics and Space Administration's (NASA) Advanced Subsonic Assessment (AST). McDonnell Douglas Corporation's (MDC), now part of the Boeing Company has previously estimated engine exhaust emissions' databases for the baseline year of 1992 and a 2015 forecast year scenario. Since their original creation, (Ward, 1994 and Metwally, 1995) revised technology algorithms have been developed. Additionally, GA databases have been created and all past NIDC emission inventories have been updated to reflect the new technology algorithms. Revised data (Baughcum, 1996 and Baughcum, 1997) for the scheduled inventories have been used in this report to provide a comparison of the total aviation emission forecasts from various components. Global results of two historic years (1976 and 1984), a baseline year (1992) and a forecast year (2015) are presented. Since engine emissions are directly related to fuel usage, an overview of individual aviation annual global fuel use for each inventory component is also given in this report.

  18. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    PubMed Central

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028

  19. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    PubMed

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  20. An improved algorithm for evaluating trellis phase codes

    NASA Technical Reports Server (NTRS)

    Mulligan, M. G.; Wilson, S. G.

    1982-01-01

    A method is described for evaluating the minimum distance parameters of trellis phase codes, including CPFSK, partial response FM, and more importantly, coded CPM (continuous phase modulation) schemes. The algorithm provides dramatically faster execution times and lesser memory requirements than previous algorithms. Results of sample calculations and timing comparisons are included.

  1. An improved algorithm for evaluating trellis phase codes

    NASA Technical Reports Server (NTRS)

    Mulligan, M. G.; Wilson, S. G.

    1984-01-01

    A method is described for evaluating the minimum distance parameters of trellis phase codes, including CPFSK, partial response FM, and more importantly, coded CPM (continuous phase modulation) schemes. The algorithm provides dramatically faster execution times and lesser memory requirements than previous algorithms. Results of sample calculations and timing comparisons are included.

  2. Strategic Control Algorithm Development : Volume 3. Strategic Algorithm Report.

    DOT National Transportation Integrated Search

    1974-08-01

    The strategic algorithm report presents a detailed description of the functional basic strategic control arrival algorithm. This description is independent of a particular computer or language. Contained in this discussion are the geometrical and env...

  3. GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.

    PubMed

    Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim

    2016-08-01

    In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.

  4. A SAT Based Effective Algorithm for the Directed Hamiltonian Cycle Problem

    NASA Astrophysics Data System (ADS)

    Jäger, Gerold; Zhang, Weixiong

    The Hamiltonian cycle problem (HCP) is an important combinatorial problem with applications in many areas. While thorough theoretical and experimental analyses have been made on the HCP in undirected graphs, little is known for the HCP in directed graphs (DHCP). The contribution of this work is an effective algorithm for the DHCP. Our algorithm explores and exploits the close relationship between the DHCP and the Assignment Problem (AP) and utilizes a technique based on Boolean satisfiability (SAT). By combining effective algorithms for the AP and SAT, our algorithm significantly outperforms previous exact DHCP algorithms including an algorithm based on the award-winning Concorde TSP algorithm.

  5. Processor core for real time background identification of HD video based on OpenCV Gaussian mixture model algorithm

    NASA Astrophysics Data System (ADS)

    Genovese, Mariangela; Napoli, Ettore

    2013-05-01

    The identification of moving objects is a fundamental step in computer vision processing chains. The development of low cost and lightweight smart cameras steadily increases the request of efficient and high performance circuits able to process high definition video in real time. The paper proposes two processor cores aimed to perform the real time background identification on High Definition (HD, 1920 1080 pixel) video streams. The implemented algorithm is the OpenCV version of the Gaussian Mixture Model (GMM), an high performance probabilistic algorithm for the segmentation of the background that is however computationally intensive and impossible to implement on general purpose CPU with the constraint of real time processing. In the proposed paper, the equations of the OpenCV GMM algorithm are optimized in such a way that a lightweight and low power implementation of the algorithm is obtained. The reported performances are also the result of the use of state of the art truncated binary multipliers and ROM compression techniques for the implementation of the non-linear functions. The first circuit has commercial FPGA devices as a target and provides speed and logic resource occupation that overcome previously proposed implementations. The second circuit is oriented to an ASIC (UMC-90nm) standard cell implementation. Both implementations are able to process more than 60 frames per second in 1080p format, a frame rate compatible with HD television.

  6. Model-based Bayesian signal extraction algorithm for peripheral nerves

    NASA Astrophysics Data System (ADS)

    Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.

    2017-10-01

    Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of controlling a prosthetic limb.

  7. The Search for Effective Algorithms for Recovery from Loss of Separation

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Munoz, Cesar A.; Narawicz, Anthony J.

    2012-01-01

    Our previous work presented an approach for developing high confidence algorithms for recovering aircraft from loss of separation situations. The correctness theorems for the algorithms relied on several key assumptions, namely that state data for all local aircraft is perfectly known, that resolution maneuvers can be achieved instantaneously, and that all aircraft compute resolutions using exactly the same data. Experiments showed that these assumptions were adequate in cases where the aircraft are far away from losing separation, but are insufficient when the aircraft have already lost separation. This paper describes the results of this experimentation and proposes a new criteria specification for loss of separation recovery that preserves the formal safety properties of the previous criteria while overcoming some key limitations. Candidate algorithms that satisfy the new criteria are presented.

  8. Extending a Tandem Mass Spectral Library to Include MS2 Spectra of Fragment Ions Produced In-Source and MSn Spectra.

    PubMed

    Yang, Xiaoyu; Neta, Pedatsur; Stein, Stephen E

    2017-11-01

    Tandem mass spectral library searching is finding increased use as an effective means of determining chemical identity in mass spectrometry-based omics studies. We previously reported on constructing a tandem mass spectral library that includes spectra for multiple precursor ions for each analyte. Here we report our method for expanding this library to include MS 2 spectra of fragment ions generated during the ionization process (in-source fragment ions) as well as MS 3 and MS 4 spectra. These can assist the chemical identification process. A simple density-based clustering algorithm was used to cluster all significant precursor ions from MS 1 scans for an analyte acquired during an infusion experiment. The MS 2 spectra associated with these precursor ions were grouped into the same precursor clusters. Subsequently, a new top-down hierarchical divisive clustering algorithm was developed for clustering the spectra from fragmentation of ions in each precursor cluster, including the MS 2 spectra of the original precursors and of the in-source fragments as well as the MS n spectra. This algorithm starts with all the spectra of one precursor in one cluster and then separates them into sub-clusters of similar spectra based on the fragment patterns. Herein, we describe the algorithms and spectral evaluation methods for extending the library. The new library features were demonstrated by searching the high resolution spectra of E. coli extracts against the extended library, allowing identification of compounds and their in-source fragment ions in a manner that was not possible before. Graphical Abstract ᅟ.

  9. The reliability and accuracy of estimating heart-rates from RGB video recorded on a consumer grade camera

    NASA Astrophysics Data System (ADS)

    Eaton, Adam; Vincely, Vinoin; Lloyd, Paige; Hugenberg, Kurt; Vishwanath, Karthik

    2017-03-01

    Video Photoplethysmography (VPPG) is a numerical technique to process standard RGB video data of exposed human skin and extracting the heart-rate (HR) from the skin areas. Being a non-contact technique, VPPG has the potential to provide estimates of subject's heart-rate, respiratory rate, and even the heart rate variability of human subjects with potential applications ranging from infant monitors, remote healthcare and psychological experiments, particularly given the non-contact and sensor-free nature of the technique. Though several previous studies have reported successful correlations in HR obtained using VPPG algorithms to HR measured using the gold-standard electrocardiograph, others have reported that these correlations are dependent on controlling for duration of the video-data analyzed, subject motion, and ambient lighting. Here, we investigate the ability of two commonly used VPPG-algorithms in extraction of human heart-rates under three different laboratory conditions. We compare the VPPG HR values extracted across these three sets of experiments to the gold-standard values acquired by using an electrocardiogram or a commercially available pulseoximeter. The two VPPG-algorithms were applied with and without KLT-facial feature tracking and detection algorithms from the Computer Vision MATLAB® toolbox. Results indicate that VPPG based numerical approaches have the ability to provide robust estimates of subject HR values and are relatively insensitive to the devices used to record the video data. However, they are highly sensitive to conditions of video acquisition including subject motion, the location, size and averaging techniques applied to regions-of-interest as well as to the number of video frames used for data processing.

  10. Models of performance of evolutionary program induction algorithms based on indicators of problem difficulty.

    PubMed

    Graff, Mario; Poli, Riccardo; Flores, Juan J

    2013-01-01

    Modeling the behavior of algorithms is the realm of evolutionary algorithm theory. From a practitioner's point of view, theory must provide some guidelines regarding which algorithm/parameters to use in order to solve a particular problem. Unfortunately, most theoretical models of evolutionary algorithms are difficult to apply to realistic situations. However, in recent work (Graff and Poli, 2008, 2010), where we developed a method to practically estimate the performance of evolutionary program-induction algorithms (EPAs), we started addressing this issue. The method was quite general; however, it suffered from some limitations: it required the identification of a set of reference problems, it required hand picking a distance measure in each particular domain, and the resulting models were opaque, typically being linear combinations of 100 features or more. In this paper, we propose a significant improvement of this technique that overcomes the three limitations of our previous method. We achieve this through the use of a novel set of features for assessing problem difficulty for EPAs which are very general, essentially based on the notion of finite difference. To show the capabilities or our technique and to compare it with our previous performance models, we create models for the same two important classes of problems-symbolic regression on rational functions and Boolean function induction-used in our previous work. We model a variety of EPAs. The comparison showed that for the majority of the algorithms and problem classes, the new method produced much simpler and more accurate models than before. To further illustrate the practicality of the technique and its generality (beyond EPAs), we have also used it to predict the performance of both autoregressive models and EPAs on the problem of wind speed forecasting, obtaining simpler and more accurate models that outperform in all cases our previous performance models.

  11. Formation Flying for Distributed InSAR

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Murray, Emmanuell A.; Ploen, Scott R.; Gromov, Konstantin G.; Chen, Curtis W.

    2006-01-01

    We consider two spacecraft flying in formation to create interferometric synthetic aperture radar (InSAR). Several candidate orbits for such in InSar formation have been previously determined based on radar performance and Keplerian orbital dynamics. However, with out active control, disturbance-induced drift can degrade radar performance and (in the worst case) cause a collision. This study evaluates the feasibility of operating the InSAR spacecraft as a formation, that is, with inner-spacecraft sensing and control. We describe the candidate InSAR orbits, design formation guidance and control architectures and algorithms, and report the (Delta)(nu) and control acceleration requirements for the candidate orbits for several tracking performance levels. As part of determining formation requirements, a formation guidance algorithm called Command Virtual Structure is introduced that can reduce the (Delta)(nu) requirements compared to standard Leader/Follower formation approaches.

  12. Testing large aspheric surfaces with complementary annular subaperture interferometric method

    NASA Astrophysics Data System (ADS)

    Hou, Xi; Wu, Fan; Lei, Baiping; Fan, Bin; Chen, Qiang

    2008-07-01

    Annular subaperture interferometric method has provided an alternative solution to testing rotationally symmetric aspheric surfaces with low cost and flexibility. However, some new challenges, particularly in the motion and algorithm components, appear when applied to large aspheric surfaces with large departure in the practical engineering. Based on our previously reported annular subaperture reconstruction algorithm with Zernike annular polynomials and matrix method, and the experimental results for an approximate 130-mm diameter and f/2 parabolic mirror, an experimental investigation by testing an approximate 302-mm diameter and f/1.7 parabolic mirror with the complementary annular subaperture interferometric method is presented. We have focused on full-aperture reconstruction accuracy, and discuss some error effects and limitations of testing larger aspheric surfaces with the annular subaperture method. Some considerations about testing sector segment with complementary sector subapertures are provided.

  13. Gold rush - A swarm dynamics in games

    NASA Astrophysics Data System (ADS)

    Zelinka, Ivan; Bukacek, Michal

    2017-07-01

    This paper is focused on swarm intelligence techniques and its practical use in computer games. The aim is to show how a swarm dynamics can be generated by multiplayer game, then recorded, analyzed and eventually controlled. In this paper we also discuss possibility to use swarm intelligence instead of game players. Based on our previous experiments two games, using swarm algorithms are mentioned briefly here. The first one is strategy game StarCraft: Brood War, and TicTacToe in which SOMA algorithm has also take a role of player against human player. Open research reported here has shown potential benefit of swarm computation in the field of strategy games and players strategy based on swarm behavior record and analysis. We propose new game called Gold Rush as an experimental environment for human or artificial swarm behavior and consequent analysis.

  14. An Ultralow-Power Sleep Spindle Detection System on Chip.

    PubMed

    Iranmanesh, Saam; Rodriguez-Villegas, Esther

    2017-08-01

    This paper describes a full system-on-chip to automatically detect sleep spindle events from scalp EEG signals. These events, which are known to play an important role on memory consolidation during sleep, are also characteristic of a number of neurological diseases. The operation of the system is based on a previously reported algorithm, which used the Teager energy operator, together with the Spectral Edge Frequency (SEF50) achieving more than 70% sensitivity and 98% specificity. The algorithm is now converted into a hardware analog based customized implementation in order to achieve extremely low levels of power. Experimental results prove that the system, which is fabricated in a 0.18 μm CMOS technology, is able to operate from a 1.25 V power supply consuming only 515 nW, with an accuracy that is comparable to its software counterpart.

  15. Breadboard stellar tracker system test report

    NASA Technical Reports Server (NTRS)

    Kollodge, J. C.; Parrish, K. A.

    1984-01-01

    BASD has, in the past, developed several unique position tracking algorithms for charge transfer device (CTD) sensors. These algorithms provide an interpixel transfer function with the following characteristics: (1) high linearity; (2) simplified track logic; (3) high gain; and (4) high noise rejection. A previous test program using the GE charge injection device (CID) showed that accuracy for BASD's breadboard was limited to approximately 2% of a pixel (1 sigma) whereas analysis and simulation indicated the limit should be less than 0.5% of a pixel, assuming the limit to be detector response and dark current noise. The test program was conducted under NASA contract No. NAS8-34263. The test approach for that program did not provide sufficient data to identify the sources of error and left open the amount of contribution from parameters such as image distribution, geometric distortion and system alignment errors.

  16. Hailstorms over Switzerland: Verification of Crowd-sourced Data

    NASA Astrophysics Data System (ADS)

    Noti, Pascal-Andreas; Martynov, Andrey; Hering, Alessandro; Martius, Olivia

    2016-04-01

    The reports of smartphone users, witnessing hailstorms, can be used as source of independent, ground-based observation data on ground-reaching hailstorms with high temporal and spatial resolution. The presented work focuses on the verification of crowd-sourced data collected over Switzerland with the help of a smartphone application recently developed by MeteoSwiss. The precise location, time of hail precipitation and the hailstone size are included in the crowd-sourced data, assessed on the basis of the weather radar data of MeteoSwiss. Two radar-based hail detection algorithms, POH (Probability of Hail) and MESHS (Maximum Expected Severe Hail Size), in use at MeteoSwiss are confronted with the crowd-sourced data. The available data and investigation time period last from June to August 2015. Filter criteria have been applied in order to remove false reports from the crowd-sourced data. Neighborhood methods have been introduced to reduce the uncertainties which result from spatial and temporal biases. The crowd-sourced and radar data are converted into binary sequences according to previously set thresholds, allowing for using a categorical verification. Verification scores (e.g. hit rate) are then calculated from a 2x2 contingency table. The hail reporting activity and patterns corresponding to "hail" and "no hail" reports, sent from smartphones, have been analyzed. The relationship between the reported hailstone sizes and both radar-based hail detection algorithms have been investigated.

  17. Reconstructing Spectral Scenes Using Statistical Estimation to Enhance Space Situational Awareness

    DTIC Science & Technology

    2006-12-01

    simultane- ously spatially and spectrally deblur the images collected from ASIS. The algorithms are based on proven estimation theories and do not...collected with any system using a filtering technology known as Electronic Tunable Filters (ETFs). Previous methods to deblur spectral images collected...spectrally deblurring then the previously investigated methods. This algorithm expands on a method used for increasing the spectral resolution in gamma-ray

  18. Fluorescence spectroscopy for diagnosis of squamous intraepithelial lesions of the cervix.

    PubMed

    Mitchell, M F; Cantor, S B; Ramanujam, N; Tortolero-Luna, G; Richards-Kortum, R

    1999-03-01

    To calculate receiver operating characteristic (ROC) curves for fluorescence spectroscopy in order to measure its performance in the diagnosis of squamous intraepithelial lesions (SILs) and to compare these curves with those for other diagnostic methods: colposcopy, cervicography, speculoscopy, Papanicolaou smear screening, and human papillomavirus (HPV) testing. Data from our previous clinical study were used to calculate ROC curves for fluorescence spectroscopy. Curves for other techniques were calculated from other investigators' reports. To identify these, a MEDLINE search for articles published from 1966 to 1996 was carried out, using the search terms "colposcopy," "cervicoscopy," "cervicography," "speculoscopy," "Papanicolaou smear," "HPV testing," "fluorescence spectroscopy," and "polar probe" in conjunction with the terms "diagnosis," "positive predictive value," "negative predictive value," and "receiver operating characteristic curve." We found 270 articles, from which articles were selected if they reported results of studies involving high-disease-prevalence populations, reported findings of studies in which colposcopically directed biopsy was the criterion standard, and included sufficient data for recalculation of the reported sensitivities and specificities. We calculated ROC curves for fluorescence spectroscopy using Bayesian and neural net algorithms. A meta-analytic approach was used to calculate ROC curves for the other techniques. Areas under the curves were calculated. Fluorescence spectroscopy using the neural net algorithm had the highest area under the ROC curve, followed by fluorescence spectroscopy using the Bayesian algorithm, followed by colposcopy, the standard diagnostic technique. Cervicography, Papanicolaou smear screening, and HPV testing performed comparably with each other but not as well as fluorescence spectroscopy and colposcopy. Fluorescence spectroscopy performs better than colposcopy and other techniques in the diagnosis of SILs. Because it also permits real-time diagnosis and has the potential of being used by inexperienced health care personnel, this technology holds bright promise.

  19. Torsional anharmonicity in the conformational thermodynamics of flexible molecules

    NASA Astrophysics Data System (ADS)

    Miller, Thomas F., III; Clary, David C.

    We present an algorithm for calculating the conformational thermodynamics of large, flexible molecules that combines ab initio electronic structure theory calculations with a torsional path integral Monte Carlo (TPIMC) simulation. The new algorithm overcomes the previous limitations of the TPIMC method by including the thermodynamic contributions of non-torsional vibrational modes and by affordably incorporating the ab initio calculation of conformer electronic energies, and it improves the conventional ab initio treatment of conformational thermodynamics by accounting for the anharmonicity of the torsional modes. Using previously published ab initio results and new TPIMC calculations, we apply the algorithm to the conformers of the adrenaline molecule.

  20. Field programmable gate array based fuzzy neural signal processing system for differential diagnosis of QRS complex tachycardia and tachyarrhythmia in noisy ECG signals.

    PubMed

    Chowdhury, Shubhajit Roy

    2012-04-01

    The paper reports of a Field Programmable Gate Array (FPGA) based embedded system for detection of QRS complex in a noisy electrocardiogram (ECG) signal and thereafter differential diagnosis of tachycardia and tachyarrhythmia. The QRS complex has been detected after application of entropy measure of fuzziness to build a detection function of ECG signal, which has been previously filtered to remove power line interference and base line wander. Using the detected QRS complexes, differential diagnosis of tachycardia and tachyarrhythmia has been performed. The entire algorithm has been realized in hardware on an FPGA. Using the standard CSE ECG database, the algorithm performed highly effectively. The performance of the algorithm in respect of QRS detection with sensitivity (Se) of 99.74% and accuracy of 99.5% is achieved when tested using single channel ECG with entropy criteria. The performance of the QRS detection system has been compared and found to be better than most of the QRS detection systems available in literature. Using the system, 200 patients have been diagnosed with an accuracy of 98.5%.

  1. Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm

    NASA Astrophysics Data System (ADS)

    Asaithambi, Sasikumar; Rajappa, Muthaiah

    2018-05-01

    In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.

  2. Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm.

    PubMed

    Asaithambi, Sasikumar; Rajappa, Muthaiah

    2018-05-01

    In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.

  3. The ALMA Science Pipeline: Current Status

    NASA Astrophysics Data System (ADS)

    Humphreys, Elizabeth; Miura, Rie; Brogan, Crystal L.; Hibbard, John; Hunter, Todd R.; Indebetouw, Remy

    2016-09-01

    The ALMA Science Pipeline is being developed for the automated calibration and imaging of ALMA interferometric and single-dish data. The calibration Pipeline for interferometric data was accepted for use by ALMA Science Operations in 2014, and for single-dish data end-to-end processing in 2015. However, work is ongoing to expand the use cases for which the Pipeline can be used e.g. for higher frequency and lower signal-to-noise datasets, and for new observing modes. A current focus includes the commissioning of science target imaging for interferometric data. For the Single Dish Pipeline, the line finding algorithm used in baseline subtraction and baseline flagging heuristics have been greately improved since the prototype used for data from the previous cycle. These algorithms, unique to the Pipeline, produce better results than standard manual processing in many cases. In this poster, we report on the current status of the Pipeline capabilities, present initial results from the Imaging Pipeline, and the smart line finding and flagging algorithm used in the Single Dish Pipeline. The Pipeline is released as part of CASA (the Common Astronomy Software Applications package).

  4. Measurement of the Exchange Rate of Waters of Hydration in Elastin by 2D T(2)-T(2) Correlation Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Sun, Cheng; Boutis, Gregory S

    2011-02-28

    We report on the direct measurement of the exchange rate of waters of hydration in elastin by T(2)-T(2) exchange spectroscopy. The exchange rates in bovine nuchal ligament elastin and aortic elastin at temperatures near, below and at the physiological temperature are reported. Using an Inverse Laplace Transform (ILT) algorithm, we are able to identify four components in the relaxation times. While three of the components are in good agreement with previous measurements that used multi-exponential fitting, the ILT algorithm distinguishes a fourth component having relaxation times close to that of free water and is identified as water between fibers. With the aid of scanning electron microscopy, a model is proposed allowing for the application of a two-site exchange analysis between any two components for the determination of exchange rates between reservoirs. The results of the measurements support a model (described elsewhere [1]) wherein the net entropy of bulk waters of hydration should increase upon increasing temperature in the inverse temperature transition.

  5. Comparing ensemble learning methods based on decision tree classifiers for protein fold recognition.

    PubMed

    Bardsiri, Mahshid Khatibi; Eftekhari, Mahdi

    2014-01-01

    In this paper, some methods for ensemble learning of protein fold recognition based on a decision tree (DT) are compared and contrasted against each other over three datasets taken from the literature. According to previously reported studies, the features of the datasets are divided into some groups. Then, for each of these groups, three ensemble classifiers, namely, random forest, rotation forest and AdaBoost.M1 are employed. Also, some fusion methods are introduced for combining the ensemble classifiers obtained in the previous step. After this step, three classifiers are produced based on the combination of classifiers of types random forest, rotation forest and AdaBoost.M1. Finally, the three different classifiers achieved are combined to make an overall classifier. Experimental results show that the overall classifier obtained by the genetic algorithm (GA) weighting fusion method, is the best one in comparison to previously applied methods in terms of classification accuracy.

  6. Prediction of new ground-state crystal structure of T a2O5

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Kawazoe, Yoshiyuki

    2018-03-01

    Tantalum pentoxide (T a2O5 ) is a wide-gap semiconductor which has important technological applications. Despite the enormous efforts from both experimental and theoretical studies, the ground-state crystal structure of T a2O5 is not yet uniquely determined. Based on first-principles calculations in combination with evolutionary algorithm, we identify a triclinic phase of T a2O5 , which is energetically much more stable than any phases or structural models reported previously. Characterization of the static and dynamical properties of the phase reveals the common features shared with previous metastable phases of T a2O5 . In particular, we show that the d spacing of ˜3.8 Å found in the x-ray diffraction patterns of many previous experimental works is actually the radius of the second Ta-Ta coordination shell as defined by radial distribution functions.

  7. A study on the application of topic models to motif finding algorithms.

    PubMed

    Basha Gutierrez, Josep; Nakai, Kenta

    2016-12-22

    Topic models are statistical algorithms which try to discover the structure of a set of documents according to the abstract topics contained in them. Here we try to apply this approach to the discovery of the structure of the transcription factor binding sites (TFBS) contained in a set of biological sequences, which is a fundamental problem in molecular biology research for the understanding of transcriptional regulation. Here we present two methods that make use of topic models for motif finding. First, we developed an algorithm in which first a set of biological sequences are treated as text documents, and the k-mers contained in them as words, to then build a correlated topic model (CTM) and iteratively reduce its perplexity. We also used the perplexity measurement of CTMs to improve our previous algorithm based on a genetic algorithm and several statistical coefficients. The algorithms were tested with 56 data sets from four different species and compared to 14 other methods by the use of several coefficients both at nucleotide and site level. The results of our first approach showed a performance comparable to the other methods studied, especially at site level and in sensitivity scores, in which it scored better than any of the 14 existing tools. In the case of our previous algorithm, the new approach with the addition of the perplexity measurement clearly outperformed all of the other methods in sensitivity, both at nucleotide and site level, and in overall performance at site level. The statistics obtained show that the performance of a motif finding method based on the use of a CTM is satisfying enough to conclude that the application of topic models is a valid method for developing motif finding algorithms. Moreover, the addition of topic models to a previously developed method dramatically increased its performance, suggesting that this combined algorithm can be a useful tool to successfully predict motifs in different kinds of sets of DNA sequences.

  8. Technical Note: A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition and diffusion-derived components

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Schulz-Hanke, M.; Garcia Alba, J.; Jurisch, N.; Hagemann, U.; Sachs, T.; Sommer, M.; Augustin, J.

    2015-08-01

    Processes driving the production, transformation and transport of methane (CH4) in wetland ecosystems are highly complex. Thus, serious challenges are constitutes in terms of the mechanistic process understanding, the identification of potential environmental drivers and the calculation of reliable CH4 emission estimates. We present a simple calculation algorithm to separate open-water CH4 fluxes measured with automatic chambers into diffusion- and ebullition-derived components, which helps facilitating the identification of underlying dynamics and potential environmental drivers. Flux separation is based on ebullition related sudden concentration changes during single measurements. A variable ebullition filter is applied, using the lower and upper quartile and the interquartile range (IQR). Automation of data processing is achieved by using an established R-script, adjusted for the purpose of CH4 flux calculation. The algorithm was tested using flux measurement data (July to September 2013) from a former fen grassland site, converted into a shallow lake as a result of rewetting ebullition and diffusion contributed 46 and 55 %, respectively, to total CH4 emissions, which is comparable to those previously reported by literature. Moreover, the separation algorithm revealed a concealed shift in the diurnal trend of diffusive fluxes throughout the measurement period.

  9. Retrieval of volcanic ash height from satellite-based infrared measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Li, Jun; Zhao, Yingying; Gong, He; Li, Wenjie

    2017-05-01

    A new algorithm for retrieving volcanic ash cloud height from satellite-based measurements is presented. This algorithm, which was developed in preparation for China's next-generation meteorological satellite (FY-4), is based on volcanic ash microphysical property simulation and statistical optimal estimation theory. The MSG satellite's main payload, a 12-channel Spinning Enhanced Visible and Infrared Imager, was used as proxy data to test this new algorithm. A series of eruptions of Iceland's Eyjafjallajökull volcano during April to May 2010 and the Puyehue-Cordón Caulle volcanic complex eruption in the Chilean Andes on 16 June 2011 were selected as two typical cases for evaluating the algorithm under various meteorological backgrounds. Independent volcanic ash simulation training samples and satellite-based Cloud-Aerosol Lidar with Orthogonal Polarization data were used as validation data. It is demonstrated that the statistically based volcanic ash height algorithm is able to rapidly retrieve volcanic ash heights, globally. The retrieved ash heights show comparable accuracy with both independent training data and the lidar measurements, which is consistent with previous studies. However, under complicated background, with multilayers in vertical scale, underlying stratus clouds tend to have detrimental effects on the final retrieval accuracy. This is an unresolved problem, like many other previously published methods using passive satellite sensors. Compared with previous studies, the FY-4 ash height algorithm is independent of simultaneous atmospheric profiles, providing a flexible way to estimate volcanic ash height using passive satellite infrared measurements.

  10. NWRA AVOSS Wake Vortex Prediction Algorithm. 3.1.1

    NASA Technical Reports Server (NTRS)

    Robins, R. E.; Delisi, D. P.; Hinton, David (Technical Monitor)

    2002-01-01

    This report provides a detailed description of the wake vortex prediction algorithm used in the Demonstration Version of NASA's Aircraft Vortex Spacing System (AVOSS). The report includes all equations used in the algorithm, an explanation of how to run the algorithm, and a discussion of how the source code for the algorithm is organized. Several appendices contain important supplementary information, including suggestions for enhancing the algorithm and results from test cases.

  11. Operational warning of interplanetary shock arrivals using energetic particle data from ACE: Real-time Upstream Monitoring System

    NASA Astrophysics Data System (ADS)

    Donegan, M.; Vandegriff, J.; Ho, G. C.; Julia, S. J.

    2004-12-01

    We report on an operational system which provides advance warning and predictions of arrival times at Earth of interplanetary (IP) shocks that originate at the Sun. The data stream used in our prediction algorithm is real-time and comes from the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. Since locally accelerated energetic storm particle (ESP) events accompany most IP shocks, their arrival can be predicted using ESP event signatures. We have previously reported on the development and implementation of an algorithm which recognizes the upstream particle signature of approaching IP shocks and provides estimated countdown predictions. A web-based system (see (http://sd-www.jhuapl.edu/UPOS/RISP/index.html) combines this prediction capability with real-time ACE/EPAM data provided by the NOAA Space Environment Center. The most recent ACE data is continually processed and predictions of shock arrival time are updated every five minutes when an event is impending. An operational display is provided to indicate advisories and countdowns for the event. Running the algorithm on a test set of historical events, we obtain a median error of about 10 hours for predictions made 24-36 hours before actual shock arrival and about 6 hours when the shock is 6-12 hours away. This system can provide critical information to mission planners, satellite operations controllers, and scientists by providing significant lead-time for approaching events. Recently, we have made improvements to the triggering mechanism as well as re-training the neural network, and here we report prediction results from the latest system.

  12. TU-G-204-09: The Effects of Reduced- Dose Lung Cancer Screening CT On Lung Nodule Detection Using a CAD Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, S; Lo, P; Kim, G

    2015-06-15

    Purpose: While Lung Cancer Screening CT is being performed at low doses, the purpose of this study was to investigate the effects of further reducing dose on the performance of a CAD nodule-detection algorithm. Methods: We selected 50 cases from our local database of National Lung Screening Trial (NLST) patients for which we had both the image series and the raw CT data from the original scans. All scans were acquired with fixed mAs (25 for standard-sized patients, 40 for large patients) on a 64-slice scanner (Sensation 64, Siemens Healthcare). All images were reconstructed with 1-mm slice thickness, B50 kernel.more » 10 of the cases had at least one nodule reported on the NLST reader forms. Based on a previously-published technique, we added noise to the raw data to simulate reduced-dose versions of each case at 50% and 25% of the original NLST dose (i.e. approximately 1.0 and 0.5 mGy CTDIvol). For each case at each dose level, the CAD detection algorithm was run and nodules greater than 4 mm in diameter were reported. These CAD results were compared to “truth”, defined as the approximate nodule centroids from the NLST reports. Subject-level mean sensitivities and false-positive rates were calculated for each dose level. Results: The mean sensitivities of the CAD algorithm were 35% at the original dose, 20% at 50% dose, and 42.5% at 25% dose. The false-positive rates, in decreasing-dose order, were 3.7, 2.9, and 10 per case. In certain cases, particularly in larger patients, there were severe photon-starvation artifacts, especially in the apical region due to the high-attenuating shoulders. Conclusion: The detection task was challenging for the CAD algorithm at all dose levels, including the original NLST dose. However, the false-positive rate at 25% dose approximately tripled, suggesting a loss of CAD robustness somewhere between 0.5 and 1.0 mGy. NCI grant U01 CA181156 (Quantitative Imaging Network); Tobacco Related Disease Research Project grant 22RT-0131.« less

  13. Hardware Implementation of Lossless Adaptive Compression of Data From a Hyperspectral Imager

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didlier; Aranki, Nazeeh I.; Klimesh, Matthew A.; Bakhshi, Alireza

    2012-01-01

    Efficient onboard data compression can reduce the data volume from hyperspectral imagers on NASA and DoD spacecraft in order to return as much imagery as possible through constrained downlink channels. Lossless compression is important for signature extraction, object recognition, and feature classification capabilities. To provide onboard data compression, a hardware implementation of a lossless hyperspectral compression algorithm was developed using a field programmable gate array (FPGA). The underlying algorithm is the Fast Lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral- Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), p. 26 with the modification reported in Lossless, Multi-Spectral Data Comressor for Improved Compression for Pushbroom-Type Instruments (NPO-45473), NASA Tech Briefs, Vol. 32, No. 7 (July 2008) p. 63, which provides improved compression performance for data from pushbroom-type imagers. An FPGA implementation of the unmodified FL algorithm was previously developed and reported in Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System (NPO-46867), NASA Tech Briefs, Vol. 36, No. 5 (May 2012) p. 42. The essence of the FL algorithm is adaptive linear predictive compression using the sign algorithm for filter adaption. The FL compressor achieves a combination of low complexity and compression effectiveness that exceeds that of stateof- the-art techniques currently in use. The modification changes the predictor structure to tolerate differences in sensitivity of different detector elements, as occurs in pushbroom-type imagers, which are suitable for spacecraft use. The FPGA implementation offers a low-cost, flexible solution compared to traditional ASIC (application specific integrated circuit) and can be integrated as an intellectual property (IP) for part of, e.g., a design that manages the instrument interface. The FPGA implementation was benchmarked on the Xilinx Virtex IV LX25 device, and ported to a Xilinx prototype board. The current implementation has a critical path of 29.5 ns, which dictated a clock speed of 33 MHz. The critical path delay is end-to-end measurement between the uncompressed input data and the output compression data stream. The implementation compresses one sample every clock cycle, which results in a speed of 33 Msample/s. The implementation has a rather low device use of the Xilinx Virtex IV LX25, making the total power consumption of the implementation about 1.27 W.

  14. Boosting with Averaged Weight Vectors

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the previous base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. Some researchers have pointed out the intuition that it is probably better to construct a distribution that is orthogonal to the mistake vectors of all the previous base models, but that this is not always possible. We present an algorithm that attempts to come as close as possible to this goal in an efficient manner. We present experimental results demonstrating significant improvement over AdaBoost and the Totally Corrective boosting algorithm, which also attempts to satisfy this goal.

  15. Investigating the generalisation of an atlas-based synthetic-CT algorithm to another centre and MR scanner for prostate MR-only radiotherapy

    NASA Astrophysics Data System (ADS)

    Wyatt, Jonathan J.; Dowling, Jason A.; Kelly, Charles G.; McKenna, Jill; Johnstone, Emily; Speight, Richard; Henry, Ann; Greer, Peter B.; McCallum, Hazel M.

