ERIC Educational Resources Information Center
Dimitrov, Dimiter M.
2007-01-01
The validation of cognitive attributes required for correct answers on binary test items or tasks has been addressed in previous research through the integration of cognitive psychology and psychometric models using parametric or nonparametric item response theory, latent class modeling, and Bayesian modeling. All previous models, each with their…
Pattarino, Franco; Piepel, Greg; Rinaldi, Maurizio
2018-03-03
A paper by Foglio Bonda et al. published previously in this journal (2016, Vol. 83, pp. 175–183) discussed the use of mixture experiment design and modeling methods to study how the proportions of three components in an extemporaneous oral suspension affected the mean diameter of drug particles (Z ave). The three components were itraconazole (ITZ), Tween 20 (TW20), and Methocel® E5 (E5). This commentary addresses some errors and other issues in the previous paper, and also discusses an improved model relating proportions of ITZ, TW20, and E5 to Z ave. The improved model contains six of the 10 terms inmore » the full-cubic mixture model, which were selected using a different cross-validation procedure than used in the previous paper. In conclusion, compared to the four-term model presented in the previous paper, the improved model fit the data better, had excellent cross-validation performance, and the predicted Z ave of a validation point was within model uncertainty of the measured value.« less
Pattarino, Franco; Piepel, Greg; Rinaldi, Maurizio
2018-05-30
A paper by Foglio Bonda et al. published previously in this journal (2016, Vol. 83, pp. 175-183) discussed the use of mixture experiment design and modeling methods to study how the proportions of three components in an extemporaneous oral suspension affected the mean diameter of drug particles (Z ave ). The three components were itraconazole (ITZ), Tween 20 (TW20), and Methocel® E5 (E5). This commentary addresses some errors and other issues in the previous paper, and also discusses an improved model relating proportions of ITZ, TW20, and E5 to Z ave . The improved model contains six of the 10 terms in the full-cubic mixture model, which were selected using a different cross-validation procedure than used in the previous paper. Compared to the four-term model presented in the previous paper, the improved model fit the data better, had excellent cross-validation performance, and the predicted Z ave of a validation point was within model uncertainty of the measured value. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattarino, Franco; Piepel, Greg; Rinaldi, Maurizio
A paper by Foglio Bonda et al. published previously in this journal (2016, Vol. 83, pp. 175–183) discussed the use of mixture experiment design and modeling methods to study how the proportions of three components in an extemporaneous oral suspension affected the mean diameter of drug particles (Z ave). The three components were itraconazole (ITZ), Tween 20 (TW20), and Methocel® E5 (E5). This commentary addresses some errors and other issues in the previous paper, and also discusses an improved model relating proportions of ITZ, TW20, and E5 to Z ave. The improved model contains six of the 10 terms inmore » the full-cubic mixture model, which were selected using a different cross-validation procedure than used in the previous paper. In conclusion, compared to the four-term model presented in the previous paper, the improved model fit the data better, had excellent cross-validation performance, and the predicted Z ave of a validation point was within model uncertainty of the measured value.« less
Assessing Discriminative Performance at External Validation of Clinical Prediction Models
Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W.
2016-01-01
Introduction External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. Methods We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. Results The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. Conclusion The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients. PMID:26881753
Assessing Discriminative Performance at External Validation of Clinical Prediction Models.
Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W
2016-01-01
External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.
Viability of Cross-Flow Fan with Helical Blades for Vertical Take-off and Landing Aircraft
2012-09-01
fluid dynamics (CFD) software, ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental results...computational fluid dynamics software (CFD), ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental...37 B. SIZING PARAMETERS AND ILLUSTRATION ................................. 37 APPENDIX B. ANSYS CFX PARAMETERS
Oscar, T P
1999-12-01
Response surface models were developed and validated for effects of temperature (10 to 40 degrees C) and previous growth NaCl (0.5 to 4.5%) on lag time (lambda) and specific growth rate (mu) of Salmonella Typhimurium on cooked chicken breast. Growth curves for model development (n = 55) and model validation (n = 16) were fit to a two-phase linear growth model to obtain lambda and mu of Salmonella Typhimurium on cooked chicken breast. Response surface models for natural logarithm transformations of lambda and mu as a function of temperature and previous growth NaCl were obtained by regression analysis. Both lambda and mu of Salmonella Typhimurium were affected (P < 0.0001) by temperature but not by previous growth NaCl. Models were validated against data not used in their development. Mean absolute relative error of predictions (model accuracy) was 26.6% for lambda and 15.4% for mu. Median relative error of predictions (model bias) was 0.9% for lambda and 5.2% for mu. Results indicated that the models developed provided reliable predictions of lambda and mu of Salmonella Typhimurium on cooked chicken breast within the matrix of conditions modeled. In addition, results indicated that previous growth NaCl (0.5 to 4.5%) was not a major factor affecting subsequent growth kinetics of Salmonella Typhimurium on cooked chicken breast. Thus, inclusion of previous growth NaCl in predictive models may not significantly improve our ability to predict growth of Salmonella spp. on food subjected to temperature abuse.
Computer Simulations of Coronary Blood Flow Through a Constriction
2014-03-01
interventional procedures (e.g., stent deployment). Building off previous models that have been partially validated with experimental data, this thesis... stent deployment). Building off previous models that have been partially validated with experimental data, this thesis continues to develop the...the artery and increase blood flow. Generally a stent , or a mesh wire tube, is permanently inserted in order to scaffold open the artery wall
DOT National Transportation Integrated Search
2006-01-01
A previous study developed a procedure for microscopic simulation model calibration and validation and evaluated the procedure via two relatively simple case studies using three microscopic simulation models. Results showed that default parameters we...
Wang, Wenyi; Kim, Marlene T.; Sedykh, Alexander
2015-01-01
Purpose Experimental Blood–Brain Barrier (BBB) permeability models for drug molecules are expensive and time-consuming. As alternative methods, several traditional Quantitative Structure-Activity Relationship (QSAR) models have been developed previously. In this study, we aimed to improve the predictivity of traditional QSAR BBB permeability models by employing relevant public bio-assay data in the modeling process. Methods We compiled a BBB permeability database consisting of 439 unique compounds from various resources. The database was split into a modeling set of 341 compounds and a validation set of 98 compounds. Consensus QSAR modeling workflow was employed on the modeling set to develop various QSAR models. A five-fold cross-validation approach was used to validate the developed models, and the resulting models were used to predict the external validation set compounds. Furthermore, we used previously published membrane transporter models to generate relevant transporter profiles for target compounds. The transporter profiles were used as additional biological descriptors to develop hybrid QSAR BBB models. Results The consensus QSAR models have R2=0.638 for fivefold cross-validation and R2=0.504 for external validation. The consensus model developed by pooling chemical and transporter descriptors showed better predictivity (R2=0.646 for five-fold cross-validation and R2=0.526 for external validation). Moreover, several external bio-assays that correlate with BBB permeability were identified using our automatic profiling tool. Conclusions The BBB permeability models developed in this study can be useful for early evaluation of new compounds (e.g., new drug candidates). The combination of chemical and biological descriptors shows a promising direction to improve the current traditional QSAR models. PMID:25862462
An Approach to Comprehensive and Sustainable Solar Wind Model Validation
NASA Astrophysics Data System (ADS)
Rastaetter, L.; MacNeice, P. J.; Mays, M. L.; Boblitt, J. M.; Wiegand, C.
2017-12-01
The number of models of the corona and inner heliosphere and of their updates and upgrades grows steadily, as does the number and character of the model inputs. Maintaining up to date validation of these models, in the face of this constant model evolution, is a necessary but very labor intensive activity. In the last year alone, both NASA's LWS program and the CCMC's ongoing support of model forecasting activities at NOAA SWPC have sought model validation reports on the quality of all aspects of the community's coronal and heliospheric models, including both ambient and CME related wind solutions at L1. In this presentation I will give a brief review of the community's previous model validation results of L1 wind representation. I will discuss the semi-automated web based system we are constructing at the CCMC to present comparative visualizations of all interesting aspects of the solutions from competing models.This system is designed to be easily queried to provide the essential comprehensive inputs to repeat andupdate previous validation studies and support extensions to them. I will illustrate this by demonstrating how the system is being used to support the CCMC/LWS Model Assessment Forum teams focused on the ambient and time dependent corona and solar wind, including CME arrival time and IMF Bz.I will also discuss plans to extend the system to include results from the Forum teams addressing SEP model validation.
Refinement, Validation and Benchmarking of a Model for E-Government Service Quality
NASA Astrophysics Data System (ADS)
Magoutas, Babis; Mentzas, Gregoris
This paper presents the refinement and validation of a model for Quality of e-Government Services (QeGS). We built upon our previous work where a conceptualized model was identified and put focus on the confirmatory phase of the model development process, in order to come up with a valid and reliable QeGS model. The validated model, which was benchmarked with very positive results with similar models found in the literature, can be used for measuring the QeGS in a reliable and valid manner. This will form the basis for a continuous quality improvement process, unleashing the full potential of e-government services for both citizens and public administrations.
2012-03-01
such as FASCODE is accomplished. The assessment is limited by the correctness of the models used; validating the models is beyond the scope of this...comparisons with other models and validation against data sets (Snell et al. 2000). 2.3.2 Previous Research Several LADAR simulations have been produced...performance models would better capture the atmosphere physics and climatological effects on these systems. Also, further validation needs to be performed
Van Holsbeke, C; Ameye, L; Testa, A C; Mascilini, F; Lindqvist, P; Fischerova, D; Frühauf, F; Fransis, S; de Jonge, E; Timmerman, D; Epstein, E
2014-05-01
To develop and validate strategies, using new ultrasound-based mathematical models, for the prediction of high-risk endometrial cancer and compare them with strategies using previously developed models or the use of preoperative grading only. Women with endometrial cancer were prospectively examined using two-dimensional (2D) and three-dimensional (3D) gray-scale and color Doppler ultrasound imaging. More than 25 ultrasound, demographic and histological variables were analyzed. Two logistic regression models were developed: one 'objective' model using mainly objective variables; and one 'subjective' model including subjective variables (i.e. subjective impression of myometrial and cervical invasion, preoperative grade and demographic variables). The following strategies were validated: a one-step strategy using only preoperative grading and two-step strategies using preoperative grading as the first step and one of the new models, subjective assessment or previously developed models as a second step. One-hundred and twenty-five patients were included in the development set and 211 were included in the validation set. The 'objective' model retained preoperative grade and minimal tumor-free myometrium as variables. The 'subjective' model retained preoperative grade and subjective assessment of myometrial invasion. On external validation, the performance of the new models was similar to that on the development set. Sensitivity for the two-step strategy with the 'objective' model was 78% (95% CI, 69-84%) at a cut-off of 0.50, 82% (95% CI, 74-88%) for the strategy with the 'subjective' model and 83% (95% CI, 75-88%) for that with subjective assessment. Specificity was 68% (95% CI, 58-77%), 72% (95% CI, 62-80%) and 71% (95% CI, 61-79%) respectively. The two-step strategies detected up to twice as many high-risk cases as preoperative grading only. The new models had a significantly higher sensitivity than did previously developed models, at the same specificity. Two-step strategies with 'new' ultrasound-based models predict high-risk endometrial cancers with good accuracy and do this better than do previously developed models. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.
Validating a Technology Enhanced Student-Centered Learning Model
ERIC Educational Resources Information Center
Kang, Myunghee; Hahn, Jungsun; Chung, Warren
2015-01-01
The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…
Repeated holdout Cross-Validation of Model to Estimate Risk of Lyme Disease by Landscape Attributes
We previously modeled Lyme disease (LD) risk at the landscape scale; here we evaluate the model's overall goodness-of-fit using holdout validation. Landscapes were characterized within road-bounded analysis units (AU). Observed LD cases (obsLD) were ascertained per AU. Data were ...
Early Prediction of Intensive Care Unit-Acquired Weakness: A Multicenter External Validation Study.
Witteveen, Esther; Wieske, Luuk; Sommers, Juultje; Spijkstra, Jan-Jaap; de Waard, Monique C; Endeman, Henrik; Rijkenberg, Saskia; de Ruijter, Wouter; Sleeswijk, Mengalvio; Verhamme, Camiel; Schultz, Marcus J; van Schaik, Ivo N; Horn, Janneke
2018-01-01
An early diagnosis of intensive care unit-acquired weakness (ICU-AW) is often not possible due to impaired consciousness. To avoid a diagnostic delay, we previously developed a prediction model, based on single-center data from 212 patients (development cohort), to predict ICU-AW at 2 days after ICU admission. The objective of this study was to investigate the external validity of the original prediction model in a new, multicenter cohort and, if necessary, to update the model. Newly admitted ICU patients who were mechanically ventilated at 48 hours after ICU admission were included. Predictors were prospectively recorded, and the outcome ICU-AW was defined by an average Medical Research Council score <4. In the validation cohort, consisting of 349 patients, we analyzed performance of the original prediction model by assessment of calibration and discrimination. Additionally, we updated the model in this validation cohort. Finally, we evaluated a new prediction model based on all patients of the development and validation cohort. Of 349 analyzed patients in the validation cohort, 190 (54%) developed ICU-AW. Both model calibration and discrimination of the original model were poor in the validation cohort. The area under the receiver operating characteristics curve (AUC-ROC) was 0.60 (95% confidence interval [CI]: 0.54-0.66). Model updating methods improved calibration but not discrimination. The new prediction model, based on all patients of the development and validation cohort (total of 536 patients) had a fair discrimination, AUC-ROC: 0.70 (95% CI: 0.66-0.75). The previously developed prediction model for ICU-AW showed poor performance in a new independent multicenter validation cohort. Model updating methods improved calibration but not discrimination. The newly derived prediction model showed fair discrimination. This indicates that early prediction of ICU-AW is still challenging and needs further attention.
NASA Technical Reports Server (NTRS)
Kypuros, Javier A.; Colson, Rodrigo; Munoz, Afredo
2004-01-01
This paper describes efforts conducted to improve dynamic temperature estimations of a turbine tip clearance system to facilitate design of a generalized tip clearance controller. This work builds upon research previously conducted and presented in and focuses primarily on improving dynamic temperature estimations of the primary components affecting tip clearance (i.e. the rotor, blades, and casing/shroud). The temperature profiles estimated by the previous model iteration, specifically for the rotor and blades, were found to be inaccurate and, more importantly, insufficient to facilitate controller design. Some assumptions made to facilitate the previous results were not valid, and thus improvements are presented here to better match the physical reality. As will be shown, the improved temperature sub- models, match a commercially validated model and are sufficiently simplified to aid in controller design.
NASA Astrophysics Data System (ADS)
Ramos Valle, A.
2016-02-01
We have previously compared the output from three oceanographic models against observed data from an ADCP at a common grid point location on the zonally oriented, southwestern Puerto Rico shelf that extends into the northern Caribbean Sea. The three models were: 1) AMSEAS (NCOM), 2) Regional ROMS and 3) a higher resolution version of ROMS nested within the Regional ROMS. These models faced great difficulty in accurately depicting the bathymetry of the ocean in the PR-USVI archipelago which is characterized by small islands, narrow insular shelves, steep slopes and deep water beyond. The resulting validations of the three models versus the ADCP at the selected location were poor. However, the insight we gained into the behavior of the models during the validation process suggested that models might do a better job at simulating currents across the inter-island straits that connect the Atlantic Ocean with the Caribbean Sea than along the insular Caribbean or Atlantic coastlines. We therefore focused our attention on expanding our previous research by performing a similar analysis using the ROMS model against ADCP observations in the Mona Passage, west of PR. This new ADCP location exhibits bathymetric features that are smoother, less complex, and better represented in the Regional ROMS model while flows at the site are stronger than at the previous ADCP site at La Parguera. Statistical time-series analyses are performed on model and ADCP flow velocity time series to quantify the model's skill. Results indicate that ROMS does a much better job at simulating ocean currents at the Mona Passage site than at La Parguera. Dynamical and numerical differences that might explain the spatially varying model skill are considered. In summary: model skill validation sites around PR are not all the same.
Investigation of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams
NASA Technical Reports Server (NTRS)
Davis, Brian A.
2005-01-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical model. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. Excellent agreement is achieved between the predicted and measured results, thereby quantitatively validating the numerical tool.
Rasmussen, Jacob H; Håkansson, Katrin; Rasmussen, Gregers B; Vogelius, Ivan R; Friborg, Jeppe; Fischer, Barbara M; Bentzen, Søren M; Specht, Lena
2018-06-01
A previously published prognostic model in patients with head and neck squamous cell carcinoma (HNSCC) was validated in both a p16-negative and a p16-positive independent patient cohort and the performance was compared with the newly adopted 8th edition of the UICC staging system. Consecutive patients with HNSCC treated at a single institution from 2005 to 2012 were included. The cohort was divided in three. 1.) Training cohort, patients treated from 2005 to 2009 excluding patients with p16-positive oropharyngeal squamous cell carcinomas (OPSCC); 2.) A p16-negative validation cohort and 3.) A p16-positive validation cohort. A previously published prognostic model (clinical model) with the significant covariates (smoking status, FDG uptake, and tumor volume) was refitted in the training cohort and validated in the two validation cohorts. The clinical model was used to generate four risk groups based on the predicted risk of disease recurrence after 2 years and the performance was compared with UICC staging 8th edition using concordance index. Overall 568 patients were included. Compared to UICC the clinical model had a significantly better concordance index in the p16-negative validation cohort (AUC = 0.63 for UICC and AUC = 0.73 for the clinical model; p = 0.003) and a borderline significantly better concordance index in the p16-positive cohort (AUC = 0.63 for UICC and 0.72 for the clinical model; p = 0.088). The validated clinical model provided a better prognostication of risk of disease recurrence than UICC stage in the p16-negative validation cohort, and similar prognostication as the newly adopted 8th edition of the UICC staging in the p16-positive patient cohort. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram
2014-01-10
Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs' structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al., J. Control. Release 160 (2012) 147-157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-Nearest Neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used by us in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. © 2013.
Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram
2014-01-01
Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs’ structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al, Journal of Controlled Release, 160(2012) 14–157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-nearest neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. PMID:24184343
Soldier Dimensions in Combat Models
1990-05-07
and performance. Questionnaires, SQTs, and ARTEPs were often used. Many scales had estimates of reliability but few had validity data. Most studies...pending its validation . Research plans were provided for applications in simulated combat and with simulation devices, for data previously gathered...regarding reliability and validity . Lack of information following an instrument indicates neither reliability nor validity information was provided by the
NASA Technical Reports Server (NTRS)
Bond, Barbara J.; Peterson, David L.
1999-01-01
This project was a collaborative effort by researchers at ARC, OSU and the University of Arizona. The goal was to use a dataset obtained from a previous study to "empirically validate a new canopy radiative-transfer model (SART) which incorporates a recently-developed leaf-level model (LEAFMOD)". The document includes a short research summary.
Cross-validation of an employee safety climate model in Malaysia.
Bahari, Siti Fatimah; Clarke, Sharon
2013-06-01
Whilst substantial research has investigated the nature of safety climate, and its importance as a leading indicator of organisational safety, much of this research has been conducted with Western industrial samples. The current study focuses on the cross-validation of a safety climate model in the non-Western industrial context of Malaysian manufacturing. The first-order factorial validity of Cheyne et al.'s (1998) [Cheyne, A., Cox, S., Oliver, A., Tomas, J.M., 1998. Modelling safety climate in the prediction of levels of safety activity. Work and Stress, 12(3), 255-271] model was tested, using confirmatory factor analysis, in a Malaysian sample. Results showed that the model fit indices were below accepted levels, indicating that the original Cheyne et al. (1998) safety climate model was not supported. An alternative three-factor model was developed using exploratory factor analysis. Although these findings are not consistent with previously reported cross-validation studies, we argue that previous studies have focused on validation across Western samples, and that the current study demonstrates the need to take account of cultural factors in the development of safety climate models intended for use in non-Western contexts. The results have important implications for the transferability of existing safety climate models across cultures (for example, in global organisations) and highlight the need for future research to examine cross-cultural issues in relation to safety climate. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.
Construct validity of the ovine model in endoscopic sinus surgery training.
Awad, Zaid; Taghi, Ali; Sethukumar, Priya; Tolley, Neil S
2015-03-01
To demonstrate construct validity of the ovine model as a tool for training in endoscopic sinus surgery (ESS). Prospective, cross-sectional evaluation study. Over 18 consecutive months, trainees and experts were evaluated in their ability to perform a range of tasks (based on previous face validation and descriptive studies conducted by the same group) relating to ESS on the sheep-head model. Anonymized randomized video recordings of the above were assessed by two independent and blinded assessors. A validated assessment tool utilizing a five-point Likert scale was employed. Construct validity was calculated by comparing scores across training levels and experts using mean and interquartile range of global and task-specific scores. Subgroup analysis of the intermediate group ascertained previous experience. Nonparametric descriptive statistics were used, and analysis was carried out using SPSS version 21 (IBM, Armonk, NY). Reliability of the assessment tool was confirmed. The model discriminated well between different levels of expertise in global and task-specific scores. A positive correlation was noted between year in training and both global and task-specific scores (P < .001). Experience of the intermediate group was variable, and the number of ESS procedures performed under supervision had the highest impact on performance. This study describes an alternative model for ESS training and assessment. It is also the first to demonstrate construct validity of the sheep-head model for ESS training. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Segev, G; Langston, C; Takada, K; Kass, P H; Cowgill, L D
2016-05-01
A scoring system for outcome prediction in dogs with acute kidney injury (AKI) recently has been developed but has not been validated. The scoring system previously developed for outcome prediction will accurately predict outcome in a validation cohort of dogs with AKI managed with hemodialysis. One hundred fifteen client-owned dogs with AKI. Medical records of dogs with AKI treated by hemodialysis between 2011 and 2015 were reviewed. Dogs were included only if all variables required to calculate the final predictive score were available, and the 30-day outcome was known. A predictive score for 3 models was calculated for each dog. Logistic regression was used to evaluate the association of the final predictive score with each model's outcome. Receiver operating curve (ROC) analyses were performed to determine sensitivity and specificity for each model based on previously established cut-off values. Higher scores for each model were associated with decreased survival probability (P < .001). Based on previously established cut-off values, 3 models (models A, B, C) were associated with sensitivities/specificities of 73/75%, 71/80%, and 75/86%, respectively, and correctly classified 74-80% of the dogs. All models were simple to apply and allowed outcome prediction that closely corresponded with actual outcome in an independent cohort. As expected, accuracies were slightly lower compared with those from the previously reported cohort used initially to develop the models. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Development of estrogen receptor beta binding prediction model using large sets of chemicals.
Sakkiah, Sugunadevi; Selvaraj, Chandrabose; Gong, Ping; Zhang, Chaoyang; Tong, Weida; Hong, Huixiao
2017-11-03
We developed an ER β binding prediction model to facilitate identification of chemicals specifically bind ER β or ER α together with our previously developed ER α binding model. Decision Forest was used to train ER β binding prediction model based on a large set of compounds obtained from EADB. Model performance was estimated through 1000 iterations of 5-fold cross validations. Prediction confidence was analyzed using predictions from the cross validations. Informative chemical features for ER β binding were identified through analysis of the frequency data of chemical descriptors used in the models in the 5-fold cross validations. 1000 permutations were conducted to assess the chance correlation. The average accuracy of 5-fold cross validations was 93.14% with a standard deviation of 0.64%. Prediction confidence analysis indicated that the higher the prediction confidence the more accurate the predictions. Permutation testing results revealed that the prediction model is unlikely generated by chance. Eighteen informative descriptors were identified to be important to ER β binding prediction. Application of the prediction model to the data from ToxCast project yielded very high sensitivity of 90-92%. Our results demonstrated ER β binding of chemicals could be accurately predicted using the developed model. Coupling with our previously developed ER α prediction model, this model could be expected to facilitate drug development through identification of chemicals that specifically bind ER β or ER α .
Preliminary Multivariable Cost Model for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored
Modeling, implementation, and validation of arterial travel time reliability.
DOT National Transportation Integrated Search
2013-11-01
Previous research funded by Florida Department of Transportation (FDOT) developed a method for estimating : travel time reliability for arterials. This method was not initially implemented or validated using field data. This : project evaluated and r...
ERIC Educational Resources Information Center
Huang, Wenhao; Huang, Wenyeh; Diefes-Dux, Heidi; Imbrie, Peter K.
2006-01-01
This paper describes a preliminary validation study of the Instructional Material Motivational Survey (IMMS) derived from the Attention, Relevance, Confidence and Satisfaction motivational design model. Previous studies related to the IMMS, however, suggest its practical application for motivational evaluation in various instructional settings…
Wilson, R; Abbott, J H
2018-04-01
To describe the construction and preliminary validation of a new population-based microsimulation model developed to analyse the health and economic burden and cost-effectiveness of treatments for knee osteoarthritis (OA) in New Zealand (NZ). We developed the New Zealand Management of Osteoarthritis (NZ-MOA) model, a discrete-time state-transition microsimulation model of the natural history of radiographic knee OA. In this article, we report on the model structure, derivation of input data, validation of baseline model parameters against external data sources, and validation of model outputs by comparison of the predicted population health loss with previous estimates. The NZ-MOA model simulates both the structural progression of radiographic knee OA and the stochastic development of multiple disease symptoms. Input parameters were sourced from NZ population-based data where possible, and from international sources where NZ-specific data were not available. The predicted distributions of structural OA severity and health utility detriments associated with OA were externally validated against other sources of evidence, and uncertainty resulting from key input parameters was quantified. The resulting lifetime and current population health-loss burden was consistent with estimates of previous studies. The new NZ-MOA model provides reliable estimates of the health loss associated with knee OA in the NZ population. The model structure is suitable for analysis of the effects of a range of potential treatments, and will be used in future work to evaluate the cost-effectiveness of recommended interventions within the NZ healthcare system. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
The development and testing of a skin tear risk assessment tool.
Newall, Nelly; Lewin, Gill F; Bulsara, Max K; Carville, Keryln J; Leslie, Gavin D; Roberts, Pam A
2017-02-01
The aim of the present study is to develop a reliable and valid skin tear risk assessment tool. The six characteristics identified in a previous case control study as constituting the best risk model for skin tear development were used to construct a risk assessment tool. The ability of the tool to predict skin tear development was then tested in a prospective study. Between August 2012 and September 2013, 1466 tertiary hospital patients were assessed at admission and followed up for 10 days to see if they developed a skin tear. The predictive validity of the tool was assessed using receiver operating characteristic (ROC) analysis. When the tool was found not to have performed as well as hoped, secondary analyses were performed to determine whether a potentially better performing risk model could be identified. The tool was found to have high sensitivity but low specificity and therefore have inadequate predictive validity. Secondary analysis of the combined data from this and the previous case control study identified an alternative better performing risk model. The tool developed and tested in this study was found to have inadequate predictive validity. The predictive validity of an alternative, more parsimonious model now needs to be tested. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
North Atlantic observations sharpen meridional overturning projections
NASA Astrophysics Data System (ADS)
Olson, R.; An, S.-I.; Fan, Y.; Evans, J. P.; Caesar, L.
2018-06-01
Atlantic Meridional Overturning Circulation (AMOC) projections are uncertain due to both model errors, as well as internal climate variability. An AMOC slowdown projected by many climate models is likely to have considerable effects on many aspects of global and North Atlantic climate. Previous studies to make probabilistic AMOC projections have broken new ground. However, they do not drift-correct or cross-validate the projections, and do not fully account for internal variability. Furthermore, they consider a limited subset of models, and ignore the skill of models at representing the temporal North Atlantic dynamics. We improve on previous work by applying Bayesian Model Averaging to weight 13 Coupled Model Intercomparison Project phase 5 models by their skill at modeling the AMOC strength, and its temporal dynamics, as approximated by the northern North-Atlantic temperature-based AMOC Index. We make drift-corrected projections accounting for structural model errors, and for the internal variability. Cross-validation experiments give approximately correct empirical coverage probabilities, which validates our method. Our results present more evidence that AMOC likely already started slowing down. While weighting considerably moderates and sharpens our projections, our results are at low end of previously published estimates. We project mean AMOC changes between periods 1960-1999 and 2060-2099 of -4.0 Sv and -6.8 Sv for RCP4.5 and RCP8.5 emissions scenarios respectively. The corresponding average 90% credible intervals for our weighted experiments are [-7.2, -1.2] and [-10.5, -3.7] Sv respectively for the two scenarios.
Evaluation of a Computational Model of Situational Awareness
NASA Technical Reports Server (NTRS)
Burdick, Mark D.; Shively, R. Jay; Rutkewski, Michael (Technical Monitor)
2000-01-01
Although the use of the psychological construct of situational awareness (SA) assists researchers in creating a flight environment that is safer and more predictable, its true potential remains untapped until a valid means of predicting SA a priori becomes available. Previous work proposed a computational model of SA (CSA) that sought to Fill that void. The current line of research is aimed at validating that model. The results show that the model accurately predicted SA in a piloted simulation.
Selecting the "Best" Factor Structure and Moving Measurement Validation Forward: An Illustration.
Schmitt, Thomas A; Sass, Daniel A; Chappelle, Wayne; Thompson, William
2018-04-09
Despite the broad literature base on factor analysis best practices, research seeking to evaluate a measure's psychometric properties frequently fails to consider or follow these recommendations. This leads to incorrect factor structures, numerous and often overly complex competing factor models and, perhaps most harmful, biased model results. Our goal is to demonstrate a practical and actionable process for factor analysis through (a) an overview of six statistical and psychometric issues and approaches to be aware of, investigate, and report when engaging in factor structure validation, along with a flowchart for recommended procedures to understand latent factor structures; (b) demonstrating these issues to provide a summary of the updated Posttraumatic Stress Disorder Checklist (PCL-5) factor models and a rationale for validation; and (c) conducting a comprehensive statistical and psychometric validation of the PCL-5 factor structure to demonstrate all the issues we described earlier. Considering previous research, the PCL-5 was evaluated using a sample of 1,403 U.S. Air Force remotely piloted aircraft operators with high levels of battlefield exposure. Previously proposed PCL-5 factor structures were not supported by the data, but instead a bifactor model is arguably more statistically appropriate.
Jastrzembski, Tiffany S.; Charness, Neil
2009-01-01
The authors estimate weighted mean values for nine information processing parameters for older adults using the Card, Moran, and Newell (1983) Model Human Processor model. The authors validate a subset of these parameters by modeling two mobile phone tasks using two different phones and comparing model predictions to a sample of younger (N = 20; Mage = 20) and older (N = 20; Mage = 69) adults. Older adult models fit keystroke-level performance at the aggregate grain of analysis extremely well (R = 0.99) and produced equivalent fits to previously validated younger adult models. Critical path analyses highlighted points of poor design as a function of cognitive workload, hardware/software design, and user characteristics. The findings demonstrate that estimated older adult information processing parameters are valid for modeling purposes, can help designers understand age-related performance using existing interfaces, and may support the development of age-sensitive technologies. PMID:18194048
Jastrzembski, Tiffany S; Charness, Neil
2007-12-01
The authors estimate weighted mean values for nine information processing parameters for older adults using the Card, Moran, and Newell (1983) Model Human Processor model. The authors validate a subset of these parameters by modeling two mobile phone tasks using two different phones and comparing model predictions to a sample of younger (N = 20; M-sub(age) = 20) and older (N = 20; M-sub(age) = 69) adults. Older adult models fit keystroke-level performance at the aggregate grain of analysis extremely well (R = 0.99) and produced equivalent fits to previously validated younger adult models. Critical path analyses highlighted points of poor design as a function of cognitive workload, hardware/software design, and user characteristics. The findings demonstrate that estimated older adult information processing parameters are valid for modeling purposes, can help designers understand age-related performance using existing interfaces, and may support the development of age-sensitive technologies.
Cross-validation pitfalls when selecting and assessing regression and classification models.
Krstajic, Damjan; Buturovic, Ljubomir J; Leahy, David E; Thomas, Simon
2014-03-29
We address the problem of selecting and assessing classification and regression models using cross-validation. Current state-of-the-art methods can yield models with high variance, rendering them unsuitable for a number of practical applications including QSAR. In this paper we describe and evaluate best practices which improve reliability and increase confidence in selected models. A key operational component of the proposed methods is cloud computing which enables routine use of previously infeasible approaches. We describe in detail an algorithm for repeated grid-search V-fold cross-validation for parameter tuning in classification and regression, and we define a repeated nested cross-validation algorithm for model assessment. As regards variable selection and parameter tuning we define two algorithms (repeated grid-search cross-validation and double cross-validation), and provide arguments for using the repeated grid-search in the general case. We show results of our algorithms on seven QSAR datasets. The variation of the prediction performance, which is the result of choosing different splits of the dataset in V-fold cross-validation, needs to be taken into account when selecting and assessing classification and regression models. We demonstrate the importance of repeating cross-validation when selecting an optimal model, as well as the importance of repeating nested cross-validation when assessing a prediction error.
[The effect of self-reflection on depression mediated by hardiness].
Nakajima, Miho; Hattori, Yosuke; Tanno, Yoshihiko
2015-10-01
Previous studies have shown that two types of private self-consciousness result in opposing effects on depression; one of which is self-rumination, which leads to maladaptive effect, and the other is self-reflection, which leads to an adaptive effect. Although a number of studies have examined the mechanism of the maladaptive effect of self-rumination, only a few studies have examined the mechanism of the adaptive effect of self-reflection. The present study examined the process of how self-reflection affected depression adaptively, Based on the previous findings, we proposed a hypothetical model assuming that hardiness acts as a mediator of self-reflection. To test the validity of the model, structural equation modeling analysis was performed with the cross-sectional data of 155 undergraduate students. The results. suggest that the hypothetical model is valid. According to the present results and previous findings, it is suggested that self-reflection is associated with low levels of depression and mediated by "rich commitment", one component of hardiness.
Weller, Daniel; Shiwakoti, Suvash; Bergholz, Peter; Grohn, Yrjo; Wiedmann, Martin
2015-01-01
Technological advancements, particularly in the field of geographic information systems (GIS), have made it possible to predict the likelihood of foodborne pathogen contamination in produce production environments using geospatial models. Yet, few studies have examined the validity and robustness of such models. This study was performed to test and refine the rules associated with a previously developed geospatial model that predicts the prevalence of Listeria monocytogenes in produce farms in New York State (NYS). Produce fields for each of four enrolled produce farms were categorized into areas of high or low predicted L. monocytogenes prevalence using rules based on a field's available water storage (AWS) and its proximity to water, impervious cover, and pastures. Drag swabs (n = 1,056) were collected from plots assigned to each risk category. Logistic regression, which tested the ability of each rule to accurately predict the prevalence of L. monocytogenes, validated the rules based on water and pasture. Samples collected near water (odds ratio [OR], 3.0) and pasture (OR, 2.9) showed a significantly increased likelihood of L. monocytogenes isolation compared to that for samples collected far from water and pasture. Generalized linear mixed models identified additional land cover factors associated with an increased likelihood of L. monocytogenes isolation, such as proximity to wetlands. These findings validated a subset of previously developed rules that predict L. monocytogenes prevalence in produce production environments. This suggests that GIS and geospatial models can be used to accurately predict L. monocytogenes prevalence on farms and can be used prospectively to minimize the risk of preharvest contamination of produce. PMID:26590280
Chaitanya, Lakshmi; Breslin, Krystal; Zuñiga, Sofia; Wirken, Laura; Pośpiech, Ewelina; Kukla-Bartoszek, Magdalena; Sijen, Titia; Knijff, Peter de; Liu, Fan; Branicki, Wojciech; Kayser, Manfred; Walsh, Susan
2018-07-01
Forensic DNA Phenotyping (FDP), i.e. the prediction of human externally visible traits from DNA, has become a fast growing subfield within forensic genetics due to the intelligence information it can provide from DNA traces. FDP outcomes can help focus police investigations in search of unknown perpetrators, who are generally unidentifiable with standard DNA profiling. Therefore, we previously developed and forensically validated the IrisPlex DNA test system for eye colour prediction and the HIrisPlex system for combined eye and hair colour prediction from DNA traces. Here we introduce and forensically validate the HIrisPlex-S DNA test system (S for skin) for the simultaneous prediction of eye, hair, and skin colour from trace DNA. This FDP system consists of two SNaPshot-based multiplex assays targeting a total of 41 SNPs via a novel multiplex assay for 17 skin colour predictive SNPs and the previous HIrisPlex assay for 24 eye and hair colour predictive SNPs, 19 of which also contribute to skin colour prediction. The HIrisPlex-S system further comprises three statistical prediction models, the previously developed IrisPlex model for eye colour prediction based on 6 SNPs, the previous HIrisPlex model for hair colour prediction based on 22 SNPs, and the recently introduced HIrisPlex-S model for skin colour prediction based on 36 SNPs. In the forensic developmental validation testing, the novel 17-plex assay performed in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines, as previously shown for the 24-plex assay. Sensitivity testing of the 17-plex assay revealed complete SNP profiles from as little as 63 pg of input DNA, equalling the previously demonstrated sensitivity threshold of the 24-plex HIrisPlex assay. Testing of simulated forensic casework samples such as blood, semen, saliva stains, of inhibited DNA samples, of low quantity touch (trace) DNA samples, and of artificially degraded DNA samples as well as concordance testing, demonstrated the robustness, efficiency, and forensic suitability of the new 17-plex assay, as previously shown for the 24-plex assay. Finally, we provide an update to the publically available HIrisPlex website https://hirisplex.erasmusmc.nl/, now allowing the estimation of individual probabilities for 3 eye, 4 hair, and 5 skin colour categories from HIrisPlex-S input genotypes. The HIrisPlex-S DNA test represents the first forensically validated tool for skin colour prediction, and reflects the first forensically validated tool for simultaneous eye, hair and skin colour prediction from DNA. Copyright © 2018 Elsevier B.V. All rights reserved.
Validation of the Self-Beliefs Related to Social Anxiety Scale
Moulds, Michelle L.; Rapee, Ronald M.
2014-01-01
The importance of self-beliefs in prominent models of social phobia has led to the development of measures that tap this cognitive construct. The Self-Beliefs Related to Social Anxiety (SBSA) Scale is one such measure and taps the three maladaptive belief types proposed in Clark and Wells’s model of social phobia. This study aimed to replicate and extend previous research on the psychometric properties of the SBSA. Replicating previous research, in an (undiagnosed) undergraduate sample (n = 235), the SBSA was found to have a correlated three-factor structure using confirmatory factor analyses, and the SBSA and its subscales demonstrated good internal consistency and test–retest reliability. The SBSA and its subscales also had unique relationships with social anxiety and depression, the majority of which replicated previous research. Extending previous research, the SBSA and its subscales showed good incremental validity in the undergraduate sample and good discriminative validity using the undergraduate sample and a sample of individuals with social phobia (n = 33). The SBSA’s strong theoretical basis and the findings of this study suggest that the SBSA is an ideal research and clinical tool to assess the cognitions characteristic of social phobia. PMID:23575344
Validation of the self-beliefs related to social anxiety scale: a replication and extension.
Wong, Quincy J J; Moulds, Michelle L; Rapee, Ronald M
2014-06-01
The importance of self-beliefs in prominent models of social phobia has led to the development of measures that tap this cognitive construct. The Self-Beliefs Related to Social Anxiety (SBSA) Scale is one such measure and taps the three maladaptive belief types proposed in Clark and Wells's model of social phobia. This study aimed to replicate and extend previous research on the psychometric properties of the SBSA. Replicating previous research, in an (undiagnosed) undergraduate sample (n = 235), the SBSA was found to have a correlated three-factor structure using confirmatory factor analyses, and the SBSA and its subscales demonstrated good internal consistency and test-retest reliability. The SBSA and its subscales also had unique relationships with social anxiety and depression, the majority of which replicated previous research. Extending previous research, the SBSA and its subscales showed good incremental validity in the undergraduate sample and good discriminative validity using the undergraduate sample and a sample of individuals with social phobia (n = 33). The SBSA's strong theoretical basis and the findings of this study suggest that the SBSA is an ideal research and clinical tool to assess the cognitions characteristic of social phobia. © The Author(s) 2013.
Validation of tsunami inundation model TUNA-RP using OAR-PMEL-135 benchmark problem set
NASA Astrophysics Data System (ADS)
Koh, H. L.; Teh, S. Y.; Tan, W. K.; Kh'ng, X. Y.
2017-05-01
A standard set of benchmark problems, known as OAR-PMEL-135, is developed by the US National Tsunami Hazard Mitigation Program for tsunami inundation model validation. Any tsunami inundation model must be tested for its accuracy and capability using this standard set of benchmark problems before it can be gainfully used for inundation simulation. The authors have previously developed an in-house tsunami inundation model known as TUNA-RP. This inundation model solves the two-dimensional nonlinear shallow water equations coupled with a wet-dry moving boundary algorithm. This paper presents the validation of TUNA-RP against the solutions provided in the OAR-PMEL-135 benchmark problem set. This benchmark validation testing shows that TUNA-RP can indeed perform inundation simulation with accuracy consistent with that in the tested benchmark problem set.
2011-01-01
Background Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. Methods A cardiovascular and circulatory system (CVS) model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate "open on pressure, close on flow" law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Results Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV) loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. Conclusions The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves. PMID:21942971
Detailed Validation of the Bidirectional Effect in Various Case 1 and Case 2 Waters
2012-03-26
of the viewing direction, i.e., they assumed a completely diffuse BRDF . Previous efforts to model / understand the actual BRDF [4-10] have produced...places. Second, the MAG2002 BRDF tables were developed from a radiative transfer (RT) model that used scattering particle phase functions that...situ measurements from just 3 locations to validate their model ; here we used a much larger data set across a wide variety of inherent optical
Should I use that model? Assessing the transferability of ecological models to new settings
Analysts and scientists frequently apply existing models that estimate ecological endpoints or simulate ecological processes to settings where the models have not been used previously, and where data to parameterize and validate the model may be sparse. Prior to transferring an ...
Time series modeling of human operator dynamics in manual control tasks
NASA Technical Reports Server (NTRS)
Biezad, D. J.; Schmidt, D. K.
1984-01-01
A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency responses of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that has not been previously modeled to demonstrate the strengths of the method.
Time Series Modeling of Human Operator Dynamics in Manual Control Tasks
NASA Technical Reports Server (NTRS)
Biezad, D. J.; Schmidt, D. K.
1984-01-01
A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency response of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that was previously modeled to demonstrate the strengths of the method.
NASA Technical Reports Server (NTRS)
Sebok, Angelia; Wickens, Christopher; Sargent, Robert
2015-01-01
One human factors challenge is predicting operator performance in novel situations. Approaches such as drawing on relevant previous experience, and developing computational models to predict operator performance in complex situations, offer potential methods to address this challenge. A few concerns with modeling operator performance are that models need to realistic, and they need to be tested empirically and validated. In addition, many existing human performance modeling tools are complex and require that an analyst gain significant experience to be able to develop models for meaningful data collection. This paper describes an effort to address these challenges by developing an easy to use model-based tool, using models that were developed from a review of existing human performance literature and targeted experimental studies, and performing an empirical validation of key model predictions.
Transformation in the pharmaceutical industry: transformation-induced quality risks--a survey.
Shafiei, Nader; Ford, James L; Morecroft, Charles W; Lisboa, Paulo J; Taylor, Mark J; Mouzughi, Yusra
2013-01-01
This paper is the fourth in a series that explores ongoing transformation in the pharmaceutical industry and its impact on pharmaceutical quality from the perspective of risk identification. The aim of this paper is to validate proposed quality risks through elicitation of expert opinion and define the resultant quality risk model. Expert opinion was obtained using a questionnaire-based survey with participants with recognized expertise in pharmaceutical regulation, product lifecycle, or technology. The results of the survey validate the theoretical and operational evidence in support of the four main pharmaceutical transformation triggers previously identified. The quality risk model resulting from the survey indicated a firm relationship between the pharmaceutical quality risks and regulatory compliance outcomes during the marketing approval and post-marketing phases of the product lifecycle and a weaker relationship during the pre-market evaluation phase. In this paper through conduct of an expert opinion survey the proposed quality risks carried forward from an earlier part of the research are validated and resultant quality risk model is defined. The survey results validate the theoretical and operational evidence previously identified. The quality risk model indicates that transformation-related risks have a larger regulatory compliance impact during product approval, manufacturing, distribution, and commercial use than during the development phase.
HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy.
Hu, Huan; Zhang, Li; Ai, Haixin; Zhang, Hui; Fan, Yetian; Zhao, Qi; Liu, Hongsheng
2018-03-27
LncRNA plays an important role in many biological and disease progression by binding to related proteins. However, the experimental methods for studying lncRNA-protein interactions are time-consuming and expensive. Although there are a few models designed to predict the interactions of ncRNA-protein, they all have some common drawbacks that limit their predictive performance. In this study, we present a model called HLPI-Ensemble designed specifically for human lncRNA-protein interactions. HLPI-Ensemble adopts the ensemble strategy based on three mainstream machine learning algorithms of Support Vector Machines (SVM), Random Forests (RF) and Extreme Gradient Boosting (XGB) to generate HLPI-SVM Ensemble, HLPI-RF Ensemble and HLPI-XGB Ensemble, respectively. The results of 10-fold cross-validation show that HLPI-SVM Ensemble, HLPI-RF Ensemble and HLPI-XGB Ensemble achieved AUCs of 0.95, 0.96 and 0.96, respectively, in the test dataset. Furthermore, we compared the performance of the HLPI-Ensemble models with the previous models through external validation dataset. The results show that the false positives (FPs) of HLPI-Ensemble models are much lower than that of the previous models, and other evaluation indicators of HLPI-Ensemble models are also higher than those of the previous models. It is further showed that HLPI-Ensemble models are superior in predicting human lncRNA-protein interaction compared with previous models. The HLPI-Ensemble is publicly available at: http://ccsipb.lnu.edu.cn/hlpiensemble/ .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed Hassan
2004-09-01
The groundwater flow and radionuclide transport model characterizing the Shoal underground nuclear test has been accepted by the State of Nevada Division of Environmental Protection. According to the Federal Facility Agreement and Consent Order (FFACO) between DOE and the State of Nevada, the next steps in the closure process for the site are then model validation (or postaudit), the proof-of-concept, and the long-term monitoring stage. This report addresses the development of the validation strategy for the Shoal model, needed for preparing the subsurface Corrective Action Decision Document-Corrective Action Plan and the development of the proof-of-concept tools needed during the five-yearmore » monitoring/validation period. The approach builds on a previous model, but is adapted and modified to the site-specific conditions and challenges of the Shoal site.« less
Olondo, C; Legarda, F; Herranz, M; Idoeta, R
2017-04-01
This paper shows the procedure performed to validate the migration equation and the migration parameters' values presented in a previous paper (Legarda et al., 2011) regarding the migration of 137 Cs in Spanish mainland soils. In this paper, this model validation has been carried out checking experimentally obtained activity concentration values against those predicted by the model. This experimental data come from the measured vertical activity profiles of 8 new sampling points which are located in northern Spain. Before testing predicted values of the model, the uncertainty of those values has been assessed with the appropriate uncertainty analysis. Once establishing the uncertainty of the model, both activity concentration values, experimental versus model predicted ones, have been compared. Model validation has been performed analyzing its accuracy, studying it as a whole and also at different depth intervals. As a result, this model has been validated as a tool to predict 137 Cs behaviour in a Mediterranean environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Isotani, Shuji; Shimoyama, Hirofumi; Yokota, Isao; Noma, Yasuhiro; Kitamura, Kousuke; China, Toshiyuki; Saito, Keisuke; Hisasue, Shin-ichi; Ide, Hisamitsu; Muto, Satoru; Yamaguchi, Raizo; Ukimura, Osamu; Gill, Inderbir S; Horie, Shigeo
2015-10-01
The predictive model of postoperative renal function may impact on planning nephrectomy. To develop the novel predictive model using combination of clinical indices with computer volumetry to measure the preserved renal cortex volume (RCV) using multidetector computed tomography (MDCT), and to prospectively validate performance of the model. Total 60 patients undergoing radical nephrectomy from 2011 to 2013 participated, including a development cohort of 39 patients and an external validation cohort of 21 patients. RCV was calculated by voxel count using software (Vincent, FUJIFILM). Renal function before and after radical nephrectomy was assessed via the estimated glomerular filtration rate (eGFR). Factors affecting postoperative eGFR were examined by regression analysis to develop the novel model for predicting postoperative eGFR with a backward elimination method. The predictive model was externally validated and the performance of the model was compared with that of the previously reported models. The postoperative eGFR value was associated with age, preoperative eGFR, preserved renal parenchymal volume (RPV), preserved RCV, % of RPV alteration, and % of RCV alteration (p < 0.01). The significant correlated variables for %eGFR alteration were %RCV preservation (r = 0.58, p < 0.01) and %RPV preservation (r = 0.54, p < 0.01). We developed our regression model as follows: postoperative eGFR = 57.87 - 0.55(age) - 15.01(body surface area) + 0.30(preoperative eGFR) + 52.92(%RCV preservation). Strong correlation was seen between postoperative eGFR and the calculated estimation model (r = 0.83; p < 0.001). The external validation cohort (n = 21) showed our model outperformed previously reported models. Combining MDCT renal volumetry and clinical indices might yield an important tool for predicting postoperative renal function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orea, Adrian; Betancourt, Minerba
aThe objective for this project was to use MINERvA data to tune the simulation models in order to obtain the precision needed for current and future neutrino experiments. In order to do this, the current models need to be validated and then improved.more » $$\\#10146$$; Validation was done by recreating figures that have been used in previous publications $$\\#61553$$; This was done by comparing data from the detector and the simulation model (GENIE) $$\\#10146$$; Additionally, a newer version of GENIE was compared to the GENIE used for the publications to validate the new version as well as to note any improvements Another objective was to add new samples into the NUISANCE framework, which was used to compare data from the detector and simulation models. $$\\#10146$$; Specifically, the added sample was the two dimensional histogram of the double differential cross section as a function of the transversal and z-direction momentum for Numu and Numubar $$\\#61553$$; Was also used for validation« less
Validation of Model Forecasts of the Ambient Solar Wind
NASA Technical Reports Server (NTRS)
Macneice, P. J.; Hesse, M.; Kuznetsova, M. M.; Rastaetter, L.; Taktakishvili, A.
2009-01-01
Independent and automated validation is a vital step in the progression of models from the research community into operational forecasting use. In this paper we describe a program in development at the CCMC to provide just such a comprehensive validation for models of the ambient solar wind in the inner heliosphere. We have built upon previous efforts published in the community, sharpened their definitions, and completed a baseline study. We also provide first results from this program of the comparative performance of the MHD models available at the CCMC against that of the Wang-Sheeley-Arge (WSA) model. An important goal of this effort is to provide a consistent validation to all available models. Clearly exposing the relative strengths and weaknesses of the different models will enable forecasters to craft more reliable ensemble forecasting strategies. Models of the ambient solar wind are developing rapidly as a result of improvements in data supply, numerical techniques, and computing resources. It is anticipated that in the next five to ten years, the MHD based models will supplant semi-empirical potential based models such as the WSA model, as the best available forecast models. We anticipate that this validation effort will track this evolution and so assist policy makers in gauging the value of past and future investment in modeling support.
Hydrologic and water quality terminology as applied to modeling
USDA-ARS?s Scientific Manuscript database
A survey of literature and examination in particular of terminology use in a previous special collection of modeling calibration and validation papers has been conducted to arrive at a list of consistent terminology recommended for writing about hydrologic and water quality model calibration and val...
Validation of the Saskatoon Falls Prevention Consortium's Falls Screening and Referral Algorithm
Lawson, Sara Nicole; Zaluski, Neal; Petrie, Amanda; Arnold, Cathy; Basran, Jenny
2013-01-01
ABSTRACT Purpose: To investigate the concurrent validity of the Saskatoon Falls Prevention Consortium's Falls Screening and Referral Algorithm (FSRA). Method: A total of 29 older adults (mean age 77.7 [SD 4.0] y) residing in an independent-living senior's complex who met inclusion criteria completed a demographic questionnaire and the components of the FSRA and Berg Balance Scale (BBS). The FSRA consists of the Elderly Fall Screening Test (EFST) and the Multi-factor Falls Questionnaire (MFQ); it is designed to categorize individuals into low, moderate, or high fall-risk categories to determine appropriate management pathways. A predictive model for probability of fall risk, based on previous research, was used to determine concurrent validity of the FSRI. Results: The FSRA placed 79% of participants into the low-risk category, whereas the predictive model found the probability of fall risk to range from 0.04 to 0.74, with a mean of 0.35 (SD 0.25). No statistically significant correlation was found between the FSRA and the predictive model for probability of fall risk (Spearman's ρ=0.35, p=0.06). Conclusion: The FSRA lacks concurrent validity relative to to a previously established model of fall risk and appears to over-categorize individuals into the low-risk group. Further research on the FSRA as an adequate tool to screen community-dwelling older adults for fall risk is recommended. PMID:24381379
2013-01-01
Background The volume of influenza pandemic modelling studies has increased dramatically in the last decade. Many models incorporate now sophisticated parameterization and validation techniques, economic analyses and the behaviour of individuals. Methods We reviewed trends in these aspects in models for influenza pandemic preparedness that aimed to generate policy insights for epidemic management and were published from 2000 to September 2011, i.e. before and after the 2009 pandemic. Results We find that many influenza pandemics models rely on parameters from previous modelling studies, models are rarely validated using observed data and are seldom applied to low-income countries. Mechanisms for international data sharing would be necessary to facilitate a wider adoption of model validation. The variety of modelling decisions makes it difficult to compare and evaluate models systematically. Conclusions We propose a model Characteristics, Construction, Parameterization and Validation aspects protocol (CCPV protocol) to contribute to the systematisation of the reporting of models with an emphasis on the incorporation of economic aspects and host behaviour. Model reporting, as already exists in many other fields of modelling, would increase confidence in model results, and transparency in their assessment and comparison. PMID:23651557
Hu, Alan Shiun Yew; Donohue, Peter O'; Gunnarsson, Ronny K; de Costa, Alan
2018-03-14
Valid and user-friendly prediction models for conversion to open cholecystectomy allow for proper planning prior to surgery. The Cairns Prediction Model (CPM) has been in use clinically in the original study site for the past three years, but has not been tested at other sites. A retrospective, single-centred study collected ultrasonic measurements and clinical variables alongside with conversion status from consecutive patients who underwent laparoscopic cholecystectomy from 2013 to 2016 in The Townsville Hospital, North Queensland, Australia. An area under the curve (AUC) was calculated to externally validate of the CPM. Conversion was necessary in 43 (4.2%) out of 1035 patients. External validation showed an area under the curve of 0.87 (95% CI 0.82-0.93, p = 1.1 × 10 -14 ). In comparison with most previously published models, which have an AUC of approximately 0.80 or less, the CPM has the highest AUC of all published prediction models both for internal and external validation. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Surrogates for numerical simulations; optimization of eddy-promoter heat exchangers
NASA Technical Reports Server (NTRS)
Patera, Anthony T.; Patera, Anthony
1993-01-01
Although the advent of fast and inexpensive parallel computers has rendered numerous previously intractable calculations feasible, many numerical simulations remain too resource-intensive to be directly inserted in engineering optimization efforts. An attractive alternative to direct insertion considers models for computational systems: the expensive simulation is evoked only to construct and validate a simplified, input-output model; this simplified input-output model then serves as a simulation surrogate in subsequent engineering optimization studies. A simple 'Bayesian-validated' statistical framework for the construction, validation, and purposive application of static computer simulation surrogates is presented. As an example, dissipation-transport optimization of laminar-flow eddy-promoter heat exchangers are considered: parallel spectral element Navier-Stokes calculations serve to construct and validate surrogates for the flowrate and Nusselt number; these surrogates then represent the originating Navier-Stokes equations in the ensuing design process.
Academic Self-Concept: Modeling and Measuring for Science
ERIC Educational Resources Information Center
Hardy, Graham
2014-01-01
In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive…
Lateral specialization in unilateral spatial neglect: a cognitive robotics model.
Conti, Daniela; Di Nuovo, Santo; Cangelosi, Angelo; Di Nuovo, Alessandro
2016-08-01
In this paper, we present the experimental results of an embodied cognitive robotic approach for modelling the human cognitive deficit known as unilateral spatial neglect (USN). To this end, we introduce an artificial neural network architecture designed and trained to control the spatial attentional focus of the iCub robotic platform. Like the human brain, the architecture is divided into two hemispheres and it incorporates bio-inspired plasticity mechanisms, which allow the development of the phenomenon of the specialization of the right hemisphere for spatial attention. In this study, we validate the model by replicating a previous experiment with human patients affected by the USN and numerical results show that the robot mimics the behaviours previously exhibited by humans. We also simulated recovery after the damage to compare the performance of each of the two hemispheres as additional validation of the model. Finally, we highlight some possible advantages of modelling cognitive dysfunctions of the human brain by means of robotic platforms, which can supplement traditional approaches for studying spatial impairments in humans.
Das, Anirban; Trehan, Amita; Oberoi, Sapna; Bansal, Deepak
2017-06-01
The study aims to validate a score predicting risk of complications in pediatric patients with chemotherapy-related febrile neutropenia (FN) and evaluate the performance of previously published models for risk stratification. Children diagnosed with cancer and presenting with FN were evaluated in a prospective single-center study. A score predicting the risk of complications, previously derived in the unit, was validated on a prospective cohort. Performance of six predictive models published from geographically distinct settings was assessed on the same cohort. Complications were observed in 109 (26.3%) of 414 episodes of FN over 15 months. A risk score based on undernutrition (two points), time from last chemotherapy (<7 days = two points), presence of a nonupper respiratory focus of infection (two points), C-reactive protein (>60 mg/l = five points), and absolute neutrophil count (<100 per μl = two points) was used to stratify patients into "low risk" (score <7, n = 208) and assessed using the following parameters: overall performance (Nagelkerke R 2 = 34.4%), calibration (calibration slope = 0.39; P = 0.25 in Hosmer-Lemeshow test), discrimination (c-statistic = 0.81), overall sensitivity (86%), negative predictive value (93%), and clinical net benefit (0.43). Six previously published rules demonstrated inferior performance in this cohort. An indigenous decision rule using five simple predefined variables was successful in identifying children at risk for complications. Prediction models derived in developed nations may not be appropriate for low-middle-income settings and need to be validated before use. © 2016 Wiley Periodicals, Inc.
Assessing Wildlife Habitat Value of New England Salt Marshes: II. Model Testing and Validation
We test a previously described model to assess the wildlife habitat value of New England salt marshes by comparing modeled habitat values and scores with bird abundance and species richness at sixteen salt marshes in Narragansett Bay, Rhode Island USA. Assessment scores ranged f...
Validation of Metrics as Error Predictors
NASA Astrophysics Data System (ADS)
Mendling, Jan
In this chapter, we test the validity of metrics that were defined in the previous chapter for predicting errors in EPC business process models. In Section 5.1, we provide an overview of how the analysis data is generated. Section 5.2 describes the sample of EPCs from practice that we use for the analysis. Here we discuss a disaggregation by the EPC model group and by error as well as a correlation analysis between metrics and error. Based on this sample, we calculate a logistic regression model for predicting error probability with the metrics as input variables in Section 5.3. In Section 5.4, we then test the regression function for an independent sample of EPC models from textbooks as a cross-validation. Section 5.5 summarizes the findings.
Heat Transfer Modeling and Validation for Optically Thick Alumina Fibrous Insulation
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
2009-01-01
Combined radiation/conduction heat transfer through unbonded alumina fibrous insulation was modeled using the diffusion approximation for modeling the radiation component of heat transfer in the optically thick insulation. The validity of the heat transfer model was investigated by comparison to previously reported experimental effective thermal conductivity data over the insulation density range of 24 to 96 kg/cu m, with a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and test sample hot side temperature range of 530 to 1360 K. The model was further validated by comparison to thermal conductivity measurements using the transient step heating technique on an insulation sample at a density of 144 kg/cu m over a pressure range of 0.001 to 760 torr, and temperature range of 290 to 1090 K.
Classen, Sherrilene; Winter, Sandra M.; Velozo, Craig A.; Bédard, Michel; Lanford, Desiree N.; Brumback, Babette; Lutz, Barbara J.
2010-01-01
OBJECTIVE We report on item development and validity testing of a self-report older adult safe driving behaviors measure (SDBM). METHOD On the basis of theoretical frameworks (Precede–Proceed Model of Health Promotion, Haddon’s matrix, and Michon’s model), existing driving measures, and previous research and guided by measurement theory, we developed items capturing safe driving behavior. Item development was further informed by focus groups. We established face validity using peer reviewers and content validity using expert raters. RESULTS Peer review indicated acceptable face validity. Initial expert rater review yielded a scale content validity index (CVI) rating of 0.78, with 44 of 60 items rated ≥0.75. Sixteen unacceptable items (≤0.5) required major revision or deletion. The next CVI scale average was 0.84, indicating acceptable content validity. CONCLUSION The SDBM has relevance as a self-report to rate older drivers. Future pilot testing of the SDBM comparing results with on-road testing will define criterion validity. PMID:20437917
A Study of the Information Search Behaviour of the Millennial Generation
ERIC Educational Resources Information Center
Taylor, Arthur
2012-01-01
Introduction: Members of the millennial generation (born after 1982) have come of age in a society infused with technology and information. It is unclear how they determine the validity of information gathered, or whether or not validity is even a concern. Previous information search models based on mediated searches with different age groups may…
Cost Modeling for Space Optical Telescope Assemblies
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda
2011-01-01
Parametric cost models are used to plan missions, compare concepts and justify technology investments. This paper reviews an on-going effort to develop cost modes for space telescopes. This paper summarizes the methodology used to develop cost models and documents how changes to the database have changed previously published preliminary cost models. While the cost models are evolving, the previously published findings remain valid: it costs less per square meter of collecting aperture to build a large telescope than a small telescope; technology development as a function of time reduces cost; and lower areal density telescopes cost more than more massive telescopes.
Kobayashi, Tohru; Fuse, Shigeto; Sakamoto, Naoko; Mikami, Masashi; Ogawa, Shunichi; Hamaoka, Kenji; Arakaki, Yoshio; Nakamura, Tsuneyuki; Nagasawa, Hiroyuki; Kato, Taichi; Jibiki, Toshiaki; Iwashima, Satoru; Yamakawa, Masaru; Ohkubo, Takashi; Shimoyama, Shinya; Aso, Kentaro; Sato, Seiichi; Saji, Tsutomu
2016-08-01
Several coronary artery Z score models have been developed. However, a Z score model derived by the lambda-mu-sigma (LMS) method has not been established. Echocardiographic measurements of the proximal right coronary artery, left main coronary artery, proximal left anterior descending coronary artery, and proximal left circumflex artery were prospectively collected in 3,851 healthy children ≤18 years of age and divided into developmental and validation data sets. In the developmental data set, smooth curves were fitted for each coronary artery using linear, logarithmic, square-root, and LMS methods for both sexes. The relative goodness of fit of these models was compared using the Bayesian information criterion. The best-fitting model was tested for reproducibility using the validation data set. The goodness of fit of the selected model was visually compared with that of the previously reported regression models using a Q-Q plot. Because the internal diameter of each coronary artery was not similar between sexes, sex-specific Z score models were developed. The LMS model with body surface area as the independent variable showed the best goodness of fit; therefore, the internal diameter of each coronary artery was transformed into a sex-specific Z score on the basis of body surface area using the LMS method. In the validation data set, a Q-Q plot of each model indicated that the distribution of Z scores in the LMS models was closer to the normal distribution compared with previously reported regression models. Finally, the final models for each coronary artery in both sexes were developed using the developmental and validation data sets. A Microsoft Excel-based Z score calculator was also created, which is freely available online (http://raise.umin.jp/zsp/calculator/). Novel LMS models with which to estimate the sex-specific Z score of each internal coronary artery diameter were generated and validated using a large pediatric population. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Güiza, Fabian; Depreitere, Bart; Piper, Ian; Citerio, Giuseppe; Jorens, Philippe G; Maas, Andrew; Schuhmann, Martin U; Lo, Tsz-Yan Milly; Donald, Rob; Jones, Patricia; Maier, Gottlieb; Van den Berghe, Greet; Meyfroidt, Geert
2017-03-01
A model for early detection of episodes of increased intracranial pressure in traumatic brain injury patients has been previously developed and validated based on retrospective adult patient data from the multicenter Brain-IT database. The purpose of the present study is to validate this early detection model in different cohorts of recently treated adult and pediatric traumatic brain injury patients. Prognostic modeling. Noninterventional, observational, retrospective study. The adult validation cohort comprised recent traumatic brain injury patients from San Gerardo Hospital in Monza (n = 50), Leuven University Hospital (n = 26), Antwerp University Hospital (n = 19), Tübingen University Hospital (n = 18), and Southern General Hospital in Glasgow (n = 8). The pediatric validation cohort comprised patients from neurosurgical and intensive care centers in Edinburgh and Newcastle (n = 79). None. The model's performance was evaluated with respect to discrimination, calibration, overall performance, and clinical usefulness. In the recent adult validation cohort, the model retained excellent performance as in the original study. In the pediatric validation cohort, the model retained good discrimination and a positive net benefit, albeit with a performance drop in the remaining criteria. The obtained external validation results confirm the robustness of the model to predict future increased intracranial pressure events 30 minutes in advance, in adult and pediatric traumatic brain injury patients. These results are a large step toward an early warning system for increased intracranial pressure that can be generally applied. Furthermore, the sparseness of this model that uses only two routinely monitored signals as inputs (intracranial pressure and mean arterial blood pressure) is an additional asset.
