Sample records for primary cellular target

  1. The Role of Non-Targeted Effects as Mediators in the Biological Effects of Proton Irradiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Dicello, John F.

    2006-01-01

    In recent years, the hypothesis that non-DNA targets are primary initiators and mediators of the biological effects of ionizing radiation, such as proton beams and heavy ions, has gained much interest. These phenomena have been denoted as non-targeted or bystander effects to distinguish them from the more traditionally studied model that focuses on direct damage to DNA causing chromosomal rearrangements and mutations as causative of most biological endpoints such as cell killing, tissue damage, and cancer. We review cellular and extra-cellular structures and signal transduction pathways that have been implemented in these recent studies. Non-targeted effects of interest include oxidative damage to the cytoplasm and mitochondria, disruption of the extra-cellular matrix, and modification of cytokine signaling including TGF-beta, and gap junction communication. We present an introduction to these targets and pathways, and contrast there role with DNA damage pathways.

  2. Myeloid-derived suppressor cells: Cellular missiles to target tumors.

    PubMed

    Chandra, Dinesh; Gravekamp, Claudia

    2013-11-01

    While conventional anticancer therapies, including surgical resection, radiotherapy, and/or chemotherapy, are relatively efficient at eliminating primary tumors, these treatment modalities are largely ineffective against metastases. At least in part, this reflects the rather inefficient delivery of conventional anticancer agents to metastatic lesions. We have recently demonstrated that myeloid-derived suppressor cells (MDSCs) can be used as cellular missiles to selectively deliver a radioisotope-coupled attenuated variant of Listeria monocytogenes to both primary and metastatic neoplastic lesions in mice with pancreatic cancer. This novel immunotherapeutic intervention robustly inhibited tumor growth while promoting a dramatic decrease in the number of metastases.

  3. Localization and Sub-Cellular Shuttling of HTLV-1 Tax with the miRNA Machinery

    PubMed Central

    Van Duyne, Rachel; Guendel, Irene; Klase, Zachary; Narayanan, Aarthi; Coley, William; Jaworski, Elizabeth; Roman, Jessica; Popratiloff, Anastas; Mahieux, Renaud; Kehn-Hall, Kylene; Kashanchi, Fatah

    2012-01-01

    The innate ability of the human cell to silence endogenous retroviruses through RNA sequences encoding microRNAs, suggests that the cellular RNAi machinery is a major means by which the host mounts a defense response against present day retroviruses. Indeed, cellular miRNAs target and hybridize to specific sequences of both HTLV-1 and HIV-1 viral transcripts. However, much like the variety of host immune responses to retroviral infection, the virus itself contains mechanisms that assist in the evasion of viral inhibition through control of the cellular RNAi pathway. Retroviruses can hijack both the enzymatic and catalytic components of the RNAi pathway, in some cases to produce novel viral miRNAs that can either assist in active viral infection or promote a latent state. Here, we show that HTLV-1 Tax contributes to the dysregulation of the RNAi pathway by altering the expression of key components of this pathway. A survey of uninfected and HTLV-1 infected cells revealed that Drosha protein is present at lower levels in all HTLV-1 infected cell lines and in infected primary cells, while other components such as DGCR8 were not dramatically altered. We show colocalization of Tax and Drosha in the nucleus in vitro as well as coimmunoprecipitation in the presence of proteasome inhibitors, indicating that Tax interacts with Drosha and may target it to specific areas of the cell, namely, the proteasome. In the presence of Tax we observed a prevention of primary miRNA cleavage by Drosha. Finally, the changes in cellular miRNA expression in HTLV-1 infected cells can be mimicked by the add back of Drosha or the addition of antagomiRs against the cellular miRNAs which are downregulated by the virus. PMID:22808228

  4. Use of Primary Human Cell Systems for Creating Predictive Toxicology Profiles

    EPA Science Inventory

    Use of cellular regulatory networks to detect and distinguish effects of compounds with a broad range of on- and off-target mechanisms and biological processes provides an opportunity to understand toxicity mechanisms of action. Here we use the Biologically Multiplexed Activity P...

  5. Aiding and abetting roles of NOX oxidases in cellular transformation

    PubMed Central

    Block, Karen; Gorin, Yves

    2013-01-01

    NADPH oxidases of the NADPH oxidase (NOX) family are dedicated reactive oxygen species-generating enzymes that broadly and specifically regulate redox-sensitive signalling pathways that are involved in cancer development and progression. They act at specific cellular membranes and microdomains through the activation of oncogenes and the inactivation of tumour suppressor proteins. In this Review, we discuss primary targets and redox-linked signalling systems that are influenced by NOX-derived ROS, and the biological role of NOX oxidases in the aetiology of cancer. PMID:22918415

  6. Modulation of microRNA-mRNA Target Pairs by Human Papillomavirus 16 Oncoproteins

    PubMed Central

    Harden, Mallory E.; Prasad, Nripesh; Griffiths, Anthony

    2017-01-01

    ABSTRACT The E6 and E7 proteins are the major oncogenic drivers encoded by high-risk human papillomaviruses (HPVs). While many aspects of the transforming activities of these proteins have been extensively studied, there are fewer studies that have investigated how HPV E6/E7 expression affects the expression of cellular noncoding RNAs. The goal of our study was to investigate HPV16 E6/E7 modulation of cellular microRNA (miR) levels and to determine the potential consequences for cellular gene expression. We performed deep sequencing of small and large cellular RNAs in primary undifferentiated cultures of human foreskin keratinocytes (HFKs) with stable expression of HPV16 E6/E7 or a control vector. After integration of the two data sets, we identified 51 differentially expressed cellular miRs associated with the modulation of 1,456 potential target mRNAs in HPV16 E6/E7-expressing HFKs. We discovered that the degree of differential miR expression in HFKs expressing HPV16 E6/E7 was not necessarily predictive of the number of corresponding mRNA targets or the potential impact on gene expression. Additional analyses of the identified miR-mRNA pairs suggest modulation of specific biological activities and biochemical pathways. Overall, our study supports the model that perturbation of cellular miR expression by HPV16 E6/E7 importantly contributes to the rewiring of cellular regulatory circuits by the high-risk HPV E6 and E7 proteins that contribute to oncogenic transformation. PMID:28049151

  7. Primary Respiratory Chain Disease Causes Tissue-Specific Dysregulation of the Global Transcriptome and Nutrient-Sensing Signaling Network

    PubMed Central

    Zhang, Zhe; Tsukikawa, Mai; Peng, Min; Polyak, Erzsebet; Nakamaru-Ogiso, Eiko; Ostrovsky, Julian; McCormack, Shana; Place, Emily; Clarke, Colleen; Reiner, Gail; McCormick, Elizabeth; Rappaport, Eric; Haas, Richard; Baur, Joseph A.; Falk, Marni J.

    2013-01-01

    Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. Mechanism(s) by which RC dysfunction causes global cellular sequelae are poorly understood. To identify a common cellular response to RC disease, integrated gene, pathway, and systems biology analyses were performed in human primary RC disease skeletal muscle and fibroblast transcriptomes. Significant changes were evident in muscle across diverse RC complex and genetic etiologies that were consistent with prior reports in other primary RC disease models and involved dysregulation of genes involved in RNA processing, protein translation, transport, and degradation, and muscle structure. Global transcriptional and post-transcriptional dysregulation was also found to occur in a highly tissue-specific fashion. In particular, RC disease muscle had decreased transcription of cytosolic ribosomal proteins suggestive of reduced anabolic processes, increased transcription of mitochondrial ribosomal proteins, shorter 5′-UTRs that likely improve translational efficiency, and stabilization of 3′-UTRs containing AU-rich elements. RC disease fibroblasts showed a strikingly similar pattern of global transcriptome dysregulation in a reverse direction. In parallel with these transcriptional effects, RC disease dysregulated the integrated nutrient-sensing signaling network involving FOXO, PPAR, sirtuins, AMPK, and mTORC1, which collectively sense nutrient availability and regulate cellular growth. Altered activities of central nodes in the nutrient-sensing signaling network were validated by phosphokinase immunoblot analysis in RC inhibited cells. Remarkably, treating RC mutant fibroblasts with nicotinic acid to enhance sirtuin and PPAR activity also normalized mTORC1 and AMPK signaling, restored NADH/NAD+ redox balance, and improved cellular respiratory capacity. These data specifically highlight a common pathogenesis extending across different molecular and biochemical etiologies of individual RC disorders that involves global transcriptome modifications. We further identify the integrated nutrient-sensing signaling network as a common cellular response that mediates, and may be amenable to targeted therapies for, tissue-specific sequelae of primary mitochondrial RC disease. PMID:23894440

  8. Focus small to find big - the microbeam story.

    PubMed

    Wu, Jinhua; Hei, Tom K

    2017-08-29

    Even though the first ultraviolet microbeam was described by S. Tschachotin back in 1912, the development of sophisticated micro-irradiation facilities only began to flourish in the late 1980s. In this article, we highlight significant microbeam experiments, describe the latest microbeam irradiator configurations and critical discoveries made by using the microbeam apparatus. Modern radiological microbeams facilities are capable of producing a beam size of a few micrometers, or even tens of nanometers in size, and can deposit radiation with high precision within a cellular target. In the past three decades, a variety of microbeams has been developed to deliver a range of radiations including charged particles, X-rays, and electrons. Despite the original intention for their development to measure the effects of a single radiation track, the ability to target radiation with microbeams at sub-cellular targets has been extensively used to investigate radiation-induced biological responses within cells. Studies conducted using microbeams to target specific cells in a tissue have elucidated bystander responses, and further studies have shown reactive oxygen species (ROS) and reactive nitrogen species (RNS) play critical roles in the process. The radiation-induced abscopal effect, which has a profound impact on cancer radiotherapy, further reaffirmed the importance of bystander effects. Finally, by targeting sub-cellular compartments with a microbeam, we have reported cytoplasmic-specific biological responses. Despite the common dogma that nuclear DNA is the primary target for radiation-induced cell death and carcinogenesis, studies conducted using microbeam suggested that targeted cytoplasmic irradiation induces mitochondrial dysfunction, cellular stress, and genomic instability. A more recent development in microbeam technology includes application of mouse models to visualize in vivo DNA double-strand breaks. Microbeams are making important contributions towards our understanding of radiation responses in cells and tissue models.

  9. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    PubMed

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  10. RNA Recognition and Stress Granule Formation by TIA Proteins

    PubMed Central

    Waris, Saboora; Wilce, Matthew Charles James; Wilce, Jacqueline Anne

    2014-01-01

    Stress granule (SG) formation is a primary mechanism through which gene expression is rapidly modulated when the eukaryotic cell undergoes cellular stresses (including heat, oxidative, viral infection, starvation). In particular, the sequestration of specifically targeted translationally stalled mRNAs into SGs limits the expression of a subset of genes, but allows the expression of heatshock proteins that have a protective effect in the cell. The importance of SGs is seen in several disease states in which SG function is disrupted. Fundamental to SG formation are the T cell restricted intracellular antigen (TIA) proteins (TIA-1 and TIA-1 related protein (TIAR)), that both directly bind to target RNA and self-associate to seed the formation of SGs. Here a summary is provided of the current understanding of the way in which TIA proteins target specific mRNA, and how TIA self-association is triggered under conditions of cellular stress. PMID:25522169

  11. Targeted gene insertion for molecular medicine.

    PubMed

    Voigt, Katrin; Izsvák, Zsuzsanna; Ivics, Zoltán

    2008-11-01

    Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.

  12. The targeting of plant cellular systems by injected type III effector proteins.

    PubMed

    Lewis, Jennifer D; Guttman, David S; Desveaux, Darrell

    2009-12-01

    The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector-host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.

  13. The influenza virus NS1 protein as a therapeutic target.

    PubMed

    Engel, Daniel A

    2013-09-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. The influenza virus NS1 protein as a therapeutic target

    PubMed Central

    Engel, Daniel A.

    2015-01-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2’-5’ oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN- mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. PMID:23796981

  15. Haloacetic Acid Water Disinfection Byproducts Affect Pyruvate Dehydrogenase Activity and Disrupt Cellular Metabolism.

    PubMed

    Dad, Azra; Jeong, Clara H; Wagner, Elizabeth D; Plewa, Michael J

    2018-02-06

    The disinfection of drinking water has been a major public health achievement. However, haloacetic acids (HAAs), generated as byproducts of water disinfection, are cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic. Previous studies of monoHAA-induced genotoxicity and cell stress demonstrated that the toxicity was due to inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to disruption of cellular metabolism and energy homeostasis. DiHAAs and triHAAs are also produced during water disinfection, and whether they share mechanisms of action with monoHAAs is unknown. In this study, we evaluated the effects of mono-, di-, and tri-HAAs on cellular GAPDH enzyme kinetics, cellular ATP levels, and pyruvate dehydrogenase complex (PDC) activity. Here, treatments conducted in Chinese hamster ovary (CHO) cells revealed differences among mono-, di-, and triHAAs in their molecular targets. The monoHAAs, iodoacetic acid and bromoacetic acid, were the strongest inhibitors of GAPDH and greatly reduced cellular ATP levels. Chloroacetic acid, diHAAs, and triHAAs were weaker inhibitors of GAPDH and some increased the levels of cellular ATP. HAAs also affected PDC activity, with most HAAs activating PDC. The primary finding of this work is that mono- versus multi-HAAs address different molecular targets, and the results are generally consistent with a model in which monoHAAs activate the PDC through GAPDH inhibition-mediated disruption in cellular metabolites, including altering ATP-to-ADP and NADH-to-NAD ratios. The monoHAA-mediated reduction in cellular metabolites results in accelerated PDC activity by way of metabolite-ratio-dependent PDC regulation. DiHAAs and triHAAs are weaker inhibitors of GAPDH, but many also increase cellular ATP levels, and we suggest that they increase PDC activity by inhibiting pyruvate dehydrogenase kinase.

  16. Genetic neuroscience of mammalian learning and memory.

    PubMed Central

    Tonegawa, Susumu; Nakazawa, Kazu; Wilson, Matthew A

    2003-01-01

    Our primary research interest is to understand the molecular and cellular mechanisms on neuronal circuitry underlying the acquisition, consolidation and retrieval of hippocampus-dependent memory in rodents. We study these problems by producing genetically engineered (i.e. spatially targeted and/or temporally restricted) mice and analysing these mice by multifaceted methods including molecular and cellular biology, in vitro and in vivo physiology and behavioural studies. We attempt to identify deficits at each of the multiple levels of complexity in specific brain areas or cell types and deduce those deficits that underlie specific learning or memory. We will review our recent studies on the acquisition, consolidation and recall of memories that have been conducted with mouse strains in which genetic manipulations were targeted to specific types of cells in the hippocampus or forebrain of young adult mice. PMID:12740125

  17. UVA and UVB Irradiation Differentially Regulate microRNA Expression in Human Primary Keratinocytes

    PubMed Central

    Kraemer, Anne; Chen, I-Peng; Henning, Stefan; Faust, Alexandra; Volkmer, Beate; Atkinson, Michael J.; Moertl, Simone; Greinert, Ruediger

    2013-01-01

    MicroRNA (miRNA)-mediated regulation of the cellular transcriptome is an important epigenetic mechanism for fine-tuning regulatory pathways. These include processes related to skin cancer development, progression and metastasis. However, little is known about the role of microRNA as an intermediary in the carcinogenic processes following exposure to UV-radiation. We now show that UV irradiation of human primary keratinocytes modulates the expression of several cellular miRNAs. A common set of miRNAs was influenced by exposure to both UVA and UVB. However, each wavelength band also activated a distinct subset of miRNAs. Common sets of UVA- and UVB-regulated miRNAs harbor the regulatory elements GLYCA-nTRE, GATA-1-undefined-site-13 or Hox-2.3-undefined-site-2 in their promoters. In silico analysis indicates that the differentially expressed miRNAs responding to UV have potential functions in the cellular pathways of cell growth and proliferation. Interestingly, the expression of miR-23b, which is a differentiation marker of human keratinocytes, is remarkably up-regulated after UVA irradiation. Studying the interaction between miR-23b and its putative skin-relevant targets using a Luciferase reporter assay revealed that RRAS2 (related RAS viral oncogene homolog 2), which is strongly expressed in highly aggressive malignant skin cancer, to be a direct target of miR-23b. This study demonstrates for the first time a differential miRNA response to UVA and UVB in human primary keratinocytes. This suggests that selective regulation of signaling pathways occurs in response to different UV energies. This may shed new light on miRNA-regulated carcinogenic processes involved in UV-induced skin carcinogenesis. PMID:24391759

  18. MYCN Promotes the Expansion of Phox2B-Positive Neuronal Progenitors to Drive Neuroblastoma Development

    PubMed Central

    Alam, Goleeta; Cui, Hongjuan; Shi, Huilin; Yang, Liqun; Ding, Jane; Mao, Ling; Maltese, William A.; Ding, Han-Fei

    2009-01-01

    Amplification of the oncogene MYCN is a tumorigenic event in the development of a subset of neuroblastomas that commonly consist of undifferentiated or poorly differentiated neuroblasts with unfavorable clinical outcome. The cellular origin of these neuroblasts is unknown. Additionally, the cellular functions and target cells of MYCN in neuroblastoma development remain undefined. Here we examine the cell types that drive neuroblastoma development in TH-MYCN transgenic mice, an animal model of the human disease. Neuroblastoma development in these mice begins with hyperplastic lesions in early postnatal sympathetic ganglia. We show that both hyperplasia and primary tumors are composed predominantly of highly proliferative Phox2B+ neuronal progenitors. MYCN induces the expansion of these progenitors by both promoting their proliferation and preventing their differentiation. We further identify a minor population of undifferentiated nestin+ cells in both hyperplastic lesions and primary tumors that may serve as precursors of Phox2B+ neuronal progenitors. These findings establish the identity of neuroblasts that characterize the tumor phenotype and suggest a cellular pathway by which MYCN can promote neuroblastoma development. PMID:19608868

  19. Tocotrienol-rich fraction prevents cellular aging by modulating cell proliferation signaling pathways.

    PubMed

    Khor, S C; Mohd Yusof, Y A; Wan Ngah, W Z; Makpol, S

    Vitamin E has been suggested as nutritional intervention for the prevention of degenerative and age-related diseases. In this study, we aimed to elucidate the underlying mechanism of tocotrienol-rich fraction (TRF) in delaying cellular aging by targeting the proliferation signaling pathways in human diploid fibroblasts (HDFs). Tocotrienol-rich fraction was used to treat different stages of cellular aging of primary human diploid fibroblasts viz. young (passage 6), pre-senescent (passage 15) and senescent (passage 30). Several selected targets involved in the downstream of PI3K/AKT and RAF/MEK/ERK pathways were compared in total RNA and protein. Different transcriptional profiles were observed in young, pre-senescent and senescent HDFs, in which cellular aging increased AKT, FOXO3, CDKN1A and RSK1 mRNA expression level, but decreased ELK1, FOS and SIRT1 mRNA expression level. With tocotrienol-rich fraction treatment, gene expression of AKT, FOXO3, ERK and RSK1 mRNA was decreased in senescent cells, but not in young cells. The three down-regulated mRNA in cellular aging, ELK1, FOS and SIRT1, were increased with tocotrienol-rich fraction treatment. Expression of FOXO3 and P21Cip1 proteins showed up-regulation in senescent cells but tocotrienol-rich fraction only decreased P21Cip1 protein expression in senescent cells. Tocotrienol-rich fraction exerts gene modulating properties that might be responsible in promoting cell cycle progression during cellular aging.

  20. Beyond AICA Riboside: In Search of New Specific AMP-activated Protein Kinase Activators

    PubMed Central

    Guigas, Bruno; Sakamoto, Kei; Taleux, Nellie; Reyna, Sara M.; Musi, Nicolas; Viollet, Benoit; Hue, Louis

    2010-01-01

    Summary 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICA riboside) has been extensively used in vitro and in vivo to activate the AMP-activated protein kinase (AMPK), a metabolic sensor involved in both cellular and whole body energy homeostasis. However, it has been recently highlighted that AICA riboside also exerts AMPK-independent effects, mainly on AMP-regulated enzymes and mitochondrial oxidative phosphorylation (OXPHOS), leading to the conclusion that new compounds with reduced off target effects are needed to specifically activate AMPK. Here, we review recent findings on newly discovered AMPK activators, notably on A-769662, a nonnucleoside compound from the thienopyridone family. We also report that A-769662 is able to activate AMPK and stimulate glucose uptake in both L6 cells and primary myotubes derived from human satellite cells. In addition, A-769662 increases AMPK activity and phosphorylation of its main downstream targets in primary cultured rat hepatocytes but, by contrast with AICA riboside, does neither affect mitochondrial OXPHOS nor change cellular AMP:ATP ratio. We conclude that A-769662 could be one of the new promising chemical agents to activate AMPK with limited AMPK-independent side effects. PMID:18798311

  1. Paneth and intestinal stem cells preserve their functional integrity during worsening of acute cellular rejection in small bowel transplantation.

    PubMed

    Pucci Molineris, M; Gonzalez Polo, V; Perez, F; Ramisch, D; Rumbo, M; Gondolesi, G E; Meier, D

    2018-04-01

    Graft survival after small bowel transplantation remains impaired due to acute cellular rejection (ACR), the leading cause of graft loss. Although it was shown that the number of enteroendocrine progenitor cells in intestinal crypts was reduced during mild ACR, no results of Paneth and intestinal stem cells localized at the crypt bottom have been shown so far. Therefore, we wanted to elucidate integrity and functionality of the Paneth and stem cells during different degrees of ACR, and to assess whether these cells are the primary targets of the rejection process. We compared biopsies from ITx patients with no, mild, or moderate ACR by immunohistochemistry and quantitative PCR. Our results show that numbers of Paneth and stem cells remain constant in all study groups, whereas the transit-amplifying zone is the most impaired zone during ACR. We detected an unchanged level of antimicrobial peptides in Paneth cells and similar numbers of Ki-67 + IL-22R + stem cells revealing cell functionality in moderate ACR samples. We conclude that Paneth and stem cells are not primary target cells during ACR. IL-22R + Ki-67 + stem cells might be an interesting target cell population for protection and regeneration of the epithelial monolayer during/after a severe ACR in ITx patients. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  2. Characterization of cellular immune response and innate immune signaling in human and nonhuman primate primary mononuclear cells exposed to Burkholderia mallei.

    PubMed

    Alam, Shahabuddin; Amemiya, Kei; Bernhards, Robert C; Ulrich, Robert G; Waag, David M; Saikh, Kamal U

    2015-01-01

    Burkholderia pseudomallei infection causes melioidosis and is often characterized by severe sepsis. Although rare in humans, Burkholderia mallei has caused infections in laboratory workers, and the early innate cellular response to B. mallei in human and nonhuman primates has not been characterized. In this study, we examined the primary cellular immune response to B. mallei in PBMC cultures of non-human primates (NHPs), Chlorocebus aethiops (African Green Monkeys), Macaca fascicularis (Cynomolgus macaque), and Macaca mulatta (Rhesus macaque) and humans. Our results demonstrated that B. mallei elicited strong primary pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β, and IL-6) equivalent to the levels of B. pseudomallei in primary PBMC cultures of NHPs and humans. When we examined IL-1β and other cytokine responses by comparison to Escherichia coli LPS, African Green Monkeys appears to be most responsive to B. mallei than Cynomolgus or Rhesus. Characterization of the immune signaling mechanism for cellular response was conducted by using a ligand induced cell-based reporter assay, and our results demonstrated that MyD88 mediated signaling contributed to the B. mallei and B. pseudomallei induced pro-inflammatory responses. Notably, the induced reporter activity with B. mallei, B. pseudomallei, or purified LPS from these pathogens was inhibited and cytokine production was attenuated by a MyD88 inhibitor. Together, these results show that in the scenario of severe hyper-inflammatory responses to B. mallei infection, MyD88 targeted therapeutic intervention may be a successful strategy for therapy. Published by Elsevier Ltd.

  3. How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies.

    PubMed

    Gagat, Przemysław; Bodył, Andrzej; Mackiewicz, Paweł

    2013-07-11

    It is commonly assumed that a heterotrophic ancestor of the supergroup Archaeplastida/Plantae engulfed a cyanobacterium that was transformed into a primary plastid; however, it is still unclear how nuclear-encoded proteins initially were imported into the new organelle. Most proteins targeted to primary plastids carry a transit peptide and are transported post-translationally using Toc and Tic translocons. There are, however, several proteins with N-terminal signal peptides that are directed to higher plant plastids in vesicles derived from the endomembrane system (ES). The existence of these proteins inspired a hypothesis that all nuclear-encoded, plastid-targeted proteins initially carried signal peptides and were targeted to the ancestral primary plastid via the host ES. We present the first phylogenetic analyses of Arabidopsis thaliana α-carbonic anhydrase (CAH1), Oryza sativa nucleotide pyrophosphatase/phosphodiesterase (NPP1), and two O. sativa α-amylases (αAmy3, αAmy7), proteins that are directed to higher plant primary plastids via the ES. We also investigated protein disulfide isomerase (RB60) from the green alga Chlamydomonas reinhardtii because of its peculiar dual post- and co-translational targeting to both the plastid and ES. Our analyses show that these proteins all are of eukaryotic rather than cyanobacterial origin, and that their non-plastid homologs are equipped with signal peptides responsible for co-translational import into the host ES. Our results indicate that vesicular trafficking of proteins to primary plastids evolved long after the cyanobacterial endosymbiosis (possibly only in higher plants) to permit their glycosylation and/or transport to more than one cellular compartment. The proteins we analyzed are not relics of ES-mediated protein targeting to the ancestral primary plastid. Available data indicate that Toc- and Tic-based translocation dominated protein import into primary plastids from the beginning. Only a handful of host proteins, which already were targeted through the ES, later were adapted to reach the plastid via the vesicular trafficking. They represent a derived class of higher plant plastid-targeted proteins with an unusual evolutionary history.

  4. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting.

    PubMed

    Carson, James A; Hardee, Justin P; VanderVeen, Brandon N

    2016-06-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    PubMed Central

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  6. Mitochondrial Function in Sepsis

    PubMed Central

    Arulkumaran, Nishkantha; Deutschman, Clifford S.; Pinsky, Michael R.; Zuckerbraun, Brian; Schumacker, Paul T.; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A.

    2015-01-01

    Mitochondria are an essential part of the cellular infrastructure, being the primary site for high energy adenosine triphosphate (ATP) production through oxidative phosphorylation. Clearly, in severe systemic inflammatory states, like sepsis, cellular metabolism is usually altered and end organ dysfunction not only common but predictive of long term morbidity and mortality. Clearly, interest is mitochondrial function both as a target for intracellular injury and response to extrinsic stress have been a major focus of basic science and clinical research into the pathophysiology of acute illness. However, mitochondria have multiple metabolic and signaling functions that may be central in both the expression of sepsis and its ultimate outcome. In this review, the authors address five primary questions centered on the role of mitochondria in sepsis. This review should be used as both a summary source in placing mitochondrial physiology within the context of acute illness and as a focal point for addressing new research into diagnostic and treatment opportunities these insights provide. PMID:26871665

  7. MITOCHONDRIAL FUNCTION IN SEPSIS.

    PubMed

    Arulkumaran, Nishkantha; Deutschman, Clifford S; Pinsky, Michael R; Zuckerbraun, Brian; Schumacker, Paul T; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A

    2016-03-01

    Mitochondria are an essential part of the cellular infrastructure, being the primary site for high-energy adenosine triphosphate production through oxidative phosphorylation. Clearly, in severe systemic inflammatory states, like sepsis, cellular metabolism is usually altered, and end organ dysfunction is not only common, but also predictive of long-term morbidity and mortality. Clearly, interest is mitochondrial function both as a target for intracellular injury and response to extrinsic stress have been a major focus of basic science and clinical research into the pathophysiology of acute illness. However, mitochondria have multiple metabolic and signaling functions that may be central in both the expression of sepsis and its ultimate outcome. In this review, the authors address five primary questions centered on the role of mitochondria in sepsis. This review should be used both as a summary source in placing mitochondrial physiology within the context of acute illness and as a focal point for addressing new research into diagnostic and treatment opportunities these insights provide.

  8. Vpr overcomes macrophage-specific restriction of HIV-1 Env expression and virion production

    PubMed Central

    Mashiba, Michael; Collins, David R.; Terry, Valeri H.; Collins, Kathleen L.

    2014-01-01

    Summary The HIV-1 accessory protein Vpr enhances infection of primary macrophages through unknown mechanisms. Recent studies demonstrated that Vpr interactions with the cellular DCAF1-DDB1-CUL4 E3 ubiquitin ligase complex limit activation of innate immunity and interferon (IFN) induction. We describe a restriction mechanism that targets the HIV-1 envelope protein Env but is overcome by Vpr and its interaction with DCAF1. This restriction is active in the absence of Vpr in HIV-1-infected primary macrophages and macrophage-epithelial cell heterokaryons, but not epithelial cell lines. HIV-1-infected macrophages lacking Vpr express more IFN following infection, target Env for lysosomal degradation and produce fewer Env-containing virions. Conversely, Vpr expression reduces IFN induction, rescues Env expression and enhances virion release. Addition of IFN or silencing DCAF1 reduces the amount of cell-associated Env and virion production in wild-type HIV-1-infected primary macrophages. These findings provide insight into an IFN-stimulated macrophage-specific restriction pathway targeting HIV-1 Env that is counteracted by Vpr. PMID:25464830

  9. Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications

    PubMed Central

    Lapotko, Dmitri

    2009-01-01

    This article is focused on the optical generation and detection of photothermal vapor bubbles around plasmonic nanoparticles. We report physical properties of such plasmonic nanobubbles and their biomedical applications as cellular probes. Our experimental studies of gold nanoparticle-generated photothermal bubbles demonstrated the selectivity of photothermal bubble generation, amplification of optical scattering and thermal insulation effect, all realized at the nanoscale. The generation and imaging of photothermal bubbles in living cells (leukemia and carcinoma culture and primary cancerous cells), and tissues (atherosclerotic plaque and solid tumor in animal) demonstrated a noninvasive highly sensitive imaging of target cells by small photothermal bubbles and a selective mechanical, nonthermal damage to the individual target cells by bigger photothermal bubbles due to a rapid disruption of cellular membranes. The analysis of the plasmonic nanobubbles suggests them as theranostic probes, which can be tuned and optically guided at cell level from diagnosis to delivery and therapy during one fast process. PMID:19839816

  10. N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease.

    PubMed

    Polyak, Erzsebet; Ostrovsky, Julian; Peng, Min; Dingley, Stephen D; Tsukikawa, Mai; Kwon, Young Joon; McCormack, Shana E; Bennett, Michael; Xiao, Rui; Seiler, Christoph; Zhang, Zhe; Falk, Marni J

    2018-04-01

    Oxidative stress is a known contributing factor in mitochondrial respiratory chain (RC) disease pathogenesis. Yet, no efficient means exists to objectively evaluate the comparative therapeutic efficacy or toxicity of different antioxidant compounds empirically used in human RC disease. We postulated that pre-clinical comparative analysis of diverse antioxidant drugs having suggested utility in primary RC disease using animal and cellular models of RC dysfunction may improve understanding of their integrated effects and physiologic mechanisms, and enable prioritization of lead antioxidant molecules to pursue in human clinical trials. Here, lifespan effects of N-acetylcysteine (NAC), vitamin E, vitamin C, coenzyme Q10 (CoQ10), mitochondrial-targeted CoQ10 (MS010), lipoate, and orotate were evaluated as the primary outcome in a well-established, short-lived C. elegans gas-1(fc21) animal model of RC complex I disease. Healthspan effects were interrogated to assess potential reversal of their globally disrupted in vivo mitochondrial physiology, transcriptome profiles, and intermediary metabolic flux. NAC or vitamin E fully rescued, and coenzyme Q, lipoic acid, orotic acid, and vitamin C partially rescued gas-1(fc21) lifespan toward that of wild-type N2 Bristol worms. MS010 and CoQ10 largely reversed biochemical pathway expression changes in gas-1(fc21) worms. While nearly all drugs normalized the upregulated expression of the "cellular antioxidant pathway", they failed to rescue the mutant worms' increased in vivo mitochondrial oxidant burden. NAC and vitamin E therapeutic efficacy were validated in human fibroblast and/or zebrafish complex I disease models. Remarkably, rotenone-induced zebrafish brain death was preventable partially with NAC and fully with vitamin E. Overall, these pre-clinical model animal data demonstrate that several classical antioxidant drugs do yield significant benefit on viability and survival in primary mitochondrial disease, where their major therapeutic benefit appears to result from targeting global cellular, rather than intramitochondria-specific, oxidative stress. Clinical trials are needed to evaluate whether the two antioxidants, NAC and vitamin E, that show greatest efficacy in translational model animals significantly improve the survival, function, and feeling of human subjects with primary mitochondrial RC disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles.

    PubMed

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M; Pain, Debkumar; Azzam, Edouard I

    2014-03-20

    During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.

  12. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia

    NASA Technical Reports Server (NTRS)

    Fritzsch, Bernd

    2003-01-01

    The molecular and cellular origin of the primary neurons of the inner ear, the vestibular and spiral neurons, is reviewed including how they connect to the specific sensory epithelia and what the molecular nature of their survival is. Primary neurons of the ear depend on a single basic Helix-Loop-Helix (bHLH) protein for their formation, neurogenin 1 (ngn1). An immediate downstream gene is the bHLH gene neuronal differentiation (NeuroD). Targeted null mutations of ngn1 results in absence of primary neuron formation; targeted null mutation of NeuroD results in loss of almost all spiral and many vestibular neurons. NeuroD and a later expressed gene, Brn3a, play a role in pathfinding to and within sensory epithelia. The molecular nature of this pathfinding property is unknown. Reduction of hair cells in ngn1 null mutations suggests a clonal relationship with primary neurons. This relationship may play some role in specifying the identity of hair cells and the primary neurons that connect with them. Primary neuron neurites growth to sensory epithelia is initially independent of trophic factors released from developing sensory epithelia, but becomes rapidly dependent on those factors. Null mutations of specific neurotrophic factors lose distinct primary neuron populations which undergo rapid embryonic cell death.

  13. Detection of the Cyanotoxins L-BMAA Uptake and Accumulation in Primary Neurons and Astrocytes.

    PubMed

    Tan, Vanessa X; Mazzocco, Claire; Varney, Bianca; Bodet, Dominique; Guillemin, Tristan A; Bessede, Alban; Guillemin, Gilles J

    2018-01-01

    We show for the first time that a newly developed polyclonal antibody (pAb) can specifically target the cyanotoxin β-methylamino-L-alanine (BMAA) and can be used to enable direct visualization of BMAA entry and accumulation in primary brain cells. We used this pAb to investigate the effect of acute and chronic accumulation, and toxicity of both BMAA and its natural isomer 2,4-diaminobutyric acid (DAB), separately or in combination, on primary cultures of rat neurons. We further present evidence that co-treatment with BMAA and DAB increased neuronal death, as measured by MAP2 fluorescence level, and appeared to reduce BMAA accumulation. DAB is likely to be acting synergistically with BMAA resulting in higher level of cellular toxicity. We also found that glial cells such as microglia and astrocytes are also able to directly uptake BMAA indicating that additional brain cell types are affected by BMAA-induced toxicity. Therefore, BMAA clearly acts at multiple cellular levels to possibly increase the risk of developing neurodegenerative diseases, including neuro- and gliotoxicity and synergetic exacerbation with other cyanotoxins.

  14. Nrf2-dependent induction of innate host defense via heme oxygenase-1 inhibits Zika virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hanxia; Falgout, Barry; Takeda, Kazuyo

    We identified primary human monocyte-derived macrophages (MDM) as vulnerable target cells for Zika virus (ZIKV) infection. We demonstrate dramatic effects of hemin, the natural inducer of the heme catabolic enzyme heme oxygenase-1 (HO-1), in the reduction of ZIKV replication in vitro. Both LLC-MK2 monkey kidney cells and primary MDM exhibited hemin-induced HO-1 expression with major reductions of >90% in ZIKV replication, with little toxicity to infected cells. Silencing expression of HO-1 or its upstream regulatory gene, nuclear factor erythroid-related factor 2 (Nrf2), attenuated hemin-induced suppression of ZIKV infection, suggesting an important role for induction of these intracellular mediators in retardingmore » ZIKV replication. The inverse correlation between hemin-induced HO-1 levels and ZIKV replication provides a potentially useful therapeutic modality based on stimulation of an innate cellular response against Zika virus infection. - Highlights: •Hemin treatment protected monocyte-derived macrophages against Zika virus (ZIKV) infection. •Innate cellular protection against ZIKV infection correlated with Nrf2-dependent HO-1 expression. •Stimulation of innate cellular responses may provide a therapeutic strategy against ZIKV infection.« less

  15. Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes

    PubMed Central

    Storey, Stephen M.; McIntosh, Avery L.; Huang, Huan; Martin, Gregory G.; Landrock, Kerstin K.; Landrock, Danilo; Payne, H. Ross; Kier, Ann B.

    2012-01-01

    The liver expresses high levels of two proteins with high affinity for long-chain fatty acids (LCFAs): liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2). Real-time confocal microscopy of cultured primary hepatocytes from gene-ablated (L-FABP, SCP-2/SCP-x, and L-FABP/SCP-2/SCP-x null) mice showed that the loss of L-FABP reduced cellular uptake of 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazo)-aminostearic acid (a fluorescent-saturated LCFA analog) by ∼50%. Importantly, nuclear targeting of the LCFA was enhanced when L-FABP was upregulated (SCP-2/SCP-x null) but was significantly reduced when L-FABP was ablated (L-FABP null), thus impacting LCFA nuclear targeting. These effects were not associated with a net decrease in expression of key membrane proteins involved in LCFA or glucose transport. Since hepatic LCFA uptake and metabolism are closely linked to glucose uptake, the effect of glucose on L-FABP-mediated LCFA uptake and nuclear targeting was examined. Increasing concentrations of glucose decreased cellular LCFA uptake and even more extensively decreased LCFA nuclear targeting. Loss of L-FABP exacerbated the decrease in LCFA nuclear targeting, while loss of SCP-2 reduced the glucose effect, resulting in enhanced LCFA nuclear targeting compared with control. Simply, ablation of L-FABP decreases LCFA uptake and even more extensively decreases its nuclear targeting. PMID:22859366

  16. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity.

    PubMed

    Cheow, Lih Feng; Courtois, Elise T; Tan, Yuliana; Viswanathan, Ramya; Xing, Qiaorui; Tan, Rui Zhen; Tan, Daniel S W; Robson, Paul; Loh, Yuin-Han; Quake, Stephen R; Burkholder, William F

    2016-10-01

    Sample heterogeneity often masks DNA methylation signatures in subpopulations of cells. Here, we present a method to genotype single cells while simultaneously interrogating gene expression and DNA methylation at multiple loci. We used this targeted multimodal approach, implemented on an automated, high-throughput microfluidic platform, to assess primary lung adenocarcinomas and human fibroblasts undergoing reprogramming by profiling epigenetic variation among cell types identified through genotyping and transcriptional analysis.

  17. Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation

    PubMed Central

    Deschênes-Simard, Xavier; Gaumont-Leclerc, Marie-France; Bourdeau, Véronique; Lessard, Frédéric; Moiseeva, Olga; Forest, Valérie; Igelmann, Sebastian; Mallette, Frédérick A.; Saba-El-Leil, Marc K.; Meloche, Sylvain; Saad, Fred; Mes-Masson, Anne-Marie; Ferbeyre, Gerardo

    2013-01-01

    Constitutive activation of growth factor signaling pathways paradoxically triggers a cell cycle arrest known as cellular senescence. In primary cells expressing oncogenic ras, this mechanism effectively prevents cell transformation. Surprisingly, attenuation of ERK/MAP kinase signaling by genetic inactivation of Erk2, RNAi-mediated knockdown of ERK1 or ERK2, or MEK inhibitors prevented the activation of the senescence mechanism, allowing oncogenic ras to transform primary cells. Mechanistically, ERK-mediated senescence involved the proteasome-dependent degradation of proteins required for cell cycle progression, mitochondrial functions, cell migration, RNA metabolism, and cell signaling. This senescence-associated protein degradation (SAPD) was observed not only in cells expressing ectopic ras, but also in cells that senesced due to short telomeres. Individual RNAi-mediated inactivation of SAPD targets was sufficient to restore senescence in cells transformed by oncogenic ras or trigger senescence in normal cells. Conversely, the anti-senescence viral oncoproteins E1A, E6, and E7 prevented SAPD. In human prostate neoplasms, high levels of phosphorylated ERK were found in benign lesions, correlating with other senescence markers and low levels of STAT3, one of the SAPD targets. We thus identified a mechanism that links aberrant activation of growth signaling pathways and short telomeres to protein degradation and cellular senescence. PMID:23599344

  18. Identification of Cellular Proteins Required for Replication of Human Immunodeficiency Virus Type 1

    PubMed Central

    Dziuba, Natallia; Ferguson, Monique R.; O'Brien, William A.; Sanchez, Anthony; Prussia, Andrew J.; McDonald, Natalie J.; Friedrich, Brian M.; Li, Guangyu; Shaw, Michael W.; Sheng, Jinsong; Hodge, Thomas W.; Rubin, Donald H.