    2017-12-01

    There is increasing interest in MR-only radiotherapy planning since it provides superb soft-tissue contrast without the registration uncertainties inherent in a CT-MR registration. However, MR images cannot readily provide the electron density information necessary for radiotherapy dose calculation. An algorithm which generates synthetic CTs for dose calculations from MR images of the prostate using an atlas of 3 T MR images has been previously reported by two of the authors. This paper aimed to evaluate this algorithm using MR data acquired at a different field strength and a different centre to the algorithm atlas. Twenty-one prostate patients received planning 1.5 T MR and CT scans with routine immobilisation devices on a flat-top couch set-up using external lasers. The MR receive coils were supported by a coil bridge. Synthetic CTs were generated from the planning MR images with (sCT1V ) and without (sCT) a one voxel body contour expansion included in the algorithm. This was to test whether this expansion was required for 1.5 T images. Both synthetic CTs were rigidly registered to the planning CT (pCT). A 6 MV volumetric modulated arc therapy plan was created on the pCT and recalculated on the sCT and sCT1V . The synthetic CTs’ dose distributions were compared to the dose distribution calculated on the pCT. The percentage dose difference at isocentre without the body contour expansion (sCT-pCT) was Δ D_sCT=(0.9 +/- 0.8) % and with (sCT1V -pCT) was Δ D_sCT1V=(-0.7 +/- 0.7) % (mean  ±  one standard deviation). The sCT1V result was within one standard deviation of zero and agreed with the result reported previously using 3 T MR data. The sCT dose difference only agreed within two standard deviations. The mean  ±  one standard deviation gamma pass rate was Γ_sCT = 96.1 +/- 2.9 % for the sCT and Γ_sCT1V = 98.8 +/- 0.5 % for the sCT1V (with 2% global dose difference and 2~mm distance to agreement gamma criteria). The one voxel body contour expansion improves the synthetic CT accuracy for MR images acquired at 1.5 T but requires the MR voxel size to be similar to the atlas MR voxel size. This study suggests that the atlas-based algorithm can be generalised to MR data acquired using a different field strength at a different centre.

  16. Applied Meteorology Unit (AMU) Quarterly Report Fourth Quarter FY-14

    NASA Technical Reports Server (NTRS)

    Bauman, William H.; Crawford, Winifred C.; Watson, Leela R.; Shafer, Jaclyn

    2014-01-01

    Ms. Crawford completed the final report for the dual-Doppler wind field task. Dr. Bauman completed transitioning the 915-MHz and 50-MHz Doppler Radar Wind Profiler (DRWP) splicing algorithm developed at Marshall Space Flight Center (MSFC) into the AMU Upper Winds Tool. Dr. Watson completed work to assimilate data into model configurations for Wallops Flight Facility (WFF) and Kennedy Space Center/Cape Canaveral Air Force Station (KSC/CCAFS). Ms. Shafer began evaluating the a local high-resolution model she had set up previously for its ability to forecast weather elements that affect launches at KSC/CCAFS. Dr. Watson began a task to optimize the data-assimilated model she just developed to run in real time.

  17. Linear feature extraction from radar imagery: SBIR (Small Business Innovative Research), phase 2, option 2

    NASA Astrophysics Data System (ADS)

    Milgram, David L.; Kahn, Philip; Conner, Gary D.; Lawton, Daryl T.

    1988-12-01

    The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze features from Synthetic Aperture Radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of and technology issues involved in the development of an automated linear feature extraction system. This final report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.

  18. Profiling Arthritis Pain with a Decision Tree.

    PubMed

    Hung, Man; Bounsanga, Jerry; Liu, Fangzhou; Voss, Maren W

    2018-06-01

    Arthritis is the leading cause of work disability and contributes to lost productivity. Previous studies showed that various factors predict pain, but they were limited in sample size and scope from a data analytics perspective. The current study applied machine learning algorithms to identify predictors of pain associated with arthritis in a large national sample. Using data from the 2011 to 2012 Medical Expenditure Panel Survey, data mining was performed to develop algorithms to identify factors and patterns that contribute to risk of pain. The model incorporated over 200 variables within the algorithm development, including demographic data, medical claims, laboratory tests, patient-reported outcomes, and sociobehavioral characteristics. The developed algorithms to predict pain utilize variables readily available in patient medical records. Using the machine learning classification algorithm J48 with 50-fold cross-validations, we found that the model can significantly distinguish those with and without pain (c-statistics = 0.9108). The F measure was 0.856, accuracy rate was 85.68%, sensitivity was 0.862, specificity was 0.852, and precision was 0.849. Physical and mental function scores, the ability to climb stairs, and overall assessment of feeling were the most discriminative predictors from the 12 identified variables, predicting pain with 86% accuracy for individuals with arthritis. In this era of rapid expansion of big data application, the nature of healthcare research is moving from hypothesis-driven to data-driven solutions. The algorithms generated in this study offer new insights on individualized pain prediction, allowing the development of cost-effective care management programs for those experiencing arthritis pain. © 2017 World Institute of Pain.

  19. Predictive Cache Modeling and Analysis

    DTIC Science & Technology

    2011-11-01

    metaheuristic /bin-packing algorithm to optimize task placement based on task communication characterization. Our previous work on task allocation showed...Cache Miss Minimization Technology To efficiently explore combinations and discover nearly-optimal task-assignment algorithms , we extended to our...it was possible to use our algorithmic techniques to decrease network bandwidth consumption by ~25%. In this effort, we adapted these existing

  20. Prevalence of Traditional and Reverse-Algorithm Syphilis Screening in Laboratory Practice: A Survey of Participants in the College of American Pathologists Syphilis Serology Proficiency Testing Program.

    PubMed

    Rhoads, Daniel D; Genzen, Jonathan R; Bashleben, Christine P; Faix, James D; Ansari, M Qasim

    2017-01-01

    -Syphilis serology screening in laboratory practice is evolving. Traditionally, the syphilis screening algorithm begins with a nontreponemal immunoassay, which is manually performed by a laboratory technologist. In contrast, the reverse algorithm begins with a treponemal immunoassay, which can be automated. The Centers for Disease Control and Prevention has recognized both approaches, but little is known about the current state of laboratory practice, which could impact test utilization and interpretation. -To assess the current state of laboratory practice for syphilis serologic screening. -In August 2015, a voluntary questionnaire was sent to the 2360 laboratories that subscribe to the College of American Pathologists syphilis serology proficiency survey. -Of the laboratories surveyed, 98% (2316 of 2360) returned the questionnaire, and about 83% (1911 of 2316) responded to at least some questions. Twenty-eight percent (378 of 1364) reported revision of their syphilis screening algorithm within the past 2 years, and 9% (170 of 1905) of laboratories anticipated changing their screening algorithm in the coming year. Sixty-three percent (1205 of 1911) reported using the traditional algorithm, 16% (304 of 1911) reported using the reverse algorithm, and 2.5% (47 of 1911) reported using both algorithms, whereas 9% (169 of 1911) reported not performing a reflex confirmation test. Of those performing the reverse algorithm, 74% (282 of 380) implemented a new testing platform when introducing the new algorithm. -The majority of laboratories still perform the traditional algorithm, but a significant minority have implemented the reverse-screening algorithm. Although the nontreponemal immunologic response typically wanes after cure and becomes undetectable, treponemal immunoassays typically remain positive for life, and it is important for laboratorians and clinicians to consider these assay differences when implementing, using, and interpreting serologic syphilis screening algorithms.

  1. Object-oriented feature-tracking algorithms for SAR images of the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Daida, Jason; Samadani, Ramin; Vesecky, John F.

    1990-01-01

    An unsupervised method that chooses and applies the most appropriate tracking algorithm from among different sea-ice tracking algorithms is reported. In contrast to current unsupervised methods, this method chooses and applies an algorithm by partially examining a sequential image pair to draw inferences about what was examined. Based on these inferences the reported method subsequently chooses which algorithm to apply to specific areas of the image pair where that algorithm should work best.

  2. Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data.

    PubMed

    Kroenke, Candyce H; Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J

    2016-03-01

    The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women's Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms-one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV-using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this "triangulation." Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Threshold secret sharing scheme based on phase-shifting interferometry.

    PubMed

    Deng, Xiaopeng; Shi, Zhengang; Wen, Wei

    2016-11-01

    We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.

  4. Deformable complex network for refining low-resolution X-ray structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chong; Wang, Qinghua; Ma, Jianpeng, E-mail: jpma@bcm.edu

    2015-10-27

    A new refinement algorithm called the deformable complex network that combines a novel angular network-based restraint with a deformable elastic network model in the target function has been developed to aid in structural refinement in macromolecular X-ray crystallography. In macromolecular X-ray crystallography, building more accurate atomic models based on lower resolution experimental diffraction data remains a great challenge. Previous studies have used a deformable elastic network (DEN) model to aid in low-resolution structural refinement. In this study, the development of a new refinement algorithm called the deformable complex network (DCN) is reported that combines a novel angular network-based restraint withmore » the DEN model in the target function. Testing of DCN on a wide range of low-resolution structures demonstrated that it constantly leads to significantly improved structural models as judged by multiple refinement criteria, thus representing a new effective refinement tool for low-resolution structural determination.« less

  5. A Lightweight Hierarchical Activity Recognition Framework Using Smartphone Sensors

    PubMed Central

    Han, Manhyung; Bang, Jae Hun; Nugent, Chris; McClean, Sally; Lee, Sungyoung

    2014-01-01

    Activity recognition for the purposes of recognizing a user's intentions using multimodal sensors is becoming a widely researched topic largely based on the prevalence of the smartphone. Previous studies have reported the difficulty in recognizing life-logs by only using a smartphone due to the challenges with activity modeling and real-time recognition. In addition, recognizing life-logs is difficult due to the absence of an established framework which enables the use of different sources of sensor data. In this paper, we propose a smartphone-based Hierarchical Activity Recognition Framework which extends the Naïve Bayes approach for the processing of activity modeling and real-time activity recognition. The proposed algorithm demonstrates higher accuracy than the Naïve Bayes approach and also enables the recognition of a user's activities within a mobile environment. The proposed algorithm has the ability to classify fifteen activities with an average classification accuracy of 92.96%. PMID:25184486

  6. Entanglement-Based Machine Learning on a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.

    2015-03-01

    Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.

  7. Optimizing the Learning Order of Chinese Characters Using a Novel Topological Sort Algorithm

    PubMed Central

    Wang, Jinzhao

    2016-01-01

    We present a novel algorithm for optimizing the order in which Chinese characters are learned, one that incorporates the benefits of learning them in order of usage frequency and in order of their hierarchal structural relationships. We show that our work outperforms previously published orders and algorithms. Our algorithm is applicable to any scheduling task where nodes have intrinsic differences in importance and must be visited in topological order. PMID:27706234

  8. Tail Biting Trellis Representation of Codes: Decoding and Construction

    NASA Technical Reports Server (NTRS)

    Shao. Rose Y.; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents two new iterative algorithms for decoding linear codes based on their tail biting trellises, one is unidirectional and the other is bidirectional. Both algorithms are computationally efficient and achieves virtually optimum error performance with a small number of decoding iterations. They outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding delay. Also presented in the paper is a method for constructing tail biting trellises for linear block codes.

  9. Knowledge discovery from structured mammography reports using inductive logic programming.

    PubMed

    Burnside, Elizabeth S; Davis, Jesse; Costa, Victor Santos; Dutra, Inês de Castro; Kahn, Charles E; Fine, Jason; Page, David

    2005-01-01

    The development of large mammography databases provides an opportunity for knowledge discovery and data mining techniques to recognize patterns not previously appreciated. Using a database from a breast imaging practice containing patient risk factors, imaging findings, and biopsy results, we tested whether inductive logic programming (ILP) could discover interesting hypotheses that could subsequently be tested and validated. The ILP algorithm discovered two hypotheses from the data that were 1) judged as interesting by a subspecialty trained mammographer and 2) validated by analysis of the data itself.

  10. Discovering Communicable Scientific Knowledge from Spatio-Temporal Data

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark; Langley, Pat; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes how we used regression rules to improve upon a result previously published in the Earth science literature. In such a scientific application of machine learning, it is crucially important for the learned models to be understandable and communicable. We recount how we selected a learning algorithm to maximize communicability, and then describe two visualization techniques that we developed to aid in understanding the model by exploiting the spatial nature of the data. We also report how evaluating the learned models across time let us discover an error in the data.

  11. Automated assessment of noninvasive filling pressure using color Doppler M-mode echocardiography

    NASA Technical Reports Server (NTRS)

    Greenberg, N. L.; Firstenberg, M. S.; Cardon, L. A.; Zuckerman, J.; Levine, B. D.; Garcia, M. J.; Thomas, J. D.

    2001-01-01

    Assessment of left ventricular filling pressure usually requires invasive hemodynamic monitoring to follow the progression of disease or the response to therapy. Previous investigations have shown accurate estimation of wedge pressure using noninvasive Doppler information obtained from the ratio of the wave propagation slope from color M-mode (CMM) images and the peak early diastolic filling velocity from transmitral Doppler images. This study reports an automated algorithm that derives an estimate of wedge pressure based on the spatiotemporal velocity distribution available from digital CMM Doppler images of LV filling.

  12. Discovering Communicable Models from Earth Science Data

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark; Langley, Pat; Potter, Christopher; Klooster, Steven; Torregrosa, Alicia

    2002-01-01

    This chapter describes how we used regression rules to improve upon results previously published in the Earth science literature. In such a scientific application of machine learning, it is crucially important for the learned models to be understandable and communicable. We recount how we selected a learning algorithm to maximize communicability, and then describe two visualization techniques that we developed to aid in understanding the model by exploiting the spatial nature of the data. We also report how evaluating the learned models across time let us discover an error in the data.

  13. Multiclass Bayes error estimation by a feature space sampling technique

    NASA Technical Reports Server (NTRS)

    Mobasseri, B. G.; Mcgillem, C. D.

    1979-01-01

    A general Gaussian M-class N-feature classification problem is defined. An algorithm is developed that requires the class statistics as its only input and computes the minimum probability of error through use of a combined analytical and numerical integration over a sequence simplifying transformations of the feature space. The results are compared with those obtained by conventional techniques applied to a 2-class 4-feature discrimination problem with results previously reported and 4-class 4-feature multispectral scanner Landsat data classified by training and testing of the available data.

  14. Lowest-energy cage structures of medium-sized ( ZnO )n clusters with n = 15 - 24

    NASA Astrophysics Data System (ADS)

    Tang, Lingli; Sai, Linwei; Zhao, Jijun; Qiu, Ruifeng

    2015-01-01

    Fullerene-like cage structures of medium-sized ( ZnO )n clusters with n = 15 - 24 were generated by spiral algorithm and optimized using density functional theory calculations. Most of these lowest-energy cage structures contain only four-membered and six-membered rings, whereas eight-membered rings were found in the lowest-energy cages of ( ZnO )n (n = 19, 20, 23, 24). Our best cage configurations either reproduce or prevail the previously reported ones. The size-dependent electronic properties were also discussed.

  15. Lowest-energy cage structures of medium-sized (ZnO){sub n} clusters with n = 15 − 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lingli; Sai, Linwei; Zhao, Jijun, E-mail: zhaojj@dlut.edu.cn

    2015-01-22

    Fullerene-like cage structures of medium-sized (ZnO){sub n} clusters with n = 15 − 24 were generated by spiral algorithm and optimized using density functional theory calculations. Most of these lowest-energy cage structures contain only four-membered and six-membered rings, whereas eight-membered rings were found in the lowest-energy cages of (ZnO){sub n} (n = 19, 20, 23, 24). Our best cage configurations either reproduce or prevail the previously reported ones. The size-dependent electronic properties were also discussed.

  16. Combined Dust Detection Algorithm by Using MODIS Infrared Channels over East Asia

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Jaehwa; Lee, Sukjo; Kim, Jeong Soo; Chang, Lim Seok; Ou, Steve

    2014-01-01

    A new dust detection algorithm is developed by combining the results of multiple dust detectionmethods using IR channels onboard the MODerate resolution Imaging Spectroradiometer (MODIS). Brightness Temperature Difference (BTD) between two wavelength channels has been used widely in previous dust detection methods. However, BTDmethods have limitations in identifying the offset values of the BTDto discriminate clear-sky areas. The current algorithm overcomes the disadvantages of previous dust detection methods by considering the Brightness Temperature Ratio (BTR) values of the dual wavelength channels with 30-day composite, the optical properties of the dust particles, the variability of surface properties, and the cloud contamination. Therefore, the current algorithm shows improvements in detecting the dust loaded region over land during daytime. Finally, the confidence index of the current dust algorithm is shown in 10 × 10 pixels of the MODIS observations. From January to June, 2006, the results of the current algorithm are within 64 to 81% of those found using the fine mode fraction (FMF) and aerosol index (AI) from the MODIS and Ozone Monitoring Instrument (OMI). The agreement between the results of the current algorithm and the OMI AI over the non-polluted land also ranges from 60 to 67% to avoid errors due to the anthropogenic aerosol. In addition, the developed algorithm shows statistically significant results at four AErosol RObotic NETwork (AERONET) sites in East Asia.

  17. An Algorithm for Timely Transmission of Solicitation Messages in RPL for Energy-Efficient Node Mobility.

    PubMed

    Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok

    2017-04-19

    The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms.

  18. An Algorithm for Timely Transmission of Solicitation Messages in RPL for Energy-Efficient Node Mobility

    PubMed Central

    Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok

    2017-01-01

    The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms. PMID:28422084

  19. Multi-scale graph-cut algorithm for efficient water-fat separation.

    PubMed

    Berglund, Johan; Skorpil, Mikael

    2017-09-01

    To improve the accuracy and robustness to noise in water-fat separation by unifying the multiscale and graph cut based approaches to B 0 -correction. A previously proposed water-fat separation algorithm that corrects for B 0 field inhomogeneity in 3D by a single quadratic pseudo-Boolean optimization (QPBO) graph cut was incorporated into a multi-scale framework, where field map solutions are propagated from coarse to fine scales for voxels that are not resolved by the graph cut. The accuracy of the single-scale and multi-scale QPBO algorithms was evaluated against benchmark reference datasets. The robustness to noise was evaluated by adding noise to the input data prior to water-fat separation. Both algorithms achieved the highest accuracy when compared with seven previously published methods, while computation times were acceptable for implementation in clinical routine. The multi-scale algorithm was more robust to noise than the single-scale algorithm, while causing only a small increase (+10%) of the reconstruction time. The proposed 3D multi-scale QPBO algorithm offers accurate water-fat separation, robustness to noise, and fast reconstruction. The software implementation is freely available to the research community. Magn Reson Med 78:941-949, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. A three-dimensional finite-volume Eulerian-Lagrangian Localized Adjoint Method (ELLAM) for solute-transport modeling

    USGS Publications Warehouse

    Heberton, C.I.; Russell, T.F.; Konikow, Leonard F.; Hornberger, G.Z.

    2000-01-01

    This report documents the U.S. Geological Survey Eulerian-Lagrangian Localized Adjoint Method (ELLAM) algorithm that solves an integral form of the solute-transport equation, incorporating an implicit-in-time difference approximation for the dispersive and sink terms. Like the algorithm in the original version of the U.S. Geological Survey MOC3D transport model, ELLAM uses a method of characteristics approach to solve the transport equation on the basis of the velocity field. The ELLAM algorithm, however, is based on an integral formulation of conservation of mass and uses appropriate numerical techniques to obtain global conservation of mass. The implicit procedure eliminates several stability criteria required for an explicit formulation. Consequently, ELLAM allows large transport time increments to be used. ELLAM can produce qualitatively good results using a small number of transport time steps. A description of the ELLAM numerical method, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. The ELLAM algorithm was evaluated for the same set of problems used to test and evaluate Version 1 and Version 2 of MOC3D. These test results indicate that ELLAM offers a viable alternative to the explicit and implicit solvers in MOC3D. Its use is desirable when mass balance is imperative or a fast, qualitative model result is needed. Although accurate solutions can be generated using ELLAM, its efficiency relative to the two previously documented solution algorithms is problem dependent.

  1. Research on Vehicle-Based Driver Status/Performance Monitoring, Part III

    DOT National Transportation Integrated Search

    1996-09-01

    A driver drowsiness detection/alarm/countermeasures system was specified, tested and evaluated, resulting in the development of revised algorithms for the detection of driver drowsiness. Previous algorithms were examined in a test and evaluation stud...

  2. Research On Vehicle-Based Driver Status/Performance Monitoring, Part I

    DOT National Transportation Integrated Search

    1996-09-01

    A driver drowsiness detection/alarm/countermeasures system was specified, tested and evaluated, resulting in the development of revised algorithms for the detection of driver drowsiness. Previous algorithms were examined in a test and evaluation stud...

  3. Optimal cost design of water distribution networks using a decomposition approach

    NASA Astrophysics Data System (ADS)

    Lee, Ho Min; Yoo, Do Guen; Sadollah, Ali; Kim, Joong Hoon

    2016-12-01

    Water distribution network decomposition, which is an engineering approach, is adopted to increase the efficiency of obtaining the optimal cost design of a water distribution network using an optimization algorithm. This study applied the source tracing tool in EPANET, which is a hydraulic and water quality analysis model, to the decomposition of a network to improve the efficiency of the optimal design process. The proposed approach was tested by carrying out the optimal cost design of two water distribution networks, and the results were compared with other optimal cost designs derived from previously proposed optimization algorithms. The proposed decomposition approach using the source tracing technique enables the efficient decomposition of an actual large-scale network, and the results can be combined with the optimal cost design process using an optimization algorithm. This proves that the final design in this study is better than those obtained with other previously proposed optimization algorithms.

  4. Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions

    PubMed Central

    Patwary, Nurmohammed; Preza, Chrysanthe

    2015-01-01

    A depth-variant (DV) image restoration algorithm for wide field fluorescence microscopy, using an orthonormal basis decomposition of DV point-spread functions (PSFs), is investigated in this study. The efficient PSF representation is based on a previously developed principal component analysis (PCA), which is computationally intensive. We present an approach developed to reduce the number of DV PSFs required for the PCA computation, thereby making the PCA-based approach computationally tractable for thick samples. Restoration results from both synthetic and experimental images show consistency and that the proposed algorithm addresses efficiently depth-induced aberration using a small number of principal components. Comparison of the PCA-based algorithm with a previously-developed strata-based DV restoration algorithm demonstrates that the proposed method improves performance by 50% in terms of accuracy and simultaneously reduces the processing time by 64% using comparable computational resources. PMID:26504634

  5. Analysis of modal behavior at frequency cross-over

    NASA Astrophysics Data System (ADS)

    Costa, Robert N., Jr.

    1994-11-01

    The existence of the mode crossing condition is detected and analyzed in the Active Control of Space Structures Model 4 (ACOSS4). The condition is studied for its contribution to the inability of previous algorithms to successfully optimize the structure and converge to a feasible solution. A new algorithm is developed to detect and correct for mode crossings. The existence of the mode crossing condition is verified in ACOSS4 and found not to have appreciably affected the solution. The structure is then successfully optimized using new analytic methods based on modal expansion. An unrelated error in the optimization algorithm previously used is verified and corrected, thereby equipping the optimization algorithm with a second analytic method for eigenvector differentiation based on Nelson's Method. The second structure is the Control of Flexible Structures (COFS). The COFS structure is successfully reproduced and an initial eigenanalysis completed.

  6. Computerized tomography with total variation and with shearlets

    NASA Astrophysics Data System (ADS)

    Garduño, Edgar; Herman, Gabor T.

    2017-04-01

    To reduce the x-ray dose in computerized tomography (CT), many constrained optimization approaches have been proposed aiming at minimizing a regularizing function that measures a lack of consistency with some prior knowledge about the object that is being imaged, subject to a (predetermined) level of consistency with the detected attenuation of x-rays. One commonly investigated regularizing function is total variation (TV), while other publications advocate the use of some type of multiscale geometric transform in the definition of the regularizing function, a particular recent choice for this is the shearlet transform. Proponents of the shearlet transform in the regularizing function claim that the reconstructions so obtained are better than those produced using TV for texture preservation (but may be worse for noise reduction). In this paper we report results related to this claim. In our reported experiments using simulated CT data collection of the head, reconstructions whose shearlet transform has a small ℓ 1-norm are not more efficacious than reconstructions that have a small TV value. Our experiments for making such comparisons use the recently-developed superiorization methodology for both regularizing functions. Superiorization is an automated procedure for turning an iterative algorithm for producing images that satisfy a primary criterion (such as consistency with the observed measurements) into its superiorized version that will produce results that, according to the primary criterion are as good as those produced by the original algorithm, but in addition are superior to them according to a secondary (regularizing) criterion. The method presented for superiorization involving the ℓ 1-norm of the shearlet transform is novel and is quite general: It can be used for any regularizing function that is defined as the ℓ 1-norm of a transform specified by the application of a matrix. Because in the previous literature the split Bregman algorithm is used for similar purposes, a section is included comparing the results of the superiorization algorithm with the split Bregman algorithm.

  7. Ant colony optimisation-direct cover: a hybrid ant colony direct cover technique for multi-level synthesis of multiple-valued logic functions

    NASA Astrophysics Data System (ADS)

    Abd-El-Barr, Mostafa

    2010-12-01

    The use of non-binary (multiple-valued) logic in the synthesis of digital systems can lead to savings in chip area. Advances in very large scale integration (VLSI) technology have enabled the successful implementation of multiple-valued logic (MVL) circuits. A number of heuristic algorithms for the synthesis of (near) minimal sum-of products (two-level) realisation of MVL functions have been reported in the literature. The direct cover (DC) technique is one such algorithm. The ant colony optimisation (ACO) algorithm is a meta-heuristic that uses constructive greediness to explore a large solution space in finding (near) optimal solutions. The ACO algorithm mimics the ant's behaviour in the real world in using the shortest path to reach food sources. We have previously introduced an ACO-based heuristic for the synthesis of two-level MVL functions. In this article, we introduce the ACO-DC hybrid technique for the synthesis of multi-level MVL functions. The basic idea is to use an ant to decompose a given MVL function into a number of levels and then synthesise each sub-function using a DC-based technique. The results obtained using the proposed approach are compared to those obtained using existing techniques reported in the literature. A benchmark set consisting of 50,000 randomly generated 2-variable 4-valued functions is used in the comparison. The results obtained using the proposed ACO-DC technique are shown to produce efficient realisation in terms of the average number of gates (as a measure of chip area) needed for the synthesis of a given MVL function.

  8. Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1989-01-01

    The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.

  9. A VLSI architecture for simplified arithmetic Fourier transform algorithm

    NASA Technical Reports Server (NTRS)

    Reed, Irving S.; Shih, Ming-Tang; Truong, T. K.; Hendon, E.; Tufts, D. W.

    1992-01-01

    The arithmetic Fourier transform (AFT) is a number-theoretic approach to Fourier analysis which has been shown to perform competitively with the classical FFT in terms of accuracy, complexity, and speed. Theorems developed in a previous paper for the AFT algorithm are used here to derive the original AFT algorithm which Bruns found in 1903. This is shown to yield an algorithm of less complexity and of improved performance over certain recent AFT algorithms. A VLSI architecture is suggested for this simplified AFT algorithm. This architecture uses a butterfly structure which reduces the number of additions by 25 percent of that used in the direct method.

  10. An advancing front Delaunay triangulation algorithm designed for robustness

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    A new algorithm is described for generating an unstructured mesh about an arbitrary two-dimensional configuration. Mesh points are generated automatically by the algorithm in a manner which ensures a smooth variation of elements, and the resulting triangulation constitutes the Delaunay triangulation of these points. The algorithm combines the mathematical elegance and efficiency of Delaunay triangulation algorithms with the desirable point placement features, boundary integrity, and robustness traditionally associated with advancing-front-type mesh generation strategies. The method offers increased robustness over previous algorithms in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell size distribution throughout the flow-field.

  11. An improved semi-implicit method for structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Park, K. C.

    1982-01-01

    A semi-implicit algorithm is presented for direct time integration of the structural dynamics equations. The algorithm avoids the factoring of the implicit difference solution matrix and mitigates the unacceptable accuracy losses which plagued previous semi-implicit algorithms. This substantial accuracy improvement is achieved by augmenting the solution matrix with two simple diagonal matrices of the order of the integration truncation error.

  12. Symmetry compression method for discovering network motifs.

    PubMed

    Wang, Jianxin; Huang, Yuannan; Wu, Fang-Xiang; Pan, Yi

    2012-01-01

    Discovering network motifs could provide a significant insight into systems biology. Interestingly, many biological networks have been found to have a high degree of symmetry (automorphism), which is inherent in biological network topologies. The symmetry due to the large number of basic symmetric subgraphs (BSSs) causes a certain redundant calculation in discovering network motifs. Therefore, we compress all basic symmetric subgraphs before extracting compressed subgraphs and propose an efficient decompression algorithm to decompress all compressed subgraphs without loss of any information. In contrast to previous approaches, the novel Symmetry Compression method for Motif Detection, named as SCMD, eliminates most redundant calculations caused by widespread symmetry of biological networks. We use SCMD to improve three notable exact algorithms and two efficient sampling algorithms. Results of all exact algorithms with SCMD are the same as those of the original algorithms, since SCMD is a lossless method. The sampling results show that the use of SCMD almost does not affect the quality of sampling results. For highly symmetric networks, we find that SCMD used in both exact and sampling algorithms can help get a remarkable speedup. Furthermore, SCMD enables us to find larger motifs in biological networks with notable symmetry than previously possible.

  13. Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.

    PubMed

    Huson, Daniel H; Linz, Simone

    2018-01-01

    A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.

  14. Preliminary application of a novel algorithm to monitor changes in pre-flight total peripheral resistance for prediction of post-flight orthostatic intolerance in astronauts

    NASA Astrophysics Data System (ADS)

    Arai, Tatsuya; Lee, Kichang; Stenger, Michael B.; Platts, Steven H.; Meck, Janice V.; Cohen, Richard J.

    2011-04-01

    Orthostatic intolerance (OI) is a significant challenge for astronauts after long-duration spaceflight. Depending on flight duration, 20-80% of astronauts suffer from post-flight OI, which is associated with reduced vascular resistance. This paper introduces a novel algorithm for continuously monitoring changes in total peripheral resistance (TPR) by processing the peripheral arterial blood pressure (ABP). To validate, we applied our novel mathematical algorithm to the pre-flight ABP data previously recorded from twelve astronauts ten days before launch. The TPR changes were calculated by our algorithm and compared with the TPR value estimated using cardiac output/heart rate before and after phenylephrine administration. The astronauts in the post-flight presyncopal group had lower pre-flight TPR changes (1.66 times) than those in the non-presyncopal group (2.15 times). The trend in TPR changes calculated with our algorithm agreed with the TPR trend calculated using measured cardiac output in the previous study. Further data collection and algorithm refinement are needed for pre-flight detection of OI and monitoring of continuous TPR by analysis of peripheral arterial blood pressure.

  15. An efficient algorithm for function optimization: modified stem cells algorithm

    NASA Astrophysics Data System (ADS)

    Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad Hadi

    2013-03-01

    In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).

  16. Uplink transmit beamforming design for SINR maximization with full multiuser channel state information

    NASA Astrophysics Data System (ADS)

    Xi, Songnan; Zoltowski, Michael D.

    2008-04-01

    Multiuser multiple-input multiple-output (MIMO) systems are considered in this paper. We continue our research on uplink transmit beamforming design for multiple users under the assumption that the full multiuser channel state information, which is the collection of the channel state information between each of the users and the base station, is known not only to the receiver but also to all the transmitters. We propose an algorithm for designing optimal beamforming weights in terms of maximizing the signal-to-interference-plus-noise ratio (SINR). Through statistical modeling, we decouple the original mathematically intractable optimization problem and achieved a closed-form solution. As in our previous work, the minimum mean-squared error (MMSE) receiver with successive interference cancellation (SIC) is adopted for multiuser detection. The proposed scheme is compared with an existing jointly optimized transceiver design, referred to as the joint transceiver in this paper, and our previously proposed eigen-beamforming algorithm. Simulation results demonstrate that our algorithm, with much less computational burden, accomplishes almost the same performance as the joint transceiver for spatially independent MIMO channel and even better performance for spatially correlated MIMO channels. And it always works better than our previously proposed eigen beamforming algorithm.

  17. Technical Note: A novel leaf sequencing optimization algorithm which considers previous underdose and overdose events for MLC tracking radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisotzky, Eric, E-mail: eric.wisotzky@charite.de, E-mail: eric.wisotzky@ipk.fraunhofer.de; O’Brien, Ricky; Keall, Paul J., E-mail: paul.keall@sydney.edu.au

    2016-01-15

    Purpose: Multileaf collimator (MLC) tracking radiotherapy is complex as the beam pattern needs to be modified due to the planned intensity modulation as well as the real-time target motion. The target motion cannot be planned; therefore, the modified beam pattern differs from the original plan and the MLC sequence needs to be recomputed online. Current MLC tracking algorithms use a greedy heuristic in that they optimize for a given time, but ignore past errors. To overcome this problem, the authors have developed and improved an algorithm that minimizes large underdose and overdose regions. Additionally, previous underdose and overdose events aremore » taken into account to avoid regions with high quantity of dose events. Methods: The authors improved the existing MLC motion control algorithm by introducing a cumulative underdose/overdose map. This map represents the actual projection of the planned tumor shape and logs occurring dose events at each specific regions. These events have an impact on the dose cost calculation and reduce recurrence of dose events at each region. The authors studied the improvement of the new temporal optimization algorithm in terms of the L1-norm minimization of the sum of overdose and underdose compared to not accounting for previous dose events. For evaluation, the authors simulated the delivery of 5 conformal and 14 intensity-modulated radiotherapy (IMRT)-plans with 7 3D patient measured tumor motion traces. Results: Simulations with conformal shapes showed an improvement of L1-norm up to 8.5% after 100 MLC modification steps. Experiments showed comparable improvements with the same type of treatment plans. Conclusions: A novel leaf sequencing optimization algorithm which considers previous dose events for MLC tracking radiotherapy has been developed and investigated. Reductions in underdose/overdose are observed for conformal and IMRT delivery.« less

  18. Algorithm improvement program nuclide identification algorithm scoring criteria and scoring application.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enghauser, Michael

    2016-02-01

    The goal of the Domestic Nuclear Detection Office (DNDO) Algorithm Improvement Program (AIP) is to facilitate gamma-radiation detector nuclide identification algorithm development, improvement, and validation. Accordingly, scoring criteria have been developed to objectively assess the performance of nuclide identification algorithms. In addition, a Microsoft Excel spreadsheet application for automated nuclide identification scoring has been developed. This report provides an overview of the equations, nuclide weighting factors, nuclide equivalencies, and configuration weighting factors used by the application for scoring nuclide identification algorithm performance. Furthermore, this report presents a general overview of the nuclide identification algorithm scoring application including illustrative examples.

  19. Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data

    PubMed Central

    Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J.

    2016-01-01

    Abstract Background: The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. Methods: We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women’s Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms—one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV—using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this “triangulation.” Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. Results: The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Conclusions: Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. PMID:26582243

  20. The performance of monotonic and new non-monotonic gradient ascent reconstruction algorithms for high-resolution neuroreceptor PET imaging.

    PubMed

    Angelis, G I; Reader, A J; Kotasidis, F A; Lionheart, W R; Matthews, J C

    2011-07-07

    Iterative expectation maximization (EM) techniques have been extensively used to solve maximum likelihood (ML) problems in positron emission tomography (PET) image reconstruction. Although EM methods offer a robust approach to solving ML problems, they usually suffer from slow convergence rates. The ordered subsets EM (OSEM) algorithm provides significant improvements in the convergence rate, but it can cycle between estimates converging towards the ML solution of each subset. In contrast, gradient-based methods, such as the recently proposed non-monotonic maximum likelihood (NMML) and the more established preconditioned conjugate gradient (PCG), offer a globally convergent, yet equally fast, alternative to OSEM. Reported results showed that NMML provides faster convergence compared to OSEM; however, it has never been compared to other fast gradient-based methods, like PCG. Therefore, in this work we evaluate the performance of two gradient-based methods (NMML and PCG) and investigate their potential as an alternative to the fast and widely used OSEM. All algorithms were evaluated using 2D simulations, as well as a single [(11)C]DASB clinical brain dataset. Results on simulated 2D data show that both PCG and NMML achieve orders of magnitude faster convergence to the ML solution compared to MLEM and exhibit comparable performance to OSEM. Equally fast performance is observed between OSEM and PCG for clinical 3D data, but NMML seems to perform poorly. However, with the addition of a preconditioner term to the gradient direction, the convergence behaviour of NMML can be substantially improved. Although PCG is a fast convergent algorithm, the use of a (bent) line search increases the complexity of the implementation, as well as the computational time involved per iteration. Contrary to previous reports, NMML offers no clear advantage over OSEM or PCG, for noisy PET data. Therefore, we conclude that there is little evidence to replace OSEM as the algorithm of choice for many applications, especially given that in practice convergence is often not desired for algorithms seeking ML estimates.