Purves, Murray; Parkes, David
2016-05-01
Three atmospheric dispersion models--DIFFAL, HPAC, and HotSpot--of differing complexities have been validated against the witness plate deposition dataset taken during the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials. The small-scale nature of these trials in comparison to many other historical radiological dispersion trials provides a unique opportunity to evaluate the near-field performance of the models considered. This paper performs validation of these models using two graphical methods of comparison: deposition contour plots and hotline profile graphs. All of the models tested are assessed to perform well, especially considering that previous model developments and validations have been focused on larger-scale scenarios. Of the models, HPAC generally produced the most accurate results, especially at locations within ∼100 m of GZ. Features present within the observed data, such as hot spots, were not well modeled by any of the codes considered. Additionally, it was found that an increase in the complexity of the meteorological data input to the models did not necessarily lead to an improvement in model accuracy; this is potentially due to the small-scale nature of the trials.
Validating the Mexican American Intergenerational Caregiving Model
ERIC Educational Resources Information Center
Escandon, Socorro
2011-01-01
The purpose of this study was to substantiate and further develop a previously formulated conceptual model of Role Acceptance in Mexican American family caregivers by exploring the theoretical strengths of the model. The sample consisted of women older than 21 years of age who self-identified as Hispanic, were related through consanguinal or…
Bruno, Alexander G.; Bouxsein, Mary L.; Anderson, Dennis E.
2015-01-01
We developed and validated a fully articulated model of the thoracolumbar spine in opensim that includes the individual vertebrae, ribs, and sternum. To ensure trunk muscles in the model accurately represent muscles in vivo, we used a novel approach to adjust muscle cross-sectional area (CSA) and position using computed tomography (CT) scans of the trunk sampled from a community-based cohort. Model predictions of vertebral compressive loading and trunk muscle tension were highly correlated to previous in vivo measures of intradiscal pressure (IDP), vertebral loading from telemeterized implants and trunk muscle myoelectric activity recorded by electromyography (EMG). PMID:25901907
A validated finite element model of a soft artificial muscle motor
NASA Astrophysics Data System (ADS)
Tse, Tony Chun H.; O'Brien, Benjamin; McKay, Thomas; Anderson, Iain A.
2011-04-01
The Biomimetics Laboratory has developed a soft artificial muscle motor based on Dielectric Elastomers. The motor, 'Flexidrive', is light-weight and has low system complexity. It works by gripping and turning a shaft with a soft gear, like we would with our fingers. The motor's performance depends on many factors, such as actuation waveform, electrode patterning, geometries and contact tribology between the shaft and gear. We have developed a finite element model (FEM) of the motor as a study and design tool. Contact interaction was integrated with previous material and electromechanical coupling models in ABAQUS. The model was experimentally validated through a shape and blocked force analysis.
Validation of catchment models for predicting land-use and climate change impacts. 1. Method
NASA Astrophysics Data System (ADS)
Ewen, J.; Parkin, G.
1996-02-01
Computer simulation models are increasingly being proposed as tools capable of giving water resource managers accurate predictions of the impact of changes in land-use and climate. Previous validation testing of catchment models is reviewed, and it is concluded that the methods used do not clearly test a model's fitness for such a purpose. A new generally applicable method is proposed. This involves the direct testing of fitness for purpose, uses established scientific techniques, and may be implemented within a quality assured programme of work. The new method is applied in Part 2 of this study (Parkin et al., J. Hydrol., 175:595-613, 1996).
NASA Astrophysics Data System (ADS)
Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.
2018-05-01
Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.
Generation of real-time mode high-resolution water vapor fields from GPS observations
NASA Astrophysics Data System (ADS)
Yu, Chen; Penna, Nigel T.; Li, Zhenhong
2017-02-01
Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.
tool validation. Previous to joining NREL, her Masters thesis focused on a spatial analysis of strategies. Her undergraduate thesis focused on techno-economic and logistical cost modeling of offshore wind
Predicting survival across chronic interstitial lung disease: the ILD-GAP model.
Ryerson, Christopher J; Vittinghoff, Eric; Ley, Brett; Lee, Joyce S; Mooney, Joshua J; Jones, Kirk D; Elicker, Brett M; Wolters, Paul J; Koth, Laura L; King, Talmadge E; Collard, Harold R
2014-04-01
Risk prediction is challenging in chronic interstitial lung disease (ILD) because of heterogeneity in disease-specific and patient-specific variables. Our objective was to determine whether mortality is accurately predicted in patients with chronic ILD using the GAP model, a clinical prediction model based on sex, age, and lung physiology, that was previously validated in patients with idiopathic pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis (n=307), chronic hypersensitivity pneumonitis (n=206), connective tissue disease-associated ILD (n=281), idiopathic nonspecific interstitial pneumonia (n=45), or unclassifiable ILD (n=173) were selected from an ongoing database (N=1,012). Performance of the previously validated GAP model was compared with novel prediction models in each ILD subtype and the combined cohort. Patients with follow-up pulmonary function data were used for longitudinal model validation. The GAP model had good performance in all ILD subtypes (c-index, 74.6 in the combined cohort), which was maintained at all stages of disease severity and during follow-up evaluation. The GAP model had similar performance compared with alternative prediction models. A modified ILD-GAP Index was developed for application across all ILD subtypes to provide disease-specific survival estimates using a single risk prediction model. This was done by adding a disease subtype variable that accounted for better adjusted survival in connective tissue disease-associated ILD, chronic hypersensitivity pneumonitis, and idiopathic nonspecific interstitial pneumonia. The GAP model accurately predicts risk of death in chronic ILD. The ILD-GAP model accurately predicts mortality in major chronic ILD subtypes and at all stages of disease.
NASA Technical Reports Server (NTRS)
Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.
2015-01-01
Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.
Evaluating the sensitivity of agricultural model performance to different climate inputs
Glotter, Michael J.; Moyer, Elisabeth J.; Ruane, Alex C.; Elliott, Joshua W.
2017-01-01
Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled to observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections, but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely-used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources – reanalysis, reanalysis bias-corrected with observed climate, and a control dataset – and compared to observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by un-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. However, some issues persist for all choices of climate inputs: crop yields appear oversensitive to precipitation fluctuations but undersensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves. PMID:29097985
Towards personalized therapy for multiple sclerosis: prediction of individual treatment response.
Kalincik, Tomas; Manouchehrinia, Ali; Sobisek, Lukas; Jokubaitis, Vilija; Spelman, Tim; Horakova, Dana; Havrdova, Eva; Trojano, Maria; Izquierdo, Guillermo; Lugaresi, Alessandra; Girard, Marc; Prat, Alexandre; Duquette, Pierre; Grammond, Pierre; Sola, Patrizia; Hupperts, Raymond; Grand'Maison, Francois; Pucci, Eugenio; Boz, Cavit; Alroughani, Raed; Van Pesch, Vincent; Lechner-Scott, Jeannette; Terzi, Murat; Bergamaschi, Roberto; Iuliano, Gerardo; Granella, Franco; Spitaleri, Daniele; Shaygannejad, Vahid; Oreja-Guevara, Celia; Slee, Mark; Ampapa, Radek; Verheul, Freek; McCombe, Pamela; Olascoaga, Javier; Amato, Maria Pia; Vucic, Steve; Hodgkinson, Suzanne; Ramo-Tello, Cristina; Flechter, Shlomo; Cristiano, Edgardo; Rozsa, Csilla; Moore, Fraser; Luis Sanchez-Menoyo, Jose; Laura Saladino, Maria; Barnett, Michael; Hillert, Jan; Butzkueven, Helmut
2017-09-01
Timely initiation of effective therapy is crucial for preventing disability in multiple sclerosis; however, treatment response varies greatly among patients. Comprehensive predictive models of individual treatment response are lacking. Our aims were: (i) to develop predictive algorithms for individual treatment response using demographic, clinical and paraclinical predictors in patients with multiple sclerosis; and (ii) to evaluate accuracy, and internal and external validity of these algorithms. This study evaluated 27 demographic, clinical and paraclinical predictors of individual response to seven disease-modifying therapies in MSBase, a large global cohort study. Treatment response was analysed separately for disability progression, disability regression, relapse frequency, conversion to secondary progressive disease, change in the cumulative disease burden, and the probability of treatment discontinuation. Multivariable survival and generalized linear models were used, together with the principal component analysis to reduce model dimensionality and prevent overparameterization. Accuracy of the individual prediction was tested and its internal validity was evaluated in a separate, non-overlapping cohort. External validity was evaluated in a geographically distinct cohort, the Swedish Multiple Sclerosis Registry. In the training cohort (n = 8513), the most prominent modifiers of treatment response comprised age, disease duration, disease course, previous relapse activity, disability, predominant relapse phenotype and previous therapy. Importantly, the magnitude and direction of the associations varied among therapies and disease outcomes. Higher probability of disability progression during treatment with injectable therapies was predominantly associated with a greater disability at treatment start and the previous therapy. For fingolimod, natalizumab or mitoxantrone, it was mainly associated with lower pretreatment relapse activity. The probability of disability regression was predominantly associated with pre-baseline disability, therapy and relapse activity. Relapse incidence was associated with pretreatment relapse activity, age and relapsing disease course, with the strength of these associations varying among therapies. Accuracy and internal validity (n = 1196) of the resulting predictive models was high (>80%) for relapse incidence during the first year and for disability outcomes, moderate for relapse incidence in Years 2-4 and for the change in the cumulative disease burden, and low for conversion to secondary progressive disease and treatment discontinuation. External validation showed similar results, demonstrating high external validity for disability and relapse outcomes, moderate external validity for cumulative disease burden and low external validity for conversion to secondary progressive disease and treatment discontinuation. We conclude that demographic, clinical and paraclinical information helps predict individual response to disease-modifying therapies at the time of their commencement. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
McIntosh, Bryan
The LSO scintillator crystal commonly used in PET scanners contains a low level of intrinsic radioactivity due to a small amount of Lu-176. This is not usually a concern in routine scanning but can become an issue in small animal imaging, especially when imaging low tracer activity levels. Previously there had been no systematic validation of simulations of this activity; this thesis discusses the validation of a GATE model of intrinsic Lu-176 against results from a bench-top pair of detectors and a Siemens Inveon preclinical PET system. The simulation results matched those from the bench-top system very well, but did not agree as well with results from the complete Inveon system due to a drop-off in system sensitivity at low energies that was not modelled. With this validation the model can now be used with confidence to predict the effects of Lu-176 activity in future PET systems.
Radiated Sound Power from a Curved Honeycomb Panel
NASA Technical Reports Server (NTRS)
Robinson, Jay H.; Buehrle, Ralph D.; Klos, Jacob; Grosveld, Ferdinand W.
2003-01-01
The validation of finite element and boundary element model for the vibro-acoustic response of a curved honeycomb core composite aircraft panel is completed. The finite element and boundary element models were previously validated separately. This validation process was hampered significantly by the method in which the panel was installed in the test facility. The fixture used was made primarily of fiberboard and the panel was held in a groove in the fiberboard by a compression fitting made of plastic tubing. The validated model is intended to be used to evaluate noise reduction concepts from both an experimental and analytic basis simultaneously. An initial parametric study of the influence of core thickness on the radiated sound power from this panel, using this numerical model was subsequently conducted. This study was significantly influenced by the presence of strong boundary condition effects but indicated that the radiated sound power from this panel was insensitive to core thickness primarily due to the offsetting effects of added mass and added stiffness in the frequency range investigated.
Jason B. Fellman; Mathew P. Miller; Rose M. Cory; David V. D' Amore; Dan White
2009-01-01
We evaluated whether fitting fluorescence excitation-emission matrices (EEMs) to a previously validated PARAFAC model is an acceptable alternative to building an original model. To do this, we built a l0-component model using 307 EEMscollected from southeast Alaskan soil and streamwater. All 307 EEMs were then fit to the existing model (CM) presented in Cory and...
Jochems, Arthur; El-Naqa, Issam; Kessler, Marc; Mayo, Charles S; Jolly, Shruti; Matuszak, Martha; Faivre-Finn, Corinne; Price, Gareth; Holloway, Lois; Vinod, Shalini; Field, Matthew; Barakat, Mohamed Samir; Thwaites, David; de Ruysscher, Dirk; Dekker, Andre; Lambin, Philippe
2018-02-01
Early death after a treatment can be seen as a therapeutic failure. Accurate prediction of patients at risk for early mortality is crucial to avoid unnecessary harm and reducing costs. The goal of our work is two-fold: first, to evaluate the performance of a previously published model for early death in our cohorts. Second, to develop a prognostic model for early death prediction following radiotherapy. Patients with NSCLC treated with chemoradiotherapy or radiotherapy alone were included in this study. Four different cohorts from different countries were available for this work (N = 1540). The previous model used age, gender, performance status, tumor stage, income deprivation, no previous treatment given (yes/no) and body mass index to make predictions. A random forest model was developed by learning on the Maastro cohort (N = 698). The new model used performance status, age, gender, T and N stage, total tumor volume (cc), total tumor dose (Gy) and chemotherapy timing (none, sequential, concurrent) to make predictions. Death within 4 months of receiving the first radiotherapy fraction was used as the outcome. Early death rates ranged from 6 to 11% within the four cohorts. The previous model performed with AUC values ranging from 0.54 to 0.64 on the validation cohorts. Our newly developed model had improved AUC values ranging from 0.62 to 0.71 on the validation cohorts. Using advanced machine learning methods and informative variables, prognostic models for early mortality can be developed. Development of accurate prognostic tools for early mortality is important to inform patients about treatment options and optimize care.
Risk prediction models of breast cancer: a systematic review of model performances.
Anothaisintawee, Thunyarat; Teerawattananon, Yot; Wiratkapun, Chollathip; Kasamesup, Vijj; Thakkinstian, Ammarin
2012-05-01
The number of risk prediction models has been increasingly developed, for estimating about breast cancer in individual women. However, those model performances are questionable. We therefore have conducted a study with the aim to systematically review previous risk prediction models. The results from this review help to identify the most reliable model and indicate the strengths and weaknesses of each model for guiding future model development. We searched MEDLINE (PubMed) from 1949 and EMBASE (Ovid) from 1974 until October 2010. Observational studies which constructed models using regression methods were selected. Information about model development and performance were extracted. Twenty-five out of 453 studies were eligible. Of these, 18 developed prediction models and 7 validated existing prediction models. Up to 13 variables were included in the models and sample sizes for each study ranged from 550 to 2,404,636. Internal validation was performed in four models, while five models had external validation. Gail and Rosner and Colditz models were the significant models which were subsequently modified by other scholars. Calibration performance of most models was fair to good (expected/observe ratio: 0.87-1.12), but discriminatory accuracy was poor to fair both in internal validation (concordance statistics: 0.53-0.66) and in external validation (concordance statistics: 0.56-0.63). Most models yielded relatively poor discrimination in both internal and external validation. This poor discriminatory accuracy of existing models might be because of a lack of knowledge about risk factors, heterogeneous subtypes of breast cancer, and different distributions of risk factors across populations. In addition the concordance statistic itself is insensitive to measure the improvement of discrimination. Therefore, the new method such as net reclassification index should be considered to evaluate the improvement of the performance of a new develop model.
Implementation and Validation of a Laminar-to-Turbulent Transition Model in the Wind-US Code
NASA Technical Reports Server (NTRS)
Denissen, Nicholas A.; Yoder, Dennis A.; Georgiadis, Nicholas J.
2008-01-01
A bypass transition model has been implemented in the Wind-US Reynolds Averaged Navier-Stokes (RANS) solver. The model is based on the Shear Stress Transport (SST) turbulence model and was built starting from a previous SST-based transition model. Several modifications were made to enable (1) consistent solutions regardless of flow field initialization procedure and (2) fully turbulent flow beyond the transition region. This model is intended for flows where bypass transition, in which the transition process is dominated by large freestream disturbances, is the key transition mechanism as opposed to transition dictated by modal growth. Validation of the new transition model is performed for flows ranging from incompressible to hypersonic conditions.
Carbon dioxide electron cooling rates in the atmospheres of Mars and Venus
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Rescigno, T. N.
2008-08-01
The cooling of electrons in collisions with carbon dioxide in the atmospheres of Venus and Mars is investigated. Calculations are performed with both previously accepted electron energy transfer rates and with new ones determined using more recent theoretical and experimental cross sections for electron impact on CO2. Emulation of a previous model for Venus confirms the validity of the current model and shows that use of the updated cross sections leads to cooling rates that are lower by one third. Application of the same model to the atmosphere of Mars gives more than double the previous cooling rates at altitudes where the electron temperature is very low.
An atomic model of brome mosaic virus using direct electron detection and real-space optimization.
Wang, Zhao; Hryc, Corey F; Bammes, Benjamin; Afonine, Pavel V; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L; Kao, Cheng; Ludtke, Steven J; Schmid, Michael F; Adams, Paul D; Chiu, Wah
2014-09-04
Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.
Zvonova, I.; Krajewski, P.; Berkovsky, V.; Ammann, M.; Duffa, C.; Filistovic, V.; Homma, T.; Kanyar, B.; Nedveckaite, T.; Simon, S.L.; Vlasov, O.; Webbe-Wood, D.
2009-01-01
Within the project “Environmental Modelling for Radiation Safety” (EMRAS) organized by the IAEA in 2003 experimental data of 131I measurements following the Chernobyl accident in the Plavsk district of Tula region, Russia were used to validate the calculations of some radioecological transfer models. Nine models participated in the inter-comparison. Levels of 137Cs soil contamination in all the settlements and 131I/137Cs isotopic ratios in the depositions in some locations were used as the main input information. 370 measurements of 131I content in thyroid of townspeople and villagers, and 90 measurements of 131I concentration in milk were used for validation of the model predictions. A remarkable improvement in models performance comparing with previous inter-comparison exercise was demonstrated. Predictions of the various models were within a factor of three relative to the observations, discrepancies between the estimates of average doses to thyroid produced by most participant not exceeded a factor of ten. PMID:19783331
Morgan, Patrick; Nissi, Mikko J; Hughes, John; Mortazavi, Shabnam; Ellerman, Jutta
2017-07-01
Objectives The purpose of this study was to validate T2* mapping as an objective, noninvasive method for the prediction of acetabular cartilage damage. Methods This is the second step in the validation of T2*. In a previous study, we established a quantitative predictive model for identifying and grading acetabular cartilage damage. In this study, the model was applied to a second cohort of 27 consecutive hips to validate the model. A clinical 3.0-T imaging protocol with T2* mapping was used. Acetabular regions of interest (ROI) were identified on magnetic resonance and graded using the previously established model. Each ROI was then graded in a blinded fashion by arthroscopy. Accurate surgical location of ROIs was facilitated with a 2-dimensional map projection of the acetabulum. A total of 459 ROIs were studied. Results When T2* mapping and arthroscopic assessment were compared, 82% of ROIs were within 1 Beck group (of a total 6 possible) and 32% of ROIs were classified identically. Disease prediction based on receiver operating characteristic curve analysis demonstrated a sensitivity of 0.713 and a specificity of 0.804. Model stability evaluation required no significant changes to the predictive model produced in the initial study. Conclusions These results validate that T2* mapping provides statistically comparable information regarding acetabular cartilage when compared to arthroscopy. In contrast to arthroscopy, T2* mapping is quantitative, noninvasive, and can be used in follow-up. Unlike research quantitative magnetic resonance protocols, T2* takes little time and does not require a contrast agent. This may facilitate its use in the clinical sphere.
MCNP HPGe detector benchmark with previously validated Cyltran model.
Hau, I D; Russ, W R; Bronson, F
2009-05-01
An exact copy of the detector model generated for Cyltran was reproduced as an MCNP input file and the detection efficiency was calculated similarly with the methodology used in previous experimental measurements and simulation of a 280 cm(3) HPGe detector. Below 1000 keV the MCNP data correlated to the Cyltran results within 0.5% while above this energy the difference between MCNP and Cyltran increased to about 6% at 4800 keV, depending on the electron cut-off energy.
LEWICE 2.2 Capabilities and Thermal Validation
NASA Technical Reports Server (NTRS)
Wright, William B.
2002-01-01
A computational model of bleed air anti-icing and electrothermal de-icing have been added to the LEWICE 2.0 software by integrating the capabilities of two previous programs, ANTICE and LEWICE/ Thermal. This combined model has been released as LEWICE version 2.2. Several advancements have also been added to the previous capabilities of each module. This report will present the capabilities of the software package and provide results for both bleed air and electrothermal cases. A comprehensive validation effort has also been performed to compare the predictions to an existing electrothermal database. A quantitative comparison shows that for deicing cases, the average difference is 9.4 F (26%) compared to 3 F for the experimental data while for evaporative cases the average difference is 2 F (32%) compared to an experimental error of 4 F.
ERIC Educational Resources Information Center
Pustejovsky, James E.; Runyon, Christopher
2014-01-01
Direct observation recording procedures produce reductive summary measurements of an underlying stream of behavior. Previous methodological studies of these recording procedures have employed simulation methods for generating random behavior streams, many of which amount to special cases of a statistical model known as the alternating renewal…
The Comprehension and Validation of Social Information.
ERIC Educational Resources Information Center
Wyer, Robert S., Jr.; Radvansky, Gabriel A.
1999-01-01
Proposes a theory of social cognition to account for the comprehension and verification of social information. The theory views comprehension as a process of constructing situation models of new information on the basis of previously formed models about its referents. The comprehension of both single statements and multiple pieces of information…
Recent literature has shown that bioavailability-based techniques, such as Tenax extraction, can estimate sediment exposure to benthos. In a previous study by the authors,Tenax extraction was used to create and validate a literature-based Tenax model to predict oligochaete bioac...
Comparative assessment of three standardized robotic surgery training methods.
Hung, Andrew J; Jayaratna, Isuru S; Teruya, Kara; Desai, Mihir M; Gill, Inderbir S; Goh, Alvin C
2013-10-01
To evaluate three standardized robotic surgery training methods, inanimate, virtual reality and in vivo, for their construct validity. To explore the concept of cross-method validity, where the relative performance of each method is compared. Robotic surgical skills were prospectively assessed in 49 participating surgeons who were classified as follows: 'novice/trainee': urology residents, previous experience <30 cases (n = 38) and 'experts': faculty surgeons, previous experience ≥30 cases (n = 11). Three standardized, validated training methods were used: (i) structured inanimate tasks; (ii) virtual reality exercises on the da Vinci Skills Simulator (Intuitive Surgical, Sunnyvale, CA, USA); and (iii) a standardized robotic surgical task in a live porcine model with performance graded by the Global Evaluative Assessment of Robotic Skills (GEARS) tool. A Kruskal-Wallis test was used to evaluate performance differences between novices and experts (construct validity). Spearman's correlation coefficient (ρ) was used to measure the association of performance across inanimate, simulation and in vivo methods (cross-method validity). Novice and expert surgeons had previously performed a median (range) of 0 (0-20) and 300 (30-2000) robotic cases, respectively (P < 0.001). Construct validity: experts consistently outperformed residents with all three methods (P < 0.001). Cross-method validity: overall performance of inanimate tasks significantly correlated with virtual reality robotic performance (ρ = -0.7, P < 0.001) and in vivo robotic performance based on GEARS (ρ = -0.8, P < 0.0001). Virtual reality performance and in vivo tissue performance were also found to be strongly correlated (ρ = 0.6, P < 0.001). We propose the novel concept of cross-method validity, which may provide a method of evaluating the relative value of various forms of skills education and assessment. We externally confirmed the construct validity of each featured training tool. © 2013 BJU International.
Object-Oriented Modeling of an Energy Harvesting System Based on Thermoelectric Generators
NASA Astrophysics Data System (ADS)
Nesarajah, Marco; Frey, Georg
This paper deals with the modeling of an energy harvesting system based on thermoelectric generators (TEG), and the validation of the model by means of a test bench. TEGs are capable to improve the overall energy efficiency of energy systems, e.g. combustion engines or heating systems, by using the remaining waste heat to generate electrical power. Previously, a component-oriented model of the TEG itself was developed in Modelica® language. With this model any TEG can be described and simulated given the material properties and the physical dimension. Now, this model was extended by the surrounding components to a complete model of a thermoelectric energy harvesting system. In addition to the TEG, the model contains the cooling system, the heat source, and the power electronics. To validate the simulation model, a test bench was built and installed on an oil-fired household heating system. The paper reports results of the measurements and discusses the validity of the developed simulation models. Furthermore, the efficiency of the proposed energy harvesting system is derived and possible improvements based on design variations tested in the simulation model are proposed.
Oakland, Kathryn; Jairath, Vipul; Uberoi, Raman; Guy, Richard; Ayaru, Lakshmana; Mortensen, Neil; Murphy, Mike F; Collins, Gary S
2017-09-01
Acute lower gastrointestinal bleeding is a common reason for emergency hospital admission, and identification of patients at low risk of harm, who are therefore suitable for outpatient investigation, is a clinical and research priority. We aimed to develop and externally validate a simple risk score to identify patients with lower gastrointestinal bleeding who could safely avoid hospital admission. We undertook model development with data from the National Comparative Audit of Lower Gastrointestinal Bleeding from 143 hospitals in the UK in 2015. Multivariable logistic regression modelling was used to identify predictors of safe discharge, defined as the absence of rebleeding, blood transfusion, therapeutic intervention, 28 day readmission, or death. The model was converted into a simplified risk scoring system and was externally validated in 288 patients admitted with lower gastrointestinal bleeding (184 safely discharged) from two UK hospitals (Charing Cross Hospital, London, and Hammersmith Hospital, London) that had not contributed data to the development cohort. We calculated C statistics for the new model and did a comparative assessment with six previously developed risk scores. Of 2336 prospectively identified admissions in the development cohort, 1599 (68%) were safely discharged. Age, sex, previous admission for lower gastrointestinal bleeding, rectal examination findings, heart rate, systolic blood pressure, and haemoglobin concentration strongly discriminated safe discharge in the development cohort (C statistic 0·84, 95% CI 0·82-0·86) and in the validation cohort (0·79, 0·73-0·84). Calibration plots showed the new risk score to have good calibration in the validation cohort. The score was better than the Rockall, Blatchford, Strate, BLEED, AIMS65, and NOBLADS scores in predicting safe discharge. A score of 8 or less predicts a 95% probability of safe discharge. We developed and validated a novel clinical prediction model with good discriminative performance to identify patients with lower gastrointestinal bleeding who are suitable for safe outpatient management, which has important economic and resource implications. Bowel Disease Research Foundation and National Health Service Blood and Transplant. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adderley, N J; Mallett, S; Marshall, T; Ghosh, S; Rayman, G; Bellary, S; Coleman, J; Akiboye, F; Toulis, K A; Nirantharakumar, K
2018-06-01
To temporally and externally validate our previously developed prediction model, which used data from University Hospitals Birmingham to identify inpatients with diabetes at high risk of adverse outcome (mortality or excessive length of stay), in order to demonstrate its applicability to other hospital populations within the UK. Temporal validation was performed using data from University Hospitals Birmingham and external validation was performed using data from both the Heart of England NHS Foundation Trust and Ipswich Hospital. All adult inpatients with diabetes were included. Variables included in the model were age, gender, ethnicity, admission type, intensive therapy unit admission, insulin therapy, albumin, sodium, potassium, haemoglobin, C-reactive protein, estimated GFR and neutrophil count. Adverse outcome was defined as excessive length of stay or death. Model discrimination in the temporal and external validation datasets was good. In temporal validation using data from University Hospitals Birmingham, the area under the curve was 0.797 (95% CI 0.785-0.810), sensitivity was 70% (95% CI 67-72) and specificity was 75% (95% CI 74-76). In external validation using data from Heart of England NHS Foundation Trust, the area under the curve was 0.758 (95% CI 0.747-0.768), sensitivity was 73% (95% CI 71-74) and specificity was 66% (95% CI 65-67). In external validation using data from Ipswich, the area under the curve was 0.736 (95% CI 0.711-0.761), sensitivity was 63% (95% CI 59-68) and specificity was 69% (95% CI 67-72). These results were similar to those for the internally validated model derived from University Hospitals Birmingham. The prediction model to identify patients with diabetes at high risk of developing an adverse event while in hospital performed well in temporal and external validation. The externally validated prediction model is a novel tool that can be used to improve care pathways for inpatients with diabetes. Further research to assess clinical utility is needed. © 2018 Diabetes UK.
Kang, Kyoung-Tak; Kim, Sung-Hwan; Son, Juhyun; Lee, Young Han; Koh, Yong-Gon
2017-01-01
Computational models have been identified as efficient techniques in the clinical decision-making process. However, computational model was validated using published data in most previous studies, and the kinematic validation of such models still remains a challenge. Recently, studies using medical imaging have provided a more accurate visualization of knee joint kinematics. The purpose of the present study was to perform kinematic validation for the subject-specific computational knee joint model by comparison with subject's medical imaging under identical laxity condition. The laxity test was applied to the anterior-posterior drawer under 90° flexion and the varus-valgus under 20° flexion with a series of stress radiographs, a Telos device, and computed tomography. The loading condition in the computational subject-specific knee joint model was identical to the laxity test condition in the medical image. Our computational model showed knee laxity kinematic trends that were consistent with the computed tomography images, except for negligible differences because of the indirect application of the subject's in vivo material properties. Medical imaging based on computed tomography with the laxity test allowed us to measure not only the precise translation but also the rotation of the knee joint. This methodology will be beneficial in the validation of laxity tests for subject- or patient-specific computational models.
AM2 Mat End Connector Modeling and Performance Validation
2015-08-01
9 3.2.1 Subgrade construction and posttest forensics...layout. 3.2.1 Subgrade construction and posttest forensics The test section subgrade was built using in-place material from a previous AM2 test...area 50 ft wide by 42 ft long of the existing test bed was removed and replaced with newly processed material. Posttest values from the previous
Experimental validation of flexible robot arm modeling and control
NASA Technical Reports Server (NTRS)
Ulsoy, A. Galip
1989-01-01
Flexibility is important for high speed, high precision operation of lightweight manipulators. Accurate dynamic modeling of flexible robot arms is needed. Previous work has mostly been based on linear elasticity with prescribed rigid body motions (i.e., no effect of flexible motion on rigid body motion). Little or no experimental validation of dynamic models for flexible arms is available. Experimental results are also limited for flexible arm control. Researchers include the effects of prismatic as well as revolute joints. They investigate the effect of full coupling between the rigid and flexible motions, and of axial shortening, and consider the control of flexible arms using only additional sensors.
Independent data validation of an in vitro method for ...
In vitro bioaccessibility assays (IVBA) estimate arsenic (As) relative bioavailability (RBA) in contaminated soils to improve the accuracy of site-specific human exposure assessments and risk calculations. For an IVBA assay to gain acceptance for use in risk assessment, it must be shown to reliably predict in vivo RBA that is determined in an established animal model. Previous studies correlating soil As IVBA with RBA have been limited by the use of few soil types as the source of As. Furthermore, the predictive value of As IVBA assays has not been validated using an independent set of As-contaminated soils. Therefore, the current study was undertaken to develop a robust linear model to predict As RBA in mice using an IVBA assay and to independently validate the predictive capability of this assay using a unique set of As-contaminated soils. Thirty-six As-contaminated soils varying in soil type, As contaminant source, and As concentration were included in this study, with 27 soils used for initial model development and nine soils used for independent model validation. The initial model reliably predicted As RBA values in the independent data set, with a mean As RBA prediction error of 5.3% (range 2.4 to 8.4%). Following validation, all 36 soils were used for final model development, resulting in a linear model with the equation: RBA = 0.59 * IVBA + 9.8 and R2 of 0.78. The in vivo-in vitro correlation and independent data validation presented here provide
Validity of thermally-driven small-scale ventilated filling box models
NASA Astrophysics Data System (ADS)
Partridge, Jamie L.; Linden, P. F.
2013-11-01
The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.
Meyerson, Paul; Tryon, Warren W
2003-11-01
This study evaluated the psychometric equivalency of Web-based research. The Sexual Boredom Scale was presented via the World-Wide Web along with five additional scales used to validate it. A subset of 533 participants that matched a previously published sample (Watt & Ewing, 1996) on age, gender, and race was identified. An 8 x 8 correlation matrix from the matched Internet sample was compared via structural equation modeling with a similar 8 x 8 correlation matrix from the previously published study. The Internet and previously published samples were psychometrically equivalent. Coefficient alpha values calculated on the matched Internet sample yielded reliability coefficients almost identical to those for the previously published sample. Factors such as computer administration and uncontrollable administration settings did not appear to affect the results. Demographic data indicated an overrepresentation of males by about 6% and Caucasians by about 13% relative to the U.S. Census (2000). A total of 2,230 participants were obtained in about 8 months without remuneration. These results suggest that data collection on the Web is (1) reliable, (2) valid, (3) reasonably representative, (4) cost effective, and (5) efficient.
Scanlan, Tara K; Russell, David G; Magyar, T Michelle; Scanlan, Larry A
2009-12-01
The Sport Commitment Model was further tested using the Scanlan Collaborative Interview Method to examine its generalizability to New Zealand's elite female amateur netball team, the Silver Ferns. Results supported or clarified Sport Commitment Model predictions, revealed avenues for model expansion, and elucidated the functions of perceived competence and enjoyment in the commitment process. A comparison and contrast of the in-depth interview data from the Silver Ferns with previous interview data from a comparable elite team of amateur male athletes allowed assessment of model external validity, tested the generalizability of the underlying mechanisms, and separated gender differences from discrepancies that simply reflected team or idiosyncratic differences.
Novel risk score of contrast-induced nephropathy after percutaneous coronary intervention.
Ji, Ling; Su, XiaoFeng; Qin, Wei; Mi, XuHua; Liu, Fei; Tang, XiaoHong; Li, Zi; Yang, LiChuan
2015-08-01
Contrast-induced nephropathy (CIN) post-percutaneous coronary intervention (PCI) is a major cause of acute kidney injury. In this study, we established a comprehensive risk score model to assess risk of CIN after PCI procedure, which could be easily used in a clinical environment. A total of 805 PCI patients, divided into analysis cohort (70%) and validation cohort (30%), were enrolled retrospectively in this study. Risk factors for CIN were identified using univariate analysis and multivariate logistic regression in the analysis cohort. Risk score model was developed based on multiple regression coefficients. Sensitivity and specificity of the new risk score system was validated in the validation cohort. Comparisons between the new risk score model and previous reported models were applied. The incidence of post-PCI CIN in the analysis cohort (n = 565) was 12%. Considerably high CIN incidence (50%) was observed in patients with chronic kidney disease (CKD). Age >75, body mass index (BMI) >25, myoglobin level, cardiac function level, hypoalbuminaemia, history of chronic kidney disease (CKD), Intra-aortic balloon pump (IABP) and peripheral vascular disease (PVD) were identified as independent risk factors of post-PCI CIN. A novel risk score model was established using multivariate regression coefficients, which showed highest sensitivity and specificity (0.917, 95%CI 0.877-0.957) compared with previous models. A new post-PCI CIN risk score model was developed based on a retrospective study of 805 patients. Application of this model might be helpful to predict CIN in patients undergoing PCI procedure. © 2015 Asian Pacific Society of Nephrology.
Assessment of published models and prognostic variables in epithelial ovarian cancer at Mayo Clinic
Hendrickson, Andrea Wahner; Hawthorne, Kieran M.; Goode, Ellen L.; Kalli, Kimberly R.; Goergen, Krista M.; Bakkum-Gamez, Jamie N.; Cliby, William A.; Keeney, Gary L.; Visscher, Dan W.; Tarabishy, Yaman; Oberg, Ann L.; Hartmann, Lynn C.; Maurer, Matthew J.
2015-01-01
Objectives Epithelial ovarian cancer (EOC) is an aggressive disease in which first line therapy consists of a surgical staging/debulking procedure and platinum based chemotherapy. There is significant interest in clinically applicable, easy to use prognostic tools to estimate risk of recurrence and overall survival. In this study we used a large prospectively collected cohort of women with EOC to validate currently published models and assess prognostic variables. Methods Women with invasive ovarian, peritoneal, or fallopian tube cancer diagnosed between 2000-2011 and prospectively enrolled into the Mayo Clinic Ovarian Cancer registry were identified. Demographics and known prognostic markers as well as epidemiologic exposure variables were abstracted from the medical record and collected via questionnaire. Six previously published models of overall and recurrence-free survival were assessed for external validity. In addition, predictors of outcome were assessed in our dataset. Results Previously published models validated with a range of c-statistics (0.587-0.827), though application of models containing variables not part of routine practice were somewhat limited by missing data; utilization of all applicable models and comparison of results is suggested. Examination of prognostic variables identified only the presence of ascites and ASA score to be independent predictors of prognosis in our dataset, albeit with marginal gain in prognostic information, after accounting for stage and debulking. Conclusions Existing prognostic models for newly diagnosed EOC showed acceptable calibration in our cohort for clinical application. However, modeling of prospective variables in our dataset reiterates that stage and debulking remain the most important predictors of prognosis in this setting. PMID:25620544
Small-signal model for the series resonant converter
NASA Technical Reports Server (NTRS)
King, R. J.; Stuart, T. A.
1985-01-01
The results of a previous discrete-time model of the series resonant dc-dc converter are reviewed and from these a small signal dynamic model is derived. This model is valid for low frequencies and is based on the modulation of the diode conduction angle for control. The basic converter is modeled separately from its output filter to facilitate the use of these results for design purposes. Experimental results are presented.
Rauh, Simone P; Rutters, Femke; van der Heijden, Amber A W A; Luimes, Thomas; Alssema, Marjan; Heymans, Martijn W; Magliano, Dianna J; Shaw, Jonathan E; Beulens, Joline W; Dekker, Jacqueline M
2018-02-01
Chronic cardiometabolic diseases, including cardiovascular disease (CVD), type 2 diabetes (T2D) and chronic kidney disease (CKD), share many modifiable risk factors and can be prevented using combined prevention programs. Valid risk prediction tools are needed to accurately identify individuals at risk. We aimed to validate a previously developed non-invasive risk prediction tool for predicting the combined 7-year-risk for chronic cardiometabolic diseases. The previously developed tool is stratified for sex and contains the predictors age, BMI, waist circumference, use of antihypertensives, smoking, family history of myocardial infarction/stroke, and family history of diabetes. This tool was externally validated, evaluating model performance using area under the receiver operating characteristic curve (AUC)-assessing discrimination-and Hosmer-Lemeshow goodness-of-fit (HL) statistics-assessing calibration. The intercept was recalibrated to improve calibration performance. The risk prediction tool was validated in 3544 participants from the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Discrimination was acceptable, with an AUC of 0.78 (95% CI 0.75-0.81) in men and 0.78 (95% CI 0.74-0.81) in women. Calibration was poor (HL statistic: p < 0.001), but improved considerably after intercept recalibration. Examination of individual outcomes showed that in men, AUC was highest for CKD (0.85 [95% CI 0.78-0.91]) and lowest for T2D (0.69 [95% CI 0.65-0.74]). In women, AUC was highest for CVD (0.88 [95% CI 0.83-0.94)]) and lowest for T2D (0.71 [95% CI 0.66-0.75]). Validation of our previously developed tool showed robust discriminative performance across populations. Model recalibration is recommended to account for different disease rates. Our risk prediction tool can be useful in large-scale prevention programs for identifying those in need of further risk profiling because of their increased risk for chronic cardiometabolic diseases.
Preliminary Assessment of Turbomachinery Codes
NASA Technical Reports Server (NTRS)
Mazumder, Quamrul H.
2007-01-01
This report assesses different CFD codes developed and currently being used at Glenn Research Center to predict turbomachinery fluid flow and heat transfer behavior. This report will consider the following codes: APNASA, TURBO, GlennHT, H3D, and SWIFT. Each code will be described separately in the following section with their current modeling capabilities, level of validation, pre/post processing, and future development and validation requirements. This report addresses only previously published and validations of the codes. However, the codes have been further developed to extend the capabilities of the codes.
Comparing personality disorder models: cross-method assessment of the FFM and DSM-IV-TR.
Samuel, Douglas B; Widiger, Thomas W
2010-12-01
The current edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR; American Psychiatric Association, 2000) defines personality disorders as categorical entities that are distinct from each other and from normal personality traits. However, many scientists now believe that personality disorders are best conceptualized using a dimensional model of traits that span normal and abnormal personality, such as the Five-Factor Model (FFM). However, if the FFM or any dimensional model is to be considered as a credible alternative to the current model, it must first demonstrate an increment in the validity of the assessment offered within a clinical setting. Thus, the current study extended previous research by comparing the convergent and discriminant validity of the current DSM-IV-TR model to the FFM across four assessment methodologies. Eighty-eight individuals receiving ongoing psychotherapy were assessed for the FFM and the DSM-IV-TR personality disorders using self-report, informant report, structured interview, and therapist ratings. The results indicated that the FFM had an appreciable advantage over the DSM-IV-TR in terms of discriminant validity and, at the domain level, convergent validity. Implications of the findings and directions for future research are discussed.
Comparing Personality Disorder Models: Cross-Method Assessment of the FFM and DSM-IV-TR
Samuel, Douglas B.; Widiger, Thomas A.
2010-01-01
The current edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR; American Psychiatric Association, 2000) defines personality disorders as categorical entities that are distinct from each other and from normal personality traits. However, many scientists now believe that personality disorders are best conceptualized using a dimensional model of traits that span normal and abnormal personality, such as the Five-Factor Model (FFM). However, if the FFM or any dimensional model is to be considered as a credible alternative to the current model, it must first demonstrate an increment in the validity of the assessment offered within a clinical setting. Thus, the current study extended previous research by comparing the convergent and discriminant validity of the current DSM-IV-TR model to the FFM across four assessment methodologies. Eighty-eight individuals receiving ongoing psychotherapy were assessed for the FFM and the DSM-IV-TR personality disorders using self-report, informant report, structured interview, and therapist ratings. The results indicated that the FFM had an appreciable advantage over the DSM-IV-TR in terms of discriminant validity and, at the domain level, convergent validity. Implications of the findings and directions for future research are discussed. PMID:21158596
Validation of a Latent Construct for Dementia in a Population-Wide Dataset from Singapore.
Peh, Chao Xu; Abdin, Edimansyah; Vaingankar, Janhavi A; Verma, Swapna; Chua, Boon Yiang; Sagayadevan, Vathsala; Seow, Esmond; Zhang, YunJue; Shahwan, Shazana; Ng, Li Ling; Prince, Martin; Chong, Siow Ann; Subramaniam, Mythily
2017-01-01
The latent variable δ has been proposed as a proxy for dementia. Previous validation studies have been conducted using convenience samples. It is currently unknown how δ performs in population-wide data. To validate δ in Singapore using population-wide epidemiological study data on persons aged 60 and above. δ was constructed using items from the Community Screening Instrument for Dementia (CSI'D) and World Health Organization Disability Assessment Schedule (WHODAS II). Confirmatory factor analysis (CFA) was conducted to examine δ model fit. Convergent validity was examined with the Clinical Dementia Rating scale (CDR) and GMS-AGECAT dementia. Divergent validity was examined with GMS-AGECAT depression. The δ model demonstrated fit to the data, χ2(df) = 249.71(55), p < 0.001, CFI = 0.990, TLI = 0.997, RMSEA = 0.037. Latent variable δ was significantly associated with CDR and GMS-AGECAT dementia (range: β= 0.32 to 0.63), and was not associated with GMS-AGECAT depression. Compared to unadjusted models, δ model fit was poor when adjusted for age, gender, ethnicity, and education. The study found some support for δ as a proxy for dementia in Singapore based on population data. Both convergent and divergent validity were established. In addition, the δ model structure appeared to be influenced by age, gender, ethnicity, and education covariates.
Is Game Behavior Related to Behavior in Any Other Situation?
ERIC Educational Resources Information Center
McTavish, Jeanne
This paper begins by reviewing previous research concerning the external validity of mixed-motive games as models of international conflict, interpersonal behavior, and behavior in large-scale social dilemmas. Two further experiments are then described, both of which cast further doubt upon the usefulness of such games as models of any real-world…
Domain-Specific QSAR Models for Identifying Potential Estrogenic Activity of Phenols (FutureTox III)
Computational tools can be used for efficient evaluation of untested chemicals for their ability to disrupt the endocrine system. We have employed previously developed global QSAR models that were trained and validated on the ToxCast/Tox21 ER assay data for virtual screening of a...
Jwalk and MNXL Web Server: Model Validation using Restraints from Crosslinking Mass Spectrometry.
Bullock, J M A; Thalassinos, K; Topf, M
2018-05-07
Crosslinking Mass Spectrometry generates restraints that can be used to model proteins and protein complexes. Previously, we have developed two methods, to help users achieve better modelling performance from their crosslinking restraints: Jwalk, to estimate solvent accessible distances between crosslinked residues and MNXL, to assess the quality of the models based on these distances. Here we present the Jwalk and MNXL webservers, which streamline the process of validating monomeric protein models using restraints from crosslinks. We demonstrate this by using the MNXL server to filter models made of varying quality, selecting the most native-like. The webserver and source code are freely available from jwalk.ismb.lon.ac.uk and mnxl.ismb.lon.ac.uk. m.topf@cryst.bbk.ac.uk, j.bullock@cryst.bbk.ac.uk.
Multisample cross-validation of a model of childhood posttraumatic stress disorder symptomatology.
Anthony, Jason L; Lonigan, Christopher J; Vernberg, Eric M; Greca, Annette M La; Silverman, Wendy K; Prinstein, Mitchell J
2005-12-01
This study is the latest advancement of our research aimed at best characterizing children's posttraumatic stress reactions. In a previous study, we compared existing nosologic and empirical models of PTSD dimensionality and determined the superior model was a hierarchical one with three symptom clusters (Intrusion/Active Avoidance, Numbing/Passive Avoidance, and Arousal; Anthony, Lonigan, & Hecht, 1999). In this study, we cross-validate this model in two populations. Participants were 396 fifth graders who were exposed to either Hurricane Andrew or Hurricane Hugo. Multisample confirmatory factor analysis demonstrated the model's factorial invariance across populations who experienced traumatic events that differed in severity. These results show the model's robustness to characterize children's posttraumatic stress reactions. Implications for diagnosis, classification criteria, and an empirically supported theory of PTSD are discussed.
Content Validity of Temporal Bone Models Printed Via Inexpensive Methods and Materials.
Bone, T Michael; Mowry, Sarah E
2016-09-01
Computed tomographic (CT) scans of the 3-D printed temporal bone models will be within 15% accuracy of the CT scans of the cadaveric temporal bones. Previous studies have evaluated the face validity of 3-D-printed temporal bone models designed to train otolaryngology residents. The purpose of the study was to determine the content validity of temporal bone models printed using inexpensive printers and materials. Four cadaveric temporal bones were randomly selected and clinical temporal bone CT scans were obtained. Models were generated using previously described methods in acrylonitrile butadiene styrene (ABS) plastic using the Makerbot Replicator 2× and Hyrel printers. Models were radiographically scanned using the same protocol as the cadaveric bones. Four images from each cadaveric CT series and four corresponding images from the model CT series were selected, and voxel values were normalized to black or white. Scan slices were compared using PixelDiff software. Gross anatomic structures were evaluated in the model scans by four board certified otolaryngologists on a 4-point scale. Mean pixel difference between the cadaver and model scans was 14.25 ± 2.30% at the four selected CT slices. Mean cortical bone width difference and mean external auditory canal width difference were 0.58 ± 0.66 mm and 0.55 ± 0.46 mm, respectively. Expert raters felt the mastoid air cells were well represented (2.5 ± 0.5), while middle ear and otic capsule structures were not accurately rendered (all averaged <1.8). These results suggest that these models would be sufficient adjuncts to cadaver temporal bones for training residents in cortical mastoidectomies, but less effective for middle ear procedures.
Muller, David C; Johansson, Mattias; Brennan, Paul
2017-03-10
Purpose Several lung cancer risk prediction models have been developed, but none to date have assessed the predictive ability of lung function in a population-based cohort. We sought to develop and internally validate a model incorporating lung function using data from the UK Biobank prospective cohort study. Methods This analysis included 502,321 participants without a previous diagnosis of lung cancer, predominantly between 40 and 70 years of age. We used flexible parametric survival models to estimate the 2-year probability of lung cancer, accounting for the competing risk of death. Models included predictors previously shown to be associated with lung cancer risk, including sex, variables related to smoking history and nicotine addiction, medical history, family history of lung cancer, and lung function (forced expiratory volume in 1 second [FEV1]). Results During accumulated follow-up of 1,469,518 person-years, there were 738 lung cancer diagnoses. A model incorporating all predictors had excellent discrimination (concordance (c)-statistic [95% CI] = 0.85 [0.82 to 0.87]). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected c-statistic = 0.84). The full model, including FEV1, also had modestly superior discriminatory power than one that was designed solely on the basis of questionnaire variables (c-statistic = 0.84 [0.82 to 0.86]; optimism-corrected c-statistic = 0.83; p FEV1 = 3.4 × 10 -13 ). The full model had better discrimination than standard lung cancer screening eligibility criteria (c-statistic = 0.66 [0.64 to 0.69]). Conclusion A risk prediction model that includes lung function has strong predictive ability, which could improve eligibility criteria for lung cancer screening programs.
Piloted Evaluation of a UH-60 Mixer Equivalent Turbulence Simulation Model
NASA Technical Reports Server (NTRS)
Lusardi, Jeff A.; Blanken, Chris L.; Tischeler, Mark B.
2002-01-01
A simulation study of a recently developed hover/low speed Mixer Equivalent Turbulence Simulation (METS) model for the UH-60 Black Hawk helicopter was conducted in the NASA Ames Research Center Vertical Motion Simulator (VMS). The experiment was a continuation of previous work to develop a simple, but validated, turbulence model for hovering rotorcraft. To validate the METS model, two experienced test pilots replicated precision hover tasks that had been conducted in an instrumented UH-60 helicopter in turbulence. Objective simulation data were collected for comparison with flight test data, and subjective data were collected that included handling qualities ratings and pilot comments for increasing levels of turbulence. Analyses of the simulation results show good analytic agreement between the METS model and flight test data, with favorable pilot perception of the simulated turbulence. Precision hover tasks were also repeated using the more complex rotating-frame SORBET (Simulation Of Rotor Blade Element Turbulence) model to generate turbulence. Comparisons of the empirically derived METS model with the theoretical SORBET model show good agreement providing validation of the more complex blade element method of simulating turbulence.
Abdoli-Eramaki, Mohammad; Stevenson, Joan M; Agnew, Michael J; Kamalzadeh, Amin
2009-04-01
The purpose of this study was to validate a 3D dynamic virtual model for lifting tasks against a validated link segment model (LSM). A face validation study was conducted by collecting x, y, z coordinate data and using them in both virtual and LSM models. An upper body virtual model was needed to calculate the 3D torques about human joints for use in simulated lifting styles and to estimate the effect of external mechanical devices on human body. Firstly, the model had to be validated to be sure it provided accurate estimates of 3D moments in comparison to a previously validated LSM. Three synchronised Fastrak units with nine sensors were used to record data from one male subject who completed dynamic box lifting under 27 different load conditions (box weights (3), lifting techniques (3) and rotations (3)). The external moments about three axes of L4/L5 were compared for both models. A pressure switch on the box was used to denote the start and end of the lift. An excellent agreement [image omitted] was found between the two models for dynamic lifting tasks, especially for larger moments in flexion and extension. This virtual model was considered valid for use in a complete simulation of the upper body skeletal system. This biomechanical virtual model of the musculoskeletal system can be used by researchers and practitioners to give a better tool to study the causes of LBP and the effect of intervention strategies, by permitting the researcher to see and control a virtual subject's motions.
Using meta-differential evolution to enhance a calculation of a continuous blood glucose level.
Koutny, Tomas
2016-09-01
We developed a new model of glucose dynamics. The model calculates blood glucose level as a function of transcapillary glucose transport. In previous studies, we validated the model with animal experiments. We used analytical method to determine model parameters. In this study, we validate the model with subjects with type 1 diabetes. In addition, we combine the analytic method with meta-differential evolution. To validate the model with human patients, we obtained a data set of type 1 diabetes study that was coordinated by Jaeb Center for Health Research. We calculated a continuous blood glucose level from continuously measured interstitial fluid glucose level. We used 6 different scenarios to ensure robust validation of the calculation. Over 96% of calculated blood glucose levels fit A+B zones of the Clarke Error Grid. No data set required any correction of model parameters during the time course of measuring. We successfully verified the possibility of calculating a continuous blood glucose level of subjects with type 1 diabetes. This study signals a successful transition of our research from an animal experiment to a human patient. Researchers can test our model with their data on-line at https://diabetes.zcu.cz. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.
Hamadache, Mabrouk; Benkortbi, Othmane; Hanini, Salah; Amrane, Abdeltif; Khaouane, Latifa; Si Moussa, Cherif
2016-02-13
Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides. Copyright © 2015 Elsevier B.V. All rights reserved.
Janssen, Daniël M C; van Kuijk, Sander M J; d'Aumerie, Boudewijn B; Willems, Paul C
2018-05-16
A prediction model for surgical site infection (SSI) after spine surgery was developed in 2014 by Lee et al. This model was developed to compute an individual estimate of the probability of SSI after spine surgery based on the patient's comorbidity profile and invasiveness of surgery. Before any prediction model can be validly implemented in daily medical practice, it should be externally validated to assess how the prediction model performs in patients sampled independently from the derivation cohort. We included 898 consecutive patients who underwent instrumented thoracolumbar spine surgery. To quantify overall performance using Nagelkerke's R 2 statistic, the discriminative ability was quantified as the area under the receiver operating characteristic curve (AUC). We computed the calibration slope of the calibration plot, to judge prediction accuracy. Sixty patients developed an SSI. The overall performance of the prediction model in our population was poor: Nagelkerke's R 2 was 0.01. The AUC was 0.61 (95% confidence interval (CI) 0.54-0.68). The estimated slope of the calibration plot was 0.52. The previously published prediction model showed poor performance in our academic external validation cohort. To predict SSI after instrumented thoracolumbar spine surgery for the present population, a better fitting prediction model should be developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinderliter, Paul M.; Thrall, Karla D.; Corley, Rick A.
Vinyl acetate has been shown to induce nasal lesions in rodents in inhalation bioassays. A physiologically based pharmacokinetic (PBPK) model for vinyl acetate has been used in human risk assessment, but previous in vivo validation was conducted only in rats. Controlled human exposures to vinyl acetate were conducted to provide validation data for the application of the model in humans. Five volunteers were exposed to 1, 5, and 10 ppm 13 C1 , 13 C2 vinyl acetate via inhalation. A probe inserted into thenasopharyngeal region sampled both 13 C1 , 13 C2 vinyl acetate and the major metabolite 13 C1more » , 13 C2 acetaldehyde during rest and light exercise. Nasopharyngeal air concentrations were analyzed in real time by ion trap mass spectrometry (MS/MS). Experimental concentrations of both vinyl acetate and acetaldehyde were then compared to predicted concentrations calculated from the previously published human model. Model predictions of vinyl acetate nasal extraction compared favorably with measured values of vinyl acetate, as did predictions of nasopharyngeal acetaldehyde when compared to measured acetaldehyde. The results showed that the current PBPK model structure and parameterization are appropriate for vinyl acetate. These analyses were conducted from 1 to 10 ppm vinyl acetate, a range relevant to workplace exposure standards but which would not be expected to saturate vinyl acetate metabolism. Risk assessment based on this model further concluded that 24 h per day exposures up to 1 ppm do not present concern regarding cancer or non-cancer toxicity. Validation of the vinyl acetate human PBPK model provides support for these conclusions.« less
Volcanic Plume Heights on Mars: Limits of Validity for Convective Models
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Baloga, Stephen M.
2002-01-01
Previous studies have overestimated volcanic plume heights on Mars. In this work, we demonstrate that volcanic plume rise models, as currently formulated, have only limited validity in any environment. These limits are easily violated in the current Mars environment and may also be violated for terrestrial and early Mars conditions. We indicate some of the shortcomings of the model with emphasis on the limited applicability to current Mars conditions. Specifically, basic model assumptions are violated when (1) vertical velocities exceed the speed of sound, (2) radial expansion rates exceed the speed of sound, (3) radial expansion rates approach or exceed the vertical velocity, or (4) plume radius grossly exceeds plume height. All of these criteria are violated for the typical Mars example given here. Solutions imply that the convective rise, model is only valid to a height of approximately 10 kilometers. The reason for the model breakdown is hat the current Mars atmosphere is not of sufficient density to satisfy the conservation equations. It is likely that diffusion and other effects governed by higher-order differential equations are important within the first few kilometers of rise. When the same criteria are applied to eruptions into a higher-density early Mars atmosphere, we find that eruption rates higher than 1.4 x 10(exp 9) kilograms per second also violate model assumptions. This implies a maximum extent of approximately 65 kilometers for convective plumes on early Mars. The estimated plume heights for both current and early Mars are significantly lower than those previously predicted in the literature. Therefore, global-scale distribution of ash seems implausible.
Veldhuijzen van Zanten, Sophie E M; Lane, Adam; Heymans, Martijn W; Baugh, Joshua; Chaney, Brooklyn; Hoffman, Lindsey M; Doughman, Renee; Jansen, Marc H A; Sanchez, Esther; Vandertop, William P; Kaspers, Gertjan J L; van Vuurden, Dannis G; Fouladi, Maryam; Jones, Blaise V; Leach, James
2017-08-01
We aimed to perform external validation of the recently developed survival prediction model for diffuse intrinsic pontine glioma (DIPG), and discuss its utility. The DIPG survival prediction model was developed in a cohort of patients from the Netherlands, United Kingdom and Germany, registered in the SIOPE DIPG Registry, and includes age <3 years, longer symptom duration and receipt of chemotherapy as favorable predictors, and presence of ring-enhancement on MRI as unfavorable predictor. Model performance was evaluated by analyzing the discrimination and calibration abilities. External validation was performed using an unselected cohort from the International DIPG Registry, including patients from United States, Canada, Australia and New Zealand. Basic comparison with the results of the original study was performed using descriptive statistics, and univariate- and multivariable regression analyses in the validation cohort. External validation was assessed following a variety of analyses described previously. Baseline patient characteristics and results from the regression analyses were largely comparable. Kaplan-Meier curves of the validation cohort reproduced separated groups of standard (n = 39), intermediate (n = 125), and high-risk (n = 78) patients. This discriminative ability was confirmed by similar values for the hazard ratios across these risk groups. The calibration curve in the validation cohort showed a symmetric underestimation of the predicted survival probabilities. In this external validation study, we demonstrate that the DIPG survival prediction model has acceptable cross-cohort calibration and is able to discriminate patients with short, average, and increased survival. We discuss how this clinico-radiological model may serve a useful role in current clinical practice.
Thrall, Karla D; Love, Ruschelle; OʼDonnell, Kyle C; Farese, Ann M; Manning, Ronald; MacVittie, Thomas J
2015-11-01
The Medical Countermeasures against Radiological Threats (MCART) consortium has established a dose response relationship for the hematopoietic acute radiation syndrome (HARS) in the rhesus macaque conducted under an individualized supportive care protocol, including blood transfusions. Application of this animal model as a platform for demonstrating efficacy of candidate medical countermeasures is significantly strengthened when the model is independently validated at multiple institutions. The study reported here describes implementation of standard operating procedures at an institute outside the consortium in order to evaluate the ability to establish an equivalent radiation dose response relationship in a selected species. Validation of the animal model is a significant component for consideration of the model protocol as an FDA-recommended drug development tool in the context of the "Animal Rule." In the current study, 48 male rhesus macaques (4-8 kg) were exposed to total-body irradiation (TBI) using 6 MV photon energy at a dose rate of approximately 0.8 Gy min. Results show that onset and duration of the hematological response, including anemia, neutropenia, and thrombocytopenia, following TBI ranging from 6.25 to 8.75 Gy correlate well with previously reported findings. The lethality values at 60 d following TBI were estimated to be 6.88 Gy (LD30/60), 7.43 Gy (LD50/60), and 7.98 Gy (LD70/60). These values are equivalent to those published previously of 7.06 Gy (LD30/60), 7.52 Gy (LD50/60), and 7.99 Gy (LD70/60); the DRR slope (p = 0.68) and y-intercepts show agreement along the complete dose range for HARS. The ability to replicate the previously established institutional lethality profile (PROBIT) and model outcomes through careful implementation of defined procedures is a testament to the robustness of the model and highlights the need for consistency in procedures.
Using Ryff's scales of psychological well-being in adolescents in mainland China.
Gao, Jie; McLellan, Ros
2018-04-20
Psychological well-being in adolescence has always been a focus of public attention and academic research. Ryff's six-factor model of psychological well-being potentially provides a comprehensive theoretical framework for investigating positive functioning of adolescents. However, previous studies reported inconsistent findings of the reliability and validity of Ryff's Scales of Psychological Well-being (SPWB). The present study aimed to explore whether Ryff's six-factor model of psychological well-being could be applied in Chinese adolescents. The Scales of Psychological Well-being (SPWB) were adapted for assessing the psychological well-being of adolescents in mainland China. 772 adolescents (365 boys to 401 girls, 6 missing gender data, mean age = 13.65) completed the adapted 33-item SPWB. The data was used to examine the reliability and construct validity of the adapted SPWB. Results showed that five of the six sub-scales had acceptable internal consistency of items, except the sub-scale of autonomy. The factorial structure of the SPWB was not as clear-cut as the theoretical framework suggested. Among the models under examination, the six-factor model had better model fit than the hierarchical model and the one-factor model. However, the goodness-of-fit of the six-factor model was hardly acceptable. High factor correlations were identified between the sub-scales of environmental mastery, purpose in life and personal growth. Findings of the present study echoed a number of previous studies which reported inadequate reliability and validity of Ryff's scales. Given the evidence, it was suggested that future adolescent studies should seek to develop more age-specific and context-appropriate items for a better operationalisation of Ryff's theoretical model of psychological well-being.
Esbenshade, Adam J; Zhao, Zhiguo; Aftandilian, Catherine; Saab, Raya; Wattier, Rachel L; Beauchemin, Melissa; Miller, Tamara P; Wilkes, Jennifer J; Kelly, Michael J; Fernbach, Alison; Jeng, Michael; Schwartz, Cindy L; Dvorak, Christopher C; Shyr, Yu; Moons, Karl G M; Sulis, Maria-Luisa; Friedman, Debra L
2017-10-01
Pediatric oncology patients are at an increased risk of invasive bacterial infection due to immunosuppression. The risk of such infection in the absence of severe neutropenia (absolute neutrophil count ≥ 500/μL) is not well established and a validated prediction model for blood stream infection (BSI) risk offers clinical usefulness. A 6-site retrospective external validation was conducted using a previously published risk prediction model for BSI in febrile pediatric oncology patients without severe neutropenia: the Esbenshade/Vanderbilt (EsVan) model. A reduced model (EsVan2) excluding 2 less clinically reliable variables also was created using the initial EsVan model derivative cohort, and was validated using all 5 external validation cohorts. One data set was used only in sensitivity analyses due to missing some variables. From the 5 primary data sets, there were a total of 1197 febrile episodes and 76 episodes of bacteremia. The overall C statistic for predicting bacteremia was 0.695, with a calibration slope of 0.50 for the original model and a calibration slope of 1.0 when recalibration was applied to the model. The model performed better in predicting high-risk bacteremia (gram-negative or Staphylococcus aureus infection) versus BSI alone, with a C statistic of 0.801 and a calibration slope of 0.65. The EsVan2 model outperformed the EsVan model across data sets with a C statistic of 0.733 for predicting BSI and a C statistic of 0.841 for high-risk BSI. The results of this external validation demonstrated that the EsVan and EsVan2 models are able to predict BSI across multiple performance sites and, once validated and implemented prospectively, could assist in decision making in clinical practice. Cancer 2017;123:3781-3790. © 2017 American Cancer Society. © 2017 American Cancer Society.
Experiences Using Formal Methods for Requirements Modeling
NASA Technical Reports Server (NTRS)
Easterbrook, Steve; Lutz, Robyn; Covington, Rick; Kelly, John; Ampo, Yoko; Hamilton, David
1996-01-01
This paper describes three cases studies in the lightweight application of formal methods to requirements modeling for spacecraft fault protection systems. The case studies differ from previously reported applications of formal methods in that formal methods were applied very early in the requirements engineering process, to validate the evolving requirements. The results were fed back into the projects, to improve the informal specifications. For each case study, we describe what methods were applied, how they were applied, how much effort was involved, and what the findings were. In all three cases, the formal modeling provided a cost effective enhancement of the existing verification and validation processes. We conclude that the benefits gained from early modeling of unstable requirements more than outweigh the effort needed to maintain multiple representations.