    2012-01-01

    Abstract Cellular proteins are essential for human immunodeficiency virus type 1 (HIV-1) replication and may serve as viable new targets for treating infection. Using gene trap insertional mutagenesis, a high-throughput approach based on random inactivation of cellular genes, candidate genes were found that limit virus replication when mutated. Disrupted genes (N=87) conferring resistance to lytic infection with several viruses were queried for an affect on HIV-1 replication by utilizing small interfering RNA (siRNA) screens in TZM-bl cells. Several genes regulating diverse pathways were found to be required for HIV-1 replication, including DHX8, DNAJA1, GTF2E1, GTF2E2, HAP1, KALRN, UBA3, UBE2E3, and VMP1. Candidate genes were independently tested in primary human macrophages, toxicity assays, and/or Tat-dependent β-galactosidase reporter assays. Bioinformatics analyses indicated that several host factors present in this study participate in canonical pathways and functional processes implicated in prior genome-wide studies. However, the genes presented in this study did not share identity with those found previously. Novel antiviral targets identified in this study should open new avenues for mechanistic investigation. PMID:22404213

  19. Identification of cellular proteins required for replication of human immunodeficiency virus type 1.

    PubMed

    Dziuba, Natallia; Ferguson, Monique R; O'Brien, William A; Sanchez, Anthony; Prussia, Andrew J; McDonald, Natalie J; Friedrich, Brian M; Li, Guangyu; Shaw, Michael W; Sheng, Jinsong; Hodge, Thomas W; Rubin, Donald H; Murray, James L

    2012-10-01

    Cellular proteins are essential for human immunodeficiency virus type 1 (HIV-1) replication and may serve as viable new targets for treating infection. Using gene trap insertional mutagenesis, a high-throughput approach based on random inactivation of cellular genes, candidate genes were found that limit virus replication when mutated. Disrupted genes (N=87) conferring resistance to lytic infection with several viruses were queried for an affect on HIV-1 replication by utilizing small interfering RNA (siRNA) screens in TZM-bl cells. Several genes regulating diverse pathways were found to be required for HIV-1 replication, including DHX8, DNAJA1, GTF2E1, GTF2E2, HAP1, KALRN, UBA3, UBE2E3, and VMP1. Candidate genes were independently tested in primary human macrophages, toxicity assays, and/or Tat-dependent β-galactosidase reporter assays. Bioinformatics analyses indicated that several host factors present in this study participate in canonical pathways and functional processes implicated in prior genome-wide studies. However, the genes presented in this study did not share identity with those found previously. Novel antiviral targets identified in this study should open new avenues for mechanistic investigation.

  20. How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies

    PubMed Central

    2013-01-01

    Background It is commonly assumed that a heterotrophic ancestor of the supergroup Archaeplastida/Plantae engulfed a cyanobacterium that was transformed into a primary plastid; however, it is still unclear how nuclear-encoded proteins initially were imported into the new organelle. Most proteins targeted to primary plastids carry a transit peptide and are transported post-translationally using Toc and Tic translocons. There are, however, several proteins with N-terminal signal peptides that are directed to higher plant plastids in vesicles derived from the endomembrane system (ES). The existence of these proteins inspired a hypothesis that all nuclear-encoded, plastid-targeted proteins initially carried signal peptides and were targeted to the ancestral primary plastid via the host ES. Results We present the first phylogenetic analyses of Arabidopsis thaliana α-carbonic anhydrase (CAH1), Oryza sativa nucleotide pyrophosphatase/phosphodiesterase (NPP1), and two O. sativa α-amylases (αAmy3, αAmy7), proteins that are directed to higher plant primary plastids via the ES. We also investigated protein disulfide isomerase (RB60) from the green alga Chlamydomonas reinhardtii because of its peculiar dual post- and co-translational targeting to both the plastid and ES. Our analyses show that these proteins all are of eukaryotic rather than cyanobacterial origin, and that their non-plastid homologs are equipped with signal peptides responsible for co-translational import into the host ES. Our results indicate that vesicular trafficking of proteins to primary plastids evolved long after the cyanobacterial endosymbiosis (possibly only in higher plants) to permit their glycosylation and/or transport to more than one cellular compartment. Conclusions The proteins we analyzed are not relics of ES-mediated protein targeting to the ancestral primary plastid. Available data indicate that Toc- and Tic-based translocation dominated protein import into primary plastids from the beginning. Only a handful of host proteins, which already were targeted through the ES, later were adapted to reach the plastid via the vesicular trafficking. They represent a derived class of higher plant plastid-targeted proteins with an unusual evolutionary history. Reviewers This article was reviewed by Prof. William Martin, Dr. Philippe Deschamps (nominated by Dr. Purificacion Lopez-Garcia) and Dr Simonetta Gribaldo. PMID:23845039

  1. Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells

    PubMed Central

    Lee, Wen Shi; Richard, Jonathan; Lichtfuss, Marit; Smith, Amos B.; Park, Jongwoo; Courter, Joel R.; Melillo, Bruno N.; Sodroski, Joseph G.; Kaufmann, Daniel E.; Parsons, Matthew S.

    2015-01-01

    ABSTRACT Lifelong antiretroviral therapy (ART) for HIV-1 does not diminish the established latent reservoir. A possible cure approach is to reactivate the quiescent genome from latency and utilize immune responses to eliminate cells harboring reactivated HIV-1. It is not known whether antibodies within HIV-1-infected individuals can recognize and eliminate cells reactivated from latency through antibody-dependent cellular cytotoxicity (ADCC). We found that reactivation of HIV-1 expression in the latently infected ACH-2 cell line elicited antibody-mediated NK cell activation but did not result in antibody-mediated killing. The lack of CD4 expression on these HIV-1 envelope (Env)-expressing cells likely resulted in poor recognition of CD4-induced antibody epitopes on Env. To examine this further, cultured primary CD4+ T cells from HIV-1+ subjects were used as targets for ADCC. These ex vivo-expanded primary cells were modestly susceptible to ADCC mediated by autologous or heterologous HIV-1+ serum antibodies. Importantly, ADCC mediated against these primary cells could be enhanced following incubation with a CD4-mimetic compound (JP-III-48) that exposes CD4-induced antibody epitopes on Env. Our studies suggest that with sufficient reactivation and expression of appropriate Env epitopes, primary HIV-1-infected cells can be targets for ADCC mediated by autologous serum antibodies and innate effector cells. The results of this study suggest that further investigation into the potential of ADCC to eliminate reactivated latently infected cells is warranted. IMPORTANCE An HIV-1 cure remains elusive due to the persistence of long-lived latently infected cells. An HIV-1 cure strategy, termed “shock and kill,” aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. While recent research efforts have focused on reversing HIV-1 latency, it remains unclear whether preexisting immune responses within HIV-1+ individuals can efficiently eliminate the reactivated cells. HIV-1-specific antibodies can potentially eliminate cells reactivated from latency via Fc effector functions by recruiting innate immune cells. Our study highlights the potential role that antibody-dependent cellular cytotoxicity might play in antilatency cure approaches. PMID:26656700

  2. Glucose-functionalized Au nanoprisms for optoacoustic imaging and near-infrared photothermal therapy

    NASA Astrophysics Data System (ADS)

    Han, Jishu; Zhang, Jingjing; Yang, Meng; Cui, Daxiang; de La Fuente, Jesus M.

    2015-12-01

    Targeted imaging and tumor therapy using nanomaterials has stimulated research interest recently, but the high cytotoxicity and low cellular uptake of nanomaterials limit their bioapplication. In this paper, glucose (Glc) was chosen to functionalize Au nanoprisms (NPrs) for improving the cytotoxicity and cellular uptake of Au@PEG-Glc NPrs into cancer cells. Glucose is a primary source of energy at the cellular level and at cellular membranes for cell recognition. A coating of glucose facilitates the accumulation of Au@PEG-Glc NPrs in a tumor region much more than Au@PEG NPrs. Due to the high accumulation and excellent photoabsorbing property of Au@PEG-Glc NPrs, enhanced optoacoustic imaging of a tumor in vivo was achieved, and visualization of the tumor further guided cancer treatment. Based on the optical-thermal conversion performance of Au@PEG-Glc NPrs, the tumor in vivo was effectively cured through photothermal therapy. The current work demonstrates the great potential of Au@PEG-Glc NPrs in optoacoustic imaging and photothermal cancer therapy in future.Targeted imaging and tumor therapy using nanomaterials has stimulated research interest recently, but the high cytotoxicity and low cellular uptake of nanomaterials limit their bioapplication. In this paper, glucose (Glc) was chosen to functionalize Au nanoprisms (NPrs) for improving the cytotoxicity and cellular uptake of Au@PEG-Glc NPrs into cancer cells. Glucose is a primary source of energy at the cellular level and at cellular membranes for cell recognition. A coating of glucose facilitates the accumulation of Au@PEG-Glc NPrs in a tumor region much more than Au@PEG NPrs. Due to the high accumulation and excellent photoabsorbing property of Au@PEG-Glc NPrs, enhanced optoacoustic imaging of a tumor in vivo was achieved, and visualization of the tumor further guided cancer treatment. Based on the optical-thermal conversion performance of Au@PEG-Glc NPrs, the tumor in vivo was effectively cured through photothermal therapy. The current work demonstrates the great potential of Au@PEG-Glc NPrs in optoacoustic imaging and photothermal cancer therapy in future. Electronic supplementary information (ESI) available: The evolution of the UV-vis absorption of Au NPrs by centrifugation, TEM image of PEG-capped Au NPrs, the UV-vis absorption of glucose, cytotoxicity of Au@PEG-Glc NPrs, gastric cell viabilities versus the concentration of Au@PEG-Glc NPrs and gastric cell viabilities filled with 80 μg Au@PEG-Glc NPrs versus the irradiation time, optoacoustic signals of Au NPr solution and Au@PEG NPrs. See DOI: 10.1039/c5nr06261f

  3. Factors associated with success of image-guided tumour biopsies: Results from a prospective molecular triage study (MOSCATO-01).

    PubMed

    Tacher, Vania; Le Deley, Marie-Cécile; Hollebecque, Antoine; Deschamps, Frederic; Vielh, Philippe; Hakime, Antoine; Ileana, Ecaterina; Abedi-Ardekani, Behnoush; Charpy, Cécile; Massard, Christophe; Rosellini, Silvia; Gajda, Dorota; Celebic, Aljosa; Ferté, Charles; Ngo-Camus, Maud; Gouissem, Siham; Koubi-Pick, Valérie; Andre, Fabrice; Vassal, Gilles; Deandreis, Désirée; Lacroix, Ludovic; Soria, Jean-Charles; De Baère, Thierry

    2016-05-01

    MOSCATO-01 is a molecular triage trial based on on-purpose tumour biopsies to perform molecular portraits. We aimed at identifying factors associated with high tumour cellularity. Tumour cellularity (percentage of tumour cells in samples defined at pathology) was evaluated according to patient characteristics, target lesion characteristics, operators' experience and biopsy approach. Among 460 patients enrolled between November, 2011 and March, 2014, 334 patients (73%) had an image-guided needle biopsy of the primary tumour (N = 38) or a metastatic lesion (N = 296). Biopsies were performed on liver (N = 127), lung (N = 72), lymph nodes (N = 71), bone (N = 11), or another tumour site (N = 53). Eighteen patients (5%) experienced a complication: pneumothorax in 10 patients treated medically, and haemorrhage in 8, requiring embolisation in 3 cases. Median tumour cellularity was 50% (interquartile range, 30-70%). The molecular analysis was successful in 291/334 cases (87%). On-going chemotherapy, tumour origin (primary versus metastatic), lesion size, tumour growth rate, presence of necrosis on imaging, standardised uptake value, and needle size were not statistically associated with cellularity. Compared to liver or lung biopsies, cellularity was significantly lower in bone and higher in other sites (P < 0.0001). Cellularity significantly increased with the number of collected samples (P < 0.0001) and was higher in contrast-enhanced ultrasound-guided biopsies (P < 0.02). In paired samples, cellularity in central samples was lower than in peripheral samples in 85, equal in 68 and higher in 89 of the cases. Image-guided biopsy is feasible and safe in cancer patients for molecular screening. Imaging modality, multiple sampling of the lesion, and the organ chosen for biopsy were associated with higher tumour cellularity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of themore » intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.« less

  5. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    DOE PAGES

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; ...

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of themore » intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.« less

  6. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology

    NASA Astrophysics Data System (ADS)

    Mederacke, Ingmar; Hsu, Christine C.; Troeger, Juliane S.; Huebener, Peter; Mu, Xueru; Dapito, Dianne H.; Pradere, Jean-Philippe; Schwabe, Robert F.

    2013-11-01

    Although organ fibrosis causes significant morbidity and mortality in chronic diseases, the lack of detailed knowledge about specific cellular contributors mediating fibrogenesis hampers the design of effective antifibrotic therapies. Different cellular sources, including tissue-resident and bone marrow-derived fibroblasts, pericytes and epithelial cells, have been suggested to give rise to myofibroblasts, but their relative contributions remain controversial, with profound differences between organs and different diseases. Here we employ a novel Cre-transgenic mouse that marks 99% of hepatic stellate cells (HSCs), a liver-specific pericyte population, to demonstrate that HSCs give rise to 82-96% of myofibroblasts in models of toxic, cholestatic and fatty liver disease. Moreover, we exclude that HSCs function as facultative epithelial progenitor cells in the injured liver. On the basis these findings, HSCs should be considered the primary cellular target for antifibrotic therapies across all types of liver disease.

  7. Health Risks of Space Exploration: Targeted and Nontargeted Oxidative Injury by High-Charge and High-Energy Particles

    PubMed Central

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M.; Pain, Debkumar

    2014-01-01

    Abstract Significance: During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Recent Advances: Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. Critical Issues: The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Future Directions: Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer. Antioxid. Redox Signal. 20, 1501–1523. PMID:24111926

  8. An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart

    PubMed Central

    Park, Eon Joo; Watanabe, Yusuke; Smyth, Graham; Miyagawa-Tomita, Sachiko; Meyers, Erik; Klingensmith, John; Camenisch, Todd; Buckingham, Margaret; Moon, Anne M.

    2009-01-01

    In order to understand how secreted signals regulate complex morphogenetic events, it is crucial to identify their cellular targets. By conditional inactivation of Fgfr1 and Fgfr2 and overexpression of the FGF antagonist sprouty 2 in different cell types, we have dissected the role of FGF signaling during heart outflow tract development in mouse. Contrary to expectation, cardiac neural crest and endothelial cells are not primary paracrine targets. FGF signaling within second heart field mesoderm is required for remodeling of the outflow tract: when disrupted, outflow myocardium fails to produce extracellular matrix and TGFβ and BMP signals essential for endothelial cell transformation and invasion of cardiac neural crest. We conclude that an autocrine regulatory loop, initiated by the reception of FGF signals by the mesoderm, regulates correct morphogenesis at the arterial pole of the heart. These findings provide new insight into how FGF signaling regulates context-dependent cellular responses during development. PMID:18832392

  9. Targeted adenoviral vectors

    NASA Astrophysics Data System (ADS)

    Douglas, Joanne T.

    The practical implementation of gene therapy in the clinical setting mandates gene delivery vehicles, or vectors, capable of efficient gene delivery selectively to the target disease cells. The utility of adenoviral vectors for gene therapy is restricted by their dependence on the native adenoviral primary cellular receptor for cell entry. Therefore, a number of strategies have been developed to allow CAR-independent infection of specific cell types, including the use of bispecific conjugates and genetic modifications to the adenoviral capsid proteins, in particular the fibre protein. These targeted adenoviral vectors have demonstrated efficient gene transfer in vitro , correlating with a therapeutic benefit in preclinical animal models. Such vectors are predicted to possess enhanced efficacy in human clinical studies, although anatomical barriers to their use must be circumvented.

  10. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0419 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal...inappropriate cell growth, fluid secretion, and dysregulation of cellular energy metabolism. The enzyme AMPK regulates a number of cellular pathways, including

  11. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer

    PubMed Central

    2014-01-01

    Background While the treatment of HER2 over-expressing breast cancer with recent HER-targeted drugs has been highly effective for some patients, primary (also known as innate) or acquired resistance limits the success of these drugs. microRNAs have potential as diagnostic, prognostic and predictive biomarkers, as well as replacement therapies. Here we investigated the role of microRNA-630 (miR-630) in breast cancer progression and as a predictive biomarker for response to HER-targeting drugs, ultimately yielding potential as a therapeutic approach to add value to these drugs. Methods We investigated the levels of intra- and extracellular miR-630 in cells and conditioned media from breast cancer cell lines with either innate- or acquired- resistance to HER-targeting lapatinib and neratinib, compared to their corresponding drug sensitive cell lines, using qPCR. To support the role of miR-630 in breast cancer, we examined the clinical relevance of this miRNA in breast cancer tumours versus matched peritumours. Transfection of miR-630 mimics and inhibitors was used to manipulate the expression of miR-630 to assess effects on response to HER-targeting drugs (lapatinib, neratinib and afatinib). Other phenotypic changes associated with cellular aggressiveness were evaluated by motility, invasion and anoikis assays. TargetScan prediction software, qPCR, immunoblotting and ELISAs, were used to assess miR-630’s regulation of mRNA, proteins and their phosphorylated forms. Results We established that introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism which we have determined to, at least partly, involve miR-630’s regulation of IGF1R. Conversely, we demonstrated that blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby introducing miR-630 into cells reduced cellular aggression while inhibition of miR-630 induced a more aggressive cellular phenotype. Conclusions Taken together, our findings suggest miR-630 as a key regulator of cancer cell progression in HER2 over-expressing breast cancer, through targeting of IGF1R. This study supports miR-630 as a diagnostic and a predictive biomarker for response to HER-targeted drugs and indicates that the therapeutic addition of miR-630 may enhance and improve patients’ response to HER-targeting drugs. PMID:24655723

  12. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer.

    PubMed

    Corcoran, Claire; Rani, Sweta; Breslin, Susan; Gogarty, Martina; Ghobrial, Irene M; Crown, John; O'Driscoll, Lorraine

    2014-03-24

    While the treatment of HER2 over-expressing breast cancer with recent HER-targeted drugs has been highly effective for some patients, primary (also known as innate) or acquired resistance limits the success of these drugs. microRNAs have potential as diagnostic, prognostic and predictive biomarkers, as well as replacement therapies. Here we investigated the role of microRNA-630 (miR-630) in breast cancer progression and as a predictive biomarker for response to HER-targeting drugs, ultimately yielding potential as a therapeutic approach to add value to these drugs. We investigated the levels of intra- and extracellular miR-630 in cells and conditioned media from breast cancer cell lines with either innate- or acquired- resistance to HER-targeting lapatinib and neratinib, compared to their corresponding drug sensitive cell lines, using qPCR. To support the role of miR-630 in breast cancer, we examined the clinical relevance of this miRNA in breast cancer tumours versus matched peritumours. Transfection of miR-630 mimics and inhibitors was used to manipulate the expression of miR-630 to assess effects on response to HER-targeting drugs (lapatinib, neratinib and afatinib). Other phenotypic changes associated with cellular aggressiveness were evaluated by motility, invasion and anoikis assays. TargetScan prediction software, qPCR, immunoblotting and ELISAs, were used to assess miR-630's regulation of mRNA, proteins and their phosphorylated forms. We established that introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism which we have determined to, at least partly, involve miR-630's regulation of IGF1R. Conversely, we demonstrated that blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby introducing miR-630 into cells reduced cellular aggression while inhibition of miR-630 induced a more aggressive cellular phenotype. Taken together, our findings suggest miR-630 as a key regulator of cancer cell progression in HER2 over-expressing breast cancer, through targeting of IGF1R. This study supports miR-630 as a diagnostic and a predictive biomarker for response to HER-targeted drugs and indicates that the therapeutic addition of miR-630 may enhance and improve patients' response to HER-targeting drugs.

  13. The DEAD box helicase RDE-12 promotes amplification of RNAi in cytoplasmic foci in C. elegans

    PubMed Central

    Yang, Huan; Vallandingham, Jim; Shiu, Philip; Li, Hua; Hunter, Craig P.; Mak, Ho Yi

    2014-01-01

    Summary RNA interference (RNAi) is a potent mechanism for down-regulating gene expression. Conserved RNAi pathway components are found in animals, plants, fungi and other eukaryotes [1–3]. In C. elegans, the RNAi response is greatly amplified by the synthesis of abundant secondary siRNAs [4–6]. Exogenous double stranded RNA is processed by Dicer and RDE-1/Argonaute into primary siRNA that guides target mRNA recognition. The RDE-10/RDE-11 complex and the RNA dependent RNA polymerase RRF-1 then engage the target mRNA for secondary siRNA synthesis [7, 8]. However, the molecular link between primary siRNA production and secondary siRNA synthesis remains largely unknown. Furthermore, it is unclear if the sub-cellular sites for target mRNA recognition and degradation coincide with sites where siRNA synthesis and amplification occur. In the C. elegans germline, cytoplasmic P granules at the nuclear pores and perinuclear Mutator foci contribute to target mRNA surveillance and siRNA amplification, respectively [9–11]. We report that RDE-12, a conserved FG domain containing DEAD-box helicase, localizes in P-granules and cytoplasmic foci that are enriched in RSD-6 but are excluded from the Mutator foci. Our results suggest that RDE-12 promotes secondary siRNA synthesis by orchestrating the recruitment of RDE-10 and RRF-1 to primary siRNA targeted mRNA in distinct cytoplasmic compartments. PMID:24684930

  14. Study of Mesoporous Silica Nanoparticles' (MSNs) intracellular trafficking and their application as drug delivery vehicles

    NASA Astrophysics Data System (ADS)

    Yanes, Rolando Eduardo

    Mesoporous silica nanoparticles (MSNs) are attractive drug delivery vehicle candidates due to their biocompatibility, stability, high surface area and efficient cellular uptake. In this dissertation, I discuss three aspects of MSNs' cellular behavior. First, MSNs are targeted to primary and metastatic cancer cell lines, then their exocytosis from cancer cells is studied, and finally they are used to recover intracellular proteins. Targeting of MSNs to primary cancer cells is achieved by conjugating transferrin on the surface of the mesoporous framework, which resulted in enhancement of nanoparticle uptake and drug delivery efficacy in cells that overexpress the transferrin receptor. Similarly, RGD peptides are used to target metastatic cancer cell lines that over-express integrin alphanubeta3. A circular RGD peptide is bound to the surface of MSNs and the endocytosis and cell killing efficacy of camptothecin loaded nanoparticles is significantly improved in cells that express the target receptor. Besides targeting, I studied the ultimate fate of phosphonate coated mesoporous silica nanoparticles inside cells. I discovered that the nanoparticles are exocytosed from cells through lysosomal exocytosis. The nanoparticles are exocytosed in intact form and the time that they remain inside the cells is affected by the surface properties of the nanoparticles and the type of cells. Cells that have a high rate of lysosomal exocytosis excrete the nanoparticles rapidly, which makes them more resistant to drug loaded nanoparticles because the amount of drug that is released inside the cell is limited. When the exocytosis of MSNs is inhibited, the cell killing efficacy of nanoparticles loaded with camptothecin is enhanced. The discovery that MSNs are exocytosed by cells led to a study to determine if proteins could be recovered from the exocytosed nanoparticles. The procedure to isolate exocytosed zinc-doped iron core MSNs and identify the proteins bound to them was developed. This serves as a foundation to use MSNs as protein harvesting tools and investigate protein expression in cancer cells.

  15. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells.

    PubMed

    Shiraishi, Takumi; Verdone, James E; Huang, Jessie; Kahlert, Ulf D; Hernandez, James R; Torga, Gonzalo; Zarif, Jelani C; Epstein, Tamir; Gatenby, Robert; McCartney, Annemarie; Elisseeff, Jennifer H; Mooney, Steven M; An, Steven S; Pienta, Kenneth J

    2015-01-01

    The ability of a cancer cell to detach from the primary tumor and move to distant sites is fundamental to a lethal cancer phenotype. Metabolic transformations are associated with highly motile aggressive cellular phenotypes in tumor progression. Here, we report that cancer cell motility requires increased utilization of the glycolytic pathway. Mesenchymal cancer cells exhibited higher aerobic glycolysis compared to epithelial cancer cells while no significant change was observed in mitochondrial ATP production rate. Higher glycolysis was associated with increased rates of cytoskeletal remodeling, greater cell traction forces and faster cell migration, all of which were blocked by inhibition of glycolysis, but not by inhibition of mitochondrial ATP synthesis. Thus, our results demonstrate that cancer cell motility and cytoskeleton rearrangement is energetically dependent on aerobic glycolysis and not oxidative phosphorylation. Mitochondrial derived ATP is insufficient to compensate for inhibition of the glycolytic pathway with regard to cellular motility and CSK rearrangement, implying that localization of ATP derived from glycolytic enzymes near sites of active CSK rearrangement is more important for cell motility than total cellular ATP production rate. These results extend our understanding of cancer cell metabolism, potentially providing a target metabolic pathway associated with aggressive disease.

  16. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells

    PubMed Central

    Shiraishi, Takumi; Verdone, James E.; Huang, Jessie; Kahlert, Ulf D.; Hernandez, James R.; Torga, Gonzalo; Zarif, Jelani C.; Epstein, Tamir; Gatenby, Robert; McCartney, Annemarie; Elisseeff, Jennifer H.; Mooney, Steven M.; An, Steven S.; Pienta, Kenneth J.

    2015-01-01

    The ability of a cancer cell to detach from the primary tumor and move to distant sites is fundamental to a lethal cancer phenotype. Metabolic transformations are associated with highly motile aggressive cellular phenotypes in tumor progression. Here, we report that cancer cell motility requires increased utilization of the glycolytic pathway. Mesenchymal cancer cells exhibited higher aerobic glycolysis compared to epithelial cancer cells while no significant change was observed in mitochondrial ATP production rate. Higher glycolysis was associated with increased rates of cytoskeletal remodeling, greater cell traction forces and faster cell migration, all of which were blocked by inhibition of glycolysis, but not by inhibition of mitochondrial ATP synthesis. Thus, our results demonstrate that cancer cell motility and cytoskeleton rearrangement is energetically dependent on aerobic glycolysis and not oxidative phosphorylation. Mitochondrial derived ATP is insufficient to compensate for inhibition of the glycolytic pathway with regard to cellular motility and CSK rearrangement, implying that localization of ATP derived from glycolytic enzymes near sites of active CSK rearrangement is more important for cell motility than total cellular ATP production rate. These results extend our understanding of cancer cell metabolism, potentially providing a target metabolic pathway associated with aggressive disease. PMID:25426557

  17. Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival.

    PubMed

    Rao, Dinesh S; Hyun, Teresa S; Kumar, Priti D; Mizukami, Ikuko F; Rubin, Mark A; Lucas, Peter C; Sanda, Martin G; Ross, Theodora S

    2002-08-01

    Huntingtin-interacting protein 1 (HIP1) is a cofactor in clathrin-mediated vesicle trafficking. It was first implicated in cancer biology as part of a chromosomal translocation in leukemia. Here we report that HIP1 is expressed in prostate and colon tumor cells, but not in corresponding benign epithelia. The relationship between HIP1 expression in primary prostate cancer and clinical outcomes was evaluated with tissue microarrays. HIP1 expression was significantly associated with prostate cancer progression and metastasis. Conversely, primary prostate cancers lacking HIP1 expression consistently showed no progression after radical prostatectomy. In addition, the expression of HIP1 was elevated in prostate tumors from the transgenic mouse model of prostate cancer (TRAMP). At the molecular level, expression of a dominant negative mutant of HIP1 led to caspase-9-dependent apoptosis, suggesting that HIP1 is a cellular survival factor. Thus, HIP1 may play a role in tumorigenesis by allowing the survival of precancerous or cancerous cells. HIP1 might accomplish this via regulation of clathrin-mediated trafficking, a fundamental cellular pathway that has not previously been associated with tumorigenesis. HIP1 represents a putative prognostic factor for prostate cancer and a potential therapy target in prostate as well as colon cancers.

  18. Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival

    PubMed Central

    Rao, Dinesh S.; Hyun, Teresa S.; Kumar, Priti D.; Mizukami, Ikuko F.; Rubin, Mark A.; Lucas, Peter C.; Sanda, Martin G.; Ross, Theodora S.

    2002-01-01

    Huntingtin-interacting protein 1 (HIP1) is a cofactor in clathrin-mediated vesicle trafficking. It was first implicated in cancer biology as part of a chromosomal translocation in leukemia. Here we report that HIP1 is expressed in prostate and colon tumor cells, but not in corresponding benign epithelia. The relationship between HIP1 expression in primary prostate cancer and clinical outcomes was evaluated with tissue microarrays. HIP1 expression was significantly associated with prostate cancer progression and metastasis. Conversely, primary prostate cancers lacking HIP1 expression consistently showed no progression after radical prostatectomy. In addition, the expression of HIP1 was elevated in prostate tumors from the transgenic mouse model of prostate cancer (TRAMP). At the molecular level, expression of a dominant negative mutant of HIP1 led to caspase-9–dependent apoptosis, suggesting that HIP1 is a cellular survival factor. Thus, HIP1 may play a role in tumorigenesis by allowing the survival of precancerous or cancerous cells. HIP1 might accomplish this via regulation of clathrin-mediated trafficking, a fundamental cellular pathway that has not previously been associated with tumorigenesis. HIP1 represents a putative prognostic factor for prostate cancer and a potential therapy target in prostate as well as colon cancers. PMID:12163454

  19. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L.

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as amore » model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular senescence programs that are intact in glioma cells.« less

  20. Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells.

    PubMed

    Weber, Christoph; Schreiber, Thiemo B; Daub, Henrik

    2012-02-02

    Small molecule inhibitors of protein kinases have emerged as a major class of therapeutic agents for the treatment of hematological malignancies. Both in vitro studies and patient case reports suggest therapeutic potential of the clinical kinase inhibitors erlotinib and gefitinib in acute myeloid leukemia (AML). The drugs' cellular modes of action in AML warrant further investigation as their primary therapeutic target, the epidermal growth factor receptor, is not expressed. We therefore performed SILAC-based quantitative mass spectrometry analyses to a depth of 10,975 distinct phosphorylation sites to characterize the phosphoproteome of KG1 AML cells and its regulation upon erlotinib and gefitinib treatment. Less than 50 site-specific phosphorylations changed significantly, indicating rather specific interference with AML cell signaling. Many drug-induced changes occurred within a network of tyrosine phosphorylated proteins that included Src family kinases (SFKs) and the tyrosine kinases Btk and Syk. We further performed quantitative chemical proteomics in KG1 cell extracts and identified SFKs and Btk as direct cellular targets of both erlotinib and gefitinib. Taken together, our data suggest that cellular perturbation of SFKs and/or Btk translates into rather specific signal transduction inhibition, which in turn contributes to the antileukemic activity of erlotinib and gefitinib in AML. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Analysis of microRNA expression and function.

    PubMed

    Van Wynsberghe, Priscilla M; Chan, Shih-Peng; Slack, Frank J; Pasquinelli, Amy E

    2011-01-01

    Originally discovered in C. elegans, microRNAs (miRNAs) are small RNAs that regulate fundamental cellular processes in diverse organisms. MiRNAs are encoded within the genome and are initially transcribed as primary transcripts that can be several kilobases in length. Primary transcripts are successively cleaved by two RNase III enzymes, Drosha in the nucleus and Dicer in the cytoplasm, to produce ∼70 nucleotide (nt) long precursor miRNAs and 22 nt long mature miRNAs, respectively. Mature miRNAs regulate gene expression post-transcriptionally by imperfectly binding target mRNAs in association with the multiprotein RNA induced silencing complex (RISC). The conserved sequence, expression pattern, and function of some miRNAs across distinct species as well as the importance of specific miRNAs in many biological pathways have led to an explosion in the study of miRNA biogenesis, miRNA target identification, and miRNA target regulation. Many advances in our understanding of miRNA biology have come from studies in the powerful model organism C. elegans. This chapter reviews the current methods used in C. elegans to study miRNA biogenesis, small RNA populations, miRNA-protein complexes, and miRNA target regulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Functional intercalated nanocomposites with chitosan-glutathione-glycylsarcosine and layered double hydroxides for topical ocular drug delivery.

    PubMed

    Xu, Tingting; Xu, Xiaoyue; Gu, Yan; Fang, Lei; Cao, Feng

    2018-01-01

    To enhance ocular bioavailability, the traditional strategies have focused on prolonging precorneal retention and improving corneal permeability by nano-carriers with positive charge, thiolated polymer, absorption enhancer and so on. Glycylsarcosine (GS) as an active target ligand of the peptide tranpsporter-1 (PepT-1), could specific interact with the PepT-1 on the cornea and guide the nanoparticles to the treating site. The objective of the study was to explore the active targeting intercalated nanocomposites based on chitosan-glutathione-glycylsarcosine (CG-GS) and layered double hydroxides (LDH) as novel carriers for the treatment of mid-posterior diseases. CG-GS-LDH intercalated nanocomposites were prepared by the coprecipitation hydrothermal method. In vivo precorneal retention study, ex vivo fluorescence images, in vivo experiment for distribution and irritation were studied in rabbits. The cytotoxicity and cellular uptake were studied in human corneal epithelial primary cells (HCEpiC). CG-GS-LDH nanocomposites were prepared successfully and characterized by FTIR and XRD. Experiments with rabbits showed longer precorneal retention and higher distribution of fluorescence probe/model drug. In vitro cytological study, CG-GS-LDH nanocomposites exhibited enhanced cellular uptake compared to pure drug solution. Furthermore, the investigation of cellular uptake mechanisms demonstrated that both the active transport by PepT-1 and clathrin-mediated endocytosis were involved in the internalization of CG-GS-LDH intercalated nanocomposites. An ocular irritation study and a cytotoxicity test indicated that these nanocomposites produced no significant irritant effects. The active targeting intercalated nanocomposites could have great potential for topical ocular drug delivery due to the capacity for prolonging the retention on the ocular surface, enhancing the drug permeability through the cornea, and efficiently delivering the drug to the targeted site.

  3. Functional intercalated nanocomposites with chitosan-glutathione-glycylsarcosine and layered double hydroxides for topical ocular drug delivery

    PubMed Central

    Gu, Yan

    2018-01-01

    Background To enhance ocular bioavailability, the traditional strategies have focused on prolonging precorneal retention and improving corneal permeability by nano-carriers with positive charge, thiolated polymer, absorption enhancer and so on. Glycylsarcosine (GS) as an active target ligand of the peptide tranpsporter-1 (PepT-1), could specific interact with the PepT-1 on the cornea and guide the nanoparticles to the treating site. Purpose The objective of the study was to explore the active targeting intercalated nanocomposites based on chitosan-glutathione-glycylsarcosine (CG-GS) and layered double hydroxides (LDH) as novel carriers for the treatment of mid-posterior diseases. Materials and methods CG-GS-LDH intercalated nanocomposites were prepared by the coprecipitation hydrothermal method. In vivo precorneal retention study, ex vivo fluorescence images, in vivo experiment for distribution and irritation were studied in rabbits. The cytotoxicity and cellular uptake were studied in human corneal epithelial primary cells (HCEpiC). Results CG-GS-LDH nanocomposites were prepared successfully and characterized by FTIR and XRD. Experiments with rabbits showed longer precorneal retention and higher distribution of fluorescence probe/model drug. In vitro cytological study, CG-GS-LDH nanocomposites exhibited enhanced cellular uptake compared to pure drug solution. Furthermore, the investigation of cellular uptake mechanisms demonstrated that both the active transport by PepT-1 and clathrin-mediated endocytosis were involved in the internalization of CG-GS-LDH intercalated nanocomposites. An ocular irritation study and a cytotoxicity test indicated that these nanocomposites produced no significant irritant effects. Conclusions The active targeting intercalated nanocomposites could have great potential for topical ocular drug delivery due to the capacity for prolonging the retention on the ocular surface, enhancing the drug permeability through the cornea, and efficiently delivering the drug to the targeted site. PMID:29491707

  4. The identification of cellular targets of 17β estradiol using a lytic (T7) cDNA phage display approach.

    PubMed

    Van Dorst, Bieke; Mehta, Jaytry; Rouah-Martin, Elsa; De Coen, Wim; Blust, Ronny; Robbens, Johan

    2011-02-01

    To unravel the mechanism of action of chemical compounds, it is crucial to know their cellular targets. A novel in vitro tool that can be used as a fast, simple and cost effective alternative is cDNA phage display. This tool is used in our study to select cellular targets of 17β estradiol (E2). It was possible to select two potential cellular targets of E2 out of the T7 Select™ Human Breast cDNA phage library. The selected cellular targets, autophagy/beclin-1 regulator 1 (beclin 1) and ATP synthase F(0) subunit 6 (ATP6) have so far been unknown as binding proteins of E2. To confirm the E2 binding properties of these selected proteins, surface plasmon resonance (SPR) was used. With SPR the K(d) values were determined to be 0.178±0.031 and 0.401±0.142 nM for the ATP6 phage and beclin 1 phage, respectively. These K(d) values in the low nM range verify that the selected cellular proteins are indeed binding proteins for E2. The selection and identification of these two potential cellular targets of E2, can enhance our current understanding of its mechanism of action. This illustrates the potential of lytic (T7) cDNA phage display in toxicology, to provide important information about cellular targets of chemical compounds. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts.

    PubMed

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.

  6. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts

    PubMed Central

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6–78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts. PMID:28860768

  7. Plasmodial sugar transporters as anti-malarial drug targets and comparisons with other protozoa

    PubMed Central

    2011-01-01

    Glucose is the primary source of energy and a key substrate for most cells. Inhibition of cellular glucose uptake (the first step in its utilization) has, therefore, received attention as a potential therapeutic strategy to treat various unrelated diseases including malaria and cancers. For malaria, blood forms of parasites rely almost entirely on glycolysis for energy production and, without energy stores, they are dependent on the constant uptake of glucose. Plasmodium falciparum is the most dangerous human malarial parasite and its hexose transporter has been identified as being the major glucose transporter. In this review, recent progress regarding the validation and development of the P. falciparum hexose transporter as a drug target is described, highlighting the importance of robust target validation through both chemical and genetic methods. Therapeutic targeting potential of hexose transporters of other protozoan pathogens is also reviewed and discussed. PMID:21676209

  8. Plasmodial sugar transporters as anti-malarial drug targets and comparisons with other protozoa.

    PubMed

    Slavic, Ksenija; Krishna, Sanjeev; Derbyshire, Elvira T; Staines, Henry M

    2011-06-15

    Glucose is the primary source of energy and a key substrate for most cells. Inhibition of cellular glucose uptake (the first step in its utilization) has, therefore, received attention as a potential therapeutic strategy to treat various unrelated diseases including malaria and cancers. For malaria, blood forms of parasites rely almost entirely on glycolysis for energy production and, without energy stores, they are dependent on the constant uptake of glucose. Plasmodium falciparum is the most dangerous human malarial parasite and its hexose transporter has been identified as being the major glucose transporter. In this review, recent progress regarding the validation and development of the P. falciparum hexose transporter as a drug target is described, highlighting the importance of robust target validation through both chemical and genetic methods. Therapeutic targeting potential of hexose transporters of other protozoan pathogens is also reviewed and discussed.

  9. Potential of protein kinase inhibitors for treating herpesvirus associated disease

    PubMed Central

    Li, Renfeng; Hayward, S. Diane

    2013-01-01

    Herpesviruses are ubiquitous human pathogens that establish life-long persistent infections. Clinical manifestations range from mild self-limiting outbreaks such as childhood rashes and cold sores to the more severe and life threatening outcomes of disseminated infection, encephalitis and cancer. Nucleoside analog drugs that target viral DNA replication provide the primary means of treatment. However, extended use of these drugs can result in selection for drug resistant strains, particularly in immunocompromised patients. In this review, we will present recent observations about the participation of cellular protein kinases in herpesvirus biology and discuss the potential for targeting these protein kinases as well as the herpesvirus encoded protein kinases as an anti-herpesvirus therapeutic strategy. PMID:23608036

  10. Heterocyclic periphery in the design of carbonic anhydrase inhibitors: 1,2,4-Oxadiazol-5-yl benzenesulfonamides as potent and selective inhibitors of cytosolic hCA II and membrane-bound hCA IX isoforms.

    PubMed

    Krasavin, Mikhail; Shetnev, Anton; Sharonova, Tatyana; Baykov, Sergey; Tuccinardi, Tiziano; Kalinin, Stanislav; Angeli, Andrea; Supuran, Claudiu T

    2018-02-01

    A series of novel aromatic primary sulfonamides decorated with diversely substituted 1,2,4-oxadiazole periphery groups has been prepared using a parallel chemistry approach. The compounds displayed a potent inhibition of cytosolic hCA II and membrane-bound hCA IX isoforms. Due to a different cellular localization of the two target enzymes, the compounds can be viewed as selective inhibition tools for either isoform, depending on the cellular permeability profile. The SAR findings revealed in this study has been well rationalized by docking simulation of the key compounds against the crystal structures of the relevant hCA isoforms. Copyright © 2017. Published by Elsevier Inc.