  1. Probabilistic analysis algorithm for UA slope software program.

    DOT National Transportation Integrated Search

    2013-12-01

    A reliability-based computational algorithm for using a single row and equally spaced drilled shafts to : stabilize an unstable slope has been developed in this research. The Monte-Carlo simulation (MCS) : technique was used in the previously develop...

  2. Update on Development of Mesh Generation Algorithms in MeshKit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Rajeev; Vanderzee, Evan; Mahadevan, Vijay

    2015-09-30

    MeshKit uses a graph-based design for coding all its meshing algorithms, which includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report highlights the developmental updates of all the algorithms, results and future work. Parallel versions of algorithms, documentation and performance results are reported. RGG GUI design was updated to incorporate new features requested by the users; boundary layer generation and parallel RGG support were added to the GUI. Key contributions to the release, upgrade and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKitmore » are under development. Results and current status of automated, open-source and high quality nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval matching and multi-sweeper are reported.« less

  3. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)].

    PubMed

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-07

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T 0 ) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T 0 ) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T 0 ) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T 0 ) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T 0 ) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T 0 ) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T 0 ), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  4. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-01

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  5. A New Inversion-Based Algorithm for Retrieval of Over-Water Rain Rate from SSM/I Multichannel Imagery

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Stettner, David R.

    1994-01-01

    This paper discusses certain aspects of a new inversion based algorithm for the retrieval of rain rate over the open ocean from the special sensor microwave/imager (SSM/I) multichannel imagery. This algorithm takes a more detailed physical approach to the retrieval problem than previously discussed algorithms that perform explicit forward radiative transfer calculations based on detailed model hydrometer profiles and attempt to match the observations to the predicted brightness temperature.

  6. Affine Projection Algorithm with Improved Data-Selective Method Using the Condition Number

    NASA Astrophysics Data System (ADS)

    Ban, Sung Jun; Lee, Chang Woo; Kim, Sang Woo

    Recently, a data-selective method has been proposed to achieve low misalignment in affine projection algorithm (APA) by keeping the condition number of an input data matrix small. We present an improved method, and a complexity reduction algorithm for the APA with the data-selective method. Experimental results show that the proposed algorithm has lower misalignment and a lower condition number for an input data matrix than both the conventional APA and the APA with the previous data-selective method.

  7. A real-time simulation evaluation of an advanced detection. Isolation and accommodation algorithm for sensor failures in turbine engines

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Delaat, J. C.

    1986-01-01

    An advanced sensor failure detection, isolation, and accommodation (ADIA) algorithm has been developed for use with an aircraft turbofan engine control system. In a previous paper the authors described the ADIA algorithm and its real-time implementation. Subsequent improvements made to the algorithm and implementation are discussed, and the results of an evaluation presented. The evaluation used a real-time, hybrid computer simulation of an F100 turbofan engine.

  8. Smart Phase Tuning in Microwave Photonic Integrated Circuits Toward Automated Frequency Multiplication by Design

    NASA Astrophysics Data System (ADS)

    Nabavi, N.

    2018-07-01

    The author investigates the monitoring methods for fine adjustment of the previously proposed on-chip architecture for frequency multiplication and translation of harmonics by design. Digital signal processing (DSP) algorithms are utilized to create an optimized microwave photonic integrated circuit functionality toward automated frequency multiplication. The implemented DSP algorithms are formed on discrete Fourier transform and optimization-based algorithms (Greedy and gradient-based algorithms), which are analytically derived and numerically compared based on the accuracy and speed of convergence criteria.

  9. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity.

    PubMed

    Kim, Hui Kwon; Min, Seonwoo; Song, Myungjae; Jung, Soobin; Choi, Jae Woo; Kim, Younggwang; Lee, Sangeun; Yoon, Sungroh; Kim, Hyongbum Henry

    2018-03-01

    We present two algorithms to predict the activity of AsCpf1 guide RNAs. Indel frequencies for 15,000 target sequences were used in a deep-learning framework based on a convolutional neural network to train Seq-deepCpf1. We then incorporated chromatin accessibility information to create the better-performing DeepCpf1 algorithm for cell lines for which such information is available and show that both algorithms outperform previous machine learning algorithms on our own and published data sets.

  10. GOSAT CO2 retrieval results using TANSO-CAI aerosol information over East Asia

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, W.; Jung, Y.; Lee, S.; Kim, J.; Lee, H.; Boesch, H.; Goo, T. Y.

    2015-12-01

    In the satellite remote sensing of CO2, incorrect aerosol information could induce large errors as previous studies suggested. Many factors, such as, aerosol type, wavelength dependency of AOD, aerosol polarization effect and etc. have been main error sources. Due to these aerosol effects, large number of data retrieved are screened out in quality control, or retrieval errors tend to increase if not screened out, especially in East Asia where aerosol concentrations are fairly high. To reduce these aerosol induced errors, a CO2 retrieval algorithm using the simultaneous TANSO-CAI aerosol information is developed. This algorithm adopts AOD and aerosol type information as a priori information from the CAI aerosol retrieval algorithm. The CO2 retrieval algorithm based on optimal estimation method and VLIDORT, a vector discrete ordinate radiative transfer model. The CO2 algorithm, developed with various state vectors to find accurate CO2 concentration, shows reasonable results when compared with other dataset. This study concentrates on the validation of retrieved results with the ground-based TCCON measurements in East Asia and the comparison with the previous retrieval from ACOS, NIES, and UoL. Although, the retrieved CO2 concentration is lower than previous results by ppm's, it shows similar trend and high correlation with previous results. Retrieved data and TCCON measurements data are compared at three stations of Tsukuba, Saga, Anmyeondo in East Asia, with the collocation criteria of ±2°in latitude/longitude and ±1 hours of GOSAT passing time. Compared results also show similar trend with good correlation. Based on the TCCON comparison results, bias correction equation is calculated and applied to the East Asia data.

  11. Cloud Classification in Polar and Desert Regions and Smoke Classification from Biomass Burning Using a Hierarchical Neural Network

    NASA Technical Reports Server (NTRS)

    Alexander, June; Corwin, Edward; Lloyd, David; Logar, Antonette; Welch, Ronald

    1996-01-01

    This research focuses on a new neural network scene classification technique. The task is to identify scene elements in Advanced Very High Resolution Radiometry (AVHRR) data from three scene types: polar, desert and smoke from biomass burning in South America (smoke). The ultimate goal of this research is to design and implement a computer system which will identify the clouds present on a whole-Earth satellite view as a means of tracking global climate changes. Previous research has reported results for rule-based systems (Tovinkere et at 1992, 1993) for standard back propagation (Watters et at. 1993) and for a hierarchical approach (Corwin et al 1994) for polar data. This research uses a hierarchical neural network with don't care conditions and applies this technique to complex scenes. A hierarchical neural network consists of a switching network and a collection of leaf networks. The idea of the hierarchical neural network is that it is a simpler task to classify a certain pattern from a subset of patterns than it is to classify a pattern from the entire set. Therefore, the first task is to cluster the classes into groups. The switching, or decision network, performs an initial classification by selecting a leaf network. The leaf networks contain a reduced set of similar classes, and it is in the various leaf networks that the actual classification takes place. The grouping of classes in the various leaf networks is determined by applying an iterative clustering algorithm. Several clustering algorithms were investigated, but due to the size of the data sets, the exhaustive search algorithms were eliminated. A heuristic approach using a confusion matrix from a lightly trained neural network provided the basis for the clustering algorithm. Once the clusters have been identified, the hierarchical network can be trained. The approach of using don't care nodes results from the difficulty in generating extremely complex surfaces in order to separate one class from all of the others. This approach finds pairwise separating surfaces and forms the more complex separating surface from combinations of simpler surfaces. This technique both reduces training time and improves accuracy over the previously reported results. Accuracies of 97.47%, 95.70%, and 99.05% were achieved for the polar, desert and smoke data sets.

  12. Evaluation of Accelerometer-Based Fall Detection Algorithms on Real-World Falls

    PubMed Central

    Bagalà, Fabio; Becker, Clemens; Cappello, Angelo; Chiari, Lorenzo; Aminian, Kamiar; Hausdorff, Jeffrey M.; Zijlstra, Wiebren; Klenk, Jochen

    2012-01-01

    Despite extensive preventive efforts, falls continue to be a major source of morbidity and mortality among elderly. Real-time detection of falls and their urgent communication to a telecare center may enable rapid medical assistance, thus increasing the sense of security of the elderly and reducing some of the negative consequences of falls. Many different approaches have been explored to automatically detect a fall using inertial sensors. Although previously published algorithms report high sensitivity (SE) and high specificity (SP), they have usually been tested on simulated falls performed by healthy volunteers. We recently collected acceleration data during a number of real-world falls among a patient population with a high-fall-risk as part of the SensAction-AAL European project. The aim of the present study is to benchmark the performance of thirteen published fall-detection algorithms when they are applied to the database of 29 real-world falls. To the best of our knowledge, this is the first systematic comparison of fall detection algorithms tested on real-world falls. We found that the SP average of the thirteen algorithms, was (mean±std) 83.0%±30.3% (maximum value = 98%). The SE was considerably lower (SE = 57.0%±27.3%, maximum value = 82.8%), much lower than the values obtained on simulated falls. The number of false alarms generated by the algorithms during 1-day monitoring of three representative fallers ranged from 3 to 85. The factors that affect the performance of the published algorithms, when they are applied to the real-world falls, are also discussed. These findings indicate the importance of testing fall-detection algorithms in real-life conditions in order to produce more effective automated alarm systems with higher acceptance. Further, the present results support the idea that a large, shared real-world fall database could, potentially, provide an enhanced understanding of the fall process and the information needed to design and evaluate a high-performance fall detector. PMID:22615890

  13. The effect of algorithms on copy number variant detection.

    PubMed

    Tsuang, Debby W; Millard, Steven P; Ely, Benjamin; Chi, Peter; Wang, Kenneth; Raskind, Wendy H; Kim, Sulgi; Brkanac, Zoran; Yu, Chang-En

    2010-12-30

    The detection of copy number variants (CNVs) and the results of CNV-disease association studies rely on how CNVs are defined, and because array-based technologies can only infer CNVs, CNV-calling algorithms can produce vastly different findings. Several authors have noted the large-scale variability between CNV-detection methods, as well as the substantial false positive and false negative rates associated with those methods. In this study, we use variations of four common algorithms for CNV detection (PennCNV, QuantiSNP, HMMSeg, and cnvPartition) and two definitions of overlap (any overlap and an overlap of at least 40% of the smaller CNV) to illustrate the effects of varying algorithms and definitions of overlap on CNV discovery. We used a 56 K Illumina genotyping array enriched for CNV regions to generate hybridization intensities and allele frequencies for 48 Caucasian schizophrenia cases and 48 age-, ethnicity-, and gender-matched control subjects. No algorithm found a difference in CNV burden between the two groups. However, the total number of CNVs called ranged from 102 to 3,765 across algorithms. The mean CNV size ranged from 46 kb to 787 kb, and the average number of CNVs per subject ranged from 1 to 39. The number of novel CNVs not previously reported in normal subjects ranged from 0 to 212. Motivated by the availability of multiple publicly available genome-wide SNP arrays, investigators are conducting numerous analyses to identify putative additional CNVs in complex genetic disorders. However, the number of CNVs identified in array-based studies, and whether these CNVs are novel or valid, will depend on the algorithm(s) used. Thus, given the variety of methods used, there will be many false positives and false negatives. Both guidelines for the identification of CNVs inferred from high-density arrays and the establishment of a gold standard for validation of CNVs are needed.

  14. Sensitive and specific peak detection for SELDI-TOF mass spectrometry using a wavelet/neural-network based approach.

    PubMed

    Emanuele, Vincent A; Panicker, Gitika; Gurbaxani, Brian M; Lin, Jin-Mann S; Unger, Elizabeth R

    2012-01-01

    SELDI-TOF mass spectrometer's compact size and automated, high throughput design have been attractive to clinical researchers, and the platform has seen steady-use in biomarker studies. Despite new algorithms and preprocessing pipelines that have been developed to address reproducibility issues, visual inspection of the results of SELDI spectra preprocessing by the best algorithms still shows miscalled peaks and systematic sources of error. This suggests that there continues to be problems with SELDI preprocessing. In this work, we study the preprocessing of SELDI in detail and introduce improvements. While many algorithms, including the vendor supplied software, can identify peak clusters of specific mass (or m/z) in groups of spectra with high specificity and low false discover rate (FDR), the algorithms tend to underperform estimating the exact prevalence and intensity of peaks in those clusters. Thus group differences that at first appear very strong are shown, after careful and laborious hand inspection of the spectra, to be less than significant. Here we introduce a wavelet/neural network based algorithm which mimics what a team of expert, human users would call for peaks in each of several hundred spectra in a typical SELDI clinical study. The wavelet denoising part of the algorithm optimally smoothes the signal in each spectrum according to an improved suite of signal processing algorithms previously reported (the LibSELDI toolbox under development). The neural network part of the algorithm combines those results with the raw signal and a training dataset of expertly called peaks, to call peaks in a test set of spectra with approximately 95% accuracy. The new method was applied to data collected from a study of cervical mucus for the early detection of cervical cancer in HPV infected women. The method shows promise in addressing the ongoing SELDI reproducibility issues.

  15. Machining Parameters Optimization using Hybrid Firefly Algorithm and Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Farahlina Johari, Nur; Zain, Azlan Mohd; Haszlinna Mustaffa, Noorfa; Udin, Amirmudin

    2017-09-01

    Firefly Algorithm (FA) is a metaheuristic algorithm that is inspired by the flashing behavior of fireflies and the phenomenon of bioluminescent communication and the algorithm is used to optimize the machining parameters (feed rate, depth of cut, and spindle speed) in this research. The algorithm is hybridized with Particle Swarm Optimization (PSO) to discover better solution in exploring the search space. Objective function of previous research is used to optimize the machining parameters in turning operation. The optimal machining cutting parameters estimated by FA that lead to a minimum surface roughness are validated using ANOVA test.

  16. Simplified Syndrome Decoding of (n, 1) Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1983-01-01

    A new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck is presented. The new algorithm uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). This set of Diophantine solutions is a coset of the CC space. A recursive or Viterbi-like algorithm is developed to find the minimum weight error vector cirumflex E(D) in this error coset. An example illustrating the new decoding algorithm is given for the binary nonsymmetric (2,1)CC.

  17. Robust automatic line scratch detection in films.

    PubMed

    Newson, Alasdair; Almansa, Andrés; Gousseau, Yann; Pérez, Patrick

    2014-03-01

    Line scratch detection in old films is a particularly challenging problem due to the variable spatiotemporal characteristics of this defect. Some of the main problems include sensitivity to noise and texture, and false detections due to thin vertical structures belonging to the scene. We propose a robust and automatic algorithm for frame-by-frame line scratch detection in old films, as well as a temporal algorithm for the filtering of false detections. In the frame-by-frame algorithm, we relax some of the hypotheses used in previous algorithms in order to detect a wider variety of scratches. This step's robustness and lack of external parameters is ensured by the combined use of an a contrario methodology and local statistical estimation. In this manner, over-detection in textured or cluttered areas is greatly reduced. The temporal filtering algorithm eliminates false detections due to thin vertical structures by exploiting the coherence of their motion with that of the underlying scene. Experiments demonstrate the ability of the resulting detection procedure to deal with difficult situations, in particular in the presence of noise, texture, and slanted or partial scratches. Comparisons show significant advantages over previous work.

  18. NegBio: a high-performance tool for negation and uncertainty detection in radiology reports.

    PubMed

    Peng, Yifan; Wang, Xiaosong; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald; Lu, Zhiyong

    2018-01-01

    Negative and uncertain medical findings are frequent in radiology reports, but discriminating them from positive findings remains challenging for information extraction. Here, we propose a new algorithm, NegBio, to detect negative and uncertain findings in radiology reports. Unlike previous rule-based methods, NegBio utilizes patterns on universal dependencies to identify the scope of triggers that are indicative of negation or uncertainty. We evaluated NegBio on four datasets, including two public benchmarking corpora of radiology reports, a new radiology corpus that we annotated for this work, and a public corpus of general clinical texts. Evaluation on these datasets demonstrates that NegBio is highly accurate for detecting negative and uncertain findings and compares favorably to a widely-used state-of-the-art system NegEx (an average of 9.5% improvement in precision and 5.1% in F1-score). https://github.com/ncbi-nlp/NegBio.

  19. Administrative Data Algorithms Can Describe Ambulatory Physician Utilization

    PubMed Central

    Shah, Baiju R; Hux, Janet E; Laupacis, Andreas; Zinman, Bernard; Cauch-Dudek, Karen; Booth, Gillian L

    2007-01-01

    Objective To validate algorithms using administrative data that characterize ambulatory physician care for patients with a chronic disease. Data Sources Seven-hundred and eighty-one people with diabetes were recruited mostly from community pharmacies to complete a written questionnaire about their physician utilization in 2002. These data were linked with administrative databases detailing health service utilization. Study Design An administrative data algorithm was defined that identified whether or not patients received specialist care, and it was tested for agreement with self-report. Other algorithms, which assigned each patient to a primary care and specialist physician, were tested for concordance with self-reported regular providers of care. Principal Findings The algorithm to identify whether participants received specialist care had 80.4 percent agreement with questionnaire responses (κ = 0.59). Compared with self-report, administrative data had a sensitivity of 68.9 percent and specificity 88.3 percent for identifying specialist care. The best administrative data algorithm to assign each participant's regular primary care and specialist providers was concordant with self-report in 82.6 and 78.2 percent of cases, respectively. Conclusions Administrative data algorithms can accurately match self-reported ambulatory physician utilization. PMID:17610448

  20. Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.

    PubMed

    Petrotchenko, Evgeniy V; Borchers, Christoph H

    2014-09-01

    Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Economic Considerations of Early Rule-In/Rule-Out Algorithms for The Diagnosis of Myocardial Infarction in The Emergency Department Using Cardiac Troponin and Glycemic Biomarkers.

    PubMed

    Shortt, Colleen; Xie, Feng; Whitlock, Richard; Ma, Jinhui; Clayton, Natasha; Sherbino, Jonathan; Hill, Stephen A; Pare, Guillaume; McQueen, Matthew; Mehta, Shamir R; Devereaux, P J; Worster, Andrew; Kavsak, Peter

    2017-02-01

    We have previously demonstrated the utility of a rule-in/rule-out strategy for myocardial infarction (MI) using glycemic biomarkers in combination with cardiac troponin in the emergency department (ED). Given that the cost of assessing patients with possible MI in the ED is increasing, we sought to compare the health services cost of our previously identified early rule-in/rule-out approaches for MI among patients who present to the ED with symptoms suggestive of acute coronary syndrome (ACS). We compared the cost differences between different rule-in/rule-out strategies for MI using presentation cardiac troponin I (cTnI), high-sensitivity cTnI (hs-cTnI), high-sensitivity cardiac troponin T (hs-cTnT), glucose, and/or hemoglobin A 1c (Hb A 1c ) in 1137 ED patients (7-day MI n = 133) as per our previously defined algorithms and compared them with the European Society of Cardiology (ESC) 0-h algorithm-cutoffs. Costs associated with each decision model were obtained from site-specific sources (length of stay) and provincial sources (Ontario Case Costing Initiative). Algorithms incorporating cardiac troponin and glucose for early rule-in/rule-out were the most cost effective and clinically safest methods (i.e., ≤1 MI missed) for early decision making, with hs-cTnI and glucose yielding lower costs compared to cTnI and glucose, despite the higher price for the hs-cTnI test. The addition of Hb A 1c to the algorithms increased the cost of these algorithms but did not miss any additional patients with MI. Applying the ESC 0-h algorithm-cutoffs for hs-cTnI and hs-cTnT were the most costly. Rule-in/rule-out algorithms incorporating presentation glucose with high-sensitivity cardiac troponin are the safest and most cost-effective options as compared to the ESC 0-h algorithm-cutoffs. © 2016 American Association for Clinical Chemistry.

  2. Scalable Domain Decomposed Monte Carlo Particle Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Matthew Joseph

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  3. Photonic quantum digital signatures operating over kilometer ranges in installed optical fiber

    NASA Astrophysics Data System (ADS)

    Collins, Robert J.; Fujiwara, Mikio; Amiri, Ryan; Honjo, Toshimori; Shimizu, Kaoru; Tamaki, Kiyoshi; Takeoka, Masahiro; Andersson, Erika; Buller, Gerald S.; Sasaki, Masahide

    2016-10-01

    The security of electronic communications is a topic that has gained noteworthy public interest in recent years. As a result, there is an increasing public recognition of the existence and importance of mathematically based approaches to digital security. Many of these implement digital signatures to ensure that a malicious party has not tampered with the message in transit, that a legitimate receiver can validate the identity of the signer and that messages are transferable. The security of most digital signature schemes relies on the assumed computational difficulty of solving certain mathematical problems. However, reports in the media have shown that certain implementations of such signature schemes are vulnerable to algorithmic breakthroughs and emerging quantum processing technologies. Indeed, even without quantum processors, the possibility remains that classical algorithmic breakthroughs will render these schemes insecure. There is ongoing research into information-theoretically secure signature schemes, where the security is guaranteed against an attacker with arbitrary computational resources. One such approach is quantum digital signatures. Quantum signature schemes can be made information-theoretically secure based on the laws of quantum mechanics while comparable classical protocols require additional resources such as anonymous broadcast and/or a trusted authority. Previously, most early demonstrations of quantum digital signatures required dedicated single-purpose hardware and operated over restricted ranges in a laboratory environment. Here, for the first time, we present a demonstration of quantum digital signatures conducted over several kilometers of installed optical fiber. The system reported here operates at a higher signature generation rate than previous fiber systems.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, R; Popple, R; Benhabib, S

    Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10{sup 9}),more » resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT.« less

  5. Towards pattern generation and chaotic series prediction with photonic reservoir computers

    NASA Astrophysics Data System (ADS)

    Antonik, Piotr; Hermans, Michiel; Duport, François; Haelterman, Marc; Massar, Serge

    2016-03-01

    Reservoir Computing is a bio-inspired computing paradigm for processing time dependent signals that is particularly well suited for analog implementations. Our team has demonstrated several photonic reservoir computers with performance comparable to digital algorithms on a series of benchmark tasks such as channel equalisation and speech recognition. Recently, we showed that our opto-electronic reservoir computer could be trained online with a simple gradient descent algorithm programmed on an FPGA chip. This setup makes it in principle possible to feed the output signal back into the reservoir, and thus highly enrich the dynamics of the system. This will allow to tackle complex prediction tasks in hardware, such as pattern generation and chaotic and financial series prediction, which have so far only been studied in digital implementations. Here we report simulation results of our opto-electronic setup with an FPGA chip and output feedback applied to pattern generation and Mackey-Glass chaotic series prediction. The simulations take into account the major aspects of our experimental setup. We find that pattern generation can be easily implemented on the current setup with very good results. The Mackey-Glass series prediction task is more complex and requires a large reservoir and more elaborate training algorithm. With these adjustments promising result are obtained, and we now know what improvements are needed to match previously reported numerical results. These simulation results will serve as basis of comparison for experiments we will carry out in the coming months.

  6. Algorithm Improvement Program Nuclide Identification Algorithm Scoring Criteria And Scoring Application - DNDO.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enghauser, Michael

    2015-02-01

    The goal of the Domestic Nuclear Detection Office (DNDO) Algorithm Improvement Program (AIP) is to facilitate gamma-radiation detector nuclide identification algorithm development, improvement, and validation. Accordingly, scoring criteria have been developed to objectively assess the performance of nuclide identification algorithms. In addition, a Microsoft Excel spreadsheet application for automated nuclide identification scoring has been developed. This report provides an overview of the equations, nuclide weighting factors, nuclide equivalencies, and configuration weighting factors used by the application for scoring nuclide identification algorithm performance. Furthermore, this report presents a general overview of the nuclide identification algorithm scoring application including illustrative examples.

  7. Multicore and GPU algorithms for Nussinov RNA folding

    PubMed Central

    2014-01-01

    Background One segment of a RNA sequence might be paired with another segment of the same RNA sequence due to the force of hydrogen bonds. This two-dimensional structure is called the RNA sequence's secondary structure. Several algorithms have been proposed to predict an RNA sequence's secondary structure. These algorithms are referred to as RNA folding algorithms. Results We develop cache efficient, multicore, and GPU algorithms for RNA folding using Nussinov's algorithm. Conclusions Our cache efficient algorithm provides a speedup between 1.6 and 3.0 relative to a naive straightforward single core code. The multicore version of the cache efficient single core algorithm provides a speedup, relative to the naive single core algorithm, between 7.5 and 14.0 on a 6 core hyperthreaded CPU. Our GPU algorithm for the NVIDIA C2050 is up to 1582 times as fast as the naive single core algorithm and between 5.1 and 11.2 times as fast as the fastest previously known GPU algorithm for Nussinov RNA folding. PMID:25082539

  8. 3D Protein structure prediction with genetic tabu search algorithm

    PubMed Central

    2010-01-01

    Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively. PMID:20522256

  9. Forward collision warning based on kernelized correlation filters

    NASA Astrophysics Data System (ADS)

    Pu, Jinchuan; Liu, Jun; Zhao, Yong

    2017-07-01

    A vehicle detection and tracking system is one of the indispensable methods to reduce the occurrence of traffic accidents. The nearest vehicle is the most likely to cause harm to us. So, this paper will do more research on about the nearest vehicle in the region of interest (ROI). For this system, high accuracy, real-time and intelligence are the basic requirement. In this paper, we set up a system that combines the advanced KCF tracking algorithm with the HaarAdaBoost detection algorithm. The KCF algorithm reduces computation time and increase the speed through the cyclic shift and diagonalization. This algorithm satisfies the real-time requirement. At the same time, Haar features also have the same advantage of simple operation and high speed for detection. The combination of this two algorithm contribute to an obvious improvement of the system running rate comparing with previous works. The detection result of the HaarAdaBoost classifier provides the initial value for the KCF algorithm. This fact optimizes KCF algorithm flaws that manual car marking in the initial phase, which is more scientific and more intelligent. Haar detection and KCF tracking with Histogram of Oriented Gradient (HOG) ensures the accuracy of the system. We evaluate the performance of framework on dataset that were self-collected. The experimental results demonstrate that the proposed method is robust and real-time. The algorithm can effectively adapt to illumination variation, even in the night it can meet the detection and tracking requirements, which is an improvement compared with the previous work.

  10. Measurement of high-energy neutron flux above ground utilizing a spallation based multiplicity technique

    DOE PAGES

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; ...

    2016-11-14

    Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Montemore » Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.« less

  11. Measurement of high-energy neutron flux above ground utilizing a spallation based multiplicity technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter

    Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Montemore » Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.« less

  12. Linear feature extraction from radar imagery: SBIR (Small Business Innovative Research) phase 2, option 1

    NASA Astrophysics Data System (ADS)

    Conner, Gary D.; Milgram, David L.; Lawton, Daryl T.; McConnell, Christopher C.

    1988-04-01

    The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze linear features from synthetic aperture radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of the technology issues involved in the development of an automatedlinear feature extraction system. This Option 1 Final Report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.

  13. Predicting drug-target interactions by dual-network integrated logistic matrix factorization

    NASA Astrophysics Data System (ADS)

    Hao, Ming; Bryant, Stephen H.; Wang, Yanli

    2017-01-01

    In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research.

  14. Dose specification for radiation therapy: dose to water or dose to medium?

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Li, Jinsheng

    2011-05-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  15. Massively Multithreaded Maxflow for Image Segmentation on the Cray XMT-2

    PubMed Central

    Bokhari, Shahid H.; Çatalyürek, Ümit V.; Gurcan, Metin N.

    2014-01-01

    SUMMARY Image segmentation is a very important step in the computerized analysis of digital images. The maxflow mincut approach has been successfully used to obtain minimum energy segmentations of images in many fields. Classical algorithms for maxflow in networks do not directly lend themselves to efficient parallel implementations on contemporary parallel processors. We present the results of an implementation of Goldberg-Tarjan preflow-push algorithm on the Cray XMT-2 massively multithreaded supercomputer. This machine has hardware support for 128 threads in each physical processor, a uniformly accessible shared memory of up to 4 TB and hardware synchronization for each 64 bit word. It is thus well-suited to the parallelization of graph theoretic algorithms, such as preflow-push. We describe the implementation of the preflow-push code on the XMT-2 and present the results of timing experiments on a series of synthetically generated as well as real images. Our results indicate very good performance on large images and pave the way for practical applications of this machine architecture for image analysis in a production setting. The largest images we have run are 320002 pixels in size, which are well beyond the largest previously reported in the literature. PMID:25598745

  16. Real-time video streaming using H.264 scalable video coding (SVC) in multihomed mobile networks: a testbed approach

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2011-03-01

    Users of the next generation wireless paradigm known as multihomed mobile networks expect satisfactory quality of service (QoS) when accessing streamed multimedia content. The recent H.264 Scalable Video Coding (SVC) extension to the Advanced Video Coding standard (AVC), offers the facility to adapt real-time video streams in response to the dynamic conditions of multiple network paths encountered in multihomed wireless mobile networks. Nevertheless, preexisting streaming algorithms were mainly proposed for AVC delivery over multipath wired networks and were evaluated by software simulation. This paper introduces a practical, hardware-based testbed upon which we implement and evaluate real-time H.264 SVC streaming algorithms in a realistic multihomed wireless mobile networks environment. We propose an optimised streaming algorithm with multi-fold technical contributions. Firstly, we extended the AVC packet prioritisation schemes to reflect the three-dimensional granularity of SVC. Secondly, we designed a mechanism for evaluating the effects of different streamer 'read ahead window' sizes on real-time performance. Thirdly, we took account of the previously unconsidered path switching and mobile networks tunnelling overheads encountered in real-world deployments. Finally, we implemented a path condition monitoring and reporting scheme to facilitate the intelligent path switching. The proposed system has been experimentally shown to offer a significant improvement in PSNR of the received stream compared with representative existing algorithms.

  17. Comparison of Five System Identification Algorithms for Rotorcraft Higher Harmonic Control

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    1998-01-01

    This report presents an analysis and performance comparison of five system identification algorithms. The methods are presented in the context of identifying a frequency-domain transfer matrix for the higher harmonic control (HHC) of helicopter vibration. The five system identification algorithms include three previously proposed methods: (1) the weighted-least- squares-error approach (in moving-block format), (2) the Kalman filter method, and (3) the least-mean-squares (LMS) filter method. In addition there are two new ones: (4) a generalized Kalman filter method and (5) a generalized LMS filter method. The generalized Kalman filter method and the generalized LMS filter method were derived as extensions of the classic methods to permit identification by using more than one measurement per identification cycle. Simulation results are presented for conditions ranging from the ideal case of a stationary transfer matrix and no measurement noise to the more complex cases involving both measurement noise and transfer-matrix variation. Both open-loop identification and closed- loop identification were simulated. Closed-loop mode identification was more challenging than open-loop identification because of the decreasing signal-to-noise ratio as the vibration became reduced. The closed-loop simulation considered both local-model identification, with measured vibration feedback and global-model identification with feedback of the identified uncontrolled vibration. The algorithms were evaluated in terms of their accuracy, stability, convergence properties, computation speeds, and relative ease of implementation.

  18. BAM: Bayesian AMHG-Manning Inference of Discharge Using Remotely Sensed Stream Width, Slope, and Height

    NASA Astrophysics Data System (ADS)

    Hagemann, M. W.; Gleason, C. J.; Durand, M. T.

    2017-11-01

    The forthcoming Surface Water and Ocean Topography (SWOT) NASA satellite mission will measure water surface width, height, and slope of major rivers worldwide. The resulting data could provide an unprecedented account of river discharge at continental scales, but reliable methods need to be identified prior to launch. Here we present a novel algorithm for discharge estimation from only remotely sensed stream width, slope, and height at multiple locations along a mass-conserved river segment. The algorithm, termed the Bayesian AMHG-Manning (BAM) algorithm, implements a Bayesian formulation of streamflow uncertainty using a combination of Manning's equation and at-many-stations hydraulic geometry (AMHG). Bayesian methods provide a statistically defensible approach to generating discharge estimates in a physically underconstrained system but rely on prior distributions that quantify the a priori uncertainty of unknown quantities including discharge and hydraulic equation parameters. These were obtained from literature-reported values and from a USGS data set of acoustic Doppler current profiler (ADCP) measurements at USGS stream gauges. A data set of simulated widths, slopes, and heights from 19 rivers was used to evaluate the algorithms using a set of performance metrics. Results across the 19 rivers indicate an improvement in performance of BAM over previously tested methods and highlight a path forward in solving discharge estimation using solely satellite remote sensing.

  19. A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peyret, Thomas; Poulin, Patrick; Krishnan, Kannan, E-mail: kannan.krishnan@umontreal.ca

    The algorithms in the literature focusing to predict tissue:blood PC (P{sub tb}) for environmental chemicals and tissue:plasma PC based on total (K{sub p}) or unbound concentration (K{sub pu}) for drugs differ in their consideration of binding to hemoglobin, plasma proteins and charged phospholipids. The objective of the present study was to develop a unified algorithm such that P{sub tb}, K{sub p} and K{sub pu} for both drugs and environmental chemicals could be predicted. The development of the unified algorithm was accomplished by integrating all mechanistic algorithms previously published to compute the PCs. Furthermore, the algorithm was structured in such amore » way as to facilitate predictions of the distribution of organic compounds at the macro (i.e. whole tissue) and micro (i.e. cells and fluids) levels. The resulting unified algorithm was applied to compute the rat P{sub tb}, K{sub p} or K{sub pu} of muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons and ethers. The unified algorithm reproduced adequately the values predicted previously by the published algorithms for a total of 142 drugs and chemicals. The sensitivity analysis demonstrated the relative importance of the various compound properties reflective of specific mechanistic determinants relevant to prediction of PC values of drugs and environmental chemicals. Overall, the present unified algorithm uniquely facilitates the computation of macro and micro level PCs for developing organ and cellular-level PBPK models for both chemicals and drugs.« less

  20. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    PubMed

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. An adaptive scale factor based MPPT algorithm for changing solar irradiation levels in outer space

    NASA Astrophysics Data System (ADS)

    Kwan, Trevor Hocksun; Wu, Xiaofeng

    2017-03-01

    Maximum power point tracking (MPPT) techniques are popularly used for maximizing the output of solar panels by continuously tracking the maximum power point (MPP) of their P-V curves, which depend both on the panel temperature and the input insolation. Various MPPT algorithms have been studied in literature, including perturb and observe (P&O), hill climbing, incremental conductance, fuzzy logic control and neural networks. This paper presents an algorithm which improves the MPP tracking performance by adaptively scaling the DC-DC converter duty cycle. The principle of the proposed algorithm is to detect the oscillation by checking the sign (ie. direction) of the duty cycle perturbation between the current and previous time steps. If there is a difference in the signs then it is clear an oscillation is present and the DC-DC converter duty cycle perturbation is subsequently scaled down by a constant factor. By repeating this process, the steady state oscillations become negligibly small which subsequently allows for a smooth steady state MPP response. To verify the proposed MPPT algorithm, a simulation involving irradiances levels that are typically encountered in outer space is conducted. Simulation and experimental results prove that the proposed algorithm is fast and stable in comparison to not only the conventional fixed step counterparts, but also to previous variable step size algorithms.