Cloud computing and validation of expandable in silico livers.
Ropella, Glen E P; Hunt, C Anthony
2010-12-03
In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware.
Evaluation of CASL boiling model for DNB performance in full scale 5x5 fuel bundle with spacer grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seung Jun
As one of main tasks for FY17 CASL-THM activity, Evaluation study on applicability of the CASL baseline boiling model for 5x5 DNB application is conducted and the predictive capability of the DNB analysis is reported here. While the baseline CASL-boiling model (GEN- 1A) approach has been successfully implemented and validated with a single pipe application in the previous year’s task, the extended DNB validation for realistic sub-channels with detailed spacer grid configurations are tasked in FY17. The focus area of the current study is to demonstrate the robustness and feasibility of the CASL baseline boiling model for DNB performance inmore » a full 5x5 fuel bundle application. A quantitative evaluation of the DNB predictive capability is performed by comparing with corresponding experimental measurements (i.e. reference for the model validation). The reference data are provided from the Westinghouse Electricity Company (WEC). Two different grid configurations tested here include Non-Mixing Vane Grid (NMVG), and Mixing Vane Grid (MVG). Thorough validation studies with two sub-channel configurations are performed at a wide range of realistic PWR operational conditions.« less
An Earth-based Model of Microgravity Pulmonary Physiology
NASA Technical Reports Server (NTRS)
Hirschl, Ronald B.; Bull, Joseph L.; Grotberg, James B.
2004-01-01
There are currently only two practical methods of achieving microgravity for experimentation: parabolic flight in an aircraft or space flight, both of which have limitations. As a result, there are many important aspects of pulmonary physiology that have not been investigated in microgravity. We propose to develop an earth-based animal model of microgravity by using liquid ventilation, which will allow us to fill the lungs with perfluorocarbon, and submersing the animal in water such that the density of the lungs is the same as the surrounding environment. By so doing, we will eliminate the effects of gravity on respiration. We will first validate the model by comparing measures of pulmonary mechanics, to previous space flight and parabolic flight measurements. After validating the model, we will investigate the impact of microgravity on aspects of lung physiology that have not been previously measured. These will include pulmonary blood flow distribution, ventillation distribution, pulmonary capillary wedge pressure, ventilation-perfusion matching and pleural pressures and flows. We expect that this earth-based model of microgravity will enhance our knowledge and understanding of lung physiology in space which will increase in importance as space flights increase in time and distance.
Investigation of remote sensing techniques of measuring soil moisture
NASA Technical Reports Server (NTRS)
Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.
1981-01-01
Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.
Validation of the filament winding process model
NASA Technical Reports Server (NTRS)
Calius, Emilo P.; Springer, George S.; Wilson, Brian A.; Hanson, R. Scott
1987-01-01
Tests were performed toward validating the WIND model developed previously for simulating the filament winding of composite cylinders. In these tests two 24 in. long, 8 in. diam and 0.285 in. thick cylinders, made of IM-6G fibers and HBRF-55 resin, were wound at + or - 45 deg angle on steel mandrels. The temperatures on the inner and outer surfaces and inside the composite cylinders were recorded during oven cure. The temperatures inside the cylinders were also calculated by the WIND model. The measured and calculated temperatures were then compared. In addition, the degree of cure and resin viscosity distributions inside the cylinders were calculated for the conditions which existed in the tests.
A Parametric Computational Model of the Action Potential of Pacemaker Cells.
Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L
2018-01-01
A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.
Validation of the Economic and Health Outcomes Model of Type 2 Diabetes Mellitus (ECHO-T2DM).
Willis, Michael; Johansen, Pierre; Nilsson, Andreas; Asseburg, Christian
2017-03-01
The Economic and Health Outcomes Model of Type 2 Diabetes Mellitus (ECHO-T2DM) was developed to address study questions pertaining to the cost-effectiveness of treatment alternatives in the care of patients with type 2 diabetes mellitus (T2DM). Naturally, the usefulness of a model is determined by the accuracy of its predictions. A previous version of ECHO-T2DM was validated against actual trial outcomes and the model predictions were generally accurate. However, there have been recent upgrades to the model, which modify model predictions and necessitate an update of the validation exercises. The objectives of this study were to extend the methods available for evaluating model validity, to conduct a formal model validation of ECHO-T2DM (version 2.3.0) in accordance with the principles espoused by the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) and the Society for Medical Decision Making (SMDM), and secondarily to evaluate the relative accuracy of four sets of macrovascular risk equations included in ECHO-T2DM. We followed the ISPOR/SMDM guidelines on model validation, evaluating face validity, verification, cross-validation, and external validation. Model verification involved 297 'stress tests', in which specific model inputs were modified systematically to ascertain correct model implementation. Cross-validation consisted of a comparison between ECHO-T2DM predictions and those of the seminal National Institutes of Health model. In external validation, study characteristics were entered into ECHO-T2DM to replicate the clinical results of 12 studies (including 17 patient populations), and model predictions were compared to observed values using established statistical techniques as well as measures of average prediction error, separately for the four sets of macrovascular risk equations supported in ECHO-T2DM. Sub-group analyses were conducted for dependent vs. independent outcomes and for microvascular vs. macrovascular vs. mortality endpoints. All stress tests were passed. ECHO-T2DM replicated the National Institutes of Health cost-effectiveness application with numerically similar results. In external validation of ECHO-T2DM, model predictions agreed well with observed clinical outcomes. For all sets of macrovascular risk equations, the results were close to the intercept and slope coefficients corresponding to a perfect match, resulting in high R 2 and failure to reject concordance using an F test. The results were similar for sub-groups of dependent and independent validation, with some degree of under-prediction of macrovascular events. ECHO-T2DM continues to match health outcomes in clinical trials in T2DM, with prediction accuracy similar to other leading models of T2DM.
ERIC Educational Resources Information Center
Watson, Kathy; Baranowski, Tom; Thompson, Debbe
2006-01-01
Perceived self-efficacy (SE) for eating fruit and vegetables (FV) is a key variable mediating FV change in interventions. This study applies item response modeling (IRM) to a fruit, juice and vegetable self-efficacy questionnaire (FVSEQ) previously validated with classical test theory (CTT) procedures. The 24-item (five-point Likert scale) FVSEQ…
ERIC Educational Resources Information Center
Clark, Amy K.
2013-01-01
The present study sought to fit a cognitive diagnostic model (CDM) across multiple forms of a passage-based reading comprehension assessment using the attribute hierarchy method. Previous research on CDMs for reading comprehension assessments served as a basis for the attributes in the hierarchy. The two attribute hierarchies were fit to data from…
Distributed Trust Management for Validating SLA Choreographies
NASA Astrophysics Data System (ADS)
Haq, Irfan Ul; Alnemr, Rehab; Paschke, Adrian; Schikuta, Erich; Boley, Harold; Meinel, Christoph
For business workflow automation in a service-enriched environment such as a grid or a cloud, services scattered across heterogeneous Virtual Organizations (VOs) can be aggregated in a producer-consumer manner, building hierarchical structures of added value. In order to preserve the supply chain, the Service Level Agreements (SLAs) corresponding to the underlying choreography of services should also be incrementally aggregated. This cross-VO hierarchical SLA aggregation requires validation, for which a distributed trust system becomes a prerequisite. Elaborating our previous work on rule-based SLA validation, we propose a hybrid distributed trust model. This new model is based on Public Key Infrastructure (PKI) and reputation-based trust systems. It helps preventing SLA violations by identifying violation-prone services at service selection stage and actively contributes in breach management at the time of penalty enforcement.
Leach, Colin Wayne; van Zomeren, Martijn; Zebel, Sven; Vliek, Michael L W; Pennekamp, Sjoerd F; Doosje, Bertjan; Ouwerkerk, Jaap W; Spears, Russell
2008-07-01
Recent research shows individuals' identification with in-groups to be psychologically important and socially consequential. However, there is little agreement about how identification should be conceptualized or measured. On the basis of previous work, the authors identified 5 specific components of in-group identification and offered a hierarchical 2-dimensional model within which these components are organized. Studies 1 and 2 used confirmatory factor analysis to validate the proposed model of self-definition (individual self-stereotyping, in-group homogeneity) and self-investment (solidarity, satisfaction, and centrality) dimensions, across 3 different group identities. Studies 3 and 4 demonstrated the construct validity of the 5 components by examining their (concurrent) correlations with established measures of in-group identification. Studies 5-7 demonstrated the predictive and discriminant validity of the 5 components by examining their (prospective) prediction of individuals' orientation to, and emotions about, real intergroup relations. Together, these studies illustrate the conceptual and empirical value of a hierarchical multicomponent model of in-group identification.
From military to civil loadings: Preliminary numerical-based thorax injury criteria investigations.
Goumtcha, Aristide Awoukeng; Bodo, Michèle; Taddei, Lorenzo; Roth, Sébastien
2016-03-01
Effects of the impact of a mechanical structure on the human body are of great interest in the understanding of body trauma. Experimental tests have led to first conclusions about the dangerousness of an impact observing impact forces or displacement time history with PMHS (Post Mortem human Subjects). They have allowed providing interesting data for the development and the validation of numerical biomechanical models. These models, widely used in the framework of automotive crashworthiness, have led to the development of numerical-based injury criteria and tolerance thresholds. The aim of this process is to improve the safety of mechanical structures in interaction with the body. In a military context, investigations both at experimental and numerical level are less successfully completed. For both military and civil frameworks, the literature list a number of numerical analysis trying to propose injury mechanisms, and tolerance thresholds based on biofidelic Finite Element (FE) models of different part of the human body. However the link between both frameworks is not obvious, since lots of parameters are different: great mass impacts at relatively low velocity for civil impacts (falls, automotive crashworthiness) and low mass at very high velocity for military loadings (ballistic, blast). In this study, different accident cases were investigated, and replicated with a previously developed and validated FE model of the human thorax named Hermaphrodite Universal Biomechanical YX model (HUBYX model). These previous validations included replications of standard experimental tests often used to validate models in the context of automotive industry, experimental ballistic tests in high speed dynamic impact and also numerical replication of blast loading test ensuring its biofidelity. In order to extend the use of this model in other frameworks, some real-world accidents were reconstructed, and consequences of these loadings on the FE model were explored. These various numerical replications of accident coming from different contexts raise the question about the ability of a FE model to correctly predict several kinds of trauma, from blast or ballistic impacts to falls, sports or automotive ones in a context of numerical injury mechanisms and tolerance limits investigations. Copyright © 2015 John Wiley & Sons, Ltd.
Gartner, Joseph E.; Cannon, Susan H.; Santi, Paul M
2014-01-01
Debris flows and sediment-laden floods in the Transverse Ranges of southern California pose severe hazards to nearby communities and infrastructure. Frequent wildfires denude hillslopes and increase the likelihood of these hazardous events. Debris-retention basins protect communities and infrastructure from the impacts of debris flows and sediment-laden floods and also provide critical data for volumes of sediment deposited at watershed outlets. In this study, we supplement existing data for the volumes of sediment deposited at watershed outlets with newly acquired data to develop new empirical models for predicting volumes of sediment produced by watersheds located in the Transverse Ranges of southern California. The sediment volume data represent a broad sample of conditions found in Ventura, Los Angeles and San Bernardino Counties, California. The measured volumes of sediment, watershed morphology, distributions of burn severity within each watershed, the time since the most recent fire, triggering storm rainfall conditions, and engineering soil properties were analyzed using multiple linear regressions to develop two models. A “long-term model” was developed for predicting volumes of sediment deposited by both debris flows and floods at various times since the most recent fire from a database of volumes of sediment deposited by a combination of debris flows and sediment-laden floods with no time limit since the most recent fire (n = 344). A subset of this database was used to develop an “emergency assessment model” for predicting volumes of sediment deposited by debris flows within two years of a fire (n = 92). Prior to developing the models, 32 volumes of sediment, and related parameters for watershed morphology, burn severity and rainfall conditions were retained to independently validate the long-term model. Ten of these volumes of sediment were deposited by debris flows within two years of a fire and were used to validate the emergency assessment model. The models were validated by comparing predicted and measured volumes of sediment. These validations were also performed for previously developed models and identify that the models developed here best predict volumes of sediment for burned watersheds in comparison to previously developed models.
Adaptation of clinical prediction models for application in local settings.
Kappen, Teus H; Vergouwe, Yvonne; van Klei, Wilton A; van Wolfswinkel, Leo; Kalkman, Cor J; Moons, Karel G M
2012-01-01
When planning to use a validated prediction model in new patients, adequate performance is not guaranteed. For example, changes in clinical practice over time or a different case mix than the original validation population may result in inaccurate risk predictions. To demonstrate how clinical information can direct updating a prediction model and development of a strategy for handling missing predictor values in clinical practice. A previously derived and validated prediction model for postoperative nausea and vomiting was updated using a data set of 1847 patients. The update consisted of 1) changing the definition of an existing predictor, 2) reestimating the regression coefficient of a predictor, and 3) adding a new predictor to the model. The updated model was then validated in a new series of 3822 patients. Furthermore, several imputation models were considered to handle real-time missing values, so that possible missing predictor values could be anticipated during actual model use. Differences in clinical practice between our local population and the original derivation population guided the update strategy of the prediction model. The predictive accuracy of the updated model was better (c statistic, 0.68; calibration slope, 1.0) than the original model (c statistic, 0.62; calibration slope, 0.57). Inclusion of logistical variables in the imputation models, besides observed patient characteristics, contributed to a strategy to deal with missing predictor values at the time of risk calculation. Extensive knowledge of local, clinical processes provides crucial information to guide the process of adapting a prediction model to new clinical practices.
NASA Astrophysics Data System (ADS)
GAO, J.; White, M. J.; Bieger, K.; Yen, H.; Arnold, J. G.
2017-12-01
Over the past 20 years, the Soil and Water Assessment Tool (SWAT) has been adopted by many researches to assess water quantity and quality in watersheds around the world. As the demand increases in facilitating model support, maintenance, and future development, the SWAT source code and data have undergone major modifications over the past few years. To make the model more flexible in terms of interactions of spatial units and processes occurring in watersheds, a completely revised version of SWAT (SWAT+) was developed to improve SWAT's ability in water resource modelling and management. There are only several applications of SWAT+ in large watersheds, however, no study pays attention to validate the new model at field level and assess its performance. To test the basic hydrologic function of SWAT+, it was implemented in five field cases across five states in the U.S. and compared the SWAT+ created results with that from the previous models at the same fields. Additionally, an automatic calibration tool was used to test which model is easier to be calibrated well in a limited number of parameter adjustments. The goal of the study was to evaluate the performance of SWAT+ in simulating stream flow on field level at different geographical locations. The results demonstrate that SWAT+ demonstrated similar performance with previous SWAT model, but the flexibility offered by SWAT+ via the connection of different spatial objects can result in a more accurate simulation of hydrological processes in spatial, especially for watershed with artificial facilities. Autocalibration shows that SWAT+ is much easier to obtain a satisfied result compared with the previous SWAT. Although many capabilities have already been enhanced in SWAT+, there exist inaccuracies in simulation. This insufficiency will be improved with advancements in scientific knowledge on hydrologic process in specific watersheds. Currently, SWAT+ is prerelease, and any errors are being addressed.
USDA-ARS?s Scientific Manuscript database
A predictive model for survival and growth of Salmonella Typhimurium DT104 on chicken skin was evaluated for its ability to predict survival and growth of the same organism after frozen storage for 6 days at -20 C. Experimental methods used to collect data for model development were the same as tho...
ERIC Educational Resources Information Center
Samuel, Douglas B.; Mullins-Sweatt, Stephanie N.; Widiger, Thomas A.
2013-01-01
The Five-Factor Model Rating Form (FFMRF) is a one-page measure designed to provide an efficient assessment of the higher order domains of the Five Factor Model (FFM) as well as the more specific, lower order facets proposed by McCrae and Costa. Although previous research has suggested that the FFMRF's assessment of the lower order facets converge…
The effect of leverage and/or influential on structure-activity relationships.
Bolboacă, Sorana D; Jäntschi, Lorentz
2013-05-01
In the spirit of reporting valid and reliable Quantitative Structure-Activity Relationship (QSAR) models, the aim of our research was to assess how the leverage (analysis with Hat matrix, h(i)) and the influential (analysis with Cook's distance, D(i)) of QSAR models may reflect the models reliability and their characteristics. The datasets included in this research were collected from previously published papers. Seven datasets which accomplished the imposed inclusion criteria were analyzed. Three models were obtained for each dataset (full-model, h(i)-model and D(i)-model) and several statistical validation criteria were applied to the models. In 5 out of 7 sets the correlation coefficient increased when compounds with either h(i) or D(i) higher than the threshold were removed. Withdrawn compounds varied from 2 to 4 for h(i)-models and from 1 to 13 for D(i)-models. Validation statistics showed that D(i)-models possess systematically better agreement than both full-models and h(i)-models. Removal of influential compounds from training set significantly improves the model and is recommended to be conducted in the process of quantitative structure-activity relationships developing. Cook's distance approach should be combined with hat matrix analysis in order to identify the compounds candidates for removal.
NASA Astrophysics Data System (ADS)
Davis, Brian; Turner, Travis L.; Seelecke, Stefan
2005-05-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.
NASA Technical Reports Server (NTRS)
Davis, Brian; Turner, Travis L.; Seelecke, Stefan
2005-01-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.
Gold-standard evaluation of a folksonomy-based ontology learning model
NASA Astrophysics Data System (ADS)
Djuana, E.
2018-03-01
Folksonomy, as one result of collaborative tagging process, has been acknowledged for its potential in improving categorization and searching of web resources. However, folksonomy contains ambiguities such as synonymy and polysemy as well as different abstractions or generality problem. To maximize its potential, some methods for associating tags of folksonomy with semantics and structural relationships have been proposed such as using ontology learning method. This paper evaluates our previous work in ontology learning according to gold-standard evaluation approach in comparison to a notable state-of-the-art work and several baselines. The results show that our method is comparable to the state-of the art work which further validate our approach as has been previously validated using task-based evaluation approach.
NASA Astrophysics Data System (ADS)
Mucchi, E.; Dalpiaz, G.
2015-01-01
This work concerns external gear pumps for automotive applications, which operate at high speed and low pressure. In previous works of the authors (Part I and II, [1,2]), a non-linear lumped-parameter kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps was presented. It takes into account the most important phenomena involved in the operation of this kind of machine. The two main sources of noise and vibration are considered: pressure pulsation and gear meshing. The model has been used in order to foresee the influence of working conditions and design modifications on vibration generation. The model's experimental validation is a difficult task. Thus, Part III proposes a novel methodology for the validation carried out by the comparison of simulations and experimental results concerning forces and moments: it deals with the external and inertial components acting on the gears, estimated by the model, and the reactions and inertial components on the pump casing and the test plate, obtained by measurements. The validation is carried out comparing the level of the time synchronous average in the time domain and the waterfall maps in the frequency domain, with particular attention to identify system resonances. The validation results are satisfactory globally, but discrepancies are still present. Moreover, the assessed model has been properly modified for the application to a new virtual pump prototype with helical gears in order to foresee gear accelerations and dynamic forces. Part IV is focused on improvements in the modelling and analysis of the phenomena bound to the pressure evolution around the gears in order to achieve results closer to the measured values. As a matter of fact, the simulation results have shown that a variable meshing stiffness has a notable contribution on the dynamic behaviour of the pump but this is not as important as the pressure phenomena. As a consequence, the original model was modified with the aim at improving the calculation of pressure forces and torques. The improved pressure formulation includes several phenomena not considered in the previous one, such as the variable pressure evolution at input and output ports, as well as an accurate description of the trapped volume and its connections with high and low pressure chambers. The importance of these improvements are highlighted by comparison with experimental results, showing satisfactory matching.
NASA Technical Reports Server (NTRS)
Raiszadeh, Ben; Queen, Eric M.
2002-01-01
A capability to simulate trajectories Of Multiple interacting rigid bodies has been developed. This capability uses the Program to Optimize Simulated Trajectories II (POST II). Previously, POST II had the ability to simulate multiple bodies without interacting forces. The current implementation is used for the Simulation of parachute trajectories, in which the parachute and suspended bodies can be treated as rigid bodies. An arbitrary set of connecting lines can be included in the model and are treated as massless spring-dampers. This paper discusses details of the connection line modeling and results of several test cases used to validate the capability.
Dunmyre, Justin R
2011-06-01
The pre-Bötzinger complex of the mammalian brainstem is a heterogeneous neuronal network, and individual neurons within the network have varying strengths of the persistent sodium and calcium-activated nonspecific cationic currents. Individually, these currents have been the focus of modeling efforts. Previously, Dunmyre et al. (J Comput Neurosci 1-24, 2011) proposed a model and studied the interactions of these currents within one self-coupled neuron. In this work, I consider two identical, reciprocally coupled model neurons and validate the reduction to the self-coupled case. I find that all of the dynamics of the two model neuron network and the regions of parameter space where these distinct dynamics are found are qualitatively preserved in the reduction to the self-coupled case.
MIXING STUDY FOR JT-71/72 TANKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.
2013-11-26
All modeling calculations for the mixing operations of miscible fluids contained in HBLine tanks, JT-71/72, were performed by taking a three-dimensional Computational Fluid Dynamics (CFD) approach. The CFD modeling results were benchmarked against the literature results and the previous SRNL test results to validate the model. Final performance calculations were performed by using the validated model to quantify the mixing time for the HB-Line tanks. The mixing study results for the JT-71/72 tanks show that, for the cases modeled, the mixing time required for blending of the tank contents is no more than 35 minutes, which is well below 2.5more » hours of recirculation pump operation. Therefore, the results demonstrate the adequacy of 2.5 hours’ mixing time of the tank contents by one recirculation pump to get well mixed.« less
The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory
Bosbach, Wolfram A.
2015-01-01
Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials. PMID:26569603
Jenkins, P; Scaife, J; Freeman, S
2012-07-01
We have previously developed a predictive model that identifies patients at increased risk of febrile neutropaenia (FN) following chemotherapy, based on pretreatment haematological indices. This study was designed to validate our earlier findings in a separate cohort of patients undergoing more myelosuppressive chemotherapy supported by growth factors. We conducted a retrospective analysis of 263 patients who had been treated with adjuvant docetaxel, adriamycin and cyclophosphamide (TAC) chemotherapy for breast cancer. All patients received prophylactic pegfilgrastim and the majority also received prophylactic antibiotics. Thirty-one patients (12%) developed FN. Using our previous model, patients in the highest risk group (pretreatment absolute neutrophil count≤3.1 10(9)/l and absolute lymphocyte count≤1.5 10(9)/l) comprised 8% of the total population and had a 33% risk of developing FN. Compared with the rest of the cohort, this group had a 3.4-fold increased risk of developing FN (P=0.001) and a 5.2-fold increased risk of cycle 1 FN (P<0.001). A simple model based on pretreatment differential white blood cell count can be applied to pegfilgrastim-supported patients to identify those who are at higher risk of FN.
Palfreyman, Zoe; Haycraft, Emma; Meyer, Caroline
2015-03-01
Parents are important role models for their children's eating behaviours. This study aimed to further validate the recently developed Parental Modelling of Eating Behaviours Scale (PARM) by examining the relationships between maternal self-reports on the PARM with the modelling practices exhibited by these mothers during three family mealtime observations. Relationships between observed maternal modelling and maternal reports of children's eating behaviours were also explored. Seventeen mothers with children aged between 2 and 6 years were video recorded at home on three separate occasions whilst eating a meal with their child. Mothers also completed the PARM, the Children's Eating Behaviour Questionnaire and provided demographic information about themselves and their child. Findings provided validation for all three PARM subscales, which were positively associated with their observed counterparts on the observational coding scheme (PARM-O). The results also indicate that habituation to observations did not change the feeding behaviours displayed by mothers. In addition, observed maternal modelling was significantly related to children's food responsiveness (i.e., their interest in and desire for foods), enjoyment of food, and food fussiness. This study makes three important contributions to the literature. It provides construct validation for the PARM measure and provides further observational support for maternal modelling being related to lower levels of food fussiness and higher levels of food enjoyment in their children. These findings also suggest that maternal feeding behaviours remain consistent across repeated observations of family mealtimes, providing validation for previous research which has used single observations. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nir, A.; Doughty, C.; Tsang, C. F.
Validation methods which developed in the context of deterministic concepts of past generations often cannot be directly applied to environmental problems, which may be characterized by limited reproducibility of results and highly complex models. Instead, validation is interpreted here as a series of activities, including both theoretical and experimental tests, designed to enhance our confidence in the capability of a proposed model to describe some aspect of reality. We examine the validation process applied to a project concerned with heat and fluid transport in porous media, in which mathematical modeling, simulation, and results of field experiments are evaluated in order to determine the feasibility of a system for seasonal thermal energy storage in shallow unsaturated soils. Technical details of the field experiments are not included, but appear in previous publications. Validation activities are divided into three stages. The first stage, carried out prior to the field experiments, is concerned with modeling the relevant physical processes, optimization of the heat-exchanger configuration and the shape of the storage volume, and multi-year simulation. Subjects requiring further theoretical and experimental study are identified at this stage. The second stage encompasses the planning and evaluation of the initial field experiment. Simulations are made to determine the experimental time scale and optimal sensor locations. Soil thermal parameters and temperature boundary conditions are estimated using an inverse method. Then results of the experiment are compared with model predictions using different parameter values and modeling approximations. In the third stage, results of an experiment performed under different boundary conditions are compared to predictions made by the models developed in the second stage. Various aspects of this theoretical and experimental field study are described as examples of the verification and validation procedure. There is no attempt to validate a specific model, but several models of increasing complexity are compared with experimental results. The outcome is interpreted as a demonstration of the paradigm proposed by van der Heijde, 26 that different constituencies have different objectives for the validation process and therefore their acceptance criteria differ also.
Campbell, J Q; Coombs, D J; Rao, M; Rullkoetter, P J; Petrella, A J
2016-09-06
The purpose of this study was to seek broad verification and validation of human lumbar spine finite element models created using a previously published automated algorithm. The automated algorithm takes segmented CT scans of lumbar vertebrae, automatically identifies important landmarks and contact surfaces, and creates a finite element model. Mesh convergence was evaluated by examining changes in key output variables in response to mesh density. Semi-direct validation was performed by comparing experimental results for a single specimen to the automated finite element model results for that specimen with calibrated material properties from a prior study. Indirect validation was based on a comparison of results from automated finite element models of 18 individual specimens, all using one set of generalized material properties, to a range of data from the literature. A total of 216 simulations were run and compared to 186 experimental data ranges in all six primary bending modes up to 7.8Nm with follower loads up to 1000N. Mesh convergence results showed less than a 5% difference in key variables when the original mesh density was doubled. The semi-direct validation results showed that the automated method produced results comparable to manual finite element modeling methods. The indirect validation results showed a wide range of outcomes due to variations in the geometry alone. The studies showed that the automated models can be used to reliably evaluate lumbar spine biomechanics, specifically within our intended context of use: in pure bending modes, under relatively low non-injurious simulated in vivo loads, to predict torque rotation response, disc pressures, and facet forces. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pressure-dependent attenuation with microbubbles at low mechanical index.
Tang, Meng-Xing; Eckersley, Robert J; Noble, J Alison
2005-03-01
It has previously been shown that the attenuation of ultrasound (US) by microbubble contrast agents is dependent on acoustic pressure (Chen et al. 2002). Although previous studies have modelled the pressure-dependence of attenuation in single bubbles, this paper investigates this subject by considering a bulk volume of bubbles together with other linear attenuators. Specifically, a new pressure-dependent attenuation model for an inhomogeneous volume of attenuators is proposed. In this model, the effect of the attenuation on US propagation is considered. The model was validated using experimental measurements on the US contrast agent Sonovue. The results indicate, at low acoustic pressures, a linear relationship between the attenuation of Sonovue, measured in dB, and the insonating acoustic pressure.
Lain, Lisl Robertson; Bernard, Stewart; Matthews, Mark W
2016-11-28
We regret that the Rrs spectra shown for the EAP modelled high biomass validation in Fig. 7 [Opt. Express, 22, 16745 (2014)] are incorrect. They are corrected here. The closest match of modelled to measured effective diameter is for a generalised 16 μm dinoflagellate population and not a 12 μm one as previously stated. These corrections do not affect the discussion or the conclusions of the paper.
NASA Astrophysics Data System (ADS)
Sun, Dongliang; Huang, Guangtuan; Jiang, Juncheng; Zhang, Mingguang; Wang, Zhirong
2013-04-01
Overpressure is one important cause of domino effect in accidents of chemical process equipments. Some models considering propagation probability and threshold values of the domino effect caused by overpressure have been proposed in previous study. In order to prove the rationality and validity of the models reported in the reference, two boundary values of three damage degrees reported were considered as random variables respectively in the interval [0, 100%]. Based on the overpressure data for damage to the equipment and the damage state, and the calculation method reported in the references, the mean square errors of the four categories of damage probability models of overpressure were calculated with random boundary values, and then a relationship of mean square error vs. the two boundary value was obtained, the minimum of mean square error was obtained, compared with the result of the present work, mean square error decreases by about 3%. Therefore, the error was in the acceptable range of engineering applications, the models reported can be considered reasonable and valid.
NASA Technical Reports Server (NTRS)
Liang, XU; Lettenmaier, Dennis P.; Wood, Eric F.; Burges, Stephen J.
1994-01-01
A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.
van Kuijk, Sander; Delahaije, Denise; Dirksen, Carmen; Scheepers, Hubertina C J; Spaanderman, Marc; Ganzevoort, W; Duvekot, Hans; Oudijk, M A; van Pampus, M G; Dadelszen, Peter von; Peeters, Louis L; Smiths, Luc
2013-04-01
In an earlier paper we reported on the development of a model aimed at the prediction of preeclampsia recurrence, based on variables obtained before the next pregnancy (fasting glucose, BMI, previous birth of a small-for-gestational-age infant, duration of the previous pregnancy, and the presence of hypertension). To externally validate and recalibrate the prediction model for the risk of recurrence of early-onset preeclampsia. We collected data about course and outcome of the next ongoing pregnancy in 229 women with a history of early-onset preeclampsia. Recurrence was defined as preeclampsia requiring delivery before 34 weeks. We computed risk of recurrence and assessed model performance. In addition, we constructed a table comparing sensitivity, specificity, and predictive values for different suggested risk-thresholds. Early-onset preeclampsia recurred in 6.6% of women. The model systematically underestimated recurrence risk. The model's discriminative ability was modest, the area under the receiver operating characteristic curve was 58.9% (95% CI: 45.1 - 72.7). Using relevant risk-thresholds, the model created groups that were only moderately different in terms of their average risk of recurrent preeclampsia (Table 1). Compared to an AUC of 65% in the development cohort, the discriminate ability of the model was diminished. It had inadequate performance to classify women into clinically relevant risk groups. Copyright © 2013. Published by Elsevier B.V.
Confirmatory factorial analysis of the children´s attraction to physical activity scale (capa).
Seabra, A C; Maia, J A; Parker, M; Seabra, A; Brustad, R; Fonseca, A M
2015-03-27
Attraction to physical activity (PA) is an important contributor to children´s intrinsic motivation to engage in games, and sports. Previous studies have supported the utility of the children´s attraction to PA scale (CAPA) (Brustad, 1996) but the validity of this measure for use in Portugal has not been established. The purpose of this study was to cross-validate the shorter version of the CAPA scale in the Portuguese cultural context. A sample of 342 children (8--10 years of age) was used. Confirmatory factor analyses using EQS software ( version 6.1) tested t hree competing measurement models: a single--factor model, a five factor model, and a second order factor model. The single--factor model and the second order model showed a poor fit to the data. It was found that a five-factor model similar to the original one revealed good fit to the data (S--B χ 2 (67) =94.27,p=0.02; NNFI=0.93; CFI=0.95; RMSEA=0.04; 90%CI=0.02;0.05). The results indicated that the CAPA scale is valid and appropriate for use in the Portuguese cultural context. The availability of a valid scale to evaluate attraction to PA at schools should provide improved opportunities for better assessment and understanding of children´s involvement in PA.
Objective validation of central sensitization in the rat UVB and heat rekindling model
Weerasinghe, NS; Lumb, BM; Apps, R; Koutsikou, S; Murrell, JC
2014-01-01
Background The UVB and heat rekindling (UVB/HR) model shows potential as a translatable inflammatory pain model. However, the occurrence of central sensitization in this model, a fundamental mechanism underlying chronic pain, has been debated. Face, construct and predictive validity are key requisites of animal models; electromyogram (EMG) recordings were utilized to objectively demonstrate validity of the rat UVB/HR model. Methods The UVB/HR model was induced on the heel of the hind paw under anaesthesia. Mechanical withdrawal thresholds (MWTs) were obtained from biceps femoris EMG responses to a gradually increasing pinch at the mid hind paw region under alfaxalone anaesthesia, 96 h after UVB irradiation. MWT was compared between UVB/HR and SHAM-treated rats (anaesthetic only). Underlying central mechanisms in the model were pharmacologically validated by MWT measurement following intrathecal N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, or saline. Results Secondary hyperalgesia was confirmed by a significantly lower pre-drug MWT {mean [±standard error of the mean (SEM)]} in UVB/HR [56.3 (±2.1) g/mm2, n = 15] compared with SHAM-treated rats [69.3 (±2.9) g/mm2, n = 8], confirming face validity of the model. Predictive validity was demonstrated by the attenuation of secondary hyperalgesia by MK-801, where mean (±SEM) MWT was significantly higher [77.2 (±5.9) g/mm2 n = 7] in comparison with pre-drug [57.8 (±3.5) g/mm2 n = 7] and saline [57.0 (±3.2) g/mm2 n = 8] at peak drug effect. The occurrence of central sensitization confirmed construct validity of the UVB/HR model. Conclusions This study used objective outcome measures of secondary hyperalgesia to validate the rat UVB/HR model as a translational model of inflammatory pain. What's already known about this topic? Most current animal chronic pain models lack translatability to human subjects. Primary hyperalgesia is an established feature of the UVB/heat rekindling inflammatory pain model in rodents and humans, but the presence of secondary hyperalgesia, a hallmark feature of central sensitization and thus chronic pain, is contentious. What does this study add? Secondary hyperalgesia was demonstrated in the rat UVB/heat rekindling model using an objective outcome measure (electromyogram), overcoming the subjective limitations of previous behavioural studies. PMID:24590815
Enhancement of CFD validation exercise along the roof profile of a low-rise building
NASA Astrophysics Data System (ADS)
Deraman, S. N. C.; Majid, T. A.; Zaini, S. S.; Yahya, W. N. W.; Abdullah, J.; Ismail, M. A.
2018-04-01
The aim of this study is to enhance the validation of CFD exercise along the roof profile of a low-rise building. An isolated gabled-roof house having 26.6° roof pitch was simulated to obtain the pressure coefficient around the house. Validation of CFD analysis with experimental data requires many input parameters. This study performed CFD simulation based on the data from a previous study. Where the input parameters were not clearly stated, new input parameters were established from the open literatures. The numerical simulations were performed in FLUENT 14.0 by applying the Computational Fluid Dynamics (CFD) approach based on steady RANS equation together with RNG k-ɛ model. Hence, the result from CFD was analysed by using quantitative test (statistical analysis) and compared with CFD results from the previous study. The statistical analysis results from ANOVA test and error measure showed that the CFD results from the current study produced good agreement and exhibited the closest error compared to the previous study. All the input data used in this study can be extended to other types of CFD simulation involving wind flow over an isolated single storey house.
DOT National Transportation Integrated Search
1996-03-01
A heat transfer model, previously developed to estimate wheel rim temperatures during tread braking of MU power cars and validated by comparison with operational test results, is extended and appplied to cases involving several different blended brak...
Chronic Pain: Content Validation of Nursing Diagnosis in Slovakia and the Czech Republic.
Zeleníková, Renáta; Maniaková, Lenka
2015-10-01
The main purpose of the study was to validate the defining characteristics and related factors of the nursing diagnosis "chronic pain" in Slovakia and the Czech Republic. This is a descriptive study. The validation process involved was based on Fehring's Diagnostic Content Validity Model. Three defining characteristics (reports pain, altered ability to continue previous activities, and depression) were classified as major by Slovak nurses, and one defining characteristic (reports pain) was classified as major by Czech nurses. The results of the study provide guidance in devising strategies of pain assessment and can aid in the formulation of accurate nursing diagnoses. The defining characteristic "reports pain" is important for arriving at the nursing diagnosis "chronic pain." © 2014 NANDA International, Inc.
Derivation and Validation of a Renal Risk Score for People With Type 2 Diabetes
Elley, C. Raina; Robinson, Tom; Moyes, Simon A.; Kenealy, Tim; Collins, John; Robinson, Elizabeth; Orr-Walker, Brandon; Drury, Paul L.
2013-01-01
OBJECTIVE Diabetes has become the leading cause of end-stage renal disease (ESRD). Renal risk stratification could assist in earlier identification and targeted prevention. This study aimed to derive risk models to predict ESRD events in type 2 diabetes in primary care. RESEARCH DESIGN AND METHODS The nationwide derivation cohort included adults with type 2 diabetes from the New Zealand Diabetes Cohort Study initially assessed during 2000–2006 and followed until December 2010, excluding those with pre-existing ESRD. The outcome was fatal or nonfatal ESRD event (peritoneal dialysis or hemodialysis for ESRD, renal transplantation, or death from ESRD). Risk models were developed using Cox proportional hazards models, and their performance was assessed in a separate validation cohort. RESULTS The derivation cohort included 25,736 individuals followed for up to 11 years (180,497 person-years; 86% followed for ≥5 years). At baseline, mean age was 62 years, median diabetes duration 5 years, and median HbA1c 7.2% (55 mmol/mol); 37% had albuminuria; and median estimated glomerular filtration rate (eGFR) was 77 mL/min/1.73 m2. There were 637 ESRD events (2.5%) during follow-up. Models that included sex, ethnicity, age, diabetes duration, albuminuria, serum creatinine, systolic blood pressure, HbA1c, smoking status, and previous cardiovascular disease status performed well with good discrimination and calibration in the derivation cohort and the validation cohort (n = 5,877) (C-statistics 0.89–0.92), improving predictive performance compared with previous models. CONCLUSIONS These 5-year renal risk models performed very well in two large primary care populations with type 2 diabetes. More accurate risk stratification could facilitate earlier intervention than using eGFR and/or albuminuria alone. PMID:23801726
Quality of asthma care under different primary care models in Canada: a population-based study.
To, Teresa; Guan, Jun; Zhu, Jingqin; Lougheed, M Diane; Kaplan, Alan; Tamari, Itamar; Stanbrook, Matthew B; Simatovic, Jacqueline; Feldman, Laura; Gershon, Andrea S
2015-02-14
Previous research has shown variations in quality of care and patient outcomes under different primary care models. The objective of this study was to use previously validated, evidence-based performance indicators to measure quality of asthma care over time and to compare quality of care between different primary care models. Data were obtained for years 2006 to 2010 from the Ontario Asthma Surveillance Information System, which uses health administrative databases to track individuals with asthma living in the province of Ontario, Canada. Individuals with asthma (n=1,813,922) were divided into groups based on the practice model of their primary care provider (i.e., fee-for-service, blended fee-for-service, blended capitation). Quality of asthma care was measured using six validated, evidence-based asthma care performance indicators. All of the asthma performance indicators improved over time within each of the primary care models. Compared to the traditional fee-for-service model, the blended fee-for-service and blended capitation models had higher use of spirometry for asthma diagnosis and monitoring, higher rates of inhaled corticosteroid prescription, and lower outpatient claims. Emergency department visits were lowest in the blended fee-for-service group. Quality of asthma care improved over time within each of the primary care models. However, the amount by which they improved differed between the models. The newer primary care models (i.e., blended fee-for-service, blended capitation) appear to provide better quality of asthma care compared to the traditional fee-for-service model.
Kloog, Itai; Nordio, Francesco; Coull, Brent A; Schwartz, Joel
2012-11-06
Satellite-derived aerosol optical depth (AOD) measurements have the potential to provide spatiotemporally resolved predictions of both long and short-term exposures, but previous studies have generally shown moderate predictive power and lacked detailed high spatio- temporal resolution predictions across large domains. We aimed at extending our previous work by validating our model in another region with different geographical and metrological characteristics, and incorporating fine scale land use regression and nonrandom missingness to better predict PM(2.5) concentrations for days with or without satellite AOD measures. We start by calibrating AOD data for 2000-2008 across the Mid-Atlantic. We used mixed models regressing PM(2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We used inverse probability weighting to account for nonrandom missingness of AOD, nested regions within days to capture spatial variation in the daily calibration, and introduced a penalization method that reduces the dimensionality of the large number of spatial and temporal predictors without selecting different predictors in different locations. We then take advantage of the association between grid-cell specific AOD values and PM(2.5) monitoring data, together with associations between AOD values in neighboring grid cells to develop grid cell predictions when AOD is missing. Finally to get local predictions (at the resolution of 50 m), we regressed the residuals from the predictions for each monitor from these previous steps against the local land use variables specific for each monitor. "Out-of-sample" 10-fold cross-validation was used to quantify the accuracy of our predictions at each step. For all days without AOD values, model performance was excellent (mean "out-of-sample" R(2) = 0.81, year-to-year variation 0.79-0.84). Upon removal of outliers in the PM(2.5) monitoring data, the results of the cross validation procedure was even better (overall mean "out of sample"R(2) of 0.85). Further, cross validation results revealed no bias in the predicted concentrations (Slope of observed vs predicted = 0.97-1.01). Our model allows one to reliably assess short-term and long-term human exposures in order to investigate both the acute and effects of ambient particles, respectively.
NASA Technical Reports Server (NTRS)
Hu, Xuefei; Waller, Lance A.; Lyapustin, Alexei; Wang, Yujie; Al-Hamdan, Mohammad Z.; Crosson, William L.; Estes, Maurice G., Jr.; Estes, Sue M.; Quattrochi, Dale A.; Puttaswamy, Sweta Jinnagara;
2013-01-01
Previous studies showed that fine particulate matter (PM(sub 2.5), particles smaller than 2.5 micrometers in aerodynamic diameter) is associated with various health outcomes. Ground in situ measurements of PM(sub 2.5) concentrations are considered to be the gold standard, but are time-consuming and costly. Satellite-retrieved aerosol optical depth (AOD) products have the potential to supplement the ground monitoring networks to provide spatiotemporally-resolved PM(sub 2.5) exposure estimates. However, the coarse resolutions (e.g., 10 km) of the satellite AOD products used in previous studies make it very difficult to estimate urban-scale PM(sub 2.5) characteristics that are crucial to population-based PM(sub 2.5) health effects research. In this paper, a new aerosol product with 1 km spatial resolution derived by the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was examined using a two-stage spatial statistical model with meteorological fields (e.g., wind speed) and land use parameters (e.g., forest cover, road length, elevation, and point emissions) as ancillary variables to estimate daily mean PM(sub 2.5) concentrations. The study area is the southeastern U.S., and data for 2003 were collected from various sources. A cross validation approach was implemented for model validation. We obtained R(sup 2) of 0.83, mean prediction error (MPE) of 1.89 micrograms/cu m, and square root of the mean squared prediction errors (RMSPE) of 2.73 micrograms/cu m in model fitting, and R(sup 2) of 0.67, MPE of 2.54 micrograms/cu m, and RMSPE of 3.88 micrograms/cu m in cross validation. Both model fitting and cross validation indicate a good fit between the dependent variable and predictor variables. The results showed that 1 km spatial resolution MAIAC AOD can be used to estimate PM(sub 2.5) concentrations.
40 CFR 152.93 - Citation of a previously submitted valid study.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Data Submitters' Rights § 152.93 Citation of a previously submitted valid study. An applicant may demonstrate compliance for a data requirement by citing a valid study previously submitted to the Agency. The... the original data submitter, the applicant may cite the study only in accordance with paragraphs (b...
An Earth-Based Model of Microgravity Pulmonary Physiology
NASA Technical Reports Server (NTRS)
Hirschl, Ronald B.; Bull, Joseph L.; Grothberg, James B.
2004-01-01
There are currently only two practical methods of achieving micro G for experimentation: parabolic flight in an aircraft or space flight, both of which have limitations. As a result, there are many important aspects of pulmonary physiology that have not been investigated in micro G. We propose to develop an earth-based animal model of micro G by using liquid ventilation, which will allow us to fill the lungs with perfluorocarbon, and submersing the animal in water such that the density of the lungs is the same as the surrounding environment. By so doing, we will eliminate the effects of gravity on respiration. We will first validate the model by comparing measures of pulmonary physiology, including cardiac output, central venous pressures, lung volumes, and pulmonary mechanics, to previous space flight and parabolic flight measurements. After validating the model, we will investigate the impact of micro G on aspects of lung physiology that have not been previously measured. These will include pulmonary blood flow distribution, ventilation distribution, pulmonary capillary wedge pressure, ventilation-perfusion matching, and pleural pressures and flows. We expect that this earth-based model of micro G will enhance our knowledge and understanding of lung physiology in space which will increase in importance as space flights increase in time and distance.
Cross-validation of Peak Oxygen Consumption Prediction Models From OMNI Perceived Exertion.
Mays, R J; Goss, F L; Nagle, E F; Gallagher, M; Haile, L; Schafer, M A; Kim, K H; Robertson, R J
2016-09-01
This study cross-validated statistical models for prediction of peak oxygen consumption using ratings of perceived exertion from the Adult OMNI Cycle Scale of Perceived Exertion. 74 participants (men: n=36; women: n=38) completed a graded cycle exercise test. Ratings of perceived exertion for the overall body, legs, and chest/breathing were recorded each test stage and entered into previously developed 3-stage peak oxygen consumption prediction models. There were no significant differences (p>0.05) between measured and predicted peak oxygen consumption from ratings of perceived exertion for the overall body, legs, and chest/breathing within men (mean±standard deviation: 3.16±0.52 vs. 2.92±0.33 vs. 2.90±0.29 vs. 2.90±0.26 L·min(-1)) and women (2.17±0.29 vs. 2.02±0.22 vs. 2.03±0.19 vs. 2.01±0.19 L·min(-1)) participants. Previously developed statistical models for prediction of peak oxygen consumption based on subpeak OMNI ratings of perceived exertion responses were similar to measured peak oxygen consumption in a separate group of participants. These findings provide practical implications for the use of the original statistical models in standard health-fitness settings. © Georg Thieme Verlag KG Stuttgart · New York.
Cuesta-Gragera, Ana; Navarro-Fontestad, Carmen; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; García-Arieta, Alfredo; Trocóniz, Iñaki F; Casabó, Vicente G; Bermejo, Marival
2015-07-10
The objective of this paper is to apply a previously developed semi-physiologic pharmacokinetic model implemented in NONMEM to simulate bioequivalence trials (BE) of acetyl salicylic acid (ASA) in order to validate the model performance against ASA human experimental data. ASA is a drug with first-pass hepatic and intestinal metabolism following Michaelis-Menten kinetics that leads to the formation of two main metabolites in two generations (first and second generation metabolites). The first aim was to adapt the semi-physiological model for ASA in NOMMEN using ASA pharmacokinetic parameters from literature, showing its sequential metabolism. The second aim was to validate this model by comparing the results obtained in NONMEM simulations with published experimental data at a dose of 1000 mg. The validated model was used to simulate bioequivalence trials at 3 dose schemes (100, 1000 and 3000 mg) and with 6 test formulations with decreasing in vivo dissolution rate constants versus the reference formulation (kD 8-0.25 h (-1)). Finally, the third aim was to determine which analyte (parent drug, first generation or second generation metabolite) was more sensitive to changes in formulation performance. The validation results showed that the concentration-time curves obtained with the simulations reproduced closely the published experimental data, confirming model performance. The parent drug (ASA) was the analyte that showed to be more sensitive to the decrease in pharmaceutical quality, with the highest decrease in Cmax and AUC ratio between test and reference formulations. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Romine, William Lee; Walter, Emily Marie
2014-11-01
Efficacy of the Measure of Understanding of Macroevolution (MUM) as a measurement tool has been a point of contention among scholars needing a valid measure for knowledge of macroevolution. We explored the structure and construct validity of the MUM using Rasch methodologies in the context of a general education biology course designed with an emphasis on macroevolution content. The Rasch model was utilized to quantify item- and test-level characteristics, including dimensionality, reliability, and fit with the Rasch model. Contrary to previous work, we found that the MUM provides a valid, reliable, and unidimensional scale for measuring knowledge of macroevolution in introductory non-science majors, and that its psychometric behavior does not exhibit large changes across time. While we found that all items provide productive measurement information, several depart substantially from ideal behavior, warranting a collective effort to improve these items. Suggestions for improving the measurement characteristics of the MUM at the item and test levels are put forward and discussed.
Bem Sex Role Inventory Validation in the International Mobility in Aging Study.
Ahmed, Tamer; Vafaei, Afshin; Belanger, Emmanuelle; Phillips, Susan P; Zunzunegui, Maria-Victoria
2016-09-01
This study investigated the measurement structure of the Bem Sex Role Inventory (BSRI) with different factor analysis methods. Most previous studies on validity applied exploratory factor analysis (EFA) to examine the BSRI. We aimed to assess the psychometric properties and construct validity of the 12-item short-form BSRI in a sample administered to 1,995 older adults from wave 1 of the International Mobility in Aging Study (IMIAS). We used Cronbach's alpha to assess internal consistency reliability and confirmatory factor analysis (CFA) to assess psychometric properties. EFA revealed a three-factor model, further confirmed by CFA and compared with the original two-factor structure model. Results revealed that a two-factor solution (instrumentality-expressiveness) has satisfactory construct validity and superior fit to data compared to the three-factor solution. The two-factor solution confirms expected gender differences in older adults. The 12-item BSRI provides a brief, psychometrically sound, and reliable instrument in international samples of older adults.
Lucia, Alejandro; Juan, Laura W; Zerba, Eduardo N; Harrand, Leonel; Marcó, Martín; Masuh, Hector M
2012-05-01
The aim of this work is to validate the pre-existing models that relate the larvicidal and adulticidal activities of the Eucalyptus essential oils on Aedes aegypti. Previous works at our laboratory described that the larvicidal activity of Eucalyptus essential oils can be estimated from the relative concentration of two main components (p-cymene and 1,8-cineole) and that the adulticidal effectiveness can be explained, to a great extent, by the presence of large amounts of the component 1,8-cineole in it. In general, the results show that the higher adulticidal effect of essential oils the lower their larvicidal activity. Fresh leaves was harvested and distilled. Once the essential oil was obtained, the chemical composition was analysed, evaluating the biological activity of 15 species of the genus Eucalyptus (Eucalyptus badjensis Beuzev and Welch, Eucalyptus badjensis × nitens, Eucalyptus benthamii var Benthamii Maiden and Cambage, Eucalyptus benthamii var dorrigoensis Maiden and Cambage, Eucalyptus botryoides Smith, Eucalyptus dalrympleana Maiden, Eucalyptus fastigata Deane and Maiden, Eucalyptus nobilis L.A.S. Johnson and K.D.Hill, Eucalyptus polybractea R. Baker, Eucalyptus radiata ssp radiata Sieber ex Spreng, Eucalyptus resinifera Smith, Eucalyptus robertsonii Blakely, Eucalyptus robusta Smith, Eucalyptus rubida Deane and Maiden, Eucalyptus smithii R. Baker). Essential oils of these plant species were used for the validation of equations from preexistent models, in which observed and estimated values of the biological activity were compared. The regression analysis showed a strong validation of the models, re-stating the trends previously observed. The models were expressed as follows: A, fumigant activity [KT(50(min)) = 10.65-0.076 × 1,8-cineole (%)](p < 0.01; F, 397; R (2), 0.79); B, larval mortality (%)((40 ppm)) = 103.85 + 0.482 × p-cymene (%) - 0.363 × α-pinene (%) - 1.07 × 1,8-cineole (%) (p < 0.01; F, 300; R (2), 0.90). These results confirmed the importance of the mayor components in the biological activity of Eucalyptus essential oils on A. aegypti. However, it is worth mentioning that two or three species differ in the data estimated by the models, and these biological activity results coincide with the presence of minor differential components in the essential oils. According to what was previously mentioned, it can be inferred that the model is able to estimate very closely the biological activity of essential oils of Eucalyptus on A. aegypti.
NASA Astrophysics Data System (ADS)
D'Ulivo, Alessandro
2016-05-01
A reaction model describing the reactivity of metal and semimetal species with aqueous tetrahydridoborate (THB) has been drawn taking into account the mechanism of chemical vapor generation (CVG) of hydrides, recent evidences on the mechanism of interference and formation of byproducts in arsane generation, and other evidences in the field of the synthesis of nanoparticles and catalytic hydrolysis of THB by metal nanoparticles. The new "non-analytical" reaction model is of more general validity than the previously described "analytical" reaction model for CVG. The non-analytical model is valid for reaction of a single analyte with THB and for conditions approaching those typically encountered in the synthesis of nanoparticles and macroprecipitates. It reduces to the previously proposed analytical model under conditions typically employed in CVG for trace analysis (analyte below the μM level, borane/analyte ≫ 103 mol/mol, no interference). The non-analytical reaction model is not able to explain all the interference effects observed in CVG, which can be achieved only by assuming the interaction among the species of reaction pathways of different analytical substrates. The reunification of CVG, the synthesis of nanoparticles by aqueous THB and the catalytic hydrolysis of THB inside a common frame contribute to rationalization of the complex reactivity of aqueous THB with metal and semimetal species.
The early maximum likelihood estimation model of audiovisual integration in speech perception.
Andersen, Tobias S
2015-05-01
Speech perception is facilitated by seeing the articulatory mouth movements of the talker. This is due to perceptual audiovisual integration, which also causes the McGurk-MacDonald illusion, and for which a comprehensive computational account is still lacking. Decades of research have largely focused on the fuzzy logical model of perception (FLMP), which provides excellent fits to experimental observations but also has been criticized for being too flexible, post hoc and difficult to interpret. The current study introduces the early maximum likelihood estimation (MLE) model of audiovisual integration to speech perception along with three model variations. In early MLE, integration is based on a continuous internal representation before categorization, which can make the model more parsimonious by imposing constraints that reflect experimental designs. The study also shows that cross-validation can evaluate models of audiovisual integration based on typical data sets taking both goodness-of-fit and model flexibility into account. All models were tested on a published data set previously used for testing the FLMP. Cross-validation favored the early MLE while more conventional error measures favored more complex models. This difference between conventional error measures and cross-validation was found to be indicative of over-fitting in more complex models such as the FLMP.
Development and validation of age-dependent FE human models of a mid-sized male thorax.
El-Jawahri, Raed E; Laituri, Tony R; Ruan, Jesse S; Rouhana, Stephen W; Barbat, Saeed D
2010-11-01
The increasing number of people over 65 years old (YO) is an important research topic in the area of impact biomechanics, and finite element (FE) modeling can provide valuable support for related research. There were three objectives of this study: (1) Estimation of the representative age of the previously-documented Ford Human Body Model (FHBM) -- an FE model which approximates the geometry and mass of a mid-sized male, (2) Development of FE models representing two additional ages, and (3) Validation of the resulting three models to the extent possible with respect to available physical tests. Specifically, the geometry of the model was compared to published data relating rib angles to age, and the mechanical properties of different simulated tissues were compared to a number of published aging functions. The FHBM was determined to represent a 53-59 YO mid-sized male. The aforementioned aging functions were used to develop FE models representing two additional ages: 35 and 75 YO. The rib model was validated against human rib specimens and whole rib tests, under different loading conditions, with and without modeled fracture. In addition, the resulting three age-dependent models were validated by simulating cadaveric tests of blunt and sled impacts. The responses of the models, in general, were within the cadaveric response corridors. When compared to peak responses from individual cadavers similar in size and age to the age-dependent models, some responses were within one standard deviation of the test data. All the other responses, but one, were within two standard deviations.
Validation of the Learning Progression-based Assessment of Modern Genetics in a college context
NASA Astrophysics Data System (ADS)
Todd, Amber; Romine, William L.
2016-07-01
Building upon a methodologically diverse research foundation, we adapted and validated the Learning Progression-based Assessment of Modern Genetics (LPA-MG) for college students' knowledge of the domain. Toward collecting valid learning progression-based measures in a college majors context, we redeveloped and content validated a majority of a previous version of the LPA-MG which was developed for high school students. Using a Rasch model calibrated on 316 students from 2 sections of majors introductory biology, we demonstrate the validity of this version and describe how college students' ideas of modern genetics are likely to change as the students progress from low to high understanding. We then utilize these findings to build theory around the connections college students at different levels of understanding make within and across the many ideas within the domain.
Psychometric properties of the Spanish Burnout Inventory among staff nurses.
Gil-Monte, P R; Manzano-García, G
2015-12-01
The burnout syndrome contributes to the deterioration in the quality of personal life as well as lower quality practice in healthcare personnel. Researchers have been concerned about the psychometric limitations of some previous questionnaires designed to evaluate burnout. The Spanish Burnout Inventory was developed to address the problems associated with other instruments, but it has not yet been validated in staff nurses. This study provides evidence that the Spanish Burnout Inventory has adequate psychometric properties to estimate burnout in staff nurses. The Spanish Burnout Inventory offers a theoretical proposal to explain the different components of burnout. The Spanish Burnout Inventory provides researchers and practitioners with an expanded conceptualization of the burnout syndrome, which can facilitate the diagnosis and treatment of nursing professionals. Researchers have been concerned about the psychometric limitations of the some previous questionnaires designed to evaluate burnout. To address these problems associated with previous instruments, the Spanish Burnout Inventory (SBI) was developed. The instrument has not yet been validated in staff nurses. The purpose of this paper was to evaluate the psychometric properties of the SBI. The sample consisted of 720 staff nurses from two Spanish general hospitals. The instrument is composed of 20 items distributed in four dimensions: Enthusiasm towards the job (five items), Psychological exhaustion (four items), Indolence (six items) and Guilt (five items). Data were subjected to confirmatory factor analysis. To assess the factorial validity of the SBI, four alternative models were tested. Results show that the four-factor model of the SBI has adequate psychometric properties for the study of burnout in staff nurses. This model fitted the data better than the alternative models. The study provides evidence of the adequate psychometric properties of a measure to evaluate burnout in nursing professionals. The SBI proposes a theoretical explanation for the different types of burnout, facilitating the diagnosis and treatment of staff nurses. © 2015 John Wiley & Sons Ltd.
Fagerberg, Marie C; Maršál, Karel; Källén, Karin
2015-05-01
We aimed to validate a widely used US prediction model for vaginal birth after cesarean (Grobman et al. [8]) and modify it to suit Swedish conditions. Women having experienced one cesarean section and at least one subsequent delivery (n=49,472) in the Swedish Medical Birth Registry 1992-2011 were randomly divided into two data sets. In the development data set, variables associated with successful trial of labor were identified using multiple logistic regression. The predictive ability of the estimates previously published by Grobman et al., and of our modified and new estimates, respectively, was then evaluated using the validation data set. The accuracy of the models for prediction of vaginal birth after cesarean was measured by area under the receiver operating characteristics curve. For maternal age, body mass index, prior vaginal delivery, and prior labor arrest, the odds ratio estimates for vaginal birth after cesarean were similar to those previously published. The prediction accuracy increased when information on indication for the previous cesarean section was added (from area under the receiver operating characteristics curve=0.69-0.71), and increased further when maternal height and delivery unit cesarean section rates were included (area under the receiver operating characteristics curve=0.74). The correlation between the individual predicted vaginal birth after cesarean probability and the observed trial of labor success rate was high in all the respective predicted probability decentiles. Customization of prediction models for vaginal birth after cesarean is of considerable value. Choosing relevant indicators for a Swedish setting made it possible to achieve excellent prediction accuracy for success in trial of labor after cesarean. During the delicate process of counseling about preferred delivery mode after one cesarean section, considering the results of our study may facilitate the choice between a trial of labor or an elective repeat cesarean section. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Walter G. Thies; Douglas J. Westlind
2012-01-01
Fires, whether intentionally or accidentally set, commonly occur in western interior forests of the US. Following fire, managers need the ability to predict mortality of individual trees based on easily observed characteristics. Previously, a two-factor model using crown scorch and bole scorch proportions was developed with data from 3415 trees for predicting the...
ERIC Educational Resources Information Center
Deliyianni, Eleni; Gagatsis, Athanasios; Elia, Iliada; Panaoura, Areti
2016-01-01
The aim of this study was to propose and validate a structural model in fraction and decimal number addition, which is founded primarily on a synthesis of major theoretical approaches in the field of representations in Mathematics and also on previous research on the learning of fractions and decimals. The study was conducted among 1,701 primary…
Vuong, Kylie; Armstrong, Bruce K; Weiderpass, Elisabete; Lund, Eiliv; Adami, Hans-Olov; Veierod, Marit B; Barrett, Jennifer H; Davies, John R; Bishop, D Timothy; Whiteman, David C; Olsen, Catherine M; Hopper, John L; Mann, Graham J; Cust, Anne E; McGeechan, Kevin
2016-08-01
Identifying individuals at high risk of melanoma can optimize primary and secondary prevention strategies. To develop and externally validate a risk prediction model for incident first-primary cutaneous melanoma using self-assessed risk factors. We used unconditional logistic regression to develop a multivariable risk prediction model. Relative risk estimates from the model were combined with Australian melanoma incidence and competing mortality rates to obtain absolute risk estimates. A risk prediction model was developed using the Australian Melanoma Family Study (629 cases and 535 controls) and externally validated using 4 independent population-based studies: the Western Australia Melanoma Study (511 case-control pairs), Leeds Melanoma Case-Control Study (960 cases and 513 controls), Epigene-QSkin Study (44 544, of which 766 with melanoma), and Swedish Women's Lifestyle and Health Cohort Study (49 259 women, of which 273 had melanoma). We validated model performance internally and externally by assessing discrimination using the area under the receiver operating curve (AUC). Additionally, using the Swedish Women's Lifestyle and Health Cohort Study, we assessed model calibration and clinical usefulness. The risk prediction model included hair color, nevus density, first-degree family history of melanoma, previous nonmelanoma skin cancer, and lifetime sunbed use. On internal validation, the AUC was 0.70 (95% CI, 0.67-0.73). On external validation, the AUC was 0.66 (95% CI, 0.63-0.69) in the Western Australia Melanoma Study, 0.67 (95% CI, 0.65-0.70) in the Leeds Melanoma Case-Control Study, 0.64 (95% CI, 0.62-0.66) in the Epigene-QSkin Study, and 0.63 (95% CI, 0.60-0.67) in the Swedish Women's Lifestyle and Health Cohort Study. Model calibration showed close agreement between predicted and observed numbers of incident melanomas across all deciles of predicted risk. In the external validation setting, there was higher net benefit when using the risk prediction model to classify individuals as high risk compared with classifying all individuals as high risk. The melanoma risk prediction model performs well and may be useful in prevention interventions reliant on a risk assessment using self-assessed risk factors.
Validation of the SimSET simulation package for modeling the Siemens Biograph mCT PET scanner
NASA Astrophysics Data System (ADS)
Poon, Jonathan K.; Dahlbom, Magnus L.; Casey, Michael E.; Qi, Jinyi; Cherry, Simon R.; Badawi, Ramsey D.
2015-02-01
Monte Carlo simulation provides a valuable tool in performance assessment and optimization of system design parameters for PET scanners. SimSET is a popular Monte Carlo simulation toolkit that features fast simulation time, as well as variance reduction tools to further enhance computational efficiency. However, SimSET has lacked the ability to simulate block detectors until its most recent release. Our goal is to validate new features of SimSET by developing a simulation model of the Siemens Biograph mCT PET scanner and comparing the results to a simulation model developed in the GATE simulation suite and to experimental results. We used the NEMA NU-2 2007 scatter fraction, count rates, and spatial resolution protocols to validate the SimSET simulation model and its new features. The SimSET model overestimated the experimental results of the count rate tests by 11-23% and the spatial resolution test by 13-28%, which is comparable to previous validation studies of other PET scanners in the literature. The difference between the SimSET and GATE simulation was approximately 4-8% for the count rate test and approximately 3-11% for the spatial resolution test. In terms of computational time, SimSET performed simulations approximately 11 times faster than GATE simulations. The new block detector model in SimSET offers a fast and reasonably accurate simulation toolkit for PET imaging applications.
Data regarding grazing utilization in the western United States are typically compiled within administrative boundaries(e.g. allotment,pasture). For large areas, an assumption of uniform distribution is seldom valid. Previous studies show that vegetation type, degree of slope, an...