  11. Future Targets for Female Sexual Dysfunction.

    PubMed

    Farmer, Melissa; Yoon, Hana; Goldstein, Irwin

    2016-08-01

    Female sexual function reflects a dynamic interplay of central and peripheral nervous, vascular, and endocrine systems. The primary challenge in the development of novel treatments for female sexual dysfunction is the identification and targeted modulation of excitatory sexual circuits using pharmacologic treatments that facilitate the synthesis, release, and/or receptor binding of neurochemicals, peptides, and hormones that promote female sexual function. To develop an evidence-based state-of-the-art consensus report that critically integrates current knowledge of the therapeutic potential for known molecular and cellular targets to facilitate the physiologic processes underlying female sexual function. State-of-the-art review representing the opinions of international experts developed in a consensus process during a 1-year period. Expert opinion was established by grading the evidence-based medical literature, intensive internal committee discussion, public presentation, and debate. Scientific investigation is urgently needed to expand knowledge and foster development of future treatments that maintain genital tissue integrity, enhance genital physiologic responsiveness, and optimize positive subjective appraisal of internal and external sexual cues. This article critically condenses the current knowledge of therapeutic manipulation of molecular and cellular targets within biological systems responsible for female sexual physiologic function. Future treatment targets include pharmacologic modulation of emotional learning circuits, restoration of normal tactile sensation, growth factor therapy, gene therapy, stem cell-based therapies, and regenerative medicine. Concurrent use of centrally and peripherally acting therapies could optimize treatment response. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  12. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.

    PubMed

    Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad

    2015-10-01

    Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.

  13. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.

    PubMed

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen

    2017-08-15

    While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions. Copyright © 2017 American Society for Microbiology.

  14. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli

    PubMed Central

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin

    2017-01-01

    ABSTRACT While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions. PMID:28576762

  15. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains.

    PubMed

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C L; Tanaka, Yuetsu; Xia, Zongping

    2016-04-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation.

  16. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains

    PubMed Central

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C. L.; Tanaka, Yuetsu; Xia, Zongping

    2016-01-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation. PMID:27082114

  17. Zika virus-induced hyper excitation precedes death of mouse primary neuron.

    PubMed

    Gaburro, Julie; Bhatti, Asim; Sundaramoorthy, Vinod; Dearnley, Megan; Green, Diane; Nahavandi, Saeid; Paradkar, Prasad N; Duchemin, Jean-Bernard

    2018-04-27

    Zika virus infection in new born is linked to congenital syndromes, especially microcephaly. Studies have shown that these neuropathies are the result of significant death of neuronal progenitor cells in the central nervous system of the embryo, targeted by the virus. Although cell death via apoptosis is well acknowledged, little is known about possible pathogenic cellular mechanisms triggering cell death in neurons. We used in vitro embryonic mouse primary neuron cultures to study possible upstream cellular mechanisms of cell death. Neuronal networks were grown on microelectrode array and electrical activity was recorded at different times post Zika virus infection. In addition to this method, we used confocal microscopy and Q-PCR techniques to observe morphological and molecular changes after infection. Zika virus infection of mouse primary neurons triggers an early spiking excitation of neuron cultures, followed by dramatic loss of this activity. Using NMDA receptor antagonist, we show that this excitotoxicity mechanism, likely via glutamate, could also contribute to the observed nervous system defects in human embryos and could open new perspective regarding the causes of adult neuropathies. This model of excitotoxicity, in the context of neurotropic virus infection, highlights the significance of neuronal activity recording with microelectrode array and possibility of more than one lethal mechanism after Zika virus infection in the nervous system.

  18. Mitochondrial oxidative stress in aging and healthspan

    PubMed Central

    2014-01-01

    The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this theory is one of the most popular explanations for the cause of aging, several experimental rodent models of antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31. PMID:24860647

  19. Anti-hepatitis C virus activity and toxicity of type III phosphatidylinositol-4-kinase beta inhibitors.

    PubMed

    Lamarche, M J; Borawski, J; Bose, A; Capacci-Daniel, C; Colvin, R; Dennehy, M; Ding, J; Dobler, M; Drumm, J; Gaither, L A; Gao, J; Jiang, X; Lin, K; McKeever, U; Puyang, X; Raman, P; Thohan, S; Tommasi, R; Wagner, K; Xiong, X; Zabawa, T; Zhu, S; Wiedmann, B

    2012-10-01

    Type III phosphatidylinositol-4-kinase beta (PI4KIIIβ) was previously implicated in hepatitis C virus (HCV) replication by small interfering RNA (siRNA) depletion and was therefore proposed as a novel cellular target for the treatment of hepatitis C. Medicinal chemistry efforts identified highly selective PI4KIIIβ inhibitors that potently inhibited the replication of genotype 1a and 1b HCV replicons and genotype 2a virus in vitro. Replicon cells required more than 5 weeks to reach low levels of 3- to 5-fold resistance, suggesting a high resistance barrier to these cellular targets. Extensive in vitro profiling of the compounds revealed a role of PI4KIIIβ in lymphocyte proliferation. Previously proposed functions of PI4KIIIβ in insulin secretion and the regulation of several ion channels were not perturbed with these inhibitors. Moreover, PI4KIIIβ inhibitors were not generally cytotoxic as demonstrated across hundreds of cell lines and primary cells. However, an unexpected antiproliferative effect in lymphocytes precluded their further development for the treatment of hepatitis C.

  20. Anti-Hepatitis C Virus Activity and Toxicity of Type III Phosphatidylinositol-4-Kinase Beta Inhibitors

    PubMed Central

    LaMarche, M. J.; Borawski, J.; Bose, A.; Capacci-Daniel, C.; Colvin, R.; Dennehy, M.; Ding, J.; Dobler, M.; Drumm, J.; Gaither, L. A.; Gao, J.; Jiang, X.; Lin, K.; McKeever, U.; Puyang, X.; Raman, P.; Thohan, S.; Tommasi, R.; Wagner, K.; Xiong, X.; Zabawa, T.; Zhu, S.

    2012-01-01

    Type III phosphatidylinositol-4-kinase beta (PI4KIIIβ) was previously implicated in hepatitis C virus (HCV) replication by small interfering RNA (siRNA) depletion and was therefore proposed as a novel cellular target for the treatment of hepatitis C. Medicinal chemistry efforts identified highly selective PI4KIIIβ inhibitors that potently inhibited the replication of genotype 1a and 1b HCV replicons and genotype 2a virus in vitro. Replicon cells required more than 5 weeks to reach low levels of 3- to 5-fold resistance, suggesting a high resistance barrier to these cellular targets. Extensive in vitro profiling of the compounds revealed a role of PI4KIIIβ in lymphocyte proliferation. Previously proposed functions of PI4KIIIβ in insulin secretion and the regulation of several ion channels were not perturbed with these inhibitors. Moreover, PI4KIIIβ inhibitors were not generally cytotoxic as demonstrated across hundreds of cell lines and primary cells. However, an unexpected antiproliferative effect in lymphocytes precluded their further development for the treatment of hepatitis C. PMID:22825118

  1. Exploring the interactome: microfluidic isolation of proteins and interacting partners for quantitative analysis by electron microscopy.

    PubMed

    Giss, Dominic; Kemmerling, Simon; Dandey, Venkata; Stahlberg, Henning; Braun, Thomas

    2014-05-20

    Multimolecular protein complexes are important for many cellular processes. However, the stochastic nature of the cellular interactome makes the experimental detection of complex protein assemblies difficult and quantitative analysis at the single molecule level essential. Here, we present a fast and simple microfluidic method for (i) the quantitative isolation of endogenous levels of untagged protein complexes from minute volumes of cell lysates under close to physiological conditions and (ii) the labeling of specific components constituting these complexes. The method presented uses specific antibodies that are conjugated via a photocleavable linker to magnetic beads that are trapped in microcapillaries to immobilize the target proteins. Proteins are released by photocleavage, eluted, and subsequently analyzed by quantitative transmission electron microscopy at the single molecule level. Additionally, before photocleavage, immunogold can be employed to label proteins that interact with the primary target protein. Thus, the presented method provides a new way to study the interactome and, in combination with single molecule transmission electron microscopy, to structurally characterize the large, dynamic, heterogeneous multimolecular protein complexes formed.

  2. Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization.

    PubMed

    Wang, Sheng; Huang, Peng; Chen, Xiaoyuan

    2016-09-01

    Targeted delivery of therapeutic agents is an important way to improve the therapeutic index and reduce side effects. To design nanoparticles for targeted delivery, both enhanced tumor tissue accumulation/retention and enhanced cellular internalization should be considered simultaneously. So far, there have been very few nanoparticles with immutable structures that can achieve this goal efficiently. Hierarchical targeting, a novel targeting strategy based on stimuli responsiveness, shows good potential to enhance both tumor tissue accumulation/retention and cellular internalization. Here, the recent design and development of hierarchical targeting nanoplatforms, based on changeable particle sizes, switchable surface charges and activatable surface ligands, will be introduced. In general, the targeting moieties in these nanoplatforms are not activated during blood circulation for efficient tumor tissue accumulation, but re-activated by certain internal or external stimuli in the tumor microenvironment for enhanced cellular internalization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. In vitro and in vivo assessment of heart-homing porous silicon nanoparticles.

    PubMed

    Ferreira, Mónica P A; Ranjan, Sanjeev; Correia, Alexandra M R; Mäkilä, Ermei M; Kinnunen, Sini M; Zhang, Hongbo; Shahbazi, Mohammad-Ali; Almeida, Patrick V; Salonen, Jarno J; Ruskoaho, Heikki J; Airaksinen, Anu J; Hirvonen, Jouni T; Santos, Hélder A

    2016-07-01

    Chronic heart failure, predominantly developed after myocardial infarction, is a leading cause of high mortality worldwide. As existing therapies have still limited success, natural and/or synthetic nanomaterials are emerging alternatives for the therapy of heart diseases. Therefore, we aimed to functionalize undecylenic acid thermally hydrocarbonized porous silicon nanoparticles (NPs) with different targeting peptides to improve the NP's accumulation in different cardiac cells (primary cardiomyocytes, non-myocytes, and H9c2 cardiomyoblasts), additionally to investigate the behavior of the heart-targeted NPs in vivo. The toxicity profiles of the NPs evaluated in the three heart-type cells showed low toxicity at concentrations up to 50 μg/mL. Qualitative and quantitative cellular uptake revealed a significant increase in the accumulation of atrial natriuretic peptide (ANP)-modified NPs in primary cardiomyocytes, non-myocytes and H9c2 cells, and in hypoxic primary cardiomyocytes and non-myocytes. Competitive uptake studies in primary cardiomyocytes showed the internalization of ANP-modified NPs takes place via the guanylate cyclase-A receptor. When a myocardial infarction rat model was induced by isoprenaline and the peptide-modified [(111)In]NPs administered intravenously, the targeting peptides, particularly peptide 2, improved the NPs' accumulation in the heart up to 3.0-fold, at 10 min. This study highlights the potential of these peptide-modified nanosystems for future applications in heart diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study

    PubMed Central

    Salem, Heba F; Ahmed, Sayed M; Hassaballah, Ashraf E; Omar, Mahmoud M

    2015-01-01

    Background The blood–brain barrier prevents many drug moieties from reaching the central nervous system. Therefore, glutathione-modulated nanoliposomes have been engineered to enhance the targeting of flucytosine to the brain. Methods Glutathione-modulated nanoliposomes were prepared by thin-film hydration technique and evaluated in the primary brain cells of rats. Lecithin, cholesterol, and span 65 were mixed at 1:1:1 molar ratio. The molar percentage of PEGylated glutathione varied from 0 mol% to 0.75 mol%. The cellular binding and the uptake of the targeted liposomes were both monitored by epifluorescent microscope and flow cytometry techniques. A biodistribution and a pharmacokinetic study of flucytosine and flucytosine-loaded glutathione–modulated liposomes was carried out to evaluate the in vivo brain-targeting efficiency. Results The size of glutathione-modulated nanoliposomes was <100 nm and the zeta potential was more than −65 mV. The cumulative release reached 70% for certain formulations. The cellular uptake increased as molar percent of glutathione increased to reach the maximum at 0.75 mol%. The uptake of the targeted liposomes by brain cells of the rats was three times greater than that of the nontargeted liposomes. An in vivo study showed that the relative efficiency was 2.632±0.089 and the concentration efficiency was 1.590±0.049, and also, the drug-targeting index was 3.670±0.824. Conclusion Overall, these results revealed that glutathione-PEGylated nanoliposomes enhance the effective delivery of flucytosine to brain and could become a promising new therapeutic option for the treatment of the brain infections. PMID:26229435

  5. BTK suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling.

    PubMed

    Gu, Chunyan; Peng, Hailin; Lu, Yue; Yang, Hongbao; Tian, Zhidan; Yin, Gang; Zhang, Wen; Lu, Sicheng; Zhang, Yi; Yang, Ye

    2017-08-22

    We previously explored the role of BTK in maintaining multiple myeloma stem cells (MMSCs) self-renewal and drug-resistance. Here we investigated the elevation of BTK suppressing MM cellular senescence, a state of irreversible cellular growth arrest. We firstly discovered that an increased expression of BTK in MM samples compared to normal controls by immunohistochemistry (IHC), and significant chromosomal gain in primary samples. In addition, BTK high-expressing MM patients are associated with poor outcome in both Total Therapy 2 (TT2) and TT3 cohorts. Knockdown BTK expression by shRNA induced MM cellular senescence using β-galactosidase (SA-b-gal) staining, cell growth arrest by cell cycle staining and decreased clonogenicity while forcing BTK expression in MM cells abrogated these characteristics. We also validated this feature in mouse embryonic fibroblast cells (MEFs), which showed that elevated BTK expression was resistant to MEF senescence after serial cultivation in vitro . Further mechanism study revealed that BTK activated AKT signaling leading to down-regulation of P27 expression and hindered RB activity while AKT inhibitor, LY294002, overcame BTK-overexpression induced cellular senescence resistance. Eventually we demonstrated that BTK inhibitor, CGI-1746, induced MM cellular senescence, colony reduction and tumorigenecity inhibition in vivo . Summarily, we designate a novel mechanism of BTK in mediating MM growth, and BTK inhibitor is of great potential in vivo and in vitro suggesting BTK is a promising therapeutic target for MM.

  6. Biology Based Lung Cancer Model for Chronic Low Radon Exposures

    NASA Astrophysics Data System (ADS)

    TruÅ£ǎ-Popa, Lucia-Adina; Hofmann, Werner; Fakir, Hatim; Cosma, Constantin

    2008-08-01

    Low dose effects of alpha particles at the tissue level are characterized by the interaction of single alpha particles, affecting only a small fraction of the cells within that tissue. Alpha particle intersections of bronchial target cells during a given exposure period were simulated by an initiation-promotion model, formulated in terms of cellular hits within the cycle time of the cell (dose-rate) and then integrated over the whole exposure period (dose). For a given average number of cellular hits during the lifetime of bronchial cells, the actual number of single and multiple hits was selected from a Poisson distribution. While oncogenic transformation is interpreted as the primary initiation step, stimulated mitosis by killing adjacent cells is assumed to be the primary radiological promotion event. Analytical initiation and promotion functions were derived from experimental in vitro data on oncogenic transformation and cellular survival. To investigate the shape of the lung cancer risk function at chronic, low level exposures in more detail, additional biological factors describing the tissue response and operating specifically at low doses were incorporated into the initiation-promotion model. These mechanisms modifying the initial response at the cellular level were: adaptive response, genomic instability, induction of apoptosis by surrounding cells, and detrimental as well as protective bystander mechanisms. To quantify the effects of these mechanisms as functions of dose, analytical functions were derived from the experimental evidence presently available. Predictions of lung cancer risk, including these mechanisms, exhibit a distinct sublinear dose-response relationship at low exposures, particularly for very low exposure rates.

  7. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases.

    PubMed

    Connolly, Niamh M C; Theurey, Pierre; Adam-Vizi, Vera; Bazan, Nicolas G; Bernardi, Paolo; Bolaños, Juan P; Culmsee, Carsten; Dawson, Valina L; Deshmukh, Mohanish; Duchen, Michael R; Düssmann, Heiko; Fiskum, Gary; Galindo, Maria F; Hardingham, Giles E; Hardwick, J Marie; Jekabsons, Mika B; Jonas, Elizabeth A; Jordán, Joaquin; Lipton, Stuart A; Manfredi, Giovanni; Mattson, Mark P; McLaughlin, BethAnn; Methner, Axel; Murphy, Anne N; Murphy, Michael P; Nicholls, David G; Polster, Brian M; Pozzan, Tullio; Rizzuto, Rosario; Satrústegui, Jorgina; Slack, Ruth S; Swanson, Raymond A; Swerdlow, Russell H; Will, Yvonne; Ying, Zheng; Joselin, Alvin; Gioran, Anna; Moreira Pinho, Catarina; Watters, Orla; Salvucci, Manuela; Llorente-Folch, Irene; Park, David S; Bano, Daniele; Ankarcrona, Maria; Pizzo, Paola; Prehn, Jochen H M

    2018-03-01

    Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.

  8. Linking the Primary Cilium to Cell Migration in Tissue Repair and Brain Development

    PubMed Central

    Veland, Iben Rønn; Lindbæk, Louise; Christensen, Søren Tvorup

    2014-01-01

    Primary cilia are unique sensory organelles that coordinate cellular signaling networks in vertebrates. Inevitably, defects in the formation or function of primary cilia lead to imbalanced regulation of cellular processes that causes multisystemic disorders and diseases, commonly known as ciliopathies. Mounting evidence has demonstrated that primary cilia coordinate multiple activities that are required for cell migration, which, when they are aberrantly regulated, lead to defects in organogenesis and tissue repair, as well as metastasis of tumors. Here, we present an overview on how primary cilia may contribute to the regulation of the cellular signaling pathways that control cyclic processes in directional cell migration. PMID:26955067

  9. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.

    PubMed

    Bald, Tobias; Landsberg, Jennifer; Lopez-Ramos, Dorys; Renn, Marcel; Glodde, Nicole; Jansen, Philipp; Gaffal, Evelyn; Steitz, Julia; Tolba, Rene; Kalinke, Ulrich; Limmer, Andreas; Jönsson, Göran; Hölzel, Michael; Tüting, Thomas

    2014-06-01

    Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. ©2014 American Association for Cancer Research.

  10. In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles.

    PubMed

    Simpson, Carrie A; Salleng, Kenneth J; Cliffel, David E; Feldheim, Daniel L

    2013-02-01

    Gold nanoparticles are emerging as promising materials from which to construct nanoscale therapeutics and therapeutic delivery systems. However, animal studies have shown that gold nanoparticles modified with certain thiol monolayers such as tiopronin can cause renal complications and morbidity. Although these effects may be eliminated by coadsorbing small amounts of polyethylene glycol (PEG) onto the nanoparticle surface, PEG can also lower cellular internalization efficiency and binding interactions with protein disease targets, significantly reducing the potential for using gold nanoparticles as therapeutics. Using ICP-MS analysis of blood, urine, and several organs, we show in this article that glutathione-coated gold nanoparticles (1.2 nm ± 0.9 nm) cause no morbidity at any concentration up to and including 60 μM and target primary organs although providing gradual dissipation and clearance over time. This study suggests that glutathione may be an attractive alternative to PEG in the design of gold nanoparticle therapeutics. This study describes the utility and toxicity of glutathione coated gold nanoparticles in comparison to PEGylated counterparts that are commonly used to increase "Stealth" properties and lower cytotoxicity. Too much PEG on the NPs can lead to lower cellular internalization efficiency and less efficient binding interactions with protein disease targets, significantly reducing the potential for using gold nanoparticles as therapeutics. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Smooth Muscle Cell Genome Browser: Enabling the Identification of Novel Serum Response Factor Target Genes

    PubMed Central

    Lee, Moon Young; Park, Chanjae; Berent, Robyn M.; Park, Paul J.; Fuchs, Robert; Syn, Hannah; Chin, Albert; Townsend, Jared; Benson, Craig C.; Redelman, Doug; Shen, Tsai-wei; Park, Jong Kun; Miano, Joseph M.; Sanders, Kenton M.; Ro, Seungil

    2015-01-01

    Genome-scale expression data on the absolute numbers of gene isoforms offers essential clues in cellular functions and biological processes. Smooth muscle cells (SMCs) perform a unique contractile function through expression of specific genes controlled by serum response factor (SRF), a transcription factor that binds to DNA sites known as the CArG boxes. To identify SRF-regulated genes specifically expressed in SMCs, we isolated SMC populations from mouse small intestine and colon, obtained their transcriptomes, and constructed an interactive SMC genome and CArGome browser. To our knowledge, this is the first online resource that provides a comprehensive library of all genetic transcripts expressed in primary SMCs. The browser also serves as the first genome-wide map of SRF binding sites. The browser analysis revealed novel SMC-specific transcriptional variants and SRF target genes, which provided new and unique insights into the cellular and biological functions of the cells in gastrointestinal (GI) physiology. The SRF target genes in SMCs, which were discovered in silico, were confirmed by proteomic analysis of SMC-specific Srf knockout mice. Our genome browser offers a new perspective into the alternative expression of genes in the context of SRF binding sites in SMCs and provides a valuable reference for future functional studies. PMID:26241044

  12. Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes.

    PubMed

    Stokes, C A; Kaur, R; Edwards, M R; Mondhe, M; Robinson, D; Prestwich, E C; Hume, R D; Marshall, C A; Perrie, Y; O'Donnell, V B; Harwood, J L; Sabroe, I; Parker, L C

    2016-09-01

    Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.

  13. Oligodendroglial p130Cas Is a Target of Fyn Kinase Involved in Process Formation, Cell Migration and Survival

    PubMed Central

    Gonsior, Constantin; Binamé, Fabien; Frühbeis, Carsten; Bauer, Nina M.; Hoch-Kraft, Peter; Luhmann, Heiko J.; Trotter, Jacqueline; White, Robin

    2014-01-01

    Oligodendrocytes are the myelinating glial cells of the central nervous system. In the course of brain development, oligodendrocyte precursor cells migrate, scan the environment and differentiate into mature oligodendrocytes with multiple cellular processes which recognize and ensheath neuronal axons. During differentiation, oligodendrocytes undergo dramatic morphological changes requiring cytoskeletal rearrangements which need to be tightly regulated. The non-receptor tyrosine kinase Fyn plays a central role in oligodendrocyte differentiation and myelination. In order to improve our understanding of the role of oligodendroglial Fyn kinase, we have identified Fyn targets in these cells. Purification and mass-spectrometric analysis of tyrosine-phosphorylated proteins in response to overexpressed active Fyn in the oligodendrocyte precursor cell line Oli-neu, yielded the adaptor molecule p130Cas. We analyzed the function of this Fyn target in oligodendroglial cells and observed that reduction of p130Cas levels by siRNA affects process outgrowth, the thickness of cellular processes and migration behavior of Oli-neu cells. Furthermore, long term p130Cas reduction results in decreased cell numbers as a result of increased apoptosis in cultured primary oligodendrocytes. Our data contribute to understanding the molecular events taking place during oligodendrocyte migration and morphological differentiation and have implications for myelin formation. PMID:24586768

  14. Silibinin negatively contributes to primary cilia length via autophagy regulated by histone deacetylase 6 in confluent mouse embryo fibroblast 3T3-L1 cells.

    PubMed

    Xu, Qian; Liu, Wei; Liu, Xiaoling; Liu, Weiwei; Wang, Hongju; Yao, Guodong; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2016-09-01

    Primary cilium is a cellular antenna, signalling as a sensory organelle. Numerous pathological manifestation is associated with change of its length. Although the interaction between autophagy and primary cilia has been suggested, the role of autophagy in primary cilia length is largely unknown. In this study the primary cilia were immunostained and observed by using confocal fluorescence microscopy, and we found that silibinin, a natural flavonoid, shortened the length of primary cilia, meanwhile it also induced autophagy in 3T3-L1 cells. This study was designed to investigate the significance of silibinin-induced autophagy in primary ciliary structure in confluent mouse embryo fibroblast 3T3-L1 cells. Either blocking the autophagic flux with pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), or transfection of siRNA targeting LC3 inhibited the reduction of cilia length caused by silibinin exposure. Autophagy induced by silibinin decreased expressions of the cilia-associated proteins, such as IFT88, KIF3a and Ac-tubulin, while 3-MA restored it, indicating that autophagy induced by silibinin led to a reduction of primary cilia length. Histone deacetylase 6 (HDAC6), which was suggested as a mediator of autophagy, was up-regulated by silibinin in a time-dependent manner. In addition, 3T3-L1 cells treated with siRNA against HDAC6 had a reduced autophagic level and were protected from silibinin-induced cilia shortening. Taken together, we conclude that the HDAC6-mediated autophagy negatively regulates primary cilia length during silibinin treatment and has the potential to serve as a therapeutic target for primary cilia-associated ciliopathies. These findings thus provide new information about the potential link between autophagy and primary cilia.

  15. Mechanisms of modafinil: A review of current research

    PubMed Central

    Gerrard, Paul; Malcolm, Robert

    2007-01-01

    The novel wake-promoting agent modafinil has been in use for the treatment of several sleep disorders for a few years and is now undergoing clinical trials for its use in the treatment of stimulant addiction, but its primary mechanism of action remains elusive. Previous laboratory studies have shown that modafinil has antioxidative and neuroprotective effects, which have not previously been suggested to be related to its wake-promoting effects. However, recent research indicates that free radicals may be related to sleep induction as well as cellular damage, suggesting that a common target of action may mediate modafinil’s ability to oppose both of these effects. In this review we summarize and discuss previously published research on modafinil’s neural, cytoprotective, and cognitive effects, and we propose possible primary biochemical targets that could underlie the effects of modafinil observed in these studies. We also suggest neurocognitive mechanisms responsible for modafinil’s cognitive enhancing effects and its therapeutic potential in the treatment of stimulant addiction. PMID:19300566

  16. Serine is the major residue for ADP-ribosylation upon DNA damage

    PubMed Central

    Dauben, Helen

    2018-01-01

    Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that synthesise ADP-ribosylation (ADPr), a reversible modification of proteins that regulates many different cellular processes. Several mammalian PARPs are known to regulate the DNA damage response, but it is not clear which amino acids in proteins are the primary ADPr targets. Previously, we reported that ARH3 reverses the newly discovered type of ADPr (ADPr on serine residues; Ser-ADPr) and developed tools to analyse this modification (Fontana et al., 2017). Here, we show that Ser-ADPr represents the major fraction of ADPr synthesised after DNA damage in mammalian cells and that globally Ser-ADPr is dependent on HPF1, PARP1 and ARH3. In the absence of HPF1, glutamate/aspartate becomes the main target residues for ADPr. Furthermore, we describe a method for site-specific validation of serine ADP-ribosylated substrates in cells. Our study establishes serine as the primary form of ADPr in DNA damage signalling. PMID:29480802

  17. Multi-walled carbon nanotube length as a critical determinant of bioreactivity with primary human pulmonary alveolar cells

    PubMed Central

    Sweeney, Sinbad; Berhanu, Deborah; Misra, Superb K.; Thorley, Andrew J.; Valsami-Jones, Eugenia; Tetley, Teresa D.

    2015-01-01

    Multiwalled carbon nanotube (MWCNT) length is suggested to critically determine their pulmonary toxicity. This stems from in vitro and in vivo rodent studies and in vitro human studies using cell lines (typically cancerous). There is little data using primary human lung cells. We addressed this knowledge gap, using highly relevant, primary human alveolar cell models exposed to precisely synthesized and thoroughly characterized MWCNTs. In this work, transformed human alveolar type-I-like epithelial cells (TT1), primary human alveolar type-II epithelial cells (ATII) and alveolar macrophages (AM) were treated with increasing concentrations of MWCNTs before measuring cytotoxicity, inflammatory mediator release and MAP kinase signalling. Strikingly, we observed that short MWCNTs (~0.6 µm in length) induced significantly greater responses from the epithelial cells, whilst AM were particularly susceptible to long MWCNTs (~20 µm). These differences in the pattern of mediator release were associated with alternative profiles of JNK, p38 and ERK1/2 MAP kinase signal transduction within each cell type. This study, using highly relevant target human alveolar cells and well defined and characterized MWCNTs, shows marked cellular responses to the MWCNTs that vary according to the target cell type, as well as the aspect ratio of the MWCNT. PMID:25780270

  18. Leucine Promotes Proliferation and Differentiation of Primary Preterm Rat Satellite Cells in Part through mTORC1 Signaling Pathway

    PubMed Central

    Dai, Jie-Min; Yu, Mu-Xue; Shen, Zhen-Yu; Guo, Chu-Yi; Zhuang, Si-Qi; Qiu, Xiao-Shan

    2015-01-01

    Signaling through the mammalian target of rapamycin (mTOR) in response to leucine modulates many cellular and developmental processes. However, in the context of satellite cell proliferation and differentiation, the role of leucine and mTORC1 is less known. This study investigates the role of leucine in the process of proliferation and differentiation of primary preterm rat satellite cells, and the relationship with mammalian target of rapamycin complex 1 (mTORC1) activation. Dissociation of primary satellite cells occurred with type I collagenase and trypsin, and purification, via different speed adherence methods. Satellite cells with positive expression of Desmin were treated with leucine and rapamycin. We observed that leucine promoted proliferation and differentiation of primary satellite cells and increased the phosphorylation of mTOR. Rapamycin inhibited proliferation and differentiation, as well as decreased the phosphorylation level of mTOR. Furthermore, leucine increased the expression of MyoD and myogenin while the protein level of MyoD decreased due to rapamycin. However, myogenin expressed no affect by rapamycin. In conclusion, leucine may up-regulate the activation of mTORC1 to promote proliferation and differentiation of primary preterm rat satellite cells. We have shown that leucine promoted the differentiation of myotubes in part through the mTORC1-MyoD signal pathway. PMID:26007333

  19. New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion.

    PubMed

    Margue, Christiane; Philippidou, Demetra; Reinsbach, Susanne E; Schmitt, Martina; Behrmann, Iris; Kreis, Stephanie

    2013-01-01

    The non-coding microRNAs (miRNA) have tissue- and disease-specific expression patterns. They down-regulate target mRNAs, which likely impacts on most fundamental cellular processes. Differential expression patterns of miRNAs are currently being exploited for identification of biomarkers for early disease diagnosis, prediction of progression for melanoma and other cancers and as promising drug targets, since they can easily be inhibited or replaced in a given cellular context. Before successfully manipulating miRNAs in clinical settings, their precise expression levels, endogenous functions and thus their target genes have to be determined. MiR-211, a melanocyte lineage-specific small non-coding miRNA, is located in an intron of TRPM1, a target gene of the microphtalmia-associated transcription factor (MITF). By transcriptionally up-regulating TRPM1, MITF, which is critical for both melanocyte differentiation and survival and for melanoma progression, indirectly drives the expression of miR-211. Expression of this miRNA is often reduced in melanoma samples. Here, we investigated functional roles of miR-211 by identifying and studying new target genes. We show that MITF-correlated miR-211 expression levels are mostly but not always reduced in a panel of 11 melanoma cell lines and in primary and metastatic melanoma compared to normal melanocytes and nevi, respectively. MiR-211 itself only marginally impacted on cell invasion and migration, while perturbation of some new miR-211 target genes, such as AP1S2, SOX11, IGFBP5, and SERINC3 significantly increased invasion. These results and the variable expression levels of miR-211 raise serious doubts on the value of miR-211 as a melanoma tumor-suppressing miRNA and/or as a biomarker for melanoma.

  20. Rational Targeting of Cellular Cholesterol in Diffuse Large B-Cell Lymphoma (DLBCL) Enabled by Functional Lipoprotein Nanoparticles: A Therapeutic Strategy Dependent on Cell of Origin.

    PubMed

    Rink, Jonathan S; Yang, Shuo; Cen, Osman; Taxter, Tim; McMahon, Kaylin M; Misener, Sol; Behdad, Amir; Longnecker, Richard; Gordon, Leo I; Thaxton, C Shad

    2017-11-06

    Cancer cells have altered metabolism and, in some cases, an increased demand for cholesterol. It is important to identify novel, rational treatments based on biology, and cellular cholesterol metabolism as a potential target for cancer is an innovative approach. Toward this end, we focused on diffuse large B-cell lymphoma (DLBCL) as a model because there is differential cholesterol biosynthesis driven by B-cell receptor (BCR) signaling in germinal center (GC) versus activated B-cell (ABC) DLBCL. To specifically target cellular cholesterol homeostasis, we employed high-density lipoprotein-like nanoparticles (HDL NP) that can generally reduce cellular cholesterol by targeting and blocking cholesterol uptake through the high-affinity HDL receptor, scavenger receptor type B-1 (SCARB1). As we previously reported, GC DLBCL are exquisitely sensitive to HDL NP as monotherapy, while ABC DLBCL are less sensitive. Herein, we report that enhanced BCR signaling and resultant de novo cholesterol synthesis in ABC DLBCL drastically reduces the ability of HDL NPs to reduce cellular cholesterol and induce cell death. Therefore, we combined HDL NP with the BCR signaling inhibitor ibrutinib and the SYK inhibitor R406. By targeting both cellular cholesterol uptake and BCR-associated de novo cholesterol synthesis, we achieved cellular cholesterol reduction and induced apoptosis in otherwise resistant ABC DLBCL cell lines. These results in lymphoma demonstrate that reduction of cellular cholesterol is a powerful mechanism to induce apoptosis. Cells rich in cholesterol require HDL NP therapy to reduce uptake and molecularly targeted agents that inhibit upstream pathways that stimulate de novo cholesterol synthesis, thus, providing a new paradigm for rationally targeting cholesterol metabolism as therapy for cancer.

  1. Distinct Mechanisms of Ferritin Delivery to Lysosomes in Iron-Depleted and Iron-Replete Cells ▿

    PubMed Central

    Asano, Takeshi; Komatsu, Masaaki; Yamaguchi-Iwai, Yuko; Ishikawa, Fuyuki; Mizushima, Noboru; Iwai, Kazuhiro

    2011-01-01

    Ferritin is a cytosolic protein that stores excess iron, thereby protecting cells from iron toxicity. Ferritin-stored iron is believed to be utilized when cells become iron deficient; however, the mechanisms underlying the extraction of iron from ferritin have yet to be fully elucidated. Here, we demonstrate that ferritin is degraded in the lysosome under iron-depleted conditions and that the acidic environment of the lysosome is crucial for iron extraction from ferritin and utilization by cells. Ferritin was targeted for degradation in the lysosome even under iron-replete conditions in primary cells; however, the mechanisms underlying lysosomal targeting of ferritin were distinct under depleted and replete conditions. In iron-depleted cells, ferritin was targeted to the lysosome via a mechanism that involved autophagy. In contrast, lysosomal targeting of ferritin in iron-replete cells did not involve autophagy. The autophagy-independent pathway of ferritin delivery to lysosomes was deficient in several cancer-derived cells, and cancer-derived cell lines are more resistant to iron toxicity than primary cells. Collectively, these results suggest that ferritin trafficking may be differentially regulated by cell type and that loss of ferritin delivery to the lysosome under iron-replete conditions may be related to oncogenic cellular transformation. PMID:21444722

  2. An Interference Mitigation Scheme of Device-to-Device Communications for Sensor Networks Underlying LTE-A

    PubMed Central

    Kim, Jeehyeong; Karim, Nzabanita Abdoul; Cho, Sunghyun

    2017-01-01

    Device-to-Device (D2D) communication technology has become a key factor in wireless sensor networks to form autonomous communication links among sensor nodes. Many research results for D2D have been presented to resolve different technical issues of D2D. Nevertheless, the previous works have not resolved the shortage of data rate and limited coverage of wireless sensor networks. Due to bandwidth shortages and limited communication coverage, 3rd Generation Partnership Project (3GPP) has introduced a new Device-to-Device (D2D) communication technique underlying cellular networks, which can improve spectral efficiencies by enabling the direct communication of devices in proximity without passing through enhanced-NodeB (eNB). However, to enable D2D communication in a cellular network presents a challenge with regard to radio resource management since D2D links reuse the uplink radio resources of cellular users and it can cause interference to the receiving channels of D2D user equipment (DUE). In this paper, a hybrid mechanism is proposed that uses Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to handle inter-cell interference caused by cellular user equipments (CUEs) to D2D receivers (DUE-Rxs), reusing the same resources at the cell edge area. In our case, DUE-Rxs are considered as victim nodes and CUEs as aggressor nodes, since our primary target is to minimize inter-cell interference in order to increase the signal to interference and noise ratio (SINR) of the target DUE-Rx at the cell edge area. The numerical results show that the interference level of the target D2D receiver (DUE-Rx) decreases significantly compared to the conventional FFR at the cell edge. In addition, the system throughput of the proposed scheme can be increased up to 60% compared to the conventional FFR. PMID:28489064

  3. An Interference Mitigation Scheme of Device-to-Device Communications for Sensor Networks Underlying LTE-A.

    PubMed

    Kim, Jeehyeong; Karim, Nzabanita Abdoul; Cho, Sunghyun

    2017-05-10

    Device-to-Device (D2D) communication technology has become a key factor in wireless sensor networks to form autonomous communication links among sensor nodes. Many research results for D2D have been presented to resolve different technical issues of D2D. Nevertheless, the previous works have not resolved the shortage of data rate and limited coverage of wireless sensor networks. Due to bandwidth shortages and limited communication coverage, 3rd Generation Partnership Project (3GPP) has introduced a new Device-to-Device (D2D) communication technique underlying cellular networks, which can improve spectral efficiencies by enabling the direct communication of devices in proximity without passing through enhanced-NodeB (eNB). However, to enable D2D communication in a cellular network presents a challenge with regard to radio resource management since D2D links reuse the uplink radio resources of cellular users and it can cause interference to the receiving channels of D2D user equipment (DUE). In this paper, a hybrid mechanism is proposed that uses Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to handle inter-cell interference caused by cellular user equipments (CUEs) to D2D receivers (DUE-Rxs), reusing the same resources at the cell edge area. In our case, DUE-Rxs are considered as victim nodes and CUEs as aggressor nodes, since our primary target is to minimize inter-cell interference in order to increase the signal to interference and noise ratio (SINR) of the target DUE-Rx at the cell edge area. The numerical results show that the interference level of the target D2D receiver (DUE-Rx) decreases significantly compared to the conventional FFR at the cell edge. In addition, the system throughput of the proposed scheme can be increased up to 60% compared to the conventional FFR.

  4. Cellular innate immunity and restriction of viral infection: implications for lentiviral gene therapy in human hematopoietic cells.

    PubMed

    Kajaste-Rudnitski, Anna; Naldini, Luigi

    2015-04-01

    Hematopoietic gene therapy has tremendous potential to treat human disease. Nevertheless, for gene therapy to be efficacious, effective gene transfer into target cells must be reached without inducing detrimental effects on their biological properties. This remains a great challenge for the field as high vector doses and prolonged ex vivo culture conditions are still required to reach significant transduction levels of clinically relevant human hematopoietic stem and progenitor cells (HSPCs), while other potential target cells such as primary macrophages can hardly be transduced. The reasons behind poor permissiveness of primary human hematopoietic cells to gene transfer partly reside in the retroviral origin of lentiviral vectors (LVs). In particular, host antiviral factors referred to as restriction factors targeting the retroviral life cycle can hamper LV transduction efficiency. Furthermore, LVs may activate innate immune sensors not only in differentiated hematopoietic cells but also in HSPCs, with potential consequences on transduction efficiency as well as their biological properties. Therefore, better understanding of the vector-host interactions in the context of hematopoietic gene transfer is important for the development of safer and more efficient gene therapy strategies. In this review, we briefly summarize the current knowledge regarding innate immune recognition of lentiviruses in primary human hematopoietic cells as well as discuss its relevance for LV-based ex vivo gene therapy approaches.

  5. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers.

    PubMed

    Fusco, Giuliana; Chen, Serene W; Williamson, Philip T F; Cascella, Roberta; Perni, Michele; Jarvis, James A; Cecchi, Cristina; Vendruscolo, Michele; Chiti, Fabrizio; Cremades, Nunilo; Ying, Liming; Dobson, Christopher M; De Simone, Alfonso

    2017-12-15

    Oligomeric species populated during the aggregation process of α-synuclein have been linked to neuronal impairment in Parkinson's disease and related neurodegenerative disorders. By using solution and solid-state nuclear magnetic resonance techniques in conjunction with other structural methods, we identified the fundamental characteristics that enable toxic α-synuclein oligomers to perturb biological membranes and disrupt cellular function; these include a highly lipophilic element that promotes strong membrane interactions and a structured region that inserts into lipid bilayers and disrupts their integrity. In support of these conclusions, mutations that target the region that promotes strong membrane interactions by α-synuclein oligomers suppressed their toxicity in neuroblastoma cells and primary cortical neurons. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. The Role of the Calcium-sensing Receptor in Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodland, Karin D.