  2. Biological Terrorism Preparedness: Evaluating the Performance of the Early Aberration Reporting System (EARS) Syndromic Surveillance Algorithms

    DTIC Science & Technology

    2007-06-01

    PREPAREDNESS: EVALUATING THE PERFORMANCE OF THE EARLY ABERRATION REPORTING SYSTEM (EARS) SYNDROMIC SURVEILLANCE ALGORITHMS by David A...SUBTITLE Biological Terrorism Preparedness: Evaluating the Performance of the Early Aberration Reporting System (EARS) Syndromic Surveillance...Algorithms 6. AUTHOR(S) David Dunfee, Benjamin Hegler 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School

  3. LiCABEDS II. Modeling of ligand selectivity for G-protein-coupled cannabinoid receptors.

    PubMed

    Ma, Chao; Wang, Lirong; Yang, Peng; Myint, Kyaw Z; Xie, Xiang-Qun

    2013-01-28

    The cannabinoid receptor subtype 2 (CB2) is a promising therapeutic target for blood cancer, pain relief, osteoporosis, and immune system disease. The recent withdrawal of Rimonabant, which targets another closely related cannabinoid receptor (CB1), accentuates the importance of selectivity for the development of CB2 ligands in order to minimize their effects on the CB1 receptor. In our previous study, LiCABEDS (Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps) was reported as a generic ligand classification algorithm for the prediction of categorical molecular properties. Here, we report extension of the application of LiCABEDS to the modeling of cannabinoid ligand selectivity with molecular fingerprints as descriptors. The performance of LiCABEDS was systematically compared with another popular classification algorithm, support vector machine (SVM), according to prediction precision and recall rate. In addition, the examination of LiCABEDS models revealed the difference in structure diversity of CB1 and CB2 selective ligands. The structure determination from data mining could be useful for the design of novel cannabinoid lead compounds. More importantly, the potential of LiCABEDS was demonstrated through successful identification of newly synthesized CB2 selective compounds.

  4. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy

    NASA Astrophysics Data System (ADS)

    Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente

    2017-02-01

    We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes.

  5. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy

    PubMed Central

    Sanz, Martín; Picazo-Bueno, José Ángel; Granero, Luis; García, Javier; Micó, Vicente

    2017-01-01

    We report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered at the maximum sensitivity of the camera detection channels) configuration but here we report on a detuned (non-centered ones) scheme resulting in prototype miniaturization and cost reduction. Thus, MISHELF microscopy in combination with a novel and fast iterative algorithm allows high-resolution (μm range) phase-retrieved (twin image elimination) quantitative phase imaging of dynamic events (video rate recording speed). The performance of this microscope prototype is validated through experiments using both amplitude (USAF resolution test) and complex (live swine sperm cells and flowing microbeads) samples. The proposed method becomes in an alternative instrument improving some capabilities of existing lensless microscopes. PMID:28233829

  6. AveBoost2: Boosting for Noisy Data

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.

    2004-01-01

    AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the pre- vious base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. In previous work, we developed an algorithm, AveBoost, that constructed distributions orthogonal to the mistake vectors of all the previous models, and then averaged them to create the next base model s distribution. Our experiments demonstrated the superior accuracy of our approach. In this paper, we slightly revise our algorithm to allow us to obtain non-trivial theoretical results: bounds on the training error and generalization error (difference between training and test error). Our averaging process has a regularizing effect which, as expected, leads us to a worse training error bound for our algorithm than for AdaBoost but a superior generalization error bound. For this paper, we experimented with the data that we used in both as originally supplied and with added label noise-a small fraction of the data has its original label changed. Noisy data are notoriously difficult for AdaBoost to learn. Our algorithm's performance improvement over AdaBoost is even greater on the noisy data than the original data.

  7. Designing synthetic networks in silico: a generalised evolutionary algorithm approach.

    PubMed

    Smith, Robert W; van Sluijs, Bob; Fleck, Christian

    2017-12-02

    Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.

  8. Optimal Fungal Space Searching Algorithms.

    PubMed

    Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V

    2016-10-01

    Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.

  9. Scoring best-worst data in unbalanced many-item designs, with applications to crowdsourcing semantic judgments.

    PubMed

    Hollis, Geoff

    2018-04-01

    Best-worst scaling is a judgment format in which participants are presented with a set of items and have to choose the superior and inferior items in the set. Best-worst scaling generates a large quantity of information per judgment because each judgment allows for inferences about the rank value of all unjudged items. This property of best-worst scaling makes it a promising judgment format for research in psychology and natural language processing concerned with estimating the semantic properties of tens of thousands of words. A variety of different scoring algorithms have been devised in the previous literature on best-worst scaling. However, due to problems of computational efficiency, these scoring algorithms cannot be applied efficiently to cases in which thousands of items need to be scored. New algorithms are presented here for converting responses from best-worst scaling into item scores for thousands of items (many-item scoring problems). These scoring algorithms are validated through simulation and empirical experiments, and considerations related to noise, the underlying distribution of true values, and trial design are identified that can affect the relative quality of the derived item scores. The newly introduced scoring algorithms consistently outperformed scoring algorithms used in the previous literature on scoring many-item best-worst data.

  10. Richardson-Lucy/maximum likelihood image restoration algorithm for fluorescence microscopy: further testing.

    PubMed

    Holmes, T J; Liu, Y H

    1989-11-15

    A maximum likelihood based iterative algorithm adapted from nuclear medicine imaging for noncoherent optical imaging was presented in a previous publication with some initial computer-simulation testing. This algorithm is identical in form to that previously derived in a different way by W. H. Richardson "Bayesian-Based Iterative Method of Image Restoration," J. Opt. Soc. Am. 62, 55-59 (1972) and L. B. Lucy "An Iterative Technique for the Rectification of Observed Distributions," Astron. J. 79, 745-765 (1974). Foreseen applications include superresolution and 3-D fluorescence microscopy. This paper presents further simulation testing of this algorithm and a preliminary experiment with a defocused camera. The simulations show quantified resolution improvement as a function of iteration number, and they show qualitatively the trend in limitations on restored resolution when noise is present in the data. Also shown are results of a simulation in restoring missing-cone information for 3-D imaging. Conclusions are in support of the feasibility of using these methods with real systems, while computational cost and timing estimates indicate that it should be realistic to implement these methods. Itis suggested in the Appendix that future extensions to the maximum likelihood based derivation of this algorithm will address some of the limitations that are experienced with the nonextended form of the algorithm presented here.

  11. Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation

    DOE PAGES

    Ryan, Kevin; Rajan, Deepak; Ahmed, Shabbir

    2016-05-01

    We recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In our work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous and asynchronous algorithm are proposed. We also test the results on well known stochastic 0-1 programs from the SIPLIB test library and is able to solve one previously unsolved instance from the test set.

  12. An implicit flux-split algorithm to calculate hypersonic flowfields in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1987-01-01

    An implicit, finite-difference, shock-capturing algorithm that calculates inviscid, hypersonic flows in chemical equilibrium is presented. The flux vectors and flux Jacobians are differenced using a first-order, flux-split technique. The equilibrium composition of the gas is determined by minimizing the Gibbs free energy at every node point. The code is validated by comparing results over an axisymmetric hemisphere against previously published results. The algorithm is also applied to more practical configurations. The accuracy, stability, and versatility of the algorithm have been promising.

  13. Connectivity algorithm with depth first search (DFS) on simple graphs

    NASA Astrophysics Data System (ADS)

    Riansanti, O.; Ihsan, M.; Suhaimi, D.

    2018-01-01

    This paper discusses an algorithm to detect connectivity of a simple graph using Depth First Search (DFS). The DFS implementation in this paper differs than other research, that is, on counting the number of visited vertices. The algorithm obtains s from the number of vertices and visits source vertex, following by its adjacent vertices until the last vertex adjacent to the previous source vertex. Any simple graph is connected if s equals 0 and disconnected if s is greater than 0. The complexity of the algorithm is O(n2).

  14. AAA and AXB algorithms for the treatment of nasopharyngeal carcinoma using IMRT and RapidArc techniques.

    PubMed

    Kamaleldin, Maha; Elsherbini, Nader A; Elshemey, Wael M

    2017-09-27

    The aim of this study is to evaluate the impact of anisotropic analytical algorithm (AAA) and 2 reporting systems (AXB-D m and AXB-D w ) of Acuros XB algorithm (AXB) on clinical plans of nasopharyngeal patients using intensity-modulated radiotherapy (IMRT) and RapidArc (RA) techniques. Six plans of different algorithm-technique combinations are performed for 10 patients to calculate dose-volume histogram (DVH) physical parameters for planning target volumes (PTVs) and organs at risk (OARs). The number of monitor units (MUs) and calculation time are also determined. Good coverage is reported for all algorithm-technique combination plans without exceeding the tolerance for OARs. Regardless of the algorithm, RA plans persistently reported higher D 2% values for PTV-70. All IMRT plans reported higher number of MUs (especially with AXB) than did RA plans. AAA-IMRT produced the minimum calculation time of all plans. Major differences between the investigated algorithm-technique combinations are reported only for the number of MUs and calculation time parameters. In terms of these 2 parameters, it is recommended to employ AXB in calculating RA plans and AAA in calculating IMRT plans to achieve minimum calculation times at reduced number of MUs. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  15. Medical image reconstruction algorithm based on the geometric information between sensor detector and ROI

    NASA Astrophysics Data System (ADS)

    Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Roh, Seungkuk

    2016-05-01

    In this paper, we propose a new image reconstruction algorithm considering the geometric information of acoustic sources and senor detector and review the two-step reconstruction algorithm which was previously proposed based on the geometrical information of ROI(region of interest) considering the finite size of acoustic sensor element. In a new image reconstruction algorithm, not only mathematical analysis is very simple but also its software implementation is very easy because we don't need to use the FFT. We verify the effectiveness of the proposed reconstruction algorithm by showing the simulation results by using Matlab k-wave toolkit.

  16. Fast gravity, gravity partials, normalized gravity, gravity gradient torque and magnetic field: Derivation, code and data

    NASA Technical Reports Server (NTRS)

    Gottlieb, Robert G.

    1993-01-01

    Derivation of first and second partials of the gravitational potential is given in both normalized and unnormalized form. Two different recursion formulas are considered. Derivation of a general gravity gradient torque algorithm which uses the second partial of the gravitational potential is given. Derivation of the geomagnetic field vector is given in a form that closely mimics the gravitational algorithm. Ada code for all algorithms that precomputes all possible data is given. Test cases comparing the new algorithms with previous data are given, as well as speed comparisons showing the relative efficiencies of the new algorithms.

  17. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  18. New syndrome decoding techniques for the (n, k) convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1984-01-01

    This paper presents a new syndrome decoding algorithm for the (n, k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3, 1)CC. Previously announced in STAR as N83-34964

  19. Rapid code acquisition algorithms employing PN matched filters

    NASA Technical Reports Server (NTRS)

    Su, Yu T.

    1988-01-01

    The performance of four algorithms using pseudonoise matched filters (PNMFs), for direct-sequence spread-spectrum systems, is analyzed. They are: parallel search with fix dwell detector (PL-FDD), parallel search with sequential detector (PL-SD), parallel-serial search with fix dwell detector (PS-FDD), and parallel-serial search with sequential detector (PS-SD). The operation characteristic for each detector and the mean acquisition time for each algorithm are derived. All the algorithms are studied in conjunction with the noncoherent integration technique, which enables the system to operate in the presence of data modulation. Several previous proposals using PNMF are seen as special cases of the present algorithms.

  20. New algorithms for identifying the flavour of [Formula: see text] mesons using pions and protons.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S

    2017-01-01

    Two new algorithms for use in the analysis of [Formula: see text] collision are developed to identify the flavour of [Formula: see text] mesons at production using pions and protons from the hadronization process. The algorithms are optimized and calibrated on data, using [Formula: see text] decays from [Formula: see text] collision data collected by LHCb at centre-of-mass energies of 7 and 8 TeV . The tagging power of the new pion algorithm is 60% greater than the previously available one; the algorithm using protons to identify the flavour of a [Formula: see text] meson is the first of its kind.

  1. High-Performance Psychometrics: The Parallel-E Parallel-M Algorithm for Generalized Latent Variable Models. Research Report. ETS RR-16-34

    ERIC Educational Resources Information Center

    von Davier, Matthias

    2016-01-01

    This report presents results on a parallel implementation of the expectation-maximization (EM) algorithm for multidimensional latent variable models. The developments presented here are based on code that parallelizes both the E step and the M step of the parallel-E parallel-M algorithm. Examples presented in this report include item response…

  2. Power of automated algorithms for combining time-line follow-back and urine drug screening test results in stimulant-abuse clinical trials.

    PubMed

    Oden, Neal L; VanVeldhuisen, Paul C; Wakim, Paul G; Trivedi, Madhukar H; Somoza, Eugene; Lewis, Daniel

    2011-09-01

    In clinical trials of treatment for stimulant abuse, researchers commonly record both Time-Line Follow-Back (TLFB) self-reports and urine drug screen (UDS) results. To compare the power of self-report, qualitative (use vs. no use) UDS assessment, and various algorithms to generate self-report-UDS composite measures to detect treatment differences via t-test in simulated clinical trial data. We performed Monte Carlo simulations patterned in part on real data to model self-report reliability, UDS errors, dropout, informatively missing UDS reports, incomplete adherence to a urine donation schedule, temporal correlation of drug use, number of days in the study period, number of patients per arm, and distribution of drug-use probabilities. Investigated algorithms include maximum likelihood and Bayesian estimates, self-report alone, UDS alone, and several simple modifications of self-report (referred to here as ELCON algorithms) which eliminate perceived contradictions between it and UDS. Among the algorithms investigated, simple ELCON algorithms gave rise to the most powerful t-tests to detect mean group differences in stimulant drug use. Further investigation is needed to determine if simple, naïve procedures such as the ELCON algorithms are optimal for comparing clinical study treatment arms. But researchers who currently require an automated algorithm in scenarios similar to those simulated for combining TLFB and UDS to test group differences in stimulant use should consider one of the ELCON algorithms. This analysis continues a line of inquiry which could determine how best to measure outpatient stimulant use in clinical trials (NIDA. NIDA Monograph-57: Self-Report Methods of Estimating Drug Abuse: Meeting Current Challenges to Validity. NTIS PB 88248083. Bethesda, MD: National Institutes of Health, 1985; NIDA. NIDA Research Monograph 73: Urine Testing for Drugs of Abuse. NTIS PB 89151971. Bethesda, MD: National Institutes of Health, 1987; NIDA. NIDA Research Monograph 167: The Validity of Self-Reported Drug Use: Improving the Accuracy of Survey Estimates. NTIS PB 97175889. GPO 017-024-01607-1. Bethesda, MD: National Institutes of Health, 1997).

  3. Design of an FPGA-Based Algorithm for Real-Time Solutions of Statistics-Based Positioning

    PubMed Central

    DeWitt, Don; Johnson-Williams, Nathan G.; Miyaoka, Robert S.; Li, Xiaoli; Lockhart, Cate; Lewellen, Tom K.; Hauck, Scott

    2010-01-01

    We report on the implementation of an algorithm and hardware platform to allow real-time processing of the statistics-based positioning (SBP) method for continuous miniature crystal element (cMiCE) detectors. The SBP method allows an intrinsic spatial resolution of ~1.6 mm FWHM to be achieved using our cMiCE design. Previous SBP solutions have required a postprocessing procedure due to the computation and memory intensive nature of SBP. This new implementation takes advantage of a combination of algebraic simplifications, conversion to fixed-point math, and a hierarchal search technique to greatly accelerate the algorithm. For the presented seven stage, 127 × 127 bin LUT implementation, these algorithm improvements result in a reduction from >7 × 106 floating-point operations per event for an exhaustive search to < 5 × 103 integer operations per event. Simulations show nearly identical FWHM positioning resolution for this accelerated SBP solution, and positioning differences of <0.1 mm from the exhaustive search solution. A pipelined field programmable gate array (FPGA) implementation of this optimized algorithm is able to process events in excess of 250 K events per second, which is greater than the maximum expected coincidence rate for an individual detector. In contrast with all detectors being processed at a centralized host, as in the current system, a separate FPGA is available at each detector, thus dividing the computational load. These methods allow SBP results to be calculated in real-time and to be presented to the image generation components in real-time. A hardware implementation has been developed using a commercially available prototype board. PMID:21197135

  4. Fast self contained exponential random deviate algorithm

    NASA Astrophysics Data System (ADS)

    Fernández, Julio F.

    1997-03-01

    An algorithm that generates random numbers with an exponential distribution and is about ten times faster than other well known algorithms has been reported before (J. F. Fernández and J. Rivero, Comput. Phys. 10), 83 (1996). That algorithm requires input of uniform random deviates. We now report a new version of it that needs no input and is nearly as fast. The only limitation we predict thus far for the quality of the output is the amount of computer memory available. Performance results under various tests will be reported. The algorithm works in close analogy to the set up that is often used in statistical physics in order to obtain the Gibb's distribution. N numbers, that are are stored in N registers, change with time according to the rules of the algorithm, keeping their sum constant. Further details will be given.

  5. Generalized image contrast enhancement technique based on Heinemann contrast discrimination model

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Nodine, Calvin F.

    1994-03-01

    This paper presents a generalized image contrast enhancement technique which equalizes perceived brightness based on the Heinemann contrast discrimination model. This is a modified algorithm which presents an improvement over the previous study by Mokrane in its mathematically proven existence of a unique solution and in its easily tunable parameterization. The model uses a log-log representation of contrast luminosity between targets and the surround in a fixed luminosity background setting. The algorithm consists of two nonlinear gray-scale mapping functions which have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of gray scale distribution of the image, and can be uniquely determined once the previous three are given. Tests have been carried out to examine the effectiveness of the algorithm for increasing the overall contrast of images. It can be demonstrated that the generalized algorithm provides better contrast enhancement than histogram equalization. In fact, the histogram equalization technique is a special case of the proposed mapping.

  6. A Two-Dimensional Linear Bicharacteristic FDTD Method

    NASA Technical Reports Server (NTRS)

    Beggs, John H.

    2002-01-01

    The linear bicharacteristic scheme (LBS) was originally developed to improve unsteady solutions in computational acoustics and aeroacoustics. The LBS has previously been extended to treat lossy materials for one-dimensional problems. It is a classical leapfrog algorithm, but is combined with upwind bias in the spatial derivatives. This approach preserves the time-reversibility of the leapfrog algorithm, which results in no dissipation, and it permits more flexibility by the ability to adopt a characteristic based method. The use of characteristic variables allows the LBS to include the Perfectly Matched Layer boundary condition with no added storage or complexity. The LBS offers a central storage approach with lower dispersion than the Yee algorithm, plus it generalizes much easier to nonuniform grids. It has previously been applied to two and three-dimensional free-space electromagnetic propagation and scattering problems. This paper extends the LBS to the two-dimensional case. Results are presented for point source radiation problems, and the FDTD algorithm is chosen as a convenient reference for comparison.

  7. Statistical methods to enhance reporting of Aboriginal Australians in routine hospital records using data linkage affect estimates of health disparities.

    PubMed

    Randall, Deborah A; Lujic, Sanja; Leyland, Alastair H; Jorm, Louisa R

    2013-10-01

    To investigate under-recording of Aboriginal people in hospital data from New South Wales (NSW), Australia, define algorithms for enhanced reporting, and examine the impact of these algorithms on estimated disparities in cardiovascular and injury outcomes. NSW Admitted Patient Data were linked with NSW mortality data (2001-2007). Associations with recording of Aboriginal status were investigated using multilevel logistic regression. The number of admissions reported as Aboriginal according to six algorithms was compared with the original (unenhanced) Aboriginal status variable. Age-standardised admission, and 30- and 365-day mortality ratios were estimated for cardiovascular disease and injury. Sixty per cent of the variation in recording of Aboriginal status was due to the hospital of admission, with poorer recording in private and major city hospitals. All enhancement algorithms increased the number of admissions reported as Aboriginal, from between 4.1% and 37.8%. Admission and mortality ratios varied markedly between algorithms, with less strict algorithms resulting in higher admission rate ratios, but generally lower mortality rate ratios, particularly for cardiovascular disease. The choice of enhancement algorithm has an impact on the number of people reported as Aboriginal and on estimated outcome ratios. The influence of the hospital on recording of Aboriginal status highlights the importance of continued efforts to improve data collection. Estimates of Aboriginal health disparity can change depending on how Aboriginal status is reported. Sensitivity analyses using a number of algorithms are recommended. © 2013 The Authors. ANZJPH © 2013 Public Health Association of Australia.

  8. Has universal screening with Xpert® MTB/RIF increased the proportion of multidrug-resistant tuberculosis cases diagnosed in a routine operational setting?

    PubMed Central

    Dunbar, Rory; Caldwell, Judy; Lombard, Carl; Beyers, Nulda

    2017-01-01

    Setting Primary health services in Cape Town, South Africa where the introduction of Xpert® MTB/RIF (Xpert) enabled simultaneous screening for tuberculosis (TB) and drug susceptibility in all presumptive cases. Study aim To compare the proportion of TB cases with drug susceptibility tests undertaken and multidrug-resistant tuberculosis (MDR-TB) diagnosed pre-treatment and during the course of 1st line treatment in the previous smear/culture and the newly introduced Xpert-based algorithms. Methods TB cases identified in a previous stepped-wedge study of TB yield in five sub-districts over seven one-month time-points prior to, during and after the introduction of the Xpert-based algorithm were analysed. We used a combination of patient identifiers to identify all drug susceptibility tests undertaken from electronic laboratory records. Differences in the proportions of DST undertaken and MDR-TB cases diagnosed between algorithms were estimated using a binomial regression model. Results Pre-treatment, the probability of having a DST undertaken (RR = 1.82)(p<0.001) and being diagnosed with MDR-TB (RR = 1.42)(p<0.001) was higher in the Xpert-based algorithm than in the smear/culture-based algorithm. For cases evaluated during the course of 1st-line TB treatment, there was no significant difference in the proportion with DST undertaken (RR = 1.02)(p = 0.848) or MDR-TB diagnosed (RR = 1.12)(p = 0.678) between algorithms. Conclusion Universal screening for drug susceptibility in all presumptive TB cases in the Xpert-based algorithm resulted in a higher overall proportion of MDR-TB cases being diagnosed and is an important strategy in reducing transmission. The previous strategy of only screening new TB cases when 1st line treatment failed did not compensate for cases missed pre-treatment. PMID:28199375

  9. Precise algorithm to generate random sequential adsorption of hard polygons at saturation

    NASA Astrophysics Data System (ADS)

    Zhang, G.

    2018-04-01

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation" limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles and could thus determine the saturation density of spheres with high accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensional polygons. We also calculate the saturation density for regular polygons of three to ten sides and obtain results that are consistent with previous, extrapolation-based studies.

  10. Precise algorithm to generate random sequential adsorption of hard polygons at saturation.

    PubMed

    Zhang, G

    2018-04-01

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation" limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles and could thus determine the saturation density of spheres with high accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensional polygons. We also calculate the saturation density for regular polygons of three to ten sides and obtain results that are consistent with previous, extrapolation-based studies.

  11. Evolutionary Optimization of Yagi-Uda Antennas

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Colombano, Silvano P.

    2001-01-01

    Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, and the inclusion of numerous parasitic elements. We present a genetic algorithm-based automated antenna optimization system that uses a fixed Yagi-Uda topology and a byte-encoded antenna representation. The fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. The genetic operators used are also simpler. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain. We also present encouraging preliminary results where a coevolutionary genetic algorithm is used.

  12. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1994-01-01

    The research during the third reporting period focused on fixed order robust control design for hypersonic vehicles. A new technique was developed to synthesize fixed order H(sub infinity) controllers. A controller canonical form is imposed on the compensator structure and a homotopy algorithm is employed to perform the controller design. Various reduced order controllers are designed for a simplified version of the hypersonic vehicle model used in our previous studies to demonstrate the capabilities of the code. However, further work is needed to investigate the issue of numerical ill-conditioning for large order systems and to make the numerical approach more reliable.

  13. Multiplexed EFPI sensors with ultra-high resolution

    NASA Astrophysics Data System (ADS)

    Ushakov, Nikolai; Liokumovich, Leonid

    2014-05-01

    An investigation of performance of multiplexed displacement sensors based on extrinsic Fabry-Perot interferometers has been carried out. We have considered serial and parallel configurations and analyzed the issues and advantages of the both. We have also extended the previously developed baseline demodulation algorithm for the case of a system of multiplexed sensors. Serial and parallel multiplexing schemes have been experimentally implemented with 3 and 4 sensing elements, respectively. For both configurations the achieved baseline standard deviations were between 30 and 200 pm, which is, to the best of our knowledge, more than an order less than any other multiplexed EFPI resolution ever reported.

  14. CUDA-based real time surgery simulation.

    PubMed

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  15. Heavy quark radiation in NLO+PS POWHEG generators

    NASA Astrophysics Data System (ADS)

    Buonocore, Luca; Nason, Paolo; Tramontano, Francesco

    2018-02-01

    In this paper we deal with radiation from heavy quarks in the context of next-to-leading order calculations matched to parton shower generators. A new algorithm for radiation from massive quarks is presented that has considerable advantages over the one previously employed. We implement the algorithm in the framework of the POWHEG-BOX, and compare it with the previous one in the case of the hvq generator for bottom production in hadronic collisions, and in the case of the bb4l generator for top production and decay.

  16. Comparison and optimization of in silico algorithms for predicting the pathogenicity of sodium channel variants in epilepsy.

    PubMed

    Holland, Katherine D; Bouley, Thomas M; Horn, Paul S

    2017-07-01

    Variants in neuronal voltage-gated sodium channel α-subunits genes SCN1A, SCN2A, and SCN8A are common in early onset epileptic encephalopathies and other autosomal dominant childhood epilepsy syndromes. However, in clinical practice, missense variants are often classified as variants of uncertain significance when missense variants are identified but heritability cannot be determined. Genetic testing reports often include results of computational tests to estimate pathogenicity and the frequency of that variant in population-based databases. The objective of this work was to enhance clinicians' understanding of results by (1) determining how effectively computational algorithms predict epileptogenicity of sodium channel (SCN) missense variants; (2) optimizing their predictive capabilities; and (3) determining if epilepsy-associated SCN variants are present in population-based databases. This will help clinicians better understand the results of indeterminate SCN test results in people with epilepsy. Pathogenic, likely pathogenic, and benign variants in SCNs were identified using databases of sodium channel variants. Benign variants were also identified from population-based databases. Eight algorithms commonly used to predict pathogenicity were compared. In addition, logistic regression was used to determine if a combination of algorithms could better predict pathogenicity. Based on American College of Medical Genetic Criteria, 440 variants were classified as pathogenic or likely pathogenic and 84 were classified as benign or likely benign. Twenty-eight variants previously associated with epilepsy were present in population-based gene databases. The output provided by most computational algorithms had a high sensitivity but low specificity with an accuracy of 0.52-0.77. Accuracy could be improved by adjusting the threshold for pathogenicity. Using this adjustment, the Mendelian Clinically Applicable Pathogenicity (M-CAP) algorithm had an accuracy of 0.90 and a combination of algorithms increased the accuracy to 0.92. Potentially pathogenic variants are present in population-based sources. Most computational algorithms overestimate pathogenicity; however, a weighted combination of several algorithms increased classification accuracy to >0.90. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  17. Forecasting COPD hospitalization in the clinic: optimizing the chronic respiratory questionnaire

    PubMed Central

    Abascal-Bolado, Beatriz; Novotny, Paul J; Sloan, Jeff A; Karpman, Craig; Dulohery, Megan M; Benzo, Roberto P

    2015-01-01

    Purpose Forecasting hospitalization in patients with COPD has gained significant interest in the field of COPD care. There is a need to find simple tools that can help clinicians to stratify the risk of hospitalization in these patients at the time of care. The perception of quality of life has been reported to be independently associated with hospitalizations, but questionnaires are impractical for daily clinical use. Individual questions from valid questionnaires can have robust predictive abilities, as has been suggested in previous reports, as a way to use patient-reported outcomes to forecast important events like hospitalizations in COPD. Our primary aim was to assess the predictive value of individual questions from the Chronic Respiratory Questionnaire Self-Assessment Survey (CRQ-SAS) on the risk of hospitalization and to develop a clinically relevant and simple algorithm that clinicians can use in routine practice to identify patients with an increased risk of hospitalization. Patients and methods A total of 493 patients with COPD prospectively recruited from an outpatient pulmonary clinic completed the CRQ-SAS, demographic information, pulmonary function testing, and clinical outcomes. The cohort had a mean age of 70 years, was 54% male, with forced expiratory volume in 1 second percentage predicted 42.8±16.7, and modified Medical Research Council dyspnea scale score of 2±1.13. Results Our analysis validated the original CRQ-SAS domains. Importantly, recursive partitioning analysis identified three CRQ-SAS items regarding fear or panic of breathlessness, dyspnea with basic activities of daily living, and depressive symptoms that were highly predictive of hospitalization. We propose a robust (area under the curve =0.70) but short and easy algorithm for daily clinical care to forecast hospitalizations in patients with COPD. Conclusion We identified three themes – fear of breathlessness, dyspnea with basic activities of daily living, and depressive symptoms – as important patient-reported outcomes to predict hospitalizations, and propose a short and easy algorithm to forecast hospitalizations in patients with COPD. PMID:26543362

  18. Forecasting COPD hospitalization in the clinic: optimizing the chronic respiratory questionnaire.

    PubMed

    Abascal-Bolado, Beatriz; Novotny, Paul J; Sloan, Jeff A; Karpman, Craig; Dulohery, Megan M; Benzo, Roberto P

    2015-01-01

    Forecasting hospitalization in patients with COPD has gained significant interest in the field of COPD care. There is a need to find simple tools that can help clinicians to stratify the risk of hospitalization in these patients at the time of care. The perception of quality of life has been reported to be independently associated with hospitalizations, but questionnaires are impractical for daily clinical use. Individual questions from valid questionnaires can have robust predictive abilities, as has been suggested in previous reports, as a way to use patient-reported outcomes to forecast important events like hospitalizations in COPD. Our primary aim was to assess the predictive value of individual questions from the Chronic Respiratory Questionnaire Self-Assessment Survey (CRQ-SAS) on the risk of hospitalization and to develop a clinically relevant and simple algorithm that clinicians can use in routine practice to identify patients with an increased risk of hospitalization. A total of 493 patients with COPD prospectively recruited from an outpatient pulmonary clinic completed the CRQ-SAS, demographic information, pulmonary function testing, and clinical outcomes. The cohort had a mean age of 70 years, was 54% male, with forced expiratory volume in 1 second percentage predicted 42.8±16.7, and modified Medical Research Council dyspnea scale score of 2±1.13. Our analysis validated the original CRQ-SAS domains. Importantly, recursive partitioning analysis identified three CRQ-SAS items regarding fear or panic of breathlessness, dyspnea with basic activities of daily living, and depressive symptoms that were highly predictive of hospitalization. We propose a robust (area under the curve =0.70) but short and easy algorithm for daily clinical care to forecast hospitalizations in patients with COPD. We identified three themes - fear of breathlessness, dyspnea with basic activities of daily living, and depressive symptoms - as important patient-reported outcomes to predict hospitalizations, and propose a short and easy algorithm to forecast hospitalizations in patients with COPD.

  19. Improved argument-FFT frequency offset estimation for QPSK coherent optical Systems

    NASA Astrophysics Data System (ADS)

    Han, Jilong; Li, Wei; Yuan, Zhilin; Li, Haitao; Huang, Liyan; Hu, Qianggao

    2016-02-01

    A frequency offset estimation (FOE) algorithm based on fast Fourier transform (FFT) of the signal's argument is investigated, which does not require removing the modulated data phase. In this paper, we analyze the flaw of the argument-FFT algorithm and propose a combined FOE algorithm, in which the absolute of frequency offset (FO) is accurately calculated by argument-FFT algorithm with a relatively large number of samples and the sign of FO is determined by FFT-based interpolation discrete Fourier transformation (DFT) algorithm with a relatively small number of samples. Compared with the previous algorithms based on argument-FFT, the proposed one has low complexity and can still effectively work with a relatively less number of samples.

  20. Research On Vehicle-Based Driver Status/Performance Monitoring; Development, Validation, And Refinement Of Algorithms For Detection Of Driver Drowsiness, Final Report

    DOT National Transportation Integrated Search

    1994-12-01

    THIS REPORT SUMMARIZES THE RESULTS OF A 3-YEAR RESEARCH PROJECT TO DEVELOP RELIABLE ALGORITHMS FOR THE DETECTION OF MOTOR VEHICLE DRIVER IMPAIRMENT DUE TO DROWSINESS. THESE ALGORITHMS ARE BASED ON DRIVING PERFORMANCE MEASURES THAT CAN POTENTIALLY BE ...

  1. Access Restoration Project Task 1.2 Report 2 (of 2) Algorithms for Debris Volume and Water Depth Computation : Appendix A

    DOT National Transportation Integrated Search

    0000-01-01

    n the Access Restoration Project Task 1.2 Report 1, the algorithms for detecting roadway debris piles and flooded areas were described in detail. Those algorithms take CRS data as input and automatically detect the roadway obstructions. Although the ...

  2. A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem

    PubMed Central

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389

  3. Experimental validation of improved 3D SBP positioning algorithm in PET applications using UW Phase II Board

    NASA Astrophysics Data System (ADS)

    Jorge, L. S.; Bonifacio, D. A. B.; DeWitt, Don; Miyaoka, R. S.

    2016-12-01

    Continuous scintillator-based detectors have been considered as a competitive and cheaper approach than highly pixelated discrete crystal positron emission tomography (PET) detectors, despite the need for algorithms to estimate 3D gamma interaction position. In this work, we report on the implementation of a positioning algorithm to estimate the 3D interaction position in a continuous crystal PET detector using a Field Programmable Gate Array (FPGA). The evaluated method is the Statistics-Based Processing (SBP) technique that requires light response function and event position characterization. An algorithm has been implemented using the Verilog language and evaluated using a data acquisition board that contains an Altera Stratix III FPGA. The 3D SBP algorithm was previously successfully implemented on a Stratix II FPGA using simulated data and a different module design. In this work, improvements were made to the FPGA coding of the 3D positioning algorithm, reducing the total memory usage to around 34%. Further the algorithm was evaluated using experimental data from a continuous miniature crystal element (cMiCE) detector module. Using our new implementation, average FWHM (Full Width at Half Maximum) for the whole block is 1.71±0.01 mm, 1.70±0.01 mm and 1.632±0.005 mm for x, y and z directions, respectively. Using a pipelined architecture, the FPGA is able to process 245,000 events per second for interactions inside of the central area of the detector that represents 64% of the total block area. The weighted average of the event rate by regional area (corner, border and central regions) is about 198,000 events per second. This event rate is greater than the maximum expected coincidence rate for any given detector module in future PET systems using the cMiCE detector design.