Explanation Generation, Not Explanation Expectancy, Improves Metacomprehension Accuracy
ERIC Educational Resources Information Center
Fukaya, Tatsushi
2013-01-01
The ability to monitor the status of one's own understanding is important to accomplish academic tasks proficiently. Previous studies have shown that comprehension monitoring (metacomprehension accuracy) is generally poor, but improves when readers engage in activities that access valid cues reflecting their situation model (activities such as…
Barrett, Frederick S; Johnson, Matthew W; Griffiths, Roland R
2015-11-01
The 30-item revised Mystical Experience Questionnaire (MEQ30) was previously developed within an online survey of mystical-type experiences occasioned by psilocybin-containing mushrooms. The rated experiences occurred on average eight years before completion of the questionnaire. The current paper validates the MEQ30 using data from experimental studies with controlled doses of psilocybin. Data were pooled and analyzed from five laboratory experiments in which participants (n=184) received a moderate to high oral dose of psilocybin (at least 20 mg/70 kg). Results of confirmatory factor analysis demonstrate the reliability and internal validity of the MEQ30. Structural equation models demonstrate the external and convergent validity of the MEQ30 by showing that latent variable scores on the MEQ30 positively predict persisting change in attitudes, behavior, and well-being attributed to experiences with psilocybin while controlling for the contribution of the participant-rated intensity of drug effects. These findings support the use of the MEQ30 as an efficient measure of individual mystical experiences. A method to score a "complete mystical experience" that was used in previous versions of the mystical experience questionnaire is validated in the MEQ30, and a stand-alone version of the MEQ30 is provided for use in future research. © The Author(s) 2015.
Validation of the revised Mystical Experience Questionnaire in experimental sessions with psilocybin
Barrett, Frederick S; Johnson, Matthew W; Griffiths, Roland R
2016-01-01
The 30-item revised Mystical Experience Questionnaire (MEQ30) was previously developed within an online survey of mystical-type experiences occasioned by psilocybin-containing mushrooms. The rated experiences occurred on average eight years before completion of the questionnaire. The current paper validates the MEQ30 using data from experimental studies with controlled doses of psilocybin. Data were pooled and analyzed from five laboratory experiments in which participants (n=184) received a moderate to high oral dose of psilocybin (at least 20 mg/70 kg). Results of confirmatory factor analysis demonstrate the reliability and internal validity of the MEQ30. Structural equation models demonstrate the external and convergent validity of the MEQ30 by showing that latent variable scores on the MEQ30 positively predict persisting change in attitudes, behavior, and well-being attributed to experiences with psilocybin while controlling for the contribution of the participant-rated intensity of drug effects. These findings support the use of the MEQ30 as an efficient measure of individual mystical experiences. A method to score a “complete mystical experience” that was used in previous versions of the mystical experience questionnaire is validated in the MEQ30, and a stand-alone version of the MEQ30 is provided for use in future research. PMID:26442957
Landscape scale estimation of soil carbon stock using 3D modelling.
Veronesi, F; Corstanje, R; Mayr, T
2014-07-15
Soil C is the largest pool of carbon in the terrestrial biosphere, and yet the processes of C accumulation, transformation and loss are poorly accounted for. This, in part, is due to the fact that soil C is not uniformly distributed through the soil depth profile and most current landscape level predictions of C do not adequately account the vertical distribution of soil C. In this study, we apply a method based on simple soil specific depth functions to map the soil C stock in three-dimensions at landscape scale. We used soil C and bulk density data from the Soil Survey for England and Wales to map an area in the West Midlands region of approximately 13,948 km(2). We applied a method which describes the variation through the soil profile and interpolates this across the landscape using well established soil drivers such as relief, land cover and geology. The results indicate that this mapping method can effectively reproduce the observed variation in the soil profiles samples. The mapping results were validated using cross validation and an independent validation. The cross-validation resulted in an R(2) of 36% for soil C and 44% for BULKD. These results are generally in line with previous validated studies. In addition, an independent validation was undertaken, comparing the predictions against the National Soil Inventory (NSI) dataset. The majority of the residuals of this validation are between ± 5% of soil C. This indicates high level of accuracy in replicating topsoil values. In addition, the results were compared to a previous study estimating the carbon stock of the UK. We discuss the implications of our results within the context of soil C loss factors such as erosion and the impact on regional C process models. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shutov, A. V.; Larichkin, A. Yu
2017-10-01
A cyclic creep damage model, previously proposed by the authors, is modified for a better description of the transient creep of D16T alloy observed in the finite strain range under rapidly changing stresses. The new model encompasses the concept of kinematic hardening, which allows us to account for the creep-induced anisotropy. The model kinematics is based on the nested multiplicative split of the deformation gradient, proposed by Lion. The damage evolution is accounted for by the classical Kachanov-Rabotnov approach. The material parameters are identified using experimental data on cyclic torsion of thick-walled samples with different holding times between load reversals. For the validation of the proposed material model, an additional experiment is analyzed. Although this additional test is not involved in the identification procedure, the proposed cyclic creep damage model describes it accurately.
Investigation of Zircaloy-2 oxidation model for SFP accident analysis
NASA Astrophysics Data System (ADS)
Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Kondo, Keietsu; Nakashima, Kazuo; Kanazawa, Toru; Tojo, Masayuki
2017-05-01
The authors previously conducted thermogravimetric analyses on Zircaloy-2 in air. By using the thermogravimetric data, an oxidation model was constructed in this study so that it can be applied for the modeling of cladding degradation in spent fuel pool (SFP) severe accident condition. For its validation, oxidation tests of long cladding tube were conducted, and computational fluid dynamics analyses using the constructed oxidation model were proceeded to simulate the experiments. In the oxidation tests, high temperature thermal gradient along the cladding axis was applied and air flow rates in testing chamber were controlled to simulate hypothetical SFP accidents. The analytical outputs successfully reproduced the growth of oxide film and porous oxide layer on the claddings in oxidation tests, and validity of the oxidation model was proved. Influence of air flow rate for the oxidation behavior was thought negligible in the conditions investigated in this study.
External validation of risk prediction models for incident colorectal cancer using UK Biobank
Usher-Smith, J A; Harshfield, A; Saunders, C L; Sharp, S J; Emery, J; Walter, F M; Muir, K; Griffin, S J
2018-01-01
Background: This study aimed to compare and externally validate risk scores developed to predict incident colorectal cancer (CRC) that include variables routinely available or easily obtainable via self-completed questionnaire. Methods: External validation of fourteen risk models from a previous systematic review in 373 112 men and women within the UK Biobank cohort with 5-year follow-up, no prior history of CRC and data for incidence of CRC through linkage to national cancer registries. Results: There were 1719 (0.46%) cases of incident CRC. The performance of the risk models varied substantially. In men, the QCancer10 model and models by Tao, Driver and Ma all had an area under the receiver operating characteristic curve (AUC) between 0.67 and 0.70. Discrimination was lower in women: the QCancer10, Wells, Tao, Guesmi and Ma models were the best performing with AUCs between 0.63 and 0.66. Assessment of calibration was possible for six models in men and women. All would require country-specific recalibration if estimates of absolute risks were to be given to individuals. Conclusions: Several risk models based on easily obtainable data have relatively good discrimination in a UK population. Modelling studies are now required to estimate the potential health benefits and cost-effectiveness of implementing stratified risk-based CRC screening. PMID:29381683
Marsh, Herbert W; Vallerand, Robert J; Lafrenière, Marc-André K; Parker, Philip; Morin, Alexandre J S; Carbonneau, Noémie; Jowett, Sophia; Bureau, Julien S; Fernet, Claude; Guay, Frédéric; Salah Abduljabbar, Adel; Paquet, Yvan
2013-09-01
The passion scale, based on the dualistic model of passion, measures 2 distinct types of passion: Harmonious and obsessive passions are predictive of adaptive and less adaptive outcomes, respectively. In a substantive-methodological synergy, we evaluate the construct validity (factor structure, reliability, convergent and discriminant validity) of Passion Scale responses (N = 3,571). The exploratory structural equation model fit to the data was substantially better than the confirmatory factor analysis solution, and resulted in better differentiated (less correlated) factors. Results from a 13-model taxonomy of measurement invariance supported complete invariance (factor loadings, factor correlations, item uniquenesses, item intercepts, and latent means) over language (French vs. English; the instrument was originally devised in French, then translated into English) and gender. Strong measurement partial invariance over 5 passion activity groups (leisure, sport, social, work, education) indicates that the same set of items is appropriate for assessing passion across a wide variety of activities--a previously untested, implicit assumption that greatly enhances practical utility. Support was found for the convergent and discriminant validity of the harmonious and obsessive passion scales, based on a set of validity correlates: life satisfaction, rumination, conflict, time investment, activity liking and valuation, and perceiving the activity as a passion.
Subarachnoid hemorrhage admissions retrospectively identified using a prediction model
McIntyre, Lauralyn; Fergusson, Dean; Turgeon, Alexis; dos Santos, Marlise P.; Lum, Cheemun; Chassé, Michaël; Sinclair, John; Forster, Alan; van Walraven, Carl
2016-01-01
Objective: To create an accurate prediction model using variables collected in widely available health administrative data records to identify hospitalizations for primary subarachnoid hemorrhage (SAH). Methods: A previously established complete cohort of consecutive primary SAH patients was combined with a random sample of control hospitalizations. Chi-square recursive partitioning was used to derive and internally validate a model to predict the probability that a patient had primary SAH (due to aneurysm or arteriovenous malformation) using health administrative data. Results: A total of 10,322 hospitalizations with 631 having primary SAH (6.1%) were included in the study (5,122 derivation, 5,200 validation). In the validation patients, our recursive partitioning algorithm had a sensitivity of 96.5% (95% confidence interval [CI] 93.9–98.0), a specificity of 99.8% (95% CI 99.6–99.9), and a positive likelihood ratio of 483 (95% CI 254–879). In this population, patients meeting criteria for the algorithm had a probability of 45% of truly having primary SAH. Conclusions: Routinely collected health administrative data can be used to accurately identify hospitalized patients with a high probability of having a primary SAH. This algorithm may allow, upon validation, an easy and accurate method to create validated cohorts of primary SAH from either ruptured aneurysm or arteriovenous malformation. PMID:27629096
Ploquin, A; Olmos, D; Lacombe, D; A'Hern, R; Duhamel, A; Twelves, C; Marsoni, S; Morales-Barrera, R; Soria, J-C; Verweij, J; Voest, E E; Schöffski, P; Schellens, J H; Kramar, A; Kristeleit, R S; Arkenau, H-T; Kaye, S B; Penel, N
2012-09-25
Selecting patients with 'sufficient life expectancy' for Phase I oncology trials remains challenging. The Royal Marsden Hospital Score (RMS) previously identified high-risk patients as those with ≥ 2 of the following: albumin <35 g l(-1); LDH > upper limit of normal; >2 metastatic sites. This study developed an alternative prognostic model, and compared its performance with that of the RMS. The primary end point was the 90-day mortality rate. The new model was developed from the same database as RMS, but it used Chi-squared Automatic Interaction Detection (CHAID). The ROC characteristics of both methods were then validated in an independent database of 324 patients enrolled in European Organization on Research and Treatment of Cancer Phase I trials of cytotoxic agents between 2000 and 2009. The CHAID method identified high-risk patients as those with albumin <33 g l(-1) or ≥ 33 g l(-1), but platelet counts ≥ 400.000 mm(-3). In the validation data set, the rates of correctly classified patients were 0.79 vs 0.67 for the CHAID model and RMS, respectively. The negative predictive values (NPV) were similar for the CHAID model and RMS. The CHAID model and RMS provided a similarly high level of NPV, but the CHAID model gave a better accuracy in the validation set. Both CHAID model and RMS may improve the screening process in phase I trials.
Del Prete, Francesco; Steward, Trevor; Navas, Juan F; Fernández-Aranda, Fernando; Jiménez-Murcia, Susana; Oei, Tian P S; Perales, José C
2017-03-01
Background and aims Abnormal cognitions are among the most salient domain-specific features of gambling disorder. The aims of this study were: (a) to examine and validate a Spanish version of the Gambling-Related Cognitions Scale (GRCS; Raylu & Oei, 2004) and (b) to examine associations between cognitive distortion levels, impulsivity, and gambling behavior. Methods This study first recruited a convenience sample of 500 adults who had gambled during the previous year. Participants were assessed using the Spanish version of GRCS (GRCS-S) questionnaire, the UPPS-P impulsivity questionnaire, measures of gambling behavior, and potentially relevant confounders. Robust confirmatory factor analysis methods on half the sample were used to select the best models from a hypothesis-driven set. The best solutions were validated on the other half, and the resulting factors were later correlated with impulsivity dimensions (in the whole n = 500 factor analysis sample) and clinically relevant gambling indices (in a separate convenience sample of 137 disordered and non-disordered gamblers; validity sample). Results This study supports the original five-factor model, suggests an alternative four-factor solution, and confirms the psychometric soundness of the GRCS-S. Importantly, cognitive distortions consistently correlated with affect- or motivation-driven aspects of impulsivity (urgency and sensation seeking), but not with cognitive impulsivity (lack of premeditation and lack of perseverance). Discussion and conclusions Our findings suggest that the GRCS-S is a valid and reliable instrument to identify gambling cognitions in Spanish samples. Our results expand upon previous research signaling specific associations between gambling-related distortions and affect-driven impulsivity in line with models of motivated reasoning.
Del Prete, Francesco; Steward, Trevor; Navas, Juan F.; Fernández-Aranda, Fernando; Jiménez-Murcia, Susana; Oei, Tian P. S.; Perales, José C.
2017-01-01
Background and aims Abnormal cognitions are among the most salient domain-specific features of gambling disorder. The aims of this study were: (a) to examine and validate a Spanish version of the Gambling-Related Cognitions Scale (GRCS; Raylu & Oei, 2004) and (b) to examine associations between cognitive distortion levels, impulsivity, and gambling behavior. Methods This study first recruited a convenience sample of 500 adults who had gambled during the previous year. Participants were assessed using the Spanish version of GRCS (GRCS-S) questionnaire, the UPPS-P impulsivity questionnaire, measures of gambling behavior, and potentially relevant confounders. Robust confirmatory factor analysis methods on half the sample were used to select the best models from a hypothesis-driven set. The best solutions were validated on the other half, and the resulting factors were later correlated with impulsivity dimensions (in the whole n = 500 factor analysis sample) and clinically relevant gambling indices (in a separate convenience sample of 137 disordered and non-disordered gamblers; validity sample). Results This study supports the original five-factor model, suggests an alternative four-factor solution, and confirms the psychometric soundness of the GRCS-S. Importantly, cognitive distortions consistently correlated with affect- or motivation-driven aspects of impulsivity (urgency and sensation seeking), but not with cognitive impulsivity (lack of premeditation and lack of perseverance). Discussion and conclusions Our findings suggest that the GRCS-S is a valid and reliable instrument to identify gambling cognitions in Spanish samples. Our results expand upon previous research signaling specific associations between gambling-related distortions and affect-driven impulsivity in line with models of motivated reasoning. PMID:28118729
Ingo, Elisabeth; Brännström, K Jonas; Andersson, Gerhard; Lunner, Thomas; Laplante-Lévesque, Ariane
2016-07-01
Acceptance and readiness to seek professional help have shown to be important factors for favourable audiological rehabilitation outcomes. Theories from health psychology such as the transtheoretical (stages-of-change) model could help understand behavioural change in people with hearing impairment. In recent studies, the University of Rhode Island change assessment (URICA) has been found to have good predictive validity. In a previous study, 224 Swedish adults who had failed an online hearing screening completed URICA and two other measures of stages of change. This follow-up aimed to: (1) determine prevalence of help-seeking at a hearing clinic and hearing aid uptake, and (2) explore the predictive validity of the stages of change measures by a follow-up on the 224 participants who had failed a hearing screening 18 months previously. A total of 122 people (54%) completed the follow-up online questionnaire, including the three measures and questions regarding experience with hearing help-seeking and hearing aid uptake. Since failing the online hearing screening, 61% of participants had sought help. A good predictive validity for a one-item measure of stages of change was reported. The Staging algorithm was the stages of change measure with the best ability to predict help-seeking 18 months later.
Endoscopic third ventriculostomy in the treatment of childhood hydrocephalus.
Kulkarni, Abhaya V; Drake, James M; Mallucci, Conor L; Sgouros, Spyros; Roth, Jonathan; Constantini, Shlomi
2009-08-01
To develop a model to predict the probability of endoscopic third ventriculostomy (ETV) success in the treatment for hydrocephalus on the basis of a child's individual characteristics. We analyzed 618 ETVs performed consecutively on children at 12 international institutions to identify predictors of ETV success at 6 months. A multivariable logistic regression model was developed on 70% of the dataset (training set) and validated on 30% of the dataset (validation set). In the training set, 305/455 ETVs (67.0%) were successful. The regression model (containing patient age, cause of hydrocephalus, and previous cerebrospinal fluid shunt) demonstrated good fit (Hosmer-Lemeshow, P = .78) and discrimination (C statistic = 0.70). In the validation set, 105/163 ETVs (64.4%) were successful and the model maintained good fit (Hosmer-Lemeshow, P = .45), discrimination (C statistic = 0.68), and calibration (calibration slope = 0.88). A simplified ETV Success Score was devised that closely approximates the predicted probability of ETV success. Children most likely to succeed with ETV can now be accurately identified and spared the long-term complications of CSF shunting.
Gabriel, Alonzo A; Cayabyab, Jochelle Elysse C; Tan, Athalie Kaye L; Corook, Mark Lester F; Ables, Errol John O; Tiangson-Bayaga, Cecile Leah P
2015-06-15
A predictive response surface model for the influences of product (soluble solids and titratable acidity) and process (temperature and heating time) parameters on the degradation of ascorbic acid (AA) in heated simulated fruit juices (SFJs) was established. Physicochemical property ranges of freshly squeezed and processed juices, and a previously established decimal reduction times of Escherichiacoli O157:H7 at different heating temperatures were used in establishing a Central Composite Design of Experiment that determined the combinations of product and process variable used in the model building. Only the individual linear effects of temperature and heating time significantly (P<0.05) affected AA reduction (%AAr). Validating systems either over- or underestimated actual %AAr with bias factors 0.80-1.20. However, all validating systems still resulted in acceptable predictive efficacy, with accuracy factor 1.00-1.26. The model may be useful in establishing unique process schedules for specific products, for the simultaneous control and improvement of food safety and quality. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jandt, Simon; Laagemaa, Priidik; Janssen, Frank
2014-05-01
The systematic and objective comparison between output from a numerical ocean model and a set of observations, called validation in the context of this presentation, is a beneficial activity at several stages, starting from early steps in model development and ending at the quality control of model based products delivered to customers. Even though the importance of this kind of validation work is widely acknowledged it is often not among the most popular tasks in ocean modelling. In order to ease the validation work a comprehensive toolbox has been developed in the framework of the MyOcean-2 project. The objective of this toolbox is to carry out validation integrating different data sources, e.g. time-series at stations, vertical profiles, surface fields or along track satellite data, with one single program call. The validation toolbox, implemented in MATLAB, features all parts of the validation process - ranging from read-in procedures of datasets to the graphical and numerical output of statistical metrics of the comparison. The basic idea is to have only one well-defined validation schedule for all applications, in which all parts of the validation process are executed. Each part, e.g. read-in procedures, forms a module in which all available functions of this particular part are collected. The interface between the functions, the module and the validation schedule is highly standardized. Functions of a module are set up for certain validation tasks, new functions can be implemented into the appropriate module without affecting the functionality of the toolbox. The functions are assigned for each validation task in user specific settings, which are externally stored in so-called namelists and gather all information of the used datasets as well as paths and metadata. In the framework of the MyOcean-2 project the toolbox is frequently used to validate the forecast products of the Baltic Sea Marine Forecasting Centre. Hereby the performance of any new product version is compared with the previous version. Although, the toolbox is mainly tested for the Baltic Sea yet, it can easily be adapted to different datasets and parameters, regardless of the geographic region. In this presentation the usability of the toolbox is demonstrated along with several results of the validation process.
An underwater light attenuation scheme for marine ecosystem models.
Penta, Bradley; Lee, Zhongping; Kudela, Raphael M; Palacios, Sherry L; Gray, Deric J; Jolliff, Jason K; Shulman, Igor G
2008-10-13
Simulation of underwater light is essential for modeling marine ecosystems. A new model of underwater light attenuation is presented and compared with previous models. In situ data collected in Monterey Bay, CA. during September 2006 are used for validation. It is demonstrated that while the new light model is computationally simple and efficient it maintains accuracy and flexibility. When this light model is incorporated into an ecosystem model, the correlation between modeled and observed coastal chlorophyll is improved over an eight-year time period. While the simulation of a deep chlorophyll maximum demonstrates the effect of the new model at depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, Michael L.
We previously developed a PETN thermal decomposition model that accurately predicts thermal ignition and detonator failure [1]. This model was originally developed for CALORE [2] and required several complex user subroutines. Recently, a simplified version of the PETN decomposition model was implemented into ARIA [3] using a general chemistry framework without need for user subroutines. Detonator failure was also predicted with this new model using ENCORE. The model was simplified by 1) basing the model on moles rather than mass, 2) simplifying the thermal conductivity model, and 3) implementing ARIA’s new phase change model. This memo briefly describes the model,more » implementation, and validation.« less
Effects of Pump-turbine S-shaped Characteristics on Transient Behaviours: Experimental Investigation
NASA Astrophysics Data System (ADS)
Zeng, Wei; Yang, Jiandong; Hu, Jinhong; Tang, Renbo
2017-05-01
A pumped storage stations model was set up and introduced in the previous paper. In the model station, the S-shaped characteristic curves was measured at the load rejection condition with the guide vanes stalling. Load rejection tests where guide-vane closed linearly were performed to validate the effect of the S-shaped characteristics on hydraulic transients. Load rejection experiments with different guide vane closing schemes were also performed to determine a suitable scheme considering the S-shaped characteristics. The condition of one pump turbine rejecting its load after another defined as one-after-another (OAA) load rejection was performed to validate the possibility of S-induced extreme draft tube pressure.
Hydrogen Reduction of Lunar Regolith Simulants for Oxygen Production
NASA Technical Reports Server (NTRS)
Hegde, U.; Balasubramaniam, R.; Gokoglu, S. A.; Rogers, K.; Reddington, M.; Oryshchyn, L.
2011-01-01
Hydrogen reduction of the lunar regolith simulants JSC-1A and LHT-2M is investigated in this paper. Experiments conducted at NASA Johnson Space Center are described and are analyzed utilizing a previously validated model developed by the authors at NASA Glenn Research Center. The effects of regolith sintering and clumping, likely in actual production operations, on the oxygen production rate are studied. Interpretations of the obtained results on the basis of the validated model are provided and linked to increase in the effective particle size and reduction in the intra-particle species diffusion rates. Initial results on the pressure dependence of the oxygen production rate are also presented and discussed
Development of a Turbofan Engine Simulation in a Graphical Simulation Environment
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Guo, Ten-Heui
2003-01-01
This paper presents the development of a generic component level model of a turbofan engine simulation with a digital controller, in an advanced graphical simulation environment. The goal of this effort is to develop and demonstrate a flexible simulation platform for future research in propulsion system control and diagnostic technology. A previously validated FORTRAN-based model of a modern, high-performance, military-type turbofan engine is being used to validate the platform development. The implementation process required the development of various innovative procedures, which are discussed in the paper. Open-loop and closed-loop comparisons are made between the two simulations. Future enhancements that are to be made to the modular engine simulation are summarized.
Kinematic analysis of a posterior-stabilized knee prosthesis.
Zhao, Zhi-Xin; Wen, Liang; Qu, Tie-Bing; Hou, Li-Li; Xiang, Dong; Bin, Jia
2015-01-20
The goal of total knee arthroplasty (TKA) is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS) knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0-135° flexion. Both the output data trends and the measured values derived from the normal knee's kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, "rollback" compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis.
In-vivo detectability index: development and validation of an automated methodology
NASA Astrophysics Data System (ADS)
Smith, Taylor Brunton; Solomon, Justin; Samei, Ehsan
2017-03-01
The purpose of this study was to develop and validate a method to estimate patient-specific detectability indices directly from patients' CT images (i.e., "in vivo"). The method works by automatically extracting noise (NPS) and resolution (MTF) properties from each patient's CT series based on previously validated techniques. Patient images are thresholded into skin-air interfaces to form edge-spread functions, which are further binned, differentiated, and Fourier transformed to form the MTF. The NPS is likewise estimated from uniform areas of the image. These are combined with assumed task functions (reference function: 10 mm disk lesion with contrast of -15 HU) to compute detectability indices for a non-prewhitening matched filter model observer predicting observer performance. The results were compared to those from a previous human detection study on 105 subtle, hypo-attenuating liver lesions, using a two-alternative-forcedchoice (2AFC) method, over 6 dose levels using 16 readers. The in vivo detectability indices estimated for all patient images were compared to binary 2AFC outcomes with a generalized linear mixed-effects statistical model (Probit link function, linear terms only, no interactions, random term for readers). The model showed that the in vivo detectability indices were strongly predictive of 2AFC outcomes (P < 0.05). A linear comparison between the human detection accuracy and model-predicted detection accuracy (for like conditions) resulted in Pearson and Spearman correlations coefficients of 0.86 and 0.87, respectively. These data provide evidence that the in vivo detectability index could potentially be used to automatically estimate and track image quality in a clinical operation.
Experiences Using Lightweight Formal Methods for Requirements Modeling
NASA Technical Reports Server (NTRS)
Easterbrook, Steve; Lutz, Robyn; Covington, Rick; Kelly, John; Ampo, Yoko; Hamilton, David
1997-01-01
This paper describes three case studies in the lightweight application of formal methods to requirements modeling for spacecraft fault protection systems. The case studies differ from previously reported applications of formal methods in that formal methods were applied very early in the requirements engineering process, to validate the evolving requirements. The results were fed back into the projects, to improve the informal specifications. For each case study, we describe what methods were applied, how they were applied, how much effort was involved, and what the findings were. In all three cases, formal methods enhanced the existing verification and validation processes, by testing key properties of the evolving requirements, and helping to identify weaknesses. We conclude that the benefits gained from early modeling of unstable requirements more than outweigh the effort needed to maintain multiple representations.
Modeling of Texture Evolution During Hot Forging of Alpha/Beta Titanium Alloys (Preprint)
2007-06-01
treatment. The approach was validated via an industrial -scale trail comprising hot pancake forging of Ti- 6Al-4V. 15. SUBJECT TERMS titanium... industrial -scale trial comprising hot pancake forging of Ti-6Al-4V. Keywords: Titanium, Texture, Modeling, Strain Partitioning, Variant Selection... industrial -scale forging of Ti- 6Al-4V. 2. Background A brief review of pertinent previous efforts in the area of texture modeling is presented below
Cloud computing and validation of expandable in silico livers
2010-01-01
Background In Silico Livers (ISLs) are works in progress. They are used to challenge multilevel, multi-attribute, mechanistic hypotheses about the hepatic disposition of xenobiotics coupled with hepatic responses. To enhance ISL-to-liver mappings, we added discrete time metabolism, biliary elimination, and bolus dosing features to a previously validated ISL and initiated re-validated experiments that required scaling experiments to use more simulated lobules than previously, more than could be achieved using the local cluster technology. Rather than dramatically increasing the size of our local cluster we undertook the re-validation experiments using the Amazon EC2 cloud platform. So doing required demonstrating the efficacy of scaling a simulation to use more cluster nodes and assessing the scientific equivalence of local cluster validation experiments with those executed using the cloud platform. Results The local cluster technology was duplicated in the Amazon EC2 cloud platform. Synthetic modeling protocols were followed to identify a successful parameterization. Experiment sample sizes (number of simulated lobules) on both platforms were 49, 70, 84, and 152 (cloud only). Experimental indistinguishability was demonstrated for ISL outflow profiles of diltiazem using both platforms for experiments consisting of 84 or more samples. The process was analogous to demonstration of results equivalency from two different wet-labs. Conclusions The results provide additional evidence that disposition simulations using ISLs can cover the behavior space of liver experiments in distinct experimental contexts (there is in silico-to-wet-lab phenotype similarity). The scientific value of experimenting with multiscale biomedical models has been limited to research groups with access to computer clusters. The availability of cloud technology coupled with the evidence of scientific equivalency has lowered the barrier and will greatly facilitate model sharing as well as provide straightforward tools for scaling simulations to encompass greater detail with no extra investment in hardware. PMID:21129207
Theilmann, Wiebke; Löscher, Wolfgang; Socala, Katarzyna; Frieling, Helge; Bleich, Stefan; Brandt, Claudia
2014-06-01
Electroconvulsive therapy is the most effective therapy for major depressive disorder (MDD). The remission rate is above 50% in previously pharmacoresistant patients but the mechanisms of action are not fully understood. Electroconvulsive stimulation (ECS) in rodents mimics antidepressant electroconvulsive therapy (ECT) in humans and is widely used to investigate the underlying mechanisms of ECT. For the translational value of findings in animal models it is essential to establish models with the highest construct, face and predictive validity possible. The commonly used model for ECT in rodents does not meet the demand for high construct validity. For ECT, cortical surface electrodes are used to induce therapeutic seizures whereas ECS in rodents is exclusively performed by auricular or corneal electrodes. However, the stimulation site has a major impact on the type and spread of the induced seizure activity and its antidepressant effect. We propose a method in which ECS is performed by screw electrodes placed above the motor cortex of rats to closely simulate the clinical situation and thereby increase the construct validity of the model. Cortical ECS in rats induced reliably seizures comparable to human ECT. Cortical ECS was more effective than auricular ECS to reduce immobility in the forced swim test. Importantly, auricular stimulation had a negative influence on the general health condition of the rats with signs of fear during the stimulation sessions. These results suggest that auricular ECS in rats is not a suitable ECT model. Cortical ECS in rats promises to be a valid method to mimic ECT. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multi-component testing using HZ-PAN and AgZ-PAN Sorbents for OSPREY Model validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garn, Troy G.; Greenhalgh, Mitchell; Lyon, Kevin L.
2015-04-01
In efforts to further develop the capability of the Off-gas SeParation and RecoverY (OSPREY) model, multi-component tests were completed using both HZ-PAN and AgZ-PAN sorbents. The primary purpose of this effort was to obtain multi-component xenon and krypton capacities for comparison to future OSPREY predicted multi-component capacities using previously acquired Langmuir equilibrium parameters determined from single component isotherms. Experimental capacities were determined for each sorbent using two feed gas compositions of 1000 ppmv xenon and 150 ppmv krypton in either a helium or air balance. Test temperatures were consistently held at 220 K and the gas flowrate was 50 sccm.more » Capacities were calculated from breakthrough curves using TableCurve® 2D software by Jandel Scientific. The HZ-PAN sorbent was tested in the custom designed cryostat while the AgZ-PAN was tested in a newly installed cooling apparatus. Previous modeling validation efforts indicated the OSPREY model can be used to effectively predict single component xenon and krypton capacities for both engineered form sorbents. Results indicated good agreement with the experimental and predicted capacity values for both krypton and xenon on the sorbents. Overall, the model predicted slightly elevated capacities for both gases which can be partially attributed to the estimation of the parameters and the uncertainty associated with the experimental measurements. Currently, OSPREY is configured such that one species adsorbs and one does not (i.e. krypton in helium). Modification of OSPREY code is currently being performed to incorporate multiple adsorbing species and non-ideal interactions of gas phase species with the sorbent and adsorbed phases. Once these modifications are complete, the sorbent capacities determined in the present work will be used to validate OSPREY multicomponent adsorption predictions.« less
Adopting Webcasts over Time: The Influence of Perceptions and Attitudes
ERIC Educational Resources Information Center
Lust, Griet; Elen, Jan; Clarebout, Geraldine
2012-01-01
Given the popularity of webcasts and their educational benefits as stressed in previous research, this paper investigates students' acceptance and continued use of webcasts in an undergraduate course. Furthermore, the study explores the determinants of students' webcast use by employing the well-validated Technology Acceptance Model (TAM) of Davis…
Qi, Bing-Bing; Resnick, Barbara
2014-01-01
To assess the psychometric properties of Chinese versions self-efficacy and outcome expectations on osteoporosis medication adherence (SEOMA-C and OEOMA-C) scales. Back-translated tools were assessed by internal consistency and R2 by structured equation modeling, confirmatory factor analyses, hypothesis testing, and criterion-related validity among 110 (81 females, 29 males) Mandarin-speaking immigrants (mean age = 63.44, SD = 9.63). The Cronbach's alpha for SEOMA-C and OEOMA-C is .904 and .937, respectively. There was fair and good fit of the measurement model to the data. Previous bone mineral density (BMD) testing, calcaneus BMD, self-efficacy for exercise, and osteoporosis medication adherence were positively related to SEOMA-C scores. These scales constitute some preliminary validity and reliability. Further refined and cultural sensitive items could be explored and added.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, Paolo; Theiler, C.; Fasoli, A.
A methodology for plasma turbulence code validation is discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The present work extends the analysis carried out in a previous paper [P. Ricci et al., Phys. Plasmas 16, 055703 (2009)] where the validation observables were introduced. Here, it is discussed how to quantify the agreement between experiments and simulations with respect to each observable, how to define a metric to evaluate this agreement globally, and - finally - how to assess the quality of a validation procedure. The methodology is then applied to the simulation of the basic plasmamore » physics experiment TORPEX [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulation models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auerbach, Scott S.; Shah, Ruchir R.; Mav, Deepak
Identification of carcinogenic activity is the primary goal of the 2-year bioassay. The expense of these studies limits the number of chemicals that can be studied and therefore chemicals need to be prioritized based on a variety of parameters. We have developed an ensemble of support vector machine classification models based on male F344 rat liver gene expression following 2, 14 or 90 days of exposure to a collection of hepatocarcinogens (aflatoxin B1, 1-amino-2,4-dibromoanthraquinone, N-nitrosodimethylamine, methyleugenol) and non-hepatocarcinogens (acetaminophen, ascorbic acid, tryptophan). Seven models were generated based on individual exposure durations (2, 14 or 90 days) or a combination ofmore » exposures (2 + 14, 2 + 90, 14 + 90 and 2 + 14 + 90 days). All sets of data, with the exception of one yielded models with 0% cross-validation error. Independent validation of the models was performed using expression data from the liver of rats exposed at 2 dose levels to a collection of alkenylbenzene flavoring agents. Depending on the model used and the exposure duration of the test data, independent validation error rates ranged from 47% to 10%. The variable with the most notable effect on independent validation accuracy was exposure duration of the alkenylbenzene test data. All models generally exhibited improved performance as the exposure duration of the alkenylbenzene data increased. The models differentiated between hepatocarcinogenic (estragole and safrole) and non-hepatocarcinogenic (anethole, eugenol and isoeugenol) alkenylbenzenes previously studied in a carcinogenicity bioassay. In the case of safrole the models correctly differentiated between carcinogenic and non-carcinogenic dose levels. The models predict that two alkenylbenzenes not previously assessed in a carcinogenicity bioassay, myristicin and isosafrole, would be weakly hepatocarcinogenic if studied at a dose level of 2 mmol/kg bw/day for 2 years in male F344 rats; therefore suggesting that these chemicals should be a higher priority relative to other untested alkenylbenzenes for evaluation in the carcinogenicity bioassay. The results of the study indicate that gene expression-based predictive models are an effective tool for identifying hepatocarcinogens. Furthermore, we find that exposure duration is a critical variable in the success or failure of such an approach, particularly when evaluating chemicals with unknown carcinogenic potency.« less
Auerbach, Scott S; Shah, Ruchir R; Mav, Deepak; Smith, Cynthia S; Walker, Nigel J; Vallant, Molly K; Boorman, Gary A; Irwin, Richard D
2010-03-15
Identification of carcinogenic activity is the primary goal of the 2-year bioassay. The expense of these studies limits the number of chemicals that can be studied and therefore chemicals need to be prioritized based on a variety of parameters. We have developed an ensemble of support vector machine classification models based on male F344 rat liver gene expression following 2, 14 or 90 days of exposure to a collection of hepatocarcinogens (aflatoxin B1, 1-amino-2,4-dibromoanthraquinone, N-nitrosodimethylamine, methyleugenol) and non-hepatocarcinogens (acetaminophen, ascorbic acid, tryptophan). Seven models were generated based on individual exposure durations (2, 14 or 90 days) or a combination of exposures (2+14, 2+90, 14+90 and 2+14+90 days). All sets of data, with the exception of one yielded models with 0% cross-validation error. Independent validation of the models was performed using expression data from the liver of rats exposed at 2 dose levels to a collection of alkenylbenzene flavoring agents. Depending on the model used and the exposure duration of the test data, independent validation error rates ranged from 47% to 10%. The variable with the most notable effect on independent validation accuracy was exposure duration of the alkenylbenzene test data. All models generally exhibited improved performance as the exposure duration of the alkenylbenzene data increased. The models differentiated between hepatocarcinogenic (estragole and safrole) and non-hepatocarcinogenic (anethole, eugenol and isoeugenol) alkenylbenzenes previously studied in a carcinogenicity bioassay. In the case of safrole the models correctly differentiated between carcinogenic and non-carcinogenic dose levels. The models predict that two alkenylbenzenes not previously assessed in a carcinogenicity bioassay, myristicin and isosafrole, would be weakly hepatocarcinogenic if studied at a dose level of 2 mmol/kg bw/day for 2 years in male F344 rats; therefore suggesting that these chemicals should be a higher priority relative to other untested alkenylbenzenes for evaluation in the carcinogenicity bioassay. The results of the study indicate that gene expression-based predictive models are an effective tool for identifying hepatocarcinogens. Furthermore, we find that exposure duration is a critical variable in the success or failure of such an approach, particularly when evaluating chemicals with unknown carcinogenic potency. Published by Elsevier Inc.
Genetic demographic networks: Mathematical model and applications.
Kimmel, Marek; Wojdyła, Tomasz
2016-10-01
Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise distributions of alleles, in the case of haploid non-recombining loci such as mitochondrial and Y-chromosome loci in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Astrøm, Anne Nordrehaug
2008-06-01
Using a prospective design and a representative sample of 25-yr-old Norwegians, this study hypothesized that action planning and coping planning will add to the prediction of flossing at 4 wk of follow-up over and above the effect of intention and previous flossing. This study tested the validity of a proposed 3-factor structure of the measurement model of intention, action planning, and coping planning and for its invariance across gender. A survey was conducted in three Norwegian counties, and 1,509 out of 8,000 randomly selected individuals completed questionnaires assessing the constructs of action planning and coping planning related to daily flossing. A random subsample of 500 participants was followed up at 4 wk with a telephone interview to assess flossing. Confirmatory factor analysis (CFA) confirmed the proposed 3-factor model after respecification. Although the chi-square test was statistically significant [chi(2) = 58.501, degrees of freedom (d.f.) = 17), complementary fit indices were satisfactory [goodness-of-fit index (GFI) = 0.99, root mean squared error of approximation (RMSEA) = 0.04]. Multigroup CFA provided evidence of complete invariance of the measurement model across gender. After controlling for previous flossing, intention (beta = 0.08) and action planning (beta = 0.11) emerged as independent predictors of subsequent flossing, accounting for 2.3% of its variance. Factorial validity of intention, action planning and coping planning, and the validity of action planning in predicting flossing prospectively, was confirmed by the present study.
Snorradóttir, Bergthóra S; Jónsdóttir, Fjóla; Sigurdsson, Sven Th; Másson, Már
2014-08-01
A model is presented for transdermal drug delivery from single-layered silicone matrix systems. The work is based on our previous results that, in particular, extend the well-known Higuchi model. Recently, we have introduced a numerical transient model describing matrix systems where the drug dissolution can be non-instantaneous. Furthermore, our model can describe complex interactions within a multi-layered matrix and the matrix to skin boundary. The power of the modelling approach presented here is further illustrated by allowing the possibility of a donor solution. The model is validated by a comparison with experimental data, as well as validating the parameter values against each other, using various configurations with donor solution, silicone matrix and skin. Our results show that the model is a good approximation to real multi-layered delivery systems. The model offers the ability of comparing drug release for ibuprofen and diclofenac, which cannot be analysed by the Higuchi model because the dissolution in the latter case turns out to be limited. The experiments and numerical model outlined in this study could also be adjusted to more general formulations, which enhances the utility of the numerical model as a design tool for the development of drug-loaded matrices for trans-membrane and transdermal delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
A MELD-based model to determine risk of mortality among patients with acute variceal bleeding.
Reverter, Enric; Tandon, Puneeta; Augustin, Salvador; Turon, Fanny; Casu, Stefania; Bastiampillai, Ravin; Keough, Adam; Llop, Elba; González, Antonio; Seijo, Susana; Berzigotti, Annalisa; Ma, Mang; Genescà, Joan; Bosch, Jaume; García-Pagán, Joan Carles; Abraldes, Juan G
2014-02-01
Patients with cirrhosis with acute variceal bleeding (AVB) have high mortality rates (15%-20%). Previously described models are seldom used to determine prognoses of these patients, partially because they have not been validated externally and because they include subjective variables, such as bleeding during endoscopy and Child-Pugh score, which are evaluated inconsistently. We aimed to improve determination of risk for patients with AVB. We analyzed data collected from 178 patients with cirrhosis (Child-Pugh scores of A, B, and C: 15%, 57%, and 28%, respectively) and esophageal AVB who received standard therapy from 2007 through 2010. We tested the performance (discrimination and calibration) of previously described models, including the model for end-stage liver disease (MELD), and developed a new MELD calibration to predict the mortality of patients within 6 weeks of presentation with AVB. MELD-based predictions were validated in cohorts of patients from Canada (n = 240) and Spain (n = 221). Among study subjects, the 6-week mortality rate was 16%. MELD was the best model in terms of discrimination; it was recalibrated to predict the 6-week mortality rate with logistic regression (logit, -5.312 + 0.207 • MELD; bootstrapped R(2), 0.3295). MELD values of 19 or greater predicted 20% or greater mortality, whereas MELD scores less than 11 predicted less than 5% mortality. The model performed well for patients from Canada at all risk levels. In the Spanish validation set, in which all patients were treated with banding ligation, MELD predictions were accurate up to the 20% risk threshold. We developed a MELD-based model that accurately predicts mortality among patients with AVB, based on objective variables available at admission. This model could be useful to evaluate the efficacy of new therapies and stratify patients in randomized trials. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
AORSA full wave calculations of helicon waves in DIII-D and ITER
NASA Astrophysics Data System (ADS)
Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.
2018-06-01
Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases. These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10%–20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.
Role of multiple cusps in tooth fracture.
Barani, Amir; Bush, Mark B; Lawn, Brian R
2014-07-01
The role of multiple cusps in the biomechanics of human molar tooth fracture is analysed. A model with four cusps at the bite surface replaces the single dome structure used in previous simulations. Extended finite element modelling, with provision to embed longitudinal cracks into the enamel walls, enables full analysis of crack propagation from initial extension to final failure. The cracks propagate longitudinally around the enamel side walls from starter cracks placed either at the top surface (radial cracks) or from the tooth base (margin cracks). A feature of the crack evolution is its stability, meaning that extension occurs steadily with increasing applied force. Predictions from the model are validated by comparison with experimental data from earlier publications, in which crack development was followed in situ during occlusal loading of extracted human molars. The results show substantial increase in critical forces to produce longitudinal fractures with number of cuspal contacts, indicating a capacity for an individual tooth to spread the load during mastication. It is argued that explicit critical force equations derived in previous studies remain valid, at the least as a means for comparing the capacity for teeth of different dimensions to sustain high bite forces. Copyright © 2014 Elsevier Ltd. All rights reserved.
AORSA full wave calculations of helicon waves in DIII-D and ITER
Lau, Cornwall; Jaeger, E.F.; Bertelli, Nicola; ...
2018-04-11
Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases.more » These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10-20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.« less
AORSA full wave calculations of helicon waves in DIII-D and ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Cornwall; Jaeger, E.F.; Bertelli, Nicola
Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases.more » These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10-20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.« less
NASA Astrophysics Data System (ADS)
Yan, Yajing; Barth, Alexander; Beckers, Jean-Marie; Candille, Guillem; Brankart, Jean-Michel; Brasseur, Pierre
2015-04-01
Sea surface height, sea surface temperature and temperature profiles at depth collected between January and December 2005 are assimilated into a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. 60 ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments. Incremental analysis update scheme is applied in order to reduce spurious oscillations due to the model state correction. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with observations used in the assimilation experiments and independent observations, which goes further than most previous studies and constitutes one of the original points of this paper. Regarding the deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations in order to diagnose the ensemble distribution properties in a deterministic way. Regarding the probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centred random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system. The improvement of the assimilation is demonstrated using these validation metrics. Finally, the deterministic validation and the probabilistic validation are analysed jointly. The consistency and complementarity between both validations are highlighted. High reliable situations, in which the RMS error and the CRPS give the same information, are identified for the first time in this paper.
Feng, Allen L; Wesely, Nicholas C; Hoehle, Lloyd P; Phillips, Katie M; Yamasaki, Alisa; Campbell, Adam P; Gregorio, Luciano L; Killeen, Thomas E; Caradonna, David S; Meier, Josh C; Gray, Stacey T; Sedaghat, Ahmad R
2017-12-01
Previous studies have identified subdomains of the 22-item Sino-Nasal Outcome Test (SNOT-22), reflecting distinct and largely independent categories of chronic rhinosinusitis (CRS) symptoms. However, no study has validated the subdomain structure of the SNOT-22. This study aims to validate the existence of underlying symptom subdomains of the SNOT-22 using confirmatory factor analysis (CFA) and to develop a subdomain model that practitioners and researchers can use to describe CRS symptomatology. A total of 800 patients with CRS were included into this cross-sectional study (400 CRS patients from Boston, MA, and 400 CRS patients from Reno, NV). Their SNOT-22 responses were analyzed using exploratory factor analysis (EFA) to determine the number of symptom subdomains. A CFA was performed to develop a validated measurement model for the underlying SNOT-22 subdomains along with various tests of validity and goodness of fit. EFA demonstrated 4 distinct factors reflecting: sleep, nasal, otologic/facial pain, and emotional symptoms (Cronbach's alpha, >0.7; Bartlett's test of sphericity, p < 0.001; Kaiser-Meyer-Olkin >0.90), independent of geographic locale. The corresponding CFA measurement model demonstrated excellent measures of fit (root mean square error of approximation, <0.06; standardized root mean square residual, <0.08; comparative fit index, >0.95; Tucker-Lewis index, >0.95) and measures of construct validity (heterotrait-monotrait [HTMT] ratio, <0.85; composite reliability, >0.7), again independent of geographic locale. The use of the 4-subdomain structure for SNOT-22 (reflecting sleep, nasal, otologic/facial pain, and emotional symptoms of CRS) was validated as the most appropriate to calculate SNOT-22 subdomain scores for patients from different geographic regions using CFA. © 2017 ARS-AAOA, LLC.
ERIC Educational Resources Information Center
Dever, Richard B.
The purpose of Project COMPETE is to use previous research and exemplary practices to develop and validate a model and training sequence to assist retarded youth to make the transition from school to employment in the most competitive environment possible. This project working paper lists vocational goals and objectives that individuals with…
ERIC Educational Resources Information Center
Berge, Kjell Lars; Evensen, Lars Sigfred; Thygesen, Ragnar
2016-01-01
The model presented in this article aspires to represent a theoretically valid and coherent definition and description of writing, as a basis for teaching and assessing writing as a key competency in school. It represents a critique as well as an extension of previous alternatives in that it views writing as a culturally and individually…
Just, Allan C; Wright, Robert O; Schwartz, Joel; Coull, Brent A; Baccarelli, Andrea A; Tellez-Rojo, Martha María; Moody, Emily; Wang, Yujie; Lyapustin, Alexei; Kloog, Itai
2015-07-21
Recent advances in estimating fine particle (PM2.5) ambient concentrations use daily satellite measurements of aerosol optical depth (AOD) for spatially and temporally resolved exposure estimates. Mexico City is a dense megacity that differs from other previously modeled regions in several ways: it has bright land surfaces, a distinctive climatological cycle, and an elevated semi-enclosed air basin with a unique planetary boundary layer dynamic. We extend our previous satellite methodology to the Mexico City area, a region with higher PM2.5 than most U.S. and European urban areas. Using a novel 1 km resolution AOD product from the MODIS instrument, we constructed daily predictions across the greater Mexico City area for 2004-2014. We calibrated the association of AOD to PM2.5 daily using municipal ground monitors, land use, and meteorological features. Predictions used spatial and temporal smoothing to estimate AOD when satellite data were missing. Our model performed well, resulting in an out-of-sample cross-validation R(2) of 0.724. Cross-validated root-mean-squared prediction error (RMSPE) of the model was 5.55 μg/m(3). This novel model reconstructs long- and short-term spatially resolved exposure to PM2.5 for epidemiological studies in Mexico City.
NASA Astrophysics Data System (ADS)
Thomas, E. G.; Shepherd, S. G.
2017-12-01
Global patterns of ionospheric convection have been widely studied in terms of the interplanetary magnetic field (IMF) magnitude and orientation in both the Northern and Southern Hemispheres using observations from the Super Dual Auroral Radar Network (SuperDARN). The dynamic range of driving conditions under which existing SuperDARN statistical models are valid is currently limited to periods when the high-latitude convection pattern remains above about 60° geomagnetic latitude. Cousins and Shepherd [2010] found this to correspond to intervals when the solar wind electric field Esw < 4.1 mV/m and IMF Bz is negative. Conversely, under northward IMF conditions (Bz > 0) the high-latitude radars often experience difficulties in measuring convection above about 85° geomagnetic latitude. In this presentation, we introduce a new statistical model of ionospheric convection which is valid for much more dominant IMF Bz conditions than was previously possible by including velocity measurements from the newly constructed tiers of radars in the Northern Hemisphere at midlatitudes and in the polar cap. This new model (TS17) is compared to previous statistical models derived from high-latitude SuperDARN observations (RG96, PSR10, CS10) and its impact on instantaneous Map Potential solutions is examined.
Just, Allan C.; Wright, Robert O.; Schwartz, Joel; Coull, Brent A.; Baccarelli, Andrea A.; Tellez-Rojo, Martha María; Moody, Emily; Wang, Yujie; Lyapustin, Alexei; Kloog, Itai
2015-01-01
Recent advances in estimating fine particle (PM2.5) ambient concentrations use daily satellite measurements of aerosol optical depth (AOD) for spatially and temporally resolved exposure estimates. Mexico City is a dense megacity that differs from other previously modeled regions in several ways: it has bright land surfaces, a distinctive climatological cycle, and an elevated semi-enclosed air basin with a unique planetary boundary layer dynamic. We extend our previous satellite methodology to the Mexico City area, a region with higher PM2.5 than most US and European urban areas. Using a novel 1 km resolution AOD product from the MODIS instrument, we constructed daily predictions across the greater Mexico City area for 2004–2014. We calibrated the association of AOD to PM2.5 daily using municipal ground monitors, land use, and meteorological features. Predictions used spatial and temporal smoothing to estimate AOD when satellite data were missing. Our model performed well, resulting in an out-of-sample cross validation R2 of 0.724. Cross-validated root mean squared prediction error (RMSPE) of the model was 5.55 μg/m3. This novel model reconstructs long- and short-term spatially resolved exposure to PM2.5 for epidemiological studies in Mexico City. PMID:26061488
Turusheva, Anna; Frolova, Elena; Bert, Vaes; Hegendoerfer, Eralda; Degryse, Jean-Marie
2017-07-01
Prediction models help to make decisions about further management in clinical practice. This study aims to develop a mortality risk score based on previously identified risk predictors and to perform internal and external validations. In a population-based prospective cohort study of 611 community-dwelling individuals aged 65+ in St. Petersburg (Russia), all-cause mortality risks over 2.5 years follow-up were determined based on the results obtained from anthropometry, medical history, physical performance tests, spirometry and laboratory tests. C-statistic, risk reclassification analysis, integrated discrimination improvement analysis, decision curves analysis, internal validation and external validation were performed. Older adults were at higher risk for mortality [HR (95%CI)=4.54 (3.73-5.52)] when two or more of the following components were present: poor physical performance, low muscle mass, poor lung function, and anemia. If anemia was combined with high C-reactive protein (CRP) and high B-type natriuretic peptide (BNP) was added the HR (95%CI) was slightly higher (5.81 (4.73-7.14)) even after adjusting for age, sex and comorbidities. Our models were validated in an external population of adults 80+. The extended model had a better predictive capacity for cardiovascular mortality [HR (95%CI)=5.05 (2.23-11.44)] compared to the baseline model [HR (95%CI)=2.17 (1.18-4.00)] in the external population. We developed and validated a new risk prediction score that may be used to identify older adults at higher risk for mortality in Russia. Additional studies need to determine which targeted interventions improve the outcomes of these at-risk individuals. Copyright © 2017 Elsevier B.V. All rights reserved.
Wittich, Christopher M; Wang, Amy T; Fiala, Justin A; Mauck, Karen F; Mandrekar, Jayawant N; Ratelle, John T; Beckman, Thomas J
2016-01-01
Mobile device applications (apps) may enhance live CME courses. We aimed to (1) validate a measure of participant attitudes toward using a conference app and (2) determine associations between participant characteristics and attitudes toward CME apps with conference app usage. We conducted a cross-sectional validation study of participants at the Mayo Clinic Selected Topics in Internal Medicine Course. A conference app was developed that included presentation slides, note-taking features, search functions, social networking with other attendees, and access to presenter information. The CME app attitudes survey instrument (CMEAPP-10) was designed to determine participant attitudes toward conference apps. Of the 602 participants, 498 (82.7%) returned surveys. Factor analysis revealed a two-dimensional model for CMEAPP-10 scores (Cronbach α, 0.97). Mean (SD) CMEAPP-10 scores (maximum possible score of five) were higher for women than for men (4.06 [0.91] versus 3.85 [0.92]; P = .04). CMEAPP-10 scores (mean [SD]) were significantly associated (P = .02) with previous app usage as follows: less than once per month, 3.73 (1.05); monthly, 3.41 (1.16); weekly, 4.03 (0.69); and daily or more, 4.06 (0.89). Scores were unrelated to participant age, specialty, practice characteristics, or previous app use. This is the first validated measure of attitudes toward CME apps among course participants. App usage was higher among younger participants who had previously used educational or professional apps. Additionally, attitudes were more favorable among women and those who had previously used apps. These findings have important implications regarding efforts to engage participants with portable and accessible technology.
Lindberg, Ann-Sofie; Oksa, Juha; Antti, Henrik; Malm, Christer
2015-01-01
Physical capacity has previously been deemed important for firefighters physical work capacity, and aerobic fitness, muscular strength, and muscular endurance are the most frequently investigated parameters of importance. Traditionally, bivariate and multivariate linear regression statistics have been used to study relationships between physical capacities and work capacities among firefighters. An alternative way to handle datasets consisting of numerous correlated variables is to use multivariate projection analyses, such as Orthogonal Projection to Latent Structures. The first aim of the present study was to evaluate the prediction and predictive power of field and laboratory tests, respectively, on firefighters' physical work capacity on selected work tasks. Also, to study if valid predictions could be achieved without anthropometric data. The second aim was to externally validate selected models. The third aim was to validate selected models on firefighters' and on civilians'. A total of 38 (26 men and 12 women) + 90 (38 men and 52 women) subjects were included in the models and the external validation, respectively. The best prediction (R2) and predictive power (Q2) of Stairs, Pulling, Demolition, Terrain, and Rescue work capacities included field tests (R2 = 0.73 to 0.84, Q2 = 0.68 to 0.82). The best external validation was for Stairs work capacity (R2 = 0.80) and worst for Demolition work capacity (R2 = 0.40). In conclusion, field and laboratory tests could equally well predict physical work capacities for firefighting work tasks, and models excluding anthropometric data were valid. The predictive power was satisfactory for all included work tasks except Demolition.
Urdea, Mickey; Kolberg, Janice; Wilber, Judith; Gerwien, Robert; Moler, Edward; Rowe, Michael; Jorgensen, Paul; Hansen, Torben; Pedersen, Oluf; Jørgensen, Torben; Borch-Johnsen, Knut
2009-01-01
Background Improved identification of subjects at high risk for development of type 2 diabetes would allow preventive interventions to be targeted toward individuals most likely to benefit. In previous research, predictive biomarkers were identified and used to develop multivariate models to assess an individual's risk of developing diabetes. Here we describe the training and validation of the PreDx™ Diabetes Risk Score (DRS) model in a clinical laboratory setting using baseline serum samples from subjects in the Inter99 cohort, a population-based primary prevention study of cardiovascular disease. Methods Among 6784 subjects free of diabetes at baseline, 215 subjects progressed to diabetes (converters) during five years of follow-up. A nested case-control study was performed using serum samples from 202 converters and 597 randomly selected nonconverters. Samples were randomly assigned to equally sized training and validation sets. Seven biomarkers were measured using assays developed for use in a clinical reference laboratory. Results The PreDx DRS model performed better on the training set (area under the curve [AUC] = 0.837) than fasting plasma glucose alone (AUC = 0.779). When applied to the sequestered validation set, the PreDx DRS showed the same performance (AUC = 0.838), thus validating the model. This model had a better AUC than any other single measure from a fasting sample. Moreover, the model provided further risk stratification among high-risk subpopulations with impaired fasting glucose or metabolic syndrome. Conclusions The PreDx DRS provides the absolute risk of diabetes conversion in five years for subjects identified to be “at risk” using the clinical factors. PMID:20144324
Urdea, Mickey; Kolberg, Janice; Wilber, Judith; Gerwien, Robert; Moler, Edward; Rowe, Michael; Jorgensen, Paul; Hansen, Torben; Pedersen, Oluf; Jørgensen, Torben; Borch-Johnsen, Knut
2009-07-01
Improved identification of subjects at high risk for development of type 2 diabetes would allow preventive interventions to be targeted toward individuals most likely to benefit. In previous research, predictive biomarkers were identified and used to develop multivariate models to assess an individual's risk of developing diabetes. Here we describe the training and validation of the PreDx Diabetes Risk Score (DRS) model in a clinical laboratory setting using baseline serum samples from subjects in the Inter99 cohort, a population-based primary prevention study of cardiovascular disease. Among 6784 subjects free of diabetes at baseline, 215 subjects progressed to diabetes (converters) during five years of follow-up. A nested case-control study was performed using serum samples from 202 converters and 597 randomly selected nonconverters. Samples were randomly assigned to equally sized training and validation sets. Seven biomarkers were measured using assays developed for use in a clinical reference laboratory. The PreDx DRS model performed better on the training set (area under the curve [AUC] = 0.837) than fasting plasma glucose alone (AUC = 0.779). When applied to the sequestered validation set, the PreDx DRS showed the same performance (AUC = 0.838), thus validating the model. This model had a better AUC than any other single measure from a fasting sample. Moreover, the model provided further risk stratification among high-risk subpopulations with impaired fasting glucose or metabolic syndrome. The PreDx DRS provides the absolute risk of diabetes conversion in five years for subjects identified to be "at risk" using the clinical factors. Copyright 2009 Diabetes Technology Society.
Hybrid LCA model for assessing the embodied environmental impacts of buildings in South Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Minho, E-mail: minmin40@hanmail.net; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr; Ji, Changyoon, E-mail: chnagyoon@yonsei.ac.kr
2015-01-15
The assessment of the embodied environmental impacts of buildings can help decision-makers plan environment-friendly buildings and reduce environmental impacts. For a more comprehensive assessment of the embodied environmental impacts of buildings, a hybrid life cycle assessment model was developed in this study. The developed model can assess the embodied environmental impacts (global warming, ozone layer depletion, acidification, eutrophication, photochemical ozone creation, abiotic depletion, and human toxicity) generated directly and indirectly in the material manufacturing, transportation, and construction phases. To demonstrate the application and validity of the developed model, the environmental impacts of an elementary school building were assessed using themore » developed model and compared with the results of a previous model used in a case study. The embodied environmental impacts from the previous model were lower than those from the developed model by 4.6–25.2%. Particularly, human toxicity potential (13 kg C{sub 6}H{sub 6} eq.) calculated by the previous model was much lower (1965 kg C{sub 6}H{sub 6} eq.) than what was calculated by the developed model. The results indicated that the developed model can quantify the embodied environmental impacts of buildings more comprehensively, and can be used by decision-makers as a tool for selecting environment-friendly buildings. - Highlights: • The model was developed to assess the embodied environmental impacts of buildings. • The model evaluates GWP, ODP, AP, EP, POCP, ADP, and HTP as environmental impacts. • The model presents more comprehensive results than the previous model by 4.6–100%. • The model can present the HTP of buildings, which the previous models cannot do. • Decision-makers can use the model for selecting environment-friendly buildings.« less
NASA Technical Reports Server (NTRS)
Geng, Tao; Paxson, Daniel E.; Zheng, Fei; Kuznetsov, Andrey V.; Roberts, William L.
2008-01-01
Pulsed combustion is receiving renewed interest as a potential route to higher performance in air breathing propulsion systems. Pulsejets offer a simple experimental device with which to study unsteady combustion phenomena and validate simulations. Previous computational fluid dynamic (CFD) simulation work focused primarily on the pulsejet combustion and exhaust processes. This paper describes a new inlet sub-model which simulates the fluidic and mechanical operation of a valved pulsejet head. The governing equations for this sub-model are described. Sub-model validation is provided through comparisons of simulated and experimentally measured reed valve motion, and time averaged inlet mass flow rate. The updated pulsejet simulation, with the inlet sub-model implemented, is validated through comparison with experimentally measured combustion chamber pressure, inlet mass flow rate, operational frequency, and thrust. Additionally, the simulated pulsejet exhaust flowfield, which is dominated by a starting vortex ring, is compared with particle imaging velocimetry (PIV) measurements on the bases of velocity, vorticity, and vortex location. The results show good agreement between simulated and experimental data. The inlet sub-model is shown to be critical for the successful modeling of pulsejet operation. This sub-model correctly predicts both the inlet mass flow rate and its phase relationship with the combustion chamber pressure. As a result, the predicted pulsejet thrust agrees very well with experimental data.
Pfau, Maximilian; Lindner, Moritz; Goerdt, Lukas; Thiele, Sarah; Nadal, Jennifer; Schmid, Matthias; Schmitz-Valckenberg, Steffen; Sadda, SriniVas R; Holz, Frank G; Fleckenstein, Monika
2018-05-16
To systematically compare the prognostic value of multiple shape-descriptive factors in the natural course of the disease. A total of 296 eyes of 201 patients (female patients 130; mean age: 72.2 ± 13.08 years) with a median follow-up of 2.38 years from 2 prospective, noninterventional natural history studies (Fundus-Autofluorescence-in-Age-related-Macular-Degeneration [clinicaltrials.gov identifier NCT00393692], Directional-Spread-in-Geographic-Atrophy [NCT02051998]) were included in the analysis. Serial fundus autofluorescence images were annotated using semiautomated image analysis software to determine the lesion area, circularity, perimeter, and caliper diameters. These variables and the fundus autofluorescence phenotype were evaluated for prediction of the future square root progression rates using linear mixed-effects models. For the combined model, leave-one-out cross validation on patient level (Scenario 1: previously unknown patient) resulted in a goodness-to-fit (R value) of 0.244 and leave-one-out cross validation on visit level (Scenario 2: previous observation of the patient) in a R value of 0.391. This indicated that shape-descriptive factors could explain 24.4% of the variance in geographic atrophy progression in previously unknown patients and 39.1% in patients with previous observation. These findings confirm the relevance of shape-descriptive factors and previous progression as prognostic variables for geographic atrophy progression. However, a substantial part of the remaining variation in geographic atrophy progression seems to depend on other variables, some of which are visible in optical coherence tomography.
Flow measurement around a model ship with propeller and rudder
NASA Astrophysics Data System (ADS)
van, S. H.; Kim, W. J.; Yoon, H. S.; Lee, Y. Y.; Park, I. R.
2006-04-01
For the design of hull forms with better resistance and propulsive performance, it is essential to understand flow characteristics, such as wave and wake development, around a ship. Experimental data detailing the local flow characteristics are invaluable for the validation of the physical and numerical modeling of computational fluid dynamics (CFD) codes, which are recently gaining attention as efficient tools for hull form evaluation. This paper describes velocity and wave profiles measured in the towing tank for the KRISO 138,000 m3 LNG carrier model with propeller and rudder. The effects of propeller and rudder on the wake and wave profiles in the stern region are clearly identified. The results contained in this paper can provide an opportunity to explore integrated flow phenomena around a model ship in the self-propelled condition, and can be added to the International Towing Tank Conference benchmark data for CFD validation as the previous KCS and KVLCC cases.
Epistemic belief structures within introductory astronomy
NASA Astrophysics Data System (ADS)
Johnson, Keith; Willoughby, Shannon D.
2018-06-01
The reliability and validity of inventories should be verified in multiple ways. Although the epistemological beliefs about the physical science survey (EBAPS) has been deemed to be reliable and valid by the authors, the axes or factor structure proposed by the authors has not been independently checked. Using data from a study sample we discussed in previous publications, we performed exploratory factor analysis on 1,258 post-test EBAPS surveys. The students in the sample were from an introductory Astronomy course at a mid-sized western university. Inspection suggested the use of either a three-factor model or a five-factor model. Each of the factors is interpreted and discussed, and the factors are compared to the axes proposed by the authors of the EBAPS. We find that the five-factor model extrapolated from our data partially overlaps with the model put forth by the authors of the EBAPS, and that many of the questions did not load onto any factors.
NASA Astrophysics Data System (ADS)
de Weger, Letty A.; Beerthuizen, Thijs; Hiemstra, Pieter S.; Sont, Jacob K.