    2004-03-01

    The cell surface calcium receptor (Ca2+ receptor) is a particularly difficult receptor to study because its primary physiological ligand, Ca2+, affects numerous biological processes both within and outside of cells. Because of this, distinguishing effects of extracellular Ca2+ mediated by the Ca2+ receptor from those mediated by other mechanisms is challenging. Certain pharmacological approaches, however, when combined with appropriate experimental designs, can be used to more confidently identify cellular responses regulated by the Ca2+ receptor and select those that might be targeted therapeutically. The Ca2+ receptor on parathyroid cells, because it is the primary mechanism regulating secretion of parathyroid hormonemore » (PTH), is one such target. Calcimimetic compounds, which active this Ca2+ receptor and lower circulating levels of PTH, have been developed for treating hyperparathyroidism. The converse pharmaceutical approach, involving calcilytic compounds that block parathyroid cell Ca2+ receptors and stimulate PTH secretion thereby providing an anabolic therapy for osteoporosis, still awaits clinical validation. Although Ca2+ receptors are expressed throughout the body and in many tissues that are not intimately involved in systemic Ca2+ homeostasis, their physiological and/or pathological significance remains speculative and their value as therapeutic targets is unknown.« less

  7. NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity

    PubMed Central

    Venkateshaiah, Sathisha Upparahalli; Khan, Sharmin; Ling, Wen; Bam, Rakesh; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Epstein, Joshua; Yaccoby, Shmuel

    2015-01-01

    Multiple myeloma (MM) cells typically grow in focal lesions, stimulating osteoclasts that destroy bone and support MM. Osteoclasts and MM cells are hypermetabolic. The coenzyme nicotinamide adenine dinucleotide (NAD+) is not only essential for cellular metabolism; it also affects activity of NAD-dependent enzymes, such as PARP-1 and SIRT-1. Nicotinamide phos-phoribosyltransferase (NAMPT/PBEF/visfatin, encoded by PBEF1) is a rate-limiting enzyme in NAD+ biosynthesis from nicotinamide. Coculture of primary MM cells with osteoclasts induced PBEF1 upregulation in both cell types. PBEF1 expression was higher in experimental myelomatous bones than in nonmyelomatous bone and higher in MM patients’ plasma cells than in healthy donors’ counterparts. APO866 is a specific PBEF1 inhibitor known to deplete cellular NAD+, APO866 at low nanomolar concentrations inhibited growth of primary MM cells or MM cell lines cultured alone or cocultured with osteoclasts and induced apoptosis in these cells. PBEF1 activity and NAD+ content were reduced in MM cells by APO866, resulting in lower activity of PARP-1 and SIRT-1. The inhibitory effect of APO866 on MM cell growth was abrogated by supplementation of extracellular NAD+ or NAM. APO866 inhibited NF-κB activity in osteoclast precursors and suppressed osteoclast formation and activity. PBEF1 knockdown similarly inhibited MM cell growth and osteoclast formation. In the SCID-rab model, APO866 inhibited growth of primary MM and H929 cells and prevented bone disease. These findings indicate that MM cells and osteoclasts are highly sensitive to NAD+ depletion and that PBEF1 inhibition represents a novel approach to target cellular metabolism and inhibit PARP-1 and bone disease in MM. PMID:23435312

  8. Pleiotropic Actions of Forskolin Result in Phosphatidylserine Exposure in Primary Trophoblasts

    PubMed Central

    Riddell, Meghan R.; Winkler-Lowen, Bonnie; Jiang, Yanyan; Davidge, Sandra T.; Guilbert, Larry J.

    2013-01-01

    Forskolin is an extract of the Coleus forskholii plant that is widely used in cell physiology to raise intracellular cAMP levels. In the field of trophoblast biology, forskolin is one of the primary treatments used to induce trophoblastic cellular fusion. The syncytiotrophoblast (ST) is a continuous multinucleated cell in the human placenta that separates maternal from fetal circulations and can only expand by fusion with its stem cell, the cytotrophoblast (CT). Functional investigation of any aspect of ST physiology requires in vitro differentiation of CT and de novo ST formation, thus selecting the most appropriate differentiation agent for the hypothesis being investigated is necessary as well as addressing potential off-target effects. Previous studies, using forskolin to induce fusion in trophoblastic cell lines, identified phosphatidylserine (PS) externalization to be essential for trophoblast fusion and showed that widespread PS externalization is present even after fusion has been achieved. PS is a membrane phospholipid that is primarily localized to the inner-membrane leaflet. Externalization of PS is a hallmark of early apoptosis and is involved in cellular fusion of myocytes and macrophages. We were interested to examine whether PS externalization was also involved in primary trophoblast fusion. We show widespread PS externalization occurs after 72 hours when fusion was stimulated with forskolin, but not when stimulated with the cell permeant cAMP analog Br-cAMP. Using a forskolin analog, 1,9-dideoxyforskolin, which stimulates membrane transporters but not adenylate cyclase, we found that widespread PS externalization required both increased intracellular cAMP levels and stimulation of membrane transporters. Treatment of primary trophoblasts with Br-cAMP alone did not result in widespread PS externalization despite high levels of cellular fusion. Thus, we concluded that widespread PS externalization is independent of trophoblast fusion and, importantly, provide evidence that the common differentiation agent forskolin has previously unappreciated pleiotropic effects on trophoblastic cells. PMID:24339915

  9. Pleiotropic actions of forskolin result in phosphatidylserine exposure in primary trophoblasts.

    PubMed

    Riddell, Meghan R; Winkler-Lowen, Bonnie; Jiang, Yanyan; Davidge, Sandra T; Guilbert, Larry J

    2013-01-01

    Forskolin is an extract of the Coleus forskholii plant that is widely used in cell physiology to raise intracellular cAMP levels. In the field of trophoblast biology, forskolin is one of the primary treatments used to induce trophoblastic cellular fusion. The syncytiotrophoblast (ST) is a continuous multinucleated cell in the human placenta that separates maternal from fetal circulations and can only expand by fusion with its stem cell, the cytotrophoblast (CT). Functional investigation of any aspect of ST physiology requires in vitro differentiation of CT and de novo ST formation, thus selecting the most appropriate differentiation agent for the hypothesis being investigated is necessary as well as addressing potential off-target effects. Previous studies, using forskolin to induce fusion in trophoblastic cell lines, identified phosphatidylserine (PS) externalization to be essential for trophoblast fusion and showed that widespread PS externalization is present even after fusion has been achieved. PS is a membrane phospholipid that is primarily localized to the inner-membrane leaflet. Externalization of PS is a hallmark of early apoptosis and is involved in cellular fusion of myocytes and macrophages. We were interested to examine whether PS externalization was also involved in primary trophoblast fusion. We show widespread PS externalization occurs after 72 hours when fusion was stimulated with forskolin, but not when stimulated with the cell permeant cAMP analog Br-cAMP. Using a forskolin analog, 1,9-dideoxyforskolin, which stimulates membrane transporters but not adenylate cyclase, we found that widespread PS externalization required both increased intracellular cAMP levels and stimulation of membrane transporters. Treatment of primary trophoblasts with Br-cAMP alone did not result in widespread PS externalization despite high levels of cellular fusion. Thus, we concluded that widespread PS externalization is independent of trophoblast fusion and, importantly, provide evidence that the common differentiation agent forskolin has previously unappreciated pleiotropic effects on trophoblastic cells.

  10. KSHV Targeted Therapy: An Update on Inhibitors of Viral Lytic Replication

    PubMed Central

    Coen, Natacha; Duraffour, Sophie; Snoeck, Robert; Andrei, Graciela

    2014-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman’s disease. Since the discovery of KSHV 20 years ago, there is still no standard treatment and the management of virus-associated malignancies remains toxic and incompletely efficacious. As the majority of tumor cells are latently infected with KSHV, currently marketed antivirals that target the virus lytic cycle have shown inconsistent results in clinic. Nevertheless, lytic replication plays a major role in disease progression and virus dissemination. Case reports and retrospective studies have pointed out the benefit of antiviral therapy in the treatment and prevention of KSHV-associated diseases. As a consequence, potent and selective antivirals are needed. This review focuses on the anti-KSHV activity, mode of action and current status of antiviral drugs targeting KSHV lytic cycle. Among these drugs, different subclasses of viral DNA polymerase inhibitors and compounds that do not target the viral DNA polymerase are being discussed. We also cover molecules that target cellular kinases, as well as the potential of new drug targets and animal models for antiviral testing. PMID:25421895

  11. Establishment and characterization of Xenopus oviduct cells in primary culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, J.; Tata, J.R.

    1987-11-01

    Based on previously established procedure of Xenopus hepatocytes, the authors describe tubular oviduct cells in primary culture which continue to secrete substantial quantities of egg jelly for several days, as can be visualized microscopically. Freshly isolated cells exhibited a culture shock response, from which they recovered by the third day in culture. This recovery was characterized by (a) the diminished synthesis of heat shock proteins hsp 70 and hsp 85, (b) the cessation of the drop in number of estrogen receptor, and (c) the enhanced rate of synthesis of cellular and secreted proteins. The oviduct estrogen receptor had the samemore » characteristics as those in other estrogen target tissues and was present in the same amount as in adult female Xenopus hepatocytes. The successful establishment and characterization of primary cultures of both liver and oviduct cells now fulfill the conditions required for investigating the basis for tissue specificity of regulation by estrogen of Xenopus egg protein gene expression in primary cell culture.« less

  12. Molecular markers of trichloroethylene-induced toxicity in human kidney cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lash, Lawrence H.; Putt, David A.; Hueni, Sarah E.

    Difficulties in evaluation of trichloroethylene (TRI)-induced toxicity in humans and extrapolation of data from laboratory animals to humans are due to the existence of multiple target organs, multiple metabolic pathways, sex-, species-, and strain-dependent differences in both metabolism and susceptibility to toxicity, and the lack or minimal amount of human data for many target organs. The use of human tissue for mechanistic studies is thus distinctly advantageous. The kidneys are one target organ for TRI and metabolism by the glutathione (GSH) conjugation pathway is responsible for nephrotoxicity. The GSH conjugate is processed further to produce the cysteine conjugate, S-(1,2-dichlorovinyl)-L-cysteine (DCVC),more » which is the penultimate nephrotoxic species. Confluent, primary cultures of human proximal tubular (hPT) cells were used as the model system. Although cells in log-phase growth, which are undergoing more rapid DNA synthesis, would give lower LD{sub 50} values, confluent cells more closely mimic the in vivo proximal tubule. DCVC caused cellular necrosis only at relatively high doses (>100 {mu}M) and long incubation times (>24 h). In contrast, both apoptosis and enhanced cellular proliferation occurred at relatively low doses (10-100 {mu}M) and early incubation times (2-8 h). These responses were associated with prominent changes in expression of several proteins that regulate apoptosis (Bcl-2, Bax, Apaf-1, Caspase-9 cleavage, PARP cleavage) and cellular growth, differentiation and stress response (p53, Hsp27, NF-{kappa}B). Effects on p53 and Hsp27 implicate function of protein kinase C, the mitogen activated protein kinase pathway, and the cytoskeleton. The precise pattern of expression of these and other proteins can thus serve as molecular markers for TRI exposure and effect in human kidney.« less

  13. BTK suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling

    PubMed Central

    Lu, Yue; Yang, Hongbao; Tian, Zhidan; Yin, Gang; Zhang, Wen; Lu, Sicheng; Zhang, Yi; Yang, Ye

    2017-01-01

    We previously explored the role of BTK in maintaining multiple myeloma stem cells (MMSCs) self-renewal and drug-resistance. Here we investigated the elevation of BTK suppressing MM cellular senescence, a state of irreversible cellular growth arrest. We firstly discovered that an increased expression of BTK in MM samples compared to normal controls by immunohistochemistry (IHC), and significant chromosomal gain in primary samples. In addition, BTK high-expressing MM patients are associated with poor outcome in both Total Therapy 2 (TT2) and TT3 cohorts. Knockdown BTK expression by shRNA induced MM cellular senescence using β-galactosidase (SA-b-gal) staining, cell growth arrest by cell cycle staining and decreased clonogenicity while forcing BTK expression in MM cells abrogated these characteristics. We also validated this feature in mouse embryonic fibroblast cells (MEFs), which showed that elevated BTK expression was resistant to MEF senescence after serial cultivation in vitro. Further mechanism study revealed that BTK activated AKT signaling leading to down-regulation of P27 expression and hindered RB activity while AKT inhibitor, LY294002, overcame BTK-overexpression induced cellular senescence resistance. Eventually we demonstrated that BTK inhibitor, CGI-1746, induced MM cellular senescence, colony reduction and tumorigenecity inhibition in vivo. Summarily, we designate a novel mechanism of BTK in mediating MM growth, and BTK inhibitor is of great potential in vivo and in vitro suggesting BTK is a promising therapeutic target for MM. PMID:28915637

  14. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen

    2006-02-20

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarraymore » technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.« less

  15. Miniature short hairpin RNA screens to characterize antiproliferative drugs.

    PubMed

    Kittanakom, Saranya; Arnoldo, Anthony; Brown, Kevin R; Wallace, Iain; Kunavisarut, Tada; Torti, Dax; Heisler, Lawrence E; Surendra, Anuradha; Moffat, Jason; Giaever, Guri; Nislow, Corey

    2013-08-07

    The application of new proteomics and genomics technologies support a view in which few drugs act solely by inhibiting a single cellular target. Indeed, drug activity is modulated by complex, often incompletely understood cellular mechanisms. Therefore, efforts to decipher mode of action through genetic perturbation such as RNAi typically yields "hits" that fall into several categories. Of particular interest to the present study, we aimed to characterize secondary activities of drugs on cells. Inhibiting a known target can result in clinically relevant synthetic phenotypes. In one scenario, drug perturbation could, for example, improperly activate a protein that normally inhibits a particular kinase. In other cases, additional, lower affinity targets can be inhibited as in the example of inhibition of c-Kit observed in Bcr-Abl-positive cells treated with Gleevec. Drug transport and metabolism also play an important role in the way any chemicals act within the cells. Finally, RNAi per se can also affect cell fitness by more general off-target effects, e.g., via the modulation of apoptosis or DNA damage repair. Regardless of the root cause of these unwanted effects, understanding the scope of a drug's activity and polypharmacology is essential for better understanding its mechanism(s) of action, and such information can guide development of improved therapies. We describe a rapid, cost-effective approach to characterize primary and secondary effects of small-molecules by using small-scale libraries of virally integrated short hairpin RNAs. We demonstrate this principle using a "minipool" composed of shRNAs that target the genes encoding the reported protein targets of approved drugs. Among the 28 known reported drug-target pairs, we successfully identify 40% of the targets described in the literature and uncover several unanticipated drug-target interactions based on drug-induced synthetic lethality. We provide a detailed protocol for performing such screens and for analyzing the data. This cost-effective approach to mammalian knockdown screens, combined with the increasing maturation of RNAi technology will expand the accessibility of similar approaches in academic settings.

  16. Influenza A Virus Infection of Human Respiratory Cells Induces Primary MicroRNA Expression*

    PubMed Central

    Buggele, William A.; Johnson, Karen E.; Horvath, Curt M.

    2012-01-01

    The cellular response to virus infection is initiated by recognition of the invading pathogen and subsequent changes in gene expression mediated by both transcriptional and translational mechanisms. In addition to well established means of regulating antiviral gene expression, it has been demonstrated that RNA interference (RNAi) can play an important role in antiviral responses. Virus-derived small interfering RNA (siRNA) is a primary antiviral response exploited by plants and invertebrate animals, and host-encoded microRNA (miRNA) species have been clearly implicated in the regulation of innate and adaptive immune responses in mammals and other vertebrates. Examination of miRNA abundance in human lung cell lines revealed endogenous miRNAs, including miR-7, miR-132, miR-146a, miR-187, miR-200c, and miR-1275, to specifically accumulate in response to infection with two influenza A virus strains, A/Udorn/72 and A/WSN/33. Known antiviral response pathways, including Toll-like receptor, RIG-I-like receptor, and direct interferon or cytokine stimulation did not alter the abundance of the tested miRNAs to the extent of influenza A virus infection, which initiates primary miRNA transcription via a secondary response pathway. Gene expression profiling identified 26 cellular mRNAs targeted by these miRNAs, including IRAK1, MAPK3, and other components of innate immune signaling systems. PMID:22822053

  17. Oxidative Stress, Redox Regulation and Diseases of Cellular Differentiation

    PubMed Central

    Ye, Zhi-Wei; Zhang, Jie; Townsend, Danyelle M.; Tew, Kenneth D.

    2015-01-01

    Background Within cells, there is a narrow concentration threshold that governs whether reactive oxygen species (ROS) induce toxicity or act as second messengers. Scope of review We discuss current understanding of how ROS arise, facilitate cell signaling, cause toxicities and disease related to abnormal cell differentiation and those (primarily) sulfur based pathways that provide nucleophilicity to offset these effects. Primary conclusions Cellular redox homeostasis mediates a plethora of cellular pathways that determine life and death events. For example, ROS intersect with GSH based enzyme pathways to influence cell differentiation, a process integral to normal hematopoiesis, but also affecting a number of diverse cell differentiation related human diseases. Recent attempts to manage such pathologies have focused on intervening in some of these pathways, with the consequence that differentiation therapy targeting redox homeostasis has provided a platform for drug discovery and development. General Significance The balance between electrophilic oxidative stress and protective biomolecular nucleophiles predisposes the evolution of modern life forms. Imbalances of the two can produce aberrant redox homeostasis with resultant pathologies. Understanding the pathways involved provides opportunities to consider interventional strategies. PMID:25445706

  18. Regulation of replicative senescence by NADP+ -dependent isocitrate dehydrogenase.

    PubMed

    Kil, In Sup; Huh, Tae Lin; Lee, Young Sup; Lee, You Mie; Park, Jeen-Woo

    2006-01-01

    The free radical hypothesis of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species that are produced as by-products of normal metabolic processes. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic (IDPc) and mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) by supplying NADPH for antioxidant systems. In this paper, we demonstrate that modulation of IDPc or IDPm activity in IMR-90 cells regulates cellular redox status and replicative senescence. When we examined the regulatory role of IDPc and IDPm against the aging process with IMR-90 cells transfected with cDNA for IDPc or IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc or IDPm expressed in target cells and their susceptibility to senescence, which was reflected by changes in replicative potential, cell cycle, senescence-associated beta-galactosidase activity, expression of p21 and p53, and morphology of cells. Furthermore, lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher and cellular redox status shifted to a prooxidant condition in the cell lines expressing the lower level of IDPc or IDPm. The results suggest that IDPc and IDPm play an important regulatory role in cellular defense against oxidative stress and in the senescence of IMR-90 cells.

  19. Targeting Virus-host Interactions of HIV Replication.

    PubMed

    Weydert, Caroline; De Rijck, Jan; Christ, Frauke; Debyser, Zeger

    2016-01-01

    Cellular proteins that are hijacked by HIV in order to complete its replication cycle, form attractive new targets for antiretroviral therapy. In particular, the protein-protein interactions between these cellular proteins (cofactors) and viral proteins are of great interest to develop new therapies. Research efforts have led to the validation of different cofactors and some successes in therapeutic applications. Maraviroc, the first cofactor inhibitor approved for human medicinal use, provided a proof of concept. Furthermore, compounds developed as Integrase-LEDGF/p75 interaction inhibitors (LEDGINs) have advanced to early clinical trials. Other compounds targeting cofactors and cofactor-viral protein interactions are currently under development. Likewise, interactions between cellular restriction factors and their counteracting HIV protein might serve as interesting targets in order to impair HIV replication. In this respect, compounds targeting the Vif-APOBEC3G interaction have been described. In this review, we focus on compounds targeting the Integrase- LEDGF/p75 interaction, the Tat-P-TEFb interaction and the Vif-APOBEC3G interaction. Additionally we give an overview of currently discovered compounds presumably targeting cellular cofactor-HIV protein interactions.

  20. Cellular Development Associated with Induced Mycotoxin Synthesis in the Filamentous Fungus Fusarium graminearum

    PubMed Central

    Menke, Jon; Weber, Jakob; Broz, Karen; Kistler, H. Corby

    2013-01-01

    Several species of the filamentous fungus Fusarium colonize plants and produce toxic small molecules that contaminate agricultural products, rendering them unsuitable for consumption. Among the most destructive of these species is F. graminearum, which causes disease in wheat and barley and often infests the grain with harmful trichothecene mycotoxins. Synthesis of these secondary metabolites is induced during plant infection or in culture in response to chemical signals. Our results show that trichothecene biosynthesis involves a complex developmental process that includes dynamic changes in cell morphology and the biogenesis of novel subcellular structures. Two cytochrome P-450 oxygenases (Tri4p and Tri1p) involved in early and late steps in trichothecene biosynthesis were tagged with fluorescent proteins and shown to co-localize to vesicles we provisionally call “toxisomes.” Toxisomes, the inferred site of trichothecene biosynthesis, dynamically interact with motile vesicles containing a predicted major facilitator superfamily protein (Tri12p) previously implicated in trichothecene export and tolerance. The immediate isoprenoid precursor of trichothecenes is the primary metabolite farnesyl pyrophosphate. Changes occur in the cellular localization of the isoprenoid biosynthetic enzyme HMG CoA reductase when cultures non-induced for trichothecene biosynthesis are transferred to trichothecene biosynthesis inducing medium. Initially localized in the cellular endomembrane system, HMG CoA reductase, upon induction of trichothecene biosynthesis, increasingly is targeted to toxisomes. Metabolic pathways of primary and secondary metabolism thus may be coordinated and co-localized under conditions when trichothecene biosynthesis occurs. PMID:23667578

  1. Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia.

    PubMed

    Vallat, Laurent; Kemper, Corey A; Jung, Nicolas; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Meyer, Nicolas; Pocheville, Arnaud; Fisher, John W; Gribben, John G; Bahram, Seiamak

    2013-01-08

    Cellular behavior is sustained by genetic programs that are progressively disrupted in pathological conditions--notably, cancer. High-throughput gene expression profiling has been used to infer statistical models describing these cellular programs, and development is now needed to guide orientated modulation of these systems. Here we develop a regression-based model to reverse-engineer a temporal genetic program, based on relevant patterns of gene expression after cell stimulation. This method integrates the temporal dimension of biological rewiring of genetic programs and enables the prediction of the effect of targeted gene disruption at the system level. We tested the performance accuracy of this model on synthetic data before reverse-engineering the response of primary cancer cells to a proliferative (protumorigenic) stimulation in a multistate leukemia biological model (i.e., chronic lymphocytic leukemia). To validate the ability of our method to predict the effects of gene modulation on the global program, we performed an intervention experiment on a targeted gene. Comparison of the predicted and observed gene expression changes demonstrates the possibility of predicting the effects of a perturbation in a gene regulatory network, a first step toward an orientated intervention in a cancer cell genetic program.

  2. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age

    PubMed Central

    Xu, Ming; Tchkonia, Tamara; Ding, Husheng; Ogrodnik, Mikolaj; Lubbers, Ellen R.; Pirtskhalava, Tamar; White, Thomas A.; Johnson, Kurt O.; Stout, Michael B.; Mezera, Vojtech; Giorgadze, Nino; Jensen, Michael D.; LeBrasseur, Nathan K.; Kirkland, James L.

    2015-01-01

    Chronic, low grade, sterile inflammation frequently accompanies aging and age-related diseases. Cellular senescence is associated with the production of proinflammatory chemokines, cytokines, and extracellular matrix (ECM) remodeling proteases, which comprise the senescence-associated secretory phenotype (SASP). We found a higher burden of senescent cells in adipose tissue with aging. Senescent human primary preadipocytes as well as human umbilical vein endothelial cells (HUVECs) developed a SASP that could be suppressed by targeting the JAK pathway using RNAi or JAK inhibitors. Conditioned medium (CM) from senescent human preadipocytes induced macrophage migration in vitro and inflammation in healthy adipose tissue and preadipocytes. When the senescent cells from which CM was derived had been treated with JAK inhibitors, the resulting CM was much less proinflammatory. The administration of JAK inhibitor to aged mice for 10 wk alleviated both adipose tissue and systemic inflammation and enhanced physical function. Our findings are consistent with a possible contribution of senescent cells and the SASP to age-related inflammation and frailty. We speculate that SASP inhibition by JAK inhibitors may contribute to alleviating frailty. Targeting the JAK pathway holds promise for treating age-related dysfunction. PMID:26578790

  3. Distinct pools of cAMP centre on different isoforms of adenylyl cyclase in pituitary-derived GH3B6 cells.

    PubMed

    Wachten, Sebastian; Masada, Nanako; Ayling, Laura-Jo; Ciruela, Antonio; Nikolaev, Viacheslav O; Lohse, Martin J; Cooper, Dermot M F

    2010-01-01

    Microdomains have been proposed to explain specificity in the myriad of possible cellular targets of cAMP. Local differences in cAMP levels can be generated by phosphodiesterases, which control the diffusion of cAMP. Here, we address the possibility that adenylyl cyclases, the source of cAMP, can be primary architects of such microdomains. Distinctly regulated adenylyl cyclases often contribute to total cAMP levels in endogenous cellular settings, making it virtually impossible to determine the contribution of a specific isoform. To investigate cAMP dynamics with high precision at the single-isoform level, we developed a targeted version of Epac2-camps, a cAMP sensor, in which the sensor was tagged to a catalytically inactive version of the Ca(2+)-stimulable adenylyl cyclase 8 (AC8). This sensor, and less stringently targeted versions of Epac2-camps, revealed opposite regulation of cAMP synthesis in response to Ca(2+) in GH(3)B(6) pituitary cells. Ca(2+) release triggered by thyrotropin-releasing hormone stimulated the minor endogenous AC8 species. cAMP levels were decreased by inhibition of AC5 and AC6, and simultaneous activation of phosphodiesterases, in different compartments of the same cell. These findings demonstrate the existence of distinct adenylyl-cyclase-centered cAMP microdomains in live cells and open the door to their molecular micro-dissection.

  4. PACAP receptor pharmacology and agonist bias: analysis in primary neurons and glia from the trigeminal ganglia and transfected cells

    PubMed Central

    Walker, C S; Sundrum, T; Hay, D L

    2014-01-01

    Background and Purpose A major challenge in the development of new medicines targeting GPCRs is the ability to quantify drug action in physiologically relevant models. Primary cell models that closely resemble the clinically relevant in vivo site of drug action are important translational tools in drug development. However, pharmacological studies in these models are generally very limited due to the methodology used. Experimental Approach We used a neuropeptide system to demonstrate the applicability of using highly sensitive signalling assays in primary cells. We quantified the action of pituitary adenylate cyclase-activating peptide (PACAP)-38, PACAP-27 and vasoactive intestinal polypeptide in primary cultures of neurons and glia derived from rat trigeminal ganglia (TG), comparing our observations to transfected cells. Key Results PACAP-responsive receptors in rat trigeminal neurons, glia and transfected PAC1n receptors were pharmacologically distinct. PACAP-38, but not PACAP-27, activated ERK in glia, while both forms stimulated cellular cAMP production. PACAP(6–38) also displayed cell-type-dependent, agonist-specific, antagonism. Conclusions and Implications The complexity of PACAP pharmacology in the TG may help to direct, more effectively, the development of disease treatments targeting the PACAP receptor. We suggest that these methodologies are broadly applicable to other primary cell types of human or animal origin, and that our approach may allow more thorough characterization of ligand properties in physiologically relevant cell types. PMID:24303997

  5. Primary cilium suppression by SREBP1c involves distortion of vesicular trafficking by PLA2G3

    PubMed Central

    Gijs, Hannah Laura; Willemarck, Nicolas; Vanderhoydonc, Frank; Khan, Niamat Ali; Dehairs, Jonas; Derua, Rita; Waelkens, Etienne; Taketomi, Yoshitaka; Murakami, Makoto; Agostinis, Patrizia; Annaert, Wim; Swinnen, Johannes V.

    2015-01-01

    Distortion of primary cilium formation is increasingly recognized as a key event in many human pathologies. One of the underlying mechanisms involves aberrant activation of the lipogenic transcription factor sterol regulatory element–binding protein 1c (SREBP1c), as observed in cancer cells. To gain more insight into the molecular pathways by which SREBP1c suppresses primary ciliogenesis, we searched for overlap between known ciliogenesis regulators and targets of SREBP1. One of the candidate genes that was consistently up-regulated in cellular models of SREBP1c-induced cilium repression was phospholipase A2 group III (PLA2G3), a phospholipase that hydrolyzes the sn-2 position of glycerophospholipids. Use of RNA interference and a chemical inhibitor of PLA2G3 rescued SREBP1c-induced cilium repression. Cilium repression by SREBP1c and PLA2G3 involved alterations in endosomal recycling and vesicular transport toward the cilium, as revealed by aberrant transferrin and Rab11 localization, and was largely mediated by an increase in lysophosphatidylcholine and lysophosphatidylethanolamine levels. Together these findings indicate that aberrant activation of SREBP1c suppresses primary ciliogenesis by PLA2G3-mediated distortion of vesicular trafficking and suggest that PLA2G3 is a novel potential target to normalize ciliogenesis in SREBP1c-overexpressing cells, including cancer cells. PMID:25904332

  6. Large-Scale Culture and Genetic Modification of Human Natural Killer Cells for Cellular Therapy.

    PubMed

    Lapteva, Natalia; Parihar, Robin; Rollins, Lisa A; Gee, Adrian P; Rooney, Cliona M

    2016-01-01

    Recent advances in methods for the ex vivo expansion of human natural killer (NK) cells have facilitated the use of these powerful immune cells in clinical protocols. Further, the ability to genetically modify primary human NK cells following rapid expansion allows targeting and enhancement of their immune function. We have successfully adapted an expansion method for primary NK cells from peripheral blood mononuclear cells or from apheresis products in gas permeable rapid expansion devices (G-Rexes). Here, we describe an optimized protocol for rapid and robust NK cell expansion as well as a method for highly efficient retroviral transduction of these ex vivo expanded cells. These methodologies are good manufacturing practice (GMP) compliant and could be used for clinical-grade product manufacturing.

  7. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase.

    PubMed

    Kim, Sun Yee; Lee, Su Min; Tak, Jean Kyoung; Choi, Kyeong Sook; Kwon, Taeg Kyu; Park, Jeen-Woo

    2007-08-01

    Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. Recently, we demonstrated that the control of redox balance and the cellular defense against oxidative damage are the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) through supplying NADPH for antioxidant systems. In this report, we demonstrate that modulation of IDPc activity in HL-60 cells regulates singlet oxygen-induced apoptosis. When we examined the protective role of IDPc against singlet oxygen-induced apoptosis with HL-60 cells transfected with the cDNA for mouse IDPc in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc expressed in target cells and their susceptibility to apoptosis. The results suggest that IDPc plays an important protective role in apoptosis of HL-60 cells induced by singlet oxygen.

  8. A data-driven network model of primary myelofibrosis: transcriptional and post-transcriptional alterations in CD34+ cells.

    PubMed

    Calura, E; Pizzini, S; Bisognin, A; Coppe, A; Sales, G; Gaffo, E; Fanelli, T; Mannarelli, C; Zini, R; Norfo, R; Pennucci, V; Manfredini, R; Romualdi, C; Guglielmelli, P; Vannucchi, A M; Bortoluzzi, S

    2016-06-24

    microRNAs (miRNAs) are relevant in the pathogenesis of primary myelofibrosis (PMF) but our understanding is limited to specific target genes and the overall systemic scenario islacking. By both knowledge-based and ab initio approaches for comparative analysis of CD34+ cells of PMF patients and healthy controls, we identified the deregulated pathways involving miRNAs and genes and new transcriptional and post-transcriptional regulatory circuits in PMF cells. These converge in a unique and integrated cellular process, in which the role of specific miRNAs is to wire, co-regulate and allow a fine crosstalk between the involved processes. The PMF pathway includes Akt signaling, linked to Rho GTPases, CDC42, PLD2, PTEN crosstalk with the hypoxia response and Calcium-linked cellular processes connected to cyclic AMP signaling. Nested on the depicted transcriptional scenario, predicted circuits are reported, opening new hypotheses. Links between miRNAs (miR-106a-5p, miR-20b-5p, miR-20a-5p, miR-17-5p, miR-19b-3p and let-7d-5p) and key transcription factors (MYCN, ATF, CEBPA, REL, IRF and FOXJ2) and their common target genes tantalizingly suggest new path to approach the disease. The study provides a global overview of transcriptional and post-transcriptional deregulations in PMF, and, unifying consolidated and predicted data, could be helpful to identify new combinatorial therapeutic strategy. Interactive PMF network model: http://compgen.bio.unipd.it/pmf-net/.

  9. Quantitative analysis of circadian single cell oscillations in response to temperature

    PubMed Central

    Kramer, Achim; Herzel, Hanspeter

    2018-01-01

    Body temperature rhythms synchronize circadian oscillations in different tissues, depending on the degree of cellular coupling: the responsiveness to temperature is higher when single circadian oscillators are uncoupled. So far, the role of coupling in temperature responsiveness has only been studied in organotypic tissue slices of the central circadian pacemaker, because it has been assumed that peripheral target organs behave like uncoupled multicellular oscillators. Since recent studies indicate that some peripheral tissues may exhibit cellular coupling as well, we asked whether peripheral network dynamics also influence temperature responsiveness. Using a novel technique for long-term, high-resolution bioluminescence imaging of primary cultured cells, exposed to repeated temperature cycles, we were able to quantitatively measure period, phase, and amplitude of central (suprachiasmatic nuclei neuron dispersals) and peripheral (mouse ear fibroblasts) single cell oscillations in response to temperature. Employing temperature cycles of different lengths, and different cell densities, we found that some circadian characteristics appear cell-autonomous, e.g. period responses, while others seem to depend on the quality/degree of cellular communication, e.g. phase relationships, robustness of the oscillation, and amplitude. Overall, our findings indicate a strong dependence on the cell’s ability for intercellular communication, which is not only true for neuronal pacemakers, but, importantly, also for cells in peripheral tissues. Hence, they stress the importance of comparative studies that evaluate the degree of coupling in a given tissue, before it may be used effectively as a target for meaningful circadian manipulation. PMID:29293562

  10. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4) to foster control over stem cell proliferation, wound repair, cognitive decline, β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus. PMID:26170801

  11. Aiding and Abetting Cancer: mRNA export and the nuclear pore

    PubMed Central

    Culjkovic-Kraljacic, Biljana; Borden, Katherine L.B

    2013-01-01

    mRNA export is a critical step in gene expression. Export of transcripts can be modulated in response to cellular signaling or stress. Consistently, mRNA export is dysregulated in primary human specimens derived from many different forms of cancer. Aberrant expression of export factors can alter export of specific transcripts encoding proteins involved in proliferation, survival and oncogenesis. These specific factors, which are not used for bulk mRNA export, are obvious therapeutic targets. Indeed, given the emerging role of mRNA export in cancer, it is not surprising that efforts to target different aspects of this pathway have reached the clinical trial stage. Thus, like transcription and translation, mRNA export may also play a critical role in cancer genesis and maintenance. PMID:23582887

  12. Applications of CRISPR genome editing technology in drug target identification and validation.

    PubMed

    Lu, Quinn; Livi, George P; Modha, Sundip; Yusa, Kosuke; Macarrón, Ricardo; Dow, David J

    2017-06-01

    The analysis of pharmaceutical industry data indicates that the major reason for drug candidates failing in late stage clinical development is lack of efficacy, with a high proportion of these due to erroneous hypotheses about target to disease linkage. More than ever, there is a requirement to better understand potential new drug targets and their role in disease biology in order to reduce attrition in drug development. Genome editing technology enables precise modification of individual protein coding genes, as well as noncoding regulatory sequences, enabling the elucidation of functional effects in human disease relevant cellular systems. Areas covered: This article outlines applications of CRISPR genome editing technology in target identification and target validation studies. Expert opinion: Applications of CRISPR technology in target validation studies are in evidence and gaining momentum. Whilst technical challenges remain, we are on the cusp of CRISPR being applied in complex cell systems such as iPS derived differentiated cells and stem cell derived organoids. In the meantime, our experience to date suggests that precise genome editing of putative targets in primary cell systems is possible, offering more human disease relevant systems than conventional cell lines.

  13. Optoporation of impermeable molecules and genes for visualization and activation of cells

    NASA Astrophysics Data System (ADS)

    Dhakal, Kamal; Batbyal, Subrata; Kim, Young-Tae; Mohanty, Samarendra

    2015-03-01

    Visualization, activation, and detection of the cell(s) and their electrical activity require delivery of exogenous impermeable molecules and targeted expression of genes encoding labeling proteins, ion-channels and voltage indicators. While genes can be delivered by viral vector to cells, delivery of other impermeable molecules into the cytoplasm of targeted cells requires microinjection by mechanical needle or microelectrodes, which pose significant challenge to the viability of the cells. Further, it will be useful to localize the expression of the targeted molecules not only in specific cell types, but to specific cells in restricted spatial regions. Here, we report use of focused near-infrared (NIR) femtosecond laser beam to transiently perforate targeted cell membrane to insert genes encoding blue light activatable channelrhodopsin-2 (ChR2) and red-shifted opsin (ReachR). Optoporation of nanomolar concentrations of rhodamine phalloidin (an impermeable dye molecule for staining filamentous actin) into targeted living mammalian cells (both HEK and primary cortical neurons) is also achieved allowing imaging of dynamics and intact morphology of cellular structures without requiring fixation.

  14. Interactome Analysis of Microtubule-targeting Agents Reveals Cytotoxicity Bases in Normal Cells.

    PubMed

    Gutiérrez-Escobar, Andrés Julián; Méndez-Callejas, Gina

    2017-12-01

    Cancer causes millions of deaths annually and microtubule-targeting agents (MTAs) are the most commonly-used anti-cancer drugs. However, the high toxicity of MTAs on normal cells raises great concern. Due to the non-selectivity of MTA targets, we analyzed the interaction network in a non-cancerous human cell. Subnetworks of fourteen MTAs were reconstructed and the merged network was compared against a randomized network to evaluate the functional richness. We found that 71.4% of the MTA interactome nodes are shared, which affects cellular processes such as apoptosis, cell differentiation, cell cycle control, stress response, and regulation of energy metabolism. Additionally, possible secondary targets were identified as client proteins of interphase microtubules. MTAs affect apoptosis signaling pathways by interacting with client proteins of interphase microtubules, suggesting that their primary targets are non-tumor cells. The paclitaxel and doxorubicin networks share essential topological axes, suggesting synergistic effects. This may explain the exacerbated toxicity observed when paclitaxel and doxorubicin are used in combination for cancer treatment. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  15. Mechanism for the Cellular Uptake of Targeted Gold Nanorods of Defined Aspect Ratios.

    PubMed

    Yang, Hongrong; Chen, Zhong; Zhang, Lei; Yung, Wing-Yin; Leung, Ken Cham-Fai; Chan, Ho Yin Edwin; Choi, Chung Hang Jonathan

    2016-10-01

    Biomedical applications of non-spherical nanoparticles such as photothermal therapy and molecular imaging require their efficient intracellular delivery, yet reported details on their interactions with the cell remain inconsistent. Here, the effects of nanoparticle geometry and receptor targeting on the cellular uptake and intracellular trafficking are systematically explored by using C166 (mouse endothelial) cells and gold nanoparticles of four different aspect ratios (ARs) from 1 to 7. When coated with poly(ethylene glycol) strands, the cellular uptake of untargeted nanoparticles monotonically decreases with AR. Next, gold nanoparticles are functionalized with DNA oligonucleotides to target Class A scavenger receptors expressed by C166 cells. Intriguingly, cellular uptake is maximized at a particular AR: shorter nanorods (AR = 2) enter C166 cells more than nanospheres (AR = 1) and longer nanorods (AR = 4 or 7). Strikingly, long targeted nanorods align to the cell membrane in a near-parallel manner followed by rotating by ≈90° to enter the cell via a caveolae-mediated pathway. Upon cellular entry, targeted nanorods of all ARs predominantly traffic to the late endosome without progressing to the lysosome. The studies yield important materials design rules for drug delivery carriers based on targeted, anisotropic nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Zika virus infection of cellular components of the blood-retinal barriers: implications for viral associated congenital ocular disease.

    PubMed

    Roach, Tracoyia; Alcendor, Donald J

    2017-03-03

    Ocular abnormalities present in microcephalic infants with presumed Zika virus (ZIKV) congenital disease includes focal pigment mottling of the retina, chorioretinal atrophy, optic nerve abnormalities, and lens dislocation. Target cells in the ocular compartment for ZIKV infectivity are unknown. The cellular response of ocular cells to ZIKV infection has not been described. Mechanisms for viral dissemination in the ocular compartment of ZIKV-infected infants and adults have not been reported. Here, we identify target cells for ZIKV infectivity in both the inner and outer blood-retinal barriers (IBRB and OBRB), describe the cytokine expression profile in the IBRB after ZIKV exposure, and propose a mechanism for viral dissemination in the retina. We expose primary cellular components of the IBRB including human retinal microvascular endothelial cells, retinal pericytes, and Müller cells as well as retinal pigmented epithelial cells of the OBRB to the PRVABC56 strain of ZIKV. Viral infectivity was analyzed by microscopy, immunofluorescence, and reverse transcription polymerase chain reaction (RT-PCR and qRT-PCR). Angiogenic and proinflammatory cytokines were measured by Luminex assays. We find by immunofluorescent staining using the Flavivirus 4G2 monoclonal antibody that retinal endothelial cells and pericytes of the IBRB and retinal pigmented epithelial cells of the OBRB are fully permissive for ZIKV infection but not Müller cells when compared to mock-infected controls. We confirmed ZIKV infectivity in retinal endothelial cells, retinal pericytes, and retinal pigmented epithelial cells by RT-PCR and qRT-PCR using ZIKV-specific oligonucleotide primers. Expression profiles by Luminex assays in retinal endothelial cells infected with ZIKV revealed a marginal increase in levels of beta-2 microglobulin (β2-m), granulocyte macrophage colony-stimulating factor (GMCSF), intercellular adhesion molecule 1 (ICAM-1), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP1), and vascular cell adhesion molecule 1 (VCAM-1) and higher levels of regulated upon activation, normal T cell expressed and presumably secreted (RANTES) but lower levels of interleukin-4 (IL-4) compared to controls. Retinal endothelial cells, retinal pericytes, and retinal pigmented epithelial cells are fully permissive for ZIKV lytic replication and are primary target cells in the retinal barriers for infection. ZIKV infection of retinal endothelial cells and retinal pericytes induces significantly higher levels of RANTES that likely contributes to ocular inflammation.