  4. Maximum Likelihood Estimation of Nonlinear Structural Equation Models.

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Zhu, Hong-Tu

    2002-01-01

    Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)

  5. Better ILP models for haplotype assembly.

    PubMed

    Etemadi, Maryam; Bagherian, Mehri; Chen, Zhi-Zhong; Wang, Lusheng

    2018-02-19

    The haplotype assembly problem for diploid is to find a pair of haplotypes from a given set of aligned Single Nucleotide Polymorphism (SNP) fragments (reads). It has many applications in association studies, drug design, and genetic research. Since this problem is computationally hard, both heuristic and exact algorithms have been designed for it. Although exact algorithms are much slower, they are still of great interest because they usually output significantly better solutions than heuristic algorithms in terms of popular measures such as the Minimum Error Correction (MEC) score, the number of switch errors, and the QAN50 score. Exact algorithms are also valuable because they can be used to witness how good a heuristic algorithm is. The best known exact algorithm is based on integer linear programming (ILP) and it is known that ILP can also be used to improve the output quality of every heuristic algorithm with a little decline in speed. Therefore, faster ILP models for the problem are highly demanded. As in previous studies, we consider not only the general case of the problem but also its all-heterozygous case where we assume that if a column of the input read matrix contains at least one 0 and one 1, then it corresponds to a heterozygous SNP site. For both cases, we design new ILP models for the haplotype assembly problem which aim at minimizing the MEC score. The new models are theoretically better because they contain significantly fewer constraints. More importantly, our experimental results show that for both simulated and real datasets, the new model for the all-heterozygous (respectively, general) case can usually be solved via CPLEX (an ILP solver) at least 5 times (respectively, twice) faster than the previous bests. Indeed, the running time can sometimes be 41 times better. This paper proposes a new ILP model for the haplotype assembly problem and its all-heterozygous case, respectively. Experiments with both real and simulated datasets show that the new models can be solved within much shorter time by CPLEX than the previous bests. We believe that the models can be used to improve heuristic algorithms as well.

  6. Algorithms and programming tools for image processing on the MPP:3

    NASA Technical Reports Server (NTRS)

    Reeves, Anthony P.

    1987-01-01

    This is the third and final report on the work done for NASA Grant 5-403 on Algorithms and Programming Tools for Image Processing on the MPP:3. All the work done for this grant is summarized in the introduction. Work done since August 1986 is reported in detail. Research for this grant falls under the following headings: (1) fundamental algorithms for the MPP; (2) programming utilities for the MPP; (3) the Parallel Pascal Development System; and (4) performance analysis. In this report, the results of two efforts are reported: region growing, and performance analysis of important characteristic algorithms. In each case, timing results from MPP implementations are included. A paper is included in which parallel algorithms for region growing on the MPP is discussed. These algorithms permit different sized regions to be merged in parallel. Details on the implementation and peformance of several important MPP algorithms are given. These include a number of standard permutations, the FFT, convolution, arbitrary data mappings, image warping, and pyramid operations, all of which have been implemented on the MPP. The permutation and image warping functions have been included in the standard development system library.

  7. A fast complex integer convolution using a hybrid transform

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; K Truong, T.

    1978-01-01

    It is shown that the Winograd transform can be combined with a complex integer transform over the Galois field GF(q-squared) to yield a new algorithm for computing the discrete cyclic convolution of complex number points. By this means a fast method for accurately computing the cyclic convolution of a sequence of complex numbers for long convolution lengths can be obtained. This new hybrid algorithm requires fewer multiplications than previous algorithms.

  8. A Methodology for Projecting U.S.-Flag Commercial Tanker Capacity

    DTIC Science & Technology

    1986-03-01

    total crude supply for the total US is less than the sum of the total crude supplies of the PADDs . The algorithm generating the output shown in tables...other PADDs . Accordingly, projected receipts for PADD V are zero , and in conjunction with the values for the vari- ables that previously were...SHIPMENTS ALGORITHM This section presents the mathematics of the algorithm that generates the shipments projections for each PADD . The notation

  9. New approaches for measuring changes in the cortical surface using an automatic reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Pham, Dzung L.; Han, Xiao; Rettmann, Maryam E.; Xu, Chenyang; Tosun, Duygu; Resnick, Susan; Prince, Jerry L.

    2002-05-01

    In previous work, the authors presented a multi-stage procedure for the semi-automatic reconstruction of the cerebral cortex from magnetic resonance images. This method suffered from several disadvantages. First, the tissue classification algorithm used can be sensitive to noise within the image. Second, manual interaction was required for masking out undesired regions of the brain image, such as the ventricles and putamen. Third, iterated median filters were used to perform a topology correction on the initial cortical surface, resulting in an overly smoothed initial surface. Finally, the deformable surface used to converge to the cortex had difficulty capturing narrow gyri. In this work, all four disadvantages of the procedure have been addressed. A more robust tissue classification algorithm is employed and the manual masking step is replaced by an automatic method involving level set deformable models. Instead of iterated median filters, an algorithm developed specifically for topology correction is used. The last disadvantage is addressed using an algorithm that artificially separates adjacent sulcal banks. The new procedure is more automated but also more accurate than the previous one. Its utility is demonstrated by performing a preliminary study on data from the Baltimore Longitudinal Study of Aging.

  10. A time series based sequence prediction algorithm to detect activities of daily living in smart home.

    PubMed

    Marufuzzaman, M; Reaz, M B I; Ali, M A M; Rahman, L F

    2015-01-01

    The goal of smart homes is to create an intelligent environment adapting the inhabitants need and assisting the person who needs special care and safety in their daily life. This can be reached by collecting the ADL (activities of daily living) data and further analysis within existing computing elements. In this research, a very recent algorithm named sequence prediction via enhanced episode discovery (SPEED) is modified and in order to improve accuracy time component is included. The modified SPEED or M-SPEED is a sequence prediction algorithm, which modified the previous SPEED algorithm by using time duration of appliance's ON-OFF states to decide the next state. M-SPEED discovered periodic episodes of inhabitant behavior, trained it with learned episodes, and made decisions based on the obtained knowledge. The results showed that M-SPEED achieves 96.8% prediction accuracy, which is better than other time prediction algorithms like PUBS, ALZ with temporal rules and the previous SPEED. Since human behavior shows natural temporal patterns, duration times can be used to predict future events more accurately. This inhabitant activity prediction system will certainly improve the smart homes by ensuring safety and better care for elderly and handicapped people.

  11. Method and Excel VBA Algorithm for Modeling Master Recession Curve Using Trigonometry Approach.

    PubMed

    Posavec, Kristijan; Giacopetti, Marco; Materazzi, Marco; Birk, Steffen

    2017-11-01

    A new method was developed and implemented into an Excel Visual Basic for Applications (VBAs) algorithm utilizing trigonometry laws in an innovative way to overlap recession segments of time series and create master recession curves (MRCs). Based on a trigonometry approach, the algorithm horizontally translates succeeding recession segments of time series, placing their vertex, that is, the highest recorded value of each recession segment, directly onto the appropriate connection line defined by measurement points of a preceding recession segment. The new method and algorithm continues the development of methods and algorithms for the generation of MRC, where the first published method was based on a multiple linear/nonlinear regression model approach (Posavec et al. 2006). The newly developed trigonometry-based method was tested on real case study examples and compared with the previously published multiple linear/nonlinear regression model-based method. The results show that in some cases, that is, for some time series, the trigonometry-based method creates narrower overlaps of the recession segments, resulting in higher coefficients of determination R 2 , while in other cases the multiple linear/nonlinear regression model-based method remains superior. The Excel VBA algorithm for modeling MRC using the trigonometry approach is implemented into a spreadsheet tool (MRCTools v3.0 written by and available from Kristijan Posavec, Zagreb, Croatia) containing the previously published VBA algorithms for MRC generation and separation. All algorithms within the MRCTools v3.0 are open access and available free of charge, supporting the idea of running science on available, open, and free of charge software. © 2017, National Ground Water Association.

  12. Testing mapping algorithms of the cancer-specific EORTC QLQ-C30 onto EQ-5D in malignant mesothelioma.

    PubMed

    Arnold, David T; Rowen, Donna; Versteegh, Matthijs M; Morley, Anna; Hooper, Clare E; Maskell, Nicholas A

    2015-01-23

    In order to estimate utilities for cancer studies where the EQ-5D was not used, the EORTC QLQ-C30 can be used to estimate EQ-5D using existing mapping algorithms. Several mapping algorithms exist for this transformation, however, algorithms tend to lose accuracy in patients in poor health states. The aim of this study was to test all existing mapping algorithms of QLQ-C30 onto EQ-5D, in a dataset of patients with malignant pleural mesothelioma, an invariably fatal malignancy where no previous mapping estimation has been published. Health related quality of life (HRQoL) data where both the EQ-5D and QLQ-C30 were used simultaneously was obtained from the UK-based prospective observational SWAMP (South West Area Mesothelioma and Pemetrexed) trial. In the original trial 73 patients with pleural mesothelioma were offered palliative chemotherapy and their HRQoL was assessed across five time points. This data was used to test the nine available mapping algorithms found in the literature, comparing predicted against observed EQ-5D values. The ability of algorithms to predict the mean, minimise error and detect clinically significant differences was assessed. The dataset had a total of 250 observations across 5 timepoints. The linear regression mapping algorithms tested generally performed poorly, over-estimating the predicted compared to observed EQ-5D values, especially when observed EQ-5D was below 0.5. The best performing algorithm used a response mapping method and predicted the mean EQ-5D with accuracy with an average root mean squared error of 0.17 (Standard Deviation; 0.22). This algorithm reliably discriminated between clinically distinct subgroups seen in the primary dataset. This study tested mapping algorithms in a population with poor health states, where they have been previously shown to perform poorly. Further research into EQ-5D estimation should be directed at response mapping methods given its superior performance in this study.

  13. An Online Algorithm for Maximizing Submodular Functions

    DTIC Science & Technology

    2007-12-20

    dynamics of the social network are known. In theory, our online algorithms could be used to adapt a marketing campaign to unknown or time-varying social...An Online Algorithm for Maximizing Submodular Functions Matthew Streeter Daniel Golovin December 20, 2007 CMU-CS-07-171 School of Computer Science...number. 1. REPORT DATE 20 DEC 2007 2. REPORT TYPE 3. DATES COVERED 00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE An Online Algorithm for

  14. Community-aware task allocation for social networked multiagent systems.

    PubMed

    Wang, Wanyuan; Jiang, Yichuan

    2014-09-01

    In this paper, we propose a novel community-aware task allocation model for social networked multiagent systems (SN-MASs), where the agent' cooperation domain is constrained in community and each agent can negotiate only with its intracommunity member agents. Under such community-aware scenarios, we prove that it remains NP-hard to maximize system overall profit. To solve this problem effectively, we present a heuristic algorithm that is composed of three phases: 1) task selection: select the desirable task to be allocated preferentially; 2) allocation to community: allocate the selected task to communities based on a significant task-first heuristics; and 3) allocation to agent: negotiate resources for the selected task based on a nonoverlap agent-first and breadth-first resource negotiation mechanism. Through the theoretical analyses and experiments, the advantages of our presented heuristic algorithm and community-aware task allocation model are validated. 1) Our presented heuristic algorithm performs very closely to the benchmark exponential brute-force optimal algorithm and the network flow-based greedy algorithm in terms of system overall profit in small-scale applications. Moreover, in the large-scale applications, the presented heuristic algorithm achieves approximately the same overall system profit, but significantly reduces the computational load compared with the greedy algorithm. 2) Our presented community-aware task allocation model reduces the system communication cost compared with the previous global-aware task allocation model and improves the system overall profit greatly compared with the previous local neighbor-aware task allocation model.

  15. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Bowring, J. F.; Bowring, S. A.

    2011-06-01

    High-precision U-Pb geochronology by isotope dilution-thermal ionization mass spectrometry is integral to a variety of Earth science disciplines, but its ultimate resolving power is quantified by the uncertainties of calculated U-Pb dates. As analytical techniques have advanced, formerly small sources of uncertainty are increasingly important, and thus previous simplifications for data reduction and uncertainty propagation are no longer valid. Although notable previous efforts have treated propagation of correlated uncertainties for the U-Pb system, the equations, uncertainties, and correlations have been limited in number and subject to simplification during propagation through intermediary calculations. We derive and present a transparent U-Pb data reduction algorithm that transforms raw isotopic data and measured or assumed laboratory parameters into the isotopic ratios and dates geochronologists interpret without making assumptions about the relative size of sample components. To propagate uncertainties and their correlations, we describe, in detail, a linear algebraic algorithm that incorporates all input uncertainties and correlations without limiting or simplifying covariance terms to propagate them though intermediate calculations. Finally, a weighted mean algorithm is presented that utilizes matrix elements from the uncertainty propagation algorithm to propagate random and systematic uncertainties for data comparison between other U-Pb labs and other geochronometers. The linear uncertainty propagation algorithms are verified with Monte Carlo simulations of several typical analyses. We propose that our algorithms be considered by the community for implementation to improve the collaborative science envisioned by the EARTHTIME initiative.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, SB; Cady, ST; Dominguez-Garcia, AD

    This paper presents the theory and implementation of a distributed algorithm for controlling differential power processing converters in photovoltaic (PV) applications. This distributed algorithm achieves true maximum power point tracking of series-connected PV submodules by relying only on local voltage measurements and neighbor-to-neighbor communication between the differential power converters. Compared to previous solutions, the proposed algorithm achieves reduced number of perturbations at each step and potentially faster tracking without adding extra hardware; all these features make this algorithm well-suited for long submodule strings. The formulation of the algorithm, discussion of its properties, as well as three case studies are presented.more » The performance of the distributed tracking algorithm has been verified via experiments, which yielded quantifiable improvements over other techniques that have been implemented in practice. Both simulations and hardware experiments have confirmed the effectiveness of the proposed distributed algorithm.« less

  17. Runtime support for parallelizing data mining algorithms

    NASA Astrophysics Data System (ADS)

    Jin, Ruoming; Agrawal, Gagan

    2002-03-01

    With recent technological advances, shared memory parallel machines have become more scalable, and offer large main memories and high bus bandwidths. They are emerging as good platforms for data warehousing and data mining. In this paper, we focus on shared memory parallelization of data mining algorithms. We have developed a series of techniques for parallelization of data mining algorithms, including full replication, full locking, fixed locking, optimized full locking, and cache-sensitive locking. Unlike previous work on shared memory parallelization of specific data mining algorithms, all of our techniques apply to a large number of common data mining algorithms. In addition, we propose a reduction-object based interface for specifying a data mining algorithm. We show how our runtime system can apply any of the technique we have developed starting from a common specification of the algorithm.

  18. Direct Comparison of Two New Actigraphs and Polysomnography in Children and Adolescents

    PubMed Central

    Meltzer, Lisa J.; Walsh, Colleen M.; Traylor, Joel; Westin, Anna M. L.

    2012-01-01

    Study Objectives: To evaluate the validity and reliability of 2 new models of commercially available actigraphs compared to polysomnography for children and adolescents. Design and Setting: Subjects concurrently wore the Ambulatory Monitoring Inc. Motionlogger Sleep Watch (AMI) and the Phillips Respironics Mini-Mitter Actiwatch-2 (PRMM) while undergoing overnight polysomnography (PSG) in a pediatric sleep laboratory housed in a tertiary care children's hospital. Participants: 115 youth (59 girls, 56 boys), ages 3-18 years (mean 8.8 years, SD 4.4 years). Measurements: Outcome variables were total sleep time (TST), wake after sleep onset (WASO), and sleep efficiency (SE). Epoch-by-epoch comparisons were made between the 2 devices and PSG to determine sensitivity, specificity, and accuracy. Agreement between the 2 devices was determined with t-tests and the Bland-Altman concordance technique. Different algorithms/sensitivities, developmental age groups, and sleep disordered breathing (SDB) status were also examined. Results: For both device brands, sensitivity (0.89-0.97), specificity (0.54-0.77), and accuracy (0.87-0.90) were similar to previous reports. Notably, compared to PSG, both device brands significantly overestimated WASO, while the AMI device also significantly underestimated TST. Inter-device comparison of the 2 brands found poor agreement for TST, WASO, and SE. Agreement with PSG differed depending on the scoring algorithm (AMI) or sensitivity setting (PRMM), as well as across developmental age group and sleep disordered breathing (SDB) status. Conclusions: Similar to previous reports, both new actigraph brands were found to have good sensitivity (to detect sleep), but poorer specificity (to detect wake). Study results also suggest that researchers should adjust the scoring algorithm/sensitivity depending on a study's design (e.g., young children vs. adolescents, healthy children vs. youth with SDB). Further, inter-device reliability was poor, suggesting the need for caution when comparing results across studies that use different brands of actigraphic devices. Citation: Meltzer LJ; Walsh CM; Traylor J; Westin AML. Direct comparison of two new actigraphs and polysomnography in children and adolescents. SLEEP 2012;35(1):159-166. PMID:22215930

  19. Parallel algorithms for placement and routing in VLSI design. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Brouwer, Randall Jay

    1991-01-01

    The computational requirements for high quality synthesis, analysis, and verification of very large scale integration (VLSI) designs have rapidly increased with the fast growing complexity of these designs. Research in the past has focused on the development of heuristic algorithms, special purpose hardware accelerators, or parallel algorithms for the numerous design tasks to decrease the time required for solution. Two new parallel algorithms are proposed for two VLSI synthesis tasks, standard cell placement and global routing. The first algorithm, a parallel algorithm for global routing, uses hierarchical techniques to decompose the routing problem into independent routing subproblems that are solved in parallel. Results are then presented which compare the routing quality to the results of other published global routers and which evaluate the speedups attained. The second algorithm, a parallel algorithm for cell placement and global routing, hierarchically integrates a quadrisection placement algorithm, a bisection placement algorithm, and the previous global routing algorithm. Unique partitioning techniques are used to decompose the various stages of the algorithm into independent tasks which can be evaluated in parallel. Finally, results are presented which evaluate the various algorithm alternatives and compare the algorithm performance to other placement programs. Measurements are presented on the parallel speedups available.

  20. The complexity of identifying Ryu-Takayanagi surfaces in AdS 3/CFT 2

    DOE PAGES

    Bao, Ning; Chatwin-Davies, A.

    2016-11-07

    Here, we present a constructive algorithm for the determination of Ryu-Takayanagi surfaces in AdS 3/CFT 2 which exploits previously noted connections between holographic entanglement entropy and max-flow/min-cut. We then characterize its complexity as a polynomial time algorithm.

  1. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-10-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical ozone concentrations and ozone layers aloft, especially during air quality episodes. For these reasons, this paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and confirm that it is properly representing ozone concentrations. This paper is focused on ensuring the TROPOZ algorithm is properly quantifying ozone concentrations, and a following paper will focus on a systematic uncertainty analysis. This methodology begins by simulating synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile. This was then systematically performed to identify any areas that need refinement for a new operational version of the TROPOZ retrieval algorithm. One immediate outcome of this exercise was that a bin registration error in the correction for detector saturation within the original retrieval was discovered and was subsequently corrected for. Another noticeable outcome was that the vertical smoothing in the retrieval algorithm was upgraded from a constant vertical resolution to a variable vertical resolution to yield a statistical uncertainty of <10 %. This new and optimized vertical-resolution scheme retains the ability to resolve fluctuations in the known ozone profile, but it now allows near-field signals to be more appropriately smoothed. With these revisions to the previous TROPOZ retrieval, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the previous version of the retrieval, the TROPOZopt had an overall mean improvement of 3.5 %, and large improvements (upwards of 10-15 % as compared to the previous algorithm) were apparent between 4.5 and 9 km. Finally, to ensure the TROPOZopt retrieval algorithm is robust enough to handle actual lidar return signals, a comparison is shown between four nearby ozonesonde measurements. The ozonesondes are mostly within the TROPOZopt retrieval uncertainty bars, which implies that this exercise was quite successful.

  2. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    PubMed

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  3. Evaluation of a fault tolerant system for an integrated avionics sensor configuration with TSRV flight data

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.

    1985-01-01

    The performance analysis results of a fault inferring nonlinear detection system (FINDS) using sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment is presented. First, a statistical analysis of the flight recorded sensor data was made in order to determine the characteristics of sensor inaccuracies. Next, modifications were made to the detection and decision functions in the FINDS algorithm in order to improve false alarm and failure detection performance under real modelling errors present in the flight data. Finally, the failure detection and false alarm performance of the FINDS algorithm were analyzed by injecting bias failures into fourteen sensor outputs over six repetitive runs of the five minute flight data. In general, the detection speed, failure level estimation, and false alarm performance showed a marked improvement over the previously reported simulation runs. In agreement with earlier results, detection speed was faster for filter measurement sensors soon as MLS than for filter input sensors such as flight control accelerometers.

  4. A Hybrid Classification System for Heart Disease Diagnosis Based on the RFRS Method.

    PubMed

    Liu, Xiao; Wang, Xiaoli; Su, Qiang; Zhang, Mo; Zhu, Yanhong; Wang, Qiugen; Wang, Qian

    2017-01-01

    Heart disease is one of the most common diseases in the world. The objective of this study is to aid the diagnosis of heart disease using a hybrid classification system based on the ReliefF and Rough Set (RFRS) method. The proposed system contains two subsystems: the RFRS feature selection system and a classification system with an ensemble classifier. The first system includes three stages: (i) data discretization, (ii) feature extraction using the ReliefF algorithm, and (iii) feature reduction using the heuristic Rough Set reduction algorithm that we developed. In the second system, an ensemble classifier is proposed based on the C4.5 classifier. The Statlog (Heart) dataset, obtained from the UCI database, was used for experiments. A maximum classification accuracy of 92.59% was achieved according to a jackknife cross-validation scheme. The results demonstrate that the performance of the proposed system is superior to the performances of previously reported classification techniques.

  5. Sensor failure detection for jet engines

    NASA Technical Reports Server (NTRS)

    Beattie, E. C.; Laprad, R. F.; Akhter, M. M.; Rock, S. M.

    1983-01-01

    Revisions to the advanced sensor failure detection, isolation, and accommodation (DIA) algorithm, developed under the sensor failure detection system program were studied to eliminate the steady state errors due to estimation filter biases. Three algorithm revisions were formulated and one revision for detailed evaluation was chosen. The selected version modifies the DIA algorithm to feedback the actual sensor outputs to the integral portion of the control for the nofailure case. In case of a failure, the estimates of the failed sensor output is fed back to the integral portion. The estimator outputs are fed back to the linear regulator portion of the control all the time. The revised algorithm is evaluated and compared to the baseline algorithm developed previously.

  6. Automatic Boosted Flood Mapping from Satellite Data

    NASA Technical Reports Server (NTRS)

    Coltin, Brian; McMichael, Scott; Smith, Trey; Fong, Terrence

    2016-01-01

    Numerous algorithms have been proposed to map floods from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, most require human input to succeed, either to specify a threshold value or to manually annotate training data. We introduce a new algorithm based on Adaboost which effectively maps floods without any human input, allowing for a truly rapid and automatic response. The Adaboost algorithm combines multiple thresholds to achieve results comparable to state-of-the-art algorithms which do require human input. We evaluate Adaboost, as well as numerous previously proposed flood mapping algorithms, on multiple MODIS flood images, as well as on hundreds of non-flood MODIS lake images, demonstrating its effectiveness across a wide variety of conditions.

  7. Techniques for shuttle trajectory optimization

    NASA Technical Reports Server (NTRS)

    Edge, E. R.; Shieh, C. J.; Powers, W. F.

    1973-01-01

    The application of recently developed function-space Davidon-type techniques to the shuttle ascent trajectory optimization problem is discussed along with an investigation of the recently developed PRAXIS algorithm for parameter optimization. At the outset of this analysis, the major deficiency of the function-space algorithms was their potential storage problems. Since most previous analyses of the methods were with relatively low-dimension problems, no storage problems were encountered. However, in shuttle trajectory optimization, storage is a problem, and this problem was handled efficiently. Topics discussed include: the shuttle ascent model and the development of the particular optimization equations; the function-space algorithms; the operation of the algorithm and typical simulations; variable final-time problem considerations; and a modification of Powell's algorithm.

  8. Improvement in Visual Target Tracking for a Mobile Robot

    NASA Technical Reports Server (NTRS)

    Kim, Won; Ansar, Adnan; Madison, Richard

    2006-01-01

    In an improvement of the visual-target-tracking software used aboard a mobile robot (rover) of the type used to explore the Martian surface, an affine-matching algorithm has been replaced by a combination of a normalized- cross-correlation (NCC) algorithm and a template-image-magnification algorithm. Although neither NCC nor template-image magnification is new, the use of both of them to increase the degree of reliability with which features can be matched is new. In operation, a template image of a target is obtained from a previous rover position, then the magnification of the template image is based on the estimated change in the target distance from the previous rover position to the current rover position (see figure). For this purpose, the target distance at the previous rover position is determined by stereoscopy, while the target distance at the current rover position is calculated from an estimate of the current pose of the rover. The template image is then magnified by an amount corresponding to the estimated target distance to obtain a best template image to match with the image acquired at the current rover position.

  9. Impulsive noise removal from color video with morphological filtering

    NASA Astrophysics Data System (ADS)

    Ruchay, Alexey; Kober, Vitaly

    2017-09-01

    This paper deals with impulse noise removal from color video. The proposed noise removal algorithm employs a switching filtering for denoising of color video; that is, detection of corrupted pixels by means of a novel morphological filtering followed by removal of the detected pixels on the base of estimation of uncorrupted pixels in the previous scenes. With the help of computer simulation we show that the proposed algorithm is able to well remove impulse noise in color video. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.

  10. Precise algorithm to generate random sequential adsorption of hard polygons at saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, G.

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation'' limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles, and could thus determine the saturation density of spheres with high accuracy. Here in this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensionalmore » polygons. We also calculate the saturation density for regular polygons of three to ten sides, and obtain results that are consistent with previous, extrapolation-based studies.« less

  11. Precise algorithm to generate random sequential adsorption of hard polygons at saturation

    DOE PAGES

    Zhang, G.

    2018-04-30

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation'' limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles, and could thus determine the saturation density of spheres with high accuracy. Here in this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensionalmore » polygons. We also calculate the saturation density for regular polygons of three to ten sides, and obtain results that are consistent with previous, extrapolation-based studies.« less

  12. Investigation into the efficiency of different bionic algorithm combinations for a COBRA meta-heuristic

    NASA Astrophysics Data System (ADS)

    Akhmedova, Sh; Semenkin, E.

    2017-02-01

    Previously, a meta-heuristic approach, called Co-Operation of Biology-Related Algorithms or COBRA, for solving real-parameter optimization problems was introduced and described. COBRA’s basic idea consists of a cooperative work of five well-known bionic algorithms such as Particle Swarm Optimization, the Wolf Pack Search, the Firefly Algorithm, the Cuckoo Search Algorithm and the Bat Algorithm, which were chosen due to the similarity of their schemes. The performance of this meta-heuristic was evaluated on a set of test functions and its workability was demonstrated. Thus it was established that the idea of the algorithms’ cooperative work is useful. However, it is unclear which bionic algorithms should be included in this cooperation and how many of them. Therefore, the five above-listed algorithms and additionally the Fish School Search algorithm were used for the development of five different modifications of COBRA by varying the number of component-algorithms. These modifications were tested on the same set of functions and the best of them was found. Ways of further improving the COBRA algorithm are then discussed.

  13. Duality quantum algorithm efficiently simulates open quantum systems

    PubMed Central

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  14. Skull removal in MR images using a modified artificial bee colony optimization algorithm.

    PubMed

    Taherdangkoo, Mohammad

    2014-01-01

    Removal of the skull from brain Magnetic Resonance (MR) images is an important preprocessing step required for other image analysis techniques such as brain tissue segmentation. In this paper, we propose a new algorithm based on the Artificial Bee Colony (ABC) optimization algorithm to remove the skull region from brain MR images. We modify the ABC algorithm using a different strategy for initializing the coordinates of scout bees and their direction of search. Moreover, we impose an additional constraint to the ABC algorithm to avoid the creation of discontinuous regions. We found that our algorithm successfully removed all bony skull from a sample of de-identified MR brain images acquired from different model scanners. The obtained results of the proposed algorithm compared with those of previously introduced well known optimization algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) demonstrate the superior results and computational performance of our algorithm, suggesting its potential for clinical applications.

  15. An EEG blind source separation algorithm based on a weak exclusion principle.

    PubMed

    Lan Ma; Blu, Thierry; Wang, William S-Y

    2016-08-01

    The question of how to separate individual brain and non-brain signals, mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings, is a significant problem in contemporary neuroscience. This study proposes and evaluates a novel EEG Blind Source Separation (BSS) algorithm based on a weak exclusion principle (WEP). The chief point in which it differs from most previous EEG BSS algorithms is that the proposed algorithm is not based upon the hypothesis that the sources are statistically independent. Our first step was to investigate algorithm performance on simulated signals which have ground truth. The purpose of this simulation is to illustrate the proposed algorithm's efficacy. The results show that the proposed algorithm has good separation performance. Then, we used the proposed algorithm to separate real EEG signals from a memory study using a revised version of Sternberg Task. The results show that the proposed algorithm can effectively separate the non-brain and brain sources.

  16. Morphological classification of odontogenic keratocysts using Bouligand-Minkowski fractal descriptors.

    PubMed

    Florindo, Joao B; Bruno, Odemir M; Landini, Gabriel

    2017-02-01

    The Odontogenic keratocyst (OKC) is a cystic lesion of the jaws, which has high growth and recurrence rates compared to other cysts of the jaws (for instance, radicular cyst, which is the most common jaw cyst type). For this reason OKCs are considered by some to be benign neoplasms. There exist two sub-types of OKCs (sporadic and syndromic) and the ability to discriminate between these sub-types, as well as other jaw cysts, is an important task in terms of disease diagnosis and prognosis. With the development of digital pathology, computational algorithms have become central to addressing this type of problem. Considering that only basic feature-based methods have been investigated in this problem before, we propose to use a different approach (the Bouligand-Minkowski descriptors) to assess the success rates achieved on the classification of a database of histological images of the epithelial lining of these cysts. This does not require the level of abstraction necessary to extract histologically-relevant features and therefore has the potential of being more robust than previous approaches. The descriptors were obtained by mapping pixel intensities into a three dimensional cloud of points in discrete space and applying morphological dilations with spheres of increasing radii. The descriptors were computed from the volume of the dilated set and submitted to a machine learning algorithm to classify the samples into diagnostic groups. This approach was capable of discriminating between OKCs and radicular cysts in 98% of images (100% of cases) and between the two sub-types of OKCs in 68% of images (71% of cases). These results improve over previously reported classification rates reported elsewhere and suggest that Bouligand-Minkowski descriptors are useful features to be used in histopathological images of these cysts. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. New syndrome decoder for (n, 1) convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1983-01-01

    The letter presents a new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck. The new technique uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). A recursive, Viterbi-like, algorithm is developed to find the minimum weight error vector E(D). An example is given for the binary nonsystematic (2, 1) CC.

  18. CAT-PUMA: CME Arrival Time Prediction Using Machine learning Algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert

    2018-04-01

    CAT-PUMA (CME Arrival Time Prediction Using Machine learning Algorithms) quickly and accurately predicts the arrival of Coronal Mass Ejections (CMEs) of CME arrival time. The software was trained via detailed analysis of CME features and solar wind parameters using 182 previously observed geo-effective partial-/full-halo CMEs and uses algorithms of the Support Vector Machine (SVM) to make its predictions, which can be made within minutes of providing the necessary input parameters of a CME.

  19. A dynamic data source selection system for smartwatch platform.

    PubMed

    Nemati, Ebrahim; Sideris, Konstantinos; Kalantarian, Haik; Sarrafzadeh, Majid

    2016-08-01

    A novel data source selection algorithm is proposed for ambulatory activity tracking of elderly people. The algorithm introduces the concept of dynamic switching between the data collection modules (a smartwatch and a smartphone) to improve accuracy and battery life using contextual information. We show that by making offloading decisions as a function of activity, the proposed algorithm improves power consumption and accuracy of the previous work by 7 hours and 5% respectively compared to the baseline.

  20. Using Information From Prior Satellite Scans to Improve Cloud Detection Near the Day-Night Terminator

    NASA Technical Reports Server (NTRS)

    Yost, Christopher R.; Minnis, Patrick; Trepte, Qing Z.; Palikonda, Rabindra; Ayers, Jeffrey K.; Spangenberg, Doulas A.

    2012-01-01

    With geostationary satellite data it is possible to have a continuous record of diurnal cycles of cloud properties for a large portion of the globe. Daytime cloud property retrieval algorithms are typically superior to nighttime algorithms because daytime methods utilize measurements of reflected solar radiation. However, reflected solar radiation is difficult to accurately model for high solar zenith angles where the amount of incident radiation is small. Clear and cloudy scenes can exhibit very small differences in reflected radiation and threshold-based cloud detection methods have more difficulty setting the proper thresholds for accurate cloud detection. Because top-of-atmosphere radiances are typically more accurately modeled outside the terminator region, information from previous scans can help guide cloud detection near the terminator. This paper presents an algorithm that uses cloud fraction and clear and cloudy infrared brightness temperatures from previous satellite scan times to improve the performance of a threshold-based cloud mask near the terminator. Comparisons of daytime, nighttime, and terminator cloud fraction derived from Geostationary Operational Environmental Satellite (GOES) radiance measurements show that the algorithm greatly reduces the number of false cloud detections and smoothes the transition from the daytime to the nighttime clod detection algorithm. Comparisons with the Geoscience Laser Altimeter System (GLAS) data show that using this algorithm decreases the number of false detections by approximately 20 percentage points.

  1. Meta-heuristic algorithms as tools for hydrological science

    NASA Astrophysics Data System (ADS)

    Yoo, Do Guen; Kim, Joong Hoon

    2014-12-01

    In this paper, meta-heuristic optimization techniques are introduced and their applications to water resources engineering, particularly in hydrological science are introduced. In recent years, meta-heuristic optimization techniques have been introduced that can overcome the problems inherent in iterative simulations. These methods are able to find good solutions and require limited computation time and memory use without requiring complex derivatives. Simulation-based meta-heuristic methods such as Genetic algorithms (GAs) and Harmony Search (HS) have powerful searching abilities, which can occasionally overcome the several drawbacks of traditional mathematical methods. For example, HS algorithms can be conceptualized from a musical performance process and used to achieve better harmony; such optimization algorithms seek a near global optimum determined by the value of an objective function, providing a more robust determination of musical performance than can be achieved through typical aesthetic estimation. In this paper, meta-heuristic algorithms and their applications (focus on GAs and HS) in hydrological science are discussed by subject, including a review of existing literature in the field. Then, recent trends in optimization are presented and a relatively new technique such as Smallest Small World Cellular Harmony Search (SSWCHS) is briefly introduced, with a summary of promising results obtained in previous studies. As a result, previous studies have demonstrated that meta-heuristic algorithms are effective tools for the development of hydrological models and the management of water resources.

  2. Individualized identification of euthymic bipolar disorder using the Cambridge Neuropsychological Test Automated Battery (CANTAB) and machine learning.