2014-08-01
One-third of the Dutch population suffers from allergic rhinitis, including hay fever. In this study, a 5-day-ahead hay fever forecast was developed and validated for grass pollen allergic patients in the Netherlands. Using multiple regression analysis, a two-step pollen and hay fever symptom prediction model was developed using actual and forecasted weather parameters, grass pollen data and patient symptom diaries. Therefore, 80 patients with a grass pollen allergy rated the severity of their hay fever symptoms during the grass pollen season in 2007 and 2008. First, a grass pollen forecast model was developed using the following predictors: (1) daily means of grass pollen counts of the previous 10 years; (2) grass pollen counts of the previous 2-week period of the current year; and (3) maximum, minimum and mean temperature ( R 2 = 0.76). The second modeling step concerned the forecasting of hay fever symptom severity and included the following predictors: (1) forecasted grass pollen counts; (2) day number of the year; (3) moving average of the grass pollen counts of the previous 2 week-periods; and (4) maximum and mean temperatures ( R 2 = 0.81). Since the daily hay fever forecast is reported in three categories (low-, medium- and high symptom risk), we assessed the agreement between the observed and the 1- to 5-day-ahead predicted risk categories by kappa, which ranged from 65 % to 77 %. These results indicate that a model based on forecasted temperature and grass pollen counts performs well in predicting symptoms of hay fever up to 5 days ahead.
de Weger, Letty A; Beerthuizen, Thijs; Hiemstra, Pieter S; Sont, Jacob K
2014-08-01
One-third of the Dutch population suffers from allergic rhinitis, including hay fever. In this study, a 5-day-ahead hay fever forecast was developed and validated for grass pollen allergic patients in the Netherlands. Using multiple regression analysis, a two-step pollen and hay fever symptom prediction model was developed using actual and forecasted weather parameters, grass pollen data and patient symptom diaries. Therefore, 80 patients with a grass pollen allergy rated the severity of their hay fever symptoms during the grass pollen season in 2007 and 2008. First, a grass pollen forecast model was developed using the following predictors: (1) daily means of grass pollen counts of the previous 10 years; (2) grass pollen counts of the previous 2-week period of the current year; and (3) maximum, minimum and mean temperature (R (2)=0.76). The second modeling step concerned the forecasting of hay fever symptom severity and included the following predictors: (1) forecasted grass pollen counts; (2) day number of the year; (3) moving average of the grass pollen counts of the previous 2 week-periods; and (4) maximum and mean temperatures (R (2)=0.81). Since the daily hay fever forecast is reported in three categories (low-, medium- and high symptom risk), we assessed the agreement between the observed and the 1- to 5-day-ahead predicted risk categories by kappa, which ranged from 65 % to 77 %. These results indicate that a model based on forecasted temperature and grass pollen counts performs well in predicting symptoms of hay fever up to 5 days ahead.
NASA Technical Reports Server (NTRS)
Bower, Chad; Padilla, Sebastian; Iacomini, Christie; Paul, Heather L.
2010-01-01
This paper details the validation of modeling methods for the three core components of a Metabolic heat regenerated Temperature Swing Adsorption (MTSA) subassembly, developed for use in a Portable Life Support System (PLSS). The first core component in the subassembly is a sorbent bed, used to capture and reject metabolically produced carbon dioxide (CO2). The sorbent bed performance can be augmented with a temperature swing driven by a liquid CO2 (LCO2) sublimation heat exchanger (SHX) for cooling the sorbent bed, and a condensing, icing heat exchanger (CIHX) for warming the sorbent bed. As part of the overall MTSA effort, scaled design validation test articles for each of these three components have been independently tested in laboratory conditions. Previously described modeling methodologies developed for implementation in Thermal Desktop and SINDA/FLUINT are reviewed and updated, their application in test article models outlined, and the results of those model correlations relayed. Assessment of the applicability of each modeling methodology to the challenge of simulating the response of the test articles and their extensibility to a full scale integrated subassembly model is given. The independent verified and validated modeling methods are applied to the development of a MTSA subassembly prototype model and predictions of the subassembly performance are given. These models and modeling methodologies capture simulation of several challenging and novel physical phenomena in the Thermal Desktop and SINDA/FLUINT software suite. Novel methodologies include CO2 adsorption front tracking and associated thermal response in the sorbent bed, heat transfer associated with sublimation of entrained solid CO2 in the SHX, and water mass transfer in the form of ice as low as 210 K in the CIHX.
Pasquesi, Stephanie A; Margulies, Susan S
2018-01-01
Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain-skull displacement in the neonatal piglet head ( n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain-skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain-skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain-skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain-skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations.
Pasquesi, Stephanie A.; Margulies, Susan S.
2018-01-01
Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain–skull displacement in the neonatal piglet head (n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain–skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain–skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain–skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain–skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations. PMID:29515995
NASA Astrophysics Data System (ADS)
Kundu, Snehasis
2018-09-01
In this study vertical distribution of sediment particles in steady uniform turbulent open channel flow over erodible bed is investigated using fractional advection-diffusion equation (fADE). Unlike previous investigations on fADE to investigate the suspension distribution, in this study the modified Atangana-Baleanu-Caputo fractional derivative with a non-singular and non-local kernel is employed. The proposed fADE is solved and an analytical model for finding vertical suspension distribution is obtained. The model is validated against experimental as well as field measurements of Missouri River, Mississippi River and Rio Grande conveyance channel and is compared with the Rouse equation and other fractional model found in literature. A quantitative error analysis shows that the proposed model is able to predict the vertical distribution of particles more appropriately than previous models. The validation results shows that the fractional model can be equally applied to all size of particles with an appropriate choice of the order of the fractional derivative α. It is also found that besides particle diameter, parameter α depends on the mass density of particle and shear velocity of the flow. To predict this parameter, a multivariate regression is carried out and a relation is proposed for easy application of the model. From the results for sand and plastic particles, it is found that the parameter α is more sensitive to mass density than the particle diameter. The rationality of the dependence of α on particle and flow characteristics has been justified physically.
Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion
NASA Astrophysics Data System (ADS)
Hamid, M. R. Ab; Sami, W.; Mohmad Sidek, M. H.
2017-09-01
Assessment of discriminant validity is a must in any research that involves latent variables for the prevention of multicollinearity issues. Fornell and Larcker criterion is the most widely used method for this purpose. However, a new method has emerged for establishing the discriminant validity assessment through heterotrait-monotrait (HTMT) ratio of correlations method. Therefore, this article presents the results of discriminant validity assessment using these methods. Data from previous study was used that involved 429 respondents for empirical validation of value-based excellence model in higher education institutions (HEI) in Malaysia. From the analysis, the convergent, divergent and discriminant validity were established and admissible using Fornell and Larcker criterion. However, the discriminant validity is an issue when employing the HTMT criterion. This shows that the latent variables under study faced the issue of multicollinearity and should be looked into for further details. This also implied that the HTMT criterion is a stringent measure that could detect the possible indiscriminant among the latent variables. In conclusion, the instrument which consisted of six latent variables was still lacking in terms of discriminant validity and should be explored further.
NASA Astrophysics Data System (ADS)
Afshar, Ali
An evaluation of Lagrangian-based, discrete-phase models for multi-component liquid sprays encountered in the combustors of gas turbine engines is considered. In particular, the spray modeling capabilities of the commercial software, ANSYS Fluent, was evaluated. Spray modeling was performed for various cold flow validation cases. These validation cases include a liquid jet in a cross-flow, an airblast atomizer, and a high shear fuel nozzle. Droplet properties including velocity and diameter were investigated and compared with previous experimental and numerical results. Different primary and secondary breakup models were evaluated in this thesis. The secondary breakup models investigated include the Taylor analogy breakup (TAB) model, the wave model, the Kelvin-Helmholtz Rayleigh-Taylor model (KHRT), and the Stochastic secondary droplet (SSD) approach. The modeling of fuel sprays requires a proper treatment for the turbulence. Reynolds-averaged Navier-Stokes (RANS), large eddy simulation (LES), hybrid RANS/LES, and dynamic LES (DLES) were also considered for the turbulent flows involving sprays. The spray and turbulence models were evaluated using the available benchmark experimental data.
Dahlqvist, Camilla; Hansson, Gert-Åke; Forsman, Mikael
2016-07-01
Repetitive work and work in constrained postures are risk factors for developing musculoskeletal disorders. Low-cost, user-friendly technical methods to quantify these risks are needed. The aims were to validate inclination angles and velocities of one model of the new generation of accelerometers with integrated data loggers against a previously validated one, and to compare meaurements when using a plain reference posture with that of a standardized one. All mean (n = 12 subjects) angular RMS-differences in 4 work tasks and 4 body parts were <2.5° and all mean median angular velocity differences <5.0 °/s. The mean correlation between the inclination signal-pairs was 0.996. This model of the new generation of triaxial accelerometers proved to be comparable to the validated accelerometer using a data logger. This makes it well-suited, for both researchers and practitioners, to measure postures and movements during work. Further work is needed for validation of the plain reference posture for upper arms. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Miller, Warren B.; Rodgers, Joseph Lee; Pasta, David J.
2010-01-01
We examine how the motivational sequence that leads to childbearing predicts fertility outcomes across reproductive careers. Using a motivational traits-desires-intentions theoretical framework, we test a structural equation model using prospective male and female data from the National Longitudinal Survey of Youth. Specifically, we take motivational data collected during the 1979–1982 period, when the youths were in their teens and early twenties, to predict the timing of the next child born after 1982 and the total number of children born by 2002. Separate models were estimated for males and females but with equality constraints imposed unless relaxing these constraints improved the overall model fit. The results indicate substantial explanatory power of fertility motivations for both short-term and long-term fertility outcomes. They also reveal the effects of both gender role attitude and educational intentions on these outcomes. Although some sex differences in model pathways occurred, the primary hypothesized pathways were essentially the same across the sexes. Two validity substudies support the soundness of the results. A third substudy comparing the male and female models across the sample split on the basis of previous childbearing revealed a number of pattern differences within the four sex-by-previous childbearing groups. Several of the more robust of these pattern differences offer interesting insights and support the validity and usefulness of our theoretical framework. PMID:20463915
Estimation of sojourn time in chronic disease screening without data on interval cases.
Chen, T H; Kuo, H S; Yen, M F; Lai, M S; Tabar, L; Duffy, S W
2000-03-01
Estimation of the sojourn time on the preclinical detectable period in disease screening or transition rates for the natural history of chronic disease usually rely on interval cases (diagnosed between screens). However, to ascertain such cases might be difficult in developing countries due to incomplete registration systems and difficulties in follow-up. To overcome this problem, we propose three Markov models to estimate parameters without using interval cases. A three-state Markov model, a five-state Markov model related to regional lymph node spread, and a five-state Markov model pertaining to tumor size are applied to data on breast cancer screening in female relatives of breast cancer cases in Taiwan. Results based on a three-state Markov model give mean sojourn time (MST) 1.90 (95% CI: 1.18-4.86) years for this high-risk group. Validation of these models on the basis of data on breast cancer screening in the age groups 50-59 and 60-69 years from the Swedish Two-County Trial shows the estimates from a three-state Markov model that does not use interval cases are very close to those from previous Markov models taking interval cancers into account. For the five-state Markov model, a reparameterized procedure using auxiliary information on clinically detected cancers is performed to estimate relevant parameters. A good fit of internal and external validation demonstrates the feasibility of using these models to estimate parameters that have previously required interval cancers. This method can be applied to other screening data in which there are no data on interval cases.
Validation of a Radiosensitivity Molecular Signature in Breast Cancer
Eschrich, Steven A.; Fulp, William J.; Pawitan, Yudi; Foekens, John A.; Smid, Marcel; Martens, John W. M.; Echevarria, Michelle; Kamath, Vidya; Lee, Ji-Hyun; Harris, Eleanor E.; Bergh, Jonas; Torres-Roca, Javier F.
2014-01-01
Purpose Previously, we developed a radiosensitivity molecular signature (RSI) that was clinically-validated in three independent datasets (rectal, esophageal, head and neck) in 118 patients. Here, we test RSI in radiotherapy (RT) treated breast cancer patients. Experimental Design RSI was tested in two previously published breast cancer datasets. Patients were treated at the Karolinska University Hospital (n=159) and Erasmus Medical Center (n=344). RSI was applied as previously described. Results We tested RSI in RT-treated patients (Karolinska). Patients predicted to be radiosensitive (RS) had an improved 5 yr relapse-free survival when compared with radioresistant (RR) patients (95% vs. 75%, p=0.0212) but there was no difference between RS/RR patients treated without RT (71% vs. 77%, p=0.6744), consistent with RSI being RT-specific (interaction term RSIxRT, p=0.05). Similarly, in the Erasmus dataset RT-treated RS patients had an improved 5-year distant-metastasis-free survival over RR patients (77% vs. 64%, p=0.0409) but no difference was observed in patients treated without RT (RS vs. RR, 80% vs. 81%, p=0.9425). Multivariable analysis showed RSI is the strongest variable in RT-treated patients (Karolinska, HR=5.53, p=0.0987, Erasmus, HR=1.64, p=0.0758) and in backward selection (removal alpha of 0.10) RSI was the only variable remaining in the final model. Finally, RSI is an independent predictor of outcome in RT-treated ER+ patients (Erasmus, multivariable analysis, HR=2.64, p=0.0085). Conclusions RSI is validated in two independent breast cancer datasets totaling 503 patients. Including prior data, RSI is validated in five independent cohorts (621 patients) and represents, to our knowledge, the most extensively validated molecular signature in radiation oncology. PMID:22832933
Ortiz-Hernández, Luis; Vega López, A Valeria; Ramos-Ibáñez, Norma; Cázares Lara, L Joana; Medina Gómez, R Joab; Pérez-Salgado, Diana
To develop and validate equations to estimate the percentage of body fat of children and adolescents from Mexico using anthropometric measurements. A cross-sectional study was carried out with 601 children and adolescents from Mexico aged 5-19 years. The participants were randomly divided into the following two groups: the development sample (n=398) and the validation sample (n=203). The validity of previously published equations (e.g., Slaughter) was also assessed. The percentage of body fat was estimated by dual-energy X-ray absorptiometry. The anthropometric measurements included height, sitting height, weight, waist and arm circumferences, skinfolds (triceps, biceps, subscapular, supra-iliac, and calf), and elbow and bitrochanteric breadth. Linear regression models were estimated with the percentage of body fat as the dependent variable and the anthropometric measurements as the independent variables. Equations were created based on combinations of six to nine anthropometric variables and had coefficients of determination (r 2 ) equal to or higher than 92.4% for boys and 85.8% for girls. In the validation sample, the developed equations had high r 2 values (≥85.6% in boys and ≥78.1% in girls) in all age groups, low standard errors (SE≤3.05% in boys and ≤3.52% in girls), and the intercepts were not different from the origin (p>0.050). Using the previously published equations, the coefficients of determination were lower, and/or the intercepts were different from the origin. The equations developed in this study can be used to assess the percentage of body fat of Mexican schoolchildren and adolescents, as they demonstrate greater validity and lower error compared with previously published equations. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Active Aeroelastic Wing Aerodynamic Model Development and Validation for a Modified F/A-18A Airplane
NASA Technical Reports Server (NTRS)
Cumming, Stephen B.; Diebler, Corey G.
2005-01-01
A new aerodynamic model has been developed and validated for a modified F/A-18A airplane used for the Active Aeroelastic Wing (AAW) research program. The goal of the program was to demonstrate the advantages of using the inherent flexibility of an aircraft to enhance its performance. The research airplane was an F/A-18A with wings modified to reduce stiffness and a new control system to increase control authority. There have been two flight phases. Data gathered from the first flight phase were used to create the new aerodynamic model. A maximum-likelihood output-error parameter estimation technique was used to obtain stability and control derivatives. The derivatives were incorporated into the National Aeronautics and Space Administration F-18 simulation, validated, and used to develop new AAW control laws. The second phase of flights was used to evaluate the handling qualities of the AAW airplane and the control law design process, and to further test the accuracy of the new model. The flight test envelope covered Mach numbers between 0.85 and 1.30 and dynamic pressures from 600 to 1250 pound-force per square foot. The results presented in this report demonstrate that a thorough parameter identification analysis can be used to improve upon models that were developed using other means. This report describes the parameter estimation technique used, details the validation techniques, discusses differences between previously existing F/A-18 models, and presents results from the second phase of research flights.
Huang, Yihua; Huang, Wenjin; Wang, Qinglei; Su, Xujian
2013-07-01
The equivalent circuit model of a piezoelectric transformer is useful in designing and optimizing the related driving circuits. Based on previous work, an equivalent circuit model for a circular flexural-vibration-mode piezoelectric transformer with moderate thickness is proposed and validated by finite element analysis. The input impedance, voltage gain, and efficiency of the transformer are determined through computation. The basic behaviors of the transformer are shown by numerical results.
Jensen, Garrett; Tang, Chad; Hess, Kenneth R; Bishop, Andrew J; Pan, Hubert Y; Li, Jing; Yang, James N; Tannir, Nizar M; Amini, Behrang; Tatsui, Claudio; Rhines, Laurence; Brown, Paul D; Ghia, Amol J
2017-01-01
We sought to validate the Prognostic Index for Spinal Metastases (PRISM), a scoring system that stratifies patients into subgroups by overall survival.Methods and materials: The PRISM was previously created from multivariate Cox regression with patients enrolled in prospective single institution trials of stereotactic spine radiosurgery (SSRS) for spinal metastasis. We assess model calibration and discrimination within a validation cohort of patients treated off-trial with SSRS for metastatic disease at the same institution. The training and validation cohorts consisted of 205 and 249 patients respectively. Similar survival trends were shown in the 4 PRISM. Survival was significantly different between PRISM subgroups (P<0.0001). C-index for the validation cohort was 0.68 after stratification into subgroups. We internally validated the PRISM with patients treated off-protocol, demonstrating that it can distinguish subgroups by survival, which will be useful for individualizing treatment of spinal metastases and stratifying patients for clinical trials.
Dang, T D T; Vermeulen, A; Mertens, L; Geeraerd, A H; Van Impe, J F; Devlieghere, F
2011-01-31
In a previous study on Zygosaccharomyces bailii, three growth/no growth models have been developed, predicting growth probability of the yeast at different conditions typical for acidified foods (Dang, T.D.T., Mertens, L., Vermeulen, A., Geeraerd, A.H., Van Impe, J.F., Debevere, J., Devlieghere, F., 2010. Modeling the growth/no growth boundary of Z. bailii in acidic conditions: A contribution to the alternative method to preserve foods without using chemical preservatives. International Journal of Food Microbiology 137, 1-12). In these broth-based models, the variables were pH, water activity and acetic acid, with acetic acid concentration expressed in volume % on the total culture medium (i.e., broth). To continue the previous study, validation experiments were performed for 15 selected combinations of intrinsic factors to assess the performance of the model at 22°C (60days) in a real food product (ketchup). Although the majority of experimental results were consistent, some remarkable deviations between prediction and validation were observed, e.g., Z. bailii growth occurred in conditions where almost no growth had been predicted. A thorough investigation revealed that the difference between two ways of expressing acetic acid concentration (i.e., on broth basis and on water basis) is rather significant, particularly for media containing high amounts of dry matter. Consequently, the use of broth-based concentrations in the models was not appropriate. Three models with acetic acid concentration expressed on water basis were established and it was observed that predictions by these models well matched the validation results; therefore a "systematic error" in broth-based models was recognized. In practice, quantities of antimicrobial agents are often calculated based on the water content of food products. Hence, to assure reliable predictions and facilitate the application of models (developed from lab media with high dry matter contents), it is important to express antimicrobial agents' concentrations on a common basis-the water content. Reviews over other published growth/no growth models in literature are carried out and expressions of the stress factors' concentrations (on broth basis) found in these models confirm this finding. Copyright © 2010 Elsevier B.V. All rights reserved.
Assessing Acquiescence in Surveys Using Positively and Negatively Worded Questions
ERIC Educational Resources Information Center
Hutton, Amy Christine
2017-01-01
The purpose of this study was to assess the impact of acquiescence on both positively and negatively worded questions, both when unidimensionality was assumed and when it was not. To accomplish this, undergraduate student responses to a previously validated survey of student engagement were used to compare several models of acquiescence, using a…
Canopy cover and leaf area index relationships for wheat, triticale, and corn
USDA-ARS?s Scientific Manuscript database
The AquaCrop model requires canopy cover (CC) measurements to define crop growth and development. Some previously collected data sets that would be useful for calibrating and validating AquaCrop contain only leaf area index (LAI) data, but could be used if relationships were available relating LAI t...
ERIC Educational Resources Information Center
Webb, Christian A.; Schwab, Zachary J.; Weber, Mareen; DelDonno, Sophie; Kipman, Maia; Weiner, Melissa R.; Killgore, William D. S.
2013-01-01
The construct of emotional intelligence (EI) has garnered increased attention in the popular media and scientific literature. Several competing measures of EI have been developed, including self-report and performance-based instruments. The current study replicates and expands on previous research by examining three competing EI measures…
2012-04-01
CONTRACTING ORGANIZATION: Bronx Veterans Medical Research Foundation, Inc... Bronx , NY 10468-3904 REPORT DATE: April 2012 TYPE OF REPORT: Final PREPARED FOR: U.S. Army...WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Bronx Veterans Medical Research
Processes of Discourse Integration: Evidence from Event-Related Brain Potentials
ERIC Educational Resources Information Center
Ferretti, Todd R.; Singer, Murray; Harwood, Jenna
2013-01-01
We used ERP methodology to investigate how readers validate discourse concepts and update situation models when those concepts followed factive (e.g., knew) and nonfactive (e.g., "guessed") verbs, and also when they were true, false, or indeterminate with reference to previous discourse. Following factive verbs, early (P2) and later brain…
Mastery of Negative Affect: A Hierarchical Model of Emotional Self-Efficacy Beliefs
ERIC Educational Resources Information Center
Caprara, Gian Vittorio; Di Giunta, Laura; Pastorelli, Concetta; Eisenberg, Nancy
2013-01-01
Building on previous studies that formulated measures for assessing self-efficacy beliefs regarding the management of anger/irritation and despondency/sadness, we developed 3 new scales to assess perceived self-efficacy in managing fear, shame/embarrassment, and guilt. In Study 1, the internal and construct validity of the 5 aforementioned…
USDA-ARS?s Scientific Manuscript database
Our previous report showed that concomitant supplementation of lycopene and eicosa-pentaenoic acid synergistically inhibited the proliferation of human colon cancer HT-29 cells in vitro. To validate our findings, the present study investigated whether consumption of lycopene and fish oil would help ...
NASA Astrophysics Data System (ADS)
Salon, Stefano; Cossarini, Gianpiero; Bolzon, Giorgio; Teruzzi, Anna
2017-04-01
The Mediterranean Monitoring and Forecasting Centre (Med-MFC) is one of the regional production centres of the EU Copernicus Marine Environment Monitoring Service (CMEMS). Med-MFC manages a suite of numerical model systems for the operational delivery of the CMEMS products, providing continuous monitoring and forecasting of the Mediterranean marine environment. The CMEMS products of fundamental biogeochemical variables (chlorophyll, nitrate, phosphate, oxygen, phytoplankton biomass, primary productivity, pH, pCO2) are organised as gridded datasets and are available at the marine.copernicus.eu web portal. Quantitative estimates of CMEMS products accuracy are prerequisites to release reliable information to intermediate users, end users and to other downstream services. In particular, validation activities aim to deliver accuracy information of the model products and to serve as a long term monitoring of the performance of the modelling systems. The quality assessment of model output is implemented using a multiple-stages approach, basically inspired to the classic "GODAE 4 Classes" metrics and criteria (consistency, quality, performance and benefit). Firstly, pre-operational runs qualify the operational model system against historical data, also providing a verification of the improvements of the new model system release with respect to the previous version. Then, the near real time (NRT) validation aims at delivering a sustained on-line skill assessment of the model analysis and forecast, relying on the NRT available relevant observations (e.g. in situ, Bio Argo and satellite observations). NRT validation results are operated on weekly basis and published on the MEDEAF web portal (www.medeaf.inogs.it). On a quarterly basis, the integration of the NRT validation activities delivers a comprehensive view of the accuracy of model forecast through the official CMEMS validation webpage. Multi-Year production (e.g. reanalysis runs) follows a similar procedure, and the validation is achieved using the same metrics on available historical observations (e.g. the World Ocean Atlas 2013 dataset). Results of the validation activities show that the comparison of the different variables of the CMEMS products with experimental data is feasible at different levels (i.e. either as skill assessment of the short-term forecast and as model consistency through different system versions) and at different spatial and temporal scales. In particular, the accuracy of some variables (chlorophyll, nitrate, oxygen) can be provided at weekly scale and sub-mesoscale, others (carbonate system, phosphate) at quarterly/annual and sub-basin scale, and others (phytoplankton biomass, primary production) only at the level of consistency of model functioning (e.g. literature- or climatology-based). In spite of a wide literature on model validation has been produced so far, maintaining a validation framework in the biogeochemical operational contest that fulfils GODAE criteria is still a challenge. Recent results of the validation activities and new potential validation framework at the Med-MFC will be presented in our contribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X; Wang, J; Hu, W
Purpose: The Varian RapidPlan™ is a commercial knowledge-based optimization process which uses a set of clinically used treatment plans to train a model that can predict individualized dose-volume objectives. The purpose of this study is to evaluate the performance of RapidPlan to generate intensity modulated radiation therapy (IMRT) plans for cervical cancer. Methods: Totally 70 IMRT plans for cervical cancer with varying clinical and physiological indications were enrolled in this study. These patients were all previously treated in our institution. There were two prescription levels usually used in our institution: 45Gy/25 fractions and 50.4Gy/28 fractions. 50 of these plans weremore » selected to train the RapidPlan model for predicting dose-volume constraints. After model training, this model was validated with 10 plans from training pool(internal validation) and additional other 20 new plans(external validation). All plans used for the validation were re-optimized with the original beam configuration and the generated priorities from RapidPlan were manually adjusted to ensure that re-optimized DVH located in the range of the model prediction. DVH quantitative analysis was performed to compare the RapidPlan generated and the original manual optimized plans. Results: For all the validation cases, RapidPlan based plans (RapidPlan) showed similar or superior results compared to the manual optimized ones. RapidPlan increased the result of D98% and homogeneity in both two validations. For organs at risk, the RapidPlan decreased mean doses of bladder by 1.25Gy/1.13Gy (internal/external validation) on average, with p=0.12/p<0.01. The mean dose of rectum and bowel were also decreased by an average of 2.64Gy/0.83Gy and 0.66Gy/1.05Gy,with p<0.01/ p<0.01and p=0.04/<0.01 for the internal/external validation, respectively. Conclusion: The RapidPlan model based cervical cancer plans shows ability to systematically improve the IMRT plan quality. It suggests that RapidPlan has great potential to make the treatment planning process more efficient.« less
An energy-dependent numerical model for the condensation probability, γ j
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerby, Leslie Marie
The “condensation” probability, γ j, is an important variable in the preequilibrium stage of nuclear spallation reactions. It represents the probability that p j excited nucleons (excitons) will “condense” to form complex particle type j in the excited residual nucleus. In addition, it has a significant impact on the emission width, or probability of emitting fragment type j from the residual nucleus. Previous formulations for γ j were energy-independent and valid for fragments up to 4He only. This paper explores the formulation of a new model for γ j, one which is energy-dependent and valid for up to 28Mg, andmore » which provides improved fits compared to experimental fragment spectra.« less
An energy-dependent numerical model for the condensation probability, γ j
Kerby, Leslie Marie
2016-12-09
The “condensation” probability, γ j, is an important variable in the preequilibrium stage of nuclear spallation reactions. It represents the probability that p j excited nucleons (excitons) will “condense” to form complex particle type j in the excited residual nucleus. In addition, it has a significant impact on the emission width, or probability of emitting fragment type j from the residual nucleus. Previous formulations for γ j were energy-independent and valid for fragments up to 4He only. This paper explores the formulation of a new model for γ j, one which is energy-dependent and valid for up to 28Mg, andmore » which provides improved fits compared to experimental fragment spectra.« less
NASA Astrophysics Data System (ADS)
Desantes, J. M.; Salvador, F. J.; López, J. J.; de La Morena, J.
2011-02-01
In this paper, a research aimed at quantifying mass and momentum transfer in the near-nozzle field of diesel sprays injected into stagnant ambient air is reported. The study combines X-ray measurements for two different nozzles and axial positions, which provide mass distributions in the spray, with a theoretical model based on momentum flux conservation, which was previously validated. This investigation has allowed the validation of Gaussian profiles for local fuel concentration and velocity near the nozzle exit, as well as the determination of Schmidt number at realistic diesel spray conditions. This information could be very useful for those who are interested in spray modeling, especially at high-pressure injection conditions.
Modelling of individual subject ozone exposure response kinetics.
Schelegle, Edward S; Adams, William C; Walby, William F; Marion, M Susan
2012-06-01
A better understanding of individual subject ozone (O(3)) exposure response kinetics will provide insight into how to improve models used in the risk assessment of ambient ozone exposure. To develop a simple two compartment exposure-response model that describes individual subject decrements in forced expiratory volume in one second (FEV(1)) induced by the acute inhalation of O(3) lasting up to 8 h. FEV(1) measurements of 220 subjects who participated in 14 previously completed studies were fit to the model using both particle swarm and nonlinear least squares optimization techniques to identify three subject-specific coefficients producing minimum "global" and local errors, respectively. Observed and predicted decrements in FEV(1) of the 220 subjects were used for validation of the model. Further validation was provided by comparing the observed O(3)-induced FEV(1) decrements in an additional eight studies with predicted values obtained using model coefficients estimated from the 220 subjects used in cross validation. Overall the individual subject measured and modeled FEV(1) decrements were highly correlated (mean R(2) of 0.69 ± 0.24). In addition, it was shown that a matrix of individual subject model coefficients can be used to predict the mean and variance of group decrements in FEV(1). This modeling approach provides insight into individual subject O(3) exposure response kinetics and provides a potential starting point for improving the risk assessment of environmental O(3) exposure.
Yeung, Michelle; Lu, Lily; Hughes, Adam M; Treit, Dallas; Dickson, Clayton T
2013-12-01
The neurobiological underpinnings of anxiety are of paramount importance to selective and efficacious pharmaceutical intervention. Hippocampal theta frequency in urethane anaesthetized rats is suppressed by all known (and some previously unknown) anti-anxiety (anxiolytic) drugs. Although these findings support the predictive validity of this assay, its construct validity (i.e., whether theta frequency actually indexes anxiety per se) has not been a subject of systematic investigation. We reasoned that if anxiolytic drugs suppress hippocampal theta frequency, then drugs that increase anxiety (i.e., anxiogenic agents) should increase theta frequency, thus providing evidence of construct validity. We used three proven anxiogenic drugs--two benzodiazepine receptor inverse agonists, N-methyl-β-carboline-3-carboxamide (FG7142) and β-carboline-3-carboxylate ethyl ester (βCCE), and one α2 noradrenergic receptor antagonist, 17α-hydroxy-yohimban-16α-carboxylic acid methyl ester (yohimbine) as pharmacological probes to assess the construct validity of the theta model. Although all three anxiogenic drugs significantly increased behavioural measures of anxiety in the elevated plus-maze, none of the three increased the frequency of hippocampal theta oscillations in the neurophysiological model. As a positive control, we demonstrated that diazepam, a proven anxiolytic drug, decreased the frequency of hippocampal theta, as in all other studies using this model. Given this discrepancy between the significant effects of anxiogenic drugs in the behavioural model and the null effects of these drugs in the neurophysiological model, we conclude that the construct validity of the hippocampal theta model of anxiety is questionable. Copyright © 2013 Elsevier Ltd. All rights reserved.
Population-based validation of a German version of the Brief Resilience Scale
Wenzel, Mario; Stieglitz, Rolf-Dieter; Kunzler, Angela; Bagusat, Christiana; Helmreich, Isabella; Gerlicher, Anna; Kampa, Miriam; Kubiak, Thomas; Kalisch, Raffael; Lieb, Klaus; Tüscher, Oliver
2018-01-01
Smith and colleagues developed the Brief Resilience Scale (BRS) to assess the individual ability to recover from stress despite significant adversity. This study aimed to validate the German version of the BRS. We used data from a population-based (sample 1: n = 1.481) and a representative (sample 2: n = 1.128) sample of participants from the German general population (age ≥ 18) to assess reliability and validity. Confirmatory factor analyses (CFA) were conducted to compare one- and two-factorial models from previous studies with a method-factor model which especially accounts for the wording of the items. Reliability was analyzed. Convergent validity was measured by correlating BRS scores with mental health measures, coping, social support, and optimism. Reliability was good (α = .85, ω = .85 for both samples). The method-factor model showed excellent model fit (sample 1: χ2/df = 7.544; RMSEA = .07; CFI = .99; SRMR = .02; sample 2: χ2/df = 1.166; RMSEA = .01; CFI = 1.00; SRMR = .01) which was significantly better than the one-factor model (Δχ2(4) = 172.71, p < .001) or the two-factor model (Δχ2(3) = 31.16, p < .001). The BRS was positively correlated with well-being, social support, optimism, and the coping strategies active coping, positive reframing, acceptance, and humor. It was negatively correlated with somatic symptoms, anxiety and insomnia, social dysfunction, depression, and the coping strategies religion, denial, venting, substance use, and self-blame. To conclude, our results provide evidence for the reliability and validity of the German adaptation of the BRS as well as the unidimensional structure of the scale once method effects are accounted for. PMID:29438435
Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, E.; Woods, J.; Judkoff, R.
2012-04-01
This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.
ERIC Educational Resources Information Center
Sitlington, Patricia L.; Easterday, Joseph R.
The purpose of Project COMPETE is to use previous research and exemplary practices to develop and validate a model and training sequence to assist retarded youth to make the transition from school to employment in the most competitive environment possible. The study reported in this project working paper sought to identify potential factors that…
Mathematic models for a ray tracing method and its applications in wireless optical communications.
Zhang, Minglun; Zhang, Yangan; Yuan, Xueguang; Zhang, Jinnan
2010-08-16
This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems.
Elasto-dynamic analysis of a gear pump-Part IV: Improvement in the pressure distribution modelling
NASA Astrophysics Data System (ADS)
Mucchi, E.; Dalpiaz, G.; Fernàndez del Rincòn, A.
2015-01-01
This work concerns external gear pumps for automotive applications, which operate at high speed and low pressure. In previous works of the authors (Part I and II, [1,2]), a non-linear lumped-parameter kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps was presented. It takes into account the most important phenomena involved in the operation of this kind of machine. The two main sources of noise and vibration are considered: pressure pulsation and gear meshing. The model has been used in order to foresee the influence of working conditions and design modifications on vibration generation. The model experimental validation is a difficult task. Thus, Part III proposes a novel methodology for the validation carried out by the comparison of simulations and experimental results concerning forces and moments: it deals with the external and inertial components acting on the gears, estimated by the model, and the reactions and inertial components on the pump casing and the test plate, obtained by measurements. The validation is carried out by comparing the level of the time synchronous average in the time domain and the waterfall maps in the frequency domain, with particular attention to identify system resonances. The validation results are satisfactory global, but discrepancies are still present. Moreover, the assessed model has been properly modified for the application to a new virtual pump prototype with helical gears in order to foresee gear accelerations and dynamic forces. Part IV is focused on improvements in the modelling and analysis of the phenomena bound to the pressure distribution around the gears in order to achieve results closer to the measured values. As a matter of fact, the simulation results have shown that a variable meshing stiffness has a notable contribution on the dynamic behaviour of the pump but this is not as important as the pressure phenomena. As a consequence, the original model was modified with the aim at improving the calculation of pressure forces and torques. The improved pressure formulation includes several phenomena not considered in the previous one, such as the variable pressure evolution at input and output ports, as well as an accurate description of the trapped volume and its connections with high and low pressure chambers. The importance of these improvements are highlighted by comparison with experimental results, showing satisfactory matching.
Crayton, Elise; Wolfe, Charles; Douiri, Abdel
2018-01-01
Objective We aim to identify and critically appraise clinical prediction models of mortality and function following ischaemic stroke. Methods Electronic databases, reference lists, citations were searched from inception to September 2015. Studies were selected for inclusion, according to pre-specified criteria and critically appraised by independent, blinded reviewers. The discrimination of the prediction models was measured by the area under the curve receiver operating characteristic curve or c-statistic in random effects meta-analysis. Heterogeneity was measured using I2. Appropriate appraisal tools and reporting guidelines were used in this review. Results 31395 references were screened, of which 109 articles were included in the review. These articles described 66 different predictive risk models. Appraisal identified poor methodological quality and a high risk of bias for most models. However, all models precede the development of reporting guidelines for prediction modelling studies. Generalisability of models could be improved, less than half of the included models have been externally validated(n = 27/66). 152 predictors of mortality and 192 predictors and functional outcome were identified. No studies assessing ability to improve patient outcome (model impact studies) were identified. Conclusions Further external validation and model impact studies to confirm the utility of existing models in supporting decision-making is required. Existing models have much potential. Those wishing to predict stroke outcome are advised to build on previous work, to update and adapt validated models to their specific contexts opposed to designing new ones. PMID:29377923
Völler, Swantje; Flint, Robert B; Stolk, Leo M; Degraeuwe, Pieter L J; Simons, Sinno H P; Pokorna, Paula; Burger, David M; de Groot, Ronald; Tibboel, Dick; Knibbe, Catherijne A J
2017-11-15
Particularly in the pediatric clinical pharmacology field, data-sharing offers the possibility of making the most of all available data. In this study, we utilize previously collected therapeutic drug monitoring (TDM) data of term and preterm newborns to develop a population pharmacokinetic model for phenobarbital. We externally validate the model using prospective phenobarbital data from an ongoing pharmacokinetic study in preterm neonates. TDM data from 53 neonates (gestational age (GA): 37 (24-42) weeks, bodyweight: 2.7 (0.45-4.5) kg; postnatal age (PNA): 4.5 (0-22) days) contained information on dosage histories, concentration and covariate data (including birth weight, actual weight, post-natal age (PNA), postmenstrual age, GA, sex, liver and kidney function, APGAR-score). Model development was carried out using NONMEM ® 7.3. After assessment of model fit, the model was validated using data of 17 neonates included in the DINO (Drug dosage Improvement in NeOnates)-study. Modelling of 229 plasma concentrations, ranging from 3.2 to 75.2mg/L, resulted in a one compartment model for phenobarbital. Clearance (CL) and volume (V d ) for a child with a birthweight of 2.6kg at PNA day 4.5 was 0.0091L/h (9%) and 2.38L (5%), respectively. Birthweight and PNA were the best predictors for CL maturation, increasing CL by 36.7% per kg birthweight and 5.3% per postnatal day of living, respectively. The best predictor for the increase in V d was actual bodyweight (0.31L/kg). External validation showed that the model can adequately predict the pharmacokinetics in a prospective study. Data-sharing can help to successfully develop and validate population pharmacokinetic models in neonates. From the results it seems that both PNA and bodyweight are required to guide dosing of phenobarbital in term and preterm neonates. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Tabak, Ying P; Sun, Xiaowu; Nunez, Carlos M; Gupta, Vikas; Johannes, Richard S
2017-03-01
Identifying patients at high risk for readmission early during hospitalization may aid efforts in reducing readmissions. We sought to develop an early readmission risk predictive model using automated clinical data available at hospital admission. We developed an early readmission risk model using a derivation cohort and validated the model with a validation cohort. We used a published Acute Laboratory Risk of Mortality Score as an aggregated measure of clinical severity at admission and the number of hospital discharges in the previous 90 days as a measure of disease progression. We then evaluated the administrative data-enhanced model by adding principal and secondary diagnoses and other variables. We examined the c-statistic change when additional variables were added to the model. There were 1,195,640 adult discharges from 70 hospitals with 39.8% male and the median age of 63 years (first and third quartile: 43, 78). The 30-day readmission rate was 11.9% (n=142,211). The early readmission model yielded a graded relationship of readmission and the Acute Laboratory Risk of Mortality Score and the number of previous discharges within 90 days. The model c-statistic was 0.697 with good calibration. When administrative variables were added to the model, the c-statistic increased to 0.722. Automated clinical data can generate a readmission risk score early at hospitalization with fair discrimination. It may have applied value to aid early care transition. Adding administrative data increases predictive accuracy. The administrative data-enhanced model may be used for hospital comparison and outcome research.
Prediction of chemo-response in serous ovarian cancer.
Gonzalez Bosquet, Jesus; Newtson, Andreea M; Chung, Rebecca K; Thiel, Kristina W; Ginader, Timothy; Goodheart, Michael J; Leslie, Kimberly K; Smith, Brian J
2016-10-19
Nearly one-third of serous ovarian cancer (OVCA) patients will not respond to initial treatment with surgery and chemotherapy and die within one year of diagnosis. If patients who are unlikely to respond to current standard therapy can be identified up front, enhanced tumor analyses and treatment regimens could potentially be offered. Using the Cancer Genome Atlas (TCGA) serous OVCA database, we previously identified a robust molecular signature of 422-genes associated with chemo-response. Our objective was to test whether this signature is an accurate and sensitive predictor of chemo-response in serous OVCA. We first constructed prediction models to predict chemo-response using our previously described 422-gene signature that was associated with response to treatment in serous OVCA. Performance of all prediction models were measured with area under the curves (AUCs, a measure of the model's accuracy) and their respective confidence intervals (CIs). To optimize the prediction process, we determined which elements of the signature most contributed to chemo-response prediction. All prediction models were replicated and validated using six publicly available independent gene expression datasets. The 422-gene signature prediction models predicted chemo-response with AUCs of ~70 %. Optimization of prediction models identified the 34 most important genes in chemo-response prediction. These 34-gene models had improved performance, with AUCs approaching 80 %. Both 422-gene and 34-gene prediction models were replicated and validated in six independent datasets. These prediction models serve as the foundation for the future development and implementation of a diagnostic tool to predict response to chemotherapy for serous OVCA patients.
Reid, J M; Gubitz, G J; Dai, D; Reidy, Y; Christian, C; Counsell, C; Dennis, M; Phillips, S J
2007-12-01
We aimed to validate a previously described six simple variable (SSV) model that was developed from acute and sub-acute stroke patients in our population that included hyper-acute stroke patients. A Stroke Outcome Study enrolled patients from 2001 to 2002. Functional status was assessed at 6 months using the modified Rankin Scale (mRS). SSV model performance was tested in our cohort. 538 acute ischaemic (87%) and haemorrhagic stroke patients were enrolled, 51% of whom presented to hospital within 6 h of symptom recognition. At 6 months post-stroke, 42% of patients had a good outcome (mRS < or = 2). Stroke patients presenting within 6 h of symptom recognition were significantly older with higher stroke severity. In our Stroke Outcome Study dataset, the SSV model had an area under the curve of 0.792 for 6 month outcomes and performed well for hyper-acute or post-acute stroke, age < or > or = 75 years, haemorrhagic or ischaemic stroke, men or women, moderate and severe stroke, but poorly for mild stroke. This study confirms the external validity of the SSV model in our hospital stroke population. This model can therefore be utilised for stratification in acute and hyper-acute stroke trials.
Hu, Jingwen; Klinich, Kathleen D; Reed, Matthew P; Kokkolaras, Michael; Rupp, Jonathan D
2012-06-01
In motor-vehicle crashes, young school-aged children restrained by vehicle seat belt systems often suffer from abdominal injuries due to submarining. However, the current anthropomorphic test device, so-called "crash dummy", is not adequate for proper simulation of submarining. In this study, a modified Hybrid-III six-year-old dummy model capable of simulating and predicting submarining was developed using MADYMO (TNO Automotive Safety Solutions). The model incorporated improved pelvis and abdomen geometry and properties previously tested in a modified physical dummy. The model was calibrated and validated against four sled tests under two test conditions with and without submarining using a multi-objective optimization method. A sensitivity analysis using this validated child dummy model showed that dummy knee excursion, torso rotation angle, and the difference between head and knee excursions were good predictors for submarining status. It was also shown that restraint system design variables, such as lap belt angle, D-ring height, and seat coefficient of friction (COF), may have opposite effects on head and abdomen injury risks; therefore child dummies and dummy models capable of simulating submarining are crucial for future restraint system design optimization for young school-aged children. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Nahathai, Wongpakaran
2012-01-01
Objective The Rosenberg Self-Esteem Scale (RSES) is a widely used instrument that has been tested for reliability and validity in many settings; however, some negative-worded items appear to have caused it to reveal low reliability in a number of studies. In this study, we revised one negative item that had previously (from the previous studies) produced the worst outcome in terms of the structure of the scale, then re-analyzed the new version for its reliability and construct validity, comparing it to the original version with respect to fit indices. Methods In total, 851 students from Chiang Mai University (mean age: 19.51±1.7, 57% of whom were female), participated in this study. Of these, 664 students completed the Thai version of the original RSES - containing five positively worded and five negatively worded items, while 187 students used the revised version containing six positively worded and four negatively worded items. Confirmatory factor analysis was applied, using a uni-dimensional model with method effects and a correlated uniqueness approach. Results The revised version showed the same level of reliability (good) as the original, but yielded a better model fit. The revised RSES demonstrated excellent fit statistics, with χ2=29.19 (df=19, n=187, p=0.063), GFI=0.970, TFI=0.969, NFI=0.964, CFI=0.987, SRMR=0.040 and RMSEA=0.054. Conclusion The revised version of the Thai RSES demonstrated an equivalent level of reliability but a better construct validity when compared to the original. PMID:22396685
Wongpakaran, Tinakon; Tinakon, Wongpakaran; Wongpakaran, Nahathai; Nahathai, Wongpakaran
2012-03-01
The Rosenberg Self-Esteem Scale (RSES) is a widely used instrument that has been tested for reliability and validity in many settings; however, some negative-worded items appear to have caused it to reveal low reliability in a number of studies. In this study, we revised one negative item that had previously (from the previous studies) produced the worst outcome in terms of the structure of the scale, then re-analyzed the new version for its reliability and construct validity, comparing it to the original version with respect to fit indices. In total, 851 students from Chiang Mai University (mean age: 19.51±1.7, 57% of whom were female), participated in this study. Of these, 664 students completed the Thai version of the original RSES - containing five positively worded and five negatively worded items, while 187 students used the revised version containing six positively worded and four negatively worded items. Confirmatory factor analysis was applied, using a uni-dimensional model with method effects and a correlated uniqueness approach. The revised version showed the same level of reliability (good) as the original, but yielded a better model fit. The revised RSES demonstrated excellent fit statistics, with χ²=29.19 (df=19, n=187, p=0.063), GFI=0.970, TFI=0.969, NFI=0.964, CFI=0.987, SRMR=0.040 and RMSEA=0.054. The revised version of the Thai RSES demonstrated an equivalent level of reliability but a better construct validity when compared to the original.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grassberger, C; Paganetti, H
Purpose: To develop a model that includes the process of resistance development into the treatment optimization process for schedules that include targeted therapies. Further, to validate the approach using clinical data and to apply the model to assess the optimal induction period with targeted agents before curative treatment with chemo-radiation in stage III lung cancer. Methods: Growth of the tumor and its subpopulations is modeled by Gompertzian growth dynamics, resistance induction as a stochastic process. Chemotherapy induced cell kill is modeled by log-cell kill dynamics, targeted agents similarly but restricted to the sensitive population. Radiation induced cell kill is assumedmore » to follow the linear-quadratic model. The validation patient data consist of a cohort of lung cancer patients treated with tyrosine kinase inhibitors that had longitudinal imaging data available. Results: The resistance induction model was successfully validated using clinical trial data from 49 patients treated with targeted agents. The observed recurrence kinetics, with tumors progressing from 1.4–63 months, result in tumor growth equaling a median volume doubling time of 92 days [34–248] and a median fraction of pre-existing resistance of 0.035 [0–0.22], in agreement with previous clinical studies. The model revealed widely varying optimal time points for the use of curative therapy, reaching from ∼1m to >6m depending on the patient’s growth rate and amount of pre-existing resistance. This demonstrates the importance of patient-specific treatment schedules when targeted agents are incorporated into the treatment. Conclusion: We developed a model including evolutionary dynamics of resistant sub-populations with traditional chemotherapy and radiation cell kill models. Fitting to clinical data yielded patient specific growth rates and resistant fraction in agreement with previous studies. Further application of the model demonstrated how proper timing of chemo-radiation could minimize the probability of resistance, increasing tumor control significantly.« less
Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S; Barbosa-Cánovas, Gustavo V; Liu, Fang
2017-07-01
Development and selection of model foods is a critical part of microwave thermal process development, simulation validation, and optimization. Previously developed model foods for pasteurization process evaluation utilized Maillard reaction products as the time-temperature integrators, which resulted in similar temperature sensitivity among the models. The aim of this research was to develop additional model foods based on different time-temperature integrators, determine their dielectric properties and color change kinetics, and validate the optimal model food in hot water and microwave-assisted pasteurization processes. Color, quantified using a * value, was selected as the time-temperature indicator for green pea and garlic puree model foods. Results showed 915 MHz microwaves had a greater penetration depth into the green pea model food than the garlic. a * value reaction rates for the green pea model were approximately 4 times slower than in the garlic model food; slower reaction rates were preferred for the application of model food in this study, that is quality evaluation for a target process of 90 °C for 10 min at the cold spot. Pasteurization validation used the green pea model food and results showed that there were quantifiable differences between the color of the unheated control, hot water pasteurization, and microwave-assisted thermal pasteurization system. Both model foods developed in this research could be utilized for quality assessment and optimization of various thermal pasteurization processes. © 2017 Institute of Food Technologists®.
Hunt, Hillary R; Gross, Alan M
2009-11-01
Obesity is a world-wide health concern approaching epidemic proportions. Successful long-term treatment involves a combination of bariatric surgery, diet, and exercise. Social cognitive models, such as the Theory of Reasoned Action (TRA) and the Theory of Planned Behavior (TPB), are among the most commonly tested theories utilized in the prediction of exercise. As exercise is not a completely volitional behavior, it is hypothesized that the TPB is a superior theoretical model for the prediction of exercise intentions and behavior. This study tested validity of the TPB in a sample of bariatric patients and further validated its improvement over the TRA in predicting exercise adherence at different operative stages. Results generally confirmed research hypotheses. Superiority of the TPB model was validated in this sample of bariatric patients, and Perceived Behavioral Control emerged as the single-best predictor of both exercise intentions and self-reported behavior. Finally, results suggested that both subjective norms and attitudes toward exercise played a larger role in the prediction of intention and behavior than previously reported.
Falkenström, Fredrik; Hatcher, Robert L; Skjulsvik, Tommy; Larsson, Mattias Holmqvist; Holmqvist, Rolf
2015-03-01
Recently, researchers have started to measure the working alliance repeatedly across sessions of psychotherapy, relating the working alliance to symptom change session by session. Responding to questionnaires after each session can become tedious, leading to careless responses and/or increasing levels of missing data. Therefore, assessment with the briefest possible instrument is desirable. Because previous research on the Working Alliance Inventory has found the separation of the Goal and Task factors problematic, the present study examined the psychometric properties of a 2-factor, 6-item working alliance measure, adapted from the Working Alliance Inventory, in 3 patient samples (ns = 1,095, 235, and 234). Results showed that a bifactor model fit the data well across the 3 samples, and the factor structure was stable across 10 sessions of primary care counseling/psychotherapy. Although the bifactor model with 1 general and 2 specific factors outperformed the 1-factor model in terms of model fit, dimensionality analyses based on the bifactor model results indicated that in practice the instrument is best treated as unidimensional. Results support the use of composite scores of all 6 items. The instrument was validated by replicating previous findings of session-by-session prediction of symptom reduction using the Autoregressive Latent Trajectory model. The 6-item working alliance scale, called the Session Alliance Inventory, is a promising alternative for researchers in search for a brief alliance measure to administer after every session. 2015 APA, all rights reserved
Machine learning and docking models for Mycobacterium tuberculosis topoisomerase I.
Ekins, Sean; Godbole, Adwait Anand; Kéri, György; Orfi, Lászlo; Pato, János; Bhat, Rajeshwari Subray; Verma, Rinkee; Bradley, Erin K; Nagaraja, Valakunja
2017-03-01
There is a shortage of compounds that are directed towards new targets apart from those targeted by the FDA approved drugs used against Mycobacterium tuberculosis. Topoisomerase I (Mttopo I) is an essential mycobacterial enzyme and a promising target in this regard. However, it suffers from a shortage of known inhibitors. We have previously used computational approaches such as homology modeling and docking to propose 38 FDA approved drugs for testing and identified several active molecules. To follow on from this, we now describe the in vitro testing of a library of 639 compounds. These data were used to create machine learning models for Mttopo I which were further validated. The combined Mttopo I Bayesian model had a 5 fold cross validation receiver operator characteristic of 0.74 and sensitivity, specificity and concordance values above 0.76 and was used to select commercially available compounds for testing in vitro. The recently described crystal structure of Mttopo I was also compared with the previously described homology model and then used to dock the Mttopo I actives norclomipramine and imipramine. In summary, we describe our efforts to identify small molecule inhibitors of Mttopo I using a combination of machine learning modeling and docking studies in conjunction with screening of the selected molecules for enzyme inhibition. We demonstrate the experimental inhibition of Mttopo I by small molecule inhibitors and show that the enzyme can be readily targeted for lead molecule development. Copyright © 2017 Elsevier Ltd. All rights reserved.
GEANT4 benchmark with MCNPX and PHITS for activation of concrete
NASA Astrophysics Data System (ADS)
Tesse, Robin; Stichelbaut, Frédéric; Pauly, Nicolas; Dubus, Alain; Derrien, Jonathan
2018-02-01
The activation of concrete is a real problem from the point of view of waste management. Because of the complexity of the issue, Monte Carlo (MC) codes have become an essential tool to its study. But various codes or even nuclear models exist in MC. MCNPX and PHITS have already been validated for shielding studies but GEANT4 is also a suitable solution. In these codes, different models can be considered for a concrete activation study. The Bertini model is not the best model for spallation while BIC and INCL model agrees well with previous results in literature.
Lattice hydrodynamic model based traffic control: A transportation cyber-physical system approach
NASA Astrophysics Data System (ADS)
Liu, Hui; Sun, Dihua; Liu, Weining
2016-11-01
Lattice hydrodynamic model is a typical continuum traffic flow model, which describes the jamming transition of traffic flow properly. Previous studies in lattice hydrodynamic model have shown that the use of control method has the potential to improve traffic conditions. In this paper, a new control method is applied in lattice hydrodynamic model from a transportation cyber-physical system approach, in which only one lattice site needs to be controlled in this control scheme. The simulation verifies the feasibility and validity of this method, which can ensure the efficient and smooth operation of the traffic flow.
Eeftens, Marloes; Meier, Reto; Schindler, Christian; Aguilera, Inmaculada; Phuleria, Harish; Ineichen, Alex; Davey, Mark; Ducret-Stich, Regina; Keidel, Dirk; Probst-Hensch, Nicole; Künzli, Nino; Tsai, Ming-Yi
2016-04-18
Land Use Regression (LUR) is a popular method to explain and predict spatial contrasts in air pollution concentrations, but LUR models for ultrafine particles, such as particle number concentration (PNC) are especially scarce. Moreover, no models have been previously presented for the lung deposited surface area (LDSA) of ultrafine particles. The additional value of ultrafine particle metrics has not been well investigated due to lack of exposure measurements and models. Air pollution measurements were performed in 2011 and 2012 in the eight areas of the Swiss SAPALDIA study at up to 40 sites per area for NO2 and at 20 sites in four areas for markers of particulate air pollution. We developed multi-area LUR models for biannual average concentrations of PM2.5, PM2.5 absorbance, PM10, PMcoarse, PNC and LDSA, as well as alpine, non-alpine and study area specific models for NO2, using predictor variables which were available at a national level. Models were validated using leave-one-out cross-validation, as well as independent external validation with routine monitoring data. Model explained variance (R(2)) was moderate for the various PM mass fractions PM2.5 (0.57), PM10 (0.63) and PMcoarse (0.45), and was high for PM2.5 absorbance (0.81), PNC (0.87) and LDSA (0.91). Study-area specific LUR models for NO2 (R(2) range 0.52-0.89) outperformed combined-area alpine (R (2) = 0.53) and non-alpine (R (2) = 0.65) models in terms of both cross-validation and independent external validation, and were better able to account for between-area variability. Predictor variables related to traffic and national dispersion model estimates were important predictors. LUR models for all pollutants captured spatial variability of long-term average concentrations, performed adequately in validation, and could be successfully applied to the SAPALDIA cohort. Dispersion model predictions or area indicators served well to capture the between area variance. For NO2, applying study-area specific models was preferable over applying combined-area alpine/non-alpine models. Correlations between pollutants were higher in the model predictions than in the measurements, so it will remain challenging to disentangle their health effects.
Lamping, Florian; Jack, Thomas; Rübsamen, Nicole; Sasse, Michael; Beerbaum, Philipp; Mikolajczyk, Rafael T; Boehne, Martin; Karch, André
2018-03-15
Since early antimicrobial therapy is mandatory in septic patients, immediate diagnosis and distinction from non-infectious SIRS is essential but hampered by the similarity of symptoms between both entities. We aimed to develop a diagnostic model for differentiation of sepsis and non-infectious SIRS in critically ill children based on routinely available parameters (baseline characteristics, clinical/laboratory parameters, technical/medical support). This is a secondary analysis of a randomized controlled trial conducted at a German tertiary-care pediatric intensive care unit (PICU). Two hundred thirty-eight cases of non-infectious SIRS and 58 cases of sepsis (as defined by IPSCC criteria) were included. We applied a Random Forest approach to identify the best set of predictors out of 44 variables measured at the day of onset of the disease. The developed diagnostic model was validated in a temporal split-sample approach. A model including four clinical (length of PICU stay until onset of non-infectious SIRS/sepsis, central line, core temperature, number of non-infectious SIRS/sepsis episodes prior to diagnosis) and four laboratory parameters (interleukin-6, platelet count, procalcitonin, CRP) was identified in the training dataset. Validation in the test dataset revealed an AUC of 0.78 (95% CI: 0.70-0.87). Our model was superior to previously proposed biomarkers such as CRP, interleukin-6, procalcitonin or a combination of CRP and procalcitonin (maximum AUC = 0.63; 95% CI: 0.52-0.74). When aiming at a complete identification of sepsis cases (100%; 95% CI: 87-100%), 28% (95% CI: 20-38%) of non-infectious SIRS cases were assorted correctly. Our approach allows early recognition of sepsis with an accuracy superior to previously described biomarkers, and could potentially reduce antibiotic use by 30% in non-infectious SIRS cases. External validation studies are necessary to confirm the generalizability of our approach across populations and treatment practices. ClinicalTrials.gov number: NCT00209768; registration date: September 21, 2005.
Boer, H M T; Butler, S T; Stötzel, C; Te Pas, M F W; Veerkamp, R F; Woelders, H
2017-11-01
A recently developed mechanistic mathematical model of the bovine estrous cycle was parameterized to fit empirical data sets collected during one estrous cycle of 31 individual cows, with the main objective to further validate the model. The a priori criteria for validation were (1) the resulting model can simulate the measured data correctly (i.e. goodness of fit), and (2) this is achieved without needing extreme, probably non-physiological parameter values. We used a least squares optimization procedure to identify parameter configurations for the mathematical model to fit the empirical in vivo measurements of follicle and corpus luteum sizes, and the plasma concentrations of progesterone, estradiol, FSH and LH for each cow. The model was capable of accommodating normal variation in estrous cycle characteristics of individual cows. With the parameter sets estimated for the individual cows, the model behavior changed for 21 cows, with improved fit of the simulated output curves for 18 of these 21 cows. Moreover, the number of follicular waves was predicted correctly for 18 of the 25 two-wave and three-wave cows, without extreme parameter value changes. Estimation of specific parameters confirmed results of previous model simulations indicating that parameters involved in luteolytic signaling are very important for regulation of general estrous cycle characteristics, and are likely responsible for differences in estrous cycle characteristics between cows.
Revealing interaction mode between HIV-1 protease and mannitol analog inhibitor.
Yan, Guan-Wen; Chen, Yue; Li, Yixue; Chen, Hai-Feng
2012-06-01
HIV protease is a key enzyme to play a key role in the HIV-1 replication cycle and control the maturation from HIV viruses to an infectious virion. HIV-1 protease has become an important target for anti-HIV-1 drug development. Here, we used molecular dynamics simulation to study the binding mode between mannitol derivatives and HIV-1 protease. The results suggest that the most active compound (M35) has more stable hydrogen bonds and stable native contacts than the less active one (M17). These mannitol derivatives might have similar interaction mode with HIV-1 protease. Then, 3D-QSAR was used to construct quantitative structure-activity models. The cross-validated q(2) values are found as 0.728 and 0.611 for CoMFA and CoMSIA, respectively. And the non-cross-validated r(2) values are 0.973 and 0.950. Nine test set compounds validate the model. The results show that this model possesses better prediction ability than the previous work. This model can be used to design new chemical entities and make quantitative prediction of the bioactivities for HIV-1 protease inhibitors before resorting to in vitro and in vivo experiment. © 2012 John Wiley & Sons A/S.
Sridharan, Sarup S; Burrowes, Lindsay M; Bouwmeester, J Christopher; Wang, Jiun-Jr; Shrive, Nigel G; Tyberg, John V
2012-05-01
Our "reservoir-wave approach" to arterial hemodynamics holds that measured arterial pressure should be considered to be the sum of a volume-related pressure (i.e., reservoir pressure, P(reservoir)) and a wave-related pressure (P(excess)). Because some have questioned whether P(reservoir) (and, by extension, P(excess)) is a real component of measured physiological pressure, it was important to demonstrate that P(reservoir) is implicit in Westerhof's classical electrical and hydraulic models of the 3-element Windkessel. To test the validity of our P(reservoir) determinations, we studied a freeware simulation of the electrical model and a benchtop recreation of the hydraulic model, respectively, measuring the voltage and the pressure distal to the proximal resistance. These measurements were then compared with P(reservoir), as calculated from physiological data. Thus, the first objective of this study was to demonstrate that respective voltage and pressure changes could be measured that were similar to calculated physiological values of P(reservoir). The second objective was to confirm previous predictions with respect to the specific effects of systematically altering proximal resistance, distal resistance, and capacitance. The results of this study validate P(reservoir) and, thus, the reservoir-wave approach.
Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model
NASA Technical Reports Server (NTRS)
Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)
2001-01-01
The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.
Developing R&D portfolio business validity simulation model and system.
Yeo, Hyun Jin; Im, Kwang Hyuk
2015-01-01
The R&D has been recognized as critical method to take competitiveness by not only companies but also nations with its value creation such as patent value and new product. Therefore, R&D has been a decision maker's burden in that it is hard to decide how much money to invest, how long time one should spend, and what technology to develop which means it accompanies resources such as budget, time, and manpower. Although there are diverse researches about R&D evaluation, business factors are not concerned enough because almost all previous studies are technology oriented evaluation with one R&D technology based. In that, we early proposed R&D business aspect evaluation model which consists of nine business model components. In this research, we develop a simulation model and system evaluating a company or industry's R&D portfolio with business model point of view and clarify default and control parameters to facilitate evaluator's business validity work in each evaluation module by integrate to one screen.
Developing R&D Portfolio Business Validity Simulation Model and System
2015-01-01
The R&D has been recognized as critical method to take competitiveness by not only companies but also nations with its value creation such as patent value and new product. Therefore, R&D has been a decision maker's burden in that it is hard to decide how much money to invest, how long time one should spend, and what technology to develop which means it accompanies resources such as budget, time, and manpower. Although there are diverse researches about R&D evaluation, business factors are not concerned enough because almost all previous studies are technology oriented evaluation with one R&D technology based. In that, we early proposed R&D business aspect evaluation model which consists of nine business model components. In this research, we develop a simulation model and system evaluating a company or industry's R&D portfolio with business model point of view and clarify default and control parameters to facilitate evaluator's business validity work in each evaluation module by integrate to one screen. PMID:25893209
Church, Sheri A; Livingstone, Kevin; Lai, Zhao; Kozik, Alexander; Knapp, Steven J; Michelmore, Richard W; Rieseberg, Loren H
2007-02-01
Using likelihood-based variable selection models, we determined if positive selection was acting on 523 EST sequence pairs from two lineages of sunflower and lettuce. Variable rate models are generally not used for comparisons of sequence pairs due to the limited information and the inaccuracy of estimates of specific substitution rates. However, previous studies have shown that the likelihood ratio test (LRT) is reliable for detecting positive selection, even with low numbers of sequences. These analyses identified 56 genes that show a signature of selection, of which 75% were not identified by simpler models that average selection across codons. Subsequent mapping studies in sunflower show four of five of the positively selected genes identified by these methods mapped to domestication QTLs. We discuss the validity and limitations of using variable rate models for comparisons of sequence pairs, as well as the limitations of using ESTs for identification of positively selected genes.
Vaginal birth after caesarean section prediction models: a UK comparative observational study.