  17. Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells

    PubMed Central

    Kornete, Mara

    2018-01-01

    Adoptive cell transfer is an important approach for basic research and emerges as an effective treatment for various diseases, including infections and blood cancers. Direct genetic manipulation of primary immune cells opens up unprecedented research opportunities and could be applied to enhance cellular therapeutic products. In this article, we report highly efficient genome engineering in primary murine T cells using a plasmid-based RNA-guided CRISPR system. We developed a straightforward approach to ablate genes in up to 90% of cells and to introduce precisely targeted single nucleotide polymorphisms in up to 25% of the transfected primary T cells. We used gene editing–mediated allele switching to quantify homology-directed repair, systematically optimize experimental parameters, and map a native B cell epitope in primary T cells. Allele switching of a surrogate cell surface marker can be used to enrich cells, with successful simultaneous editing of a second gene of interest. Finally, we applied the approach to correct two disease-causing mutations in the Foxp3 gene. Repairing the cause of the scurfy syndrome, a 2-bp insertion in Foxp3, and repairing the clinically relevant Foxp3K276X mutation restored Foxp3 expression in primary T cells. PMID:29445007

  18. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets.

    PubMed

    Wood, Steven L; Pernemalm, Maria; Crosbie, Philip A; Whetton, Anthony D

    2014-05-01

    Non-small cell lung cancer (NSCLC) accounts for >80% of lung cancer cases and currently has an overall five-year survival rate of only 15%. Patients presenting with advanced stage NSCLC die within 18-months of diagnosis. Metastatic spread accounts for >70% of these deaths. Thus elucidation of the mechanistic basis of NSCLC-metastasis has potential to impact on patient quality of life and survival. Research on NSCLC metastasis has recently expanded to include non-cancer cell components of tumors-the stromal cellular compartment and extra-cellular matrix components comprising the tumor-microenvironment. Metastasis (from initial primary tumor growth through angiogenesis, intravasation, survival in the bloodstream, extravasation and metastatic growth) is an inefficient process and few released cancer cells complete the entire process. Micro-environmental interactions assist each of these steps and discovery of the mechanisms by which tumor cells co-operate with the micro-environment are uncovering key molecules providing either biomarkers or potential drug targets. The major sites of NSCLC metastasis are brain, bone, adrenal gland and the liver. The mechanistic basis of this tissue-tropism is beginning to be elucidated offering the potential to target stromal components of these tissues thus targeting therapy to the tissues affected. This review covers the principal steps involved in tumor metastasis. The role of cell-cell interactions, ECM remodeling and autocrine/paracrine signaling interactions between tumor cells and the surrounding stroma is discussed. The mechanistic basis of lung cancer metastasis to specific organs is also described. The signaling mechanisms outlined have potential to act as future drug targets minimizing lung cancer metastatic spread and morbidity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines.

    PubMed

    De Schryver, Marjorie; Leemans, Annelies; Pintelon, Isabel; Cappoen, Davie; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L

    2017-06-01

    Sialoadhesin (Sn) is a surface receptor expressed on resident macrophages with the ability to bind with sialic acids. During inflammation, an upregulation of Sn is observed. Upon binding of monoclonal antibodies to Sn, the receptor becomes internalized and this has been observed in multiple species. The latter characteristic, combined with the strong upregulation of Sn on inflammatory macrophages and the fact that Sn-positive macrophages contribute to certain inflammatory diseases, makes Sn an interesting entry portal for phenotype-modulating or cytotoxic drugs. Such drugs or toxins can be linked to Sn-specific antibodies which should enable their targeted uptake by macrophages. However, the activity of such drugs depends not only on their internalization but also on the intracellular trafficking and final fate in the endolysosomal system. Although information is available for porcine Sn, the detailed mechanisms of human and mouse Sn internalization and subsequent intracellular trafficking are currently unknown. To allow development of Sn-targeted therapies, differences across species and cellular background need to be characterized in more detail. In the current report, we show that internalization of human and mouse Sn is dynamin-dependent and clathrin-mediated, both in primary macrophages and CHO cell lines expressing a recombinant Sn. In primary macrophages, internalized Sn-specific F(ab') 2 fragments are located mostly in the early endosomes. With Fc containing Sn-specific antibodies, there is a slight shift towards lysosomal localization in mouse macrophages, possibly because of an interaction with Fc receptors. Surprisingly, in CHO cell lines expressing Sn, there is a predominant lysosomal localization. Our results show that the mechanism of Sn internalization and intracellular trafficking is concurrent in the tested species. The cellular background in which Sn is expressed and the type of antibody used can affect the intracellular fate, which in turn can impact the activity of antibody-based therapeutic interventions via Sn. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Epstein-Barr Virus EBNA1 Protein Regulates Viral Latency through Effects on let-7 MicroRNA and Dicer

    PubMed Central

    Mansouri, Sheila; Pan, Qun; Blencowe, Benjamin J.; Claycomb, Julie M.

    2014-01-01

    ABSTRACT The EBNA1 protein of Epstein-Barr virus (EBV) plays multiple roles in EBV latent infection, including altering cellular pathways relevant for cancer. Here we used microRNA (miRNA) cloning coupled with high-throughput sequencing to identify the effects of EBNA1 on cellular miRNAs in two nasopharyngeal carcinoma cell lines. EBNA1 affected a small percentage of cellular miRNAs in both cell lines, in particular, upregulating multiple let-7 family miRNAs, including let-7a. The effects of EBNA1 on let-7a were verified by demonstrating that EBNA1 silencing in multiple EBV-positive carcinomas downregulated let-7a. Accordingly, the let-7a target, Dicer, was found to be partially downregulated by EBNA1 expression (at the mRNA and protein levels) and upregulated by EBNA1 silencing in EBV-positive cells. Reporter assays based on the Dicer 3′ untranslated region with and without let-7a target sites indicated that the effects of EBNA1 on Dicer were mediated by let-7a. EBNA1 was also found to induce the expression of let-7a primary RNAs in a manner dependent on the EBNA1 transcriptional activation region, suggesting that EBNA1 induces let-7a by transactivating the expression of its primary transcripts. Consistent with previous reports that Dicer promotes EBV reactivation, we found that a let-7a mimic inhibited EBV reactivation to the lytic cycle, while a let-7 sponge increased reactivation. The results provide a mechanism by which EBNA1 could promote EBV latency by inducing let-7 miRNAs. IMPORTANCE The EBNA1 protein of Epstein-Barr virus (EBV) contributes in multiple ways to the latent mode of EBV infection that leads to lifelong infection. In this study, we identify a mechanism by which EBNA1 helps to maintain EBV infection in a latent state. This involves induction of a family of microRNAs (let-7 miRNAs) that in turn decreases the level of the cellular protein Dicer. We demonstrate that let-7 miRNAs inhibit the reactivation of latent EBV, providing an explanation for our previous observation that EBNA1 promotes latency. In addition, since decreased levels of Dicer have been associated with metastatic potential, EBNA1 may increase metastases by downregulating Dicer. PMID:25031339

  1. Divergent synthesis and identification of the cellular targets of deoxyelephantopins

    NASA Astrophysics Data System (ADS)

    Lagoutte, Roman; Serba, Christelle; Abegg, Daniel; Hoch, Dominic G.; Adibekian, Alexander; Winssinger, Nicolas

    2016-08-01

    Herbal extracts containing sesquiterpene lactones have been extensively used in traditional medicine and are known to be rich in α,β-unsaturated functionalities that can covalently engage target proteins. Here we report synthetic methodologies to access analogues of deoxyelephantopin, a sesquiterpene lactone with anticancer properties. Using alkyne-tagged cellular probes and quantitative proteomics analysis, we identified several cellular targets of deoxyelephantopin. We further demonstrate that deoxyelephantopin antagonizes PPARγ activity in situ via covalent engagement of a cysteine residue in the zinc-finger motif of this nuclear receptor.

  2. Targeting tumor highly-expressed LAT1 transporter with amino acid-modified nanoparticles: Toward a novel active targeting strategy in breast cancer therapy.

    PubMed

    Li, Lin; Di, Xingsheng; Wu, Mingrui; Sun, Zhisu; Zhong, Lu; Wang, Yongjun; Fu, Qiang; Kan, Qiming; Sun, Jin; He, Zhonggui

    2017-04-01

    Designing active targeting nanocarriers with increased cellular accumulation of chemotherapeutic agents is a promising strategy in cancer therapy. Herein, we report a novel active targeting strategy based on the large amino acid transporter 1 (LAT1) overexpressed in a variety of cancers. Glutamate was conjugated to polyoxyethylene stearate as a targeting ligand to achieve LAT1-targeting PLGA nanoparticles. The targeting efficiency of nanoparticles was investigated in HeLa and MCF-7 cells. Significant increase in cellular uptake and cytotoxicity was observed in LAT1-targeting nanoparticles compared to the unmodified ones. More interestingly, the internalized LAT1 together with targeting nanoparticles could recycle back to the cell membrane within 3 h, guaranteeing sufficient transporters on cell membrane for continuous cellular uptake. The LAT1 targeting nanoparticles exhibited better tumor accumulation and antitumor effects. These results suggested that the overexpressed LAT1 on cancer cells holds a great potential to be a high-efficiency target for the rational design of active-targeting nanosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Morphology of uranium electrodeposits on cathode in electrorefining process: A phase-field simulation

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Sato, Takumi; Suzuki, Toshio; Ohta, Hirokazu; Kurata, Masaki

    2013-05-01

    Morphology of uranium electrodeposits on cathode with respect to applied voltage, zirconium concentration in the molten salt and the size of primary deposit during pyroprocessing is systematically investigated by the phase-field simulation. It is found that there is a threshold zirconium concentration in the molten salt demarcating planar and cellular/needle-like electrodeposits, which agrees with experimental results. In addition, the effect of size of primary deposits on the morphology of electrodeposits is examined. It is then confirmed that cellular/needle-like electrodeposits are formed from large primary deposits at all applied voltages considered, whereas both the planar and cellular/needle-like electrodeposits are formed from the primary deposits of 10 μm and less.

  4. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma

    PubMed Central

    Zhu, Yuan Xiao; Kortuem, K. Martin; Stewart, A. Keith

    2014-01-01

    Although several mechanisms have been proposed to explain the activity of thalidomide, lenalidomide and pomalidomide in multiple myeloma (MM), including demonstrable anti-angiogenic, anti-proliferative and immunomodulatory effects, the precise cellular targets and molecular mechanisms have only recently become clear. A landmark study recently identified cereblon (CRBN) as a primary target of thalidomide teratogenicity. Subsequently it was demonstrated that CRBN is also required for the anti-myeloma activity of thalidomide and related drugs, the so-called immune-modulatory drugs (IMiDs). Low CRBN expression was found to correlate with drug resistance in MM cell lines and primary MM cells. One of the downstream targets of CRBN identified is interferon regulatory factor 4 (IRF4), which is critical for myeloma cell survival and is down-regulated by IMiD treatment. CRBN is also implicated in several effects of IMiDs, such as down-regulation of tumor necrosis factor-α (TNF-α) and T cell immunomodulatory activity, demonstrating that the pleotropic actions of the IMiDs are initiated by binding to CRBN. Future dissection of CRBN downstream signaling will help to delineate the underlying mechanisms for IMiD action and eventually lead to development of new drugs with more specific anti-myeloma activities. It may also provide a biomarker to predict IMiD response and resistance. PMID:22966948

  5. Metformin: Multi-faceted protection against cancer

    PubMed Central

    Cufí, Sílvia; Oliveras-Ferraros, Cristina; Bosch-Barrera, Joaquim; Joven, Jorge; Martin-Castillo, Begoña; Menendez, Javier A.

    2011-01-01

    The biguanide metformin, a widely used drug for the treatment of type 2 diabetes, may exert cancer chemopreventive effects by suppressing the transformative and hyperproliferative processes that initiate carcinogenesis. Metformin's molecular targets in cancer cells (e.g., mTOR, HER2) are similar to those currently being used for directed cancer therapy. However, metformin is nontoxic and might be extremely useful for enhancing treatment efficacy of mechanism-based and biologically targeted drugs. Here, we first revisit the epidemiological, preclinical, and clinical evidence from the last 5 years showing that metformin is a promising candidate for oncology therapeutics. Second, the anticancer effects of metformin by both direct (insulin-independent) and indirect (insulin-dependent) mechanisms are discussed in terms of metformin-targeted processes and the ontogenesis of cancer stem cells (CSC), including Epithelial-to-Mesenchymal Transition (EMT) and microRNAs-regulated dedifferentiation of CSCs. Finally, we present preliminary evidence that metformin may regulate cellular senescence, an innate safeguard against cellular immortalization. There are two main lines of evidence that suggest that metformin's primary target is the immortalizing step during tumorigenesis. First, metformin activates intracellular DNA damage response checkpoints. Second, metformin attenuates the anti-senescence effects of the ATP-generating glycolytic metabotype-the Warburg effect-, which is required for self-renewal and proliferation of CSCs. If metformin therapy presents an intrinsic barrier against tumorigenesis by lowering the threshold for stress-induced senescence, metformin therapeutic strategies may be pivotal for therapeutic intervention for cancer. Current and future clinical trials will elucidate whether metformin has the potential to be used in preventive and treatment settings as an adjuvant to current cancer therapeutics. PMID:22203527

  6. Targeting chemotherapy-resistant leukemia by combining DNT cellular therapy with conventional chemotherapy.

    PubMed

    Chen, Branson; Lee, Jong Bok; Kang, Hyeonjeong; Minden, Mark D; Zhang, Li

    2018-04-24

    While conventional chemotherapy is effective at eliminating the bulk of leukemic cells, chemotherapy resistance in acute myeloid leukemia (AML) is a prevalent problem that hinders conventional therapies and contributes to disease relapse, and ultimately patient death. We have recently shown that allogeneic double negative T cells (DNTs) are able to target the majority of primary AML blasts in vitro and in patient-derived xenograft models. However, some primary AML blast samples are resistant to DNT cell therapy. Given the differences in the modes of action of DNTs and chemotherapy, we hypothesize that DNT therapy can be used in combination with conventional chemotherapy to further improve their anti-leukemic effects and to target chemotherapy-resistant disease. Drug titration assays and flow-based cytotoxicity assays using ex vivo expanded allogeneic DNTs were performed on multiple AML cell lines to identify therapy-resistance. Primary AML samples were also tested to validate our in vitro findings. Further, a xenograft model was employed to demonstrate the feasibility of combining conventional chemotherapy and adoptive DNT therapy to target therapy-resistant AML. Lastly, blocking assays with neutralizing antibodies were employed to determine the mechanism by which chemotherapy increases the susceptibility of AML to DNT-mediated cytotoxicity. Here, we demonstrate that KG1a, a stem-like AML cell line that is resistant to DNTs and chemotherapy, and chemotherapy-resistant primary AML samples both became more susceptible to DNT-mediated cytotoxicity in vitro following pre-treatment with daunorubicin. Moreover, chemotherapy treatment followed by adoptive DNT cell therapy significantly decreased bone marrow engraftment of KG1a in a xenograft model. Mechanistically, daunorubicin increased the expression of NKG2D and DNAM-1 ligands on KG1a; blocking of these pathways attenuated DNT-mediated cytotoxicity. Our results demonstrate the feasibility and benefit of using DNTs as an immunotherapy after the administration of conventional chemotherapy.

  7. TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup.

    PubMed

    Labbé, David P; Sweeney, Christopher J; Brown, Myles; Galbo, Phillip; Rosario, Spencer; Wadosky, Kristine M; Ku, Sheng-Yu; Sjöström, Martin; Alshalalfa, Mohammed; Erho, Nicholas; Davicioni, Elai; Karnes, R Jeffrey; Schaeffer, Edward M; Jenkins, Robert B; Den, Robert B; Ross, Ashley E; Bowden, Michaela; Huang, Ying; Gray, Kathryn P; Feng, Felix Y; Spratt, Daniel E; Goodrich, David W; Eng, Kevin H; Ellis, Leigh

    2017-11-15

    Purpose: Current clinical parameters do not stratify indolent from aggressive prostate cancer. Aggressive prostate cancer, defined by the progression from localized disease to metastasis, is responsible for the majority of prostate cancer-associated mortality. Recent gene expression profiling has proven successful in predicting the outcome of prostate cancer patients; however, they have yet to provide targeted therapy approaches that could inhibit a patient's progression to metastatic disease. Experimental Design: We have interrogated a total of seven primary prostate cancer cohorts ( n = 1,900), two metastatic castration-resistant prostate cancer datasets ( n = 293), and one prospective cohort ( n = 1,385) to assess the impact of TOP2A and EZH2 expression on prostate cancer cellular program and patient outcomes. We also performed IHC staining for TOP2A and EZH2 in a cohort of primary prostate cancer patients ( n = 89) with known outcome. Finally, we explored the therapeutic potential of a combination therapy targeting both TOP2A and EZH2 using novel prostate cancer-derived murine cell lines. Results: We demonstrate by genome-wide analysis of independent primary and metastatic prostate cancer datasets that concurrent TOP2A and EZH2 mRNA and protein upregulation selected for a subgroup of primary and metastatic patients with more aggressive disease and notable overlap of genes involved in mitotic regulation. Importantly, TOP2A and EZH2 in prostate cancer cells act as key driving oncogenes, a fact highlighted by sensitivity to combination-targeted therapy. Conclusions: Overall, our data support further assessment of TOP2A and EZH2 as biomarkers for early identification of patients with increased metastatic potential that may benefit from adjuvant or neoadjuvant targeted therapy approaches. Clin Cancer Res; 23(22); 7072-83. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. In vitro FTIR microspectroscopy analysis of primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil: a new spectroscopic approach for studying the drug-cell interaction.

    PubMed

    Giorgini, Elisabetta; Sabbatini, Simona; Rocchetti, Romina; Notarstefano, Valentina; Rubini, Corrado; Conti, Carla; Orilisi, Giulia; Mitri, Elisa; Bedolla, Diana E; Vaccari, Lisa

    2018-06-22

    In the present study, human primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil were analyzed, for the first time, by in vitro FTIR Microspectroscopy (FTIRM), to improve the knowledge on the biochemical pathways activated by these two chemotherapy drugs. To date, most of the studies regarding FTIRM cellular analysis have been executed on fixed cells from immortalized cell lines. FTIRM analysis performed on primary tumor cells under controlled hydrated conditions provides more reliable information on the biochemical processes occurring in in vivo tumor cells. This spectroscopic analysis allows to get on the same sample and at the same time an overview of the composition and structure of the most remarkable cellular components. In vitro FTIRM analysis of primary oral squamous carcinoma cells evidenced a time-dependent drug-specific cellular response, also including apoptosis triggering. Furthermore, the univariate and multivariate analyses of IR data evidenced meaningful spectroscopic differences ascribable to alterations affecting cellular proteins, lipids and nucleic acids. These findings suggest for the two drugs different pathways and extents of cellular damage, not provided by conventional cell-based assays (MTT assay and image-based cytometry).

  9. Disorders of erythrocyte hydration.

    PubMed

    Gallagher, Patrick G

    2017-12-21

    The erythrocyte contains a network of pathways that regulate salt and water content in the face of extracellular and intracellular osmotic perturbations. This allows the erythrocyte to maintain a narrow range of cell hemoglobin concentration, a process critical for normal red blood cell function and survival. Primary disorders that perturb volume homeostasis jeopardize the erythrocyte and may lead to its premature destruction. These disorders are marked by clinical, laboratory, and physiologic heterogeneity. Recent studies have revealed that these disorders are also marked by genetic heterogeneity. They have implicated roles for several proteins, PIEZO1, a mammalian mechanosensory protein; GLUT1, the glucose transporter; SLC4A1, the anion transporter; RhAG, the Rh-associated glycoprotein; KCNN4, the Gardos channel; and ABCB6, an adenosine triphosphate-binding cassette family member, in the maintenance of erythrocyte volume homeostasis. Secondary disorders of erythrocyte hydration include sickle cell disease, thalassemia, hemoglobin CC, and hereditary spherocytosis, where cellular dehydration may be a significant contributor to disease pathology and clinical complications. Understanding the pathways regulating erythrocyte water and solute content may reveal innovative strategies to maintain normal volume in disorders associated with primary or secondary cellular dehydration. These mechanisms will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment beyond the erythrocyte. © 2017 by The American Society of Hematology.

  10. MicroRNA Profiling of Sendai Virus-Infected A549 Cells Identifies miR-203 as an Interferon-Inducible Regulator of IFIT1/ISG56

    PubMed Central

    Buggele, William A.

    2013-01-01

    The mammalian type I interferon (IFN) response is a primary barrier for virus infection and is essential for complete innate and adaptive immunity. Both IFN production and IFN-mediated antiviral signaling are the result of differential cellular gene expression, a process that is tightly controlled at transcriptional and translational levels. To determine the potential for microRNA (miRNA)-mediated regulation of the antiviral response, small-RNA profiling was used to analyze the miRNA content of human A549 cells at steady state and following infection with the Cantell strain of Sendai virus, a potent inducer of IFN and cellular antiviral responses. While the miRNA content of the cells was largely unaltered by infection, specific changes in miRNA abundance were identified during Sendai virus infection. One miRNA, miR-203, was found to accumulate in infected cells and in response to IFN treatment. Results indicate that miR-203 is an IFN-inducible miRNA that can negatively regulate a number of cellular mRNAs, including an IFN-stimulated gene target, IFIT1/ISG56, by destabilizing its mRNA transcript. PMID:23785202

  11. Mitochondrial peptides modulate mitochondrial function during cellular senescence.

    PubMed

    Kim, Su-Jeong; Mehta, Hemal H; Wan, Junxiang; Kuehnemann, Chisaka; Chen, Jingcheng; Hu, Ji-Fan; Hoffman, Andrew R; Cohen, Pinchas

    2018-06-10

    Cellular senescence is a complex cell fate response that is thought to underlie several age-related pathologies. Despite a loss of proliferative potential, senescent cells are metabolically active and produce energy-consuming effectors, including senescence-associated secretory phenotypes (SASPs). Mitochondria play crucial roles in energy production and cellular signaling, but the key features of mitochondrial physiology and particularly of mitochondria-derived peptides (MDPs), remain underexplored in senescence responses. Here, we used primary human fibroblasts made senescent by replicative exhaustion, doxorubicin or hydrogen peroxide treatment, and examined the number of mitochondria and the levels of mitochondrial respiration, mitochondrial DNA methylation and the mitochondria-encoded peptides humanin, MOTS-c, SHLP2 and SHLP6. Senescent cells showed increased numbers of mitochondria and higher levels of mitochondrial respiration, variable changes in mitochondrial DNA methylation, and elevated levels of humanin and MOTS-c. Humanin and MOTS-c administration modestly increased mitochondrial respiration and selected components of the SASP in doxorubicin-induced senescent cells partially via JAK pathway. Targeting metabolism in senescence cells is an important strategy to reduce SASP production for eliminating the deleterious effects of senescence. These results provide insight into the role of MDPs in mitochondrial energetics and the production of SASP components by senescent cells.

  12. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    PubMed Central

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  13. Cancer and the metastatic substrate

    PubMed Central

    Arvelo, Francisco; Sojo, Felipe; Cotte, Carlos

    2016-01-01

    Seventy percent of cancer patients have detectable metastases when they receive a diagnosis and 90% of cancer deaths result from metastases. These two facts emphasise the urgency for research to study the mechanisms and processes that enable metastasis. We need to develop a greater understanding of the cellular and molecular mechanisms that cause metastasis and also we need to do more. We must also consider the micro- and macro-environmental factors that influence this disease. Studying this environmental context has led us to update the ‘seed and soil’ hypothesis which dates back to the 19th century. This theory describes cancerous cells as seeds and the substrate as the soil in target organs though this may seem antiquated. Nonetheless, the tissue specificity that researchers have recently observed in metastatic colonisation supports the validity of the seed and soil theory. We now know that the metastatic potential of a tumour cell depends on multiple, reciprocal interactions between the primary tumour and distant sites. These interactions determine tumour progression. Studies of metastasis have allowed us to develop treatments that focus on therapeutic effectiveness. These new treatments account for the frequent metastasis of some tumours to target organs such as bones, lungs, brain, and liver. The purpose of this review is first to describe interactions between the cellular and molecular entities and the target organ tumour environment that enables metastasis. A second aim is to describe the complex mechanisms that mediate these interactions. PMID:28105072

  14. Targeting HSP70 and GRP78 in canine osteosarcoma cells in combination with doxorubicin chemotherapy.

    PubMed

    Asling, Jonathan; Morrison, Jodi; Mutsaers, Anthony J

    2016-11-01

    Heat shock proteins (HSPs) are molecular chaperones subdivided into several families based on their molecular weight. Due to their cytoprotective roles, these proteins may help protect cancer cells against chemotherapy-induced cell death. Investigation into the biologic activity of HSPs in a variety of cancers including primary bone tumors, such as osteosarcoma (OSA), is of great interest. Both human and canine OSA tumor samples have aberrant production of HSP70. This study assessed the response of canine OSA cells to inhibition of HSP70 and GRP78 by the ATP-mimetic VER-155008 and whether this treatment strategy could sensitize cells to doxorubicin chemotherapy. Single-agent VER-155008 treatment decreased cellular viability and clonogenic survival and increased apoptosis in canine OSA cell lines. However, combination schedules with doxorubicin after pretreatment with VER-155008 did not improve inhibition of cellular viability, apoptosis, or clonogenic survival. Treatment with VER-155008 prior to chemotherapy resulted in an upregulation of target proteins HSP70 and GRP78 in addition to the co-chaperone proteins Herp, C/EBP homologous transcription protein (CHOP), and BAG-1. The increased GRP78 was more cytoplasmic in location compared to untreated cells. Single-agent treatment also revealed a dose-dependent reduction in activated and total Akt. Based on these results, targeting GRP78 and HSP70 may have biologic activity in canine osteosarcoma. Further studies are required to determine if and how this strategy may impact the response of osteosarcoma cells to chemotherapy.

  15. Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells

    PubMed Central

    Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng

    2013-01-01

    The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581

  16. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation.

    PubMed

    Anselmo, Aaron C; Gilbert, Jonathan B; Kumar, Sunny; Gupta, Vivek; Cohen, Robert E; Rubner, Michael F; Mitragotri, Samir

    2015-02-10

    Targeted delivery of drugs and imaging agents to inflamed tissues, as in the cases of cancer, Alzheimer's disease, Parkinson's disease, and arthritis, represents one of the major challenges in drug delivery. Monocytes possess a unique ability to target and penetrate into sites of inflammation. Here, we describe a broad approach to take advantage of the natural ability of monocytes to target and deliver flat polymeric particles ("Cellular Backpacks") to inflamed tissues. Cellular backpacks attach strongly to the surface of monocytes but do not undergo phagocytosis due to backpack's size, disk-like shape and flexibility. Following attachment of backpacks, monocytes retain important cellular functions including transmigration through an endothelial monolayer and differentiation into macrophages. In two separate in vivo inflammation models, backpack-laden monocytes exhibit increased targeting to inflamed tissues. Cellular backpacks, and their abilities to attach to monocytes without impairing monocyte functions and 'hitchhike' to a variety of inflamed tissues, offer a new platform for both cell-mediated therapies and broad targeting of inflamed tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. DNA mismatch-specific targeting and hypersensitivity of mismatch-repair-deficient cells to bulky rhodium(III) intercalators

    PubMed Central

    Hart, Jonathan R.; Glebov, Oleg; Ernst, Russell J.; Kirsch, Ilan R.; Barton, Jacqueline K.

    2006-01-01

    Mismatch repair (MMR) is critical to maintaining the integrity of the genome, and deficiencies in MMR are correlated with cancerous transformations. Bulky rhodium intercalators target DNA base mismatches with high specificity. Here we describe the application of bulky rhodium intercalators to inhibit cellular proliferation differentially in MMR-deficient cells compared with cells that are MMR-proficient. Preferential inhibition by the rhodium complexes associated with MMR deficiency is seen both in a human colon cancer cell line and in normal mouse fibroblast cells; the inhibition of cellular proliferation depends strictly on the MMR deficiency of the cell. Furthermore, our assay of cellular proliferation is found to correlate with DNA mismatch targeting by the bulky metallointercalators. It is the Δ-isomer that is active both in targeting base mismatches and in inhibiting DNA synthesis. Additionally, the rhodium intercalators promote strand cleavage at the mismatch site with photoactivation, and we observe that the cellular response is enhanced with photoactivation. Targeting DNA mismatches may therefore provide a cell-selective strategy for chemotherapeutic design. PMID:17030786

  18. The Role of Oxidative Stress in Parkinson’s Disease

    PubMed Central

    Dias, Vera; Junn, Eunsung; Mouradian, M. Maral

    2014-01-01

    Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson’s disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection. PMID:24252804

  19. Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development

    PubMed Central

    Dahiya, Satinder; Nonnemacher, Michael R.

    2012-01-01

    Despite the success of highly active antiretroviral therapy in combating human immunodeficiency virus type 1 (HIV-1) infection, the virus still persists in viral reservoirs, often in a state of transcriptional silence. This review focuses on the HIV-1 protein and regulatory machinery and how expanding knowledge of the function of individual HIV-1-coded proteins has provided valuable insights into understanding HIV transcriptional regulation in selected susceptible cell types. Historically, Tat has been the most studied primary transactivator protein, but emerging knowledge of HIV-1 transcriptional regulation in cells of the monocyte–macrophage lineage has more recently established that a number of the HIV-1 accessory proteins like Vpr may directly or indirectly regulate the transcriptional process. The viral proteins Nef and matrix play important roles in modulating the cellular activation pathways to facilitate viral replication. These observations highlight the cross talk between the HIV-1 transcriptional machinery and cellular activation pathways. The review also discusses the proposed transcriptional regulation mechanisms that intersect with the pathways regulated by microRNAs and how development of the knowledge of chromatin biology has enhanced our understanding of key protein–protein and protein–DNA interactions that form the HIV-1 transcriptome. Finally, we discuss the potential pharmacological approaches to target viral persistence and enhance effective transcription to purge the virus in cellular reservoirs, especially within the central nervous system, and the novel therapeutics that are currently in various stages of development to achieve a much superior prognosis for the HIV-1-infected population. PMID:22422068

  20. Identifying novel members of the Wntless interactome through genetic and candidate gene approaches.

    PubMed

    Petko, Jessica; Tranchina, Trevor; Patel, Goral; Levenson, Robert; Justice-Bitner, Stephanie

    2018-04-01

    Wnt signaling is an important pathway that regulates several aspects of embryogenesis, stem cell maintenance, and neural connectivity. We have recently determined that opioids decrease Wnt secretion, presumably by inhibiting the recycling of the Wnt trafficking protein Wntless (Wls). This effect appears to be mediated by protein-protein interaction between Wls and the mu-opioid receptor (MOR), the primary cellular target of opioid drugs. The goal of this study was to identify novel protein interactors of Wls that are expressed in the brain and may also play a role in reward or addiction. Using genetic and candidate gene approaches, we show that among a variety of protein, Wls interacts with the dopamine transporter (target of cocaine), cannabinoid receptors (target of THC), Adenosine A2A receptor (target of caffeine), and SGIP1 (endocytic regulator of cannabinoid receptors). Our study shows that aside from opioid receptors, Wntless interacts with additional proteins involved in reward and/or addiction. Future studies will determine whether Wntless and WNT signaling play a more universal role in these processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Glioblastoma Stem Cells as a New Therapeutic Target for Glioblastoma.

    PubMed

    Kalkan, Rasime

    2015-01-01

    Primary and secondary glioblastomas (GBMs) are two distinct diseases. The genetic and epigenetic background of these tumors is highly variable. The treatment procedure for these tumors is often unsuccessful because of the cellular heterogeneity and intrinsic ability of the tumor cells to invade healthy tissues. The fatal outcome of these tumors promotes researchers to find out new markers associated with the prognosis and treatment planning. In this communication, the role of glioblastoma stem cells in tumor progression and the malignant behavior of GBMs are summarized with attention to the signaling pathways and molecular regulators that are involved in maintaining the glioblastoma stem cell phenotype. A better understanding of these stem cell-like cells is necessary for designing new effective treatments and developing novel molecular strategies to target glioblastoma stem cells. We discuss hypoxia as a new therapeutic target for GBM. We focus on the inhibition of signaling pathways, which are associated with the hypoxia-mediated maintenance of glioblastoma stem cells, and the knockdown of hypoxia-inducible factors, which could be identified as attractive molecular target approaches for GBM therapeutics.

  2. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    PubMed Central

    Lavenant, Gwendoline Thiery; Zavalin, Andrey I.; Caprioli, Richard M.

    2013-01-01

    Targeted multiplex Imaging Mass Spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This manuscript describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet. PMID:23397138

  3. Targeting the hallmarks of cancer with therapy-induced endoplasmic reticulum (ER) stress

    PubMed Central

    Garg, Abhishek D; Maes, Hannelore; van Vliet, Alexander R; Agostinis, Patrizia

    2015-01-01

    The endoplasmic reticulum (ER) is at the center of a number of vital cellular processes such as cell growth, death, and differentiation, crosstalk with immune or stromal cells, and maintenance of proteostasis or homeostasis, and ER functions have implications for various pathologies including cancer. Recently, a number of major hallmarks of cancer have been delineated that are expected to facilitate the development of anticancer therapies. However, therapeutic induction of ER stress as a strategy to broadly target multiple hallmarks of cancer has been seldom discussed despite the fact that several primary or secondary ER stress-inducing therapies have been found to exhibit positive clinical activity in cancer patients. In the present review we provide a brief historical overview of the major discoveries and milestones in the field of ER stress biology with important implications for anticancer therapy. Furthermore, we comprehensively discuss possible strategies enabling the targeting of multiple hallmarks of cancer with therapy-induced ER stress. PMID:27308392

  4. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Thiery-Lavenant, Gwendoline; Zavalin, Andre I.; Caprioli, Richard M.

    2013-04-01

    Targeted multiplex imaging mass spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This article describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet.

  5. Cellular and Biophysical Pipeline for the Screening of Peroxisome Proliferator-Activated Receptor Beta/Delta Agonists: Avoiding False Positives

    PubMed Central

    Batista, Fernanda Aparecida Heleno

    2018-01-01

    Peroxisome proliferator-activated receptor beta/delta (PPARß/δ) is considered a therapeutic target for metabolic disorders, cancer, and cardiovascular diseases. Here, we developed one pipeline for the screening of PPARß/δ agonists, which reduces the cost, time, and false-positive hits. The first step is an optimized 3-day long cellular transactivation assay based on reporter-gene technology, which is supported by automated liquid-handlers. This primary screening is followed by a confirmatory transactivation assay and by two biophysical validation methods (thermal shift assay (TSA) and (ANS) fluorescence quenching), which allow the calculation of the affinity constant, giving more information about the selected hits. All of the assays were validated using well-known commercial agonists providing trustworthy data. Furthermore, to validate and test this pipeline, we screened a natural extract library (560 extracts), and we found one plant extract that might be interesting for PPARß/δ modulation. In conclusion, our results suggested that we developed a cheaper and more robust pipeline that goes beyond the single activation screening, as it also evaluates PPARß/δ tertiary structure stabilization and the ligand affinity constant, selecting only molecules that directly bind to the receptor. Moreover, this approach might improve the effectiveness of the screening for agonists that target PPARß/δ for drug development.

  6. Synthesis of Carbohydrate Capped Silicon Nanoparticles and their Reduced Cytotoxicity, In Vivo Toxicity, and Cellular Uptake.

    PubMed

    Ahire, Jayshree H; Behray, Mehrnaz; Webster, Carl A; Wang, Qi; Sherwood, Victoria; Saengkrit, Nattika; Ruktanonchai, Uracha; Woramongkolchai, Noppawan; Chao, Yimin

    2015-08-26

    The development of smart targeted nanoparticles (NPs) that can identify and deliver drugs at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating primary and advanced metastatic tumors. Obtaining knowledge of the diseases at the molecular level can facilitate the identification of biological targets. In particular, carbohydrate-mediated molecular recognitions using nano-vehicles are likely to increasingly affect cancer treatment methods, opening a new area in biomedical applications. Here, silicon NPs (SiNPs) capped with carbohydrates including galactose, glucose, mannose, and lactose are successfully synthesized from amine terminated SiNPs. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] analysis shows an extensive reduction in toxicity of SiNPs by functionalizing with carbohydrate moiety both in vitro and in vivo. Cellular uptake is investigated with flow cytometry and confocal fluorescence microscope. The results show the carbohydrate capped SiNPs can be internalized in the cells within 24 h of incubation, and can be taken up more readily by cancer cells than noncancerous cells. Moreover, these results reinforce the use of carbohydrates for the internalization of a variety of similar compounds into cancer cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance

    PubMed Central

    Kunze, Markus; Berger, Johannes

    2015-01-01

    The proper distribution of proteins between the cytosol and various membrane-bound compartments is crucial for the functionality of eukaryotic cells. This requires the cooperation between protein transport machineries that translocate diverse proteins from the cytosol into these compartments and targeting signal(s) encoded within the primary sequence of these proteins that define their cellular destination. The mechanisms exerting protein translocation differ remarkably between the compartments, but the predominant targeting signals for mitochondria, chloroplasts and the ER share the N-terminal position, an α-helical structural element and the removal from the core protein by intraorganellar cleavage. Interestingly, similar properties have been described for the peroxisomal targeting signal type 2 mediating the import of a fraction of soluble peroxisomal proteins, whereas other peroxisomal matrix proteins encode the type 1 targeting signal residing at the extreme C-terminus. The structural similarity of N-terminal targeting signals poses a challenge to the specificity of protein transport, but allows the generation of ambiguous targeting signals that mediate dual targeting of proteins into different compartments. Dual targeting might represent an advantage for adaptation processes that involve a redistribution of proteins, because it circumvents the hierarchy of targeting signals. Thus, the co-existence of two equally functional import pathways into peroxisomes might reflect a balance between evolutionary constant and flexible transport routes. PMID:26441678

  8. Recent advances in genetic modification of adenovirus vectors for cancer treatment.

    PubMed

    Yamamoto, Yuki; Nagasato, Masaki; Yoshida, Teruhiko; Aoki, Kazunori

    2017-05-01

    Adenoviruses are widely used to deliver genes to a variety of cell types and have been used in a number of clinical trials for gene therapy and oncolytic virotherapy. However, several concerns must be addressed for the clinical use of adenovirus vectors. Selective delivery of a therapeutic gene by adenovirus vectors to target cancer is precluded by the widespread distribution of the primary cellular receptors. The systemic administration of adenoviruses results in hepatic tropism independent of the primary receptors. Adenoviruses induce strong innate and acquired immunity in vivo. Furthermore, several modifications to these vectors are necessary to enhance their oncolytic activity and ensure patient safety. As such, the adenovirus genome has been engineered to overcome these problems. The first part of the present review outlines recent progress in the genetic modification of adenovirus vectors for cancer treatment. In addition, several groups have recently developed cancer-targeting adenovirus vectors by using libraries that display random peptides on a fiber knob. Pancreatic cancer-targeting sequences have been isolated, and these oncolytic vectors have been shown by our group to be associated with a higher gene transduction efficiency and more potent oncolytic activity in cell lines, murine models, and surgical specimens of pancreatic cancer. In the second part of this review, we explain that combining cancer-targeting strategies can be a promising approach to increase the clinical usefulness of oncolytic adenovirus vectors. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  9. The essential iron-sulfur protein Rli1 is an important target accounting for inhibition of cell growth by reactive oxygen species.

    PubMed

    Alhebshi, Alawiah; Sideri, Theodora C; Holland, Sara L; Avery, Simon V

    2012-09-01

    Oxidative stress mediated by reactive oxygen species (ROS) is linked to degenerative conditions in humans and damage to an array of cellular components. However, it is unclear which molecular target(s) may be the primary "Achilles' heel" of organisms, accounting for the inhibitory action of ROS. Rli1p (ABCE1) is an essential and highly conserved protein of eukaryotes and archaea that requires notoriously ROS-labile cofactors (Fe-S clusters) for its functions in protein synthesis. In this study, we tested the hypothesis that ROS toxicity is caused by Rli1p dysfunction. In addition to being essential, Rli1p activity (in nuclear ribosomal-subunit export) was shown to be impaired by mild oxidative stress in yeast. Furthermore, prooxidant resistance was decreased by RLI1 repression and increased by RLI1 overexpression. This Rlip1 dependency was abolished during anaerobicity and accentuated in cells expressing a FeS cluster-defective Rli1p construct. The protein's FeS clusters appeared ROS labile during in vitro incubations, but less so in vivo. Instead, it was primarily (55)FeS-cluster supply to Rli1p that was defective in prooxidant-exposed cells. The data indicate that, owing to its essential nature but dependency on ROS-labile FeS clusters, Rli1p function is a primary target of ROS action. Such insight could help inform new approaches for combating oxidative stress-related disease.