    PubMed

    Wu, Mon-Ju; Passos, Ives Cavalcante; Bauer, Isabelle E; Lavagnino, Luca; Cao, Bo; Zunta-Soares, Giovana B; Kapczinski, Flávio; Mwangi, Benson; Soares, Jair C

    2016-03-01

    Previous studies have reported that patients with bipolar disorder (BD) present with cognitive impairments during mood episodes as well as euthymic phase. However, it is still unknown whether reported neurocognitive abnormalities can objectively identify individual BD patients from healthy controls (HC). A total of 21 euthymic BD patients and 21 demographically matched HC were included in the current study. Participants performed the computerized Cambridge Neurocognitive Test Automated Battery (CANTAB) to assess cognitive performance. The least absolute shrinkage selection operator (LASSO) machine learning algorithm was implemented to identify neurocognitive signatures to distinguish individual BD patients from HC. The LASSO machine learning algorithm identified individual BD patients from HC with an accuracy of 71%, area under receiver operating characteristic curve of 0.7143 and significant at p=0.0053. The LASSO algorithm assigned individual subjects with a probability score (0-healthy, 1-patient). Patients with rapid cycling (RC) were assigned increased probability scores as compared to patients without RC. A multivariate pattern of neurocognitive abnormalities comprising of affective Go/No-go and the Cambridge gambling task was relevant in distinguishing individual patients from HC. Our study sample was small as we only considered euthymic BD patients and demographically matched HC. Neurocognitive abnormalities can distinguish individual euthymic BD patients from HC with relatively high accuracy. In addition, patients with RC had more cognitive impairments compared to patients without RC. The predictive neurocognitive signature identified in the current study can potentially be used to provide individualized clinical inferences on BD patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations

    PubMed Central

    Ho, ThienLuan; Oh, Seung-Rohk

    2017-01-01

    Approximate string matching with k-differences has a number of practical applications, ranging from pattern recognition to computational biology. This paper proposes an efficient memory-access algorithm for parallel approximate string matching with k-differences on Graphics Processing Units (GPUs). In the proposed algorithm, all threads in the same GPUs warp share data using warp-shuffle operation instead of accessing the shared memory. Moreover, we implement the proposed algorithm by exploiting the memory structure of GPUs to optimize its performance. Experiment results for real DNA packages revealed that the performance of the proposed algorithm and its implementation archived up to 122.64 and 1.53 times compared to that of sequential algorithm on CPU and previous parallel approximate string matching algorithm on GPUs, respectively. PMID:29016700

  4. Intra Frame Coding In Advanced Video Coding Standard (H.264) to Obtain Consistent PSNR and Reduce Bit Rate for Diagonal Down Left Mode Using Gaussian Pulse

    NASA Astrophysics Data System (ADS)

    Manjanaik, N.; Parameshachari, B. D.; Hanumanthappa, S. N.; Banu, Reshma

    2017-08-01

    Intra prediction process of H.264 video coding standard used to code first frame i.e. Intra frame of video to obtain good coding efficiency compare to previous video coding standard series. More benefit of intra frame coding is to reduce spatial pixel redundancy with in current frame, reduces computational complexity and provides better rate distortion performance. To code Intra frame it use existing process Rate Distortion Optimization (RDO) method. This method increases computational complexity, increases in bit rate and reduces picture quality so it is difficult to implement in real time applications, so the many researcher has been developed fast mode decision algorithm for coding of intra frame. The previous work carried on Intra frame coding in H.264 standard using fast decision mode intra prediction algorithm based on different techniques was achieved increased in bit rate, degradation of picture quality(PSNR) for different quantization parameters. Many previous approaches of fast mode decision algorithms on intra frame coding achieved only reduction of computational complexity or it save encoding time and limitation was increase in bit rate with loss of quality of picture. In order to avoid increase in bit rate and loss of picture quality a better approach was developed. In this paper developed a better approach i.e. Gaussian pulse for Intra frame coding using diagonal down left intra prediction mode to achieve higher coding efficiency in terms of PSNR and bitrate. In proposed method Gaussian pulse is multiplied with each 4x4 frequency domain coefficients of 4x4 sub macro block of macro block of current frame before quantization process. Multiplication of Gaussian pulse for each 4x4 integer transformed coefficients at macro block levels scales the information of the coefficients in a reversible manner. The resulting signal would turn abstract. Frequency samples are abstract in a known and controllable manner without intermixing of coefficients, it avoids picture getting bad hit for higher values of quantization parameters. The proposed work was implemented using MATLAB and JM 18.6 reference software. The proposed work measure the performance parameters PSNR, bit rate and compression of intra frame of yuv video sequences in QCIF resolution under different values of quantization parameter with Gaussian value for diagonal down left intra prediction mode. The simulation results of proposed algorithm are tabulated and compared with previous algorithm i.e. Tian et al method. The proposed algorithm achieved reduced in bit rate averagely 30.98% and maintain consistent picture quality for QCIF sequences compared to previous algorithm i.e. Tian et al method.

  5. Improving the Numerical Stability of Fast Matrix Multiplication

    DOE PAGES

    Ballard, Grey; Benson, Austin R.; Druinsky, Alex; ...

    2016-10-04

    Fast algorithms for matrix multiplication, namely those that perform asymptotically fewer scalar operations than the classical algorithm, have been considered primarily of theoretical interest. Apart from Strassen's original algorithm, few fast algorithms have been efficiently implemented or used in practical applications. However, there exist many practical alternatives to Strassen's algorithm with varying performance and numerical properties. Fast algorithms are known to be numerically stable, but because their error bounds are slightly weaker than the classical algorithm, they are not used even in cases where they provide a performance benefit. We argue in this study that the numerical sacrifice of fastmore » algorithms, particularly for the typical use cases of practical algorithms, is not prohibitive, and we explore ways to improve the accuracy both theoretically and empirically. The numerical accuracy of fast matrix multiplication depends on properties of the algorithm and of the input matrices, and we consider both contributions independently. We generalize and tighten previous error analyses of fast algorithms and compare their properties. We discuss algorithmic techniques for improving the error guarantees from two perspectives: manipulating the algorithms, and reducing input anomalies by various forms of diagonal scaling. In conclusion, we benchmark performance and demonstrate our improved numerical accuracy.« less

  6. Engineering platform and experimental protocol for design and evaluation of a neurally-controlled powered transfemoral prosthesis.

    PubMed

    Zhang, Fan; Liu, Ming; Harper, Stephen; Lee, Michael; Huang, He

    2014-07-22

    To enable intuitive operation of powered artificial legs, an interface between user and prosthesis that can recognize the user's movement intent is desired. A novel neural-machine interface (NMI) based on neuromuscular-mechanical fusion developed in our previous study has demonstrated a great potential to accurately identify the intended movement of transfemoral amputees. However, this interface has not yet been integrated with a powered prosthetic leg for true neural control. This study aimed to report (1) a flexible platform to implement and optimize neural control of powered lower limb prosthesis and (2) an experimental setup and protocol to evaluate neural prosthesis control on patients with lower limb amputations. First a platform based on a PC and a visual programming environment were developed to implement the prosthesis control algorithms, including NMI training algorithm, NMI online testing algorithm, and intrinsic control algorithm. To demonstrate the function of this platform, in this study the NMI based on neuromuscular-mechanical fusion was hierarchically integrated with intrinsic control of a prototypical transfemoral prosthesis. One patient with a unilateral transfemoral amputation was recruited to evaluate our implemented neural controller when performing activities, such as standing, level-ground walking, ramp ascent, and ramp descent continuously in the laboratory. A novel experimental setup and protocol were developed in order to test the new prosthesis control safely and efficiently. The presented proof-of-concept platform and experimental setup and protocol could aid the future development and application of neurally-controlled powered artificial legs.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tougaard, Sven

    The author reports a systematic study of the range of validity of a previously developed algorithm for automated x-ray photoelectron spectroscopy analysis, which takes into account the variation in both peak intensity and the intensity in the background of inelastically scattered electrons. This test was done by first simulating spectra for the Au4d peak with gold atoms distributed in the form of a wide range of nanostructures, which includes overlayers with varying thickness, a 5 A layer of atoms buried at varying depths and a substrate covered with an overlayer of varying thickness. Next, the algorithm was applied to analyzemore » these spectra. The algorithm determines the number of atoms within the outermost 3 {lambda} of the surface. This amount of substance is denoted AOS{sub 3{lambda}} (where {lambda} is the electron inelastic mean free path). In general the determined AOS{sub 3{lambda}} is found to be accurate to within {approx}10-20% depending on the depth distribution of the atoms. The algorithm also determines a characteristic length L, which was found to give unambiguous information on the depth distribution of the atoms for practically all studied cases. A set of rules for this parameter, which relates the value of L to the depths where the atoms are distributed, was tested, and these rules were found to be generally valid with only a few exceptions. The results were found to be rather independent of the spectral energy range (from 20 to 40 eV below the peak energy) used in the analysis.« less

  8. Dictionary learning based noisy image super-resolution via distance penalty weight model

    PubMed Central

    Han, Yulan; Zhao, Yongping; Wang, Qisong

    2017-01-01

    In this study, we address the problem of noisy image super-resolution. Noisy low resolution (LR) image is always obtained in applications, while most of the existing algorithms assume that the LR image is noise-free. As to this situation, we present an algorithm for noisy image super-resolution which can achieve simultaneously image super-resolution and denoising. And in the training stage of our method, LR example images are noise-free. For different input LR images, even if the noise variance varies, the dictionary pair does not need to be retrained. For the input LR image patch, the corresponding high resolution (HR) image patch is reconstructed through weighted average of similar HR example patches. To reduce computational cost, we use the atoms of learned sparse dictionary as the examples instead of original example patches. We proposed a distance penalty model for calculating the weight, which can complete a second selection on similar atoms at the same time. Moreover, LR example patches removed mean pixel value are also used to learn dictionary rather than just their gradient features. Based on this, we can reconstruct initial estimated HR image and denoised LR image. Combined with iterative back projection, the two reconstructed images are applied to obtain final estimated HR image. We validate our algorithm on natural images and compared with the previously reported algorithms. Experimental results show that our proposed method performs better noise robustness. PMID:28759633

  9. Morphology vs morphokinetics: a retrospective comparison of inter-observer and intra-observer agreement between embryologists on blastocysts with known implantation outcome.

    PubMed

    Adolfsson, Emma; Andershed, Anna Nowosad

    2018-06-18

    Our primary aim was to compare the morphology and morphokinetics on inter- and intra-observer agreement for blastocyst with known implantation outcome. Our secondary aim was to validate the morphokinetic parameters' ability to predict pregnancy using a previous published selection algorithm, and to compare this to standard morphology assessments. Two embryologists made independent blinded annotations on two occasions using time-lapse images and morphology evaluations using the Gardner Schoolcraft criteria of 99 blastocysts with known implantation outcome. Inter- and intra-observer agreement was calculated and compared using the two methods. The embryos were grouped based on their morphological score, and on their morphokinetic class using a previous published selection algorithm. The implantation rates for each group was calculated and compared. There was moderate agreement for morphology, with agreement on the same embryo score in 55 of 99 cases. The highest agreement rate was found for expansion grade, followed by trophectoderm and inner cell mass. Correlation with pregnancy was inconclusive. For morphokinetics, almost perfect agreement was found for early and late embryo development events, and strong agreement for day-2 and day-3 events. When applying the selection algorithm, the embryo distributions were uneven, and correlation to pregnancy was inconclusive. Time-lapse annotation is consistent and accurate, but our external validation of a previously published selection algorithm was unsuccessful.

  10. SeaWiFS Technical Report Series. Volume 29; The SeaWiFS CZCS-Type Pigment Algorithm

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Aiken, James; Moore, Gerald F.; Trees, Charles C.; Clark, Dennis K.

    1995-01-01

    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission will provide operational ocean color that will be superior to the previous Coastal Zone Color Sensor (CZCS) proof-of-concept mission. An algorithm is needed that exploits the full functionality of SeaWiFS whilst remaining compatible in concept with algorithms used for the CZCS. This document describes the theoretical rationale of radiance band-ratio methods for determining chlorophyll-a and other important biogeochemical parameters, and their implementation for the SeaWIFS mission. Pigment interrelationships are examined to explain the success of the CZCS algorithms. In the context where chlorophyll-a absorbs only weakly at 520 nm, the success of the 520 nm to 550 nm CZCS band ratio needs to be explained. This is explained by showing that in pigment data from a range of oceanic provinces chlorophyll-a (absorbing at less than 490 nm), carotenoids (absorbing at greater than 460 nm), and total pigment are highly correlated. Correlations within pigment groups particularly photoprotectant and photosynthetic carotenoids are less robust. The sources of variability in optical data are examined using the NIMBUS Experiment Team (NET) bio-optical data set and bio-optical model. In both the model and NET data, the majority of the variance in the optical data is attributed to variability in pigment (chlorophyll-a), and total particulates, with less than 5% of the variability resulting from pigment assemblage. The relationships between band ratios and chlorophyll is examined analytically, and a new formulation based on a dual hyperbolic model is suggested which gives a better calibration curve than the conventional log-log linear regression fit. The new calibration curve shows the 490:555 ratio is the best single-band ratio and is the recommended CZCS-type pigment algorithm. Using both the model and NET data, a number of multiband algorithms are developed; the best of which is an algorithm based on the 443:555 and 490:555 ratios. From model data, the form of potential algorithms for other products, such as total particulates and dissolved organic matter (DOM), are suggested.

  11. SeaWiFS Technical Report Series. Volume 29: SeaWiFS CZCS-type pigment algorithm

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Aiken, James; Moore, Gerald F.; Trees, Charles C.; Clark, Dennis K.

    1995-01-01

    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission will provide operational ocean color that will be superior to the previous Coastal Zone Color Sensor (CZCS) proof-of-concept mission. an algorithm is needed that exploits the full functionality of SeaWiFS whilst remaining compatible in concept with algorithms used for the CZCS. This document describes the theoretical rationale of radiance band-radio methods for determining chlorophyll alpha and other important biogeochemical parameters, and their implementation for the SeaWiFS mission. Pigment interrelationships are examined to explain the success of the CZCS algorithms. In the context where chlorophyll alpha absorbs only weakly at 520 nm, the success of the 520 nm to 550 nm CZCS band ratio needs to be explained. This is explained by showing that in pigment data from a range of oceanic provinces chlorophyll alpha (absorbing at less than 490 nm), carotenoids (absorbing at greater than 460 nm), and total pigment are highly correlated. Correlations within pigment groups particularly photoprotectant and photosynthetic carotenoids are less robust. The sources of variability in optical data re examined using the NIMBUS Experiment Team (NET) bio-optical data set and bio-optical model. In both the model and NET data, the majority of the variance in the optical data is attributed to variability in pigment (chlorophyll alpha, and total particulates, with less than 5% of the variability resulting from pigment assemblage. The relationships between band ratios and chlorophyll is examined analytically, and a new formulation based on a dual hyperbolic model is suggested which gives a better calibration curve than the conventional log-log linear regression fit. The new calibration curve shows that 490:555 ratio is the best single-band ratio and is the recommended CZCS-type pigment algorithm. Using both the model and NET data, a number of multiband algorithms are developed; the best of which is an algorithm based on the 443:555 and 490:555 ratios. From model data, the form of potential algorithms for other products, such as total particulates and dissolved organic matter (DOM), are suggested.

  12. A Comparison of Direction Finding Results From an FFT Peak Identification Technique With Those From the Music Algorithm

    DTIC Science & Technology

    1991-07-01

    MUSIC ALGORITHM (U) by L.E. Montbrland go I July 1991 CRC REPORT NO. 1438 Ottawa I* Government of Canada Gouvsrnweient du Canada I o DParunnt of...FINDING RESULTS FROM AN FFT PEAK IDENTIFICATION TECHNIQUE WITH THOSE FROM THE MUSIC ALGORITHM (U) by L.E. Montbhrand CRC REPORT NO. 1438 July 1991...Ottawa A Comparison of Direction Finding Results From an FFT Peak Identification Technique With Those From the Music Algorithm L.E. Montbriand Abstract A

  13. GraDit: graph-based data repair algorithm for multiple data edits rule violations

    NASA Astrophysics Data System (ADS)

    Ode Zuhayeni Madjida, Wa; Gusti Bagus Baskara Nugraha, I.

    2018-03-01

    Constraint-based data cleaning captures data violation to a set of rule called data quality rules. The rules consist of integrity constraint and data edits. Structurally, they are similar, where the rule contain left hand side and right hand side. Previous research proposed a data repair algorithm for integrity constraint violation. The algorithm uses undirected hypergraph as rule violation representation. Nevertheless, this algorithm can not be applied for data edits because of different rule characteristics. This study proposed GraDit, a repair algorithm for data edits rule. First, we use bipartite-directed hypergraph as model representation of overall defined rules. These representation is used for getting interaction between violation rules and clean rules. On the other hand, we proposed undirected graph as violation representation. Our experimental study showed that algorithm with undirected graph as violation representation model gave better data quality than algorithm with undirected hypergraph as representation model.

  14. Zero-block mode decision algorithm for H.264/AVC.

    PubMed

    Lee, Yu-Ming; Lin, Yinyi

    2009-03-01

    In the previous paper , we proposed a zero-block intermode decision algorithm for H.264 video coding based upon the number of zero-blocks of 4 x 4 DCT coefficients between the current macroblock and the co-located macroblock. The proposed algorithm can achieve significant improvement in computation, but the computation performance is limited for high bit-rate coding. To improve computation efficiency, in this paper, we suggest an enhanced zero-block decision algorithm, which uses an early zero-block detection method to compute the number of zero-blocks instead of direct DCT and quantization (DCT/Q) calculation and incorporates two adequate decision methods into semi-stationary and nonstationary regions of a video sequence. In addition, the zero-block decision algorithm is also applied to the intramode prediction in the P frame. The enhanced zero-block decision algorithm brings out a reduction of average 27% of total encoding time compared to the zero-block decision algorithm.

  15. Optimization and experimental realization of the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Yalçınkaya, I.; Gedik, Z.

    2017-12-01

    The quantum permutation algorithm provides computational speed-up over classical algorithms for determining the parity of a given cyclic permutation. For its n -qubit implementations, the number of required quantum gates scales quadratically with n due to the quantum Fourier transforms included. We show here for the n -qubit case that the algorithm can be simplified so that it requires only O (n ) quantum gates, which theoretically reduces the complexity of the implementation. To test our results experimentally, we utilize IBM's 5-qubit quantum processor to realize the algorithm by using the original and simplified recipes for the 2-qubit case. It turns out that the latter results in a significantly higher success probability which allows us to verify the algorithm more precisely than the previous experimental realizations. We also verify the algorithm for the first time for the 3-qubit case with a considerable success probability by taking the advantage of our simplified scheme.

  16. Early Obstacle Detection and Avoidance for All to All Traffic Pattern in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huc, Florian; Jarry, Aubin; Leone, Pierre; Moraru, Luminita; Nikoletseas, Sotiris; Rolim, Jose

    This paper deals with early obstacles recognition in wireless sensor networks under various traffic patterns. In the presence of obstacles, the efficiency of routing algorithms is increased by voluntarily avoiding some regions in the vicinity of obstacles, areas which we call dead-ends. In this paper, we first propose a fast convergent routing algorithm with proactive dead-end detection together with a formal definition and description of dead-ends. Secondly, we present a generalization of this algorithm which improves performances in all to many and all to all traffic patterns. In a third part we prove that this algorithm produces paths that are optimal up to a constant factor of 2π + 1. In a fourth part we consider the reactive version of the algorithm which is an extension of a previously known early obstacle detection algorithm. Finally we give experimental results to illustrate the efficiency of our algorithms in different scenarios.

  17. The efficiency of average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling in identifying homogeneous precipitation catchments

    NASA Astrophysics Data System (ADS)

    Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan

    2018-04-01

    Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.

  18. TopHat: discovering splice junctions with RNA-Seq

    PubMed Central

    Trapnell, Cole; Pachter, Lior; Salzberg, Steven L.

    2009-01-01

    Motivation: A new protocol for sequencing the messenger RNA in a cell, known as RNA-Seq, generates millions of short sequence fragments in a single run. These fragments, or ‘reads’, can be used to measure levels of gene expression and to identify novel splice variants of genes. However, current software for aligning RNA-Seq data to a genome relies on known splice junctions and cannot identify novel ones. TopHat is an efficient read-mapping algorithm designed to align reads from an RNA-Seq experiment to a reference genome without relying on known splice sites. Results: We mapped the RNA-Seq reads from a recent mammalian RNA-Seq experiment and recovered more than 72% of the splice junctions reported by the annotation-based software from that study, along with nearly 20 000 previously unreported junctions. The TopHat pipeline is much faster than previous systems, mapping nearly 2.2 million reads per CPU hour, which is sufficient to process an entire RNA-Seq experiment in less than a day on a standard desktop computer. We describe several challenges unique to ab initio splice site discovery from RNA-Seq reads that will require further algorithm development. Availability: TopHat is free, open-source software available from http://tophat.cbcb.umd.edu Contact: cole@cs.umd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19289445

  19. Analysis of basic clustering algorithms for numerical estimation of statistical averages in biomolecules.

    PubMed

    Anandakrishnan, Ramu; Onufriev, Alexey

    2008-03-01

    In statistical mechanics, the equilibrium properties of a physical system of particles can be calculated as the statistical average over accessible microstates of the system. In general, these calculations are computationally intractable since they involve summations over an exponentially large number of microstates. Clustering algorithms are one of the methods used to numerically approximate these sums. The most basic clustering algorithms first sub-divide the system into a set of smaller subsets (clusters). Then, interactions between particles within each cluster are treated exactly, while all interactions between different clusters are ignored. These smaller clusters have far fewer microstates, making the summation over these microstates, tractable. These algorithms have been previously used for biomolecular computations, but remain relatively unexplored in this context. Presented here, is a theoretical analysis of the error and computational complexity for the two most basic clustering algorithms that were previously applied in the context of biomolecular electrostatics. We derive a tight, computationally inexpensive, error bound for the equilibrium state of a particle computed via these clustering algorithms. For some practical applications, it is the root mean square error, which can be significantly lower than the error bound, that may be more important. We how that there is a strong empirical relationship between error bound and root mean square error, suggesting that the error bound could be used as a computationally inexpensive metric for predicting the accuracy of clustering algorithms for practical applications. An example of error analysis for such an application-computation of average charge of ionizable amino-acids in proteins-is given, demonstrating that the clustering algorithm can be accurate enough for practical purposes.

  20. Mining User Dwell Time for Personalized Web Search Re-Ranking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songhua; Jiang, Hao; Lau, Francis

    We propose a personalized re-ranking algorithm through mining user dwell times derived from a user's previously online reading or browsing activities. We acquire document level user dwell times via a customized web browser, from which we then infer conceptword level user dwell times in order to understand a user's personal interest. According to the estimated concept word level user dwell times, our algorithm can estimate a user's potential dwell time over a new document, based on which personalized webpage re-ranking can be carried out. We compare the rankings produced by our algorithm with rankings generated by popular commercial search enginesmore » and a recently proposed personalized ranking algorithm. The results clearly show the superiority of our method. In this paper, we propose a new personalized webpage ranking algorithmthrough mining dwell times of a user. We introduce a quantitative model to derive concept word level user dwell times from the observed document level user dwell times. Once we have inferred a user's interest over the set of concept words the user has encountered in previous readings, we can then predict the user's potential dwell time over a new document. Such predicted user dwell time allows us to carry out personalized webpage re-ranking. To explore the effectiveness of our algorithm, we measured the performance of our algorithm under two conditions - one with a relatively limited amount of user dwell time data and the other with a doubled amount. Both evaluation cases put our algorithm for generating personalized webpage rankings to satisfy a user's personal preference ahead of those by Google, Yahoo!, and Bing, as well as a recent personalized webpage ranking algorithm.« less

  1. Clinical effectiveness of a Bayesian algorithm for the diagnosis and management of heparin-induced thrombocytopenia.

    PubMed

    Raschke, R A; Gallo, T; Curry, S C; Whiting, T; Padilla-Jones, A; Warkentin, T E; Puri, A

    2017-08-01

    Essentials We previously published a diagnostic algorithm for heparin-induced thrombocytopenia (HIT). In this study, we validated the algorithm in an independent large healthcare system. The accuracy was 98%, sensitivity 82% and specificity 99%. The algorithm has potential to improve accuracy and efficiency in the diagnosis of HIT. Background Heparin-induced thrombocytopenia (HIT) is a life-threatening drug reaction caused by antiplatelet factor 4/heparin (anti-PF4/H) antibodies. Commercial tests to detect these antibodies have suboptimal operating characteristics. We previously developed a diagnostic algorithm for HIT that incorporated 'four Ts' (4Ts) scoring and a stratified interpretation of an anti-PF4/H enzyme-linked immunosorbent assay (ELISA) and yielded a discriminant accuracy of 0.97 (95% confidence interval [CI], 0.93-1.00). Objectives The purpose of this study was to validate the algorithm in an independent patient population and quantitate effects that algorithm adherence could have on clinical care. Methods A retrospective cohort comprised patients who had undergone anti-PF4/H ELISA and serotonin release assay (SRA) testing in our healthcare system from 2010 to 2014. We determined the algorithm recommendation for each patient, compared recommendations with the clinical care received, and enumerated consequences of discrepancies. Operating characteristics were calculated for algorithm recommendations using SRA as the reference standard. Results Analysis was performed on 181 patients, 10 of whom were ruled in for HIT. The algorithm accurately stratified 98% of patients (95% CI, 95-99%), ruling out HIT in 158, ruling in HIT in 10 and recommending an SRA in 13 patients. Algorithm adherence would have obviated 165 SRAs and prevented 30 courses of unnecessary antithrombotic therapy for HIT. Diagnostic sensitivity was 0.82 (95% CI, 0.48-0.98), specificity 0.99 (95% CI, 0.97-1.00), PPV 0.90 (95% CI, 0.56-0.99) and NPV 0.99 (95% CI, 0.96-1.00). Conclusions An algorithm incorporating 4Ts scoring and a stratified interpretation of the anti-PF4/H ELISA has good operating characteristics and the potential to improve management of suspected HIT patients. © 2017 International Society on Thrombosis and Haemostasis.

  2. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source

    PubMed Central

    Reddy, Hemanth K.N.; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A.; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Kurta, Ruslan P.; Larsson, Daniel S.D.; Duane Loh, N.; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A.; Song, Changyong; Spence, John C.H.; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu

    2017-01-01

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency. PMID:28654088

  3. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source

    DOE PAGES

    Reddy, Hemanth K. N.; Yoon, Chun Hong; Aquila, Andrew; ...

    2017-06-27

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. As a result, themore » data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.« less

  4. Updated System-Availability and Resource-Allocation Program

    NASA Technical Reports Server (NTRS)

    Viterna, Larry

    2004-01-01

    A second version of the Availability, Cost and Resource Allocation (ACARA) computer program has become available. The first version was reported in an earlier tech brief. To recapitulate: ACARA analyzes the availability, mean-time-between-failures of components, life-cycle costs, and scheduling of resources of a complex system of equipment. ACARA uses a statistical Monte Carlo method to simulate the failure and repair of components while complying with user-specified constraints on spare parts and resources. ACARA evaluates the performance of the system on the basis of a mathematical model developed from a block-diagram representation. The previous version utilized the MS-DOS operating system and could not be run by use of the most recent versions of the Windows operating system. The current version incorporates the algorithms of the previous version but is compatible with Windows and utilizes menus and a file-management approach typical of Windows-based software.

  5. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source.

    PubMed

    Reddy, Hemanth K N; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Kurta, Ruslan P; Larsson, Daniel S D; Duane Loh, N; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A; Song, Changyong; Spence, John C H; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A; Williams, Garth J; Xavier, P Lourdu

    2017-06-27

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65-70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.

  6. CVD2014-A Database for Evaluating No-Reference Video Quality Assessment Algorithms.

    PubMed

    Nuutinen, Mikko; Virtanen, Toni; Vaahteranoksa, Mikko; Vuori, Tero; Oittinen, Pirkko; Hakkinen, Jukka

    2016-07-01

    In this paper, we present a new video database: CVD2014-Camera Video Database. In contrast to previous video databases, this database uses real cameras rather than introducing distortions via post-processing, which results in a complex distortion space in regard to the video acquisition process. CVD2014 contains a total of 234 videos that are recorded using 78 different cameras. Moreover, this database contains the observer-specific quality evaluation scores rather than only providing mean opinion scores. We have also collected open-ended quality descriptions that are provided by the observers. These descriptions were used to define the quality dimensions for the videos in CVD2014. The dimensions included sharpness, graininess, color balance, darkness, and jerkiness. At the end of this paper, a performance study of image and video quality algorithms for predicting the subjective video quality is reported. For this performance study, we proposed a new performance measure that accounts for observer variance. The performance study revealed that there is room for improvement regarding the video quality assessment algorithms. The CVD2014 video database has been made publicly available for the research community. All video sequences and corresponding subjective ratings can be obtained from the CVD2014 project page (http://www.helsinki.fi/psychology/groups/visualcognition/).

  7. Sidelobe reduction and capacity improvement of open-loop collaborative beamforming in wireless sensor networks

    PubMed Central

    2017-01-01

    Collaborative beamforming (CBF) with a finite number of collaborating nodes (CNs) produces sidelobes that are highly dependent on the collaborating nodes’ locations. The sidelobes cause interference and affect the communication rate of unintended receivers located within the transmission range. Nulling is not possible in an open-loop CBF since the collaborating nodes are unable to receive feedback from the receivers. Hence, the overall sidelobe reduction is required to avoid interference in the directions of the unintended receivers. However, the impact of sidelobe reduction on the capacity improvement at the unintended receiver has never been reported in previous works. In this paper, the effect of peak sidelobe (PSL) reduction in CBF on the capacity of an unintended receiver is analyzed. Three meta-heuristic optimization methods are applied to perform PSL minimization, namely genetic algorithm (GA), particle swarm algorithm (PSO) and a simplified version of the PSO called the weightless swarm algorithm (WSA). An average reduction of 20 dB in PSL alongside 162% capacity improvement is achieved in the worst case scenario with the WSA optimization. It is discovered that the PSL minimization in the CBF provides capacity improvement at an unintended receiver only if the CBF cluster is small and dense. PMID:28464000

  8. Abyss or Shelter? On the Relevance of Web Search Engines' Search Results When People Google for Suicide.

    PubMed

    Haim, Mario; Arendt, Florian; Scherr, Sebastian

    2017-02-01

    Despite evidence that suicide rates can increase after suicides are widely reported in the media, appropriate depictions of suicide in the media can help people to overcome suicidal crises and can thus elicit preventive effects. We argue on the level of individual media users that a similar ambivalence can be postulated for search results on online suicide-related search queries. Importantly, the filter bubble hypothesis (Pariser, 2011) states that search results are biased by algorithms based on a person's previous search behavior. In this study, we investigated whether suicide-related search queries, including either potentially suicide-preventive or -facilitative terms, influence subsequent search results. This might thus protect or harm suicidal Internet users. We utilized a 3 (search history: suicide-related harmful, suicide-related helpful, and suicide-unrelated) × 2 (reactive: clicking the top-most result link and no clicking) experimental design applying agent-based testing. While findings show no influences either of search histories or of reactivity on search results in a subsequent situation, the presentation of a helpline offer raises concerns about possible detrimental algorithmic decision-making: Algorithms "decided" whether or not to present a helpline, and this automated decision, then, followed the agent throughout the rest of the observation period. Implications for policy-making and search providers are discussed.

  9. Novel approach to engineer strains for simultaneous sugar utilization.

    PubMed

    Gawand, Pratish; Hyland, Patrick; Ekins, Andrew; Martin, Vincent J J; Mahadevan, Radhakrishnan

    2013-11-01

    Use of lignocellulosic biomass as a second generation feedstock in the biofuels industry is a pressing challenge. Among other difficulties in using lignocellulosic biomass, one major challenge is the optimal utilization of both 6-carbon (glucose) and 5-carbon (xylose) sugars by industrial microorganisms. Most industrial microorganisms preferentially utilize glucose over xylose owing to the regulatory phenomenon of carbon catabolite repression (CCR). Microorganisms that can co-utilize glucose and xylose are of considerable interest to the biofuels industry due to their ability to simplify the fermentation processes. However, elimination of CCR in microorganisms is challenging due to the multiple coordinating mechanisms involved. We report a novel algorithm, SIMUP, which finds metabolic engineering strategies to force co-utilization of two sugars, without targeting the regulatory pathways of CCR. Mutants of Escherichia coli based on SIMUP algorithm showed predicted growth phenotypes and co-utilized glucose and xylose; however, consumed the sugars slower than the wild-type. Some solutions identified by the algorithm were based on stoichiometric imbalance and were not obvious from the metabolic network topology. Furthermore, sequencing studies on the genes involved in CCR showed that the mechanism for co-utilization of the sugars could be different from previously known mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Seamless lesion insertion in digital mammography: methodology and reader study

    NASA Astrophysics Data System (ADS)

    Pezeshk, Aria; Petrick, Nicholas; Sahiner, Berkman

    2016-03-01

    Collection of large repositories of clinical images containing verified cancer locations is costly and time consuming due to difficulties associated with both the accumulation of data and establishment of the ground truth. This problem poses a significant challenge to the development of machine learning algorithms that require large amounts of data to properly train and avoid overfitting. In this paper we expand the methods in our previous publications by making several modifications that significantly increase the speed of our insertion algorithms, thereby allowing them to be used for inserting lesions that are much larger in size. These algorithms have been incorporated into an image composition tool that we have made publicly available. This tool allows users to modify or supplement existing datasets by seamlessly inserting a real breast mass or micro-calcification cluster extracted from a source digital mammogram into a different location on another mammogram. We demonstrate examples of the performance of this tool on clinical cases taken from the University of South Florida Digital Database for Screening Mammography (DDSM). Finally, we report the results of a reader study evaluating the realism of inserted lesions compared to clinical lesions. Analysis of the radiologist scores in the study using receiver operating characteristic (ROC) methodology indicates that inserted lesions cannot be reliably distinguished from clinical lesions.

  11. Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts.

    PubMed

    Dashtban, M; Balafar, Mohammadali

    2017-03-01

    Gene selection is a demanding task for microarray data analysis. The diverse complexity of different cancers makes this issue still challenging. In this study, a novel evolutionary method based on genetic algorithms and artificial intelligence is proposed to identify predictive genes for cancer classification. A filter method was first applied to reduce the dimensionality of feature space followed by employing an integer-coded genetic algorithm with dynamic-length genotype, intelligent parameter settings, and modified operators. The algorithmic behaviors including convergence trends, mutation and crossover rate changes, and running time were studied, conceptually discussed, and shown to be coherent with literature findings. Two well-known filter methods, Laplacian and Fisher score, were examined considering similarities, the quality of selected genes, and their influences on the evolutionary approach. Several statistical tests concerning choice of classifier, choice of dataset, and choice of filter method were performed, and they revealed some significant differences between the performance of different classifiers and filter methods over datasets. The proposed method was benchmarked upon five popular high-dimensional cancer datasets; for each, top explored genes were reported. Comparing the experimental results with several state-of-the-art methods revealed that the proposed method outperforms previous methods in DLBCL dataset. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Measuring Disorientation Based on the Needleman-Wunsch Algorithm

    ERIC Educational Resources Information Center

    Güyer, Tolga; Atasoy, Bilal; Somyürek, Sibel

    2015-01-01

    This study offers a new method to measure navigation disorientation in web based systems which is powerful learning medium for distance and open education. The Needleman-Wunsch algorithm is used to measure disorientation in a more precise manner. The process combines theoretical and applied knowledge from two previously distinct research areas,…

  13. Wireless Intrusion Detection

    DTIC Science & Technology

    2007-03-01

    32 4.4 Algorithm Pseudo - Code ...................................................................................34 4.5 WIND Interface With a...difference estimates of xc temporal derivatives, or by using a polynomial fit to the previous values of xc. 34 4.4 ALGORITHM PSEUDO - CODE Pseudo ...Phase Shift Keying DQPSK Differential Quadrature Phase Shift Keying EVM Error Vector Magnitude FFT Fast Fourier Transform FPGA Field Programmable

  14. Optical Detection of Degraded Therapeutic Proteins.

    PubMed

    Herrington, William F; Singh, Gajendra P; Wu, Di; Barone, Paul W; Hancock, William; Ram, Rajeev J

    2018-03-23

    The quality of therapeutic proteins such as hormones, subunit and conjugate vaccines, and antibodies is critical to the safety and efficacy of modern medicine. Identifying malformed proteins at the point-of-care can prevent adverse immune reactions in patients; this is of special concern when there is an insecure supply chain resulting in the delivery of degraded, or even counterfeit, drug product. Identification of degraded protein, for example human growth hormone, is demonstrated by applying automated anomaly detection algorithms. Detection of the degraded protein differs from previous applications of machine-learning and classification to spectral analysis: only example spectra of genuine, high-quality drug products are used to construct the classifier. The algorithm is tested on Raman spectra acquired on protein dilutions typical of formulated drug product and at sample volumes of 25 µL, below the typical overfill (waste) volumes present in vials of injectable drug product. The algorithm is demonstrated to correctly classify anomalous recombinant human growth hormone (rhGH) with 92% sensitivity and 98% specificity even when the algorithm has only previously encountered high-quality drug product.