Mone, Fionnuala; Harrity, Conor; Mackie, Adam; Segurado, Ricardo; Toner, Brenda; McCormick, Timothy R; Currie, Aoife; McAuliffe, Fionnuala M
2015-10-01
Primarily, to assess the performance of three statistical models in predicting successful vaginal birth in patients attempting a trial of labour after one previous lower segment caesarean section (TOLAC). The statistically most reliable models were subsequently subjected to validation testing in a local antenatal population. A retrospective observational study was performed with study data collected from the Northern Ireland Maternity Service Database (NIMATs). The study population included all women that underwent a TOLAC (n=385) from 2010 to 2012 in a regional UK obstetric unit. Data was collected from the Northern Ireland Maternity Service Database (NIMATs). Area under the curve (AUC) and correlation analysis was performed. Of the three prediction models evaluated, AUC calculations for the Smith et al., Grobman et al. and Troyer and Parisi Models were 0.74, 0.72 and 0.65, respectively. Using the Smith et al. model, 52% of women had a low risk of caesarean section (CS) (predicted VBAC >72%) and 20% had a high risk of CS (predicted VBAC <60%), of whom 20% and 63% had delivery by CS. The fit between observed and predicted outcome in this study cohort using the Smith et al. and Grobman et al. models were greatest (Chi-square test, p=0.228 and 0.904), validating both within the population. The Smith et al. and Grobman et al. models could potentially be utilized within the UK to provide women with an informed choice when deciding on mode of delivery after a previous CS. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
Modelling Cerebral Blood Flow and Temperature Using a Vascular Porous Model
NASA Astrophysics Data System (ADS)
Blowers, Stephen; Thrippleton, Michael; Marshall, Ian; Harris, Bridget; Andrews, Peter; Valluri, Prashant
2016-11-01
Macro-modelling of cerebral blood flow can assist in determining the impact of temperature intervention to reduce permanent tissue damage during instances of brain trauma. Here we present a 3D two phase fluid-porous model for simulating blood flow through the capillary region linked to intersecting 1D arterial and venous vessel trees. This combined vasculature porous (VaPor) model simulates both flow and energy balances, including heat from metabolism, using a vasculature extracted from MRI data which are expanded upon using a tree generation algorithm. Validation of temperature balance has been achieved using rodent brain data. Direct flow validation is not as straight forward due to the method used in determining regional cerebral blood flow (rCBF). In-vivo measurements are achieved using a tracer, which disagree with direct measurements of simulated flow. However, by modelling a virtual tracer, rCBF values are obtained that agree with those found in literature. Temperature profiles generated with the VaPor model show a reduction in core brain temperature after cooling the scalp not seen previously in other models.
Modeling demand for public transit services in rural areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attaluri, P.; Seneviratne, P.N.; Javid, M.
1997-05-01
Accurate estimates of demand are critical for planning, designing, and operating public transit systems. Previous research has demonstrated that the expected demand in rural areas is a function of both demographic and transit system variables. Numerous models have been proposed to describe the relationship between the aforementioned variables. However, most of them are site specific and their validity over time and space is not reported or perhaps has not been tested. Moreover, input variables in some cases are extremely difficult to quantify. In this article, the estimation of demand using the generalized linear modeling technique is discussed. Two separate models,more » one for fixed-route and another for demand-responsive services, are presented. These models, calibrated with data from systems in nine different states, are used to demonstrate the appropriateness and validity of generalized linear models compared to the regression models. They explain over 70% of the variation in expected demand for fixed-route services and 60% of the variation in expected demand for demand-responsive services. It was found that the models are spatially transferable and that data for calibration are easily obtainable.« less
Hattori, Masasi
2016-12-01
This paper presents a new theory of syllogistic reasoning. The proposed model assumes there are probabilistic representations of given signature situations. Instead of conducting an exhaustive search, the model constructs an individual-based "logical" mental representation that expresses the most probable state of affairs, and derives a necessary conclusion that is not inconsistent with the model using heuristics based on informativeness. The model is a unification of previous influential models. Its descriptive validity has been evaluated against existing empirical data and two new experiments, and by qualitative analyses based on previous empirical findings, all of which supported the theory. The model's behavior is also consistent with findings in other areas, including working memory capacity. The results indicate that people assume the probabilities of all target events mentioned in a syllogism to be almost equal, which suggests links between syllogistic reasoning and other areas of cognition. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Optimal temperature for malaria transmission is dramaticallylower than previously predicted
Mordecai, Eerin A.; Paaijmans, Krijin P.; Johnson, Leah R.; Balzer, Christian; Ben-Horin, Tal; de Moor, Emily; McNally, Amy; Pawar, Samraat; Ryan, Sadie J.; Smith, Thomas C.; Lafferty, Kevin D.
2013-01-01
The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.
Optimal temperature for malaria transmission is dramatically lower than previously predicted
Mordecai, Erin A.; Paaijmans, Krijn P.; Johnson, Leah R.; Balzer, Christian; Ben-Horin, Tal; de Moor, Emily; McNally, Amy; Pawar, Samraat; Ryan, Sadie J.; Smith, Thomas C.; Lafferty, Kevin D.
2013-01-01
The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.
NASA Astrophysics Data System (ADS)
Andritsanos, Vassilios D.; Vergos, George S.; Grigoriadis, Vassilios N.; Pagounis, Vassilios; Tziavos, Ilias N.
2014-05-01
The Elevation project, funded by the action "Archimedes III - Funding of research groups in T.E.I.", co-financed by the E.U. (European Social Fund) and national funds under the Operational Program "Education and Lifelong Learning 2007-2013" aims mainly to the validation of the Hellenic vertical datum. This validation is carried out over two areas under study, one in Central and another in Northern Greece. During the first stage of the validation process, satellite-only as well as combined satellite-terrestrial models of the Earth's geopotential are used. GOCE and GRACE satellite information is compared against recently measured GPS/Levelling observations at specific benchmarks of the vertical network in Attiki (Central Greece) and Thessaloniki (Northern Greece). A spectral enhancement approach is followed where, given the GOCE/GRACE GGM truncation degree, EGM2008 is used to fill-in the medium and high-frequency content along with RTM effects for the high and ultra high part. The second stage is based on the localization of possible blunders of the vertical network using the spectral information derived previously. The undoubted accuracy of the contemporary global models at the low frequency band leads to some initial conclusions about the consistency of the Hellenic vertical datum.
Oliveira, Flavia C C; Brandão, Christian R R; Ramalho, Hugo F; da Costa, Leonardo A F; Suarez, Paulo A Z; Rubim, Joel C
2007-03-28
In this work it has been shown that the routine ASTM methods (ASTM 4052, ASTM D 445, ASTM D 4737, ASTM D 93, and ASTM D 86) recommended by the ANP (the Brazilian National Agency for Petroleum, Natural Gas and Biofuels) to determine the quality of diesel/biodiesel blends are not suitable to prevent the adulteration of B2 or B5 blends with vegetable oils. Considering the previous and actual problems with fuel adulterations in Brazil, we have investigated the application of vibrational spectroscopy (Fourier transform (FT) near infrared spectrometry and FT-Raman) to identify adulterations of B2 and B5 blends with vegetable oils. Partial least square regression (PLS), principal component regression (PCR), and artificial neural network (ANN) calibration models were designed and their relative performances were evaluated by external validation using the F-test. The PCR, PLS, and ANN calibration models based on the Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy were designed using 120 samples. Other 62 samples were used in the validation and external validation, for a total of 182 samples. The results have shown that among the designed calibration models, the ANN/FT-Raman presented the best accuracy (0.028%, w/w) for samples used in the external validation.
A validation procedure for a LADAR system radiometric simulation model
NASA Astrophysics Data System (ADS)
Leishman, Brad; Budge, Scott; Pack, Robert
2007-04-01
The USU LadarSIM software package is a ladar system engineering tool that has recently been enhanced to include the modeling of the radiometry of Ladar beam footprints. This paper will discuss our validation of the radiometric model and present a practical approach to future validation work. In order to validate complicated and interrelated factors affecting radiometry, a systematic approach had to be developed. Data for known parameters were first gathered then unknown parameters of the system were determined from simulation test scenarios. This was done in a way to isolate as many unknown variables as possible, then build on the previously obtained results. First, the appropriate voltage threshold levels of the discrimination electronics were set by analyzing the number of false alarms seen in actual data sets. With this threshold set, the system noise was then adjusted to achieve the appropriate number of dropouts. Once a suitable noise level was found, the range errors of the simulated and actual data sets were compared and studied. Predicted errors in range measurements were analyzed using two methods: first by examining the range error of a surface with known reflectivity and second by examining the range errors for specific detectors with known responsivities. This provided insight into the discrimination method and receiver electronics used in the actual system.
An Investigation of State-Space Model Fidelity for SSME Data
NASA Technical Reports Server (NTRS)
Martin, Rodney Alexander
2008-01-01
In previous studies, a variety of unsupervised anomaly detection techniques for anomaly detection were applied to SSME (Space Shuttle Main Engine) data. The observed results indicated that the identification of certain anomalies were specific to the algorithmic method under consideration. This is the reason why one of the follow-on goals of these previous investigations was to build an architecture to support the best capabilities of all algorithms. We appeal to that goal here by investigating a cascade, serial architecture for the best performing and most suitable candidates from previous studies. As a precursor to a formal ROC (Receiver Operating Characteristic) curve analysis for validation of resulting anomaly detection algorithms, our primary focus here is to investigate the model fidelity as measured by variants of the AIC (Akaike Information Criterion) for state-space based models. We show that placing constraints on a state-space model during or after the training of the model introduces a modest level of suboptimality. Furthermore, we compare the fidelity of all candidate models including those embodying the cascade, serial architecture. We make recommendations on the most suitable candidates for application to subsequent anomaly detection studies as measured by AIC-based criteria.
Reproducible diagnostic metabolites in plasma from typhoid fever patients in Asia and Africa.
Näsström, Elin; Parry, Christopher M; Vu Thieu, Nga Tran; Maude, Rapeephan R; de Jong, Hanna K; Fukushima, Masako; Rzhepishevska, Olena; Marks, Florian; Panzner, Ursula; Im, Justin; Jeon, Hyonjin; Park, Seeun; Chaudhury, Zabeen; Ghose, Aniruddha; Samad, Rasheda; Van, Tan Trinh; Johansson, Anders; Dondorp, Arjen M; Thwaites, Guy E; Faiz, Abul; Antti, Henrik; Baker, Stephen
2017-05-09
Salmonella Typhi is the causative agent of typhoid. Typhoid is diagnosed by blood culture, a method that lacks sensitivity, portability and speed. We have previously shown that specific metabolomic profiles can be detected in the blood of typhoid patients from Nepal (Näsström et al., 2014). Here, we performed mass spectrometry on plasma from Bangladeshi and Senegalese patients with culture confirmed typhoid fever, clinically suspected typhoid, and other febrile diseases including malaria. After applying supervised pattern recognition modelling, we could significantly distinguish metabolite profiles in plasma from the culture confirmed typhoid patients. After comparing the direction of change and degree of multivariate significance, we identified 24 metabolites that were consistently up- or down regulated in a further Bangladeshi/Senegalese validation cohort, and the Nepali cohort from our previous work. We have identified and validated a metabolite panel that can distinguish typhoid from other febrile diseases, providing a new approach for typhoid diagnostics.
Testing of a Shrouded, Short Mixing Stack Gas Eductor Model Using High Temperature Primary Flow.
1982-10-01
problem but of less significance than the heated surfaces of shipboard structure. Various types of electronic equipments and sensors carried by a combatant...here was to validate current procedures by comparison with previous data it was not considered essential to rein- stall these sensors or duplicate...sec) 205 tABLE XIX Mixing Stack Temperatura Data, Model B Thermocouple Axial Mixing Stack Temperature _ mbjr Posii--- .. (I IF) . Uptake 180 850 950
Reconfigurable Antenna Aperture with Optically Controlled GeTe-Based RF Switches
2015-03-31
duration (~100ns) but high amplitude raises the material’s temperature above the melting point . As a liquid, the atoms are randomly distributed...100ns, there is sufficient optical energy to heat and melt a 100nm thick GeTe PCM area of approximately 3µm 2 . Figure 3. Optimum PCM area...which tracks well with previously published thin film heater model [9]. Figure 4. Validation of Melt /Quench Thermal Model Optical Control: The
Strength validation and fire endurance of glued-laminated timber beams
E. L. Schaffer; C. M. Marx; D. A. Bender; F. E. Woeste
A previous paper presented a reliability-based model to predict the strength of glued-laminated timber beams at both room temperature and during fire exposure. This Monte Carlo simulation procedure generates strength and fire endurance (time-to-failure, TTF) data for glued- laminated beams that allow assessment of mean strength and TTF as well as their variability....
Application of a Method of Estimating DIF for Polytomous Test Items.
ERIC Educational Resources Information Center
Camilli, Gregory; Congdon, Peter
1999-01-01
Demonstrates a method for studying differential item functioning (DIF) that can be used with dichotomous or polytomous items and that is valid for data that follow a partial credit Item Response Theory model. A simulation study shows that positively biased Type I error rates are in accord with results from previous studies. (SLD)
Gradient Index Polymer Optics: Achromatic Singlet Lens Design
2010-01-01
lenses in Zemax ®. In order to model these lenses, user-defined surfaces had to be developed for the software. RL RG z y • • Δz • tc •n0 n1• Raytrace...results of the custom code, interfaced with Zemax ®, were carefully validated against ray trajectories calculated independently using previously
Validation of the Schutte Self-Report Emotional Intelligence Scale with American College Students
ERIC Educational Resources Information Center
Gong, Xiaopeng; Paulson, Sharon E.
2018-01-01
The current study examined the factor structure of the Schutte Self-Report Emotional Intelligence (SSREI) scale with an American college sample (n = 404, 322 females, 88.9% Whites). Data were collected through an online survey, and confirmatory factor analyses were conducted to test several proposed factor models from previous studies. The results…
ERIC Educational Resources Information Center
Kaldon, Carolyn R.; Zoblotsky, Todd A.
2014-01-01
Previous research has linked inquiry-based science instruction (i.e., science instruction that engages students in doing science rather than just learning about science) with greater gains in student learning than text-book based methods (Vanosdall, Klentschy, Hedges & Weisbaum, 2007; Banilower, 2007; Ferguson 2009; Bredderman, 1983;…
ERIC Educational Resources Information Center
Hall, Jeffrey E.; Walters, Mikel L.; Basile, Kathleen C.
2012-01-01
This study continues previous work documenting the structure of violence perpetrated by males against their female intimate partners. It assesses the construct validity of a measurement model depicting associations among eight subtypes of perpetration: moderate physical violence, severe physical violence, forced or coerced sexual violence, sexual…
Welham, Nathan V.; Ling, Changying; Dawson, John A.; Kendziorski, Christina; Thibeault, Susan L.; Yamashita, Masaru
2015-01-01
The vocal fold (VF) mucosa confers elegant biomechanical function for voice production but is susceptible to scar formation following injury. Current understanding of VF wound healing is hindered by a paucity of data and is therefore often generalized from research conducted in skin and other mucosal systems. Here, using a previously validated rat injury model, expression microarray technology and an empirical Bayes analysis approach, we generated a VF-specific transcriptome dataset to better capture the system-level complexity of wound healing in this specialized tissue. We measured differential gene expression at 3, 14 and 60 days post-injury compared to experimentally naïve controls, pursued functional enrichment analyses to refine and add greater biological definition to the previously proposed temporal phases of VF wound healing, and validated the expression and localization of a subset of previously unidentified repair- and regeneration-related genes at the protein level. Our microarray dataset is a resource for the wider research community and has the potential to stimulate new hypotheses and avenues of investigation, improve biological and mechanistic insight, and accelerate the identification of novel therapeutic targets. PMID:25592437
Samuel, Douglas B; Connolly, Adrian J; Ball, Samuel A
2012-09-01
The DSM-5 proposal indicates that personality disorders (PDs) be defined as collections of maladaptive traits but does not provide a specific diagnostic method. However, researchers have previously suggested that PD constructs can be assessed by comparing individuals' trait profiles with those prototypic of PDs and evidence from the five-factor model (FFM) suggests that these prototype matching scores converge moderately with traditional PD instruments. The current study investigates the convergence of FFM PD prototypes with interview-assigned PD diagnoses in a sample of 99 homeless individuals. This sample had very high rates of PDs, which extends previous research on samples with more modest prevalence rates. Results indicated that diagnostic agreement between these methods was generally low but consistent with the agreement previously observed between explicit PD measures. Furthermore, trait-based and diagnostic interview scores evinced similar relationships with clinically important indicators such as abuse history and past suicide attempts. These findings demonstrate the validity of prototype methods and suggest their consideration for assessing trait-defined PD types within DSM-5.
Inferring Gene Regulatory Networks by Singular Value Decomposition and Gravitation Field Algorithm
Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang
2012-01-01
Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms. PMID:23226565
NASA Astrophysics Data System (ADS)
Chan, V. S.; Wong, C. P. C.; McLean, A. G.; Luo, G. N.; Wirth, B. D.
2013-10-01
The Xolotl code under development by PSI-SciDAC will enhance predictive modeling capability of plasma-facing materials under burning plasma conditions. The availability and application of experimental data to compare to code-calculated observables are key requirements to validate the breadth and content of physics included in the model and ultimately gain confidence in its results. A dedicated effort has been in progress to collect and organize a) a database of relevant experiments and their publications as previously carried out at sample exposure facilities in US and Asian tokamaks (e.g., DIII-D DiMES, and EAST MAPES), b) diagnostic and surface analysis capabilities available at each device, and c) requirements for future experiments with code validation in mind. The content of this evolving database will serve as a significant resource for the plasma-material interaction (PMI) community. Work supported in part by the US Department of Energy under GA-DE-SC0008698, DE-AC52-07NA27344 and DE-AC05-00OR22725.
NASA Astrophysics Data System (ADS)
Maślak, Mariusz; Pazdanowski, Michał; Woźniczka, Piotr
2018-01-01
Validation of fire resistance for the same steel frame bearing structure is performed here using three different numerical models, i.e. a bar one prepared in the SAFIR environment, and two 3D models developed within the framework of Autodesk Simulation Mechanical (ASM) and an alternative one developed in the environment of the Abaqus code. The results of the computer simulations performed are compared with the experimental results obtained previously, in a laboratory fire test, on a structure having the same characteristics and subjected to the same heating regimen. Comparison of the experimental and numerically determined displacement evolution paths for selected nodes of the considered frame during the simulated fire exposure constitutes the basic criterion applied to evaluate the validity of the numerical results obtained. The experimental and numerically determined estimates of critical temperature specific to the considered frame and related to the limit state of bearing capacity in fire have been verified as well.
NASA Astrophysics Data System (ADS)
Qin, Sanbo; Mittal, Jeetain; Zhou, Huan-Xiang
2013-08-01
We have developed a ‘postprocessing’ method for modeling biochemical processes such as protein folding under crowded conditions (Qin and Zhou 2009 Biophys. J. 97 12-19). In contrast to the direct simulation approach, in which the protein undergoing folding is simulated along with crowders, the postprocessing method requires only the folding simulation without crowders. The influence of the crowders is then obtained by taking conformations from the crowder-free simulation and calculating the free energies of transferring to the crowders. This postprocessing yields the folding free energy surface of the protein under crowding. Here the postprocessing results for the folding of three small proteins under ‘repulsive’ crowding are validated by those obtained previously by the direct simulation approach (Mittal and Best 2010 Biophys. J. 98 315-20). This validation confirms the accuracy of the postprocessing approach and highlights its distinct advantages in modeling biochemical processes under cell-like crowded conditions, such as enabling an atomistic representation of the test proteins.
Antic, Darko; Milic, Natasa; Nikolovski, Srdjan; Todorovic, Milena; Bila, Jelena; Djurdjevic, Predrag; Andjelic, Bosko; Djurasinovic, Vladislava; Sretenovic, Aleksandra; Vukovic, Vojin; Jelicic, Jelena; Hayman, Suzanne; Mihaljevic, Biljana
2016-10-01
Lymphoma patients are at increased risk of thromboembolic events but thromboprophylaxis in these patients is largely underused. We sought to develop and validate a simple model, based on individual clinical and laboratory patient characteristics that would designate lymphoma patients at risk for thromboembolic event. The study population included 1,820 lymphoma patients who were treated in the Lymphoma Departments at the Clinics of Hematology, Clinical Center of Serbia and Clinical Center Kragujevac. The model was developed using data from a derivation cohort (n = 1,236), and further assessed in the validation cohort (n = 584). Sixty-five patients (5.3%) in the derivation cohort and 34 (5.8%) patients in the validation cohort developed thromboembolic events. The variables independently associated with risk for thromboembolism were: previous venous and/or arterial events, mediastinal involvement, BMI>30 kg/m(2) , reduced mobility, extranodal localization, development of neutropenia and hemoglobin level < 100g/L. Based on the risk model score, the population was divided into the following risk categories: low (score 0-1), intermediate (score 2-3), and high (score >3). For patients classified at risk (intermediate and high-risk scores), the model produced negative predictive value of 98.5%, positive predictive value of 25.1%, sensitivity of 75.4%, and specificity of 87.5%. A high-risk score had positive predictive value of 65.2%. The diagnostic performance measures retained similar values in the validation cohort. Developed prognostic Thrombosis Lymphoma - ThroLy score is more specific for lymphoma patients than any other available score targeting thrombosis in cancer patients. Am. J. Hematol. 91:1014-1019, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
An integrated radar model solution for mission level performance and cost trades
NASA Astrophysics Data System (ADS)
Hodge, John; Duncan, Kerron; Zimmerman, Madeline; Drupp, Rob; Manno, Mike; Barrett, Donald; Smith, Amelia
2017-05-01
A fully integrated Mission-Level Radar model is in development as part of a multi-year effort under the Northrop Grumman Mission Systems (NGMS) sector's Model Based Engineering (MBE) initiative to digitally interconnect and unify previously separate performance and cost models. In 2016, an NGMS internal research and development (IR and D) funded multidisciplinary team integrated radio frequency (RF), power, control, size, weight, thermal, and cost models together using a commercial-off-the-shelf software, ModelCenter, for an Active Electronically Scanned Array (AESA) radar system. Each represented model was digitally connected with standard interfaces and unified to allow end-to-end mission system optimization and trade studies. The radar model was then linked to the Air Force's own mission modeling framework (AFSIM). The team first had to identify the necessary models, and with the aid of subject matter experts (SMEs) understand and document the inputs, outputs, and behaviors of the component models. This agile development process and collaboration enabled rapid integration of disparate models and the validation of their combined system performance. This MBE framework will allow NGMS to design systems more efficiently and affordably, optimize architectures, and provide increased value to the customer. The model integrates detailed component models that validate cost and performance at the physics level with high-level models that provide visualization of a platform mission. This connectivity of component to mission models allows hardware and software design solutions to be better optimized to meet mission needs, creating cost-optimal solutions for the customer, while reducing design cycle time through risk mitigation and early validation of design decisions.
Development of a pharmacogenetic-guided warfarin dosing algorithm for Puerto Rican patients.
Ramos, Alga S; Seip, Richard L; Rivera-Miranda, Giselle; Felici-Giovanini, Marcos E; Garcia-Berdecia, Rafael; Alejandro-Cowan, Yirelia; Kocherla, Mohan; Cruz, Iadelisse; Feliu, Juan F; Cadilla, Carmen L; Renta, Jessica Y; Gorowski, Krystyna; Vergara, Cunegundo; Ruaño, Gualberto; Duconge, Jorge
2012-12-01
This study was aimed at developing a pharmacogenetic-driven warfarin-dosing algorithm in 163 admixed Puerto Rican patients on stable warfarin therapy. A multiple linear-regression analysis was performed using log-transformed effective warfarin dose as the dependent variable, and combining CYP2C9 and VKORC1 genotyping with other relevant nongenetic clinical and demographic factors as independent predictors. The model explained more than two-thirds of the observed variance in the warfarin dose among Puerto Ricans, and also produced significantly better 'ideal dose' estimates than two pharmacogenetic models and clinical algorithms published previously, with the greatest benefit seen in patients ultimately requiring <7 mg/day. We also assessed the clinical validity of the model using an independent validation cohort of 55 Puerto Rican patients from Hartford, CT, USA (R(2) = 51%). Our findings provide the basis for planning prospective pharmacogenetic studies to demonstrate the clinical utility of genotyping warfarin-treated Puerto Rican patients.
2013-01-01
Background Our previous model of the non-isometric muscle fatigue that occurs during repetitive functional electrical stimulation included models of force, motion, and fatigue and accounted for applied load but not stimulation pulse duration. Our objectives were to: 1) further develop, 2) validate, and 3) present outcome measures for a non-isometric fatigue model that can predict the effect of a range of pulse durations on muscle fatigue. Methods A computer-controlled stimulator sent electrical pulses to electrodes on the thighs of 25 able-bodied human subjects. Isometric and non-isometric non-fatiguing and fatiguing knee torques and/or angles were measured. Pulse duration (170–600 μs) was the independent variable. Measurements were divided into parameter identification and model validation subsets. Results The fatigue model was simplified by removing two of three non-isometric parameters. The third remained a function of other model parameters. Between 66% and 77% of the variability in the angle measurements was explained by the new model. Conclusion Muscle fatigue in response to different stimulation pulse durations can be predicted during non-isometric repetitive contractions. PMID:23374142
Short cell-penetrating peptides: a model of interactions with gene promoter sites.
Khavinson, V Kh; Tarnovskaya, S I; Linkova, N S; Pronyaeva, V E; Shataeva, L K; Yakutseni, P P
2013-01-01
Analysis of the main parameters of molecular mechanics (number of hydrogen bonds, hydrophobic and electrostatic interactions, DNA-peptide complex minimization energy) provided the data to validate the previously proposed qualitative models of peptide-DNA interactions and to evaluate their quantitative characteristics. Based on these estimations, a three-dimensional model of Lys-Glu and Ala-Glu-Asp-Gly peptide interactions with DNA sites (GCAG and ATTTC) located in the promoter zones of genes encoding CD5, IL-2, MMP2, and Tram1 signal molecules.
Site selection model for new metro stations based on land use
NASA Astrophysics Data System (ADS)
Zhang, Nan; Chen, Xuewu
2015-12-01
Since the construction of metro system generally lags behind the development of urban land use, sites of metro stations should adapt to their surrounding situations, which was rarely discussed by previous research on station layout. This paper proposes a new site selection model to find the best location for a metro station, establishing the indicator system based on land use and combining AHP with entropy weight method to obtain the schemes' ranking. The feasibility and efficiency of this model has been validated by evaluating Nanjing Shengtai Road station and other potential sites.
Kuligowski, Julia; Carrión, David; Quintás, Guillermo; Garrigues, Salvador; de la Guardia, Miguel
2011-01-01
The selection of an appropriate calibration set is a critical step in multivariate method development. In this work, the effect of using different calibration sets, based on a previous classification of unknown samples, on the partial least squares (PLS) regression model performance has been discussed. As an example, attenuated total reflection (ATR) mid-infrared spectra of deep-fried vegetable oil samples from three botanical origins (olive, sunflower, and corn oil), with increasing polymerized triacylglyceride (PTG) content induced by a deep-frying process were employed. The use of a one-class-classifier partial least squares-discriminant analysis (PLS-DA) and a rooted binary directed acyclic graph tree provided accurate oil classification. Oil samples fried without foodstuff could be classified correctly, independent of their PTG content. However, class separation of oil samples fried with foodstuff, was less evident. The combined use of double-cross model validation with permutation testing was used to validate the obtained PLS-DA classification models, confirming the results. To discuss the usefulness of the selection of an appropriate PLS calibration set, the PTG content was determined by calculating a PLS model based on the previously selected classes. In comparison to a PLS model calculated using a pooled calibration set containing samples from all classes, the root mean square error of prediction could be improved significantly using PLS models based on the selected calibration sets using PLS-DA, ranging between 1.06 and 2.91% (w/w).
Intercomparison of 3D pore-scale flow and solute transport simulation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.
2016-09-01
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB),more » lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).« less
Iced Aircraft Flight Data for Flight Simulator Validation
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.
2003-01-01
NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.
Validity of Factors of the Psychopathy Checklist–Revised in Female Prisoners
Kennealy, Patrick J.; Hicks, Brian M.; Patrick, Christopher J.
2008-01-01
The validity of the Psychopathy Checklist–Revised (PCL-R) has been examined extensively in men, but its validity for women remains understudied. Specifically, the correlates of the general construct of psychopathy and its components as assessed by PCL-R total, factor, and facet scores have yet to be examined in depth. Based on previous research conducted with male offenders, a large female inmate sample was used to examine the patterns of relations between total, factor, and facet scores on the PCL-R and various criterion variables. These variables include ratings of psychopathy based on Cleckley’s criteria, symptoms of antisocial personality disorder, and measures of substance use and abuse, criminal behavior, institutional misconduct, interpersonal aggression, normal range personality, intellectual functioning, and social background variables. Results were highly consistent with past findings in male samples and provide further evidence for the construct validity of the PCL-R two-factor and four-facet models across genders. PMID:17986651
Netchacovitch, L; Thiry, J; De Bleye, C; Dumont, E; Cailletaud, J; Sacré, P-Y; Evrard, B; Hubert, Ph; Ziemons, E
2017-08-15
Since the Food and Drug Administration (FDA) published a guidance based on the Process Analytical Technology (PAT) approach, real-time analyses during manufacturing processes are in real expansion. In this study, in-line Raman spectroscopic analyses were performed during a Hot-Melt Extrusion (HME) process to determine the Active Pharmaceutical Ingredient (API) content in real-time. The method was validated based on a univariate and a multivariate approach and the analytical performances of the obtained models were compared. Moreover, on one hand, in-line data were correlated with the real API concentration present in the sample quantified by a previously validated off-line confocal Raman microspectroscopic method. On the other hand, in-line data were also treated in function of the concentration based on the weighing of the components in the prepared mixture. The importance of developing quantitative methods based on the use of a reference method was thus highlighted. The method was validated according to the total error approach fixing the acceptance limits at ±15% and the α risk at ±5%. This method reaches the requirements of the European Pharmacopeia norms for the uniformity of content of single-dose preparations. The validation proves that future results will be in the acceptance limits with a previously defined probability. Finally, the in-line validated method was compared with the off-line one to demonstrate its ability to be used in routine analyses. Copyright © 2017 Elsevier B.V. All rights reserved.
[Psychometric properties of the French version of the Effort-Reward Imbalance model].
Niedhammer, I; Siegrist, J; Landre, M F; Goldberg, M; Leclerc, A
2000-10-01
Two main models are currently used to evaluate psychosocial factors at work: the Job Strain model developed by Karasek and the Effort-Reward Imbalance model. A French version of the first model has been validated for the dimensions of psychological demands and decision latitude. As regards the second one evaluating three dimensions (extrinsic effort, reward, and intrinsic effort), there are several versions in different languages, but until recently there was no validated French version. The objective of this study was to explore the psychometric properties of the French version of the Effort-Reward Imbalance model in terms of internal consistency, factorial validity, and discriminant validity. The present study was based on the GAZEL cohort and included the 10 174 subjects who were working at the French national electric and gas company (EDF-GDF) and answered the questionnaire in 1998. A French version of Effort-Reward Imbalance was included in this questionnaire. This version was obtained by a standard forward/backward translation procedure. Internal consistency was satisfactory for the three scales of extrinsic effort, reward, and intrinsic effort: Cronbach's Alpha coefficients higher than 0.7 were observed. A one-factor solution was retained for the factor analysis of the scale of extrinsic effort. A three-factor solution was retained for the factor analysis of reward, and these dimensions were interpreted as the factor analysis of intrinsic effort did not support the expected four-dimension structure. The analysis of discriminant validity displayed significant associations between measures of Effort-Reward Imbalance and the variables of sex, age, education level, and occupational grade. This study is the first one supporting satisfactory psychometric properties of the French version of the Effort-Reward Imbalance model. However, the factorial validity of intrinsic effort could be questioned. Furthermore, as most previous studies were based on male samples working in specific occupations, the present one is also one of the first to show strong associations between measures of this model and social class variables in a population of men and women employed in various occupations.
Optimal cooperative control synthesis of active displays
NASA Technical Reports Server (NTRS)
Garg, S.; Schmidt, D. K.
1985-01-01
A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.
Pérez, Darío G; Funes, Gustavo
2012-12-03
Under the Geometrics Optics approximation is possible to estimate the covariance between the displacements of two thin beams after they have propagated through a turbulent medium. Previous works have concentrated in long propagation distances to provide models for the wandering statistics. These models are useful when the separation between beams is smaller than the propagation path-regardless of the characteristics scales of the turbulence. In this work we give a complete model for these covariances, behavior introducing absolute limits to the validity of former approximations. Moreover, these generalizations are established for non-Kolmogorov atmospheric models.
The development of a simulation model of the treatment of coronary heart disease.
Cooper, Keith; Davies, Ruth; Roderick, Paul; Chase, Debbie; Raftery, James
2002-11-01
A discrete event simulation models the progress of patients who have had a coronary event, through their treatment pathways and subsequent coronary events. The main risk factors in the model are age, sex, history of previous events and the extent of the coronary vessel disease. The model parameters are based on data collected from epidemiological studies of incidence and prognosis, efficacy studies. national surveys and treatment audits. The simulation results were validated against different sources of data. The initial results show that increasing revascularisation has considerable implications for resource use but has little impact on patient mortality.
On the Modeling of Vacuum Arc Remelting Process in Titanium Alloys
NASA Astrophysics Data System (ADS)
Patel, Ashish; Fiore, Daniel
2016-07-01
Mathematical modeling is routinely used in the process development and production of advanced aerospace alloys to gain greater insight into the effect of process parameters on final properties. This article describes the application of a 2-D mathematical VAR model presented at previous LMPC meetings. The impact of process parameters on melt pool geometry, solidification behavior, fluid-flow and chemistry in a Ti-6Al-4V ingot is discussed. Model predictions are validated against published data from a industrial size ingot, and results of a parametric study on particle dissolution are also discussed.
Predicting the success of IVF: external validation of the van Loendersloot's model.
Sarais, Veronica; Reschini, Marco; Busnelli, Andrea; Biancardi, Rossella; Paffoni, Alessio; Somigliana, Edgardo
2016-06-01
Is the predictive model for IVF success proposed by van Loendersloot et al. valid in a different geographical and cultural context? The model discriminates well but was less accurate than in the original context where it was developed. Several independent groups have developed models that combine different variables with the aim of estimating the chance of pregnancy with IVF but only four of them have been externally validated. One of these four, the van Loendersloot's model, deserves particular attention and further investigation for at least three reasons; (i) the reported area under the receiver operating characteristics curve (c-statistics) in the temporal validation setting was the highest reported to date (0.68), (ii) the perspective of the model is clinically wise since it includes variables obtained from previous failed cycles, if any, so it can be applied to any women entering an IVF cycle, (iii) the model lacks external validation in a geographically different center. Retrospective cohort study of women undergoing oocyte retrieval for IVF between January 2013 and December 2013 at the infertility unit of the Fondazione Ca' Granda, Ospedale Maggiore Policlinico of Milan, Italy. Only the first oocyte retrieval cycle performed during the study period was included in the study. Women with previous IVF cycles were excluded if the last one before the study cycle was in another center. The main outcome was the cumulative live birth rate per oocytes retrieval. Seven hundred seventy-two women were selected. Variables included in the van Loendersloot's model and the relative weights (beta) were used. The variable resulting from this combination (Y) was transformed into a probability. The discriminatory capacity was assessed using the c-statistics. Calibration was made using a logistic regression that included Y as the unique variable and live birth as the outcome. Data are presented using both the original and the calibrated models. Performance was evaluated correlating the mean predicted chances of live births in the five quintiles and the observed rates. Two-hundred-eleven live births (27%) were obtained. The c-statistic was 0.64 (95% CI: 0.61-0.67, P < 0.001). The slope of the linear predictor (calibration slope) expressed as an Odds Ratio was 1.81 (95% CI: 1.46-2.24, P < 0.001), corresponding to a beta of 0.630. The calibration intercept was +0.349 (P = 0.13). While a clear discrepancy exists using the original model, data appear properly distributed with the calibrated model. The Pearson coefficient of the correlation between the mean predicted chances of live births in the five quintiles and the observed rates was 0.99 (P = 0.002). Data were collected retrospectively, thus exposing them to potential inaccuracies. The selection criteria for access to IVF adopted in our center might be too stringent, leading to the exclusion of women with a poor, yet acceptable chance of live birth. Therefore, the validity of the model in women with a very low chance of live birth could not be tested. The van Loendersloot's model can be used in other contexts but it is important that it has local calibration. It may help in counseling couples about their chance of success but it cannot be used to exclude treatments. Further research is needed to improve the discriminatory performance of IVF predictive models. None. Not applicable. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kinematic Analysis of a Posterior-stabilized Knee Prosthesis
Zhao, Zhi-Xin; Wen, Liang; Qu, Tie-Bing; Hou, Li-Li; Xiang, Dong; Bin, Jia
2015-01-01
Background: The goal of total knee arthroplasty (TKA) is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Methods: Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS) knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0–135° flexion. Results: Both the output data trends and the measured values derived from the normal knee's kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, “rollback” compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. Conclusions: There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis. PMID:25591565
Simons, Jessica P; Goodney, Philip P; Flahive, Julie; Hoel, Andrew W; Hallett, John W; Kraiss, Larry W; Schanzer, Andres
2016-04-01
Providing patients and payers with publicly reported risk-adjusted quality metrics for the purpose of benchmarking physicians and institutions has become a national priority. Several prediction models have been developed to estimate outcomes after lower extremity revascularization for critical limb ischemia, but the optimal model to use in contemporary practice has not been defined. We sought to identify the highest-performing risk-adjustment model for amputation-free survival (AFS) at 1 year after lower extremity bypass (LEB). We used the national Society for Vascular Surgery Vascular Quality Initiative (VQI) database (2003-2012) to assess the performance of three previously validated risk-adjustment models for AFS. The Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL), Finland National Vascular (FINNVASC) registry, and the modified Project of Ex-vivo vein graft Engineering via Transfection III (PREVENT III [mPIII]) risk scores were applied to the VQI cohort. A novel model for 1-year AFS was also derived using the VQI data set and externally validated using the PIII data set. The relative discrimination (Harrell c-index) and calibration (Hosmer-May goodness-of-fit test) of each model were compared. Among 7754 patients in the VQI who underwent LEB for critical limb ischemia, the AFS was 74% at 1 year. Each of the previously published models for AFS demonstrated similar discriminative performance: c-indices for BASIL, FINNVASC, mPIII were 0.66, 0.60, and 0.64, respectively. The novel VQI-derived model had improved discriminative ability with a c-index of 0.71 and appropriate generalizability on external validation with a c-index of 0.68. The model was well calibrated in both the VQI and PIII data sets (goodness of fit P = not significant). Currently available prediction models for AFS after LEB perform modestly when applied to national contemporary VQI data. Moreover, the performance of each model was inferior to that of the novel VQI-derived model. Because the importance of risk-adjusted outcome reporting continues to increase, national registries such as VQI should begin using this novel model for benchmarking quality of care. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Cai, Tommaso; Mazzoli, Sandra; Migno, Serena; Malossini, Gianni; Lanzafame, Paolo; Mereu, Liliana; Tateo, Saverio; Wagenlehner, Florian M E; Pickard, Robert S; Bartoletti, Riccardo
2014-09-01
To develop and externally validate a novel nomogram predicting recurrence risk probability at 12 months in women after an episode of urinary tract infection. The study included 768 women from Santa Maria Annunziata Hospital, Florence, Italy, affected by urinary tract infections from January 2005 to December 2009. Another 373 women with the same criteria enrolled at Santa Chiara Hospital, Trento, Italy, from January 2010 to June 2012 were used to externally validate and calibrate the nomogram. Univariate and multivariate Cox regression models tested the relationship between urinary tract infection recurrence risk, and patient clinical and laboratory characteristics. The nomogram was evaluated by calculating concordance probabilities, as well as testing calibration of predicted urinary tract infection recurrence with observed urinary tract infections. Nomogram variables included: number of partners, bowel function, type of pathogens isolated (Gram-positive/negative), hormonal status, number of previous urinary tract infection recurrences and previous treatment of asymptomatic bacteriuria. Of the original development data, 261 out of 768 women presented at least one episode of recurrence of urinary tract infection (33.9%). The nomogram had a concordance index of 0.85. The nomogram predictions were well calibrated. This model showed high discrimination accuracy and favorable calibration characteristics. In the validation group (373 women), the overall c-index was 0.83 (P = 0.003, 95% confidence interval 0.51-0.99), whereas the area under the receiver operating characteristic curve was 0.85 (95% confidence interval 0.79-0.91). The present nomogram accurately predicts the recurrence risk of urinary tract infection at 12 months, and can assist in identifying women at high risk of symptomatic recurrence that can be suitable candidates for a prophylactic strategy. © 2014 The Japanese Urological Association.
Li, Jingwen; Ye, Qing; Ding, Li; Liao, Qianfang
2017-07-01
Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.
Hiligsmann, Mickaël; Ethgen, Olivier; Bruyère, Olivier; Richy, Florent; Gathon, Henry-Jean; Reginster, Jean-Yves
2009-01-01
Markov models are increasingly used in economic evaluations of treatments for osteoporosis. Most of the existing evaluations are cohort-based Markov models missing comprehensive memory management and versatility. In this article, we describe and validate an original Markov microsimulation model to accurately assess the cost-effectiveness of prevention and treatment of osteoporosis. We developed a Markov microsimulation model with a lifetime horizon and a direct health-care cost perspective. The patient history was recorded and was used in calculations of transition probabilities, utilities, and costs. To test the internal consistency of the model, we carried out an example calculation for alendronate therapy. Then, external consistency was investigated by comparing absolute lifetime risk of fracture estimates with epidemiologic data. For women at age 70 years, with a twofold increase in the fracture risk of the average population, the costs per quality-adjusted life-year gained for alendronate therapy versus no treatment were estimated at €9105 and €15,325, respectively, under full and realistic adherence assumptions. All the sensitivity analyses in terms of model parameters and modeling assumptions were coherent with expected conclusions and absolute lifetime risk of fracture estimates were within the range of previous estimates, which confirmed both internal and external consistency of the model. Microsimulation models present some major advantages over cohort-based models, increasing the reliability of the results and being largely compatible with the existing state of the art, evidence-based literature. The developed model appears to be a valid model for use in economic evaluations in osteoporosis.
Experimental verification of a gain reduction model for the space charge effect in a wire chamber
NASA Astrophysics Data System (ADS)
Nagakura, Naoki; Fujii, Kazuki; Harayama, Isao; Kato, Yu; Sekiba, Daiichiro; Watahiki, Yumi; Yamashita, Satoru
2018-01-01
A wire chamber often suffers significant saturation of the multiplication factor when the electric field around its wires is strong. An analytical model of this effect has previously been proposed [Y. Arimoto et al., Nucl. Instrum. Meth. Phys. Res. A 799, 187 (2015)], in which the saturation was described by the multiplication factor, energy deposit density per wire length, and one constant parameter. In order to confirm the validity of this model, a multi-wire drift chamber was developed and irradiated by a MeV-range proton beam at the University of Tsukuba. The saturation effect was compared for energy deposits ranging from 70 keV/cm to 180 keV/cm and multiplication factors 3× 103 to 3× 104. The chamber was rotated with respect to the proton beam in order to vary the space charge density around the wires. The energy deposit distribution corrected for the effect was consistent with the result of a Monte Carlo simulation, thus validating the proposed model.
Validating predictive models for fast ion profile relaxation in burning plasmas
Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; ...
2016-07-22
The redistribution and potential loss of energetic particles due to MHD modes can limit the performance of fusion plasmas by reducing the plasma heating rate. In this work, we present validation studies of the 1.5D critical gradient model (CGM) for Alfvén eigenmode (AE) induced EP transport in NSTX and DIII-D neutral beam heated plasmas. In previous comparisons with a single DIII-D L-mode case, the CGM model was found to be responsible for 75% of measured AE induced neutron deficit [1]. A fully kinetic HINST is used to compute mode stability for the non-perturbative version of CGM (or nCGM). We have found that AEs show strong local instability drive up tomore » $$\\gamma /\\omega \\sim 20\\%$$ violating assumptions of perturbative approaches used in NOVA-K code. Lastly, we demonstrate that both models agree with each other and both underestimate the neutron deficit measured in DIII-D shot by approximately a factor of 2.« less
Watkins, Laura E; Maldonado, Rosalita C; DiLillo, David
2018-07-01
The purpose of this study was to develop and provide initial validation for a measure of adult cyber intimate partner aggression (IPA): the Cyber Aggression in Relationships Scale (CARS). Drawing on recent conceptual models of cyber IPA, items from previous research exploring general cyber aggression and cyber IPA were modified and new items were generated for inclusion in the CARS. Two samples of adults 18 years or older were recruited online. We used item factor analysis to test the factor structure, model fit, and invariance of the measure structure across women and men. Results confirmed that three-factor models for both perpetration and victimization demonstrated good model fit, and that, in general, the CARS measures partner cyber aggression similarly for women and men. The CARS also demonstrated validity through significant associations with in-person IPA, trait anger, and jealousy. Findings suggest the CARS is a useful tool for assessing cyber IPA in both research and clinical settings.
Construct Validity of Fresh Frozen Human Cadaver as a Training Model in Minimal Access Surgery
Macafee, David; Pranesh, Nagarajan; Horgan, Alan F.
2012-01-01
Background: The construct validity of fresh human cadaver as a training tool has not been established previously. The aims of this study were to investigate the construct validity of fresh frozen human cadaver as a method of training in minimal access surgery and determine if novices can be rapidly trained using this model to a safe level of performance. Methods: Junior surgical trainees, novices (<3 laparoscopic procedure performed) in laparoscopic surgery, performed 10 repetitions of a set of structured laparoscopic tasks on fresh frozen cadavers. Expert laparoscopists (>100 laparoscopic procedures) performed 3 repetitions of identical tasks. Performances were scored using a validated, objective Global Operative Assessment of Laparoscopic Skills scale. Scores for 3 consecutive repetitions were compared between experts and novices to determine construct validity. Furthermore, to determine if the novices reached a safe level, a trimmed mean of the experts score was used to define a benchmark. Mann-Whitney U test was used for construct validity analysis and 1-sample t test to compare performances of the novice group with the benchmark safe score. Results: Ten novices and 2 experts were recruited. Four out of 5 tasks (nondominant to dominant hand transfer; simulated appendicectomy; intracorporeal and extracorporeal knot tying) showed construct validity. Novices’ scores became comparable to benchmark scores between the eighth and tenth repetition. Conclusion: Minimal access surgical training using fresh frozen human cadavers appears to have construct validity. The laparoscopic skills of novices can be accelerated through to a safe level within 8 to 10 repetitions. PMID:23318058
Chen, S C; You, S H; Liu, C Y; Chio, C P; Liao, C M
2012-09-01
The aim of this work was to use experimental infection data of human influenza to assess a simple viral dynamics model in epithelial cells and better understand the underlying complex factors governing the infection process. The developed study model expands on previous reports of a target cell-limited model with delayed virus production. Data from 10 published experimental infection studies of human influenza was used to validate the model. Our results elucidate, mechanistically, the associations between epithelial cells, human immune responses, and viral titres and were supported by the experimental infection data. We report that the maximum total number of free virions following infection is 10(3)-fold higher than the initial introduced titre. Our results indicated that the infection rates of unprotected epithelial cells probably play an important role in affecting viral dynamics. By simulating an advanced model of viral dynamics and applying it to experimental infection data of human influenza, we obtained important estimates of the infection rate. This work provides epidemiologically meaningful results, meriting further efforts to understand the causes and consequences of influenza A infection.
Wang, Meng-Cheng; Gao, Yu; Deng, Jiaxin; Lai, Hongyu; Deng, Qiaowen; Armour, Cherie
2017-01-01
The current study assesses the factor structure and construct validity of the self-reported Inventory of Callous-Unemotional Traits (ICU) in 637 Chinese community adults (mean age = 25.98, SD = 5.79). A series of theoretical models proposed in previous studies were tested through confirmatory factor analyses. Results indicated that a shortened form that consists of 11 items (ICU-11) to assess callousness and uncaring factors has excellent overall fit. Additionally, correlations with a wide range of external variables demonstrated that this shortened form has similar construct validity compared to the original ICU. In conclusion, our findings suggest that the ICU-11 may be a promising self-report tool that could be a good substitute for the original form to assess callous-uncaring traits in adults.
A conflict management scale for pharmacy.
Austin, Zubin; Gregory, Paul A; Martin, Craig
2009-11-12
To develop and establish the validity and reliability of a conflict management scale specific to pharmacy practice and education. A multistage inventory-item development process was undertaken involving 93 pharmacists and using a previously described explanatory model for conflict in pharmacy practice. A 19-item inventory was developed, field tested, and validated. The conflict management scale (CMS) demonstrated an acceptable degree of reliability and validity for use in educational or practice settings to promote self-reflection and self-awareness regarding individuals' conflict management styles. The CMS provides a unique, pharmacy-specific method for individuals to determine and reflect upon their own conflict management styles. As part of an educational program to facilitate self-reflection and heighten self-awareness, the CMS may be a useful tool to promote discussions related to an important part of pharmacy practice.
ERIC Educational Resources Information Center
Dever, Richard B.
The purpose of Project COMPETE is to use previous research and exemplary practices to develop and validate a model and training sequence to assist retarded youth to make the transition from school to employment in the most competitive environment possible. The taxonomy described in this project working paper focuses on instructional objectives in…
NASA Technical Reports Server (NTRS)
Kowalski, Marc Edward
2009-01-01
A method for the prediction of time-domain signatures of chafed coaxial cables is presented. The method is quasi-static in nature, and is thus efficient enough to be included in inference and inversion routines. Unlike previous models proposed, no restriction on the geometry or size of the chafe is required in the present approach. The model is validated and its speed is illustrated via comparison to simulations from a commercial, three-dimensional electromagnetic simulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin
2012-02-23
This report describes the work conducted under the CRADA Nr. PNNL/304 between Battelle PNNL and Autodesk whose objective is to validate the new process models developed under the previous CRADA for large injection-molded LFT composite structures. To this end, the ARD-RSC and fiber length attrition models implemented in the 2013 research version of Moldflow was used to simulate the injection molding of 600-mm x 600-mm x 3-mm plaques from 40% glass/polypropylene (Dow Chemical DLGF9411.00) and 40% glass/polyamide 6,6 (DuPont Zytel 75LG40HSL BK031) materials. The injection molding was performed by Injection Technologies, Inc. at Windsor, Ontario (under a subcontract by Oakmore » Ridge National Laboratory, ORNL) using the mold offered by the Automotive Composite Consortium (ACC). Two fill speeds under the same back pressure were used to produce plaques under slow-fill and fast-fill conditions. Also, two gating options were used to achieve the following desired flow patterns: flows in edge-gated plaques and in center-gated plaques. After molding, ORNL performed measurements of fiber orientation and length distributions for process model validations. The structure of this report is as follows. After the Introduction (Section 1), Section 2 provides a summary of the ARD-RSC and fiber length attrition models. A summary of model implementations in the latest research version of Moldflow is given in Section 3. Section 4 provides the key processing conditions and parameters for molding of the ACC plaques. The validations of the ARD-RSC and fiber length attrition models are presented and discussed in Section 5. The conclusions will be drawn in Section 6.« less
NASA Astrophysics Data System (ADS)
Park, E.; Jeong, J.
2017-12-01
A precise estimation of groundwater fluctuation is studied by considering delayed recharge flux (DRF) and unsaturated zone drainage (UZD). Both DRF and UZD are due to gravitational flow impeded in the unsaturated zone, which may nonnegligibly affect groundwater level changes. In the validation, a previous model without the consideration of unsaturated flow is benchmarked where the actual groundwater level and precipitation data are divided into three periods based on the climatic condition. The estimation capability of the new model is superior to the benchmarked model as indicated by the significantly improved representation of groundwater level with physically interpretable model parameters.
Chouvenc, P; Vessot, S; Andrieu, J; Vacus, P
2005-01-01
The principal aim of this study is to extend to a pilot freeze-dryer equipped with a non-instantaneous isolation valve the previously presented pressure rise analysis (PRA) model for monitoring the product temperature and the resistance to mass transfer of the dried layer during primary drying. This method, derived from the original MTM method previously published, consists of interrupting rapidly (a few seconds) the water vapour flow from the sublimation chamber to the condenser and analysing the resulting dynamics of the total chamber pressure increase. The valve effect on the pressure rise profile observed during the isolation valve closing period was corrected by introducing in the initial PRA model a valve characteristic function factor which turned out to be independent of the operating conditions. This new extended PRA model was validated by implementing successively the two types of valves and by analysing the pressure rise kinetics data with the corresponding PRA models in the same operating conditions. The coherence and consistency shown on the identified parameter values (sublimation front temperature, dried layer mass transfer resistance) allowed validation of this extended PRA model with a non-instantaneous isolation valve. These results confirm that the PRA method, with or without an instantaneous isolation valve, is appropriate for on-line monitoring of product characteristics during freeze-drying. The advantages of PRA are that the method is rapid, non-invasive, and global. Consequently, PRA might become a powerful and promising tool not only for the control of pilot freeze-dryers but also for industrial freeze-dryers equipped with external condensers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.
Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less
Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.; ...
2017-04-01
Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less
Wan, Eric Yuk Fai; Fong, Daniel Yee Tak; Fung, Colman Siu Cheung; Yu, Esther Yee Tak; Chin, Weng Yee; Chan, Anca Ka Chun; Lam, Cindy Lo Kuen
2017-06-01
This study aimed to develop and validate an all-cause mortality risk prediction model for Chinese primary care patients with type 2 diabetes mellitus(T2DM) in Hong Kong. A population-based retrospective cohort study was conducted on 132,462 Chinese patients who had received public primary care services during 2010. Each gender sample was randomly split on a 2:1 basis into derivation and validation cohorts and was followed-up for a median period of 5years. Gender-specific mortality risk prediction models showing the interaction effect between predictors and age were derived using Cox proportional hazards regression with forward stepwise approach. Developed models were compared with pre-existing models by Harrell's C-statistic and calibration plot using validation cohort. Common predictors of increased mortality risk in both genders included: age; smoking habit; diabetes duration; use of anti-hypertensive agents, insulin and lipid-lowering drugs; body mass index; hemoglobin A1c; systolic blood pressure(BP); total cholesterol to high-density lipoprotein-cholesterol ratio; urine albumin to creatinine ratio(urine ACR); and estimated glomerular filtration rate(eGFR). Prediction models showed better discrimination with Harrell"'s C-statistics of 0.768(males) and 0.782(females) and calibration power from the plots than previously established models. Our newly developed gender-specific models provide a more accurate predicted 5-year mortality risk for Chinese diabetic patients than other established models. Copyright © 2017 Elsevier Inc. All rights reserved.
Bridging groundwater models and decision support with a Bayesian network
Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert
2013-01-01
Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.
A discrete epidemic model for bovine Babesiosis disease and tick populations
NASA Astrophysics Data System (ADS)
Aranda, Diego F.; Trejos, Deccy Y.; Valverde, Jose C.
2017-06-01
In this paper, we provide and study a discrete model for the transmission of Babesiosis disease in bovine and tick populations. This model supposes a discretization of the continuous-time model developed by us previously. The results, here obtained by discrete methods as opposed to continuous ones, show that similar conclusions can be obtained for the discrete model subject to the assumption of some parametric constraints which were not necessary in the continuous case. We prove that these parametric constraints are not artificial and, in fact, they can be deduced from the biological significance of the model. Finally, some numerical simulations are given to validate the model and verify our theoretical study.
A systematic study of Rayleigh-Brillouin scattering in air, N₂, and O₂ gases.
Gu, Ziyu; Ubachs, Wim
2014-09-14
Spontaneous Rayleigh-Brillouin scattering experiments in air, N2, and O2 have been performed for a wide range of temperatures and pressures at a wavelength of 403 nm and at a 90° scattering angle. Measurements of the Rayleigh-Brillouin spectral scattering profile were conducted at high signal-to-noise ratio for all three species, yielding high-quality spectra unambiguously showing the small differences between scattering in air, and its constituents N2 and O2. Comparison of the experimental spectra with calculations using the Tenti S6 model, developed in the 1970s based on linearized kinetic equations for molecular gases, demonstrates that this model is valid to high accuracy for N2 and O2, as well as for air. After previous measurements performed at 366 nm, the Tenti S6 model is here verified for a second wavelength of 403 nm, and for the pressure-temperature parameter space covered in the present study (250-340 K and 0.6-3 bars). In the application of the Tenti S6 model, based on the transport coefficients of the gases, such as thermal conductivity κ, internal specific heat capacity c(int) and shear viscosity η, as well as their temperature dependencies taken as inputs, values for the more elusive bulk viscosity η(b) for the gases are derived by optimizing the model to the measurements. It is verified that the bulk viscosity parameters obtained from previous experiments at 366 nm are valid for wavelengths of 403 nm. Also for air, which is treated as a single-component gas with effective gas transport coefficients, the Tenti S6 treatment is validated for 403 nm as for the previously used wavelength of 366 nm, yielding an accurate model description of the scattering profiles for a range of temperatures and pressures, including those of relevance for atmospheric studies. It is concluded that the Tenti S6 model, further verified in the present study, is applicable to LIDAR applications for exploring the wind velocity and the temperature profile distributions of the Earth's atmosphere. Based on the present findings at 90° scattering and the determination of η(b) values, predictions can be made on the spectral profiles for a typical LIDAR backscatter geometry. These Tenti S6 predictions for Rayleigh-Brillouin scattering deviate by some 7% from purely Gaussian profiles at realistic sub-atmospheric pressures occurring at 3-5 km altitude in the Earth's atmosphere.
NASA Astrophysics Data System (ADS)
Alikhani, Radin; Razzaghi-Asl, Nima; Ramazani, Ali; Hosseinzadeh, Zahra
2018-07-01
A few novel previously synthesized 2,5-disubstituted 1,3,4-oxadiazoles with cytotoxic activity (1-17) were subjected to combined docking/quantum mechanical studies against chemotherapeutic targets. Selected macromolecular targets were those that were previously known to be inhibited by 1,3,4-oxadiazoles. Within this work, favorable binding modes/affinities of the oxadiazoles toward validated cancer targets were elucidated. Some oxadiazole structures exhibited ΔGbs comparable to or stronger than crystallographic ligands that were previously demonstrated to inhibit such targets. On the basis of obtained results, a general structure activity/binding relationship (SAR/SBR) was developed and a few 2,5-disubstituted 1,3,4-oxadiazole structures were proposed and virtually validated as potential cytotoxic candidates. To get more insight into structure binding relationship of candidate molecules within best correlated targets, docked conformation of the best in silico in vitro correlated oxadiazole structure was analyzed in terms of intermolecular binding energy components by functional B3LYP in association with split valence basis set using polarization functions (Def2-SVP). We believe that such modeling studies may be complementary to our previous results on the synthesis and cytotoxicity assessment of novel 1,3,4-oxadiazole derivatives through extending the scope of privileged structures toward designing new potential anti-tumor compounds.
Hilkens, N A; Algra, A; Greving, J P
2016-01-01
ESSENTIALS: Prediction models may help to identify patients at high risk of bleeding on antiplatelet therapy. We identified existing prediction models for bleeding and validated them in patients with cerebral ischemia. Five prediction models were identified, all of which had some methodological shortcomings. Performance in patients with cerebral ischemia was poor. Background Antiplatelet therapy is widely used in secondary prevention after a transient ischemic attack (TIA) or ischemic stroke. Bleeding is the main adverse effect of antiplatelet therapy and is potentially life threatening. Identification of patients at increased risk of bleeding may help target antiplatelet therapy. This study sought to identify existing prediction models for intracranial hemorrhage or major bleeding in patients on antiplatelet therapy and evaluate their performance in patients with cerebral ischemia. We systematically searched PubMed and Embase for existing prediction models up to December 2014. The methodological quality of the included studies was assessed with the CHARMS checklist. Prediction models were externally validated in the European Stroke Prevention Study 2, comprising 6602 patients with a TIA or ischemic stroke. We assessed discrimination and calibration of included prediction models. Five prediction models were identified, of which two were developed in patients with previous cerebral ischemia. Three studies assessed major bleeding, one studied intracerebral hemorrhage and one gastrointestinal bleeding. None of the studies met all criteria of good quality. External validation showed poor discriminative performance, with c-statistics ranging from 0.53 to 0.64 and poor calibration. A limited number of prediction models is available that predict intracranial hemorrhage or major bleeding in patients on antiplatelet therapy. The methodological quality of the models varied, but was generally low. Predictive performance in patients with cerebral ischemia was poor. In order to reliably predict the risk of bleeding in patients with cerebral ischemia, development of a prediction model according to current methodological standards is needed. © 2015 International Society on Thrombosis and Haemostasis.
Transport of fluid and solutes in the body I. Formulation of a mathematical model.
Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L
1999-09-01
A compartmental model of short-term whole body fluid, protein, and ion distribution and transport is formulated. The model comprises four compartments: a vascular and an interstitial compartment, each with an embedded cellular compartment. The present paper discusses the assumptions on which the model is based and describes the equations that make up the model. Fluid and protein transport parameters from a previously validated model as well as ionic exchange parameters from the literature or from statistical estimation [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1228-H1240, 1999] are used in formulating the model. The dynamic model has the ability to simulate 1) transport across the capillary membrane of fluid, proteins, and small ions and their distribution between the vascular and interstitial compartments; 2) the changes in extracellular osmolarity; 3) the distribution and transport of water and ions associated with each of the cellular compartments; 4) the cellular transmembrane potential; and 5) the changes of volume in the four fluid compartments. The validation and testing of the proposed model against available experimental data are presented in the companion paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vögele, Martin; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt a. M.; Holm, Christian
2015-12-28
We present simulations of aqueous polyelectrolyte complexes with new MARTINI models for the charged polymers poly(styrene sulfonate) and poly(diallyldimethylammonium). Our coarse-grained polyelectrolyte models allow us to study large length and long time scales with regard to chemical details and thermodynamic properties. The results are compared to the outcomes of previous atomistic molecular dynamics simulations and verify that electrostatic properties are reproduced by our MARTINI coarse-grained approach with reasonable accuracy. Structural similarity between the atomistic and the coarse-grained results is indicated by a comparison between the pair radial distribution functions and the cumulative number of surrounding particles. Our coarse-grained models aremore » able to quantitatively reproduce previous findings like the correct charge compensation mechanism and a reduced dielectric constant of water. These results can be interpreted as the underlying reason for the stability of polyelectrolyte multilayers and complexes and validate the robustness of the proposed models.« less
Single-layer model to predict the source/sink behavior of diffusion-controlled building materials.
Kumar, Deept; Little, John C
2003-09-01
Building materials may act as both sources of and sinks forvolatile organic compounds (VOCs) in indoor air. A strategy to characterize the rate of absorption and desorption of VOCs by diffusion-controlled building materials is validated. A previously developed model that predicts mass transfer between a flat slab of material and the well-mixed air within a chamber or room is extended. The generalized model allows a nonuniform initial material-phase concentration and a transient influent gas-phase concentration to be simultaneously considered. An analytical solution to the more general model is developed. Experimental data are obtained by placing samples of vinyl flooring inside a small stainless steel chamber and exposing them to absorption/desorption cycles of n-dodecane and phenol. Measured values for the material-air partition coefficient and the material-phase diffusion coefficient were obtained previously in a series of completely independent experiments. The a priori model predictions are in close agreement with the observed experimental data.
Propagation of a Gaussian-beam wave in general anisotropic turbulence
NASA Astrophysics Data System (ADS)
Andrews, L. C.; Phillips, R. L.; Crabbs, R.
2014-10-01
Mathematical models for a Gaussian-beam wave propagating through anisotropic non-Kolmogorov turbulence have been developed in the past by several researchers. In previous publications, the anisotropic spatial power spectrum model was based on the assumption that propagation was in the z direction with circular symmetry maintained in the orthogonal xy-plane throughout the path. In the present analysis, however, the anisotropic spectrum model is no longer based on a single anisotropy parameter—instead, two such parameters are introduced in the orthogonal xyplane so that circular symmetry in this plane is no longer required. In addition, deviations from the 11/3 power-law behavior in the spectrum model are allowed by assuming power-law index variations 3 < α < 4 . In the current study we develop theoretical models for beam spot size, spatial coherence, and scintillation index that are valid in weak irradiance fluctuation regimes as well as in deep turbulence, or strong irradiance fluctuation regimes. These new results are compared with those derived from the more specialized anisotropic spectrum used in previous analyses.