  10. Miniature Short Hairpin RNA Screens to Characterize Antiproliferative Drugs

    PubMed Central

    Kittanakom, Saranya; Arnoldo, Anthony; Brown, Kevin R.; Wallace, Iain; Kunavisarut, Tada; Torti, Dax; Heisler, Lawrence E.; Surendra, Anuradha; Moffat, Jason; Giaever, Guri; Nislow, Corey

    2013-01-01

    The application of new proteomics and genomics technologies support a view in which few drugs act solely by inhibiting a single cellular target. Indeed, drug activity is modulated by complex, often incompletely understood cellular mechanisms. Therefore, efforts to decipher mode of action through genetic perturbation such as RNAi typically yields “hits” that fall into several categories. Of particular interest to the present study, we aimed to characterize secondary activities of drugs on cells. Inhibiting a known target can result in clinically relevant synthetic phenotypes. In one scenario, drug perturbation could, for example, improperly activate a protein that normally inhibits a particular kinase. In other cases, additional, lower affinity targets can be inhibited as in the example of inhibition of c-Kit observed in Bcr-Abl−positive cells treated with Gleevec. Drug transport and metabolism also play an important role in the way any chemicals act within the cells. Finally, RNAi per se can also affect cell fitness by more general off-target effects, e.g., via the modulation of apoptosis or DNA damage repair. Regardless of the root cause of these unwanted effects, understanding the scope of a drug’s activity and polypharmacology is essential for better understanding its mechanism(s) of action, and such information can guide development of improved therapies. We describe a rapid, cost-effective approach to characterize primary and secondary effects of small-molecules by using small-scale libraries of virally integrated short hairpin RNAs. We demonstrate this principle using a “minipool” composed of shRNAs that target the genes encoding the reported protein targets of approved drugs. Among the 28 known reported drug−target pairs, we successfully identify 40% of the targets described in the literature and uncover several unanticipated drug−target interactions based on drug-induced synthetic lethality. We provide a detailed protocol for performing such screens and for analyzing the data. This cost-effective approach to mammalian knockdown screens, combined with the increasing maturation of RNAi technology will expand the accessibility of similar approaches in academic settings. PMID:23797109

  11. Targeting Tumor Microenvironment with Silibinin: Promise and Potential for a Translational Cancer Chemopreventive Strategy

    PubMed Central

    Deep, Gagan; Agarwal, Rajesh

    2014-01-01

    Tumor microenvironment (TME) refers to the dynamic cellular and extra-cellular components surrounding tumor cells at each stage of the carcinogenesis. TME has now emerged as an integral and inseparable part of the carcinogenesis that plays a critical role in tumor growth, angiogenesis, epithelial to mesenchymal transition (EMT), invasion, migration and metastasis. Besides its vital role in carcinogenesis, TME is also a better drug target because of its relative genetic stability with lesser probability for the development of drug-resistance. Several drugs targeting the TME (endothelial cells, macrophages, cancer-associated fibroblasts, or extra-cellular matrix) have either been approved or are in clinical trials. Recently, non-steroidal anti-inflammatory drugs targeting inflammation were reported to also prevent several cancers. These exciting developments suggest that cancer chemopreventive strategies targeting both tumor and TME would be better and effective towards preventing, retarding or reversing the process of carcinogenesis. Here, we have reviewed the effect of a well established hepatoprotective and chemopreventive agent silibinin on cellular (endothelial, fibroblast and immune cells) and non-cellular components (cytokines, growth factors, proteinases etc.) of the TME. Silibinin targets TME constituents as well as their interaction with cancer cells, thereby inhibiting tumor growth, angiogenesis, inflammation, EMT, and metastasis. Silibinin is already in clinical trials, and based upon completed studies we suggest that its chemopreventive effectiveness should be verified through its effect on biological end points in both tumor and TME. Overall, we believe that the chemopreventive strategies targeting both tumor and TME have practical and translational utility in lowering the cancer burden. PMID:23617249

  12. Methylene Blue Protects Astrocytes against Glucose Oxygen Deprivation by Improving Cellular Respiration

    PubMed Central

    Roy Choudhury, Gourav; Winters, Ali; Rich, Ryan M.; Ryou, Myoung-Gwi; Gryczynski, Zygmunt; Yuan, Fang; Yang, Shao-Hua; Liu, Ran

    2015-01-01

    Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the protective role of MB in astrocytes. Cell viability assays showed that MB treatment significantly protected primary astrocytes from oxygen-glucose deprivation (OGD) & reoxygenation induced cell death. We also studied the effect of MB on cellular oxygen and glucose metabolism in primary astrocytes following OGD-reoxygenation injury. MB treatment significantly increased cellular oxygen consumption, glucose uptake and ATP production in primary astrocytes. In conclusion our study demonstrated that MB protects astrocytes against OGD-reoxygenation injury by improving astrocyte cellular respiration. PMID:25848957

  13. Phenothiazinium based photosensitisers--photodynamic agents with a multiplicity of cellular targets and clinical applications.

    PubMed

    Harris, F; Chatfield, L K; Phoenix, D A

    2005-08-01

    PhBPs show selectivity for tumour and microbial cells, which appears to be based on electrostatic interactions between the positive charge generally carried by these molecules and the negative charge found on the outer surface of these target cells. In some cases, a site of action for photoactivated PhBPs is the outer membrane/envelope of the target cell. Such action can involve the modification of membrane lipid and/or lipopolysaccharide, and the inactivation of essential proteins and enzymes, with these effects usually leading to cell lysis and death. However, more often, PhBPs are internalised by target cells, promoted by a variety of factors, including low pH and enzymatic reduction, and upon photoactivation, internalised, PhBPs are able to inflict damage on a number of intracellular targets. In tumour cells, PhBPs can photodamage DNA and the membranes of organelles, thereby inducing necrosis and/or apoptosis. In bacterial cells, whilst DNA is generally a primary target of PhBPs, these compounds can exhibit multiple sites of action within a given cell and show different sites of action between different bacterial species. This variable targeting makes PhBPs attractive propositions as alternatives to conventional antibiotics in that the emergence of bacterial strains with acquired resistance to these compounds appears to be highly unlikely.

  14. Efficient Hepatic Delivery of Drugs: Novel Strategies and Their Significance

    PubMed Central

    Yadav, Narayan Prasad; Jain, Sanyog; Arora, Sumit

    2013-01-01

    Liver is a vital organ responsible for plethora of functions including detoxification, protein synthesis, and the production of biochemicals necessary for the sustenance of life. Therefore, patients with chronic liver diseases such as viral hepatitis, liver cirrhosis, and hepatocellular carcinoma need immediate attention to sustain life and as a result are often exposed to the prolonged treatment with drugs/herbal medications. Lack of site-specific delivery of these medications to the hepatocytes/nonparenchymal cells and adverse effects associated with their off-target interactions limit their continuous use. This calls for the development and fabrication of targeted delivery systems which can deliver the drug payload at the desired site of action for defined period of time. The primary aim of drug targeting is to manipulate the whole body distribution of drugs, that is, to prevent distribution to non-target cells and concomitantly increase the drug concentration at the targeted site. Carrier molecules are designed for their selective cellular uptake, taking advantage of specific receptors or binding sites present on the surface membrane of the target cell. In this review, various aspects of liver targeting of drug molecules and herbal medications have been discussed which elucidate the importance of delivering the drugs/herbal medications at their desired site of action. PMID:24286077

  15. Molecular and cellular alterations in Down syndrome: toward the identification of targets for therapeutics.

    PubMed

    Créau, Nicole

    2012-01-01

    Down syndrome is a complex disease that has challenged molecular and cellular research for more than 50 years. Understanding the molecular bases of morphological, cellular, and functional alterations resulting from the presence of an additional complete chromosome 21 would aid in targeting specific genes and pathways for rescuing some phenotypes. Recently, progress has been made by characterization of brain alterations in mouse models of Down syndrome. This review will highlight the main molecular and cellular findings recently described for these models, particularly with respect to their relationship to Down syndrome phenotypes.

  16. A morphometric analysis of cellular differentiation in caps of primary and lateral roots of Helianthus annuus

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    In order to determine if patterns of cell differentiation are similar in primary and lateral roots, I performed a morphometric analysis of the ultrastructure of calyptrogen, columella, and peripheral cells in primary and lateral roots of Helianthus annuus. Each cell type is characterized by a unique ultrastructure, and the ultrastructural changes characteristic of cellular differentiation in root caps are organelle specific. No major structural differences exist in the structures of the composite cell types, or in patterns of cell differentiation in caps of primary vs. lateral roots.

  17. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    PubMed

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.

  18. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis

    PubMed Central

    Thomas, Thommey P.; Goonewardena, Sascha N.; Majoros, Istvan; Kotlyar, Alina; Cao, Zhengyi; Leroueil, Pascale R.; Baker, James R.

    2011-01-01

    Objective To investigate the uptake of a poly(amidoamine) dendrimer (generation 5 (G5)) nanoparticle covalently conjugated to polyvalent folic acid (FA) as the targeting ligand into macrophages, and the activity of a FA- and methotrexate-conjugated dendrimer (G5-FA-MTX) as a therapeutic for the inflammatory disease of arthritis. Methods In vitro studies were performed in macrophage cell lines and in isolated mouse macrophages to check the cellular uptake of fluorescently tagged G5-FA nanoparticles, using flow cytometry and confocal microscopy. In vivo studies were conducted in a rat model of collagen-induced arthritis to evaluate the therapeutic potential of G5-FA-MTX. Results Folate targeted dendrimer bound and internalized in a receptor-specific manner into both folate receptor β-expressing macrophage cell lines and primary mouse macrophages. The G5-FA-MTX acts as a potent anti-inflammatory agent and reduces arthritis-induced inflammatory parameters such as ankle swelling, paw volume, cartilage damage, bone resorption and body weight decrease. Conclusion The use of folate-targeted nanoparticles to specifically target MTX into macrophages may provide an effective clinical approach for anti-inflammatory therapy in rheumatoid arthritis. PMID:21618461

  19. [Primary study on fluro [ 19F] berberine derivative for human hepatocellular carcinoma targetting in vitro].

    PubMed

    Zhang, Tong; Wu, Xiaoai; Cai, Huawei; Liang, Meng; Fan, Chengzhong

    2017-04-01

    [ 18 F]HX-01, a Fluorine-18 labeled berberine derivative, is a potential positron emission tomography (PET) tumor imaging agent, while [ 19 F]HX-01 is a nonradioactive reference substance with different energy state and has the same physical and chemical properties. In order to collect data for further study of [ 18 F]HX-01 PET imaging of hepatocellular carcinoma in vivo , this study compared the uptake of [ 19 F]HX-01 by human hepatocellular carcinoma and normal hepatocytes in vitro . The target compound, [ 19 F]HX-01, was synthesized in one step using berberrubine and 3-fluoropropyl 4-methylbenzenesulfonate. Cellular uptake and localization of [ 19 F]HX-01 were performed by a fluorescence microscope in human hepatocellular carcinoma HepG2, SMMC-7721 and human normal hepatocyte HL-7702. Cellular proliferation inhibition and cell cytotoxicity assay of the [ 19 F]HX-01 were conducted using cell counting kit-8 (CCK-8) on HepG2, SMMC-7721 and HL-7702 cells. Fluorescent microscopy showed that the combining ability of [ 19 F]HX-01 to the carcinoma SMMC-7721 and HepG2 was higher than that to the normal HL-7702. Cellular proliferation inhibition assay demonstrated that [ 19 F]HX-01 leaded to a dose-dependent inhibition on SMMC-7721, HepG2, and HL-7702 proliferation. Cell cytotoxicity assay presented that the cytotoxicity of [ 19 F]HX-01 to SMMC-7721 and HepG2 was obviously higher than that to HL-7702. This in vitro study showed that [ 19 F]HX-01 had a higher selectivity on human hepatocellular carcinoma cells (SMMC-7721, HepG2) but has less toxicity to normal hepatocytes (HL-7702). This could set up the idea that the radioactive reference substance [ 18 F]HX-01 may be worthy of further development as a potential molecular probe targeting human hepatocellular carcinoma using PET.

  20. The Role of Factor Inhibiting HIF (FIH-1) in Inhibiting HIF-1 Transcriptional Activity in Glioblastoma Multiforme

    PubMed Central

    Liu, Fengming; Wu, Gang; Schroeder, Mark A.; Lau, Julie S.; Mukhopadhyay, Debabrata; Jiang, Shi-Wen; O'Neill, Brian Patrick; Datta, Kaustubh; Li, Jinping

    2014-01-01

    Glioblastoma multiforme (GBM) accounts for about 38% of primary brain tumors in the United States. GBM is characterized by extensive angiogenesis induced by vascular growth factors and cytokines. The transcription of these growth factors and cytokines is regulated by the Hypoxia-Inducible-Factor-1(HIF-1), which is a key regulator mediating the cellular response to hypoxia. It is known that Factor Inhibiting HIF-1, or FIH-1, is also involved in the cellular response to hypoxia and has the capability to physically interact with HIF-1 and block its transcriptional activity under normoxic conditions. Delineation of the regulatory role of FIH-1 will help us to better understand the molecular mechanism responsible for tumor growth and progression and may lead to the design of new therapies targeting cellular pathways in response to hypoxia. Previous studies have shown that the chromosomal region of 10q24 containing the FIH-1 gene is often deleted in GBM, suggesting a role for the FIH-1 in GBM tumorigenesis and progression. In the current study, we found that FIH-1 is able to inhibit HIF-mediated transcription of GLUT1 and VEGF-A, even under hypoxic conditions in human glioblastoma cells. FIH-1 has been found to be more potent in inhibiting HIF function than PTEN. This observation points to the possibility that deletion of 10q23-24 and loss or decreased expression of FIH-1 gene may lead to a constitutive activation of HIF-1 activity, an alteration of HIF-1 targets such as GLUT-1 and VEGF-A, and may contribute to the survival of cancer cells in hypoxia and the development of hypervascularization observed in GBM. Therefore FIH-1 can be potential therapeutic target for the treatment of GBM patients with poor prognosis. PMID:24465898

  1. Cyclosporin A associated helicase-like protein facilitates the association of hepatitis C virus RNA polymerase with its cellular cyclophilin B.

    PubMed

    Morohashi, Kengo; Sahara, Hiroeki; Watashi, Koichi; Iwabata, Kazuki; Sunoki, Takashi; Kuramochi, Kouji; Takakusagi, Kaori; Miyashita, Hiroki; Sato, Noriyuki; Tanabe, Atsushi; Shimotohno, Kunitada; Kobayashi, Susumu; Sakaguchi, Kengo; Sugawara, Fumio

    2011-04-29

    Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology.

  2. Approaches to Validate and Manipulate RNA Targets with Small Molecules in Cells.

    PubMed

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-01-01

    RNA has become an increasingly important target for therapeutic interventions and for chemical probes that dissect and manipulate its cellular function. Emerging targets include human RNAs that have been shown to directly cause cancer, metabolic disorders, and genetic disease. In this review, we describe various routes to obtain bioactive compounds that target RNA, with a particular emphasis on the development of small molecules. We use these cases to describe approaches that are being developed for target validation, which include target-directed cleavage, classic pull-down experiments, and covalent cross-linking. Thus, tools are available to design small molecules to target RNA and to identify the cellular RNAs that are their targets.

  3. ATRX Dysfunction Induces Replication Defects in Primary Mouse Cells

    PubMed Central

    Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Taylor, Stephen; Mitson, Matthew; Bachrati, Csanád Z.; Higgs, Douglas R.; Gibbons, Richard J.

    2014-01-01

    The chromatin remodeling protein ATRX, which targets tandem repetitive DNA, has been shown to be required for expression of the alpha globin genes, for proliferation of a variety of cellular progenitors, for chromosome congression and for the maintenance of telomeres. Mutations in ATRX have recently been identified in tumours which maintain their telomeres by a telomerase independent pathway involving homologous recombination thought to be triggered by DNA damage. It is as yet unknown whether there is a central underlying mechanism associated with ATRX dysfunction which can explain the numerous cellular phenomena observed. There is, however, growing evidence for its role in the replication of various repetitive DNA templates which are thought to have a propensity to form secondary structures. Using a mouse knockout model we demonstrate that ATRX plays a direct role in facilitating DNA replication. Ablation of ATRX alone, although leading to a DNA damage response at telomeres, is not sufficient to trigger the alternative lengthening of telomere pathway in mouse embryonic stem cells. PMID:24651726

  4. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication

    PubMed Central

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K.; McCormick, Frank; Graeber, Thomas G.; Christofk, Heather R.

    2014-01-01

    SUMMARY Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. While recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. PMID:24703700

  5. Supreme EnLIGHTenment: Damage Recognition and Signaling in the Mammalian UV Response

    PubMed Central

    Herrlich, Peter; Karin, Michael; Weiss, Carsten

    2009-01-01

    Like their prokaryotic counterparts, mammalian cells can sense light, especially in the ultraviolet (UV) range of the spectrum. Following UV exposure cells mount an elaborate response – called the UV response, which mimics physiological signaling responses except that it targets multiple pathways thereby lacking the defined specificity of receptor-triggered signal transduction. Despite many years of research it is still not fully clear how UV radiation is sensed and converted into the „language of cells“ - signal reception and transduction. This review focuses on how photonic energy and its primary cellular products are sensed to elicit the UV response. PMID:18280234

  6. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth

    PubMed Central

    Ono, Masanori; Yin, Ping; Navarro, Antonia; Moravek, Molly B.; Coon, John S.; Druschitz, Stacy A.; Gottardi, Cara J.; Bulun, Serdar E.

    2014-01-01

    Objective Dysregulation of WNT signaling plays a central role in tumor cell growth and progression. Our goal was to assess the effect of three WNT/β-catenin pathway inhibitors, Inhibitor of β-Catenin And TCF4 (ICAT), niclosamide, and XAV939 on the proliferation of primary cultures of human uterine leiomyoma cells. Design Prospective study of human leiomyoma cells obtained from myomectomy or hysterectomy. Setting University research laboratory. Patient(s) Women (n=38) aged 27–53 years undergoing surgery. Intervention(s) Adenoviral ICAT overexpression or treatment with varying concentrations of niclosamide or XAV939. Main Outcome Measure(s) Cell proliferation, cell death, WNT/β-catenin target gene expression or reporter gene regulation, β-catenin levels and cellular localization. Result(s) ICAT, niclosamide, or XAV939 inhibit WNT/β-catenin pathway activation and exert anti-proliferative effects in primary cultures of human leiomyoma cells. Conclusion(s) Three WNT/β-catenin pathway inhibitors specifically block human leiomyoma growth and proliferation, suggesting that the canonical WNT pathway may be a potential therapeutic target for the treatment of uterine leiomyoma. Our findings provide rationale for further preclinical and clinical evaluation of ICAT, niclosamide, and XAV939 as candidate anti-tumor agents for uterine leiomyoma. PMID:24534281

  7. An update on the pathophysiology and management of polycystic liver disease.

    PubMed

    Wong, May Yw; McCaughan, Geoffrey W; Strasser, Simone I

    2017-06-01

    Polycystic liver disease (PLD) is characterized by the presence of multiple cholangiocyte-derived hepatic cysts that progressively replace liver tissue. They are classified as an inherited ciliopathy /cholangiopathy as pathology exists at the level of the primary cilia of cholangiocytes. Aberrant expression of the proteins in primary cilia can impair their structures and functions, thereby promoting cystogenesis. Areas covered: This review begins by looking at the epidemiology of PLD and its natural history. It then describes the pathophysiology and corresponding potential treatment strategies for PLD. Expert commentary: Traditionally, therapies for symptomatic PLD have been limited to symptomatic management and surgical interventions. Such techniques are not completely effective, do not alter the natural history of the disease, and are linked with high rate of re-accumulation of cysts. As a result, there has been a push for drugs targeted at abnormal cellular signaling cascades to address deregulated proliferation, cell dedifferentiation, apoptosis and fluid secretion. Currently, the only available drug treatments that halt disease progression and improve quality of life in PLD patients are somatostatin analogues. Numerous preclinical studies suggest that targeting components of the signaling pathways that influence cyst development can ameliorate growth of hepatic cysts.

  8. Intrinsic and synaptic properties of vertical cells of the mouse dorsal cochlear nucleus

    PubMed Central

    Kuo, Sidney P.; Lu, Hsin-Wei

    2012-01-01

    Multiple classes of inhibitory interneurons shape the activity of principal neurons of the dorsal cochlear nucleus (DCN), a primary target of auditory nerve fibers in the mammalian brain stem. Feedforward inhibition mediated by glycinergic vertical cells (also termed tuberculoventral or corn cells) is thought to contribute importantly to the sound-evoked response properties of principal neurons, but the cellular and synaptic properties that determine how vertical cells function are unclear. We used transgenic mice in which glycinergic neurons express green fluorescent protein (GFP) to target vertical cells for whole cell patch-clamp recordings in acute slices of DCN. We found that vertical cells express diverse intrinsic spiking properties and could fire action potentials at high, sustained spiking rates. Using paired recordings, we directly examined synapses made by vertical cells onto fusiform cells, a primary DCN principal cell type. Vertical cell synapses produced unexpectedly small-amplitude unitary currents in fusiform cells, and additional experiments indicated that multiple vertical cells must be simultaneously active to inhibit fusiform cell spike output. Paired recordings also revealed that a major source of inhibition to vertical cells comes from other vertical cells. PMID:22572947

  9. Covalent small-molecule-RNA complex formation enables cellular profiling of small-molecule-RNA interactions.

    PubMed

    Guan, Lirui; Disney, Matthew D

    2013-09-16

    Won't let you go! A strategy is described to design small molecules that react with their cellular RNA targets. This approach not only improves the activity of compounds targeting RNA in cell culture by a factor of about 2500 but also enables cell-wide profiling of its RNA targets. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.

    PubMed

    Lin, Ran; Zhang, Pengcheng; Cheetham, Andrew G; Walston, Jeremy; Abadir, Peter; Cui, Honggang

    2015-01-21

    Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.

  11. The Epstein-Barr virus lytic protein BZLF1 as a candidate target antigen for vaccine development1

    PubMed Central

    Hartlage, Alex S.; Liu, Tom; Patton, John T.; Garman, Sabrina L.; Zhang, Xiaoli; Kurt, Habibe; Lozanski, Gerard; Lustberg, Mark E.; Caligiuri, Michael A.; Baiocchi, Robert A.

    2015-01-01

    The Epstein-Barr virus (EBV) is an oncogenic, γ-herpesvirus associated with a broad spectrum of disease. While most immune-competent individuals can effectivley develop efficient adaptive immune responses to EBV, immunocompromised individuals are at serious risk for developing life threatening diseases such as Hodgkin’s lymphoma and post-transplant lymphoproliferative disorder (PTLD). Given the significant morbidity associated with EBV infection in high-risk populations, there is a need to develop vaccine strategies that restore or enhance EBV-specific immune responses. Here, we identify the EBV immediate-early protein BZLF1 as a potential target antigen for vaccine development. Primary tumors from patients with PTLD and a chimeric human-murine model of EBV-driven lymphoproliferative disorder (EBV-LPD) express BZLF1 protein. Pulsing human dendritic cells (DC) with recombinant BZLF1 followed by incubation with autologous mononuclear cells led to expansion of BZLF1-specific CD8(+) T cells in vitro and primed BZLF1-specific T-cell responses in vivo. In addition, vaccination of hu-PBL-SCID mice with BZLF1-transduced DCs induced specific cellular immunity and significantly prolonged survival from fatal EBV-LPD. These findings identify BZLF1 as a candidate target protein in the immunosurveillance of EBV and provide rationale for considering BZLF1 in vaccine strategies to enhance primary and recall immune responses and potentially prevent EBV-associated diseases. PMID:25735952

  12. The Mitotic and Metabolic Effects of Phosphatidic Acid in the Primary Muscle Cells of Turbot (Scophthalmus maximus).

    PubMed

    Wang, Tingting; Wang, Xuan; Zhou, Huihui; Jiang, Haowen; Mai, Kangsen; He, Gen

    2018-01-01

    Searching for nutraceuticals and understanding the underlying mechanism that promote fish growth is at high demand for aquaculture industry. In this study, the modulatory effects of soy phosphatidic acids (PA) on cell proliferation, nutrient sensing, and metabolic pathways were systematically examined in primary muscle cells of turbot ( Scophthalmus maximus ). PA was found to stimulate cell proliferation and promote G1/S phase transition through activation of target of rapamycin signaling pathway. The expression of myogenic regulatory factors, including myoD and follistatin , was upregulated, while that of myogenin and myostatin was downregulated by PA. Furthermore, PA increased intracellular free amino acid levels and enhanced protein synthesis, lipogenesis, and glycolysis, while suppressed amino acid degradation and lipolysis. PA also was found to increased cellular energy production through stimulated tricarboxylic acid cycle and oxidative phosphorylation. Our results identified PA as a potential nutraceutical that stimulates muscle cell proliferation and anabolism in fish.

  13. Mechanism of protection from primary bovine viral diarrhea virus infection. I. The effects of dexamethasone.

    PubMed Central

    Shope, R E; Muscoplat, C C; Chen, A W; Johnson, D W

    1976-01-01

    A series of investigations was designed to study the role of cellular immunity and passive antibody in protecting neonatal calves from primary bovine viral diarrhea virus infection. Administration of corticosteroids (dexamethasone) in doses capable of suppressing cellular immunity markedly potentiated systemic bovine viral diarrhea virus infection in calves which lacked bovine viral diarrhea passive neutralizing antibody. Immunosuppressed calves did not form neutralizing antibody to bovine viral diarrhea virus and developed a fatal viremia. Calves with high levels of passive bovine viral diarrhea neutralizing antibodies were protected from the effect of corticosteroids. The results suggest an essential role for humoral passive antibody, but not for cellular immunity, in protection from primary systemic bovine viral diarrhea virus infection in calves. PMID:187303

  14. Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer

    PubMed Central

    Bruntz, Ronald C.; Lindsley, Craig W.

    2014-01-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein–coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. PMID:25244928

  15. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer.

    PubMed

    Bruntz, Ronald C; Lindsley, Craig W; Brown, H Alex

    2014-10-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  16. The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration.

    PubMed

    Albawardi, Alia; Almarzooqi, Saeeda; Saraswathiamma, Dhanya; Abdul-Kader, Hidaya Mohammed; Souid, Abdul-Kader; Alfazari, Ali S

    2015-01-01

    The purpose of this in vitro study was to develop a useful biomarker (e.g., cellular respiration, or mitochondrial O2 consumption) for measuring activities of mTOR inhibitors. It measured the effects of commonly used immunosuppressants (sirolimus-rapamycin, tacrolimus, and cyclosporine) on cellular respiration in target tissues (kidney, liver, and heart) from C57BL/6 mice. The mammalian target of rapamycin (mTOR), a serine/ threonine kinase that supports nutrient-dependent cell growth and survival, is known to control energy conversion processes within the mitochondria. Consistently, inhibitors of mTOR (e.g., rapamycin, also known as sirolimus or Rapamune®) have been shown to impair mitochondrial function. Inhibitors of the calcium-dependent serine/threonine phosphatase calcineurin (e.g., tacrolimus and cyclosporine), on the other hand, strictly prevent lymphokine production leading to a reduced T-cell function. Sirolimus (10 μM) inhibited renal (22%, P=0.002), hepatic (39%, P<0.001), and cardiac (42%, P=0.005) cellular respiration. Tacrolimus and cyclosporine had no or minimum effects on cellular respiration in these tissues. Thus, these results clearly demonstrate that impaired cellular respiration (bioenergetics) is a sensitive biomarker of the immunosuppressants that target mTOR.

  17. Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death.

    PubMed

    Divakaruni, Ajit S; Wallace, Martina; Buren, Caodu; Martyniuk, Kelly; Andreyev, Alexander Y; Li, Edward; Fields, Jerel A; Cordes, Thekla; Reynolds, Ian J; Bloodgood, Brenda L; Raymond, Lynn A; Metallo, Christian M; Murphy, Anne N

    2017-04-03

    Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity. © 2017 Divakaruni et al.

  18. Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death

    PubMed Central

    Wallace, Martina; Buren, Caodu; Martyniuk, Kelly; Andreyev, Alexander Y.; Li, Edward; Fields, Jerel A.; Cordes, Thekla; Reynolds, Ian J.; Bloodgood, Brenda L.; Metallo, Christian M.

    2017-01-01

    Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity. PMID:28254829

  19. Podocytes from the diagnostic and therapeutic point of view.

    PubMed

    Müller-Deile, Janina; Schiffer, Mario

    2017-08-01

    The central role of podocytes in glomerular diseases makes this cell type an interesting diagnostic tool as well as a therapeutic target. In this review, we discuss the current literature on the use of podocytes and podocyte-specific markers as non-invasive diagnostic tools in different glomerulopathies. Furthermore, we highlight the direct effects of drugs currently used to treat primary glomerular diseases and describe their direct cellular effects on podocytes. A new therapeutic potential is seen in drugs targeting the podocytic actin cytoskeleton which is essential for podocyte foot process structure and function. Incubation of cultured human podocyte cell lines with sera from patients with active glomerular diseases is currently also used to identify novel circulating factors with pathophysiological relevance for the glomerular filtration barrier. In addition, treatment of detached urinary podocytes from patients with substances that restore their cytoskeleton might serve as a novel personalized tool to estimate their potential for podocyte recovery ex vivo.

  20. Isolation and Identification of miRNAs in Jatropha curcas

    PubMed Central

    Wang, Chun Ming; Liu, Peng; Sun, Fei; Li, Lei; Liu, Peng; Ye, Jian; Yue, Gen Hua

    2012-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004. PMID:22419887

  1. Important cellular targets for antimicrobial photodynamic therapy.

    PubMed

    Awad, Mariam M; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2016-09-01

    The persistent problem of antibiotic resistance has created a strong demand for new methods for therapy and disinfection. Photodynamic inactivation (PDI) of microbes has demonstrated promising results for eradication of antibiotic-resistant strains. PDI is based on the use of a photosensitive compound (photosensitizer, PS), which upon illumination with visible light generates reactive species capable of damaging and killing microorganisms. Since photogenerated reactive species are short lived, damage is limited to close proximity of the PS. It is reasonable to expect that the larger the number of damaged targets is and the greater their variety is, the higher the efficiency of PDI is and the lower the chances for development of resistance are. Exact molecular mechanisms and specific targets whose damage is essential for microbial inactivation have not been unequivocally established. Two main cellular components, DNA and plasma membrane, are regarded as the most important PDI targets. Using Zn porphyrin-based PSs and Escherichia coli as a model Gram-negative microorganism, we demonstrate that efficient photoinactivation of bacteria can be achieved without detectable DNA modification. Among the cellular components which are modified early during illumination and constitute key PDI targets are cytosolic enzymes, membrane-bound protein complexes, and the plasma membrane. As a result, membrane barrier function is lost, and energy and reducing equivalent production is disrupted, which in turn compromises cell defense mechanisms, thus augmenting the photoinduced oxidative injury. In conclusion, high PDI antimicrobial effectiveness does not necessarily require impairment of a specific critical cellular component and can be achieved by inducing damage to multiple cellular targets.

  2. Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity

    NASA Astrophysics Data System (ADS)

    Guarnieri, Daniela; Malvindi, Maria Ada; Belli, Valentina; Pompa, Pier Paolo; Netti, Paolo

    2014-02-01

    Silica nanoparticles could be promising delivery vehicles for drug targeting or gene therapy. However, few studies have been undertaken to determine the biological behavior effects of silica nanoparticles on primary endothelial cells. Here we investigated uptake, cytotoxicity and angiogenic properties of silica nanoparticle with positive and negative surface charge and sizes ranging from 25 to 115 nm in primary human umbilical vein endothelial cells. Dynamic light scattering measurements and nanoparticle tracking analysis were used to estimate the dispersion status of nanoparticles in cell culture media, which was a key aspect to understand the results of the in vitro cellular uptake experiments. Nanoparticles were taken up by primary endothelial cells in a size-dependent manner according to their degree of agglomeration occurring after transfer in cell culture media. Functionalization of the particle surface with positively charged groups enhanced the in vitro cellular uptake, compared to negatively charged nanoparticles. However, this effect was contrasted by the tendency of particles to form agglomerates, leading to lower internalization efficiency. Silica nanoparticle uptake did not affect cell viability and cell membrane integrity. More interestingly, positively and negatively charged 25 nm nanoparticles did not influence capillary-like tube formation and angiogenic sprouting, compared to controls. Considering the increasing interest in nanomaterials for several biomedical applications, a careful study of nanoparticle-endothelial cells interactions is of high relevance to assess possible risks associated to silica nanoparticle exposure and their possible applications in nanomedicine as safe and effective nanocarriers for vascular transport of therapeutic agents.

  3. Effect of doxycycline on epithelial-mesenchymal transition via the p38/Smad pathway in respiratory epithelial cells.

    PubMed

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2017-03-01

    Doxycycline has antibacterial and anti-inflammatory effects, and it also suppresses collagen biosynthesis. This study aimed to confirm the effects and mechanism of doxycycline on transforming growth factor (TGF) beta 1 induced epithelial-mesenchymal transition and cell migration in A549 and primary nasal epithelial cells. A 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay and phalloidin-fluorescein isothiocyanate staining were used to evaluate cytotoxicity and cellular morphologic changes. Western blot and immunofluorescence staining were used to determine the expression levels of E-cadherin, vimentin, alpha-smooth muscle actin, fibronectin, phosphorylated Smad2/3, and mitogen-activated protein kinases. Scratch and transwell migration assays were used to assess cellular migration ability. Doxycycline (0-10 μg/mL) had no significant cytotoxic effects in A549 and primary nasal epithelial cells. Increased expression of mesenchymal markers, including vimentin, alpha-smooth muscle actin, and fibronectin in TGF beta 1 induced A549 cells were downregulated by doxycycline treatment. In contrast, E-cadherin expression was upregulated in TGF beta 1 induced A549 cells. An in vitro cell migration assay showed that doxycycline also inhibited the ability of TGF beta 1 induced migration. Doxycycline treatment suppressed the activation of Smad2/3 and p38, whereas its inhibitory effects were similar to each element-specific inhibitor in A549 and primary nasal epithelial cells. Doxycycline inhibited TGF beta 1 induced epithelial-to-mesenchymal transition and migration by targeting Smad2/3 and p38 signal pathways in respiratory epithelial cells.

  4. Global analysis of bacterial transcription factors to predict cellular target processes.

    PubMed

    Doerks, Tobias; Andrade, Miguel A; Lathe, Warren; von Mering, Christian; Bork, Peer

    2004-03-01

    Whole-genome sequences are now available for >100 bacterial species, giving unprecedented power to comparative genomics approaches. We have applied genome-context methods to predict target processes that are regulated by transcription factors (TFs). Of 128 orthologous groups of proteins annotated as TFs, to date, 36 are functionally uncharacterized; in our analysis we predict a probable cellular target process or biochemical pathway for half of these functionally uncharacterized TFs.

  5. Metabolism Goes Viral

    PubMed Central

    Miyake-Stoner, Shigeki J.; O’Shea, Clodagh C.

    2014-01-01

    Viral and cellular oncogenes converge in targeting critical protein interaction networks to reprogram the cellular DNA and protein replication machinery for pathological replication. In this issue, Thai et al. (2014) show that adenovirus E4ORF1 activates MYC glycolytic targets to induce a Warburg-like effect that converts glucose into nucleotides for viral replication. PMID:24703688

  6. Recent Advances in Superparamagnetic Iron Oxide Nanoparticles for Cellular Imaging and Targeted Therapy Research

    PubMed Central

    Wang, Yi-Xiang J.; Xuan, Shouhu; Port, Marc; Idee, Jean-Marc

    2013-01-01

    Advances of nanotechnology have led to the development of nanomaterials with both potential diagnostic and therapeutic applications. Among them, superparamagnetic iron oxide (SPIO) nanoparticles have received particular attention. Over the past decade, various SPIOs with unique physicochemical and biological properties have been designed by modifying the particle structure, size and coating. This article reviews the recent advances in preparing SPIOs with novel properties, the way these physicochemical properties of SPIOs influence their interaction with cells, and the development of SPIOs in liver and lymph nodes magnetic resonance imaging (MRI) contrast. Cellular uptake of SPIO can be exploited in a variety of potential clinical applications, including stem cell and inflammation cell tracking and intra-cellular drug delivery to cancerous cells which offers higher intra-cellular concentration. When SPIOs are used as carrier vehicle, additional advantages can be achieved including magnetic targeting and hyperthermia options, as well as monitoring with MRI. Other potential applications of SPIO include magnetofection and gene delivery, targeted retention of labeled stem cells, sentinel lymph nodes mapping, and magnetic force targeting and cell orientation for tissue engineering. PMID:23621536

  7. Cyclosporin A Associated Helicase-Like Protein Facilitates the Association of Hepatitis C Virus RNA Polymerase with Its Cellular Cyclophilin B

    PubMed Central

    Sahara, Hiroeki; Iwabata, Kazuki; Sunoki, Takashi; Kuramochi, Kouji; Takakusagi, Kaori; Miyashita, Hiroki; Sato, Noriyuki; Tanabe, Atsushi; Shimotohno, Kunitada; Kobayashi, Susumu; Sakaguchi, Kengo; Sugawara, Fumio

    2011-01-01

    Background Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. Principal Findings Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. Conclusions We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology. PMID:21559518

  8. Polymeric nanocomposites loaded with fluoridated hydroxyapatite Ln3+ (Ln = Eu or Tb)/iron oxide for magnetic targeted cellular imaging

    PubMed Central

    Pan, Jie; Liu, Wei-Jiao; Hua, Chao; Wang, Li-Li; Wan, Dong; Gong, Jun-Bo

    2015-01-01

    Objective To fabricate polymeric nanocomposites with excellent photoluminescence, magnetic properties, and stability in aqueous solutions, in order to improve specificity and sensitivity of cellular imaging under a magnetic field. Methods Fluoridated Ln3+-doped HAP (Ln3+-HAP) NPs and iron oxides (IOs) can be encapsulated with biocompatible polymers via a modified solvent exaction/evaporation technique to prepare polymeric nanocomposites with fluoridated Ln3+-HAP/iron oxide. The nanocomposites were characterized for surface morphology, fluorescence spectra, magnetic properties and in vitro cytotoxicity. Magnetic targeted cellular imaging of such nanocomposites was also evaluated with confocal laser scanning microscope using A549 cells with or without magnetic field. Results The fabricated nanocomposites showed good stability and excellent luminescent properties, as well as low in vitro cytotoxicity, indicating that the nanocomposites are suitable for biological applications. Nanocomposites under magnetic field achieved much higher cellular uptake via an energy-dependent pathway than those without magnetic field. Conclusion The nanocomposites fabricated in this study will be a promising tool for magnetic targeted cellular imaging with improved specificity and enhanced selection. PMID:26487962

  9. Comparative Analysis of Host Cell Entry of Ebola Virus From Sierra Leone, 2014, and Zaire, 1976.

    PubMed

    Hofmann-Winkler, Heike; Gnirß, Kerstin; Wrensch, Florian; Pöhlmann, Stefan

    2015-10-01

    The ongoing Ebola virus (EBOV) disease (EVD) epidemic in Western Africa is the largest EVD outbreak recorded to date and requires the rapid development and deployment of antiviral measures. The viral glycoprotein (GP) facilitates host cell entry and, jointly with cellular interaction partners, constitutes a potential target for antiviral intervention. However, it is unknown whether the GPs of the currently and previously circulating EBOVs use the same mechanisms for cellular entry and are thus susceptible to inhibition by the same antivirals and cellular defenses. Here, we show that the GPs of the EBOVs circulating in 1976 and 2014 transduce the same spectrum of target cells, use the same cellular factors for host cell entry, and are comparably susceptible to blockade by antiviral interferon-induced transmembrane proteins and neutralizing antibody KZ52. Thus, the viruses responsible for the ongoing EVD epidemic should be fully susceptible to established antiviral strategies targeting GP and cellular entry factors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  10. TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+.

    PubMed

    Pitt, Samantha J; Funnell, Tim M; Sitsapesan, Mano; Venturi, Elisa; Rietdorf, Katja; Ruas, Margarida; Ganesan, A; Gosain, Rajendra; Churchill, Grant C; Zhu, Michael X; Parrington, John; Galione, Antony; Sitsapesan, Rebecca

    2010-11-05

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca(2+) required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca(2+) from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca(2+) release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca(2+) that will enable it to act as a Ca(2+) release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca(2+)] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca(2+) release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca(2+) release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μM but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.