  15. Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data

    NASA Astrophysics Data System (ADS)

    Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho

    2018-05-01

    We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.

  16. Stochastic quasi-Newton molecular simulations

    NASA Astrophysics Data System (ADS)

    Chau, C. D.; Sevink, G. J. A.; Fraaije, J. G. E. M.

    2010-08-01

    We report a new and efficient factorized algorithm for the determination of the adaptive compound mobility matrix B in a stochastic quasi-Newton method (S-QN) that does not require additional potential evaluations. For one-dimensional and two-dimensional test systems, we previously showed that S-QN gives rise to efficient configurational space sampling with good thermodynamic consistency [C. D. Chau, G. J. A. Sevink, and J. G. E. M. Fraaije, J. Chem. Phys. 128, 244110 (2008)10.1063/1.2943313]. Potential applications of S-QN are quite ambitious, and include structure optimization, analysis of correlations and automated extraction of cooperative modes. However, the potential can only be fully exploited if the computational and memory requirements of the original algorithm are significantly reduced. In this paper, we consider a factorized mobility matrix B=JJT and focus on the nontrivial fundamentals of an efficient algorithm for updating the noise multiplier J . The new algorithm requires O(n2) multiplications per time step instead of the O(n3) multiplications in the original scheme due to Choleski decomposition. In a recursive form, the update scheme circumvents matrix storage and enables limited-memory implementation, in the spirit of the well-known limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method, allowing for a further reduction of the computational effort to O(n) . We analyze in detail the performance of the factorized (FSU) and limited-memory (L-FSU) algorithms in terms of convergence and (multiscale) sampling, for an elementary but relevant system that involves multiple time and length scales. Finally, we use this analysis to formulate conditions for the simulation of the complex high-dimensional potential energy landscapes of interest.

  17. Evaluation of the Jonker-Volgenant-Castanon (JVC) assignment algorithm for track association

    NASA Astrophysics Data System (ADS)

    Malkoff, Donald B.

    1997-07-01

    The Jonker-Volgenant-Castanon (JVC) assignment algorithm was used by Lockheed Martin Advanced Technology Laboratories (ATL) for track association in the Rotorcraft Pilot's Associate (RPA) program. RPA is Army Aviation's largest science and technology program, involving an integrated hardware/software system approach for a next generation helicopter containing advanced sensor equipments and applying artificial intelligence `associate' technologies. ATL is responsible for the multisensor, multitarget, onboard/offboard track fusion. McDonnell Douglas Helicopter Systems is the prime contractor and Lockheed Martin Federal Systems is responsible for developing much of the cognitive decision aiding and controls-and-displays subsystems. RPA is scheduled for flight testing beginning in 1997. RPA is unique in requiring real-time tracking and fusion for large numbers of highly-maneuverable ground (and air) targets in a target-dense environment. It uses diverse sensors and is concerned with a large area of interest. Target class and identification data is tightly integrated with spatial and kinematic data throughout the processing. Because of platform constraints, processing hardware for track fusion was quite limited. No previous experience using JVC in this type environment had been reported. ATL performed extensive testing of the JVC, concentrating on error rates and run- times under a variety of conditions. These included wide ranging numbers and types of targets, sensor uncertainties, target attributes, differing degrees of target maneuverability, and diverse combinations of sensors. Testing utilized Monte Carlo approaches, as well as many kinds of challenging scenarios. Comparisons were made with a nearest-neighbor algorithm and a new, proprietary algorithm (the `Competition' algorithm). The JVC proved to be an excellent choice for the RPA environment, providing a good balance between speed of operation and accuracy of results.

  18. New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water

    NASA Astrophysics Data System (ADS)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Bull, Michael A.; Seidel, Felix C.

    2018-01-01

    A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR) observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous version 22 (V22) operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture and then used a combination of these values to compute the final, best estimate AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of (a) the absolute values of the cost functions for each aerosol mixture, (b) the widths of the cost function distributions as a function of AOD, and (c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on empirical thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new aerosol retrieval confidence index (ARCI) is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI ≥ 0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.

  19. New Approach to the Retrieval of AOD and its Uncertainty from MISR Observations Over Dark Water

    NASA Astrophysics Data System (ADS)

    Witek, M. L.; Garay, M. J.; Diner, D. J.; Bull, M. A.; Seidel, F.

    2017-12-01

    A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR) observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous Version 22 (V22) operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture, then used a combination of these values to compute the final, "best estimate" AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of a) the absolute values of the cost functions for each aerosol mixture, b) the widths of the cost function distributions as a function of AOD, and c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on arbitrary thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new Aerosol Retrieval Confidence Index (ARCI) is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI≥0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.

  20. Recent Theoretical Advances in Analysis of AIRS/AMSU Sounding Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2007-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. This paper describes the AIRS Science Team Version 5.0 retrieval algorithm. Starting in early 2007, the Goddard DAAC will use this algorithm to analyze near real time AIRS/AMSU observations. These products are then made available to the scientific community for research purposes. The products include twice daily measurements of the Earth's three dimensional global temperature, water vapor, and ozone distribution as well as cloud cover. In addition, accurate twice daily measurements of the earth's land and ocean temperatures are derived and reported. Scientists use this important set of observations for two major applications. They provide important information for climate studies of global and regional variability and trends of different aspects of the earth's atmosphere. They also provide information for researchers to improve the skill of weather forecasting. A very important new product of the AIRS Version 5 algorithm is accurate case-by-case error estimates of the retrieved products. This heightens their utility for use in both weather and climate applications. These error estimates are also used directly for quality control of the retrieved products. Version 5 also allows for accurate quality controlled AIRS only retrievals, called "Version 5 AO retrievals" which can be used as a backup methodology if AMSU fails. Examples of the accuracy of error estimates and quality controlled retrieval products of the AIRS/AMSU Version 5 and Version 5 AO algorithms are given, and shown to be significantly better than the previously used Version 4 algorithm. Assimilation of Version 5 retrievals are also shown to significantly improve forecast skill, especially when the case-by-case error estimates are utilized in the data assimilation process.

  1. Repair of Chronic Tibialis Anterior Tendon Rupture With a Major Defect Using Gracilis Allograft.

    PubMed

    Burton, Alex; Aydogan, Umur

    2016-08-01

    Tibialis anterior tendon (TAT) rupture is an uncommon injury, however, it can cause substantial deficit. Diagnosis is often delayed due to lack of initial symptoms; yet loss of function over time typically causes the patient to present for treatment. This delay usually ends up with major defects creating a great technical challenge for the operating surgeon. We present a novel technique and operative algorithm for the management of chronic TAT ruptures with a major gap after a delayed diagnosis not otherwise correctable with currently described techniques in the literature. This technique has been performed in 4 cases without any complications with fairly successful functional outcomes. For the reconstruction of chronic TAT rupture with an average delay of nine weeks after initial injury and gap of greater than 10 cm, a thorough operative algorithm was implemented in 4 patients using a double bundle gracilis allograft. Patients were then kept nonweightbearing for 6 weeks followed by weightbearing as tolerated. They began physical therapy with a focus on ankle exercises and gradual return to normal activity at 8 weeks, with resistance training exercises allowed at 12 weeks. At a mean follow-up time of 24.5 months, all patients reported significant pain relief with normal gait pattern. There were no reported intra- or postoperative complications. The average Foot and Ankle Ability Measure score increased to 90 from 27.5 in the postoperative period. All patients were able to return their previous activity levels. Gracilis allograft reconstruction as used in this study is a viable and reproducible alternative to primary repair with postoperative results being favorable without using complex tendon transfer techniques or autograft use necessitating the functional sacrifice of transferred or excised tendon. To the best of our knowledge, this is the first study demonstrating a successful technique and operative algorithm of gracilis allograft reconstruction of the TAT with a substantial deficit of greater than 10 cm with favorable results. Level IV: Operative algorithm with case series. © 2016 The Author(s).

  2. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  3. Approximation algorithms for the min-power symmetric connectivity problem

    NASA Astrophysics Data System (ADS)

    Plotnikov, Roman; Erzin, Adil; Mladenovic, Nenad

    2016-10-01

    We consider the NP-hard problem of synthesis of optimal spanning communication subgraph in a given arbitrary simple edge-weighted graph. This problem occurs in the wireless networks while minimizing the total transmission power consumptions. We propose several new heuristics based on the variable neighborhood search metaheuristic for the approximation solution of the problem. We have performed a numerical experiment where all proposed algorithms have been executed on the randomly generated test samples. For these instances, on average, our algorithms outperform the previously known heuristics.

  4. Effect of Fourier transform on the streaming in quantum lattice gas algorithms

    NASA Astrophysics Data System (ADS)

    Oganesov, Armen; Vahala, George; Vahala, Linda; Soe, Min

    2018-04-01

    All our previous quantum lattice gas algorithms for nonlinear physics have approximated the kinetic energy operator by streaming sequences to neighboring lattice sites. Here, the kinetic energy can be treated to all orders by Fourier transforming the kinetic energy operator with interlaced Dirac-based unitary collision operators. Benchmarking against exact solutions for the 1D nonlinear Schrodinger equation shows an extended range of parameters (soliton speeds and amplitudes) over the Dirac-based near-lattice-site streaming quantum algorithm.

  5. The Correlation Fractal Dimension of Complex Networks

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Liu, Zhenzhen; Wang, Mogei

    2013-05-01

    The fractality of complex networks is studied by estimating the correlation dimensions of the networks. Comparing with the previous algorithms of estimating the box dimension, our algorithm achieves a significant reduction in time complexity. For four benchmark cases tested, that is, the Escherichia coli (E. Coli) metabolic network, the Homo sapiens protein interaction network (H. Sapiens PIN), the Saccharomyces cerevisiae protein interaction network (S. Cerevisiae PIN) and the World Wide Web (WWW), experiments are provided to demonstrate the validity of our algorithm.

  6. Algorithm comparison for schedule optimization in MR fingerprinting.

    PubMed

    Cohen, Ouri; Rosen, Matthew S

    2017-09-01

    In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom schedule. In previous work, we have shown that maximizing the discrimination between different tissue types by optimizing the acquisition schedule allows reductions in the number of measurements required. The ideal optimization algorithm for this application remains unknown, however. In this work we examine several different optimization algorithms to determine the one best suited for optimizing MR Fingerprinting acquisition schedules. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China.

    PubMed

    Chen, Jun; Quan, Wenting; Cui, Tingwei

    2015-01-01

    In this study, two sample semi-analytical algorithms and one new unified multi-band semi-analytical algorithm (UMSA) for estimating chlorophyll-a (Chla) concentration were constructed by specifying optimal wavelengths. The three sample semi-analytical algorithms, including the three-band semi-analytical algorithm (TSA), four-band semi-analytical algorithm (FSA), and UMSA algorithm, were calibrated and validated by the dataset collected in the Yellow River Estuary between September 1 and 10, 2009. By comparing of the accuracy of assessment of TSA, FSA, and UMSA algorithms, it was found that the UMSA algorithm had a superior performance in comparison with the two other algorithms, TSA and FSA. Using the UMSA algorithm in retrieving Chla concentration in the Yellow River Estuary decreased by 25.54% NRMSE (normalized root mean square error) when compared with the FSA algorithm, and 29.66% NRMSE in comparison with the TSA algorithm. These are very significant improvements upon previous methods. Additionally, the study revealed that the TSA and FSA algorithms are merely more specific forms of the UMSA algorithm. Owing to the special form of the UMSA algorithm, if the same bands were used for both the TSA and UMSA algorithms or FSA and UMSA algorithms, the UMSA algorithm would theoretically produce superior results in comparison with the TSA and FSA algorithms. Thus, good results may also be produced if the UMSA algorithm were to be applied for predicting Chla concentration for datasets of Gitelson et al. (2008) and Le et al. (2009).

  8. Efficient Grammar Induction Algorithm with Parse Forests from Real Corpora

    NASA Astrophysics Data System (ADS)

    Kurihara, Kenichi; Kameya, Yoshitaka; Sato, Taisuke

    The task of inducing grammar structures has received a great deal of attention. The reasons why researchers have studied are different; to use grammar induction as the first stage in building large treebanks or to make up better language models. However, grammar induction has inherent computational complexity. To overcome it, some grammar induction algorithms add new production rules incrementally. They refine the grammar while keeping their computational complexity low. In this paper, we propose a new efficient grammar induction algorithm. Although our algorithm is similar to algorithms which learn a grammar incrementally, our algorithm uses the graphical EM algorithm instead of the Inside-Outside algorithm. We report results of learning experiments in terms of learning speeds. The results show that our algorithm learns a grammar in constant time regardless of the size of the grammar. Since our algorithm decreases syntactic ambiguities in each step, our algorithm reduces required time for learning. This constant-time learning considerably affects learning time for larger grammars. We also reports results of evaluation of criteria to choose nonterminals. Our algorithm refines a grammar based on a nonterminal in each step. Since there can be several criteria to decide which nonterminal is the best, we evaluate them by learning experiments.

  9. Motion artifact removal algorithm by ICA for e-bra: a women ECG measurement system

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.

    2013-04-01

    Wearable ECG(ElectroCardioGram) measurement systems have increasingly been developing for people who suffer from CVD(CardioVascular Disease) and have very active lifestyles. Especially, in the case of female CVD patients, several abnormal CVD symptoms are accompanied with CVDs. Therefore, monitoring women's ECG signal is a significant diagnostic method to prevent from sudden heart attack. The E-bra ECG measurement system from our previous work provides more convenient option for women than Holter monitor system. The e-bra system was developed with a motion artifact removal algorithm by using an adaptive filter with LMS(least mean square) and a wandering noise baseline detection algorithm. In this paper, ICA(independent component analysis) algorithms are suggested to remove motion artifact factor for the e-bra system. Firstly, the ICA algorithms are developed with two kinds of statistical theories: Kurtosis, Endropy and evaluated by performing simulations with a ECG signal created by sgolayfilt function of MATLAB, a noise signal including 0.4Hz, 1.1Hz and 1.9Hz, and a weighed vector W estimated by kurtosis or entropy. A correlation value is shown as the degree of similarity between the created ECG signal and the estimated new ECG signal. In the real time E-Bra system, two pseudo signals are extracted by multiplying with a random weighted vector W, the measured ECG signal from E-bra system, and the noise component signal by noise extraction algorithm from our previous work. The suggested ICA algorithm basing on kurtosis or entropy is used to estimate the new ECG signal Y without noise component.

  10. Self calibrating autoTRAC

    NASA Technical Reports Server (NTRS)

    Everett, Louis J.

    1994-01-01

    The work reported here demonstrates how to automatically compute the position and attitude of a targeting reflective alignment concept (TRAC) camera relative to the robot end effector. In the robotics literature this is known as the sensor registration problem. The registration problem is important to solve if TRAC images need to be related to robot position. Previously, when TRAC operated on the end of a robot arm, the camera had to be precisely located at the correct orientation and position. If this location is in error, then the robot may not be able to grapple an object even though the TRAC sensor indicates it should. In addition, if the camera is significantly far from the alignment it is expected to be at, TRAC may give incorrect feedback for the control of the robot. A simple example is if the robot operator thinks the camera is right side up but the camera is actually upside down, the camera feedback will tell the operator to move in an incorrect direction. The automatic calibration algorithm requires the operator to translate and rotate the robot arbitrary amounts along (about) two coordinate directions. After the motion, the algorithm determines the transformation matrix from the robot end effector to the camera image plane. This report discusses the TRAC sensor registration problem.

  11. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava

    Faced with physical and energy density limitations on clock speed, contemporary microprocessor designers have increasingly turned to on-chip parallelism for performance gains. Examples include the Intel Xeon Phi, GPGPUs, and similar technologies. Algorithms should accordingly be designed with ample amounts of fine-grained parallelism if they are to realize the full performance of the hardware. This requirement can be challenging for algorithms that are naturally expressed as a sequence of small-matrix operations, such as the Kalman filter methods widely in use in high-energy physics experiments. In the High-Luminosity Large Hadron Collider (HL-LHC), for example, one of the dominant computational problems ismore » expected to be finding and fitting charged-particle tracks during event reconstruction; today, the most common track-finding methods are those based on the Kalman filter. Experience at the LHC, both in the trigger and offline, has shown that these methods are robust and provide high physics performance. Previously we reported the significant parallel speedups that resulted from our efforts to adapt Kalman-filter-based tracking to many-core architectures such as Intel Xeon Phi. Here we report on how effectively those techniques can be applied to more realistic detector configurations and event complexity.« less

  12. Noninvasive forward-scattering system for rapid detection, characterization, and identification of Listeria colonies: image processing and data analysis

    NASA Astrophysics Data System (ADS)

    Rajwa, Bartek; Bayraktar, Bulent; Banada, Padmapriya P.; Huff, Karleigh; Bae, Euiwon; Hirleman, E. Daniel; Bhunia, Arun K.; Robinson, J. Paul

    2006-10-01

    Bacterial contamination by Listeria monocytogenes puts the public at risk and is also costly for the food-processing industry. Traditional methods for pathogen identification require complicated sample preparation for reliable results. Previously, we have reported development of a noninvasive optical forward-scattering system for rapid identification of Listeria colonies grown on solid surfaces. The presented system included application of computer-vision and patternrecognition techniques to classify scatter pattern formed by bacterial colonies irradiated with laser light. This report shows an extension of the proposed method. A new scatterometer equipped with a high-resolution CCD chip and application of two additional sets of image features for classification allow for higher accuracy and lower error rates. Features based on Zernike moments are supplemented by Tchebichef moments, and Haralick texture descriptors in the new version of the algorithm. Fisher's criterion has been used for feature selection to decrease the training time of machine learning systems. An algorithm based on support vector machines was used for classification of patterns. Low error rates determined by cross-validation, reproducibility of the measurements, and robustness of the system prove that the proposed technology can be implemented in automated devices for detection and classification of pathogenic bacteria.

  13. A proof of the DBRF-MEGN method, an algorithm for deducing minimum equivalent gene networks

    PubMed Central

    2011-01-01

    Background We previously developed the DBRF-MEGN (difference-based regulation finding-minimum equivalent gene network) method, which deduces the most parsimonious signed directed graphs (SDGs) consistent with expression profiles of single-gene deletion mutants. However, until the present study, we have not presented the details of the method's algorithm or a proof of the algorithm. Results We describe in detail the algorithm of the DBRF-MEGN method and prove that the algorithm deduces all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants. Conclusions The DBRF-MEGN method provides all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants. PMID:21699737

  14. An Improved Recovery Algorithm for Decayed AES Key Schedule Images

    NASA Astrophysics Data System (ADS)

    Tsow, Alex

    A practical algorithm that recovers AES key schedules from decayed memory images is presented. Halderman et al. [1] established this recovery capability, dubbed the cold-boot attack, as a serious vulnerability for several widespread software-based encryption packages. Our algorithm recovers AES-128 key schedules tens of millions of times faster than the original proof-of-concept release. In practice, it enables reliable recovery of key schedules at 70% decay, well over twice the decay capacity of previous methods. The algorithm is generalized to AES-256 and is empirically shown to recover 256-bit key schedules that have suffered 65% decay. When solutions are unique, the algorithm efficiently validates this property and outputs the solution for memory images decayed up to 60%.

  15. Theoretical Bounds of Direct Binary Search Halftoning.

    PubMed

    Liao, Jan-Ray

    2015-11-01

    Direct binary search (DBS) produces the images of the best quality among half-toning algorithms. The reason is that it minimizes the total squared perceived error instead of using heuristic approaches. The search for the optimal solution involves two operations: (1) toggle and (2) swap. Both operations try to find the binary states for each pixel to minimize the total squared perceived error. This error energy minimization leads to a conjecture that the absolute value of the filtered error after DBS converges is bounded by half of the peak value of the autocorrelation filter. However, a proof of the bound's existence has not yet been found. In this paper, we present a proof that shows the bound existed as conjectured under the condition that at least one swap occurs after toggle converges. The theoretical analysis also indicates that a swap with a pixel further away from the center of the autocorrelation filter results in a tighter bound. Therefore, we propose a new DBS algorithm which considers toggle and swap separately, and the swap operations are considered in the order from the edge to the center of the filter. Experimental results show that the new algorithm is more efficient than the previous algorithm and can produce half-toned images of the same quality as the previous algorithm.

  16. Constant-pressure nested sampling with atomistic dynamics

    NASA Astrophysics Data System (ADS)

    Baldock, Robert J. N.; Bernstein, Noam; Salerno, K. Michael; Pártay, Lívia B.; Csányi, Gábor

    2017-10-01

    The nested sampling algorithm has been shown to be a general method for calculating the pressure-temperature-composition phase diagrams of materials. While the previous implementation used single-particle Monte Carlo moves, these are inefficient for condensed systems with general interactions where single-particle moves cannot be evaluated faster than the energy of the whole system. Here we enhance the method by using all-particle moves: either Galilean Monte Carlo or the total enthalpy Hamiltonian Monte Carlo algorithm, introduced in this paper. We show that these algorithms enable the determination of phase transition temperatures with equivalent accuracy to the previous method at 1 /N of the cost for an N -particle system with general interactions, or at equal cost when single-particle moves can be done in 1 /N of the cost of a full N -particle energy evaluation. We demonstrate this speed-up for the freezing and condensation transitions of the Lennard-Jones system and show the utility of the algorithms by calculating the order-disorder phase transition of a binary Lennard-Jones model alloy, the eutectic of copper-gold, the density anomaly of water, and the condensation and solidification of bead-spring polymers. The nested sampling method with all three algorithms is implemented in the pymatnest software.

  17. UltraTrack: Software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images.

    PubMed

    Farris, Dominic James; Lichtwark, Glen A

    2016-05-01

    Dynamic measurements of human muscle fascicle length from sequences of B-mode ultrasound images have become increasingly prevalent in biomedical research. Manual digitisation of these images is time consuming and algorithms for automating the process have been developed. Here we present a freely available software implementation of a previously validated algorithm for semi-automated tracking of muscle fascicle length in dynamic ultrasound image recordings, "UltraTrack". UltraTrack implements an affine extension to an optic flow algorithm to track movement of the muscle fascicle end-points throughout dynamically recorded sequences of images. The underlying algorithm has been previously described and its reliability tested, but here we present the software implementation with features for: tracking multiple fascicles in multiple muscles simultaneously; correcting temporal drift in measurements; manually adjusting tracking results; saving and re-loading of tracking results and loading a range of file formats. Two example runs of the software are presented detailing the tracking of fascicles from several lower limb muscles during a squatting and walking activity. We have presented a software implementation of a validated fascicle-tracking algorithm and made the source code and standalone versions freely available for download. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. An Automated Algorithm for Identifying and Tracking Transverse Waves in Solar Images

    NASA Astrophysics Data System (ADS)

    Weberg, Micah J.; Morton, Richard J.; McLaughlin, James A.

    2018-01-01

    Recent instrumentation has demonstrated that the solar atmosphere supports omnipresent transverse waves, which could play a key role in energizing the solar corona. Large-scale studies are required in order to build up an understanding of the general properties of these transverse waves. To help facilitate this, we present an automated algorithm for identifying and tracking features in solar images and extracting the wave properties of any observed transverse oscillations. We test and calibrate our algorithm using a set of synthetic data, which includes noise and rotational effects. The results indicate an accuracy of 1%–2% for displacement amplitudes and 4%–10% for wave periods and velocity amplitudes. We also apply the algorithm to data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and find good agreement with previous studies. Of note, we find that 35%–41% of the observed plumes exhibit multiple wave signatures, which indicates either the superposition of waves or multiple independent wave packets observed at different times within a single structure. The automated methods described in this paper represent a significant improvement on the speed and quality of direct measurements of transverse waves within the solar atmosphere. This algorithm unlocks a wide range of statistical studies that were previously impractical.

  19. Learning Cue Phrase Patterns from Radiology Reports Using a Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Robert M; Beckerman, Barbara G; Potok, Thomas E

    2009-01-01

    Various computer-assisted technologies have been developed to assist radiologists in detecting cancer; however, the algorithms still lack high degrees of sensitivity and specificity, and must undergo machine learning against a training set with known pathologies in order to further refine the algorithms with higher validity of truth. This work describes an approach to learning cue phrase patterns in radiology reports that utilizes a genetic algorithm (GA) as the learning method. The approach described here successfully learned cue phrase patterns for two distinct classes of radiology reports. These patterns can then be used as a basis for automatically categorizing, clustering, ormore » retrieving relevant data for the user.« less

  20. Adaptive power allocation schemes based on IAFS algorithm for OFDM-based cognitive radio systems

    NASA Astrophysics Data System (ADS)

    Zhang, Shuying; Zhao, Xiaohui; Liang, Cong; Ding, Xu

    2017-01-01

    In cognitive radio (CR) systems, reasonable power allocation can increase transmission rate of CR users or secondary users (SUs) as much as possible and at the same time insure normal communication among primary users (PUs). This study proposes an optimal power allocation scheme for the OFDM-based CR system with one SU influenced by multiple PU interference constraints. This scheme is based on an improved artificial fish swarm (IAFS) algorithm in combination with the advantage of conventional artificial fish swarm (ASF) algorithm and particle swarm optimisation (PSO) algorithm. In performance comparison of IAFS algorithm with other intelligent algorithms by simulations, the superiority of the IAFS algorithm is illustrated; this superiority results in better performance of our proposed scheme than that of the power allocation algorithms proposed by the previous studies in the same scenario. Furthermore, our proposed scheme can obtain higher transmission data rate under the multiple PU interference constraints and the total power constraint of SU than that of the other mentioned works.

  1. Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV

    NASA Astrophysics Data System (ADS)

    Fahringer, Timothy W.; Thurow, Brian S.

    2016-09-01

    A new algorithm for reconstruction of 3D particle fields from plenoptic image data is presented. The algorithm is based on the technique of computational refocusing with the addition of a post reconstruction filter to remove the out of focus particles. This new algorithm is tested in terms of reconstruction quality on synthetic particle fields as well as a synthetically generated 3D Gaussian ring vortex. Preliminary results indicate that the new algorithm performs as well as the MART algorithm (used in previous work) in terms of the reconstructed particle position accuracy, but produces more elongated particles. The major advantage to the new algorithm is the dramatic reduction in the computational cost required to reconstruct a volume. It is shown that the new algorithm takes 1/9th the time to reconstruct the same volume as MART while using minimal resources. Experimental results are presented in the form of the wake behind a cylinder at a Reynolds number of 185.

  2. Novel and efficient tag SNPs selection algorithms.

    PubMed

    Chen, Wen-Pei; Hung, Che-Lun; Tsai, Suh-Jen Jane; Lin, Yaw-Ling

    2014-01-01

    SNPs are the most abundant forms of genetic variations amongst species; the association studies between complex diseases and SNPs or haplotypes have received great attention. However, these studies are restricted by the cost of genotyping all SNPs; thus, it is necessary to find smaller subsets, or tag SNPs, representing the rest of the SNPs. In fact, the existing tag SNP selection algorithms are notoriously time-consuming. An efficient algorithm for tag SNP selection was presented, which was applied to analyze the HapMap YRI data. The experimental results show that the proposed algorithm can achieve better performance than the existing tag SNP selection algorithms; in most cases, this proposed algorithm is at least ten times faster than the existing methods. In many cases, when the redundant ratio of the block is high, the proposed algorithm can even be thousands times faster than the previously known methods. Tools and web services for haplotype block analysis integrated by hadoop MapReduce framework are also developed using the proposed algorithm as computation kernels.

  3. Formal verification of an oral messages algorithm for interactive consistency

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1992-01-01

    The formal specification and verification of an algorithm for Interactive Consistency based on the Oral Messages algorithm for Byzantine Agreement is described. We compare our treatment with that of Bevier and Young, who presented a formal specification and verification for a very similar algorithm. Unlike Bevier and Young, who observed that 'the invariant maintained in the recursive subcases of the algorithm is significantly more complicated than is suggested by the published proof' and who found its formal verification 'a fairly difficult exercise in mechanical theorem proving,' our treatment is very close to the previously published analysis of the algorithm, and our formal specification and verification are straightforward. This example illustrates how delicate choices in the formulation of the problem can have significant impact on the readability of its formal specification and on the tractability of its formal verification.

  4. A versatile pitch tracking algorithm: from human speech to killer whale vocalizations.

    PubMed

    Shapiro, Ari Daniel; Wang, Chao

    2009-07-01

    In this article, a pitch tracking algorithm [named discrete logarithmic Fourier transformation-pitch detection algorithm (DLFT-PDA)], originally designed for human telephone speech, was modified for killer whale vocalizations. The multiple frequency components of some of these vocalizations demand a spectral (rather than temporal) approach to pitch tracking. The DLFT-PDA algorithm derives reliable estimations of pitch and the temporal change of pitch from the harmonic structure of the vocal signal. Scores from both estimations are combined in a dynamic programming search to find a smooth pitch track. The algorithm is capable of tracking killer whale calls that contain simultaneous low and high frequency components and compares favorably across most signal to noise ratio ranges to the peak-picking and sidewinder algorithms that have been used for tracking killer whale vocalizations previously.

  5. Transcutaneous closure of chronic broncho-pleuro-cutaneous fistula by duct occluder device

    PubMed Central

    Marwah, Vikas; Ravikumar, R; Rajput, Ashok Kumar; Singh, Amandeep

    2016-01-01

    Bronchopleural fistula (BPF) is a well known complication of several pulmonary conditions posing challenging management problem and is often associated with high morbidity and mortality. Though no consensus exists on a definite closure management algorithm, strategies for closure widely include various methods like tube thoracostomy with suction, open surgical closure, bronchoscopy directed glue, coiling and sealants which now also includes use of occlusion devices. We report a case in which a novel method of delivery and closure of recurrent post-operative broncho-pleuro-cutaneous fistula by a duct occluder device was done transcutaneously which has not been previously described in literature. PMID:27051115

  6. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    NASA Technical Reports Server (NTRS)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  7. Application of a distributed systems architecture for increased speed in image processing on an autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Wright, Adam A.; Momin, Orko; Shin, Young Ho; Shakya, Rahul; Nepal, Kumud; Ahlgren, David J.

    2010-01-01

    This paper presents the application of a distributed systems architecture to an autonomous ground vehicle, Q, that participates in both the autonomous and navigation challenges of the Intelligent Ground Vehicle Competition. In the autonomous challenge the vehicle is required to follow a course, while avoiding obstacles and staying within the course boundaries, which are marked by white lines. For the navigation challenge, the vehicle is required to reach a set of target destinations, known as way points, with given GPS coordinates and avoid obstacles that it encounters in the process. Previously the vehicle utilized a single laptop to execute all processing activities including image processing, sensor interfacing and data processing, path planning and navigation algorithms and motor control. National Instruments' (NI) LabVIEW served as the programming language for software implementation. As an upgrade to last year's design, a NI compact Reconfigurable Input/Output system (cRIO) was incorporated to the system architecture. The cRIO is NI's solution for rapid prototyping that is equipped with a real time processor, an FPGA and modular input/output. Under the current system, the real time processor handles the path planning and navigation algorithms, the FPGA gathers and processes sensor data. This setup leaves the laptop to focus on running the image processing algorithm. Image processing as previously presented by Nepal et. al. is a multi-step line extraction algorithm and constitutes the largest processor load. This distributed approach results in a faster image processing algorithm which was previously Q's bottleneck. Additionally, the path planning and navigation algorithms are executed more reliably on the real time processor due to the deterministic nature of operation. The implementation of this architecture required exploration of various inter-system communication techniques. Data transfer between the laptop and the real time processor using UDP packets was established as the most reliable protocol after testing various options. Improvement can be made to the system by migrating more algorithms to the hardware based FPGA to further speed up the operations of the vehicle.

  8. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale

    PubMed Central

    Kobourov, Stephen; Gallant, Mike; Börner, Katy

    2016-01-01

    Overview Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms—Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. Cluster Quality Metrics We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Network Clustering Algorithms Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters. PMID:27391786

  9. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale.

    PubMed

    Emmons, Scott; Kobourov, Stephen; Gallant, Mike; Börner, Katy

    2016-01-01

    Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms-Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters.

  10. Mass and Volume Optimization of Space Flight Medical Kits

    NASA Technical Reports Server (NTRS)

    Keenan, A. B.; Foy, Millennia Hope; Myers, Jerry

    2014-01-01

    Resource allocation is a critical aspect of space mission planning. All resources, including medical resources, are subject to a number of mission constraints such a maximum mass and volume. However, unlike many resources, there is often limited understanding in how to optimize medical resources for a mission. The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulates outcomes and describes the impact of medical events in terms of lost crew time, medical resource usage, and the potential for medically required evacuation. Previously published work describes an approach that uses the IMM to generate optimized medical kits that maximize benefit to the crew subject to mass and volume constraints. We improve upon the results obtained previously and extend our approach to minimize mass and volume while meeting some benefit threshold. METHODS We frame the medical kit optimization problem as a modified knapsack problem and implement an algorithm utilizing dynamic programming. Using this algorithm, optimized medical kits were generated for 3 mission scenarios with the goal of minimizing the medical kit mass and volume for a specified likelihood of evacuation or Crew Health Index (CHI) threshold. The algorithm was expanded to generate medical kits that maximize likelihood of evacuation or CHI subject to mass and volume constraints. RESULTS AND CONCLUSIONS In maximizing benefit to crew health subject to certain constraints, our algorithm generates medical kits that more closely resemble the unlimited-resource scenario than previous approaches which leverage medical risk information generated by the IMM. Our work here demonstrates that this algorithm provides an efficient and effective means to objectively allocate medical resources for spaceflight missions and provides an effective means of addressing tradeoffs in medical resource allocations and crew mission success parameters.

  11. Development and Evaluation of Algorithms for Breath Alcohol Screening.

    PubMed

    Ljungblad, Jonas; Hök, Bertil; Ekström, Mikael

    2016-04-01

    Breath alcohol screening is important for traffic safety, access control and other areas of health promotion. A family of sensor devices useful for these purposes is being developed and evaluated. This paper is focusing on algorithms for the determination of breath alcohol concentration in diluted breath samples using carbon dioxide to compensate for the dilution. The examined algorithms make use of signal averaging, weighting and personalization to reduce estimation errors. Evaluation has been performed by using data from a previously conducted human study. It is concluded that these features in combination will significantly reduce the random error compared to the signal averaging algorithm taken alone.

  12. A distributed scheduling algorithm for heterogeneous real-time systems

    NASA Technical Reports Server (NTRS)

    Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi

    1991-01-01

    Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.

  13. Algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations with the use of parallel computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moryakov, A. V., E-mail: sailor@orc.ru

    2016-12-15

    An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.

  14. Increasing Prediction the Original Final Year Project of Student Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Saragih, Rijois Iboy Erwin; Turnip, Mardi; Sitanggang, Delima; Aritonang, Mendarissan; Harianja, Eva

    2018-04-01

    Final year project is very important forgraduation study of a student. Unfortunately, many students are not seriouslydidtheir final projects. Many of studentsask for someone to do it for them. In this paper, an application of genetic algorithms to predict the original final year project of a studentis proposed. In the simulation, the data of the final project for the last 5 years is collected. The genetic algorithm has several operators namely population, selection, crossover, and mutation. The result suggest that genetic algorithm can do better prediction than other comparable model. Experimental results of predicting showed that 70% was more accurate than the previous researched.

  15. Research on improved edge extraction algorithm of rectangular piece

    NASA Astrophysics Data System (ADS)

    He, Yi-Bin; Zeng, Ya-Jun; Chen, Han-Xin; Xiao, San-Xia; Wang, Yan-Wei; Huang, Si-Yu

    Traditional edge detection operators such as Prewitt operator, LOG operator and Canny operator, etc. cannot meet the requirements of the modern industrial measurement. This paper proposes a kind of image edge detection algorithm based on improved morphological gradient. It can be detect the image using structural elements, which deals with the characteristic information of the image directly. Choosing different shapes and sizes of structural elements to use together, the ideal image edge information can be detected. The experimental result shows that the algorithm can well extract image edge with noise, which is clearer, and has more detailed edges compared with the previous edge detection algorithm.