Self-Stigma of Mental Illness Scale – Short Form: Reliability and Validity
Corrigan, Patrick W.; Michaels, Patrick J.; Vega, Eduardo; Gause, Michael; Watson, Amy C.; Rüsch, Nicolas
2012-01-01
The internalization of public stigma by persons with serious mental illnesses may lead to self-stigma, which harms self-esteem, self-efficacy, and empowerment. Previous research has evaluated a hierarchical model that distinguishes among stereotype awareness, agreement, application to self, and harm to self with the 40-item Self-Stigma of Mental Illness Scale (SSMIS). This study addressed SSMIS critiques (too long, contains offensive items that discourages test completion) by strategically omitting half of the original scale’s items. Here we report reliability and validity of the 20-item short form (SSMIS-SF) based on data from three previous studies. Retained items were rated less offensive by a sample of consumers. Results indicated adequate internal consistencies for each subscale. Repeated measures ANOVAs showed subscale means progressively diminished from awareness to harm. In support of its validity, the harm subscale was found to be inversely and significantly related to self-esteem, self-efficacy, empowerment, and hope. After controlling for level of depression, these relationships remained significant with the exception of the relation between empowerment and harm SSMIS-SF subscale. Future research with the SSMIS-SF should evaluate its sensitivity to change and its stability through test-rest reliability. PMID:22578819
A gas-kinetic BGK scheme for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Xu, Kun
2000-01-01
This paper presents an improved gas-kinetic scheme based on the Bhatnagar-Gross-Krook (BGK) model for the compressible Navier-Stokes equations. The current method extends the previous gas-kinetic Navier-Stokes solver developed by Xu and Prendergast by implementing a general nonequilibrium state to represent the gas distribution function at the beginning of each time step. As a result, the requirement in the previous scheme, such as the particle collision time being less than the time step for the validity of the BGK Navier-Stokes solution, is removed. Therefore, the applicable regime of the current method is much enlarged and the Navier-Stokes solution can be obtained accurately regardless of the ratio between the collision time and the time step. The gas-kinetic Navier-Stokes solver developed by Chou and Baganoff is the limiting case of the current method, and it is valid only under such a limiting condition. Also, in this paper, the appropriate implementation of boundary condition for the kinetic scheme, different kinetic limiting cases, and the Prandtl number fix are presented. The connection among artificial dissipative central schemes, Godunov-type schemes, and the gas-kinetic BGK method is discussed. Many numerical tests are included to validate the current method.
SLS Navigation Model-Based Design Approach
NASA Technical Reports Server (NTRS)
Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas
2018-01-01
The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and management of design requirements to the development of usable models, model requirements, and model verification and validation efforts. The models themselves are represented in C/C++ code and accompanying data files. Under the idealized process, potential ambiguity in specification is reduced because the model must be implementable versus a requirement which is not necessarily subject to this constraint. Further, the models are shown to emulate the hardware during validation. For models developed by the Navigation Team, a common interface/standalone environment was developed. The common environment allows for easy implementation in design and analysis tools. Mechanisms such as unit test cases ensure implementation as the developer intended. The model verification and validation process provides a very high level of component design insight. The origin and implementation of the SLS variant of Model-based Design is described from the perspective of the SLS Navigation Team. The format of the models and the requirements are described. The Model-based Design approach has many benefits but is not without potential complications. Key lessons learned associated with the implementation of the Model Based Design approach and process from infancy to verification and certification are discussed
LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction
Huang, Li
2017-01-01
Predicting novel microRNA (miRNA)-disease associations is clinically significant due to miRNAs’ potential roles of diagnostic biomarkers and therapeutic targets for various human diseases. Previous studies have demonstrated the viability of utilizing different types of biological data to computationally infer new disease-related miRNAs. Yet researchers face the challenge of how to effectively integrate diverse datasets and make reliable predictions. In this study, we presented a computational model named Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction (LRSSLMDA), which projected miRNAs/diseases’ statistical feature profile and graph theoretical feature profile to a common subspace. It used Laplacian regularization to preserve the local structures of the training data and a L1-norm constraint to select important miRNA/disease features for prediction. The strength of dimensionality reduction enabled the model to be easily extended to much higher dimensional datasets than those exploited in this study. Experimental results showed that LRSSLMDA outperformed ten previous models: the AUC of 0.9178 in global leave-one-out cross validation (LOOCV) and the AUC of 0.8418 in local LOOCV indicated the model’s superior prediction accuracy; and the average AUC of 0.9181+/-0.0004 in 5-fold cross validation justified its accuracy and stability. In addition, three types of case studies further demonstrated its predictive power. Potential miRNAs related to Colon Neoplasms, Lymphoma, Kidney Neoplasms, Esophageal Neoplasms and Breast Neoplasms were predicted by LRSSLMDA. Respectively, 98%, 88%, 96%, 98% and 98% out of the top 50 predictions were validated by experimental evidences. Therefore, we conclude that LRSSLMDA would be a valuable computational tool for miRNA-disease association prediction. PMID:29253885
Ditmyer, Marcia M; Dounis, Georgia; Howard, Katherine M; Mobley, Connie; Cappelli, David
2011-05-20
The objective of this study was to measure the validity and reliability of a multifactorial Risk Factor Model developed for use in predicting future caries risk in Nevada adolescents in a public health setting. This study examined retrospective data from an oral health surveillance initiative that screened over 51,000 students 13-18 years of age, attending public/private schools in Nevada across six academic years (2002/2003-2007/2008). The Risk Factor Model included ten demographic variables: exposure to fluoridation in the municipal water supply, environmental smoke exposure, race, age, locale (metropolitan vs. rural), tobacco use, Body Mass Index, insurance status, sex, and sealant application. Multiple regression was used in a previous study to establish which significantly contributed to caries risk. Follow-up logistic regression ascertained the weight of contribution and odds ratios of the ten variables. Researchers in this study computed sensitivity, specificity, positive predictive value (PVP), negative predictive value (PVN), and prevalence across all six years of screening to assess the validity of the Risk Factor Model. Subjects' overall mean caries prevalence across all six years was 66%. Average sensitivity across all six years was 79%; average specificity was 81%; average PVP was 89% and average PVN was 67%. Overall, the Risk Factor Model provided a relatively constant, valid measure of caries that could be used in conjunction with a comprehensive risk assessment in population-based screenings by school nurses/nurse practitioners, health educators, and physicians to guide them in assessing potential future caries risk for use in prevention and referral practices.
Noel, Melanie; Palermo, Tonya M.; Essner, Bonnie; Zhou, Chuan; Levy, Rona L.; Langer, Shelby L.; Sherman, Amanda L.; Walker, Lynn S.
2015-01-01
The widely used Adult Responses to Children’s Symptoms measures parental responses to child symptom complaints among youth aged 7 to 18 years with recurrent/chronic pain. Given developmental differences between children and adolescents and the impact of developmental stage on parenting, the factorial validity of the parent-report version of the Adult Responses to Children’s Symptoms with a pain-specific stem was examined separately in 743 parents of 281 children (7–11 years) and 462 adolescents (12–18 years) with chronic pain or pain-related chronic illness. Factor structures of the Adult Responses to Children’s Symptoms beyond the original 3-factor model were also examined. Exploratory factor analysis with oblique rotation was conducted on a randomly chosen half of the sample of children and adolescents as well as the 2 groups combined to assess underlying factor structure. Confirmatory factor analysis was conducted on the other randomly chosen half of the sample to cross-validate factor structure revealed by exploratory factor analyses and compare it to other model variants. Poor loading and high cross loading items were removed. A 4-factor model (Protect, Minimize, Monitor, and Distract) for children and the combined (child and adolescent) sample and a 5-factor model (Protect, Minimize, Monitor, Distract, and Solicitousness) for adolescents was superior to the 3-factor model proposed in previous literature. Future research should examine the validity of derived subscales and developmental differences in their relationships with parent and child functioning. PMID:25451623
Graham, Jesse; Nosek, Brian A.; Haidt, Jonathan; Iyer, Ravi; Koleva, Spassena; Ditto, Peter H.
2010-01-01
The moral domain is broader than the empathy and justice concerns assessed by existing measures of moral competence, and it is not just a subset of the values assessed by value inventories. To fill the need for reliable and theoretically-grounded measurement of the full range of moral concerns, we developed the Moral Foundations Questionnaire (MFQ) based on a theoretical model of five universally available (but variably developed) sets of moral intuitions: Harm/care, Fairness/reciprocity, Ingroup/loyalty, Authority/respect, and Purity/sanctity. We present evidence for the internal and external validity of the scale and the model, and in doing so present new findings about morality: 1. Comparative model fitting of confirmatory factor analyses provides empirical justification for a five-factor structure of moral concerns. 2. Convergent/discriminant validity evidence suggests that moral concerns predict personality features and social group attitudes not previously considered morally relevant. 3. We establish pragmatic validity of the measure in providing new knowledge and research opportunities concerning demographic and cultural differences in moral intuitions. These analyses provide evidence for the usefulness of Moral Foundations Theory in simultaneously increasing the scope and sharpening the resolution of psychological views of morality. PMID:21244182
van Leeuwen, Pim J; Hayen, Andrew; Thompson, James E; Moses, Daniel; Shnier, Ron; Böhm, Maret; Abuodha, Magdaline; Haynes, Anne-Maree; Ting, Francis; Barentsz, Jelle; Roobol, Monique; Vass, Justin; Rasiah, Krishan; Delprado, Warick; Stricker, Phillip D
2017-12-01
To develop and externally validate a predictive model for detection of significant prostate cancer. Development of the model was based on a prospective cohort including 393 men who underwent multiparametric magnetic resonance imaging (mpMRI) before biopsy. External validity of the model was then examined retrospectively in 198 men from a separate institution whom underwent mpMRI followed by biopsy for abnormal prostate-specific antigen (PSA) level or digital rectal examination (DRE). A model was developed with age, PSA level, DRE, prostate volume, previous biopsy, and Prostate Imaging Reporting and Data System (PIRADS) score, as predictors for significant prostate cancer (Gleason 7 with >5% grade 4, ≥20% cores positive or ≥7 mm of cancer in any core). Probability was studied via logistic regression. Discriminatory performance was quantified by concordance statistics and internally validated with bootstrap resampling. In all, 393 men had complete data and 149 (37.9%) had significant prostate cancer. While the variable model had good accuracy in predicting significant prostate cancer, area under the curve (AUC) of 0.80, the advanced model (incorporating mpMRI) had a significantly higher AUC of 0.88 (P < 0.001). The model was well calibrated in internal and external validation. Decision analysis showed that use of the advanced model in practice would improve biopsy outcome predictions. Clinical application of the model would reduce 28% of biopsies, whilst missing 2.6% significant prostate cancer. Individualised risk assessment of significant prostate cancer using a predictive model that incorporates mpMRI PIRADS score and clinical data allows a considerable reduction in unnecessary biopsies and reduction of the risk of over-detection of insignificant prostate cancer at the cost of a very small increase in the number of significant cancers missed. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.
Yang, Litao; Quan, Sheng; Zhang, Dabing
2017-01-01
Endogenous reference genes (ERG) and their derivate analytical methods are standard requirements for analysis of genetically modified organisms (GMOs). Development and validation of suitable ERGs is the primary step for establishing assays that monitoring the genetically modified (GM) contents in food/feed samples. Herein, we give a review of the ERGs currently used for GM wheat analysis, such as ACC1, PKABA1, ALMT1, and Waxy-D1, as well as their performances in GM wheat analysis. Also, we discussed one model for developing and validating one ideal RG for one plant species based on our previous research work.
Evolving forecasting classifications and applications in health forecasting
Soyiri, Ireneous N; Reidpath, Daniel D
2012-01-01
Health forecasting forewarns the health community about future health situations and disease episodes so that health systems can better allocate resources and manage demand. The tools used for developing and measuring the accuracy and validity of health forecasts commonly are not defined although they are usually adapted forms of statistical procedures. This review identifies previous typologies used in classifying the forecasting methods commonly used in forecasting health conditions or situations. It then discusses the strengths and weaknesses of these methods and presents the choices available for measuring the accuracy of health-forecasting models, including a note on the discrepancies in the modes of validation. PMID:22615533
Williams, Monnica T; Wetterneck, Chad T; Thibodeau, Michel A; Duque, Gerardo
2013-09-30
The Yale-Brown Obsessive Compulsive Scale (Y-BOCS) is widely used in the assessment of obsessive-compulsive disorder (OCD), but the psychometric properties of the instrument have not been examined in African Americans with OCD. Therefore, the purpose of this study is to explore the properties of the Y-BOCS severity scale in this population. Participants were 75 African American adults with a lifetime diagnosis of OCD. They completed the Y-BOCS, the Beck Anxiety Inventory (BAI), the Beck Depression Inventory-II (BDI-II), and the Multigroup Ethnic Identity Measure (MEIM). Evaluators rated OCD severity using the Clinical Global Impression Scale (CGI) and their global assessment of functioning (GAF). The Y-BOCS was significantly correlated with both the CGI and GAF, indicating convergent validity. It also demonstrated good internal consistency (α=0.83) and divergent validity when compared to the BAI and BDI-II. Confirmatory factor analyses tested five previously reported models and supported a three-factor solution, although no model exhibited excellent fit. An exploratory factor analysis was conducted, supporting a three-factor solution. A linear regression was conducted, predicting CGI from the three factors of the Y-BOCS and the MEIM, and the model was significant. The Y-BOCS appears to be a valid measure for African American populations. © 2013 Elsevier Ireland Ltd. All rights reserved.
Kennicutt, A R; Morkowchuk, L; Krein, M; Breneman, C M; Kilduff, J E
2016-08-01
A quantitative structure-activity relationship was developed to predict the efficacy of carbon adsorption as a control technology for endocrine-disrupting compounds, pharmaceuticals, and components of personal care products, as a tool for water quality professionals to protect public health. Here, we expand previous work to investigate a broad spectrum of molecular descriptors including subdivided surface areas, adjacency and distance matrix descriptors, electrostatic partial charges, potential energy descriptors, conformation-dependent charge descriptors, and Transferable Atom Equivalent (TAE) descriptors that characterize the regional electronic properties of molecules. We compare the efficacy of linear (Partial Least Squares) and non-linear (Support Vector Machine) machine learning methods to describe a broad chemical space and produce a user-friendly model. We employ cross-validation, y-scrambling, and external validation for quality control. The recommended Support Vector Machine model trained on 95 compounds having 23 descriptors offered a good balance between good performance statistics, low error, and low probability of over-fitting while describing a wide range of chemical features. The cross-validated model using a log-uptake (qe) response calculated at an aqueous equilibrium concentration (Ce) of 1 μM described the training dataset with an r(2) of 0.932, had a cross-validated r(2) of 0.833, and an average residual of 0.14 log units.
Bozcuk, H; Yıldız, M; Artaç, M; Kocer, M; Kaya, Ç; Ulukal, E; Ay, S; Kılıç, M P; Şimşek, E H; Kılıçkaya, P; Uçar, S; Coskun, H S; Savas, B
2015-06-01
There is clinical need to predict risk of febrile neutropenia before a specific cycle of chemotherapy in cancer patients. Data on 3882 chemotherapy cycles in 1089 consecutive patients with lung, breast, and colon cancer from four teaching hospitals were used to construct a predictive model for febrile neutropenia. A final nomogram derived from the multivariate predictive model was prospectively confirmed in a second cohort of 960 consecutive cases and 1444 cycles. The following factors were used to construct the nomogram: previous history of febrile neutropenia, pre-cycle lymphocyte count, type of cancer, cycle of current chemotherapy, and patient age. The predictive model had a concordance index of 0.95 (95 % confidence interval (CI) = 0.91-0.99) in the derivation cohort and 0.85 (95 % CI = 0.80-0.91) in the external validation cohort. A threshold of 15 % for the risk of febrile neutropenia in the derivation cohort was associated with a sensitivity of 0.76 and specificity of 0.98. These figures were 1.00 and 0.49 in the validation cohort if a risk threshold of 50 % was chosen. This nomogram is helpful in the prediction of febrile neutropenia after chemotherapy in patients with lung, breast, and colon cancer. Usage of this nomogram may help decrease the morbidity and mortality associated with febrile neutropenia and deserves further validation.
A single factor underlies the metabolic syndrome: a confirmatory factor analysis.
Pladevall, Manel; Singal, Bonita; Williams, L Keoki; Brotons, Carlos; Guyer, Heidi; Sadurni, Josep; Falces, Carles; Serrano-Rios, Manuel; Gabriel, Rafael; Shaw, Jonathan E; Zimmet, Paul Z; Haffner, Steven
2006-01-01
Confirmatory factor analysis (CFA) was used to test the hypothesis that the components of the metabolic syndrome are manifestations of a single common factor. Three different datasets were used to test and validate the model. The Spanish and Mauritian studies included 207 men and 203 women and 1,411 men and 1,650 women, respectively. A third analytical dataset including 847 men was obtained from a previously published CFA of a U.S. population. The one-factor model included the metabolic syndrome core components (central obesity, insulin resistance, blood pressure, and lipid measurements). We also tested an expanded one-factor model that included uric acid and leptin levels. Finally, we used CFA to compare the goodness of fit of one-factor models with the fit of two previously published four-factor models. The simplest one-factor model showed the best goodness-of-fit indexes (comparative fit index 1, root mean-square error of approximation 0.00). Comparisons of one-factor with four-factor models in the three datasets favored the one-factor model structure. The selection of variables to represent the different metabolic syndrome components and model specification explained why previous exploratory and confirmatory factor analysis, respectively, failed to identify a single factor for the metabolic syndrome. These analyses support the current clinical definition of the metabolic syndrome, as well as the existence of a single factor that links all of the core components.
Yu, Shuling; Yuan, Jintao; Zhang, Yi; Gao, Shufang; Gan, Ying; Han, Meng; Chen, Yuewen; Zhou, Qiaoqiao; Shi, Jiahua
2017-06-01
Sodium-glucose cotransporter 2 (SGLT2) is a promising target for diabetes therapy. We aimed to develop computational approaches to identify structural features for more potential SGLT2 inhibitors. In this work, 46 triazole derivatives as SGLT2 inhibitors were studied using a combination of several approaches, including hologram quantitative structure-activity relationships (HQSAR), topomer comparative molecular field analysis (CoMFA), homology modeling, and molecular docking. HQSAR and topomer CoMFA were used to construct models. Molecular docking was conducted to investigate the interaction of triazole derivatives and homology modeling of SGLT2, as well as to validate the results of the HQSAR and topomer CoMFA models. The most effective HQSAR and topomer CoMFA models exhibited noncross-validated correlation coefficients of 0.928 and 0.891 for the training set, respectively. External predictions were made successfully on a test set and then compared with previously reported models. The graphical results of HQSAR and topomer CoMFA were proven to be consistent with the binding mode of the inhibitors and SGLT2 from molecular docking. The models and docking provided important insights into the design of potent inhibitors for SGLT2.
Fernández, Cristina; Vega, José A
2018-05-04
Severe fire greatly increases soil erosion rates and overland-flow in forest land. Soil erosion prediction models are essential for estimating fire impacts and planning post-fire emergency responses. We evaluated the performance of a) the Revised Universal Soil Loss Equation (RUSLE), modified by inclusion of an alternative equation for the soil erodibility factor, and b) the Disturbed WEPP model, by comparing the soil loss predicted by the models and the soil loss measured in the first year after wildfire in 44 experimental field plots in NW Spain. The Disturbed WEPP has not previously been validated with field data for use in NW Spain; validation studies are also very scarce in other areas. We found that both models underestimated the erosion rates. The accuracy of the RUSLE model was low, even after inclusion of a modified soil erodibility factor accounting for high contents of soil organic matter. We conclude that neither model is suitable for predicting soil erosion in the first year after fire in NW Spain and suggest that soil burn severity should be given greater weighting in post-fire soil erosion modelling. Copyright © 2018 Elsevier Inc. All rights reserved.
Predictive Virtual Infection Modeling of Fungal Immune Evasion in Human Whole Blood.
Prauße, Maria T E; Lehnert, Teresa; Timme, Sandra; Hünniger, Kerstin; Leonhardt, Ines; Kurzai, Oliver; Figge, Marc Thilo
2018-01-01
Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida glabrata increasingly occur in hospitalized patients and are associated with high mortality rates. The early immune response against these fungi in human blood comprises a concerted action of humoral and cellular components of the innate immune system. Upon entering the blood, the majority of fungal cells will be eliminated by innate immune cells, i.e., neutrophils and monocytes. However, recent studies identified a population of fungal cells that can evade the immune response and thereby may disseminate and cause organ dissemination, which is frequently observed during candidemia. In this study, we investigate the so far unresolved mechanism of fungal immune evasion in human whole blood by testing hypotheses with the help of mathematical modeling. We use a previously established state-based virtual infection model for whole-blood infection with C. albicans to quantify the immune response and identified the fungal immune-evasion mechanism. While this process was assumed to be spontaneous in the previous model, we now hypothesize that the immune-evasion process is mediated by host factors and incorporate such a mechanism in the model. In particular, we propose, based on previous studies that the fungal immune-evasion mechanism could possibly arise through modification of the fungal surface by as of yet unknown proteins that are assumed to be secreted by activated neutrophils. To validate or reject any of the immune-evasion mechanisms, we compared the simulation of both immune-evasion models for different infection scenarios, i.e., infection of whole blood with either C. albicans or C. glabrata under non-neutropenic and neutropenic conditions. We found that under non-neutropenic conditions, both immune-evasion models fit the experimental data from whole-blood infection with C. albicans and C. glabrata . However, differences between the immune-evasion models could be observed for the infection outcome under neutropenic conditions with respect to the distribution of fungal cells across the immune cells. Based on these predictions, we suggested specific experimental studies that might allow for the validation or rejection of the proposed immune-evasion mechanism.
Predictive Virtual Infection Modeling of Fungal Immune Evasion in Human Whole Blood
Prauße, Maria T. E.; Lehnert, Teresa; Timme, Sandra; Hünniger, Kerstin; Leonhardt, Ines; Kurzai, Oliver; Figge, Marc Thilo
2018-01-01
Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida glabrata increasingly occur in hospitalized patients and are associated with high mortality rates. The early immune response against these fungi in human blood comprises a concerted action of humoral and cellular components of the innate immune system. Upon entering the blood, the majority of fungal cells will be eliminated by innate immune cells, i.e., neutrophils and monocytes. However, recent studies identified a population of fungal cells that can evade the immune response and thereby may disseminate and cause organ dissemination, which is frequently observed during candidemia. In this study, we investigate the so far unresolved mechanism of fungal immune evasion in human whole blood by testing hypotheses with the help of mathematical modeling. We use a previously established state-based virtual infection model for whole-blood infection with C. albicans to quantify the immune response and identified the fungal immune-evasion mechanism. While this process was assumed to be spontaneous in the previous model, we now hypothesize that the immune-evasion process is mediated by host factors and incorporate such a mechanism in the model. In particular, we propose, based on previous studies that the fungal immune-evasion mechanism could possibly arise through modification of the fungal surface by as of yet unknown proteins that are assumed to be secreted by activated neutrophils. To validate or reject any of the immune-evasion mechanisms, we compared the simulation of both immune-evasion models for different infection scenarios, i.e., infection of whole blood with either C. albicans or C. glabrata under non-neutropenic and neutropenic conditions. We found that under non-neutropenic conditions, both immune-evasion models fit the experimental data from whole-blood infection with C. albicans and C. glabrata. However, differences between the immune-evasion models could be observed for the infection outcome under neutropenic conditions with respect to the distribution of fungal cells across the immune cells. Based on these predictions, we suggested specific experimental studies that might allow for the validation or rejection of the proposed immune-evasion mechanism. PMID:29619027
Benson, Charles T.; Critser, John K.
2014-01-01
Optimization of cryopreservation protocols for cells and tissues requires accurate models of heat and mass transport. Model selection often depends on the configuration of the tissue. Here, a mathematical and conceptual model of water and solute transport for whole hamster pancreatic islets has been developed and experimentally validated incorporating fundamental biophysical data from previous studies on individual hamster islet cells while retaining whole-islet structural information. It describes coupled transport of water and solutes through the islet by three methods: intracellularly, intercellularly, and in combination. In particular we use domain decomposition techniques to couple a transmembrane flux model with an interstitial mass transfer model. The only significant undetermined variable is the cellular surface area which is in contact with the intercellularly transported solutes, Ais. The model was validated and Ais determined using a 3 × 3 factorial experimental design blocked for experimental day. Whole islet physical experiments were compared with model predictions at three temperatures, three perfusing solutions, and three islet size groups. A mean of 4.4 islets were compared at each of the 27 experimental conditions and found to correlate with a coefficient of determination of 0.87 ± 0.06 (mean ± S.D.). Only the treatment variable of perfusing solution was found to be significant (p < 0.05). We have devised a model that retains much of the intrinsic geometric configuration of the system, and thus fewer laboratory experiments are needed to determine model parameters and thus to develop new optimized cryopreservation protocols. Additionally, extensions to ovarian follicles and other concentric tissue structures may be made. PMID:24950195
In silico modeling to predict drug-induced phospholipidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sydney S.; Kim, Jae S.; Valerio, Luis G., E-mail: luis.valerio@fda.hhs.gov
2013-06-01
Drug-induced phospholipidosis (DIPL) is a preclinical finding during pharmaceutical drug development that has implications on the course of drug development and regulatory safety review. A principal characteristic of drugs inducing DIPL is known to be a cationic amphiphilic structure. This provides evidence for a structure-based explanation and opportunity to analyze properties and structures of drugs with the histopathologic findings for DIPL. In previous work from the FDA, in silico quantitative structure–activity relationship (QSAR) modeling using machine learning approaches has shown promise with a large dataset of drugs but included unconfirmed data as well. In this study, we report the constructionmore » and validation of a battery of complementary in silico QSAR models using the FDA's updated database on phospholipidosis, new algorithms and predictive technologies, and in particular, we address high performance with a high-confidence dataset. The results of our modeling for DIPL include rigorous external validation tests showing 80–81% concordance. Furthermore, the predictive performance characteristics include models with high sensitivity and specificity, in most cases above ≥ 80% leading to desired high negative and positive predictivity. These models are intended to be utilized for regulatory toxicology applied science needs in screening new drugs for DIPL. - Highlights: • New in silico models for predicting drug-induced phospholipidosis (DIPL) are described. • The training set data in the models is derived from the FDA's phospholipidosis database. • We find excellent predictivity values of the models based on external validation. • The models can support drug screening and regulatory decision-making on DIPL.« less
Frequency-response identification of XV-15 tilt-rotor aircraft dynamics
NASA Technical Reports Server (NTRS)
Tischler, Mark B.
1987-01-01
The timely design and development of the next generation of tilt-rotor aircraft (JVX) depend heavily on the in-depth understanding of existing XV-15 dynamics and the availability of fully validated simulation models. Previous studies have considered aircraft and simulation trim characteristics, but analyses of basic flight vehicle dynamics were limited to qualitative pilot evaluation. The present study has the following objectives: documentation and evaluation of XV-15 bare-airframe dynamics; comparison of aircraft and simulation responses; and development of a validated transfer-function description of the XV-15 needed for future studies. A nonparametric frequency-response approach is used which does not depend on assumed model order or structure. Transfer-function representations are subsequently derived which fit the frequency responses in the bandwidth of greatest concern for piloted handling-qualities and control-system applications.
Academic Self-Concept: Modeling and Measuring for Science
NASA Astrophysics Data System (ADS)
Hardy, Graham
2014-08-01
In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive facets including conceptual and procedural elements. In the first part of the study, data were collected from 1,483 students attending eight secondary schools in England, through the use of a newly devised Secondary Self-Concept Science Instrument, and structural equation modeling was employed to test and validate a model. In the second part of the study, the data were analysed within the new self-concept framework to examine learners' ASC profiles across the domains of science, with particular attention paid to age- and gender-related differences. The study found that the proposed science self-concept model exhibited robust measures of fit and construct validity, which were shown to be invariant across gender and age subgroups. The self-concept profiles were heterogeneous in nature with the component relating to self-concept in physics, being surprisingly positive in comparison to other aspects of science. This outcome is in stark contrast to data reported elsewhere and raises important issues about the nature of young learners' self-conceptions about science. The paper concludes with an analysis of the potential utility of the self-concept measurement instrument as a pedagogical device for science educators and learners of science.
Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron.
Cinelli, Ilaria; Destrade, Michel; Duffy, Maeve; McHugh, Peter
2018-06-01
We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.
Khazaee-Pool, Maryam; Majlessi, Fereshteh; Montazeri, Ali; Pashaei, Tahereh; Gholami, Ali; Ponnet, Koen
2016-07-22
Breast cancer preventive behaviors have an extreme effect on women's health. Despite the benefits of preventive behaviors regarding breast cancer, they have not been implemented as routine care for healthy women. To assess this health issue, a reliable and valid scale is needed. The aim of the present study is to develop and examine the psychometric properties of a new scale, called the ASSISTS, in order to identify factors that affect women's breast cancer prevention behaviors. A multi-phase instrument development method was performed to develop the questionnaire from February 2012 to September 2014. The item pool was generated based on secondary analyses of previous qualitative data. Then, content and face validity were applied to provide a pre-final version of the scale. The scale validation was conducted with a sample of women recruited from health centers affiliated with Tehran University of Medical Sciences. The construct validity (both exploratory and confirmatory), convergent validity, discriminate validity, internal consistency reliability and test-retest analysis of the questionnaire were tested. Fifty-eight items were initially extracted from the secondary analysis of previous qualitative data. After content validity, this was reduced to 49 items. The exploratory factor analysis revealed seven factors (Attitude, supportive systems, self-efficacy, information seeking, stress management, stimulant and self-care) containing 33 items that jointly accounted for 60.62 % of the observed variance. The confirmatory factor analysis showed a model with appropriate fitness for the data. The Cronbach's alpha coefficient for the subscales ranged from 0.68 to 0.85, and the Intraclass Correlation Coefficient (ICC) ranged from 0.71 to 0.98; which is well above the acceptable thresholds. The findings showed that the designed questionnaire was a valid and reliable instrument for assessing factors affecting women's breast cancer prevention behaviors that can be used both in practice and in future studies.
NASA Technical Reports Server (NTRS)
Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.
2016-01-01
The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and Heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, wehave quantitatively assessed the models capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs.The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.
NASA Astrophysics Data System (ADS)
Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.
2016-08-01
The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, we have quantitatively assessed the models' capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs. The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.
Vaughan, Brett
2018-01-01
Clinical teaching evaluations are common in health profession education programs to ensure students are receiving a quality clinical education experience. Questionnaires students use to evaluate their clinical teachers have been developed in professions such as medicine and nursing. The development of a questionnaire that is specifically for the osteopathy on-campus, student-led clinic environment is warranted. Previous work developed the 30-item Osteopathy Clinical Teaching Questionnaire. The current study utilised Rasch analysis to investigate the construct validity of the Osteopathy Clinical Teaching Questionnaire and provide evidence for the validity argument through fit to the Rasch model. Senior osteopathy students at four institutions in Australia, New Zealand and the United Kingdom rated their clinical teachers using the Osteopathy Clinical Teaching Questionnaire. Three hundred and ninety-nine valid responses were received and the data were evaluated for fit to the Rasch model. Reliability estimations (Cronbach's alpha and McDonald's omega) were also evaluated for the final model. The initial analysis demonstrated the data did not fit the Rasch model. Accordingly, modifications to the questionnaire were made including removing items, removing person responses, and rescoring one item. The final model contained 12 items and fit to the Rasch model was adequate. Support for unidimensionality was demonstrated through both the Principal Components Analysis/t-test, and the Cronbach's alpha and McDonald's omega reliability estimates. Analysis of the questionnaire using McDonald's omega hierarchical supported a general factor (quality of clinical teaching in osteopathy). The evidence for unidimensionality and the presence of a general factor support the calculation of a total score for the questionnaire as a sufficient statistic. Further work is now required to investigate the reliability of the 12-item Osteopathy Clinical Teaching Questionnaire to provide evidence for the validity argument.
NASA Astrophysics Data System (ADS)
Fares, A.; Cheng, C. L.; Dogan, A.
2006-12-01
Impaired water quality caused by agriculture, urbanization, and spread of invasive species has been identified as a major factor in the degradation of coastal ecosystems in the tropics. Watershed-scale nonpoint source pollution models facilitate in evaluating effective management practices to alleviate the negative impacts of different land-use changes. The Non-Point Source Pollution and Erosion Comparison Tool (N-SPECT) is a newly released watershed model that was not previously tested under tropical conditions. The two objectives of this study were to: i) calibrate and validate N-SPECT for the Hanalei Watershed of the Hawai`ian island of Kaua`i; ii) evaluate the performance of N-SPECT under tropical conditions using the sensitivity analysis approach. Hanalei watershed has one of the wettest points on earth, Mt. Waialeale with an average annual rainfall of 11,000 mm. This rainfall decreases to 2,000 mm at the outlet of the watershed near the coast. Number of rain days is one of the major input parameters that influences N-SPECT's simulation results. This parameter was used to account for plant canopy interception losses. The watershed was divided into sub- basins to accurately distribute the number of rain days throughout the watershed. Total runoff volume predicted by the model compared well with measured data. The model underestimated measured runoff by 1% for calibration period and 5% for validation period due to higher intensity precipitation in the validation period. Sensitivity analysis revealed that the model was most sensitive to the number of rain days, followed by canopy interception, and least sensitive to the number of sub-basins. The sediment and water quality portion of the model is currently being evaluated.
De Bondt, Niki; Van Petegem, Peter
2015-01-01
The Overexcitability Questionnaire-Two (OEQ-II) measures the degree and nature of overexcitability, which assists in determining the developmental potential of an individual according to Dabrowski's Theory of Positive Disintegration. Previous validation studies using frequentist confirmatory factor analysis, which postulates exact parameter constraints, led to model rejection and a long series of model modifications. Bayesian structural equation modeling (BSEM) allows the application of zero-mean, small-variance priors for cross-loadings, residual covariances, and differences in measurement parameters across groups, better reflecting substantive theory and leading to better model fit and less overestimation of factor correlations. Our BSEM analysis with a sample of 516 students in higher education yields positive results regarding the factorial validity of the OEQ-II. Likewise, applying BSEM-based alignment with approximate measurement invariance, the absence of non-invariant factor loadings and intercepts across gender is supportive of the psychometric quality of the OEQ-II. Compared to males, females scored significantly higher on emotional and sensual overexcitability, and significantly lower on psychomotor overexcitability. PMID:26733931
A Validated Multiscale In-Silico Model for Mechano-sensitive Tumour Angiogenesis and Growth
Loizidou, Marilena; Stylianopoulos, Triantafyllos; Hawkes, David J.
2017-01-01
Vascularisation is a key feature of cancer growth, invasion and metastasis. To better understand the governing biophysical processes and their relative importance, it is instructive to develop physiologically representative mathematical models with which to compare to experimental data. Previous studies have successfully applied this approach to test the effect of various biochemical factors on tumour growth and angiogenesis. However, these models do not account for the experimentally observed dependency of angiogenic network evolution on growth-induced solid stresses. This work introduces two novel features: the effects of hapto- and mechanotaxis on vessel sprouting, and mechano-sensitive dynamic vascular remodelling. The proposed three-dimensional, multiscale, in-silico model of dynamically coupled angiogenic tumour growth is specified to in-vivo and in-vitro data, chosen, where possible, to provide a physiologically consistent description. The model is then validated against in-vivo data from murine mammary carcinomas, with particular focus placed on identifying the influence of mechanical factors. Crucially, we find that it is necessary to include hapto- and mechanotaxis to recapitulate observed time-varying spatial distributions of angiogenic vasculature. PMID:28125582
De Bondt, Niki; Van Petegem, Peter
2015-01-01
The Overexcitability Questionnaire-Two (OEQ-II) measures the degree and nature of overexcitability, which assists in determining the developmental potential of an individual according to Dabrowski's Theory of Positive Disintegration. Previous validation studies using frequentist confirmatory factor analysis, which postulates exact parameter constraints, led to model rejection and a long series of model modifications. Bayesian structural equation modeling (BSEM) allows the application of zero-mean, small-variance priors for cross-loadings, residual covariances, and differences in measurement parameters across groups, better reflecting substantive theory and leading to better model fit and less overestimation of factor correlations. Our BSEM analysis with a sample of 516 students in higher education yields positive results regarding the factorial validity of the OEQ-II. Likewise, applying BSEM-based alignment with approximate measurement invariance, the absence of non-invariant factor loadings and intercepts across gender is supportive of the psychometric quality of the OEQ-II. Compared to males, females scored significantly higher on emotional and sensual overexcitability, and significantly lower on psychomotor overexcitability.
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.; Volino, R. J.; Corke, T. C.; Thomas, F. O.; Huang, J.; Lake, J. P.; King, P. I.
2007-01-01
A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.
MolProbity: More and better reference data for improved all-atom structure validation.
Williams, Christopher J; Headd, Jeffrey J; Moriarty, Nigel W; Prisant, Michael G; Videau, Lizbeth L; Deis, Lindsay N; Verma, Vishal; Keedy, Daniel A; Hintze, Bradley J; Chen, Vincent B; Jain, Swati; Lewis, Steven M; Arendall, W Bryan; Snoeyink, Jack; Adams, Paul D; Lovell, Simon C; Richardson, Jane S; Richardson, David C
2018-01-01
This paper describes the current update on macromolecular model validation services that are provided at the MolProbity website, emphasizing changes and additions since the previous review in 2010. There have been many infrastructure improvements, including rewrite of previous Java utilities to now use existing or newly written Python utilities in the open-source CCTBX portion of the Phenix software system. This improves long-term maintainability and enhances the thorough integration of MolProbity-style validation within Phenix. There is now a complete MolProbity mirror site at http://molprobity.manchester.ac.uk. GitHub serves our open-source code, reference datasets, and the resulting multi-dimensional distributions that define most validation criteria. Coordinate output after Asn/Gln/His "flip" correction is now more idealized, since the post-refinement step has apparently often been skipped in the past. Two distinct sets of heavy-atom-to-hydrogen distances and accompanying van der Waals radii have been researched and improved in accuracy, one for the electron-cloud-center positions suitable for X-ray crystallography and one for nuclear positions. New validations include messages at input about problem-causing format irregularities, updates of Ramachandran and rotamer criteria from the million quality-filtered residues in a new reference dataset, the CaBLAM Cα-CO virtual-angle analysis of backbone and secondary structure for cryoEM or low-resolution X-ray, and flagging of the very rare cis-nonProline and twisted peptides which have recently been greatly overused. Due to wide application of MolProbity validation and corrections by the research community, in Phenix, and at the worldwide Protein Data Bank, newly deposited structures have continued to improve greatly as measured by MolProbity's unique all-atom clashscore. © 2017 The Protein Society.
Physician trust in the patient: development and validation of a new measure.
Thom, David H; Wong, Sabrina T; Guzman, David; Wu, Amery; Penko, Joanne; Miaskowski, Christine; Kushel, Margot
2011-01-01
Mutual trust is an important aspect of the patient-physician relationship with positive consequences for both parties. Previous measures have been limited to patient trust in the physician. We set out to develop and validate a measure of physician trust in the patient. We identified candidate items for the scale by content analysis of a previous qualitative study of patient-physician trust and developed and validated a scale among 61 primary care clinicians (50 physicians and 11 nonphysicians) with respect to 168 patients as part of a community-based study of prescription opioid use for chronic, nonmalignant pain in HIV-positive adults. Polychoric factor structure analysis using the Pratt D matrix was used to reduce the number of items and describe the factor structure. Construct validity was tested by comparing mean clinician trust scores for patients by clinician and patient behaviors expected to be associated with clinician trust using a generalized linear mixed model. The final 12-item scale had high internal reliability (Cronbach α =.93) and a distinct 2-factor pattern with the Pratt matrix D. Construct validity was demonstrated with respect to clinician-reported self-behaviors including toxicology screening (P <.001), and refusal to prescribe opioids (P <.001) and with patient behaviors including reporting opioids lost or stolen (P=.008), taking opioids to get high (P <.001), and selling opioids (P<.001). If validated in other populations, this measure of physician trust in the patient will be useful in investigating the antecedents and consequences of mutual trust, and the relationship between mutual trust and processes of care, which can help improve the delivery of clinical care.
Girard, Romuald; Zeineddine, Hussein A; Orsbon, Courtney; Tan, Huan; Moore, Thomas; Hobson, Nick; Shenkar, Robert; Lightle, Rhonda; Shi, Changbin; Fam, Maged D; Cao, Ying; Shen, Le; Neander, April I; Rorrer, Autumn; Gallione, Carol; Tang, Alan T; Kahn, Mark L; Marchuk, Douglas A; Luo, Zhe-Xi; Awad, Issam A
2016-09-15
Cerebral cavernous malformations (CCMs) are hemorrhagic brain lesions, where murine models allow major mechanistic discoveries, ushering genetic manipulations and preclinical assessment of therapies. Histology for lesion counting and morphometry is essential yet tedious and time consuming. We herein describe the application and validations of X-ray micro-computed tomography (micro-CT), a non-destructive technique allowing three-dimensional CCM lesion count and volumetric measurements, in transgenic murine brains. We hereby describe a new contrast soaking technique not previously applied to murine models of CCM disease. Volumetric segmentation and image processing paradigm allowed for histologic correlations and quantitative validations not previously reported with the micro-CT technique in brain vascular disease. Twenty-two hyper-dense areas on micro-CT images, identified as CCM lesions, were matched by histology. The inter-rater reliability analysis showed strong consistency in the CCM lesion identification and staging (K=0.89, p<0.0001) between the two techniques. Micro-CT revealed a 29% greater CCM lesion detection efficiency, and 80% improved time efficiency. Serial integrated lesional area by histology showed a strong positive correlation with micro-CT estimated volume (r(2)=0.84, p<0.0001). Micro-CT allows high throughput assessment of lesion count and volume in pre-clinical murine models of CCM. This approach complements histology with improved accuracy and efficiency, and can be applied for lesion burden assessment in other brain diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
A continuum mechanics-based musculo-mechanical model for esophageal transport
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.
2017-11-01
In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structural model, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points to deal with Lagrangian-Eulerian interaction equations based on a previous work (Griffith and Luo [1]). In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. This helps to avoid the leakage issue without sacrificing the computational efficiency and accuracy in dealing with the interaction equations. For the material model, we extend our previous fiber-based model to a continuum-based model. We present formulations for general fiber-reinforced material models in the IB-FE framework. The new material model can handle non-linear elasticity and fiber-matrix interactions, and thus permits us to consider more realistic material behavior of biological tissues. To validate our method, we first study a case in which a three-dimensional short tube is dilated. Results on the pressure-displacement relationship and the stress distribution matches very well with those obtained from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation and the Lagrangian mesh-size becomes about 6 times of Eulerian mesh-size in the circumferential orientation. To validate the performance of the method in handling fiber-matrix material models, we perform a second study on dilating a long fiber-reinforced tube. Errors are small when we compare numerical solutions with analytical solutions. The technique is then applied to the problem of esophageal transport. We use two fiber-reinforced models for the esophageal tissue: a bi-linear model and an exponential model. We present three cases on esophageal transport that differ in the material model and the muscle fiber architecture. The overall transport features are consistent with those observed from the previous model. We remark that the continuum-based model can handle more realistic and complicated material behavior. This is demonstrated in our third case where a spatially varying fiber architecture is included based on experimental study. We find that this unique muscle fiber architecture could generate a so-called pressure transition zone, which is a luminal pressure pattern that is of clinical interest. This suggests an important role of muscle fiber architecture in esophageal transport.
NASA Astrophysics Data System (ADS)
Anderson, T.
2016-02-01
Ocean circulation forecasts can help answer questions regarding larval dispersal, passive movement of injured sea animals, oil spill mitigation, and search and rescue efforts. Circulation forecasts are often validated with GPS-tracked drifter paths, but how accurately do these drifters actually move with ocean currents? Drifters are not only moved by water, but are also forced by wind and waves acting on the exposed buoy and transmitter; this imperfect movement is referred to as drifter slip. The quantification and further understanding of drifter slip will allow scientists to differentiate between drifter imperfections and actual computer model error when comparing trajectory forecasts with actual drifter tracks. This will avoid falsely accrediting all discrepancies between a trajectory forecast and an actual drifter track to computer model error. During multiple deployments of drifters in Nantucket Sound and using observed wind and wave data, we attempt to quantify the slip of drifters developed by the Northeast Fisheries Science Center's (NEFSC) Student Drifters Program. While similar studies have been conducted previously, very few have directly attached current meters to drifters to quantify drifter slip. Furthermore, none have quantified slip of NEFSC drifters relative to the oceanographic-standard "CODE" drifter. The NEFSC drifter archive has over 1000 drifter tracks primarily off the New England coast. With a better understanding of NEFSC drifter slip, modelers can reliably use these tracks for model validation.
NASA Astrophysics Data System (ADS)
Anderson, T.
2015-12-01
Ocean circulation forecasts can help answer questions regarding larval dispersal, passive movement of injured sea animals, oil spill mitigation, and search and rescue efforts. Circulation forecasts are often validated with GPS-tracked drifter paths, but how accurately do these drifters actually move with ocean currents? Drifters are not only moved by water, but are also forced by wind and waves acting on the exposed buoy and transmitter; this imperfect movement is referred to as drifter slip. The quantification and further understanding of drifter slip will allow scientists to differentiate between drifter imperfections and actual computer model error when comparing trajectory forecasts with actual drifter tracks. This will avoid falsely accrediting all discrepancies between a trajectory forecast and an actual drifter track to computer model error. During multiple deployments of drifters in Nantucket Sound and using observed wind and wave data, we attempt to quantify the slip of drifters developed by the Northeast Fisheries Science Center's (NEFSC) Student Drifters Program. While similar studies have been conducted previously, very few have directly attached current meters to drifters to quantify drifter slip. Furthermore, none have quantified slip of NEFSC drifters relative to the oceanographic-standard "CODE" drifter. The NEFSC drifter archive has over 1000 drifter tracks primarily off the New England coast. With a better understanding of NEFSC drifter slip, modelers can reliably use these tracks for model validation.
2013-01-01
Background Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. Results We constructed an l-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for l-glutamic acid production; the results of this process corresponded with previous experimental data regarding l-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of l-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model l-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in l-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. Conclusions In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation. PMID:24053676
Nishio, Yousuke; Ogishima, Soichi; Ichikawa, Masao; Yamada, Yohei; Usuda, Yoshihiro; Masuda, Tadashi; Tanaka, Hiroshi
2013-09-22
Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. We constructed an L-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for L-glutamic acid production; the results of this process corresponded with previous experimental data regarding L-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of L-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model L-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in L-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.
Hulme, A; Salmon, P M; Nielsen, R O; Read, G J M; Finch, C F
2017-11-01
There is a need for an ecological and complex systems approach for better understanding the development and prevention of running-related injury (RRI). In a previous article, we proposed a prototype model of the Australian recreational distance running system which was based on the Systems Theoretic Accident Mapping and Processes (STAMP) method. That model included the influence of political, organisational, managerial, and sociocultural determinants alongside individual-level factors in relation to RRI development. The purpose of this study was to validate that prototype model by drawing on the expertise of both systems thinking and distance running experts. This study used a modified Delphi technique involving a series of online surveys (December 2016- March 2017). The initial survey was divided into four sections containing a total of seven questions pertaining to different features associated with the prototype model. Consensus in opinion about the validity of the prototype model was reached when the number of experts who agreed or disagreed with survey statement was ≥75% of the total number of respondents. A total of two Delphi rounds was needed to validate the prototype model. Out of a total of 51 experts who were initially contacted, 50.9% (n = 26) completed the first round of the Delphi, and 92.3% (n = 24) of those in the first round participated in the second. Most of the 24 full participants considered themselves to be a running expert (66.7%), and approximately a third indicated their expertise as a systems thinker (33.3%). After the second round, 91.7% of the experts agreed that the prototype model was a valid description of the Australian distance running system. This is the first study to formally examine the development and prevention of RRI from an ecological and complex systems perspective. The validated model of the Australian distance running system facilitates theoretical advancement in terms of identifying practical system-wide opportunities for the implementation of sustainable RRI prevention interventions. This 'big picture' perspective represents the first step required when thinking about the range of contributory causal factors that affect other system elements, as well as runners' behaviours in relation to RRI risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vermaat, J S; van der Tweel, I; Mehra, N; Sleijfer, S; Haanen, J B; Roodhart, J M; Engwegen, J Y; Korse, C M; Langenberg, M H; Kruit, W; Groenewegen, G; Giles, R H; Schellens, J H; Beijnen, J H; Voest, E E
2010-07-01
In metastatic renal cell cancer (mRCC), the Memorial Sloan-Kettering Cancer Center (MSKCC) risk model is widely used for clinical trial design and patient management. To improve prognostication, we applied proteomics to identify novel serological proteins associated with overall survival (OS). Sera from 114 mRCC patients were screened by surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF MS). Identified proteins were related to OS. Three proteins were subsequently validated with enzyme-linked immunosorbent assays and immunoturbidimetry. Prognostic models were statistically bootstrapped to correct for overestimation. SELDI-TOF MS detected 10 proteins associated with OS. Of these, apolipoprotein A2 (ApoA2), serum amyloid alpha (SAA) and transthyretin were validated for their association with OS (P = 5.5 x 10(-9), P = 1.1 x 10(-7) and P = 0.0004, respectively). Combining ApoA2 and SAA yielded a prognostic two-protein signature [Akaike's Information Criteria (AIC) = 732, P = 5.2 x 10(-7)]. Including previously identified prognostic factors, multivariable Cox regression analysis revealed ApoA2, SAA, lactate dehydrogenase, performance status and number of metastasis sites as independent factors for survival. Using these five factors, categorization of patients into three risk groups generated a novel protein-based model predicting patient prognosis (AIC = 713, P = 4.3 x 10(-11)) more robustly than the MSKCC model (AIC = 729, P = 1.3 x 10(-7)). Applying this protein-based model instead of the MSKCC model would have changed the risk group in 38% of the patients. Proteomics and subsequent validation yielded two novel prognostic markers and survival models which improved prediction of OS in mRCC patients over commonly used risk models. Implementation of these models has the potential to improve current risk stratification, although prospective validation will still be necessary.
Optimal quality control of bakers' yeast fed-batch culture using population dynamics.
Dairaku, K; Izumoto, E; Morikawa, H; Shioya, S; Takamatsu, T
1982-12-01
An optimal quality control policy for the overall specific growth rate of bakers' yeast, which maximizes the fermentative activity in the making of bread, was obtained by direct searching based on the mathematical model proposed previously. The mathematical model had described the age distribution of bakers' yeast which had an essential relationship to the ability of fermentation in the making of bread. The mathematical model is a simple aging model with two periods: Nonbudding and budding. Based on the result obtained by direct searching, the quality control of bakers' yeast fed-batch culture was performed and confirmed to be experimentally valid.
QSPR using MOLGEN-QSPR: the challenge of fluoroalkane boiling points.
Rücker, Christoph; Meringer, Markus; Kerber, Adalbert
2005-01-01
By means of the new software MOLGEN-QSPR, a multilinear regression model for the boiling points of lower fluoroalkanes is established. The model is based exclusively on simple descriptors derived directly from molecular structure and nevertheless describes a broader set of data more precisely than previous attempts that used either more demanding (quantum chemical) descriptors or more demanding (nonlinear) statistical methods such as neural networks. The model's internal consistency was confirmed by leave-one-out cross-validation. The model was used to predict all unknown boiling points of fluorobutanes, and the quality of predictions was estimated by means of comparison with boiling point predictions for fluoropentanes.
Examination of Solar Cycle Statistical Model and New Prediction of Solar Cycle 23
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Wilson, John W.
2000-01-01
Sunspot numbers in the current solar cycle 23 were estimated by using a statistical model with the accumulating cycle sunspot data based on the odd-even behavior of historical sunspot cycles from 1 to 22. Since cycle 23 has progressed and the accurate solar minimum occurrence has been defined, the statistical model is validated by comparing the previous prediction with the new measured sunspot number; the improved sunspot projection in short range of future time is made accordingly. The current cycle is expected to have a moderate level of activity. Errors of this model are shown to be self-correcting as cycle observations become available.
High-Fidelity Micromechanics Model Developed for the Response of Multiphase Materials
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
2002-01-01
A new high-fidelity micromechanics model has been developed under funding from the NASA Glenn Research Center for predicting the response of multiphase materials with arbitrary periodic microstructures. The model's analytical framework is based on the homogenization technique, but the method of solution for the local displacement and stress fields borrows concepts previously employed in constructing the higher order theory for functionally graded materials. The resulting closed-form macroscopic and microscopic constitutive equations, valid for both uniaxial and multiaxial loading of periodic materials with elastic and inelastic constitutive phases, can be incorporated into a structural analysis computer code. Consequently, this model now provides an alternative, accurate method.
Familias 3 - Extensions and new functionality.
Kling, Daniel; Tillmar, Andreas O; Egeland, Thore
2014-11-01
In relationship testing the aim is to determine the most probable pedigree structure given genetic marker data for a set of persons. Disaster Victim Identification (DVI) based on DNA data from presumed relatives of the missing persons can be considered to be a collection of relationship problems. Forensic calculations in investigative mode address questions like "How many markers and reference persons are needed?" Such questions can be answered by simulations. Mutations, deviations from Hardy-Weinberg Equilibrium (or more generally, accounting for population substructure) and silent alleles cannot be ignored when evaluating forensic evidence in case work. With the advent of new markers, so called microvariants have become more common. Previous mutation models are no longer appropriate and a new model is proposed. This paper describes methods designed to deal with DVI problems and a new simulation model to study distribution of likelihoods. There are softwares available, addressing similar problems. However, for some problems including DVI, we are not aware of freely available validated software. The Familias software has long been widely used by forensic laboratories worldwide to compute likelihoods in relationship scenarios, though previous versions have lacked desired functionality, such as the above mentioned. The extensions as well as some other novel features have been implemented in the new version, freely available at www.familias.no. The implementation and validation are briefly mentioned leaving complete details to Supplementary sections. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Comparison of two ways of altering carpal tunnel pressure with ultrasound surface wave elastography.
Cheng, Yu-Shiuan; Zhou, Boran; Kubo, Kazutoshi; An, Kai-Nan; Moran, Steven L; Amadio, Peter C; Zhang, Xiaoming; Zhao, Chunfeng
2018-06-06
Higher carpal tunnel pressure is related to the development of carpal tunnel syndrome. Currently, the measurement of carpal tunnel pressure is invasive and therefore, a noninvasive technique is needed. We previously demonstrated that speed of wave propagation through a tendon in the carpal tunnel measured by ultrasound elastography could be used as an indicator of carpal tunnel pressure in a cadaveric model, in which a balloon had to be inserted into the carpal tunnel to adjust the carpal tunnel pressure. However, the method for adjusting the carpal tunnel pressure in the cadaveric model is not applicable for the in vivo model. The objective of this study was to utilize a different technique to adjust carpal tunnel pressure via pressing the palm and to validate it with ultrasound surface wave elastography in a human cadaveric model. The outcome was also compared with a previous balloon insertion technique. Results showed that wave speed of intra-carpal tunnel tendon and the ratio of wave speed of intra-and outer-carpal tunnel tendons increased linearly with carpal tunnel pressure. Moreover, wave speed of intra carpal tunnel tendon via both ways of altering carpal tunnel pressure showed similar results with high correlation. Therefore, it was concluded that the technique of pressing the palm can be used to adjust carpal tunnel pressure, and pressure changes can be detected via ultrasound surface wave elastography in an ex vivo model. Future studies will utilize this technique in vivo to validate the usefulness of ultrasound surface wave elastography for measuring carpal tunnel pressure. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Hequn; Flick, Burkhard; Rietjens, Ivonne M C M; Louisse, Jochem; Schneider, Steffen; van Ravenzwaay, Bennard
2016-05-01
The mouse embryonic stem D3 (ES-D3) cell differentiation assay is based on the morphometric measurement of cardiomyocyte differentiation and is a promising tool to detect developmental toxicity of compounds. The BeWo transport model, consisting of BeWo b30 cells grown on transwell inserts and mimicking the placental barrier, is useful to determine relative placental transport velocities of compounds. We have previously demonstrated the usefulness of the ES-D3 cell differentiation assay in combination with the in vitro BeWo transport model to predict the relative in vivo developmental toxicity potencies of a set of reference azole compounds. To further evaluate this combined in vitro toxicokinetic and toxicodynamic approach, we combined ES-D3 cell differentiation data of six novel triazoles with relative transport rates obtained from the BeWo model and compared the obtained ranking to the developmental toxicity ranking as derived from in vivo data. The data show that the combined in vitro approach provided a correct prediction for in vivo developmental toxicity, whereas the ES-D3 cell differentiation assay as stand-alone did not. In conclusion, we have validated the combined in vitro approach for developmental toxicity, which we have previously developed with a set of reference azoles, for a set of six novel triazoles. We suggest that this combined model, which takes both toxicodynamic and toxicokinetic aspects into account, should be further validated for other chemical classes of developmental toxicants.
Mutual Influence of Moral Values, Mental Models and Social Dynamics on Intergroup Conflict
2013-10-10
Ground-truthed previous human subjects’ data from Guatemala to test overall validity of psychological findings for predicting actual behavior, thus...of findings for development of social science disciplines: In psychology , our research program on Sacred Values has strong implications for Construal...affording them psychological knowledge of how culturally diverse individuals and groups advance values and interests that are potentially compatible or
Gao, Yu; Deng, Jiaxin; Lai, Hongyu; Deng, Qiaowen; Armour, Cherie
2017-01-01
The current study assesses the factor structure and construct validity of the self-reported Inventory of Callous–Unemotional Traits (ICU) in 637 Chinese community adults (mean age = 25.98, SD = 5.79). A series of theoretical models proposed in previous studies were tested through confirmatory factor analyses. Results indicated that a shortened form that consists of 11 items (ICU-11) to assess callousness and uncaring factors has excellent overall fit. Additionally, correlations with a wide range of external variables demonstrated that this shortened form has similar construct validity compared to the original ICU. In conclusion, our findings suggest that the ICU-11 may be a promising self-report tool that could be a good substitute for the original form to assess callous-uncaring traits in adults. PMID:29216240
A Conflict Management Scale for Pharmacy
Gregory, Paul A.; Martin, Craig
2009-01-01
Objectives To develop and establish the validity and reliability of a conflict management scale specific to pharmacy practice and education. Methods A multistage inventory-item development process was undertaken involving 93 pharmacists and using a previously described explanatory model for conflict in pharmacy practice. A 19-item inventory was developed, field tested, and validated. Results The conflict management scale (CMS) demonstrated an acceptable degree of reliability and validity for use in educational or practice settings to promote self-reflection and self-awareness regarding individuals' conflict management styles. Conclusions The CMS provides a unique, pharmacy-specific method for individuals to determine and reflect upon their own conflict management styles. As part of an educational program to facilitate self-reflection and heighten self-awareness, the CMS may be a useful tool to promote discussions related to an important part of pharmacy practice. PMID:19960081
Hovering Dual-Spin Vehicle Groundwork for Bias Momentum Sizing Validation Experiment
NASA Technical Reports Server (NTRS)
Rothhaar, Paul M.; Moerder, Daniel D.; Lim, Kyong B.
2008-01-01
Angular bias momentum offers significant stability augmentation for hovering flight vehicles. The reliance of the vehicle on thrust vectoring for agility and disturbance rejection is greatly reduced with significant levels of stored angular momentum in the system. A methodical procedure for bias momentum sizing has been developed in previous studies. This current study provides groundwork for experimental validation of that method using an experimental vehicle called the Dual-Spin Test Device, a thrust-levitated platform. Using measured data the vehicle's thrust vectoring units are modeled and a gust environment is designed and characterized. Control design is discussed. Preliminary experimental results of the vehicle constrained to three rotational degrees of freedom are compared to simulation for a case containing no bias momentum to validate the simulation. A simulation of a bias momentum dominant case is presented.
Validation of the Physical Activity Questionnaire for Older Children (PAQ-C) among Chinese Children.
Wang, Jing Jing; Baranowski, Tom; Lau, Wc Patrick; Chen, Tzu An; Pitkethly, Amanda Jane
2016-03-01
This study initially validates the Chinese version of the Physical Activity Questionnaire for Older Children (PAQ-C), which has been identified as a potentially valid instrument to assess moderate-to-vigorous physical activity (MVPA) in children among diverse racial groups. The psychometric properties of the PAQ-C with 742 Hong Kong Chinese children were assessed with the scale's internal consistency, reliability, test-retest reliability, confirmatory factory analysis (CFA) in the overall sample, and multistep invariance tests across gender groups as well as convergent validity with body mass index (BMI), and an accelerometry-based MVPA. The Cronbach alpha coefficient (α=0.79), composite reliability value (ρ=0.81), and the intraclass correlation coefficient (α=0.82) indicate the satisfactory reliability of the PAQ-C score. The CFA indicated data fit a single factor model, suggesting that the PAQ-C measures only one construct, on MVPA over the previous 7 days. The multiple-group CFAs suggested that the factor loadings and variances and covariances of the PAQ-C measurement model were invariant across gender groups. The PAQ-C score was related to accelerometry-based MVPA (r=0.33) and inversely related to BMI (r=-0.18). This study demonstrates the reliability and validity of the PAQ-C in Chinese children. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Validating a biometric authentication system: sample size requirements.
Dass, Sarat C; Zhu, Yongfang; Jain, Anil K
2006-12-01
Authentication systems based on biometric features (e.g., fingerprint impressions, iris scans, human face images, etc.) are increasingly gaining widespread use and popularity. Often, vendors and owners of these commercial biometric systems claim impressive performance that is estimated based on some proprietary data. In such situations, there is a need to independently validate the claimed performance levels. System performance is typically evaluated by collecting biometric templates from n different subjects, and for convenience, acquiring multiple instances of the biometric for each of the n subjects. Very little work has been done in 1) constructing confidence regions based on the ROC curve for validating the claimed performance levels and 2) determining the required number of biometric samples needed to establish confidence regions of prespecified width for the ROC curve. To simplify the analysis that address these two problems, several previous studies have assumed that multiple acquisitions of the biometric entity are statistically independent. This assumption is too restrictive and is generally not valid. We have developed a validation technique based on multivariate copula models for correlated biometric acquisitions. Based on the same model, we also determine the minimum number of samples required to achieve confidence bands of desired width for the ROC curve. We illustrate the estimation of the confidence bands as well as the required number of biometric samples using a fingerprint matching system that is applied on samples collected from a small population.
Kopec, Jacek A; Sayre, Eric C; Rogers, Pamela; Davis, Aileen M; Badley, Elizabeth M; Anis, Aslam H; Abrahamowicz, Michal; Russell, Lara; Rahman, Md Mushfiqur; Esdaile, John M
2015-10-01
The CAT-5D-QOL is a previously reported item response theory (IRT)-based computerized adaptive tool to measure five domains (attributes) of health-related quality of life. The objective of this study was to develop and validate a multiattribute health utility (MAHU) scoring method for this instrument. The MAHU scoring system was developed in two stages. In phase I, we obtained standard gamble (SG) utilities for 75 hypothetical health states in which only one domain varied (15 states per domain). In phase II, we obtained SG utilities for 256 multiattribute states. We fit a multiplicative regression model to predict SG utilities from the five IRT domain scores. The prediction model was constrained using data from phase I. We validated MAHU scores by comparing them with the Health Utilities Index Mark 3 (HUI3) and directly measured utilities and by assessing between-group discrimination. MAHU scores have a theoretical range from -0.842 to 1. In the validation study, the scores were, on average, higher than HUI3 utilities and lower than directly measured SG utilities. MAHU scores correlated strongly with the HUI3 (Spearman ρ = 0.78) and discriminated well between groups expected to differ in health status. Results reported here provide initial evidence supporting the validity of the MAHU scoring system for the CAT-5D-QOL. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Yang; Liu, Zhigang; Wang, Hongrui; Lu, Xiaobing; Zhang, Jing
2015-10-01
Due to the intrinsic nonlinear characteristics and complex structure of the high-speed catenary system, a modelling method is proposed based on the analytical expressions of nonlinear cable and truss elements. The calculation procedure for solving the initial equilibrium state is proposed based on the Newton-Raphson iteration method. The deformed configuration of the catenary system as well as the initial length of each wire can be calculated. Its accuracy and validity of computing the initial equilibrium state are verified by comparison with the separate model method, absolute nodal coordinate formulation and other methods in the previous literatures. Then, the proposed model is combined with a lumped pantograph model and a dynamic simulation procedure is proposed. The accuracy is guaranteed by the multiple iterative calculations in each time step. The dynamic performance of the proposed model is validated by comparison with EN 50318, the results of the finite element method software and SIEMENS simulation report, respectively. At last, the influence of the catenary design parameters (such as the reserved sag and pre-tension) on the dynamic performance is preliminarily analysed by using the proposed model.
NASA Astrophysics Data System (ADS)
Porto, P.; Cogliandro, V.; Callegari, G.
2018-01-01
In this paper, long-term sediment yield data, collected in a small (1.38 ha) Calabrian catchment (W2), reafforested with eucalyptus trees (Eucalyptus occidentalis Engl.) are used to validate the performance of the SEdiment Delivery Distributed Model (SEDD) in areas with high erosion rates. At first step, the SEDD model was calibrated using field data collected in previous field campaigns undertaken during the period 1978-1994. This first phase allowed the model calibration parameter β to be calculated using direct measurements of rainfall, runoff, and sediment output. The model was then validated in its calibrated form for an independent period (2006-2016) for which new measurements of rainfall, runoff and sediment output are also available. The analysis, carried out at event and annual scale showed good agreement between measured and predicted values of sediment yield and suggested that the SEDD model can be seen as an appropriate means of evaluating erosion risk associated with manmade plantations in marginal areas. Further work is however required to test the performance of the SEDD model as a prediction tool in different geomorphic contexts.