  11. Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms

    PubMed Central

    Soderstrom, Ken; Soliman, Eman; Van Dross, Rukiyah

    2017-01-01

    Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets. PMID:29066974

  12. Cell-Specific Establishment of Poliovirus Resistance to an Inhibitor Targeting a Cellular Protein

    PubMed Central

    Viktorova, Ekaterina G.; Nchoutmboube, Jules; Ford-Siltz, Lauren A.

    2015-01-01

    ABSTRACT It is hypothesized that targeting stable cellular factors involved in viral replication instead of virus-specific proteins may raise the barrier for development of resistant mutants, which is especially important for highly adaptable small (+)RNA viruses. However, contrary to this assumption, the accumulated evidence shows that these viruses easily generate mutants resistant to the inhibitors of cellular proteins at least in some systems. We investigated here the development of poliovirus resistance to brefeldin A (BFA), an inhibitor of the cellular protein GBF1, a guanine nucleotide exchange factor for the small cellular GTPase Arf1. We found that while resistant viruses can be easily selected in HeLa cells, they do not emerge in Vero cells, in spite that in the absence of the drug both cultures support robust virus replication. Our data show that the viral replication is much more resilient to BFA than functioning of the cellular secretory pathway, suggesting that the role of GBF1 in the viral replication is independent of its Arf activating function. We demonstrate that the level of recruitment of GBF1 to the replication complexes limits the establishment and expression of a BFA resistance phenotype in both HeLa and Vero cells. Moreover, the BFA resistance phenotype of poliovirus mutants is also cell type dependent in different cells of human origin and results in a fitness loss in the form of reduced efficiency of RNA replication in the absence of the drug. Thus, a rational approach to the development of host-targeting antivirals may overcome the superior adaptability of (+)RNA viruses. IMPORTANCE Compared to the number of viral diseases, the number of available vaccines is miniscule. For some viruses vaccine development has not been successful after multiple attempts, and for many others vaccination is not a viable option. Antiviral drugs are needed for clinical practice and public health emergencies. However, viruses are highly adaptable and can easily generate mutants resistant to practically any compounds targeting viral proteins. An alternative approach is to target stable cellular factors recruited for the virus-specific functions. In the present study, we analyzed the factors permitting and restricting the establishment of the resistance of poliovirus, a small (+)RNA virus, to brefeldin A (BFA), a drug targeting a cellular component of the viral replication complex. We found that the emergence and replication potential of resistant mutants is cell type dependent and that BFA resistance reduces virus fitness. Our data provide a rational approach to the development of antiviral therapeutics targeting host factors. PMID:25653442

  13. Network Analysis Reveals a Common Host-Pathogen Interaction Pattern in Arabidopsis Immune Responses.

    PubMed

    Li, Hong; Zhou, Yuan; Zhang, Ziding

    2017-01-01

    Many plant pathogens secrete virulence effectors into host cells to target important proteins in host cellular network. However, the dynamic interactions between effectors and host cellular network have not been fully understood. Here, an integrative network analysis was conducted by combining Arabidopsis thaliana protein-protein interaction network, known targets of Pseudomonas syringae and Hyaloperonospora arabidopsidis effectors, and gene expression profiles in the immune response. In particular, we focused on the characteristic network topology of the effector targets and differentially expressed genes (DEGs). We found that effectors tended to manipulate key network positions with higher betweenness centrality. The effector targets, especially those that are common targets of an individual effector, tended to be clustered together in the network. Moreover, the distances between the effector targets and DEGs increased over time during infection. In line with this observation, pathogen-susceptible mutants tended to have more DEGs surrounding the effector targets compared with resistant mutants. Our results suggest a common plant-pathogen interaction pattern at the cellular network level, where pathogens employ potent local impact mode to interfere with key positions in the host network, and plant organizes an in-depth defense by sequentially activating genes distal to the effector targets.

  14. Calcification and Silicification: Fossilization Potential of Cyanobacteria from Stromatolites of Niuafo‘ou's Caldera Lakes (Tonga) and Implications for the Early Fossil Record

    PubMed Central

    Kazmierczak, Józef; Łukomska-Kowalczyk, Maja; Kempe, Stephan

    2012-01-01

    Abstract Calcification and silicification processes of cyanobacterial mats that form stromatolites in two caldera lakes of Niuafo‘ou Island (Vai Lahi and Vai Si‘i) were evaluated, and their importance as analogues for interpreting the early fossil record are discussed. It has been shown that the potential for morphological preservation of Niuafo‘ou cyanobacteria is highly dependent on the timing and type of mineral phase involved in the fossilization process. Four main modes of mineralization of cyanobacteria organic parts have been recognized: (i) primary early postmortem calcification by aragonite nanograins that transform quickly into larger needle-like crystals and almost totally destroy the cellular structures, (ii) primary early postmortem silicification of almost intact cyanobacterial cells that leave a record of spectacularly well-preserved cellular structures, (iii) replacement by silica of primary aragonite that has already recrystallized and obliterated the cellular structures, (iv) occasional replacement of primary aragonite precipitated in the mucopolysaccharide sheaths and extracellular polymeric substances by Al-Mg-Fe silicates. These observations suggest that the extremely scarce earliest fossil record may, in part, be the result of (a) secondary replacement by silica of primary carbonate minerals (aragonite, calcite, siderite), which, due to recrystallization, had already annihilated the cellular morphology of the mineralized microbiota or (b) relatively late primary silicification of already highly degraded and no longer morphologically identifiable microbial remains. Key Words: Stromatolites—Cyanobacteria—Calcification—Silicification—Niuafo‘ou (Tonga)—Archean. Astrobiology 12, 535–548. PMID:22794297

  15. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans)

    PubMed Central

    Radhakrishnan, Venkatraman Srinivasan; Reddy Mudiam, Mohana Krishna; Kumar, Manish; Dwivedi, Surya Prakash; Singh, Surinder Pal; Prasad, Tulika

    2018-01-01

    Purpose A significant increase in the incidence of fungal infections and drug resistance has been observed in the past decades due to limited availability of broad-spectrum antifungal drugs. Nanomedicines have shown significant antimicrobial potential against various drug-resistant microbes. Silver nanoparticles (AgNps) are known for their antimicrobial properties and lower host toxicity; however, for clinical applications, evaluation of their impact at cellular and molecular levels is essential. The present study aims to understand the cellular and molecular mechanisms of AgNp-induced toxicity in a common fungal pathogen, Candida albicans. Methods AgNps were synthesized by chemical reduction method and characterized using UV–visible spectroscopy, X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy–energy dispersive X-ray spectroscopy, energy dispersive X-ray fluorescence, and zeta potential. The anti-Candida activity of AgNps was assessed by broth microdilution and spot assays. Effects of AgNps on cellular and molecular targets were assessed by monitoring the intracellular reactive oxygen species (ROS) production in the absence and presence of natural antioxidant, changes in surface morphology, cellular ultrastructure, membrane microenvironment, membrane fluidity, membrane ergosterol, and fatty acids. Results Spherical AgNps (10–30 nm) showed minimum inhibitory concentration (minimum concentration required to inhibit the growth of 90% of organisms) at 40 μg/mL. Our results demonstrated that AgNps induced dose-dependent intracellular ROS which exerted antifungal effects; however, even scavenging ROS by antioxidant could not offer protection from AgNp mediated killing. Treatment with AgNps altered surface morphology, cellular ultrastructure, membrane microenvironment, membrane fluidity, ergosterol content, and fatty acid composition, especially oleic acid. Conclusion To summarize, AgNps affected multiple cellular targets crucial for drug resistance and pathogenicity in the fungal cells. The study revealed new cellular targets of AgNps which include fatty acids like oleic acid, vital for hyphal morphogenesis (a pathogenic trait of Candida). Yeast to hypha transition being pivotal for virulence and biofilm formation, targeting virulence might emerge as a new paradigm for developing nano silver-based therapy for clinical applications in fungal therapeutics. PMID:29760548

  16. Highlights in Endocytosis of Nanostructured Systems.

    PubMed

    Voltan, Aline R; Alarcon, Kaila M; Fusco-Almeida, Ana M; Soares, Christiane P; Mendes-Giannini, Maria J S; Chorilli, Marlus

    2017-01-01

    The focus of this review is the cellular internalisation mechanism of nanostructured systems (NSs) and their endosomal escape for targeted drug delivery. Endocytosis is a cellular process of internalisation of different molecules and foreign microorganisms. It is currently being studied for drug delivery through nanostructured systems. The most commonly studied routes of cellular uptake are phagocytosis, macro-pinocytosis, clathrinmediated endocytosis, caveolin-mediated endocytosis, and clathrin and caveolinindependent endocytosis. The mechanism utilised by NSs for cellular entry depends on factors such as cell type and its physicochemical properties. Currently, with the development of drugs-loaded onto NSs, it has been possible to increase the therapeutic index against few diseases. The NSs can deliver the active drug at locations that conventional drugs cannot, thereby minimising unwanted side effects. On cellular entry of NSs, there is a possibility of an endosomal escape of the contents into the cytoplasm, a mechanism that can be exploited so that NSs can migrate intra-cellularly and deliver the drug to the target of interest. Designing endolysosomal escape strategy is not an easy task, but it is critical for the optimal pharmacological action on the target tissue. The cellular uptake of drugs is a very important factor in therapy. Although NSs have emerged as effective drug delivery vehicle for treatment of diseases, it is crucial to understand the mechanism of NSs endocytosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Perspective: A Dynamics-Based Classification of Ventricular Arrhythmias

    PubMed Central

    Weiss, James N.; Garfinkel, Alan; Karagueuzian, Hrayr S.; Nguyen, Thao P.; Olcese, Riccardo; Chen, Peng-Sheng; Qu, Zhilin

    2015-01-01

    Despite key advances in the clinical management of life-threatening ventricular arrhythmias, culminating with the development of implantable cardioverter-defibrillators and catheter ablation techniques, pharmacologic/biologic therapeutics have lagged behind. The fundamental issue is that biological targets are molecular factors. Diseases, however, represent emergent properties at the scale of the organism that result from dynamic interactions between multiple constantly changing molecular factors. For a pharmacologic/biologic therapy to be effective, it must target the dynamic processes that underlie the disease. Here we propose a classification of ventricular arrhythmias that is based on our current understanding of the dynamics occurring at the subcellular, cellular, tissue and organism scales, which cause arrhythmias by simultaneously generating arrhythmia triggers and exacerbating tissue vulnerability. The goal is to create a framework that systematically links these key dynamic factors together with fixed factors (structural and electrophysiological heterogeneity) synergistically promoting electrical dispersion and increased arrhythmia risk to molecular factors that can serve as biological targets. We classify ventricular arrhythmias into three primary dynamic categories related generally to unstable Ca cycling, reduced repolarization, and excess repolarization, respectively. The clinical syndromes, arrhythmia mechanisms, dynamic factors and what is known about their molecular counterparts are discussed. Based on this framework, we propose a computational-experimental strategy for exploring the links between molecular factors, fixed factors and dynamic factors that underlie life-threatening ventricular arrhythmias. The ultimate objective is to facilitate drug development by creating an in silico platform to evaluate and predict comprehensively how molecular interventions affect not only a single targeted arrhythmia, but all primary arrhythmia dynamics categories as well as normal cardiac excitation-contraction coupling. PMID:25769672

  18. p63 regulates glutaminase 2 expression

    PubMed Central

    Giacobbe, Arianna; Bongiorno-Borbone, Lucilla; Bernassola, Francesca; Terrinoni, Alessandro; Markert, Elke Katrin; Levine, Arnold J.; Feng, Zhaohui; Agostini, Massimilano; Zolla, Lello; Agrò, Alessandro Finazzi; Notterman, Daniel A.; Melino, Gerry; Peschiaroli, Angelo

    2013-01-01

    The transcription factor p63 is critical for many biological processes, including development and maintenance of epidermal tissues and tumorigenesis. Here, we report that the TAp63 isoforms regulate cell metabolism through the induction of the mitochondrial glutaminase 2 (GLS2) gene both in primary cells and tumor cell lines. By ChIP analysis and luciferase assay, we confirmed that TAp63 binds directly to the p53/p63 consensus DNA binding sequence within the GLS2 promoter region. Given the critical role of p63 in epidermal differentiation, we have investigated the regulation of GLS2 expression during this process. GLS2 and TAp63 expression increases during the in vitro differentiation of primary human keratinocytes, and depletion of GLS2 inhibits skin differentiation both at molecular and cellular levels. We found that GLS2 and TAp63 expression are concomitantly induced in cancer cells exposed to oxidative stresses. siRNA-mediated depletion of GLS2 sensitizes cells to ROS-induced apoptosis, suggesting that the TAp63/GLS2 axis can be functionally important as a cellular antioxidant pathway in the absence of p53. Accordingly, we found that GLS2 is upregulated in colon adenocarcinoma. Altogether, our findings demonstrate that GLS2 is a bona fide TAp63 target gene, and that the TAp63-dependent regulation of GLS2 is important for both physiological and pathological processes. PMID:23574722

  19. Heat shock proteins and chronic fatigue in primary Sjögren's syndrome.

    PubMed

    Bårdsen, Kjetil; Nilsen, Mari Mæland; Kvaløy, Jan Terje; Norheim, Katrine Brække; Jonsson, Grete; Omdal, Roald

    2016-04-01

    Fatigue occurs frequently in patients with cancer, neurological diseases and chronic inflammatory diseases, but the biological mechanisms that lead to and regulate fatigue are largely unknown. When the innate immune system is activated, heat shock proteins (HSPs) are produced to protect cells. Some extracellular HSPs appear to recognize cellular targets in the brain, and we hypothesize that fatigue may be generated by specific HSPs signalling through neuronal or glial cells in the central nervous system. From a cohort of patients with primary Sjögren's syndrome, 20 patients with high and 20 patients with low fatigue were selected. Fatigue was evaluated with a fatigue visual analogue scale. Plasma concentrations of HSP32, HSP60, HSP72 and HSP90α were measured and analysed to determine if there were associations with the level of fatigue. Plasma concentrations of HSP90α were significantly higher in patients with high fatigue compared with those with low fatigue, and there was a tendency to higher concentrations of HSP72 in patients with high fatigue compared with patients with low fatigue. There were no differences in concentrations of HSP32 and HSP60 between the high- and low-fatigue groups. Thus, extracellular HSPs, particularly HSP90α, may signal fatigue in chronic inflammation. This supports the hypothesis that fatigue is generated by cellular defence mechanisms. © The Author(s) 2016.

  20. Nerve Growth Factor-Induced Angiogenesis: 1. Endothelial Cell Tube Formation Assay.

    PubMed

    Lazarovici, Philip; Lahiani, Adi; Gincberg, Galit; Haham, Dikla; Fluksman, Arnon; Benny, Ofra; Marcinkiewicz, Cezary; Lelkes, Peter I

    2018-01-01

    Nerve growth factor (NGF) is a neurotrophin promoting survival, proliferation, differentiation, and neuroprotection in the embryonal and adult nervous system. NGF also induces angiogenic effects in the cardiovascular system, which may be beneficial in engineering new blood vessels and for developing novel anti-angiogenesis therapies for cancer. Angiogenesis is a cellular process characterized by a number of events, including endothelial cell migration, invasion, and assembly into capillaries. In vitro endothelial tube formation assays are performed using primary human umbilical vein endothelial cells, human aortic endothelial cells, and other human or rodent primary endothelial cells isolated from the vasculature of both tumors and normal tissues. Immortalized endothelial cell lines are also used for these assays. When seeded onto Matrigel, these cells reorganize to create tubelike structure, which may be used as models for studying some aspects of in vitro angiogenesis. Image acquisition by light and fluorescence microscopy and/or quantification of fluorescently labeled cells can be carried out manually or digitally, using commercial software and automated image processing. Here we detail materials, procedure, assay conditions, and cell labeling for quantification of endothelial cell tube formation. This model can be applied to study cellular and molecular mechanisms by which NGF or other neurotrophins promote angiogenesis. This model may also be useful for the development of potential angiogenic and/or anti-angiogenic drugs targeting NGF receptors.

  1. Development of a High-Throughput Gene Expression Screen for Modulators of RAS-MAPK Signaling in a Mutant RAS Cellular Context.

    PubMed

    Severyn, Bryan; Nguyen, Thi; Altman, Michael D; Li, Lixia; Nagashima, Kumiko; Naumov, George N; Sathyanarayanan, Sriram; Cook, Erica; Morris, Erick; Ferrer, Marc; Arthur, Bill; Benita, Yair; Watters, Jim; Loboda, Andrey; Hermes, Jeff; Gilliland, D Gary; Cleary, Michelle A; Carroll, Pamela M; Strack, Peter; Tudor, Matt; Andersen, Jannik N

    2016-10-01

    The RAS-MAPK pathway controls many cellular programs, including cell proliferation, differentiation, and apoptosis. In colorectal cancers, recurrent mutations in this pathway often lead to increased cell signaling that may contribute to the development of neoplasms, thereby making this pathway attractive for therapeutic intervention. To this end, we developed a 26-member gene signature of RAS-MAPK pathway activity utilizing the Affymetrix QuantiGene Plex 2.0 reagent system and performed both primary and confirmatory gene expression-based high-throughput screens (GE-HTSs) using KRAS mutant colon cancer cells (SW837) and leveraging a highly annotated chemical library. The screen achieved a hit rate of 1.4% and was able to enrich for hit compounds that target RAS-MAPK pathway members such as MEK and EGFR. Sensitivity and selectivity performance measurements were 0.84 and 1.00, respectively, indicating high true-positive and true-negative rates. Active compounds from the primary screen were confirmed in a dose-response GE-HTS assay, a GE-HTS assay using 14 additional cancer cell lines, and an in vitro colony formation assay. Altogether, our data suggest that this GE-HTS assay will be useful for larger unbiased chemical screens to identify novel compounds and mechanisms that may modulate the RAS-MAPK pathway. © 2016 Society for Laboratory Automation and Screening.

  2. Inhibition of duck hepatitis B virus replication by mimic peptides in vitro

    PubMed Central

    JIA, HONGYU; LIU, CHANGHONG; YANG, YING; ZHU, HAIHONG; CHEN, FENG; LIU, JIHONG; ZHOU, LINFU

    2015-01-01

    The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro. PMID:26640539

  3. Inhibition of duck hepatitis B virus replication by mimic peptides in vitro.

    PubMed

    Jia, Hongyu; Liu, Changhong; Yang, Ying; Zhu, Haihong; Chen, Feng; Liu, Jihong; Zhou, Linfu

    2015-11-01

    The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro .

  4. Mitotic trafficking of silicon microparticles†

    PubMed Central

    Serda, Rita E.; Ferrati, Silvia; Godin, Biana; Tasciotti, Ennio; Liu, XueWu

    2010-01-01

    Multistage carriers were recently introduced by our laboratory, with the concurrent objectives of co-localized delivery of multiple therapeutic agents, the “theranostic” integration of bioactive moieties with imaging contrast, and the selective, potentially personalized bypassing of the multiplicity of biological barriers that adversely impact biodistribution of vascularly injected particulates. Mesoporous (“nanoporous”) silicon microparticles were selected as primary carriers in multi-stage devices, with targets including vascular endothelia at pathological lesions. The objective of this study was to evaluate biocompatibility of mesoporous silicon microparticles with endothelial cells using in vitro assays with an emphasis on microparticle compatibility with mitotic events. We observed that vascular endothelial cells, following internalization of silicon microparticles, maintain cellular integrity, as demonstrated by cellular morphology, viability and intact mitotic trafficking of vesicles bearing silicon microparticles. The presence of gold or iron oxide nanoparticles within the porous matrix did not alter the cellular uptake of particles or the viability of endothelial cells subsequent to engulfment of microparticles. Endothelial cells maintained basal levels of IL-6 and IL-8 release in the presence of silicon microparticles. This is the first study that demonstrates polarized, ordered partitioning of endosomes based on tracking microparticles. The finding that mitotic sorting of endosomes is unencumbered by the presence of nanoporous silicon microparticles advocates the use of silicon microparticles for biomedical applications. PMID:20644846

  5. Dielectric screening of early differentiation patterns in mesenchymal stem cells induced by steroid hormones.

    PubMed

    Ron, Amit; Shur, Irena; Daniel, Ramiz; Singh, Ragini Raj; Fishelson, Nick; Croitoru, Nathan; Benayahu, Dafna; Shacham-Diamand, Yosi

    2010-06-01

    In the framework of this study, target identification and localization of differentiation patterns by means of dielectric spectroscopy is presented. Here, a primary pre-osteoblastic bone marrow-derived MBA-15 cellular system was used to study the variations in the dielectric properties of mesenchymal stem cells while exposed to differentiation regulators. Using the fundamentals of mixed dielectric theories combined with finite numerical tools, the permittivity spectra of MBA-15 cell suspensions have been uniquely analyzed after being activated by steroid hormones to express osteogenic phenotypes. Following the spectral analysis, significant variations were revealed in the dielectric properties of the activated cells in comparison to the untreated populations. Based on the differentiation patterns of MBA-15, the electrical modifications were found to be highly correlated with the activation of specific cellular mechanisms which directly react to the hormonal inductions. In addition, by describing the dielectric dispersion in terms of transfer functions, it is shown that the spectral perturbations are well adapted to variations in the electrical characteristics of the cells. The reported findings vastly emphasize the tight correlation between the cellular and electrical state of the differentiated cells. It therefore emphasizes the vast abilities of impedance-based techniques as potential screening tools for stem cell analysis. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Characterization of ibrutinib-sensitive and -resistant mantle lymphoma cells.

    PubMed

    Ma, Jiao; Lu, Pin; Guo, Ailin; Cheng, Shuhua; Zong, Hongliang; Martin, Peter; Coleman, Morton; Wang, Y Lynn

    2014-09-01

    Ibrutinib inhibits Bruton tyrosine kinase (BTK), a key component of early B-cell receptor (BCR) signalling pathways. A multicentre phase 2 trial of ibrutinib in patients with relapsed/refractory mantle cell lymphoma (MCL) demonstrated a remarkable response rate. However, approximately one-third of patients have primary resistance to the drug while other patients appear to lose response and develop secondary resistance. Understanding the molecular mechanisms underlying ibrutinib sensitivity is of paramount importance. In this study, we investigated cell lines and primary MCL cells that display differential sensitivity to ibrutinib. We found that the primary cells display a higher BTK activity than normal B cells and MCL cells show differential sensitivity to BTK inhibition. Genetic knockdown of BTK inhibits the growth, survival and proliferation of ibrutinib-sensitive but not resistant MCL cell lines, suggesting that ibrutinib acts through BTK to produce its anti-tumour activities. Interestingly, inhibition of ERK1/2 and AKT, but not BTK phosphorylation per se, correlates well with cellular response to BTK inhibition in cell lines as well as in primary tumours. Our study suggests that, to prevent primary resistance or to overcome secondary resistance to BTK inhibition, a combinatory strategy that targets multiple components or multiple pathways may represent the most effective approach. © 2014 John Wiley & Sons Ltd.

  7. Primary Cilia and Dendritic Spines: Different but Similar Signaling Compartments

    PubMed Central

    Nechipurenko, Inna V.; Doroquez, David B.; Sengupta, Piali

    2013-01-01

    Primary non-motile cilia and dendritic spines are cellular compartments that are specialized to sense and transduce environmental cues and presynaptic signals, respectively. Despite their unique cellular roles, both compartments exhibit remarkable parallels in the general principles, as well as molecular mechanisms, by which their protein composition, membrane domain architecture, cellular interactions, and structural and functional plasticity are regulated. We compare and contrast the pathways required for the generation and function of cilia and dendritic spines, and suggest that insights from the study of one may inform investigations into the other of these critically important signaling structures. PMID:24048681

  8. Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury.

    PubMed

    Branco, Vasco; Coppo, Lucia; Solá, Susana; Lu, Jun; Rodrigues, Cecília M P; Holmgren, Arne; Carvalho, Cristina

    2017-10-01

    Mercury (Hg) compounds target both cysteine (Cys) and selenocysteine (Sec) residues in peptides and proteins. Thus, the components of the two major cellular antioxidant systems - glutathione (GSH) and thioredoxin (Trx) systems - are likely targets for mercurials. Hg exposure results in GSH depletion and Trx and thioredoxin reductase (TrxR) are prime targets for mercury. These systems have a wide-range of common functions and interaction between their components has been reported. However, toxic effects over both systems are normally treated as isolated events. To study how the interaction between the glutathione and thioredoxin systems is affected by Hg, human neuroblastoma (SH-SY5Y) cells were exposed to 1 and 5μM of inorganic mercury (Hg 2+ ), methylmercury (MeHg) or ethylmercury (EtHg) and examined for TrxR, GSH and Grx levels and activities, as well as for Trx redox state. Phosphorylation of apoptosis signalling kinase 1 (ASK1), caspase-3 activity and the number of apoptotic cells were evaluated to investigate the induction of Trx-mediated apoptotic cell death. Additionally, primary cerebellar neurons from mice depleted of mitochondrial Grx2 (mGrx2D) were used to examine the link between Grx activity and Trx function. Results showed that Trx was affected at higher exposure levels than TrxR, especially for EtHg. GSH levels were only significantly affected by exposure to a high concentration of EtHg. Depletion of GSH with buthionine sulfoximine (BSO) severely increased Trx oxidation by Hg. Notably, EtHg-induced oxidation of Trx was significantly enhanced in primary neurons of mGrx2D mice. Our results suggest that GSH/Grx acts as backups for TrxR in neuronal cells to maintain Trx turnover during Hg exposure, thus linking different mechanisms of molecular and cellular toxicity. Finally, Trx oxidation by Hg compounds was associated to apoptotic hallmarks, including increased ASK-1 phosphorylation, caspase-3 activation and increased number of apoptotic cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity.

    PubMed

    Zhang, Congcong; Oberoi, Pranav; Oelsner, Sarah; Waldmann, Anja; Lindner, Aline; Tonn, Torsten; Wels, Winfried S

    2017-01-01

    Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs) composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future prospects of CAR-engineered NK-92 cells as off-the-shelf cellular therapeutics, with special emphasis on ErbB2 (HER2)-specific NK-92 cells that are approaching clinical application.

  10. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity

    PubMed Central

    Zhang, Congcong; Oberoi, Pranav; Oelsner, Sarah; Waldmann, Anja; Lindner, Aline; Tonn, Torsten; Wels, Winfried S.

    2017-01-01

    Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs) composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future prospects of CAR-engineered NK-92 cells as off-the-shelf cellular therapeutics, with special emphasis on ErbB2 (HER2)-specific NK-92 cells that are approaching clinical application. PMID:28572802

  11. Tumor abolition and antitumor immunostimulation by physico-chemical tumor ablation.

    PubMed

    Keisari, Yona

    2017-01-01

    Tumor ablation by thermal, chemical and radiological sources has received substantial attention for the treatment of many localized malignancies. The primary goal of most ablation procedures is to eradicate all viable malignant cells within a designated target volume through the application of energy or chemicals. Methods such as radiotherapy, chemical and biological ablation, photodynamic therapy, cryoablation, high-temperature ablation (radiofrequency, microwave, laser, and ultrasound), and electric-based ablation have been developed for focal malignancies. In recent years a large volume of data emerged on the effect of in situ tumor destruction (ablation) on inflammatory and immune components resulting in systemic anti-tumor reactions. It is evident that in situ tumor ablation can involve tumor antigen release, cross presentation and the release of DAMPS and make the tumor its own cellular vaccine. Tumor tissue destruction by in situ ablation may stimulate antigen-specific cellular immunity engendered by an inflammatory milieu. Dendritic cells (DCs) attracted to this microenvironment, will undergo maturation after internalizing cellular debris containing tumor antigens and will be exposed to damage associated molecular pattern (DAMP). Mature DCs can mediate antigen-specific cellular immunity via presentation of processed antigens to T cells. The immunomodulatory properties, exhibited by in situ ablation could portend a future collaboration with immunotherapeutic measures. In this review are summarized and discuss the preclinical and clinical studies pertinent to the phenomena of stimulation of specific anti-tumor immunity by various ablation modalities and the immunology related measures used to boost this response.

  12. Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets

    PubMed Central

    Arango, Daniel; Morohashi, Kengo; Yilmaz, Alper; Kuramochi, Kouji; Parihar, Arti; Brahimaj, Bledi; Grotewold, Erich; Doseff, Andrea I.

    2013-01-01

    Flavonoids constitute the largest class of dietary phytochemicals, adding essential health value to our diet, and are emerging as key nutraceuticals. Cellular targets for dietary phytochemicals remain largely unknown, posing significant challenges for the regulation of dietary supplements and the understanding of how nutraceuticals provide health value. Here, we describe the identification of human cellular targets of apigenin, a flavonoid abundantly present in fruits and vegetables, using an innovative high-throughput approach that combines phage display with second generation sequencing. The 160 identified high-confidence candidate apigenin targets are significantly enriched in three main functional categories: GTPase activation, membrane transport, and mRNA metabolism/alternative splicing. This last category includes the heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2), a factor involved in splicing regulation, mRNA stability, and mRNA transport. Apigenin binds to the C-terminal glycine-rich domain of hnRNPA2, preventing hnRNPA2 from forming homodimers, and therefore, it perturbs the alternative splicing of several human hnRNPA2 targets. Our results provide a framework to understand how dietary phytochemicals exert their actions by binding to many functionally diverse cellular targets. In turn, some of them may modulate the activity of a large number of downstream genes, which is exemplified here by the effects of apigenin on the alternative splicing activity of hnRNPA2. Hence, in contrast to small-molecule pharmaceuticals designed for defined target specificity, dietary phytochemicals affect a large number of cellular targets with varied affinities that, combined, result in their recognized health benefits. PMID:23697369

  13. Dynamic Analysis of Human Natural Killer Cell Response at Single-Cell Resolution in B-Cell Non-Hodgkin Lymphoma.

    PubMed

    Sarkar, Saheli; Sabhachandani, Pooja; Ravi, Dashnamoorthy; Potdar, Sayalee; Purvey, Sneha; Beheshti, Afshin; Evens, Andrew M; Konry, Tania

    2017-01-01

    Natural killer (NK) cells are phenotypically and functionally diverse lymphocytes that recognize and kill cancer cells. The susceptibility of target cancer cells to NK cell-mediated cytotoxicity depends on the strength and balance of regulatory (activating/inhibitory) ligands expressed on target cell surface. We performed gene expression arrays to determine patterns of NK cell ligands associated with B-cell non-Hodgkin lymphoma (b-NHL). Microarray analyses revealed significant upregulation of a multitude of NK-activating and costimulatory ligands across varied b-NHL cell lines and primary lymphoma cells, including ULBP1, CD72, CD48, and SLAMF6. To correlate genetic signatures with functional anti-lymphoma activity, we developed a dynamic and quantitative cytotoxicity assay in an integrated microfluidic droplet generation and docking array. Individual NK cells and target lymphoma cells were co-encapsulated in picoliter-volume droplets to facilitate monitoring of transient cellular interactions and NK cell effector outcomes at single-cell level. We identified significant variability in NK-lymphoma cell contact duration, frequency, and subsequent cytolysis. Death of lymphoma cells undergoing single contact with NK cells occurred faster than cells that made multiple short contacts. NK cells also killed target cells in droplets via contact-independent mechanisms that partially relied on calcium-dependent processes and perforin secretion, but not on cytokines (interferon-γ or tumor necrosis factor-α). We extended this technique to characterize functional heterogeneity in cytolysis of primary cells from b-NHL patients. Tumor cells from two diffuse large B-cell lymphoma patients showed similar contact durations with NK cells; primary Burkitt lymphoma cells made longer contacts and were lysed at later times. We also tested the cytotoxic efficacy of NK-92, a continuously growing NK cell line being investigated as an antitumor therapy, using our droplet-based bioassay. NK-92 cells were found to be more efficient in killing b-NHL cells compared with primary NK cells, requiring shorter contacts for faster killing activity. Taken together, our combined genetic and microfluidic analysis demonstrate b-NHL cell sensitivity to NK cell-based cytotoxicity, which was associated with significant heterogeneity in the dynamic interaction at single-cell level.

  14. A primary cell model of HIV-1 latency that uses activation through the T cell receptor and return to quiescence to establish latent infection

    PubMed Central

    Kim, Michelle; Hosmane, Nina N.; Bullen, C. Korin; Capoferri, Adam; Yang, Hung-Chih; Siliciano, Janet D.; Siliciano, Robert F.

    2015-01-01

    A mechanistic understanding of HIV-1 latency depends upon a model system that recapitulates the in vivo condition of latently infected, resting CD4+ T lymphocytes. Latency appears to be established after activated CD4+ T cells, the principal targets of HIV-1 infection, become productively infected and survive long enough to return to a resting memory state in which viral expression is inhibited by changes in the cellular environment. This protocol describes an ex vivo primary cell system that is generated under conditions that reflect the in vivo establishment of latency. Creation of these latency model cells takes 12 weeks and, once established, the cells can be maintained and used for several months. The resulting cell population contains both uninfected and latently infected cells. This primary cell model can be used to perform drug screens, study CTL responses to HIV-1, compare viral alleles, or to expand the ex vivo lifespan of cells from HIV-1 infected individuals for extended study. PMID:25375990

  15. Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery

    PubMed Central

    Gordon, Laurie J.; Wayne, Gareth J.; Almqvist, Helena; Axelsson, Hanna; Seashore-Ludlow, Brinton; Treyer, Andrea; Lundbäck, Thomas; West, Andy; Hann, Michael M.; Artursson, Per

    2017-01-01

    Inadequate target exposure is a major cause of high attrition in drug discovery. Here, we show that a label-free method for quantifying the intracellular bioavailability (Fic) of drug molecules predicts drug access to intracellular targets and hence, pharmacological effect. We determined Fic in multiple cellular assays and cell types representing different targets from a number of therapeutic areas, including cancer, inflammation, and dementia. Both cytosolic targets and targets localized in subcellular compartments were investigated. Fic gives insights on membrane-permeable compounds in terms of cellular potency and intracellular target engagement, compared with biochemical potency measurements alone. Knowledge of the amount of drug that is locally available to bind intracellular targets provides a powerful tool for compound selection in early drug discovery. PMID:28701380

  16. The host immunological response to cancer therapy: An emerging concept in tumor biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voloshin, Tali; Voest, Emile E.; Shaked, Yuval, E-mail: yshaked@tx.technion.ac.il

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet onlymore » partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome.« less

  17. Metabolism goes viral.

    PubMed

    Miyake-Stoner, Shigeki J; O'Shea, Clodagh C

    2014-04-01

    Viral and cellular oncogenes converge in targeting critical protein interaction networks to reprogram the cellular DNA and protein replication machinery for pathological replication. In this issue, Thai et al. (2014) show that adenovirus E4ORF1 activates MYC glycolytic targets to induce a Warburg-like effect that converts glucose into nucleotides for viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Optogenetic Approaches to Drug Discovery in Neuroscience and Beyond.

    PubMed

    Zhang, Hongkang; Cohen, Adam E

    2017-07-01

    Recent advances in optogenetics have opened new routes to drug discovery, particularly in neuroscience. Physiological cellular assays probe functional phenotypes that connect genomic data to patient health. Optogenetic tools, in particular tools for all-optical electrophysiology, now provide a means to probe cellular disease models with unprecedented throughput and information content. These techniques promise to identify functional phenotypes associated with disease states and to identify compounds that improve cellular function regardless of whether the compound acts directly on a target or through a bypass mechanism. This review discusses opportunities and unresolved challenges in applying optogenetic techniques throughout the discovery pipeline - from target identification and validation, to target-based and phenotypic screens, to clinical trials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Examination of the Specificity of Tumor Cell Derived Exosomes with Tumor Cells In Vitro

    PubMed Central

    Smyth, Tyson J.; Redzic, Jasmina S.; Graner, Michael W.; Anchordoquy, Thomas J.

    2016-01-01

    Small endogenous vesicles called exosomes are beginning to be explored as drug delivery vehicles. The in vivo targets of exosomes are poorly understood; however, they are believed to be important in cell-to-cell communication and may play a prominent role in cancer metastasis. We aimed to elucidate whether cancer derived exosomes can be used as drug delivery vehicles that innately target tumors over normal tissue. Our in vitro results suggest that while there is some specificity towards cancer cells over “immortalized” cells, it is unclear if the difference is sufficient to achieve precise in vivo targeting. Additionally, we found that exosomes associate with their cellular targets to a significantly greater extent (> 10-fold) than liposomes of a similar size. Studies on the association of liposomes mimicking the unique lipid content of exosomes revealed that the lipid composition contributes significantly to cellular adherence/internalization. Cleavage of exosome surface proteins yielded exosomes exhibiting reduced association with their cellular targets, demonstrating the importance of proteins in binding/internalization. Furthermore, although acidic conditions are known to augment the metastatic potential of tumors, we found that cells cultured at low pH released exosomes with significantly less potential for cellular association than cells cultured at physiological pH. PMID:25102470

  20. G5G2.5 core-shell tecto-dendrimer specifically targets reactive glia in brain ischemia.

    PubMed

    Murta, Veronica; Schilrreff, Priscila; Rosciszewski, Gerardo; Morilla, Maria Jose; Ramos, Alberto Javier

    2018-03-01

    Secondary neuronal death is a serious stroke complication. This process is facilitated by the conversion of glial cells to the reactive pro-inflammatory phenotype that induces neurodegeneration. Therefore, regulation of glial activation is a compelling strategy to reduce brain damage after stroke. However, drugs have difficulties to access the CNS, and to specifically target glial cells. In the present work, we explored the use core-shell polyamidoamine tecto-dendrimer (G5G2.5 PAMAM) and studied its ability to target distinct populations of stroke-activated glial cells. We found that G5G2.5 tecto-dendrimer is actively engulfed by primary glial cells in a time- and dose-dependent manner showing high cellular selectivity and lysosomal localization. In addition, oxygen-glucose deprivation or lipopolysaccharides exposure in vitro and brain ischemia in vivo increase glial G5G2.5 uptake; not being incorporated by neurons or other cell types. We conclude that G5G2.5 tecto-dendrimer is a highly suitable carrier for targeted drug delivery to reactive glial cells in vitro and in vivo after brain ischemia. © 2017 International Society for Neurochemistry.

  1. Cell signaling molecules as drug targets in lung cancer: an overview.

    PubMed

    Mukherjee, Tapan K; Paul, Karan; Mukhopadhyay, Srirupa

    2011-07-01

    Lung being one of the vital and essential organs in the body, lung cancer is a major cause of mortality in the modern human society. Lung cancer can be broadly subdivided into nonsmall cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Although NSCLC is sometimes treated with surgery, the advanced and metastatic NSCLC and SCLC usually respond better to chemotherapy and radiation. The most important targets of these chemotherapeutic agents are various intracellular signaling molecules. The primary focus of this review article is to summarize the description of various cell signaling molecules involved in lung cancer development and their regulation by chemotherapeutic agents. Extensive research work in recent years has identified several cellular signaling molecules that may be intricately involved in the complexity of lung cancer. Some of these cell signaling molecules are epidermal growth factor receptors, vascular endothelial growth factor receptors, mammalian target of rapamycin, mitogen-activated protein kinase phosphatase-1, peroxisome proliferator-activated receptor-gamma, matrix metalloproteinases and receptor for advanced glycation end-products. The present review will strengthen our current knowledge regarding the efficacy of the above-mentioned cell signaling molecules as potential beneficial drug targets against lung cancer.

  2. Characterization of a 3rd Generation Lentiviral Vector Pseudotyped With Nipah Virus Envelope Proteins For Endothelial Cell Transduction

    PubMed Central

    Witting, Scott R.; Vallanda, Priya; Gamble, Aisha L.

    2013-01-01

    Lentiviruses are becoming progressively more popular as gene therapy vectors due to their ability to integrate into quiescent cells and recent clinical trial successes. Directing these vectors to specific cell types and limiting off-target transduction in vivo remains a challenge. Replacing the viral envelope proteins responsible for cellular binding, or pseudotyping, remains a common method to improve lentiviral targeting. Here, we describe the development of a high titer, 3rd generation lentiviral vector pseudotyped with Nipah virus fusion protein (NiV-F) and attachment protein (NiV-G). Critical to high titers was truncation of the cytoplasmic domains of both NiV-F and NiV-G. As known targets of wild-type Nipah virus, primary endothelial cells are shown to be effectively transduced by the Nipah pseudotype. In contrast, human CD34+ hematopoietic progenitors were not significantly transduced. Additionally, the Nipah pseudotype has increased stability in human serum compared to VSV pseudotyped lentivirus. These findings suggest that the use of Nipah virus envelope proteins in 3rd generation lentiviral vectors would be a valuable tool for gene delivery targeted to endothelial cells. PMID:23698741

  3. Characterization of a third generation lentiviral vector pseudotyped with Nipah virus envelope proteins for endothelial cell transduction.