  16. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    NASA Astrophysics Data System (ADS)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  17. Reversible Data Hiding Based on DNA Computing

    PubMed Central

    Xie, Yingjie

    2017-01-01

    Biocomputing, especially DNA, computing has got great development. It is widely used in information security. In this paper, a novel algorithm of reversible data hiding based on DNA computing is proposed. Inspired by the algorithm of histogram modification, which is a classical algorithm for reversible data hiding, we combine it with DNA computing to realize this algorithm based on biological technology. Compared with previous results, our experimental results have significantly improved the ER (Embedding Rate). Furthermore, some PSNR (peak signal-to-noise ratios) of test images are also improved. Experimental results show that it is suitable for protecting the copyright of cover image in DNA-based information security. PMID:28280504

  18. Using 3D spatial correlations to improve the noise robustness of multi component analysis of 3D multi echo quantitative T2 relaxometry data.

    PubMed

    Kumar, Dushyant; Hariharan, Hari; Faizy, Tobias D; Borchert, Patrick; Siemonsen, Susanne; Fiehler, Jens; Reddy, Ravinder; Sedlacik, Jan

    2018-05-12

    We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1 + -inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. The proposed algorithm provides more noise-robust fits to T2-decay data and improves MWF-quantifications in white matter structures especially in the sub-cortical white matter and major white matter tract regions. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Objective forensic analysis of striated, quasi-striated and impressed toolmarks

    NASA Astrophysics Data System (ADS)

    Spotts, Ryan E.

    Following the 1993 Daubert v. Merrell Dow Pharmaceuticals, Inc. court case and continuing to the 2010 National Academy of Sciences report, comparative forensic toolmark examination has received many challenges to its admissibility in court cases and its scientific foundations. Many of these challenges deal with the subjective nature in determining whether toolmarks are identifiable. This questioning of current identification methods has created a demand for objective methods of identification - "objective" implying known error rates and statistically reliability. The demand for objective methods has resulted in research that created a statistical algorithm capable of comparing toolmarks to determine their statistical similarity, and thus the ability to separate matching and nonmatching toolmarks. This was expanded to the creation of virtual toolmarking (characterization of a tool to predict the toolmark it will create). The statistical algorithm, originally designed for two-dimensional striated toolmarks, had been successfully applied to striated screwdriver and quasi-striated plier toolmarks. Following this success, a blind study was conducted to validate the virtual toolmarking capability using striated screwdriver marks created at various angles of incidence. Work was also performed to optimize the statistical algorithm by implementing means to ensure the algorithm operations were constrained to logical comparison regions (e.g. the opposite ends of two toolmarks do not need to be compared because they do not coincide with each other). This work was performed on quasi-striated shear cut marks made with pliers - a previously tested, more difficult application of the statistical algorithm that could demonstrate the difference in results due to optimization. The final research conducted was performed with pseudostriated impression toolmarks made with chisels. Impression marks, which are more complex than striated marks, were analyzed using the algorithm to separate matching and nonmatching toolmarks. Results of the conducted research are presented as well as evidence of the primary assumption of forensic toolmark examination; all tools can create identifiably unique toolmarks.

  20. Arrhythmia Evaluation in Wearable ECG Devices

    PubMed Central

    Sadrawi, Muammar; Lin, Chien-Hung; Hsieh, Yita; Kuo, Chia-Chun; Chien, Jen Chien; Haraikawa, Koichi; Abbod, Maysam F.; Shieh, Jiann-Shing

    2017-01-01

    This study evaluates four databases from PhysioNet: The American Heart Association database (AHADB), Creighton University Ventricular Tachyarrhythmia database (CUDB), MIT-BIH Arrhythmia database (MITDB), and MIT-BIH Noise Stress Test database (NSTDB). The ANSI/AAMI EC57:2012 is used for the evaluation of the algorithms for the supraventricular ectopic beat (SVEB), ventricular ectopic beat (VEB), atrial fibrillation (AF), and ventricular fibrillation (VF) via the evaluation of the sensitivity, positive predictivity and false positive rate. Sample entropy, fast Fourier transform (FFT), and multilayer perceptron neural network with backpropagation training algorithm are selected for the integrated detection algorithms. For this study, the result for SVEB has some improvements compared to a previous study that also utilized ANSI/AAMI EC57. In further, VEB sensitivity and positive predictivity gross evaluations have greater than 80%, except for the positive predictivity of the NSTDB database. For AF gross evaluation of MITDB database, the results show very good classification, excluding the episode sensitivity. In advanced, for VF gross evaluation, the episode sensitivity and positive predictivity for the AHADB, MITDB, and CUDB, have greater than 80%, except for MITDB episode positive predictivity, which is 75%. The achieved results show that the proposed integrated SVEB, VEB, AF, and VF detection algorithm has an accurate classification according to ANSI/AAMI EC57:2012. In conclusion, the proposed integrated detection algorithm can achieve good accuracy in comparison with other previous studies. Furthermore, more advanced algorithms and hardware devices should be performed in future for arrhythmia detection and evaluation. PMID:29068369

  1. Global Linking of Cell Tracks Using the Viterbi Algorithm

    PubMed Central

    Jaldén, Joakim; Gilbert, Penney M.; Blau, Helen M.

    2016-01-01

    Automated tracking of living cells in microscopy image sequences is an important and challenging problem. With this application in mind, we propose a global track linking algorithm, which links cell outlines generated by a segmentation algorithm into tracks. The algorithm adds tracks to the image sequence one at a time, in a way which uses information from the complete image sequence in every linking decision. This is achieved by finding the tracks which give the largest possible increases to a probabilistically motivated scoring function, using the Viterbi algorithm. We also present a novel way to alter previously created tracks when new tracks are created, thus mitigating the effects of error propagation. The algorithm can handle mitosis, apoptosis, and migration in and out of the imaged area, and can also deal with false positives, missed detections, and clusters of jointly segmented cells. The algorithm performance is demonstrated on two challenging datasets acquired using bright-field microscopy, but in principle, the algorithm can be used with any cell type and any imaging technique, presuming there is a suitable segmentation algorithm. PMID:25415983

  2. Clustering analysis of moving target signatures

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto

    2010-04-01

    Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.

  3. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge.

    PubMed

    Bron, Esther E; Smits, Marion; van der Flier, Wiesje M; Vrenken, Hugo; Barkhof, Frederik; Scheltens, Philip; Papma, Janne M; Steketee, Rebecca M E; Méndez Orellana, Carolina; Meijboom, Rozanna; Pinto, Madalena; Meireles, Joana R; Garrett, Carolina; Bastos-Leite, António J; Abdulkadir, Ahmed; Ronneberger, Olaf; Amoroso, Nicola; Bellotti, Roberto; Cárdenas-Peña, David; Álvarez-Meza, Andrés M; Dolph, Chester V; Iftekharuddin, Khan M; Eskildsen, Simon F; Coupé, Pierrick; Fonov, Vladimir S; Franke, Katja; Gaser, Christian; Ledig, Christian; Guerrero, Ricardo; Tong, Tong; Gray, Katherine R; Moradi, Elaheh; Tohka, Jussi; Routier, Alexandre; Durrleman, Stanley; Sarica, Alessia; Di Fatta, Giuseppe; Sensi, Francesco; Chincarini, Andrea; Smith, Garry M; Stoyanov, Zhivko V; Sørensen, Lauge; Nielsen, Mads; Tangaro, Sabina; Inglese, Paolo; Wachinger, Christian; Reuter, Martin; van Swieten, John C; Niessen, Wiro J; Klein, Stefan

    2015-05-01

    Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n=30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. CAT Model with Personalized Algorithm for Evaluation of Estimated Student Knowledge

    ERIC Educational Resources Information Center

    Andjelic, Svetlana; Cekerevac, Zoran

    2014-01-01

    This article presents the original model of the computer adaptive testing and grade formation, based on scientifically recognized theories. The base of the model is a personalized algorithm for selection of questions depending on the accuracy of the answer to the previous question. The test is divided into three basic levels of difficulty, and the…

  5. The Impact of Receiving the Same Items on Consecutive Computer Adaptive Test Administrations.

    ERIC Educational Resources Information Center

    O'Neill, Thomas; Lunz, Mary E.; Thiede, Keith

    2000-01-01

    Studied item exposure in a computerized adaptive test when the item selection algorithm presents examinees with questions they were asked in a previous test administration. Results with 178 repeat examinees on a medical technologists' test indicate that the combined use of an adaptive algorithm to select items and latent trait theory to estimate…

  6. Relation of Parallel Discrete Event Simulation algorithms with physical models

    NASA Astrophysics Data System (ADS)

    Shchur, L. N.; Shchur, L. V.

    2015-09-01

    We extend concept of local simulation times in parallel discrete event simulation (PDES) in order to take into account architecture of the current hardware and software in high-performance computing. We shortly review previous research on the mapping of PDES on physical problems, and emphasise how physical results may help to predict parallel algorithms behaviour.

  7. Experimental investigation of the velocity field in buoyant diffusion flames using PIV and TPIV algorithm

    Treesearch

    L. Sun; X. Zhou; S.M. Mahalingam; D.R. Weise

    2005-01-01

    We investigated a simultaneous temporally and spatially resolved 2-D velocity field above a burning circular pan of alcohol using particle image velocimetry (PIV). The results obtained from PIV were used to assess a thermal particle image velocimetry (TPIV) algorithm previously developed to approximate the velocity field using the temperature field, simultaneously...

  8. A hybrid Jaya algorithm for reliability-redundancy allocation problems

    NASA Astrophysics Data System (ADS)

    Ghavidel, Sahand; Azizivahed, Ali; Li, Li

    2018-04-01

    This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.

  9. [Diagnostic performance of biliary ultrasound vs. magnetic resonance cholangiogram in patients with recurrent biliary obstruction.].

    PubMed

    Chávez-Valencia, V; Espinosa-Ortega, H F; Espinoza-Peralta, D; Arce-Salinas, C A

    2009-01-01

    Obstructive jaundice in patients with previous cholecystectomy requires a precise diagnosis. In the diagnostic algorithm, biliary ultrasound (BUS) and magnetic resonance cholangiogram (MRC) are used, although the accuracy of each method is unknown in our setting. No previous comparison of US and MRC in subjects with cholecystectomy has been made. To determine diagnostic accuracy of BUS and MRC in patients with recurrent biliary obstruction. Patients with endoscopic retrograde cholangiopacreatography (ERCP) demonstrating recurrent biliary obstruction by stones were included. All patients underwent BUS and MRC. We determined the diagnostic performance of each image study compared with ERCP. Twenty-seven patients with a mean age of 62.9 +/- 17.3 years-old were included. Sensitivity and specificity of BUS were 0.12 and 0.58, respectively. Figures for MRC were 0.88 and 0.82. Diagnostic agreement between ERCP and MRC was k= 0.66 whereas BUS had a k of only 0.26. MRC had good diagnostic performance for recurrent choledocolithiasis. BUS demonstrated lower accuracy compared with previous reports, so should not be considered in the initial approach of recurrent choledocus obstruction.

  10. Stochastic Models of Polymer Systems

    DTIC Science & Technology

    2016-01-01

    SECURITY CLASSIFICATION OF: The stochastic gradient decent algorithm is the now the "algorithm of choice" for very large machine learning problems...information about the behavior of the algorithm. At the same time, we were also able to formulate various acceleration techniques in precise math terms... gradient decent, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING

  11. Development of a Reference Information Model and Knowledgebase for Electronic Bloodstream Infection Detection

    PubMed Central

    Borlawsky, Tara; Hota, Bala; Lin, Michael Y.; Khan, Yosef; Young, Jeremy; Santangelo, Jennifer; Stevenson, Kurt B.

    2008-01-01

    The most prevalent hospital-acquired infections in the United States are bloodstream infections (BSIs) associated with the presence of a central venous catheter. There is currently a movement, including national organizations such as the Centers for Medicare and Medicaid Services as well as consumer, quality improvement and patient safety groups, encouraging the standardization of reporting and aggregation of such nosocomial infection data to increase and improve reporting, and enable rate comparisons among healthcare institutions. Domain modeling is a well-known method for designing interoperable processes that take advantage of existing data and legacy systems. We have combined such a model-driven design approach with the use of partitioned clinical and business logic knowledgebases in order to employ a previously validated electronic BSI surveillance algorithm in the context of a multi-center study. PMID:18999213

  12. Data Mining Methods Applied to Flight Operations Quality Assurance Data: A Comparison to Standard Statistical Methods

    NASA Technical Reports Server (NTRS)

    Stolzer, Alan J.; Halford, Carl

    2007-01-01

    In a previous study, multiple regression techniques were applied to Flight Operations Quality Assurance-derived data to develop parsimonious model(s) for fuel consumption on the Boeing 757 airplane. The present study examined several data mining algorithms, including neural networks, on the fuel consumption problem and compared them to the multiple regression results obtained earlier. Using regression methods, parsimonious models were obtained that explained approximately 85% of the variation in fuel flow. In general data mining methods were more effective in predicting fuel consumption. Classification and Regression Tree methods reported correlation coefficients of .91 to .92, and General Linear Models and Multilayer Perceptron neural networks reported correlation coefficients of about .99. These data mining models show great promise for use in further examining large FOQA databases for operational and safety improvements.

  13. Phenotyping for patient safety: algorithm development for electronic health record based automated adverse event and medical error detection in neonatal intensive care.

    PubMed

    Li, Qi; Melton, Kristin; Lingren, Todd; Kirkendall, Eric S; Hall, Eric; Zhai, Haijun; Ni, Yizhao; Kaiser, Megan; Stoutenborough, Laura; Solti, Imre

    2014-01-01

    Although electronic health records (EHRs) have the potential to provide a foundation for quality and safety algorithms, few studies have measured their impact on automated adverse event (AE) and medical error (ME) detection within the neonatal intensive care unit (NICU) environment. This paper presents two phenotyping AE and ME detection algorithms (ie, IV infiltrations, narcotic medication oversedation and dosing errors) and describes manual annotation of airway management and medication/fluid AEs from NICU EHRs. From 753 NICU patient EHRs from 2011, we developed two automatic AE/ME detection algorithms, and manually annotated 11 classes of AEs in 3263 clinical notes. Performance of the automatic AE/ME detection algorithms was compared to trigger tool and voluntary incident reporting results. AEs in clinical notes were double annotated and consensus achieved under neonatologist supervision. Sensitivity, positive predictive value (PPV), and specificity are reported. Twelve severe IV infiltrates were detected. The algorithm identified one more infiltrate than the trigger tool and eight more than incident reporting. One narcotic oversedation was detected demonstrating 100% agreement with the trigger tool. Additionally, 17 narcotic medication MEs were detected, an increase of 16 cases over voluntary incident reporting. Automated AE/ME detection algorithms provide higher sensitivity and PPV than currently used trigger tools or voluntary incident-reporting systems, including identification of potential dosing and frequency errors that current methods are unequipped to detect. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Simulation-Based Rule Generation Considering Readability

    PubMed Central

    Yahagi, H.; Shimizu, S.; Ogata, T.; Hara, T.; Ota, J.

    2015-01-01

    Rule generation method is proposed for an aircraft control problem in an airport. Designing appropriate rules for motion coordination of taxiing aircraft in the airport is important, which is conducted by ground control. However, previous studies did not consider readability of rules, which is important because it should be operated and maintained by humans. Therefore, in this study, using the indicator of readability, we propose a method of rule generation based on parallel algorithm discovery and orchestration (PADO). By applying our proposed method to the aircraft control problem, the proposed algorithm can generate more readable and more robust rules and is found to be superior to previous methods. PMID:27347501

  15. Temporal Dynamic Controllability Revisited

    NASA Technical Reports Server (NTRS)

    Morris, Paul H.; Muscettola, Nicola

    2005-01-01

    An important issue for temporal planners is the ability to handle temporal uncertainty. We revisit the question of how to determine whether a given set of temporal requirements are feasible in the light of uncertain durations of some processes. In particular, we consider how best to determine whether a network is Dynamically Controllable, i.e., whether a dynamic strategy exists for executing the network that is guaranteed to satisfy the requirements. Previous work has shown the existence of a pseudo-polynomial algorithm for testing Dynamic Controllability. Here, we greatly simplify the previous framework, and present a true polynomial algorithm with a cutoff based only on the number of nodes.

  16. Designing algorithm visualization on mobile platform: The proposed guidelines

    NASA Astrophysics Data System (ADS)

    Supli, A. A.; Shiratuddin, N.

    2017-09-01

    This paper entails an ongoing study about the design guidelines of algorithm visualization (AV) on mobile platform, helping students learning data structures and algorithm (DSA) subject effectively. Our previous review indicated that design guidelines of AV on mobile platform are still few. Mostly, previous guidelines of AV are developed for AV on desktop and website platform. In fact, mobile learning has been proved to enhance engagement in learning circumstances, and thus effect student's performance. In addition, the researchers highly recommend including UI design and Interactivity in designing effective AV system. However, the discussions of these two aspects in previous AV design guidelines are not comprehensive. The UI design in this paper describes the arrangement of AV features in mobile environment, whereas interactivity is about the active learning strategy features based on learning experiences (how to engage learners). Thus, this study main objective is to propose design guidelines of AV on mobile platform (AVOMP) that entails comprehensively UI design and interactivity aspects. These guidelines are developed through content analysis and comparative analysis from various related studies. These guidelines are useful for AV designers to help them constructing AVOMP for various topics on DSA.

  17. An Investigation of State-Space Model Fidelity for SSME Data

    NASA Technical Reports Server (NTRS)

    Martin, Rodney Alexander

    2008-01-01

    In previous studies, a variety of unsupervised anomaly detection techniques for anomaly detection were applied to SSME (Space Shuttle Main Engine) data. The observed results indicated that the identification of certain anomalies were specific to the algorithmic method under consideration. This is the reason why one of the follow-on goals of these previous investigations was to build an architecture to support the best capabilities of all algorithms. We appeal to that goal here by investigating a cascade, serial architecture for the best performing and most suitable candidates from previous studies. As a precursor to a formal ROC (Receiver Operating Characteristic) curve analysis for validation of resulting anomaly detection algorithms, our primary focus here is to investigate the model fidelity as measured by variants of the AIC (Akaike Information Criterion) for state-space based models. We show that placing constraints on a state-space model during or after the training of the model introduces a modest level of suboptimality. Furthermore, we compare the fidelity of all candidate models including those embodying the cascade, serial architecture. We make recommendations on the most suitable candidates for application to subsequent anomaly detection studies as measured by AIC-based criteria.

  18. Fall Risk Assessment Through Automatic Combination of Clinical Fall Risk Factors and Body-Worn Sensor Data.

    PubMed

    Greene, Barry R; Redmond, Stephen J; Caulfield, Brian

    2017-05-01

    Falls are the leading global cause of accidental death and disability in older adults and are the most common cause of injury and hospitalization. Accurate, early identification of patients at risk of falling, could lead to timely intervention and a reduction in the incidence of fall-related injury and associated costs. We report a statistical method for fall risk assessment using standard clinical fall risk factors (N = 748). We also report a means of improving this method by automatically combining it, with a fall risk assessment algorithm based on inertial sensor data and the timed-up-and-go test. Furthermore, we provide validation data on the sensor-based fall risk assessment method using a statistically independent dataset. Results obtained using cross-validation on a sample of 292 community dwelling older adults suggest that a combined clinical and sensor-based approach yields a classification accuracy of 76.0%, compared to either 73.6% for sensor-based assessment alone, or 68.8% for clinical risk factors alone. Increasing the cohort size by adding an additional 130 subjects from a separate recruitment wave (N = 422), and applying the same model building and validation method, resulted in a decrease in classification performance (68.5% for combined classifier, 66.8% for sensor data alone, and 58.5% for clinical data alone). This suggests that heterogeneity between cohorts may be a major challenge when attempting to develop fall risk assessment algorithms which generalize well. Independent validation of the sensor-based fall risk assessment algorithm on an independent cohort of 22 community dwelling older adults yielded a classification accuracy of 72.7%. Results suggest that the present method compares well to previously reported sensor-based fall risk assessment methods in assessing falls risk. Implementation of objective fall risk assessment methods on a large scale has the potential to improve quality of care and lead to a reduction in associated hospital costs, due to fewer admissions and reduced injuries due to falling.

  19. LDRD final report on massively-parallel linear programming : the parPCx system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parekh, Ojas; Phillips, Cynthia Ann; Boman, Erik Gunnar

    2005-02-01

    This report summarizes the research and development performed from October 2002 to September 2004 at Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) project ''Massively-Parallel Linear Programming''. We developed a linear programming (LP) solver designed to use a large number of processors. LP is the optimization of a linear objective function subject to linear constraints. Companies and universities have expended huge efforts over decades to produce fast, stable serial LP solvers. Previous parallel codes run on shared-memory systems and have little or no distribution of the constraint matrix. We have seen no reports of general LP solver runsmore » on large numbers of processors. Our parallel LP code is based on an efficient serial implementation of Mehrotra's interior-point predictor-corrector algorithm (PCx). The computational core of this algorithm is the assembly and solution of a sparse linear system. We have substantially rewritten the PCx code and based it on Trilinos, the parallel linear algebra library developed at Sandia. Our interior-point method can use either direct or iterative solvers for the linear system. To achieve a good parallel data distribution of the constraint matrix, we use a (pre-release) version of a hypergraph partitioner from the Zoltan partitioning library. We describe the design and implementation of our new LP solver called parPCx and give preliminary computational results. We summarize a number of issues related to efficient parallel solution of LPs with interior-point methods including data distribution, numerical stability, and solving the core linear system using both direct and iterative methods. We describe a number of applications of LP specific to US Department of Energy mission areas and we summarize our efforts to integrate parPCx (and parallel LP solvers in general) into Sandia's massively-parallel integer programming solver PICO (Parallel Interger and Combinatorial Optimizer). We conclude with directions for long-term future algorithmic research and for near-term development that could improve the performance of parPCx.« less

  20. Semi-blind sparse image reconstruction with application to MRFM.

    PubMed

    Park, Se Un; Dobigeon, Nicolas; Hero, Alfred O

    2012-09-01

    We propose a solution to the image deconvolution problem where the convolution kernel or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the PSF uncertainty in a high-dimensional space. Unlike recent developments on blind deconvolution of natural images, we assume the image is sparse in the pixel basis, a natural sparsity arising in magnetic resonance force microscopy (MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of our Bayesian semi-blind algorithm for sparse images is superior to previously proposed semi-blind algorithms such as the alternating minimization algorithm and blind algorithms developed for natural images. We illustrate our myopic algorithm on real MRFM tobacco virus data.

  1. Online Coregularization for Multiview Semisupervised Learning

    PubMed Central

    Li, Guohui; Huang, Kuihua

    2013-01-01

    We propose a novel online coregularization framework for multiview semisupervised learning based on the notion of duality in constrained optimization. Using the weak duality theorem, we reduce the online coregularization to the task of increasing the dual function. We demonstrate that the existing online coregularization algorithms in previous work can be viewed as an approximation of our dual ascending process using gradient ascent. New algorithms are derived based on the idea of ascending the dual function more aggressively. For practical purpose, we also propose two sparse approximation approaches for kernel representation to reduce the computational complexity. Experiments show that our derived online coregularization algorithms achieve risk and accuracy comparable to offline algorithms while consuming less time and memory. Specially, our online coregularization algorithms are able to deal with concept drift and maintain a much smaller error rate. This paper paves a way to the design and analysis of online coregularization algorithms. PMID:24194680

  2. A Novel User Classification Method for Femtocell Network by Using Affinity Propagation Algorithm and Artificial Neural Network

    PubMed Central

    Ahmed, Afaz Uddin; Tariqul Islam, Mohammad; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina

    2014-01-01

    An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation. PMID:25133214

  3. A novel user classification method for femtocell network by using affinity propagation algorithm and artificial neural network.

    PubMed

    Ahmed, Afaz Uddin; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina

    2014-01-01

    An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation.

  4. Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework

    PubMed Central

    Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.

    2016-01-01

    Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of TOF scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (Direct Image Reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias vs. variance performance to iterative TOF reconstruction with a matched resolution model. PMID:27032968

  5. Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework

    NASA Astrophysics Data System (ADS)

    Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.

    2016-05-01

    Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of time-of-flight (TOF) scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (DIRECT: direct image reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias versus variance performance to iterative TOF reconstruction with a matched resolution model.

  6. From Determinism and Probability to Chaos: Chaotic Evolution towards Philosophy and Methodology of Chaotic Optimization

    PubMed Central

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed. PMID:25879067

  7. File text security using Hybrid Cryptosystem with Playfair Cipher Algorithm and Knapsack Naccache-Stern Algorithm

    NASA Astrophysics Data System (ADS)

    Amalia; Budiman, M. A.; Sitepu, R.

    2018-03-01

    Cryptography is one of the best methods to keep the information safe from security attack by unauthorized people. At present, Many studies had been done by previous researchers to generate a more robust cryptographic algorithm to provide high security for data communication. To strengthen data security, one of the methods is hybrid cryptosystem method that combined symmetric and asymmetric algorithm. In this study, we observed a hybrid cryptosystem method contain Modification Playfair Cipher 16x16 algorithm as a symmetric algorithm and Knapsack Naccache-Stern as an asymmetric algorithm. We observe a running time of this hybrid algorithm with some of the various experiments. We tried different amount of characters to be tested which are 10, 100, 1000, 10000 and 100000 characters and we also examined the algorithm with various key’s length which are 10, 20, 30, 40 of key length. The result of our study shows that the processing time for encryption and decryption process each algorithm is linearly proportional, it means the longer messages character then, the more significant times needed to encrypt and decrypt the messages. The encryption running time of Knapsack Naccache-Stern algorithm takes a longer time than its decryption, while the encryption running time of modification Playfair Cipher 16x16 algorithm takes less time than its decryption.

  8. From determinism and probability to chaos: chaotic evolution towards philosophy and methodology of chaotic optimization.

    PubMed

    Pei, Yan

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.

  9. Report on dynamic speed harmonization and queue warning algorithm design.

    DOT National Transportation Integrated Search

    2014-02-01

    This report provides a detailed description of the algorithms that will be used to generate harmonized recommended speeds and queue warning information in the proposed Intelligent Network Flow Optimization (INFLO) prototype. This document describes t...

  10. DNABIT Compress – Genome compression algorithm

    PubMed Central

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  11. Algorithm Engineering: Concepts and Practice

    NASA Astrophysics Data System (ADS)

    Chimani, Markus; Klein, Karsten

    Over the last years the term algorithm engineering has become wide spread synonym for experimental evaluation in the context of algorithm development. Yet it implies even more. We discuss the major weaknesses of traditional "pen and paper" algorithmics and the ever-growing gap between theory and practice in the context of modern computer hardware and real-world problem instances. We present the key ideas and concepts of the central algorithm engineering cycle that is based on a full feedback loop: It starts with the design of the algorithm, followed by the analysis, implementation, and experimental evaluation. The results of the latter can then be reused for modifications to the algorithmic design, stronger or input-specific theoretic performance guarantees, etc. We describe the individual steps of the cycle, explaining the rationale behind them and giving examples of how to conduct these steps thoughtfully. Thereby we give an introduction to current algorithmic key issues like I/O-efficient or parallel algorithms, succinct data structures, hardware-aware implementations, and others. We conclude with two especially insightful success stories—shortest path problems and text search—where the application of algorithm engineering techniques led to tremendous performance improvements compared with previous state-of-the-art approaches.

  12. Challenges in congenital syphilis surveillance: how are congenital syphilis investigations classified?

    PubMed

    Introcaso, Camille E; Gruber, DeAnn; Bradley, Heather; Peterman, Thomas A; Ewell, Joy; Wendell, Debbie; Foxhood, Joseph; Su, John R; Weinstock, Hillard S; Markowitz, Lauri E

    2013-09-01

    Congenital syphilis is a serious, preventable, and nationally notifiable disease. Despite the existence of a surveillance case definition, congenital syphilis is sometimes classified differently using an algorithm on the Centers for Disease Control and Prevention's case reporting form. We reviewed Louisiana's congenital syphilis electronic reporting system for investigations of infants born from January 2010 to October 2011, abstracted data required for classification, and applied the surveillance definition and the algorithm. We calculated the sensitivities and specificities of the algorithm and Louisiana's classification using the surveillance definition as the surveillance gold standard. Among 349 congenital syphilis investigations, the surveillance definition identified 62 cases. The algorithm had a sensitivity of 91.9% and a specificity of 64.1%. Louisiana's classification had a sensitivity of 50% and a specificity of 91.3% compared with the surveillance definition. The differences between the algorithm and the surveillance definition led to misclassification of congenital syphilis cases. The algorithm should match the surveillance definition. Other state and local health departments should assure that their reported cases meet the surveillance definition.

  13. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  14. A Novel, Open Access Method to Assess Sleep Duration Using a Wrist-Worn Accelerometer

    PubMed Central

    Anderson, Kirstie N.; Denton, Sarah J.; Oliver, James; Catt, Michael; Abell, Jessica G.; Kivimäki, Mika; Trenell, Michael I.; Singh-Manoux, Archana

    2015-01-01

    Wrist-worn accelerometers are increasingly being used for the assessment of physical activity in population studies, but little is known about their value for sleep assessment. We developed a novel method of assessing sleep duration using data from 4,094 Whitehall II Study (United Kingdom, 2012–2013) participants aged 60–83 who wore the accelerometer for 9 consecutive days, filled in a sleep log and reported sleep duration via questionnaire. Our sleep detection algorithm defined (nocturnal) sleep as a period of sustained inactivity, itself detected as the absence of change in arm angle greater than 5 degrees for 5 minutes or more, during a period recorded as sleep by the participant in their sleep log. The resulting estimate of sleep duration had a moderate (but similar to previous findings) agreement with questionnaire based measures for time in bed, defined as the difference between sleep onset and waking time (kappa = 0.32, 95%CI:0.29,0.34) and total sleep duration (kappa = 0.39, 0.36,0.42). This estimate was lower for time in bed for women, depressed participants, those reporting more insomnia symptoms, and on weekend days. No such group differences were found for total sleep duration. Our algorithm was validated against data from a polysomnography study on 28 persons which found a longer time window and lower angle threshold to have better sensitivity to wakefulness, while the reverse was true for sensitivity to sleep. The novelty of our method is the use of a generic algorithm that will allow comparison between studies rather than a “count” based, device specific method. PMID:26569414

  15. The “true” incidence of surgically treated deep prosthetic joint infection after 32,896 primary total hip arthroplasties

    PubMed Central

    Gundtoft, Per Hviid; Overgaard, Søren; Schønheyder, Henrik Carl; Møller, Jens Kjølseth; Kjærsgaard-Andersen, Per; Pedersen, Alma Becic

    2015-01-01

    Background and purpose It has been suggested that the risk of prosthetic joint infection (PJI) in patients with total hip arthroplasty (THA) may be underestimated if based only on arthroplasty registry data. We therefore wanted to estimate the “true” incidence of PJI in THA using several data sources. Patients and methods We searched the Danish Hip Arthroplasty Register (DHR) for primary THAs performed between 2005 and 2011. Using the DHR and the Danish National Register of Patients (NRP), we identified first revisions for any reason and those that were due to PJI. PJIs were also identified using an algorithm incorporating data from microbiological, prescription, and clinical biochemistry databases and clinical findings from the medical records. We calculated cumulative incidence with 95% confidence interval. Results 32,896 primary THAs were identified. Of these, 1,546 had first-time revisions reported to the DHR and/or the NRP. For the DHR only, the 1- and 5-year cumulative incidences of PJI were 0.51% (0.44–0.59) and 0.64% (0.51–0.79). For the NRP only, the 1- and 5-year cumulative incidences of PJI were 0.48% (0.41–0.56) and 0.57% (0.45–0.71). The corresponding 1- and 5-year cumulative incidences estimated with the algorithm were 0.86% (0.77–0.97) and 1.03% (0.87–1.22). The incidences of PJI based on the DHR and the NRP were consistently 40% lower than those estimated using the algorithm covering several data sources. Interpretation Using several available data sources, the “true” incidence of PJI following primary THA was estimated to be approximately 40% higher than previously reported by national registries alone. PMID:25637247

  16. DC Bus Regulation with a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.

    2003-01-01

    This paper describes the DC bus regulation control algorithm for the NASA flywheel energy storage system during charge, charge reduction and discharge modes of operation. The algorithm was experimentally verified with results given in a previous paper. This paper presents the necessary models for simulation with detailed block diagrams of the controller algorithm. It is shown that the flywheel system and the controller can be modeled in three levels of detail depending on the type of analysis required. The three models are explained and then compared using simulation results.

  17. Neural network-based run-to-run controller using exposure and resist thickness adjustment

    NASA Astrophysics Data System (ADS)

    Geary, Shane; Barry, Ronan

    2003-06-01

    This paper describes the development of a run-to-run control algorithm using a feedforward neural network, trained using the backpropagation training method. The algorithm is used to predict the critical dimension of the next lot using previous lot information. It is compared to a common prediction algorithm - the exponentially weighted moving average (EWMA) and is shown to give superior prediction performance in simulations. The manufacturing implementation of the final neural network showed significantly improved process capability when compared to the case where no run-to-run control was utilised.

  18. The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm: theoretical basis

    NASA Astrophysics Data System (ADS)

    Loughman, Robert; Bhartia, Pawan K.; Chen, Zhong; Xu, Philippe; Nyaku, Ernest; Taha, Ghassan

    2018-05-01

    The theoretical basis of the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm is presented. The algorithm uses an assumed bimodal lognormal aerosol size distribution to retrieve aerosol extinction profiles at 675 nm from OMPS LP radiance measurements. A first-guess aerosol extinction profile is updated by iteration using the Chahine nonlinear relaxation method, based on comparisons between the measured radiance profile at 675 nm and the radiance profile calculated by the Gauss-Seidel limb-scattering (GSLS) radiative transfer model for a spherical-shell atmosphere. This algorithm is discussed in the context of previous limb-scattering aerosol extinction retrieval algorithms, and the most significant error sources are enumerated. The retrieval algorithm is limited primarily by uncertainty about the aerosol phase function. Horizontal variations in aerosol extinction, which violate the spherical-shell atmosphere assumed in the version 1 algorithm, may also limit the quality of the retrieved aerosol extinction profiles significantly.

  19. Theory and algorithms for image reconstruction on chords and within regions of interest

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Pan, Xiaochuan; Sidky, Emilâ Y.

    2005-11-01

    We introduce a formula for image reconstruction on a chord of a general source trajectory. We subsequently develop three algorithms for exact image reconstruction on a chord from data acquired with the general trajectory. Interestingly, two of the developed algorithms can accommodate data containing transverse truncations. The widely used helical trajectory and other trajectories discussed in literature can be interpreted as special cases of the general trajectory, and the developed theory and algorithms are thus directly applicable to reconstructing images exactly from data acquired with these trajectories. For instance, chords on a helical trajectory are equivalent to the n-PI-line segments. In this situation, the proposed algorithms become the algorithms that we proposed previously for image reconstruction on PI-line segments. We have performed preliminary numerical studies, which include the study on image reconstruction on chords of two-circle trajectory, which is nonsmooth, and on n-PI lines of a helical trajectory, which is smooth. Quantitative results of these studies verify and demonstrate the proposed theory and algorithms.

  20. 3D segmentations of neuronal nuclei from confocal microscope image stacks

    PubMed Central

    LaTorre, Antonio; Alonso-Nanclares, Lidia; Muelas, Santiago; Peña, José-María; DeFelipe, Javier

    2013-01-01

    In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario—the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei. PMID:24409123

Top