Tsugawa, Yusuke; Ohbu, Sadayoshi; Cruess, Richard; Cruess, Sylvia; Okubo, Tomoya; Takahashi, Osamu; Tokuda, Yasuharu; Heist, Brian S; Bito, Seiji; Itoh, Toshiyuki; Aoki, Akiko; Chiba, Tsutomu; Fukui, Tsuguya
2011-08-01
Despite the growing importance of and interest in medical professionalism, there is no standardized tool for its measurement. The authors sought to verify the validity, reliability, and generalizability of the Professionalism Mini-Evaluation Exercise (P-MEX), a previously developed and tested tool, in the context of Japanese hospitals. A multicenter, cross-sectional evaluation study was performed to investigate the validity, reliability, and generalizability of the P-MEX in seven Japanese hospitals. In 2009-2010, 378 evaluators (attending physicians, nurses, peers, and junior residents) completed 360-degree assessments of 165 residents and fellows using the P-MEX. The content validity and criterion-related validity were examined, and the construct validity of the P-MEX was investigated by performing confirmatory factor analysis through a structural equation model. The reliability was tested using generalizability analysis. The contents of the P-MEX achieved good acceptance in a preliminary working group, and the poststudy survey revealed that 302 (79.9%) evaluators rated the P-MEX items as appropriate, indicating good content validity. The correlation coefficient between P-MEX scores and external criteria was 0.78 (P < .001), demonstrating good criterion-related validity. Confirmatory factor analysis verified high path coefficient (0.60-0.99) and adequate goodness of fit of the model. The generalizability analysis yielded a high dependability coefficient, suggesting good reliability, except when evaluators were peers or junior residents. Findings show evidence of adequate validity, reliability, and generalizability of the P-MEX in Japanese hospital settings. The P-MEX is the only evaluation tool for medical professionalism verified in both a Western and East Asian cultural context.
Yen, Po-Yin; Sousa, Karen H; Bakken, Suzanne
2014-01-01
Background In a previous study, we developed the Health Information Technology Usability Evaluation Scale (Health-ITUES), which is designed to support customization at the item level. Such customization matches the specific tasks/expectations of a health IT system while retaining comparability at the construct level, and provides evidence of its factorial validity and internal consistency reliability through exploratory factor analysis. Objective In this study, we advanced the development of Health-ITUES to examine its construct validity and predictive validity. Methods The health IT system studied was a web-based communication system that supported nurse staffing and scheduling. Using Health-ITUES, we conducted a cross-sectional study to evaluate users’ perception toward the web-based communication system after system implementation. We examined Health-ITUES's construct validity through first and second order confirmatory factor analysis (CFA), and its predictive validity via structural equation modeling (SEM). Results The sample comprised 541 staff nurses in two healthcare organizations. The CFA (n=165) showed that a general usability factor accounted for 78.1%, 93.4%, 51.0%, and 39.9% of the explained variance in ‘Quality of Work Life’, ‘Perceived Usefulness’, ‘Perceived Ease of Use’, and ‘User Control’, respectively. The SEM (n=541) supported the predictive validity of Health-ITUES, explaining 64% of the variance in intention for system use. Conclusions The results of CFA and SEM provide additional evidence for the construct and predictive validity of Health-ITUES. The customizability of Health-ITUES has the potential to support comparisons at the construct level, while allowing variation at the item level. We also illustrate application of Health-ITUES across stages of system development. PMID:24567081
Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury
2013-01-01
Introduction Acute kidney injury (AKI) can evolve quickly and clinical measures of function often fail to detect AKI at a time when interventions are likely to provide benefit. Identifying early markers of kidney damage has been difficult due to the complex nature of human AKI, in which multiple etiologies exist. The objective of this study was to identify and validate novel biomarkers of AKI. Methods We performed two multicenter observational studies in critically ill patients at risk for AKI - discovery and validation. The top two markers from discovery were validated in a second study (Sapphire) and compared to a number of previously described biomarkers. In the discovery phase, we enrolled 522 adults in three distinct cohorts including patients with sepsis, shock, major surgery, and trauma and examined over 300 markers. In the Sapphire validation study, we enrolled 744 adult subjects with critical illness and without evidence of AKI at enrollment; the final analysis cohort was a heterogeneous sample of 728 critically ill patients. The primary endpoint was moderate to severe AKI (KDIGO stage 2 to 3) within 12 hours of sample collection. Results Moderate to severe AKI occurred in 14% of Sapphire subjects. The two top biomarkers from discovery were validated. Urine insulin-like growth factor-binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2), both inducers of G1 cell cycle arrest, a key mechanism implicated in AKI, together demonstrated an AUC of 0.80 (0.76 and 0.79 alone). Urine [TIMP-2]·[IGFBP7] was significantly superior to all previously described markers of AKI (P <0.002), none of which achieved an AUC >0.72. Furthermore, [TIMP-2]·[IGFBP7] significantly improved risk stratification when added to a nine-variable clinical model when analyzed using Cox proportional hazards model, generalized estimating equation, integrated discrimination improvement or net reclassification improvement. Finally, in sensitivity analyses [TIMP-2]·[IGFBP7] remained significant and superior to all other markers regardless of changes in reference creatinine method. Conclusions Two novel markers for AKI have been identified and validated in independent multicenter cohorts. Both markers are superior to existing markers, provide additional information over clinical variables and add mechanistic insight into AKI. Trial registration ClinicalTrials.gov number NCT01209169. PMID:23388612
Reproducible diagnostic metabolites in plasma from typhoid fever patients in Asia and Africa
Näsström, Elin; Parry, Christopher M; Vu Thieu, Nga Tran; Maude, Rapeephan R; de Jong, Hanna K; Fukushima, Masako; Rzhepishevska, Olena; Marks, Florian; Panzner, Ursula; Im, Justin; Jeon, Hyonjin; Park, Seeun; Chaudhury, Zabeen; Ghose, Aniruddha; Samad, Rasheda; Van, Tan Trinh; Johansson, Anders; Dondorp, Arjen M; Thwaites, Guy E; Faiz, Abul; Antti, Henrik; Baker, Stephen
2017-01-01
Salmonella Typhi is the causative agent of typhoid. Typhoid is diagnosed by blood culture, a method that lacks sensitivity, portability and speed. We have previously shown that specific metabolomic profiles can be detected in the blood of typhoid patients from Nepal (Näsström et al., 2014). Here, we performed mass spectrometry on plasma from Bangladeshi and Senegalese patients with culture confirmed typhoid fever, clinically suspected typhoid, and other febrile diseases including malaria. After applying supervised pattern recognition modelling, we could significantly distinguish metabolite profiles in plasma from the culture confirmed typhoid patients. After comparing the direction of change and degree of multivariate significance, we identified 24 metabolites that were consistently up- or down regulated in a further Bangladeshi/Senegalese validation cohort, and the Nepali cohort from our previous work. We have identified and validated a metabolite panel that can distinguish typhoid from other febrile diseases, providing a new approach for typhoid diagnostics. DOI: http://dx.doi.org/10.7554/eLife.15651.001 PMID:28483042
Measuring positive and negative affect and physiological hyperarousal among Serbian youth.
Stevanovic, Dejan; Laurent, Jeff; Lakic, Aneta
2013-01-01
This study extended previous cross-cultural work regarding the tripartite model of anxiety and depression by developing Serbian translations of the Positive and Negative Affect Scale for Children (PANAS-C), the Physiological Hyperarousal Scale for Children (PH-C), and the Affect and Arousal Scale (AFARS). Characteristics of the scales were examined using 449 students (M age = 12.61 years). Applying item retention criteria established in other studies, PH-C, PANAS-C, and AFARS translations with psychometric properties similar to English-language versions were identified. Preliminary validation of the scales was conducted using a subset of 194 students (M age = 12.37 years) who also completed measures of anxiety and depression. Estimates of reliability, patterns of correlations among scales, and age and gender differences were consistent with previous studies with English-speaking samples. Findings regarding scale validity were mixed, although consistent with existing literature. Serbian translations of the PH-C, PANAS-C, and AFARS mirror the original English-language scales in terms of both strengths and weaknesses.
NASA Astrophysics Data System (ADS)
Nouizi, F.; Erkol, H.; Luk, A.; Marks, M.; Unlu, M. B.; Gulsen, G.
2016-10-01
We previously introduced photo-magnetic imaging (PMI), an imaging technique that illuminates the medium under investigation with near-infrared light and measures the induced temperature increase using magnetic resonance thermometry (MRT). Using a multiphysics solver combining photon migration and heat diffusion, PMI models the spatiotemporal distribution of temperature variation and recovers high resolution optical absorption images using these temperature maps. In this paper, we present a new fast non-iterative reconstruction algorithm for PMI. This new algorithm uses analytic methods during the resolution of the forward problem and the assembly of the sensitivity matrix. We validate our new analytic-based algorithm with the first generation finite element method (FEM) based reconstruction algorithm previously developed by our team. The validation is performed using, first synthetic data and afterwards, real MRT measured temperature maps. Our new method accelerates the reconstruction process 30-fold when compared to a single iteration of the FEM-based algorithm.
Fong, Ted Chun-tat; Ng, Siu-man
2012-09-01
Work engagement is a positive work-related state of fulfillment characterized by vigor, dedication, and absorption. Previous studies have operationalized the construct through development of the Utrecht Work Engagement Scale. Apart from the original three-factor 17-item version of the instrument (UWES-17), there exists a nine-item shortened revised version (UWES-9). The current study explored the psychometric properties of the Chinese version of the Utrecht Work Engagement Scale in terms of factorial validity, scale reliability, descriptive statistics, and construct validity. A cross-sectional questionnaire survey was conducted in 2009 among 992 workers from over 30 elderly service units in Hong Kong. Confirmatory factor analyses revealed a better fit for the three-factor model of the UWES-9 than the UWES-17 and the one-factor model of the UWES-9. The three factors showed acceptable internal consistency and strong correlations with factors in the original versions. Engagement was negatively associated with perceived stress and burnout while positively with age and holistic care climate. The UWES-9 demonstrates adequate psychometric properties, supporting its use in future research in the Chinese context.
Validating and improving a zero-dimensional stack voltage model of the Vanadium Redox Flow Battery
NASA Astrophysics Data System (ADS)
König, S.; Suriyah, M. R.; Leibfried, T.
2018-02-01
Simple, computationally efficient battery models can contribute significantly to the development of flow batteries. However, validation studies for these models on an industrial-scale stack level are rarely published. We first extensively present a simple stack voltage model for the Vanadium Redox Flow Battery. For modeling the concentration overpotential, we derive mass transfer coefficients from experimental results presented in the 1990s. The calculated mass transfer coefficient of the positive half-cell is 63% larger than of the negative half-cell, which is not considered in models published to date. Further, we advance the concentration overpotential model by introducing an apparent electrochemically active electrode surface which differs from the geometric electrode area. We use the apparent surface as fitting parameter for adapting the model to experimental results of a flow battery manufacturer. For adapting the model, we propose a method for determining the agreement between model and reality quantitatively. To protect the manufacturer's intellectual property, we introduce a normalization method for presenting the results. For the studied stack, the apparent electrochemically active surface of the electrode is 41% larger than its geometrical area. Hence, the current density in the diffusion layer is 29% smaller than previously reported for a zero-dimensional model.
A Generative Angular Model of Protein Structure Evolution
Golden, Michael; García-Portugués, Eduardo; Sørensen, Michael; Mardia, Kanti V.; Hamelryck, Thomas; Hein, Jotun
2017-01-01
Abstract Recently described stochastic models of protein evolution have demonstrated that the inclusion of structural information in addition to amino acid sequences leads to a more reliable estimation of evolutionary parameters. We present a generative, evolutionary model of protein structure and sequence that is valid on a local length scale. The model concerns the local dependencies between sequence and structure evolution in a pair of homologous proteins. The evolutionary trajectory between the two structures in the protein pair is treated as a random walk in dihedral angle space, which is modeled using a novel angular diffusion process on the two-dimensional torus. Coupling sequence and structure evolution in our model allows for modeling both “smooth” conformational changes and “catastrophic” conformational jumps, conditioned on the amino acid changes. The model has interpretable parameters and is comparatively more realistic than previous stochastic models, providing new insights into the relationship between sequence and structure evolution. For example, using the trained model we were able to identify an apparent sequence–structure evolutionary motif present in a large number of homologous protein pairs. The generative nature of our model enables us to evaluate its validity and its ability to simulate aspects of protein evolution conditioned on an amino acid sequence, a related amino acid sequence, a related structure or any combination thereof. PMID:28453724
2012-01-01
Background No validated model exists to explain the learning effects of assessment, a problem when designing and researching assessment for learning. We recently developed a model explaining the pre-assessment learning effects of summative assessment in a theory teaching context. The challenge now is to validate this model. The purpose of this study was to explore whether the model was operational in a clinical context as a first step in this process. Methods Given the complexity of the model, we adopted a qualitative approach. Data from in-depth interviews with eighteen medical students were subject to content analysis. We utilised a code book developed previously using grounded theory. During analysis, we remained alert to data that might not conform to the coding framework and open to the possibility of deploying inductive coding. Ethical clearance and informed consent were obtained. Results The three components of the model i.e., assessment factors, mechanism factors and learning effects were all evident in the clinical context. Associations between these components could all be explained by the model. Interaction with preceptors was identified as a new subcomponent of assessment factors. The model could explain the interrelationships of the three facets of this subcomponent i.e., regular accountability, personal consequences and emotional valence of the learning environment, with previously described components of the model. Conclusions The model could be utilized to analyse and explain observations in an assessment context different to that from which it was derived. In the clinical setting, the (negative) influence of preceptors on student learning was particularly prominent. In this setting, learning effects resulted not only from the high-stakes nature of summative assessment but also from personal stakes, e.g. for esteem and agency. The results suggest that to influence student learning, consequences should accrue from assessment that are immediate, concrete and substantial. The model could have utility as a planning or diagnostic tool in practice and research settings. PMID:22420839
The development of a survey instrument for community health improvement.
Bazos, D A; Weeks, W B; Fisher, E S; DeBlois, H A; Hamilton, E; Young, M J
2001-01-01
OBJECTIVE: To develop a survey instrument that could be used both to guide and evaluate community health improvement efforts. DATA SOURCES/STUDY SETTING: A randomized telephone survey was administered to a sample of about 250 residents in two communities in Lehigh Valley, Pennsylvania in the fall of 1997. METHODS: The survey instrument was developed by health professionals representing diverse health care organizations. This group worked collaboratively over a period of two years to (1) select a conceptual model of health as a foundation for the survey; (2) review relevant literature to identify indicators that adequately measured the health constructs within the chosen model; (3) develop new indicators where important constructs lacked specific measures; and (4) pilot test the final survey to assess the reliability and validity of the instrument. PRINCIPAL FINDINGS: The Evans and Stoddart Field Model of the Determinants of Health and Well-Being was chosen as the conceptual model within which to develop the survey. The Field Model depicts nine domains important to the origins and production of health and provides a comprehensive framework from which to launch community health improvement efforts. From more than 500 potential indicators we identified 118 survey questions that reflected the multiple determinants of health as conceptualized by this model. Sources from which indicators were selected include the Behavior Risk Factor Surveillance Survey, the National Health Interview Survey, the Consumer Assessment of Health Plans Survey, and the SF-12 Summary Scales. The work group developed 27 new survey questions for constructs for which we could not locate adequate indicators. Twenty-five questions in the final instrument can be compared to nationally published norms or benchmarks. The final instrument was pilot tested in 1997 in two communities. Administration time averaged 22 minutes with a response rate of 66 percent. Reliability of new survey questions was adequate. Face validity was supported by previous findings from qualitative and quantitative studies. CONCLUSIONS: We developed, pilot tested, and validated a survey instrument designed to provide more comprehensive and timely data to communities for community health assessments. This instrument allows communities to identify and measure critical domains of health that have previously not been captured in a single instrument. PMID:11508639
A covariant model for the gamma N -> N(1535) transition at high momentum transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Ramalho, M.T. Pena
2011-08-01
A relativistic constituent quark model is applied to the gamma N -> N(1535) transition. The N(1535) wave function is determined by extending the covariant spectator quark model, previously developed for the nucleon, to the S11 resonance. The model allows us to calculate the valence quark contributions to the gamma N -> N(1535) transition form factors. Because of the nucleon and N(1535) structure the model is valid only for Q^2> 2.3 GeV^2. The results are compared with the experimental data for the electromagnetic form factors F1* and F2* and the helicity amplitudes A_1/2 and S_1/2, at high Q^2.
A recellularized human colon model identifies cancer driver genes
Chen, Huanhuan Joyce; Wei, Zhubo; Sun, Jian; Bhattacharya, Asmita; Savage, David J; Serda, Rita; Mackeyev, Yuri; Curley, Steven A.; Bu, Pengcheng; Wang, Lihua; Chen, Shuibing; Cohen-Gould, Leona; Huang, Emina; Shen, Xiling; Lipkin, Steven M.; Copeland, Neal G.; Jenkins, Nancy A.; Shuler, Michael L.
2016-01-01
Refined cancer models are needed to bridge the gap between cell-line, animal and clinical research. Here we describe the engineering of an organotypic colon cancer model by recellularization of a native human matrix that contains cell-populated mucosa and an intact muscularis mucosa layer. This ex vivo system recapitulates the pathophysiological progression from APC-mutant neoplasia to submucosal invasive tumor. We used it to perform a Sleeping Beauty transposon mutagenesis screen to identify genes that cooperate with mutant APC in driving invasive neoplasia. 38 candidate invasion driver genes were identified, 17 of which have been previously implicated in colorectal cancer progression, including TCF7L2, TWIST2, MSH2, DCC and EPHB1/2. Six invasion driver genes that to our knowledge have not been previously described were validated in vitro using cell proliferation, migration and invasion assays, and ex vivo using recellularized human colon. These results demonstrate the utility of our organoid model for studying cancer biology. PMID:27398792
Kinetic modelling of a diesel-polluted clayey soil bioremediation process.
Fernández, Engracia Lacasa; Merlo, Elena Moliterni; Mayor, Lourdes Rodríguez; Camacho, José Villaseñor
2016-07-01
A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. Copyright © 2016. Published by Elsevier B.V.
Experimental Validation of a Closed Brayton Cycle System Transient Simulation
NASA Technical Reports Server (NTRS)
Johnson, Paul K.; Hervol, David S.
2006-01-01
The Brayton Power Conversion Unit (BPCU) is a closed cycle system with an inert gas working fluid. It is located in Vacuum Facility 6 at NASA Glenn Research Center. Was used in previous solar dynamic technology efforts (SDGTD). Modified to its present configuration by replacing the solar receiver with an electrical resistance heater. The first closed-Brayton-cycle to be coupled with an ion propulsion system. Used to examine mechanical dynamic characteristics and responses. The focus of this work was the validation of a computer model of the BPCU. Model was built using the Closed Cycle System Simulation (CCSS) design and analysis tool. Test conditions were then duplicated in CCSS. Various steady-state points. Transients involving changes in shaft rotational speed and heat input. Testing to date has shown that the BPCU is able to generate meaningful, repeatable data that can be used for computer model validation. Results generated by CCSS demonstrated that the model sufficiently reproduced the thermal transients exhibited by the BPCU system. CCSS was also used to match BPCU steady-state operating points. Cycle temperatures were within 4.1% of the data (most were within 1%). Cycle pressures were all within 3.2%. Error in alternator power (as much as 13.5%) was attributed to uncertainties in the compressor and turbine maps and alternator and bearing loss models. The acquired understanding of the BPCU behavior gives useful insight for improvements to be made to the CCSS model as well as ideas for future testing and possible system modifications.
Reexamining the nuclear structure of 154Gd in the dynamic pairing plus quadrupole model
NASA Astrophysics Data System (ADS)
Gupta, J. B.; Hamilton, J. H.
2017-05-01
In a previous study of the collective multiphonon bands in 154Gd, using the microscopic dynamic pairing plus quadrupole model, data for eight K bands were analyzed. In the last four decades, its decay scheme is significantly revised and the nuclear theory has undergone a significant change. Special focus is on new weak intensity transitions in several bands and on the reassigned levels in its decay scheme. The present study represents a detailed revised analysis of the collective even parity bands below 2.1 MeV. Also, a discussion is given on the nature of the Kπ=0+ excited bands, validity of band mixing approach, and of the assumption of shape coexistence of β band with ground band. Comparison is made with the X (5) analytical symmetry and the algebraic interacting boson model predictions. Discussion of the 2 n transfer reactions is given. The validity of the multiphonon view of the Kπ=4+ and 22+ bands is also studied.
Analysis of Aurora's Performance Simulation Engine for Three Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Janine; Simon, Joseph
2015-07-07
Aurora Solar Inc. is building a cloud-based optimization platform to automate the design, engineering, and permit generation process of solar photovoltaic (PV) installations. They requested that the National Renewable Energy Laboratory (NREL) validate the performance of the PV system performance simulation engine of Aurora Solar’s solar design platform, Aurora. In previous work, NREL performed a validation of multiple other PV modeling tools 1, so this study builds upon that work by examining all of the same fixed-tilt systems with available module datasheets that NREL selected and used in the aforementioned study. Aurora Solar set up these three operating PV systemsmore » in their modeling platform using NREL-provided system specifications and concurrent weather data. NREL then verified the setup of these systems, ran the simulations, and compared the Aurora-predicted performance data to measured performance data for those three systems, as well as to performance data predicted by other PV modeling tools.« less
Development of a pharmacogenetic-guided warfarin dosing algorithm for Puerto Rican patients
Ramos, Alga S; Seip, Richard L; Rivera-Miranda, Giselle; Felici-Giovanini, Marcos E; Garcia-Berdecia, Rafael; Alejandro-Cowan, Yirelia; Kocherla, Mohan; Cruz, Iadelisse; Feliu, Juan F; Cadilla, Carmen L; Renta, Jessica Y; Gorowski, Krystyna; Vergara, Cunegundo; Ruaño, Gualberto; Duconge, Jorge
2012-01-01
Aim This study was aimed at developing a pharmacogenetic-driven warfarin-dosing algorithm in 163 admixed Puerto Rican patients on stable warfarin therapy. Patients & methods A multiple linear-regression analysis was performed using log-transformed effective warfarin dose as the dependent variable, and combining CYP2C9 and VKORC1 genotyping with other relevant nongenetic clinical and demographic factors as independent predictors. Results The model explained more than two-thirds of the observed variance in the warfarin dose among Puerto Ricans, and also produced significantly better ‘ideal dose’ estimates than two pharmacogenetic models and clinical algorithms published previously, with the greatest benefit seen in patients ultimately requiring <7 mg/day. We also assessed the clinical validity of the model using an independent validation cohort of 55 Puerto Rican patients from Hartford, CT, USA (R2 = 51%). Conclusion Our findings provide the basis for planning prospective pharmacogenetic studies to demonstrate the clinical utility of genotyping warfarin-treated Puerto Rican patients. PMID:23215886
Shankar, Vijay; Reo, Nicholas V; Paliy, Oleg
2015-12-09
We previously showed that stool samples of pre-adolescent and adolescent US children diagnosed with diarrhea-predominant IBS (IBS-D) had different compositions of microbiota and metabolites compared to healthy age-matched controls. Here we explored whether observed fecal microbiota and metabolite differences between these two adolescent populations can be used to discriminate between IBS and health. We constructed individual microbiota- and metabolite-based sample classification models based on the partial least squares multivariate analysis and then applied a Bayesian approach to integrate individual models into a single classifier. The resulting combined classification achieved 84 % accuracy of correct sample group assignment and 86 % prediction for IBS-D in cross-validation tests. The performance of the cumulative classification model was further validated by the de novo analysis of stool samples from a small independent IBS-D cohort. High-throughput microbial and metabolite profiling of subject stool samples can be used to facilitate IBS diagnosis.
Balduck, A-L; Jowett, S
2010-10-01
The study examined the psychometric properties of the Belgian coach version of the Coach-Athlete Relationship Questionnaire (CART-Q). The questionnaire includes three dimensions (Closeness, Commitment, and Complementarity) in a model that intends to measure the quality of the coach-athlete relationship. Belgian coaches (n=144) of athletes who performed at various competition levels in such sports as football, basketball, and volleyball responded to the CART-Q and to the Leadership Scale for Sport (LSS). A confirmatory factor analysis proved to be slightly more satisfactory for a three-order factor model, compared with a hierarchical first-order factor model. The three factors showed acceptable internal consistency scores. Moreover, functional associations between the three factors and coach leadership behaviors were found offering support to the instrument's concurrent validity. The findings support previous validation studies and verify the psychometric properties of the CART-Q applied to Belgian coaches of team sports. © 2009 John Wiley & Sons A/S.
McCormick, Jessica; Delfabbro, Paul; Denson, Linley A
2012-12-01
The aim of this study was to conduct an empirical investigation of the validity of Jacobs' (in J Gambl Behav 2:15-31, 1986) general theory of addictions in relation to gambling problems associated with electronic gaming machines (EGM). Regular EGM gamblers (n = 190) completed a series of standardised measures relating to psychological and physiological vulnerability, substance use, dissociative experiences, early childhood trauma and abuse and problem gambling (the Problem Gambling Severity Index). Statistical analysis using structural equation modelling revealed clear relationships between childhood trauma and life stressors and psychological vulnerability, dissociative-like experiences and problem gambling. These findings confirm and extend a previous model validated by Gupta and Derevensky (in J Gambl Stud 14: 17-49, 1998) using an adolescent population. The significance of these findings are discussed for existing pathway models of problem gambling, for Jacobs' theory, and for clinicians engaged in assessment and intervention.
Validity of the two-level model for Viterbi decoder gap-cycle performance
NASA Technical Reports Server (NTRS)
Dolinar, S.; Arnold, S.
1990-01-01
A two-level model has previously been proposed for approximating the performance of a Viterbi decoder which encounters data received with periodically varying signal-to-noise ratio. Such cyclically gapped data is obtained from the Very Large Array (VLA), either operating as a stand-alone system or arrayed with Goldstone. This approximate model predicts that the decoder error rate will vary periodically between two discrete levels with the same period as the gap cycle. It further predicts that the length of the gapped portion of the decoder error cycle for a constraint length K decoder will be about K-1 bits shorter than the actual duration of the gap. The two-level model for Viterbi decoder performance with gapped data is subjected to detailed validation tests. Curves showing the cyclical behavior of the decoder error burst statistics are compared with the simple square-wave cycles predicted by the model. The validity of the model depends on a parameter often considered irrelevant in the analysis of Viterbi decoder performance, the overall scaling of the received signal or the decoder's branch-metrics. Three scaling alternatives are examined: optimum branch-metric scaling and constant branch-metric scaling combined with either constant noise-level scaling or constant signal-level scaling. The simulated decoder error cycle curves roughly verify the accuracy of the two-level model for both the case of optimum branch-metric scaling and the case of constant branch-metric scaling combined with constant noise-level scaling. However, the model is not accurate for the case of constant branch-metric scaling combined with constant signal-level scaling.
Tres, A; van der Veer, G; Perez-Marin, M D; van Ruth, S M; Garrido-Varo, A
2012-08-22
Organic products tend to retail at a higher price than their conventional counterparts, which makes them susceptible to fraud. In this study we evaluate the application of near-infrared spectroscopy (NIRS) as a rapid, cost-effective method to verify the organic identity of feed for laying hens. For this purpose a total of 36 organic and 60 conventional feed samples from The Netherlands were measured by NIRS. A binary classification model (organic vs conventional feed) was developed using partial least squares discriminant analysis. Models were developed using five different data preprocessing techniques, which were externally validated by a stratified random resampling strategy using 1000 realizations. Spectral regions related to the protein and fat content were among the most important ones for the classification model. The models based on data preprocessed using direct orthogonal signal correction (DOSC), standard normal variate (SNV), and first and second derivatives provided the most successful results in terms of median sensitivity (0.91 in external validation) and median specificity (1.00 for external validation of SNV models and 0.94 for DOSC and first and second derivative models). A previously developed model, which was based on fatty acid fingerprinting of the same set of feed samples, provided a higher sensitivity (1.00). This shows that the NIRS-based approach provides a rapid and low-cost screening tool, whereas the fatty acid fingerprinting model can be used for further confirmation of the organic identity of feed samples for laying hens. These methods provide additional assurance to the administrative controls currently conducted in the organic feed sector.
Tabak, Ying P; Johannes, Richard S; Sun, Xiaowu; Nunez, Carlos M; McDonald, L Clifford
2015-06-01
To predict the likelihood of hospital-onset Clostridium difficile infection (HO-CDI) based on patient clinical presentations at admission Retrospective data analysis Six US acute care hospitals Adult inpatients We used clinical data collected at the time of admission in electronic health record (EHR) systems to develop and validate a HO-CDI predictive model. The outcome measure was HO-CDI cases identified by a nonduplicate positive C. difficile toxin assay result with stool specimens collected >48 hours after inpatient admission. We fit a logistic regression model to predict the risk of HO-CDI. We validated the model using 1,000 bootstrap simulations. Among 78,080 adult admissions, 323 HO-CDI cases were identified (ie, a rate of 4.1 per 1,000 admissions). The logistic regression model yielded 14 independent predictors, including hospital community onset CDI pressure, patient age ≥65, previous healthcare exposures, CDI in previous admission, admission to the intensive care unit, albumin ≤3 g/dL, creatinine >2.0 mg/dL, bands >32%, platelets ≤150 or >420 109/L, and white blood cell count >11,000 mm3. The model had a c-statistic of 0.78 (95% confidence interval [CI], 0.76-0.81) with good calibration. Among 79% of patients with risk scores of 0-7, 19 HO-CDIs occurred per 10,000 admissions; for patients with risk scores >20, 623 HO-CDIs occurred per 10,000 admissions (P<.0001). Using clinical parameters available at the time of admission, this HO-CDI model demonstrated good predictive ability, and it may have utility as an early risk identification tool for HO-CDI preventive interventions and outcome comparisons.
Validation of a 20-year forecast of US childhood lead poisoning: Updated prospects for 2010.
Jacobs, David E; Nevin, Rick
2006-11-01
We forecast childhood lead poisoning and residential lead paint hazard prevalence for 1990-2010, based on a previously unvalidated model that combines national blood lead data with three different housing data sets. The housing data sets, which describe trends in housing demolition, rehabilitation, window replacement, and lead paint, are the American Housing Survey, the Residential Energy Consumption Survey, and the National Lead Paint Survey. Blood lead data are principally from the National Health and Nutrition Examination Survey. New data now make it possible to validate the midpoint of the forecast time period. For the year 2000, the model predicted 23.3 million pre-1960 housing units with lead paint hazards, compared to an empirical HUD estimate of 20.6 million units. Further, the model predicted 498,000 children with elevated blood lead levels (EBL) in 2000, compared to a CDC empirical estimate of 434,000. The model predictions were well within 95% confidence intervals of empirical estimates for both residential lead paint hazard and blood lead outcome measures. The model shows that window replacement explains a large part of the dramatic reduction in lead poisoning that occurred from 1990 to 2000. Here, the construction of the model is described and updated through 2010 using new data. Further declines in childhood lead poisoning are achievable, but the goal of eliminating children's blood lead levels > or =10 microg/dL by 2010 is unlikely to be achieved without additional action. A window replacement policy will yield multiple benefits of lead poisoning prevention, increased home energy efficiency, decreased power plant emissions, improved housing affordability, and other previously unrecognized benefits. Finally, combining housing and health data could be applied to forecasting other housing-related diseases and injuries.
Validation of a 20-year forecast of US childhood lead poisoning: Updated prospects for 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, David E.; Nevin, Rick
2006-11-15
We forecast childhood lead poisoning and residential lead paint hazard prevalence for 1990-2010, based on a previously unvalidated model that combines national blood lead data with three different housing data sets. The housing data sets, which describe trends in housing demolition, rehabilitation, window replacement, and lead paint, are the American Housing Survey, the Residential Energy Consumption Survey, and the National Lead Paint Survey. Blood lead data are principally from the National Health and Nutrition Examination Survey. New data now make it possible to validate the midpoint of the forecast time period. For the year 2000, the model predicted 23.3 millionmore » pre-1960 housing units with lead paint hazards, compared to an empirical HUD estimate of 20.6 million units. Further, the model predicted 498,000 children with elevated blood lead levels (EBL) in 2000, compared to a CDC empirical estimate of 434,000. The model predictions were well within 95% confidence intervals of empirical estimates for both residential lead paint hazard and blood lead outcome measures. The model shows that window replacement explains a large part of the dramatic reduction in lead poisoning that occurred from 1990 to 2000. Here, the construction of the model is described and updated through 2010 using new data. Further declines in childhood lead poisoning are achievable, but the goal of eliminating children's blood lead levels {>=}10 {mu}g/dL by 2010 is unlikely to be achieved without additional action. A window replacement policy will yield multiple benefits of lead poisoning prevention, increased home energy efficiency, decreased power plant emissions, improved housing affordability, and other previously unrecognized benefits. Finally, combining housing and health data could be applied to forecasting other housing-related diseases and injuries.« less
NASA Astrophysics Data System (ADS)
Lázpita, P.; Gutiérrez, J.; Barandiarán, J. M.; Chernenko, V. A.; Mondelli, C.; Chapon, L.
2014-11-01
Neutron polarized diffraction technique has been used to elucidate the magnetic moment distribution density in non stoichiometric Ni—Mn—Ga single crystals. These experiments allow us to determine a localized magnetic moment in the Mn position in the austenitic phase, and to validity qualitatively previous models of magnetic distributions where there are antiferromagnetic and ferromagnetic coupling for Mn atoms that are sited out of their properly positions. This measurements show the deep dependence of the magnetic moment with the composition and the atomic order.
Lee, Michael J; Cizik, Amy M; Hamilton, Deven; Chapman, Jens R
2014-02-01
The possibility and likelihood of a postoperative medical complication after spine surgery undoubtedly play a major role in the decision making of the surgeon and patient alike. Although prior study has determined relative risk and odds ratio values to quantify risk factors, these values may be difficult to translate to the patient during counseling of surgical options. Ideally, a model that predicts absolute risk of medical complication, rather than relative risk or odds ratio values, would greatly enhance the discussion of safety of spine surgery. To date, there is no risk stratification model that specifically predicts the risk of medical complication. The purpose of this study was to create and validate a predictive model for the risk of medical complication during and after spine surgery. Statistical analysis using a prospective surgical spine registry that recorded extensive demographic, surgical, and complication data. Outcomes examined are medical complications that were specifically defined a priori. This analysis is a continuation of statistical analysis of our previously published report. Using a prospectively collected surgical registry of more than 1,476 patients with extensive demographic, comorbidity, surgical, and complication detail recorded for 2 years after surgery, we previously identified several risk factor for medical complications. Using the beta coefficients from those log binomial regression analyses, we created a model to predict the occurrence of medical complication after spine surgery. We split our data into two subsets for internal and cross-validation of our model. We created two predictive models: one predicting the occurrence of any medical complication and the other predicting the occurrence of a major medical complication. The final predictive model for any medical complications had a receiver operator curve characteristic of 0.76, considered to be a fair measure. The final predictive model for any major medical complications had receiver operator curve characteristic of 0.81, considered to be a good measure. The final model has been uploaded for use on SpineSage.com. We present a validated model for predicting medical complications after spine surgery. The value in this model is that it gives the user an absolute percent likelihood of complication after spine surgery based on the patient's comorbidity profile and invasiveness of surgery. Patients are far more likely to understand an absolute percentage, rather than relative risk and confidence interval values. A model such as this is of paramount importance in counseling patients and enhancing the safety of spine surgery. In addition, a tool such as this can be of great use particularly as health care trends toward pay-for-performance, quality metrics, and risk adjustment. To facilitate the use of this model, we have created a website (SpineSage.com) where users can enter in patient data to determine likelihood of medical complications after spine surgery. Copyright © 2014 Elsevier Inc. All rights reserved.
Zimmerman, Tammy M.
2008-01-01
The Lake Erie beaches in Pennsylvania are a valuable recreational resource for Erie County. Concentrations of Escherichia coli (E. coli) at monitored beaches in Presque Isle State Park in Erie, Pa., occasionally exceed the single-sample bathing-water standard of 235 colonies per 100 milliliters resulting in potentially unsafe swimming conditions and prompting beach managers to post public advisories or to close beaches to recreation. To supplement the current method for assessing recreational water quality (E. coli concentrations from the previous day), a predictive regression model for E. coli concentrations at Presque Isle Beach 2 was developed from data collected during the 2004 and 2005 recreational seasons. Model output included predicted E. coli concentrations and exceedance probabilities--the probability that E. coli concentrations would exceed the standard. For this study, E. coli concentrations and other water-quality and environmental data were collected during the 2006 recreational season at Presque Isle Beach 2. The data from 2006, an independent year, were used to test (validate) the 2004-2005 predictive regression model and compare the model performance to the current method. Using 2006 data, the 2004-2005 model yielded more correct responses and better predicted exceedances of the standard than the use of E. coli concentrations from the previous day. The differences were not pronounced, however, and more data are needed. For example, the model correctly predicted exceedances of the standard 11 percent of the time (1 out of 9 exceedances that occurred in 2006) whereas using the E. coli concentrations from the previous day did not result in any correctly predicted exceedances. After validation, new models were developed by adding the 2006 data to the 2004-2005 dataset and by analyzing the data in 2- and 3-year combinations. Results showed that excluding the 2004 data (using 2005 and 2006 data only) yielded the best model. Explanatory variables in the 2005-2006 model were log10 turbidity, bird count, and wave height. The 2005-2006 model correctly predicted when the standard would not be exceeded (specificity) with a response of 95.2 percent (178 out of 187 nonexceedances) and correctly predicted when the standard would be exceeded (sensitivity) with a response of 64.3 percent (9 out of 14 exceedances). In all cases, the results from predictive modeling produced higher percentages of correct predictions than using E. coli concentrations from the previous day. Additional data collected each year can be used to test and possibly improve the model. The results of this study will aid beach managers in more rapidly determining when waters are not safe for recreational use and, subsequently, when to close a beach or post an advisory.
Feng, Lei; Peng, Fuduan; Li, Shanfei; Jiang, Li; Sun, Hui; Ji, Anquan; Zeng, Changqing; Li, Caixia; Liu, Fan
2018-03-23
Estimating individual age from biomarkers may provide key information facilitating forensic investigations. Recent progress has shown DNA methylation at age-associated CpG sites as the most informative biomarkers for estimating the individual age of an unknown donor. Optimal feature selection plays a critical role in determining the performance of the final prediction model. In this study we investigate methylation levels at 153 age-associated CpG sites from 21 previously reported genomic regions using the EpiTYPER system for their predictive power on individual age in 390 Han Chinese males ranging from 15 to 75 years of age. We conducted a systematic feature selection using a stepwise backward multiple linear regression analysis as well as an exhaustive searching algorithm. Both approaches identified the same subset of 9 CpG sites, which in linear combination provided the optimal model fitting with mean absolute deviation (MAD) of 2.89 years of age and explainable variance (R 2 ) of 0.92. The final model was validated in two independent Han Chinese male samples (validation set 1, N = 65, MAD = 2.49, R 2 = 0.95, and validation set 2, N = 62, MAD = 3.36, R 2 = 0.89). Other competing models such as support vector machine and artificial neural network did not outperform the linear model to any noticeable degree. The validation set 1 was additionally analyzed using Pyrosequencing technology for cross-platform validation and was termed as validation set 3. Directly applying our model, in which the methylation levels were detected by the EpiTYPER system, to the data from pyrosequencing technology showed, however, less accurate results in terms of MAD (validation set 3, N = 65 Han Chinese males, MAD = 4.20, R 2 = 0.93), suggesting the presence of a batch effect between different data generation platforms. This batch effect could be partially overcome by a z-score transformation (MAD = 2.76, R 2 = 0.93). Overall, our systematic feature selection identified 9 CpG sites as the optimal subset for forensic age estimation and the prediction model consisting of these 9 markers demonstrated high potential in forensic practice. An age estimator implementing our prediction model allowing missing markers is freely available at http://liufan.big.ac.cn/AgePrediction. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pérez, B.; Brower, R.; Beckers, J.; Paradis, D.; Balseiro, C.; Lyons, K.; Cure, M.; Sotillo, M. G.; Hacket, B.; Verlaan, M.; Alvarez Fanjul, E.
2011-04-01
ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast that makes use of existing storm surge or circulation models today operational in Europe, as well as near-real time tide gauge data in the region, with the following main goals: - providing an easy access to existing forecasts, as well as to its performance and model validation, by means of an adequate visualization tool - generation of better forecasts of sea level, including confidence intervals, by means of the Bayesian Model Average Technique (BMA) The system was developed and implemented within ECOOP (C.No. 036355) European Project for the NOOS and the IBIROOS regions, based on MATROOS visualization tool developed by Deltares. Both systems are today operational at Deltares and Puertos del Estado respectively. The Bayesian Modelling Average technique generates an overall forecast probability density function (PDF) by making a weighted average of the individual forecasts PDF's; the weights represent the probability that a model will give the correct forecast PDF and are determined and updated operationally based on the performance of the models during a recent training period. This implies the technique needs the availability of sea level data from tide gauges in near-real time. Results of validation of the different models and BMA implementation for the main harbours will be presented for the IBIROOS and Western Mediterranean regions, where this kind of activity is performed for the first time. The work has proved to be useful to detect problems in some of the circulation models not previously well calibrated with sea level data, to identify the differences on baroclinic and barotropic models for sea level applications and to confirm the general improvement of the BMA forecasts.
Karimi, Leila; Karanika-Murray, Maria; Meyer, Denny
2016-03-01
The main aim of this study was to examine the measurement invariance of the Work Organization Assessment Questionnaire (WOAQ) across genders in a group of health care employees, using bifactor modeling. There is a very limited research that uses invariance testing of bifactor models, despite their usefulness. Establishing validity of the WOAQ in this way is important for demonstrating its relevance for both men and women. A bifactor modeling procedure was used here to examine the validity of the WOAQ with a sample of 946 paramedics employed in a large Australian organization in the health care sector. The results of this study show that the WOAQ has good psychometric properties across genders in health care settings. In addition, there were significant mean differences between men and women in their perceptions of "quality of relationships with colleagues," and "reward and recognition." There were no differences between men and women in the remaining factors: "quality of relationships with the management," "quality of relationships with colleagues," and "quality of the physical environment." The use of bifactor modeling to establish the cross-validity of the WOAQ across male and female paramedics adds to evidence for the measure's good psychometric properties. The findings confirm those of previous research that has used higher order confirmatory factor analysis. Moreover, mean differences between men and women were found to be significant in two of the five WOAQ subscales. These findings have practical implications for health care organizations, in terms of assessing work characteristics and developing activities to support the health and well-being of their employees.
Dual energy X-ray absorptiometry spine scans to determine abdominal fat in post-menopausal women
Bea, J. W.; Blew, R. M.; Going, S. B.; Hsu, C-H; Lee, M. C.; Lee, V. R.; Caan, B.J.; Kwan, M.L.; Lohman, T. G.
2016-01-01
Body composition may be a better predictor of chronic disease risk than body mass index (BMI) in older populations. Objectives We sought to validate spine fat fraction (%) from dual energy X-ray absorptiometry (DXA) spine scans as a proxy for total abdominal fat. Methods Total body DXA scan abdominal fat regions of interest (ROI) that have been previously validated by magnetic resonance imaging were assessed among healthy, postmenopausal women who also had antero-posterior spine scans (n=103). ROIs were 1) lumbar vertebrae L2-L4 and 2) L2-Iliac Crest (L2-IC), manually selected by two independent raters, and 3) trunk, auto-selected by DXA software. Intra-class correlation coefficients evaluated intra and inter-rater reliability on a random subset (N=25). Linear regression models, validated by bootstrapping, assessed the relationship between spine fat fraction (%) and total abdominal fat (%) ROIs. Results Mean age, BMI and total body fat were: 66.1 ± 4.8y, 25.8 ± 3.8kg/m2 and 40.0 ± 6.6%, respectively. There were no significant differences within or between raters. Linear regression models adjusted for several participant and scan characteristics were equivalent to using only BMI and spine fat fraction. The model predicted L2-L4 (Adj. R2: 0.83) and L2-IC (Adj.R2:0.84) abdominal fat (%) well; the adjusted R2 for trunk fat (%) was 0.78. Model validation demonstrated minimal over-fitting (Adj. R2: 0.82, 0.83, and 0.77 for L2-L4, L2-IC, and trunk fat respectively). Conclusions The strong correlation between spine fat fraction and DXA abdominal fat measures make it suitable for further development in post-menopausal chronic disease risk prediction models. PMID:27416964
NASA Technical Reports Server (NTRS)
Roberts, S. G.; Hutchinson, T. M.; Arnaud, S. B.; Steele, C. R.; Kiratli, B. J.; Martin, R. B.
1996-01-01
Accurate non-invasive mechanical measurement of long bones is made difficult by the masking effect of surrounding soft tissues. Mechanical Response Tissue Analysis (MRTA) offers a method for separating the effects of the soft tissue and bone; however, a direct validation has been lacking. A theoretical analysis of wave propagation through the compressed tissue revealed a strong mass effect dependent on the relative accelerations of the probe and bone. The previous mathematical model of the bone and overlying tissue system was reconfigured to incorporate the theoretical finding. This newer model (six-parameter) was used to interpret results using MRTA to determine bone cross-sectional bending stiffness, EI(sub MRTA). The relationship between EI(MRTA) and theoretical EI values for padded aluminum rods was R(exp 2) = 0.999. A biological validation followed using monkey tibias. Each bone was tested in vivo with the MRTA instrument. Postmortem, the same tibias were excised and tested to failure in three-point bending to determine EI(sub 3-PT) and maximum load. Diaphyseal Bone Mineral Density (BMD) measurements were also made. The relationship between E(sub 3-PT) and in vivo EI(sub MRTA) using the six-parameter model is strong (R(exp 2) = 0.947) and better than that using the older model (R(exp 2) = 0.645). EI(MRTA) and BMD are also highly correlated (R(exp 2) = 0.853). MRTA measurements in vivo and BMD ex vivo are both good predictors of scaled maximum strength (R(exp 2) = 0.915 and R(exp 2) = 0.894, respectively). This is the first biological validation of a non-invasive mechanical measurement of bone by comparison to actual values. The MRTA technique has potential clinical value for assessing long-bone mechanical properties.
NASA Technical Reports Server (NTRS)
Roberts, S. G.; Hutchinson, T. M.; Arnaud, S. B.; Kiratli, B. J; Steele, C. R.
1996-01-01
Accurate non-invasive mechanical measurement of long bones is made difficult by the masking effect of surrounding soft tissues. Mechanical response tissue analysis (MRTA) offers a method for separating the effects of the soft tissue and bone; however, a direct validation has been lacking. A theoretical analysis of wave propagation through the compressed tissue revealed a strong mass effect dependent on the relative accelerations of the probe and bone. The previous mathematical model of the bone and overlying tissue system was reconfigured to incorporate the theoretical finding. This newer model (six-parameter) was used to interpret results using MRTA to determine bone cross-sectional bending stiffness, EI(sub MRTA). The relationship between EI(sub MRTA) and theoretical EI values for padded aluminum rods was R(sup 2) = 0.999. A biological validation followed using monkey tibias. Each bone was tested in vivo with the MRTA instrument. Postmortem, the same tibias were excised and tested to failure in three-point bending to determine EI(sub 3-PT) and maximum load. Diaphyseal bone mineral density (BMD) measurements were also made. The relationship between EI(sub 3-PT) and in vivo EI(sub MRTA) using the six-parameter model is strong (R(sup 2) = 0.947) and better than that using the older model (R(sup 2) = 0.645). EI(sub MRTA) and BMD are also highly correlated (R(sup 2) = 0.853). MRTA measurements in vivo and BMD ex vivo are both good predictors of scaled maximum strength (R(sup 2) = 0.915 and R(sup 2) = 0.894, respectively). This is the first biological validation of a non- invasive mechanical measurement of bone by comparison to actual values. The MRTA technique has potential clinical value for assessing long-bone mechanical properties.
Fernández, Adrián; Quiroga, Alejandro; Ochoa, Juan Pablo; Mysuta, Mauricio; Casabé, José Horacio; Biagetti, Marcelo; Guevara, Eduardo; Favaloro, Liliana E; Fava, Agostina M; Galizio, Néstor
2016-07-01
Sudden cardiac death (SCD) is a common cause of death in hypertrophic cardiomyopathy (HC). Our aim was to conduct an external and independent validation in South America of the 2014 European Society of Cardiology (ESC) SCD risk prediction model to identify patients requiring an implantable cardioverter defibrillator. This study included 502 consecutive patients with HC followed from March, 1993 to December, 2014. A combined end point of SCD or appropriate implantable cardioverter defibrillator therapy was assessed. For the quantitative estimation of individual 5-year SCD risk, we used the formula: 1 - 0.998(exp(Prognostic index)). Our database also included the abnormal blood pressure response to exercise as a risk marker. We analyzed the 3 categories of 5-year risk proposed by the ESC: low risk (LR) <4%; intermediate risk (IR) ≥4% to <6%, and high risk (HR) ≥6%. The LR group included 387 patients (77%); the IR group 39 (8%); and the HR group 76 (15%). Fourteen patients (3%) had SCD/appropriate implantable cardioverter defibrillator therapy (LR: 0%; IR: 2 of 39 [5%]; and HR: 12 of 76 [16%]). In a receiver-operating characteristic curve, the new model proved to be an excellent predictor because the area under the curve for the estimated risk is 0.925 (statistical C: 0.925; 95% CI 0.8884 to 0.9539, p <0.0001). In conclusion, the SCD risk prediction model in HC proposed by the 2014 ESC guidelines was validated in our population and represents an improvement compared with previous approaches. A larger multicenter, independent and external validation of the model with long-term follow-up would be advisable. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jansen, Daniel J.
Teacher efficacy continues to be an important area of study in educational research. This study tested an instrument designed to assess the perceived efficacy of agricultural education teachers when engaged in lessons involving mathematics instruction. The study population of Oregon and Washington agricultural educators utilized in the validation of the instrument revealed important demographic findings and specific results related to teacher efficacy for the study population. An instrument was developed from the assimilation of three scales previously used and validated in efficacy research. Participants' mathematics teaching efficacy was assessed using a portion of the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI), and personal mathematics efficacy was evaluated by the mathematics self-belief instrument which was derived from the Betz and Hackett's Mathematics Self-Efficacy Scale. The final scale, the Teachers' Sense of Efficacy Scale (TSES) created by Tschannen-Moran and Woolfolk Hoy, examined perceived personal teaching efficacy. Structural equation modeling was used as the statistical analyses tool to validate the instrument and examine correlations between efficacy constructs used to determine potential professional development needs of the survey population. As part of the data required for validation of the Mathematics Enhancement Teaching Efficacy instrument, demographic information defining the population of Oregon and Washington agricultural educators was obtained and reported. A hypothetical model derived from teacher efficacy literature was found to be an acceptable model to verify construct validity and determine strength of correlations between the scales that defined the instrument. The instrument produced an alpha coefficient of .905 for reliability. Both exploratory and confirmatory factor analyses were used to verify construct and discriminate validity. Specifics results related to the survey population of agricultural educators concluded that personal mathematics efficacy has a stronger correlation with mathematics teaching efficacy than personal teaching efficacy of teachers for this population. The implications of such findings suggest that professional development and pre-service preparation should be more focused on mathematics content knowledge rather than pedagogical knowledge when the objective is to enhance mathematics in interdisciplinary lessons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Amy N.; Nagle, Nicholas N.
Techniques such as Iterative Proportional Fitting have been previously suggested as a means to generate new data with the demographic granularity of individual surveys and the spatial granularity of small area tabulations of censuses and surveys. This article explores internal and external validation approaches for synthetic, small area, household- and individual-level microdata using a case study for Bangladesh. Using data from the Bangladesh Census 2011 and the Demographic and Health Survey, we produce estimates of infant mortality rate and other household attributes for small areas using a variation of an iterative proportional fitting method called P-MEDM. We conduct an internalmore » validation to determine: whether the model accurately recreates the spatial variation of the input data, how each of the variables performed overall, and how the estimates compare to the published population totals. We conduct an external validation by comparing the estimates with indicators from the 2009 Multiple Indicator Cluster Survey (MICS) for Bangladesh to benchmark how well the estimates compared to a known dataset which was not used in the original model. The results indicate that the estimation process is viable for regions that are better represented in the microdata sample, but also revealed the possibility of strong overfitting in sparsely sampled sub-populations.« less
Improved OSIRIS NO2 retrieval algorithm: description and validation
NASA Astrophysics Data System (ADS)
Sioris, Christopher E.; Rieger, Landon A.; Lloyd, Nicholas D.; Bourassa, Adam E.; Roth, Chris Z.; Degenstein, Douglas A.; Camy-Peyret, Claude; Pfeilsticker, Klaus; Berthet, Gwenaël; Catoire, Valéry; Goutail, Florence; Pommereau, Jean-Pierre; McLinden, Chris A.
2017-03-01
A new retrieval algorithm for OSIRIS (Optical Spectrograph and Infrared Imager System) nitrogen dioxide (NO2) profiles is described and validated. The algorithm relies on spectral fitting to obtain slant column densities of NO2, followed by inversion using an algebraic reconstruction technique and the SaskTran spherical radiative transfer model (RTM) to obtain vertical profiles of local number density. The validation covers different latitudes (tropical to polar), years (2002-2012), all seasons (winter, spring, summer, and autumn), different concentrations of nitrogen dioxide (from denoxified polar vortex to polar summer), a range of solar zenith angles (68.6-90.5°), and altitudes between 10.5 and 39 km, thereby covering the full retrieval range of a typical OSIRIS NO2 profile. The use of a larger spectral fitting window than used in previous retrievals reduces retrieval uncertainties and the scatter in the retrieved profiles due to noisy radiances. Improvements are also demonstrated through the validation in terms of bias reduction at 15-17 km relative to the OSIRIS operational v3.0 algorithm. The diurnal variation of NO2 along the line of sight is included in a fully spherical multiple scattering RTM for the first time. Using this forward model with built-in photochemistry, the scatter of the differences relative to the correlative balloon NO2 profile data is reduced.
Rose, Amy N.; Nagle, Nicholas N.
2016-08-01
Techniques such as Iterative Proportional Fitting have been previously suggested as a means to generate new data with the demographic granularity of individual surveys and the spatial granularity of small area tabulations of censuses and surveys. This article explores internal and external validation approaches for synthetic, small area, household- and individual-level microdata using a case study for Bangladesh. Using data from the Bangladesh Census 2011 and the Demographic and Health Survey, we produce estimates of infant mortality rate and other household attributes for small areas using a variation of an iterative proportional fitting method called P-MEDM. We conduct an internalmore » validation to determine: whether the model accurately recreates the spatial variation of the input data, how each of the variables performed overall, and how the estimates compare to the published population totals. We conduct an external validation by comparing the estimates with indicators from the 2009 Multiple Indicator Cluster Survey (MICS) for Bangladesh to benchmark how well the estimates compared to a known dataset which was not used in the original model. The results indicate that the estimation process is viable for regions that are better represented in the microdata sample, but also revealed the possibility of strong overfitting in sparsely sampled sub-populations.« less
Park, Gwansik; Kim, Taewung; Panzer, Matthew B; Crandall, Jeff R
2016-08-01
In previous shoulder impact studies, the 50th-percentile male GHBMC human body finite-element model was shown to have good biofidelity regarding impact force, but under-predicted shoulder deflection by 80% compared to those observed in the experiment. The goal of this study was to validate the response of the GHBMC M50 model by focusing on three-dimensional shoulder kinematics under a whole-body lateral impact condition. Five modifications, focused on material properties and modeling techniques, were introduced into the model and a supplementary sensitivity analysis was done to determine the influence of each modification to the biomechanical response of the body. The modified model predicted substantially improved shoulder response and peak shoulder deflection within 10% of the observed experimental data, and showed good correlation in the scapula kinematics on sagittal and transverse planes. The improvement in the biofidelity of the shoulder region was mainly due to the modifications of material properties of muscle, the acromioclavicular joint, and the attachment region between the pectoralis major and ribs. Predictions of rib fracture and chest deflection were also improved because of these modifications.
NASA Astrophysics Data System (ADS)
Xiong, Chuan; Shi, Jiancheng
2014-01-01
To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing.
Johnson, Will L; Jindrich, Devin L; Zhong, Hui; Roy, Roland R; Edgerton, V Reggie
2011-12-01
A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb, which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model, we investigated the suitability of a lumped-parameter model for the prediction of muscle activation during dynamic tasks. Using the validated model, we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury.
Johnson, Will L.; Jindrich, Devin L.; Zhong, Hui; Roy, Roland R.
2011-01-01
A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model we investigated the suitability of a lumped-parameter model for prediction of muscle activation during dynamic tasks. Using the validated model we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury. PMID:21244999
Validation of Storm Water Management Model Storm Control Measures Modules
NASA Astrophysics Data System (ADS)
Simon, M. A.; Platz, M. C.
2017-12-01
EPA's Storm Water Management Model (SWMM) is a computational code heavily relied upon by industry for the simulation of wastewater and stormwater infrastructure performance. Many municipalities are relying on SWMM results to design multi-billion-dollar, multi-decade infrastructure upgrades. Since the 1970's, EPA and others have developed five major releases, the most recent ones containing storm control measures modules for green infrastructure. The main objective of this study was to quantify the accuracy with which SWMM v5.1.10 simulates the hydrologic activity of previously monitored low impact developments. Model performance was evaluated with a mathematical comparison of outflow hydrographs and total outflow volumes, using empirical data and a multi-event, multi-objective calibration method. The calibration methodology utilized PEST++ Version 3, a parameter estimation tool, which aided in the selection of unmeasured hydrologic parameters. From the validation study and sensitivity analysis, several model improvements were identified to advance SWMM LID Module performance for permeable pavements, infiltration units and green roofs, and these were performed and reported herein. Overall, it was determined that SWMM can successfully simulate low impact development controls given accurate model confirmation, parameter measurement, and model calibration.
Modeling the Water - Quality Effects of Changes to the Klamath River Upstream of Keno Dam, Oregon
Sullivan, Annett B.; Sogutlugil, I. Ertugrul; Rounds, Stewart A.; Deas, Michael L.
2013-01-01
The Link River to Keno Dam (Link-Keno) reach of the Klamath River, Oregon, generally has periods of water-quality impairment during summer, including low dissolved oxygen, elevated concentrations of ammonia and algae, and high pH. Efforts are underway to improve water quality in this reach through a Total Maximum Daily Load (TMDL) program and other management and operational actions. To assist in planning, a hydrodynamic and water-quality model was used in this study to provide insight about how various actions could affect water quality in the reach. These model scenarios used a previously developed and calibrated CE-QUAL-W2 model of the Link-Keno reach developed by the U.S. Geological Survey (USGS), Watercourse Engineering Inc., and the Bureau of Reclamation for calendar years 2006-09 (referred to as the "USGS model" in this report). Another model of the same river reach was previously developed by Tetra Tech, Inc. and the Oregon Department of Environmental Quality for years 2000 and 2002 and was used in the TMDL process; that model is referred to as the "TMDL model" in this report. This report includes scenarios that (1) assess the effect of TMDL allocations on water quality, (2) provide insight on certain aspects of the TMDL model, (3) assess various methods to improve water quality in this reach, and (4) examine possible water-quality effects of a future warmer climate. Results presented in this report for the first 5 scenarios supersede or augment those that were previously published (scenarios 1 and 2 in Sullivan and others [2011], 3 through 5 in Sullivan and others [2012]); those previous results are still valid, but the results for those scenarios in this report are more current.
NASA Astrophysics Data System (ADS)
Kahveci, Ajda; Kahveci, Murat; Mansour, Nasser; Alarfaj, Maher Mohammed
2017-06-01
Teachers play a key role in moving reform-based science education practices into the classroom. Based on research that emphasizes the importance of teachers' affective states, this study aimed to explore the constructs pedagogical discontentment, science teaching self-efficacy, intentions to reform, and their correlations. Also, it aimed to provide empirical evidence in light of a previously proposed theoretical model while focusing on an entirely new context in Middle East. Data were collected in Saudi Arabia with a total of randomly selected 994 science teachers, 656 of whom were females and 338 were males. To collect the data, the Arabic versions of the Science Teachers' Pedagogical Discontentment scale, the Science Teaching Efficacy Beliefs Instrument and the Intentions to Reform Science Teaching scale were developed. For assuring the validity of the instruments in a non-Western context, rigorous cross-cultural validations procedures were followed. Factor analyses were conducted for construct validation and descriptive statistical analyses were performed including frequency distributions and normality checks. Univariate analyses of variance were run to explore statistically significant differences between groups of teachers. Cross-tabulation and correlation analyses were conducted to explore relationships. The findings suggest effect of teacher characteristics such as age and professional development program attendance on the affective states. The results demonstrate that teachers who attended a relatively higher number of programs had lower level of intentions to reform raising issues regarding the conduct and outcomes of professional development. Some of the findings concerning interrelationships among the three constructs challenge and serve to expand the previously proposed theoretical model.
Modelling the pre-assessment learning effects of assessment: evidence in the validity chain
Cilliers, Francois J; Schuwirth, Lambert W T; van der Vleuten, Cees P M
2012-01-01
OBJECTIVES We previously developed a model of the pre-assessment learning effects of consequential assessment and started to validate it. The model comprises assessment factors, mechanism factors and learning effects. The purpose of this study was to continue the validation process. For stringency, we focused on a subset of assessment factor–learning effect associations that featured least commonly in a baseline qualitative study. Our aims were to determine whether these uncommon associations were operational in a broader but similar population to that in which the model was initially derived. METHODS A cross-sectional survey of 361 senior medical students at one medical school was undertaken using a purpose-made questionnaire based on a grounded theory and comprising pairs of written situational tests. In each pair, the manifestation of an assessment factor was varied. The frequencies at which learning effects were selected were compared for each item pair, using an adjusted alpha to assign significance. The frequencies at which mechanism factors were selected were calculated. RESULTS There were significant differences in the learning effect selected between the two scenarios of an item pair for 13 of this subset of 21 uncommon associations, even when a p-value of < 0.00625 was considered to indicate significance. Three mechanism factors were operational in most scenarios: agency; response efficacy, and response value. CONCLUSIONS For a subset of uncommon associations in the model, the role of most assessment factor–learning effect associations and the mechanism factors involved were supported in a broader but similar population to that in which the model was derived. Although model validation is an ongoing process, these results move the model one step closer to the stage of usefully informing interventions. Results illustrate how factors not typically included in studies of the learning effects of assessment could confound the results of interventions aimed at using assessment to influence learning. Discuss ideas arising from this article at ‘http://www.mededuc.com discuss’ PMID:23078685
Modelling the pre-assessment learning effects of assessment: evidence in the validity chain.
Cilliers, Francois J; Schuwirth, Lambert W T; van der Vleuten, Cees P M
2012-11-01
We previously developed a model of the pre-assessment learning effects of consequential assessment and started to validate it. The model comprises assessment factors, mechanism factors and learning effects. The purpose of this study was to continue the validation process. For stringency, we focused on a subset of assessment factor-learning effect associations that featured least commonly in a baseline qualitative study. Our aims were to determine whether these uncommon associations were operational in a broader but similar population to that in which the model was initially derived. A cross-sectional survey of 361 senior medical students at one medical school was undertaken using a purpose-made questionnaire based on a grounded theory and comprising pairs of written situational tests. In each pair, the manifestation of an assessment factor was varied. The frequencies at which learning effects were selected were compared for each item pair, using an adjusted alpha to assign significance. The frequencies at which mechanism factors were selected were calculated. There were significant differences in the learning effect selected between the two scenarios of an item pair for 13 of this subset of 21 uncommon associations, even when a p-value of < 0.00625 was considered to indicate significance. Three mechanism factors were operational in most scenarios: agency; response efficacy, and response value. For a subset of uncommon associations in the model, the role of most assessment factor-learning effect associations and the mechanism factors involved were supported in a broader but similar population to that in which the model was derived. Although model validation is an ongoing process, these results move the model one step closer to the stage of usefully informing interventions. Results illustrate how factors not typically included in studies of the learning effects of assessment could confound the results of interventions aimed at using assessment to influence learning. © Blackwell Publishing Ltd 2012.
Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K
2015-01-01
Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (p<0.001) and integrated discrimination improvement (p=0.04). The HALT-C model had a c-statistic of 0.60 (95%CI 0.50-0.70) in the validation cohort and was outperformed by the machine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273
RELAP-7 Software Verification and Validation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Choi, Yong-Joon; Zou, Ling
This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7. The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework – MOOSE (Multi-Physics Object-Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty yearsmore » of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s capability and extends the analysis capability for all reactor system simulation scenarios.« less