    PubMed

    Witting, S R; Vallanda, P; Gamble, A L

    2013-10-01

    Lentiviruses are becoming progressively more popular as gene therapy vectors due to their ability to integrate into quiescent cells and recent clinical trial successes. Directing these vectors to specific cell types and limiting off-target transduction in vivo remains a challenge. Replacing the viral envelope proteins responsible for cellular binding, or pseudotyping, remains a common method to improve lentiviral targeting. Here, we describe the development of a high titer, third generation lentiviral vector pseudotyped with Nipah virus fusion protein (NiV-F) and attachment protein (NiV-G). Critical to high titers was truncation of the cytoplasmic domains of both NiV-F and NiV-G. As known targets of wild-type Nipah virus, primary endothelial cells are shown to be effectively transduced by the Nipah pseudotype. In contrast, human CD34+ hematopoietic progenitors were not significantly transduced. Additionally, the Nipah pseudotype has increased stability in human serum compared with vesicular stomatitis virus pseudotyped lentivirus. These findings suggest that the use of Nipah virus envelope proteins in third generation lentiviral vectors would be a valuable tool for gene delivery targeted to endothelial cells.

  4. Inflammatory targets of therapy in sickle cell disease

    PubMed Central

    Owusu-Ansah, Amma; Ihunnah, Chibueze A.; Walker, Aisha L.; Ofori-Acquah, Solomon F.

    2015-01-01

    Sickle cell disease (SCD) is a monogenic globin disorder characterized by the production of a structurally abnormal hemoglobin (Hb) variant Hb S, which causes severe hemolytic anemia, episodic painful vaso-occlusion and ultimately end-organ damage. The primary disease pathophysiology is intracellular Hb S polymerization and consequent sickling of erythrocytes. It has become evident over several decades that a more complex disease process contributes to the myriad of clinical complications seen in SCD patients with inflammation playing a central role. Drugs targeting specific inflammatory pathways therefore offer an attractive therapeutic strategy to ameliorate many of the clinical events in SCD. In addition they are useful tools to dissecting the molecular and cellular mechanisms that promote individual clinical events, and for developing improved therapeutics to address more challenging clinical dilemmas such as refractoriness to opioids or hyperalgesia. Here, we discuss the prospect of targeting multiple inflammatory pathways implicated in the pathogenesis of SCD with a focus on new therapeutics, striving to link the actions of the anti-inflammatory agents to a defined pathobiology, and specific clinical manifestations of SCD. We also review the anti-inflammatory attributes and the cognate inflammatory targets of hydroxyurea, the only FDA approved drug for SCD. PMID:26226206

  5. Expression of Biglycan in First Trimester Chorionic Villous Sampling Placental Samples and Altered Function in Telomerase-Immortalized Microvascular Endothelial Cells.

    PubMed

    Chui, Amy; Gunatillake, Tilini; Brennecke, Shaun P; Ignjatovic, Vera; Monagle, Paul T; Whitelock, John M; van Zanten, Dagmar E; Eijsink, Jasper; Wang, Yao; Deane, James; Borg, Anthony J; Stevenson, Janet; Erwich, Jan Jaap; Said, Joanne M; Murthi, Padma

    2017-06-01

    Biglycan (BGN) has reduced expression in placentae from pregnancies complicated by fetal growth restriction (FGR). We used first trimester placental samples from pregnancies with later small for gestational age (SGA) infants as a surrogate for FGR. The functional consequences of reduced BGN and the downstream targets of BGN were determined. Furthermore, the expression of targets was validated in primary placental endothelial cells isolated from FGR or control pregnancies. APPROACH AND RESULTS: BGN expression was determined using real-time polymerase chain reaction in placental tissues collected during chorionic villous sampling performed at 10 to 12 weeks' gestation from pregnancies that had known clinical outcomes, including SGA. Short-interference RNA reduced BGN expression in telomerase-immortalized microvascular endothelial cells, and the effect on proliferation, angiogenesis, and thrombin generation was determined. An angiogenesis array identified downstream targets of BGN, and their expression in control and FGR primary placental endothelial cells was validated using real-time polymerase chain reaction. Reduced BGN expression was observed in SGA placental tissues. BGN reduction decreased network formation of telomerase-immortalized microvascular endothelial cells but did not affect thrombin generation or cellular proliferation. The array identified target genes, which were further validated: angiopoetin 4 ( ANGPT4 ), platelet-derived growth factor receptor α ( PDGFRA ), tumor necrosis factor superfamily member 15 ( TNFSF15 ), angiogenin ( ANG ), serpin family C member 1 ( SERPIN1 ), angiopoietin 2 ( ANGPT2 ), and CXC motif chemokine 12 ( CXCL12 ) in telomerase-immortalized microvascular endothelial cells and primary placental endothelial cells obtained from control and FGR pregnancies. This study reports a temporal relationship between altered placental BGN expression and subsequent development of SGA. Reduction of BGN in vascular endothelial cells leads to disrupted network formation and alterations in the expression of genes involved in angiogenesis. Therefore, differential expression of these may contribute to aberrant angiogenesis in SGA pregnancies. © 2017 American Heart Association, Inc.

  6. Principles of Unconventional Myosin Function and Targeting

    PubMed Central

    Hartman, M. Amanda; Finan, Dina; Sivaramakrishnan, Sivaraj; Spudich, James A.

    2016-01-01

    Unconventional myosins are a superfamily of actin-based motors implicated in diverse cellular processes. In recent years, much progress has been made in describing their biophysical properties, and headway has been made into analyzing their cellular functions. Here, we focus on the principles that guide in vivo motor function and targeting to specific cellular locations. Rather than describe each motor comprehensively, we outline the major themes that emerge from research across the superfamily and use specific examples to illustrate each. In presenting the data in this format, we seek to identify open questions in each field as well as to point out commonalities between them. To advance our understanding of myosins’ roles in vivo, clearly we must identify their cellular cargoes and the protein complexes that regulate motor attachment to fully appreciate their functions on the cellular and developmental levels. PMID:21639800

  7. Drug Target Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform

    PubMed Central

    Chuang, Ryan; Hall, Benjamin A.; Benque, David; Cook, Byron; Ishtiaq, Samin; Piterman, Nir; Taylor, Alex; Vardi, Moshe; Koschmieder, Steffen; Gottgens, Berthold; Fisher, Jasmin

    2015-01-01

    Chronic Myeloid Leukemia (CML) represents a paradigm for the wider cancer field. Despite the fact that tyrosine kinase inhibitors have established targeted molecular therapy in CML, patients often face the risk of developing drug resistance, caused by mutations and/or activation of alternative cellular pathways. To optimize drug development, one needs to systematically test all possible combinations of drug targets within the genetic network that regulates the disease. The BioModelAnalyzer (BMA) is a user-friendly computational tool that allows us to do exactly that. We used BMA to build a CML network-model composed of 54 nodes linked by 104 interactions that encapsulates experimental data collected from 160 publications. While previous studies were limited by their focus on a single pathway or cellular process, our executable model allowed us to probe dynamic interactions between multiple pathways and cellular outcomes, suggest new combinatorial therapeutic targets, and highlight previously unexplored sensitivities to Interleukin-3. PMID:25644994

  8. Drug Target Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform

    NASA Astrophysics Data System (ADS)

    Chuang, Ryan; Hall, Benjamin A.; Benque, David; Cook, Byron; Ishtiaq, Samin; Piterman, Nir; Taylor, Alex; Vardi, Moshe; Koschmieder, Steffen; Gottgens, Berthold; Fisher, Jasmin

    2015-02-01

    Chronic Myeloid Leukemia (CML) represents a paradigm for the wider cancer field. Despite the fact that tyrosine kinase inhibitors have established targeted molecular therapy in CML, patients often face the risk of developing drug resistance, caused by mutations and/or activation of alternative cellular pathways. To optimize drug development, one needs to systematically test all possible combinations of drug targets within the genetic network that regulates the disease. The BioModelAnalyzer (BMA) is a user-friendly computational tool that allows us to do exactly that. We used BMA to build a CML network-model composed of 54 nodes linked by 104 interactions that encapsulates experimental data collected from 160 publications. While previous studies were limited by their focus on a single pathway or cellular process, our executable model allowed us to probe dynamic interactions between multiple pathways and cellular outcomes, suggest new combinatorial therapeutic targets, and highlight previously unexplored sensitivities to Interleukin-3.

  9. Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging.

    PubMed

    Fozooni, Tahereh; Ravan, Hadi; Sasan, Hosseinali

    2017-12-01

    Due to their unique properties, such as programmability, ligand-binding capability, and flexibility, nucleic acids can serve as analytes and/or recognition elements for biosensing. To improve the sensitivity of nucleic acid-based biosensing and hence the detection of a few copies of target molecule, different modern amplification methodologies, namely target-and-signal-based amplification strategies, have already been developed. These recent signal amplification technologies, which are capable of amplifying the signal intensity without changing the targets' copy number, have resulted in fast, reliable, and sensitive methods for nucleic acid detection. Working in cell-free settings, researchers have been able to optimize a variety of complex and quantitative methods suitable for deploying in live-cell conditions. In this study, a comprehensive review of the signal amplification technologies for the detection of nucleic acids is provided. We classify the signal amplification methodologies into enzymatic and non-enzymatic strategies with a primary focus on the methods that enable us to shift away from in vitro detecting to in vivo imaging. Finally, the future challenges and limitations of detection for cellular conditions are discussed.

  10. PTEN negatively regulates the cell lineage progression from NG2+ glial progenitor to oligodendrocyte via mTOR-independent signaling

    PubMed Central

    González-Fernández, Estibaliz; Jeong, Hey-Kyeong; Fukaya, Masahiro; Kim, Hyukmin; Khawaja, Rabia R; Srivastava, Isha N; Waisman, Ari; Son, Young-Jin

    2018-01-01

    Oligodendrocytes (OLs), the myelin-forming CNS glia, are highly vulnerable to cellular stresses, and a severe myelin loss underlies numerous CNS disorders. Expedited OL regeneration may prevent further axonal damage and facilitate functional CNS repair. Although adult OL progenitors (OPCs) are the primary players for OL regeneration, targetable OPC-specific intracellular signaling mechanisms for facilitated OL regeneration remain elusive. Here, we report that OPC-targeted PTEN inactivation in the mouse, in contrast to OL-specific manipulations, markedly promotes OL differentiation and regeneration in the mature CNS. Unexpectedly, an additional deletion of mTOR did not reverse the enhanced OL development from PTEN-deficient OPCs. Instead, ablation of GSK3β, another downstream signaling molecule that is negatively regulated by PTEN-Akt, enhanced OL development. Our results suggest that PTEN persistently suppresses OL development in an mTOR-independent manner, and at least in part, via controlling GSK3β activity. OPC-targeted PTEN-GSK3β inactivation may benefit facilitated OL regeneration and myelin repair. PMID:29461205

  11. Fluorescent diamond nanoparticle as a probe of intracellular traffic in primary neurons in culture

    NASA Astrophysics Data System (ADS)

    Le, Xuan Loc; Lepagnol-Bestel, Aude-Marie; Adam, Marie-Pierre; Thomas, Alice; Dantelle, Géraldine; Chang, Cheng-Chun; Mohan, Nitin; Chang, Huan-Cheng; Treussart, François; Simonneau, Michel

    2012-03-01

    Neurons display dendritic spines plasticity and morphology anomalies in numerous psychiatric and neurodegenerative diseases. These changes are associated to abnormal dendritic traffic that can be evidenced by fluorescence microscopy. As a fluorescent probe we propose to use fluorescent diamond nanoparticles with size of < 50 nm. Color centers embedded inside the diamond nanoparticles are perfectly photostable emitters allowing for long-term tracking. Nanodiamond carbon surface is also well suited for biomolecule functionalization to target specific cellular compartments. We show that fluorescent nanodiamonds can be spontaneously internalized in neurons in culture and imaged by confocal and Total Internal Reflection (TIRF) microscopy with a high signal over background ratio.

  12. Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles

    PubMed Central

    Kaluzova, Milota; Bouras, Alexandros; Machaidze, Revaz; Hadjipanayis, Costas G.

    2015-01-01

    Malignant gliomas remain aggressive and lethal primary brain tumors in adults. The epidermal growth factor receptor (EGFR) is frequently overexpressed in the most common malignant glioma, glioblastoma (GBM), and represents an important therapeutic target. GBM stem-like cells (GSCs) present in tumors are felt to be highly tumorigenic and responsible for tumor recurrence. Multifunctional magnetic iron-oxide nanoparticles (IONPs) can be directly imaged by magnetic resonance imaging (MRI) and designed to therapeutically target cancer cells. The targeting effects of IONPs conjugated to the EGFR inhibitor, cetuximab (cetuximab-IONPs), were determined with EGFR- and EGFRvIII-expressing human GBM neurospheres and GSCs. Transmission electron microscopy revealed cetuximab-IONP GBM cell binding and internalization. Fluorescence microscopy and Prussian blue staining showed increased uptake of cetuximab-IONPs by EGFR- as well as EGFRvIII-expressing GSCs and neurospheres in comparison to cetuximab or free IONPs. Treatment with cetuximab-IONPs resulted in a significant antitumor effect that was greater than with cetuximab alone due to more efficient, CD133-independent cellular targeting and uptake, EGFR signaling alterations, EGFR internalization, and apoptosis induction in EGFR-expressing GSCs and neurospheres. A significant increase in survival was found after cetuximab-IONP convection-enhanced delivery treatment of 3 intracranial rodent GBM models employing human EGFR-expressing GBM xenografts. PMID:25871395

  13. Ruxolitinib and Tofacitinib Are Potent and Selective Inhibitors of HIV-1 Replication and Virus Reactivation In Vitro

    PubMed Central

    Gavegnano, Christina; Detorio, Mervi; Montero, Catherine; Bosque, Alberto; Planelles, Vicente

    2014-01-01

    The JAK-STAT pathway is activated in both macrophages and lymphocytes upon human immunodeficiency virus type 1 (HIV-1) infection and thus represents an attractive cellular target to achieve HIV suppression and reduced inflammation, which may impact virus sanctuaries. Ruxolitinib and tofacitinib are JAK1/2 inhibitors that are FDA approved for rheumatoid arthritis and myelofibrosis, respectively, but their therapeutic application for treatment of HIV infection was unexplored. Both drugs demonstrated submicromolar inhibition of infection with HIV-1, HIV-2, and a simian-human immunodeficiency virus, RT-SHIV, across primary human or rhesus macaque lymphocytes and macrophages, with no apparent significant cytotoxicity at 2 to 3 logs above the median effective antiviral concentration. Combination of tofacitinib and ruxolitinib increased the efficacy by 53- to 161-fold versus that observed for monotherapy, respectively, and each drug applied alone to primary human lymphocytes displayed similar efficacy against HIV-1 containing various polymerase substitutions. Both drugs inhibited virus replication in lymphocytes stimulated with phytohemagglutinin (PHA) plus interleukin-2 (IL-2), but not PHA alone, and inhibited reactivation of latent HIV-1 at low-micromolar concentrations across the J-Lat T cell latency model and in primary human central memory lymphocytes. Thus, targeted inhibition of JAK provided a selective, potent, and novel mechanism to inhibit HIV-1 replication in lymphocytes and macrophages, replication of drug-resistant HIV-1, and reactivation of latent HIV-1 and has the potential to reset the immunologic milieu in HIV-infected individuals. PMID:24419350

  14. Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells.

    PubMed

    Dos Santos, Alessandra Antunes; López-Granero, Caridad; Farina, Marcelo; Rocha, João B T; Bowman, Aaron B; Aschner, Michael

    2018-03-01

    Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD + /NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA. Copyright © 2018. Published by Elsevier Ltd.

  15. High vascular delivery of EGF, but low receptor binding rate is observed in AsPC-1 tumors as compared to normal pancreas.

    PubMed

    Samkoe, Kimberley S; Sexton, Kristian; Tichauer, Kenneth M; Hextrum, Shannon K; Pardesi, Omar; Davis, Scott C; O'Hara, Julia A; Hoopes, P Jack; Hasan, Tayyaba; Pogue, Brian W

    2012-08-01

    Cellular receptor targeted imaging agents present the potential to target extracellular molecular expression in cancerous lesions; however, the image contrast in vivo does not reflect the magnitude of overexpression expected from in vitro data. Here, the in vivo delivery and binding kinetics of epidermal growth factor receptor (EGFR) was determined for normal pancreas and AsPC-1 orthotopic pancreatic tumors known to overexpress EGFR. EGFR in orthotopic xenograft AsPC-1 tumors was targeted with epidermal growth factor (EGF) conjugated with IRDye800CW. The transfer rate constants (k(e), K₁₂, k₂₁, k₂₃, and k₃₂) associated with a three-compartment model describing the vascular delivery, leakage rate and binding of targeted agents were determined experimentally. The plasma excretion rate, k (e), was determined from extracted blood plasma samples. K₁₂, k₂₁, and k₃₂ were determined from ex vivo tissue washing studies at time points ≥ 24 h. The measured in vivo uptake of IRDye800CW-EGF and a non-targeted tracer dye, IRDye700DX-carboxylate, injected simultaneously was used to determined k₂₃. The vascular exchange of IRDye800CW-EGF in the orthotopic tumor (K₁₂ and k₂₁) was higher than in the AsPC-1 tumor as compared to normal pancreas, suggesting that more targeted agent can be taken up in tumor tissue. However, the cellular associated (binding) rate constant (k₂₃) was slightly lower for AsPC-1 pancreatic tumor (4.1 × 10(-4) s(-1)) than the normal pancreas (5.5 × 10(-4) s(-1)), implying that less binding is occurring. Higher vascular delivery but low cellular association in the AsPC-1 tumor compared to the normal pancreas may be indicative of low receptor density due to low cellular content. This attribute of the AsPC-1 tumor may indicate one contributing cause of the difficulty in treating pancreatic tumors with cellular targeted agents.

  16. Amadori-glycated phosphatidylethanolamine enhances the physical stability and selective targeting ability of liposomes

    PubMed Central

    Miyazawa, Taiki; Kamiyoshihara, Reina; Shimizu, Naoki; Harigae, Takahiro; Otoki, Yurika; Ito, Junya; Kato, Shunji; Miyazawa, Teruo

    2018-01-01

    Liposomes consisting of 100% phosphatidylcholine exhibit poor membrane fusion, cellular uptake and selective targeting capacities. To overcome these limitations, we used Amadori-glycated phosphatidylethanolamine, which is universally present in animals and commonly consumed in foods. We found that liposomes containing Amadori-glycated phosphatidylethanolamine exhibited significantly reduced negative membrane potential and demonstrated high cellular uptake. PMID:29515844

  17. Biomolecular engineering of intracellular switches in eukaryotes

    PubMed Central

    Pastuszka, M.K.; Mackay, J.A.

    2010-01-01

    Tools to selectively and reversibly control gene expression are useful to study and model cellular functions. When optimized, these cellular switches can turn a protein's function “on” and “off” based on cues designated by the researcher. These cues include small molecules, drugs, hormones, and even temperature variations. Here we review three distinct areas in gene expression that are commonly targeted when designing cellular switches. Transcriptional switches target gene expression at the level of mRNA polymerization, with examples including the tetracycline gene induction system as well as nuclear receptors. Translational switches target the process of turning the mRNA signal into protein, with examples including riboswitches and RNA interference. Post-translational switches control how proteins interact with one another to attenuate or relay signals. Examples of post-translational modification include dimerization and intein splicing. In general, the delay times between switch and effect decreases from transcription to translation to post-translation; furthermore, the fastest switches may offer the most elegant opportunities to influence and study cell behavior. We discuss the pros and cons of these strategies, which directly influence their usefulness to study and implement drug targeting at the tissue and cellular level. PMID:21209849

  18. Identifying the cellular targets of natural products using T7 phage display.

    PubMed

    Piggott, Andrew M; Karuso, Peter

    2016-05-04

    Covering: up to the end of 2015While Nature continues to deliver a myriad of potent and structurally diverse biologically active small molecules, the cellular targets and modes of action of these natural products are rarely identified, significantly hindering their development as new chemotherapeutic agents. This article provides an introductory tutorial on the use of T7 phage display as a tool to rapidly identify the cellular targets of natural products and is aimed specifically at natural products chemists who may have only limited experience in molecular biology. A brief overview of T7 phage display is provided, including its strengths, weaknesses, and the type of problems that can and cannot be tackled with this technology. Affinity probe construction is reviewed, including linker design and natural product derivatisation strategies. A detailed description of the T7 phage biopanning procedure is provided, with valuable tips for optimising each step in the process, as well as advice for identifying and avoiding the most commonly encountered challenges and pitfalls along the way. Finally, a brief discussion is provided on techniques for validating the cellular targets identified using T7 phage display.

  19. Design of ligand-targeted nanoparticles for enhanced cancer targeting

    NASA Astrophysics Data System (ADS)

    Stefanick, Jared F.

    Ligand-targeted nanoparticles are increasingly used as drug delivery vehicles for cancer therapy, yet have not consistently produced successful clinical outcomes. Although these inconsistencies may arise from differences in disease models and target receptors, nanoparticle design parameters can significantly influence therapeutic efficacy. By employing a multifaceted synthetic strategy to prepare peptide-targeted nanoparticles with high purity, reproducibility, and precisely controlled stoichiometry of functionalities, this work evaluates the roles of polyethylene glycol (PEG) coating, ethylene glycol (EG) peptide-linker length, peptide hydrophilicity, peptide density, and nanoparticle size on tumor targeting in a systematic manner. These parameters were analyzed in multiple disease models by targeting human epidermal growth factor receptor 2 (HER2) in breast cancer and very late antigen-4 (VLA-4) in multiple myeloma to demonstrate the widespread applicability of this approach. By increasing the hydrophilicity of the targeting peptide sequence and simultaneously optimizing the EG peptide-linker length, the in vitro cellular uptake of targeted liposomes was significantly enhanced. Specifically, including a short oligolysine chain adjacent to the targeting peptide sequence effectively increased cellular uptake ~80-fold using an EG6 peptide-linker compared to ~10-fold using an EG45 linker. In vivo, targeted liposomes prepared in a traditional manner lacking the oligolysine chain demonstrated similar biodistribution and tumor uptake to non-targeted liposomes. However, by including the oligolysine chain, targeted liposomes using an EG45 linker significantly improved tumor uptake ~8-fold over non-targeted liposomes, while the use of an EG6 linker decreased tumor accumulation and uptake, owing to differences in cellular uptake kinetics, clearance mechanisms, and binding site barrier effects. To further improve tumor targeting and enhance the selectivity of targeted nanoparticles, a dual-receptor targeted approach was evaluated by targeting multiple cell surface receptors simultaneously. Liposomes functionalized with two distinct peptide antagonists to target VLA-4 and Leukocyte Peyer's Patch Adhesion Molecule-1 (LPAM-1) demonstrated synergistically enhanced cellular uptake by cells overexpressing both target receptors and negligible uptake by cells that do not simultaneously express both receptors, providing a strategy to improve selectivity over conventional single receptor-targeted designs. Taken together, this process of systematic optimization of well-defined nanoparticle drug delivery systems has the potential to improve cancer therapy for a broader patient population.

  20. Comparing the effects of mitochondrial targeted and localized antioxidants with cellular antioxidants in human skin cells exposed to UVA and hydrogen peroxide.

    PubMed

    Oyewole, Anne O; Wilmot, Marie-Claire; Fowler, Mark; Birch-Machin, Mark A

    2014-01-01

    Skin cancer and aging are linked to increased cellular reactive oxygen species (ROS), particularly following exposure to ultraviolet A (UVA) in sunlight. As mitochondria are the main source of cellular ROS, this study compared the protective effects of mitochondria-targeted and -localized antioxidants (MitoQ and tiron, respectively) with cellular antioxidants against oxidative stress-induced [UVA and hydrogen peroxide (H2O2)] mitochondrial DNA (mtDNA) damage in human dermal fibroblasts. With the use of a long quantitative PCR assay, tiron (EC50 10 mM) was found to confer complete (100%) protection (P<0.001) against both UVA- and H2O2-induced mtDNA damage, whereas MitoQ (EC50 750 nM) provided less protection (17 and 32%, respectively; P<0.05). This particular protective effect of tiron was greater than a range of cellular antioxidants investigated. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway provides cellular protection against oxidative stress. An ELISA assay for the Nrf2 target gene heme oxygenase-1 (HO-1) and studies using Nrf2 small interfering RNA both indicated that tiron's mode of action was Nrf2 independent. The comet assay showed that tiron's protective effect against H2O2-induced nuclear DNA damage was greater than the cellular antioxidants and MitoQ (P<0.001). This study provides a platform to investigate molecules with similar structure to tiron as potent and clinically relevant antioxidants.

  1. Targeting ubiquitination for cancer therapies.

    PubMed

    Morrow, John Kenneth; Lin, Hui-Kuan; Sun, Shao-Cong; Zhang, Shuxing

    2015-01-01

    Ubiquitination, the structured degradation and turnover of cellular proteins, is regulated by the ubiquitin-proteasome system (UPS). Most proteins that are critical for cellular regulations and functions are targets of the process. Ubiquitination is comprised of a sequence of three enzymatic steps, and aberrations in the pathway can lead to tumor development and progression as observed in many cancer types. Recent evidence indicates that targeting the UPS is effective for certain cancer treatment, but many more potential targets might have been previously overlooked. In this review, we will discuss the current state of small molecules that target various elements of ubiquitination. Special attention will be given to novel inhibitors of E3 ubiquitin ligases, especially those in the SCF family.

  2. [Antifungals cellular targets and mechanisms of resistance].

    PubMed

    Accoceberry, Isabelle; Noël, Thierry

    2006-01-01

    Antifungals of systemic use for the treatment of invasive fungal infections belong to four main chemical families which have globally three cellular targets in fungal cells: fluorinated pyrimidines act on deoxyribonucleic acid (DNA) replication and protein synthesis; polyenes and azoles are toxic for ergosterol and its biosynthetic pathway; lipopeptides inhibit the synthesis of cell wall beta glucans. The resistance mechanisms that are developed by some fungi begin to be well understood particularly in Candida yeasts. The underlying bases of these mechanisms are either mutations that modify the antifungal target, or that block access to the target, and, on the other hand, the overexpression of genes encoding the target, or some membrane proteins involved in the active efflux of antifungal drugs.

  3. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes

    PubMed Central

    2004-01-01

    14-3-3 proteins exert an extraordinarily widespread influence on cellular processes in all eukaryotes. They operate by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. In these ways, 14-3-3s ‘finish the job’ when phosphorylation alone lacks the power to drive changes in the activities of intracellular proteins. By interacting dynamically with phosphorylated proteins, 14-3-3s often trigger events that promote cell survival – in situations from preventing metabolic imbalances caused by sudden darkness in leaves to mammalian cell-survival responses to growth factors. Recent work linking specific 14-3-3 isoforms to genetic disorders and cancers, and the cellular effects of 14-3-3 agonists and antagonists, indicate that the cellular complement of 14-3-3 proteins may integrate the specificity and strength of signalling through to different cellular responses. PMID:15167810

  4. High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis.

    PubMed

    Yeo-Teh, Nicole S L; Ito, Yoshiaki; Jha, Sudhakar

    2018-06-08

    Infection with high-risk human papillomavirus (HPV) has been linked to several human cancers, the most prominent of which is cervical cancer. The integration of the viral genome into the host genome is one of the manners in which the viral oncogenes E6 and E7 achieve persistent expression. The most well-studied cellular targets of the viral oncogenes E6 and E7 are p53 and pRb, respectively. However, recent research has demonstrated the ability of these two viral factors to target many more cellular factors, including proteins which regulate epigenetic marks and splicing changes in the cell. These have the ability to exert a global change, which eventually culminates to uncontrolled proliferation and carcinogenesis.

  5. Multidisciplinary Intervention of Early, Lethal Metastatic Prostate Cancer: Report From the 2015 Coffey-Holden Prostate Cancer Academy Meeting

    PubMed Central

    Miyahira, Andrea K.; Lang, Joshua M.; Den, Robert B.; Garraway, Isla P.; Lotan, Tamara L.; Ross, Ashley E.; Stoyanova, Tanya; Cho, Steve Y.; Simons, Jonathan W.; Pienta, Kenneth J.; Soule, Howard R.

    2018-01-01

    BACKGROUND The 2015 Coffey-Holden Prostate Cancer Academy Meeting, themed: “Multidisciplinary Intervention of Early, Lethal Metastatic Prostate Cancer,” was held in La Jolla, California from June 25 to 28, 2015. METHODS The Prostate Cancer Foundation (PCF) sponsors an annual, invitation-only, action-tank-structured meeting on a critical topic concerning lethal prostate cancer. The 2015 meeting was attended by 71 basic, translational, and clinical investigators who discussed the current state of the field, major unmet needs, and ideas for addressing earlier diagnosis and treatment of men with lethal prostate cancer for the purpose of extending lives and making progress toward a cure. RESULTS The questions addressed at the meeting included: cellular and molecular mechanisms of tumorigenesis, evaluating, and targeting the microenvironment in the primary tumor, advancing biomarkers for clinical integration, new molecular imaging technologies, clinical trials, and clinical trial design in localized high-risk and oligometastatic settings, targeting the primary tumor in advanced disease, and instituting multi-modal care of high risk and oligometastatic patients. DISCUSSION This article highlights the current status, greatest unmet needs, and anticipated field changes that were discussed at the meeting toward the goal of optimizing earlier interventions to potentiate cures in high-risk and oligometastatic prostate cancer patients. PMID:26477609

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugationmore » to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.« less

  7. Multidisciplinary intervention of early, lethal metastatic prostate cancer: Report from the 2015 Coffey-Holden Prostate Cancer Academy Meeting.

    PubMed

    Miyahira, Andrea K; Lang, Joshua M; Den, Robert B; Garraway, Isla P; Lotan, Tamara L; Ross, Ashley E; Stoyanova, Tanya; Cho, Steve Y; Simons, Jonathan W; Pienta, Kenneth J; Soule, Howard R

    2016-02-01

    The 2015 Coffey-Holden Prostate Cancer Academy Meeting, themed: "Multidisciplinary Intervention of Early, Lethal Metastatic Prostate Cancer," was held in La Jolla, California from June 25 to 28, 2015. The Prostate Cancer Foundation (PCF) sponsors an annual, invitation-only, action-tank-structured meeting on a critical topic concerning lethal prostate cancer. The 2015 meeting was attended by 71 basic, translational, and clinical investigators who discussed the current state of the field, major unmet needs, and ideas for addressing earlier diagnosis and treatment of men with lethal prostate cancer for the purpose of extending lives and making progress toward a cure. The questions addressed at the meeting included: cellular and molecular mechanisms of tumorigenesis, evaluating, and targeting the microenvironment in the primary tumor, advancing biomarkers for clinical integration, new molecular imaging technologies, clinical trials, and clinical trial design in localized high-risk and oligometastatic settings, targeting the primary tumor in advanced disease, and instituting multi-modal care of high risk and oligometastatic patients. This article highlights the current status, greatest unmet needs, and anticipated field changes that were discussed at the meeting toward the goal of optimizing earlier interventions to potentiate cures in high-risk and oligometastatic prostate cancer patients. © 2015 Wiley Periodicals, Inc.

  8. HSV-1 infection of human corneal epithelial cells: receptor-mediated entry and trends of re-infection.

    PubMed

    Shah, Arpeet; Farooq, Asim V; Tiwari, Vaibhav; Kim, Min-Jung; Shukla, Deepak

    2010-11-20

    The human cornea is a primary target for herpes simplex virus-1 (HSV-1) infection. The goals of the study were to determine the cellular modalities of HSV-1 entry into human corneal epithelial (HCE) cells. Specific features of the study included identifying major entry receptors, assessing pH dependency, and determining trends of re-infection. A recombinant HSV-1 virus expressing beta-galactosidase was used to ascertain HSV-1 entry into HCE cells. Viral replication within cells was confirmed using a time point plaque assay. Lysosomotropic agents were used to test for pH dependency of entry. Flow cytometry and immunocytochemistry were used to determine expression of three cellular receptors--nectin-1, herpesvirus entry mediator (HVEM), and paired immunoglobulin-like 2 receptor alpha (PILR-a). The necessity of these receptors for viral entry was tested using antibody-blocking. Finally, trends of re-infection were investigated using viral entry assay and flow cytometry post-primary infection. Cultured HCE cells showed high susceptibility to HSV-1 entry and replication. Entry was demonstrated to be pH dependent as blocking vesicular acidification decreased entry. Entry receptors expressed on the cell membrane include nectin-1, HVEM, and PILR-α. Receptor-specific antibodies blocked entry receptors, reduced viral entry and indicated nectin-1 as the primary receptor used for entry. Cells re-infected with HSV-1 showed a decrease in entry, which was correlated to decreased levels of nectin-1 as demonstrated by flow cytometry. HSV-1 is capable of developing an infection in HCE cells using a pH dependent entry process that involves primarily nectin-1 but also the HVEM and PILR-α receptors. Re-infected cells show decreased levels of entry, correlated with a decreased level of nectin-1 receptor expression.

  9. Low-dose exposure to bisphenols A, F and S of human primary adipocyte impacts coding and non-coding RNA profiles

    PubMed Central

    Leloire, Audrey; Dhennin, Véronique; Coumoul, Xavier; Yengo, Loïc; Froguel, Philippe

    2017-01-01

    Bisphenol A (BPA) exposure has been suspected to be associated with deleterious effects on health including obesity and metabolically-linked diseases. Although bisphenols F (BPF) and S (BPS) are BPA structural analogs commonly used in many marketed products as a replacement for BPA, only sparse toxicological data are available yet. Our objective was to comprehensively characterize bisphenols gene targets in a human primary adipocyte model, in order to determine whether they may induce cellular dysfunction, using chronic exposure at two concentrations: a “low-dose” similar to the dose usually encountered in human biological fluids and a higher dose. Therefore, BPA, BPF and BPS have been added at 10 nM or 10 μM during the differentiation of human primary adipocytes from subcutaneous fat of three non-diabetic Caucasian female patients. Gene expression (mRNA/lncRNA) arrays and microRNA arrays, have been used to assess coding and non-coding RNA changes. We detected significantly deregulated mRNA/lncRNA and miRNA at low and high doses. Enrichment in “cancer” and “organismal injury and abnormalities” related pathways was found in response to the three products. Some long intergenic non-coding RNAs and small nucleolar RNAs were differentially expressed suggesting that bisphenols may also activate multiple cellular processes and epigenetic modifications. The analysis of upstream regulators of deregulated genes highlighted hormones or hormone-like chemicals suggesting that BPS and BPF can be suspected to interfere, just like BPA, with hormonal regulation and have to be considered as endocrine disruptors. All these results suggest that as BPA, its substitutes BPS and BPF should be used with the same restrictions. PMID:28628672

  10. The Molecular Basis of Toxins’ Interactions with Intracellular Signaling via Discrete Portals

    PubMed Central

    Lahiani, Adi; Yavin, Ephraim; Lazarovici, Philip

    2017-01-01

    An understanding of the molecular mechanisms by which microbial, plant or animal-secreted toxins exert their action provides the most important element for assessment of human health risks and opens new insights into therapies addressing a plethora of pathologies, ranging from neurological disorders to cancer, using toxinomimetic agents. Recently, molecular and cellular biology dissecting tools have provided a wealth of information on the action of these diverse toxins, yet, an integrated framework to explain their selective toxicity is still lacking. In this review, specific examples of different toxins are emphasized to illustrate the fundamental mechanisms of toxicity at different biochemical, molecular and cellular- levels with particular consideration for the nervous system. The target of primary action has been highlighted and operationally classified into 13 sub-categories. Selected examples of toxins were assigned to each target category, denominated as portal, and the modulation of the different portal’s signaling was featured. The first portal encompasses the plasma membrane lipid domains, which give rise to pores when challenged for example with pardaxin, a fish toxin, or is subject to degradation when enzymes of lipid metabolism such as phospholipases A2 (PLA2) or phospholipase C (PLC) act upon it. Several major portals consist of ion channels, pumps, transporters and ligand gated ionotropic receptors which many toxins act on, disturbing the intracellular ion homeostasis. Another group of portals consists of G-protein-coupled and tyrosine kinase receptors that, upon interaction with discrete toxins, alter second messengers towards pathological levels. Lastly, subcellular organelles such as mitochondria, nucleus, protein- and RNA-synthesis machineries, cytoskeletal networks and exocytic vesicles are also portals targeted and deregulated by other diverse group of toxins. A fundamental concept can be drawn from these seemingly different toxins with respect to the site of action and the secondary messengers and signaling cascades they trigger in the host. While the interaction with the initial portal is largely determined by the chemical nature of the toxin, once inside the cell, several ubiquitous second messengers and protein kinases/ phosphatases pathways are impaired, to attain toxicity. Therefore, toxins represent one of the most promising natural molecules for developing novel therapeutics that selectively target the major cellular portals involved in human physiology and diseases. PMID:28300784

  11. Endothelin-1 stimulates colon cancer adjacent fibroblasts.

    PubMed

    Knowles, Jonathan P; Shi-Wen, Xu; Haque, Samer-ul; Bhalla, Ashish; Dashwood, Michael R; Yang, Shiyu; Taylor, Irving; Winslet, Marc C; Abraham, David J; Loizidou, Marilena

    2012-03-15

    Endothelin-1 (ET-1) is produced by and stimulates colorectal cancer cells. Fibroblasts produce tumour stroma required for cancer development. We investigated whether ET-1 stimulated processes involved in tumour stroma production by colonic fibroblasts. Primary human fibroblasts, isolated from normal tissues adjacent to colon cancers, were cultured with or without ET-1 and its antagonists. Cellular proliferation, migration and contraction were measured. Expression of enzymes involved in tumour stroma development and alterations in gene transcription were determined by Western blotting and genome microarrays. ET-1 stimulated proliferation, contraction and migration (p < 0.01 v control) and the expression of matrix degrading enzymes TIMP-1 and MMP-2, but not MMP-3. ET-1 upregulated genes for profibrotic growth factors and receptors, signalling molecules, actin modulators and extracellular matrix components. ET-1 stimulated colonic fibroblast cellular processes in vitro that are involved in developing tumour stroma. Upregulated genes were consistent with these processes. By acting as a strong stimulus for tumour stroma creation, ET-1 is proposed as a target for adjuvant cancer therapy. Copyright © 2011 UICC.

  12. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    PubMed

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation

    PubMed Central

    Kim, Jung Jin; Lee, Seung Baek; Yi, Sang-Yeop; Han, Sang-Ah; Kim, Sun-Hyun; Lee, Jong-Min; Tong, Seo-Yun; Yin, Ping; Gao, Bowen; Zhang, Jun; Lou, Zhenkun

    2017-01-01

    Oncogene-induced senescence (OIS) or apoptosis through the DNA-damage response is an important barrier of tumorigenesis. Overcoming this barrier leads to abnormal cell proliferation, genomic instability, and cellular transformation, and finally allows cancers to develop. However, it remains unclear how the OIS barrier is overcome. Here, we show that the E3 ubiquitin ligase WD repeat and SOCS box-containing protein 1 (WSB1) plays a role in overcoming OIS. WSB1 expression in primary cells helps the bypass of OIS, leading to abnormal proliferation and cellular transformation. Mechanistically, WSB1 promotes ATM ubiquitination, resulting in ATM degradation and the escape from OIS. Furthermore, we identify CDKs as the upstream kinase of WSB1. CDK-mediated phosphorylation activates WSB1 by promoting its monomerization. In human cancer tissue and in vitro models, WSB1-induced ATM degradation is an early event during tumorigenic progression. We suggest that WSB1 is one of the key players of early oncogenic events through ATM degradation and destruction of the tumorigenesis barrier. Our work establishes an important mechanism of cancer development and progression in premalignant lesions. PMID:27958289

  14. Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles.

    PubMed

    Ergen, Can; Heymann, Felix; Al Rawashdeh, Wa'el; Gremse, Felix; Bartneck, Matthias; Panzer, Ulf; Pola, Robert; Pechar, Michal; Storm, Gert; Mohr, Nicole; Barz, Matthias; Zentel, Rudolf; Kiessling, Fabian; Trautwein, Christian; Lammers, Twan; Tacke, Frank

    2017-01-01

    Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes and poly(butyl cyanoacrylate) microbubbles in mice, using whole-body imaging (computed tomography - fluorescence-mediated tomography), intra-organ imaging (intravital multi-photon microscopy) and cellular analysis (flow cytometry of blood, liver, spleen, lung and kidney). While the three carrier materials shared accumulation in tissue macrophages in liver and spleen, they notably differed in uptake by other myeloid subsets. Kupffer cells and splenic red pulp macrophages rapidly take up microbubbles. Liposomes efficiently reach dendritic cells in liver, lung and kidney. Polymers exhibit the longest circulation half-life and target endothelial cells in the liver, neutrophils and alveolar macrophages. The identification of such previously unrecognized target cell populations might open up new avenues for more efficient drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    NASA Astrophysics Data System (ADS)

    Lin, Wen Jen; Chien, Wei Hsuan

    2015-09-01

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly( d,l-lactide- co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  16. MicroRNA profiling of human primary macrophages exposed to dengue virus identifies miRNA-3614-5p as antiviral and regulator of ADAR1 expression

    PubMed Central

    Echavarría-Consuegra, Liliana; Flipse, Jacky; Fernández, Geysson Javier; Kluiver, Joost; van den Berg, Anke; Urcuqui-Inchima, Silvio; Smit, Jolanda M.

    2017-01-01

    Background Due to the high burden of dengue disease worldwide, a better understanding of the interactions between dengue virus (DENV) and its human host cells is of the utmost importance. Although microRNAs modulate the outcome of several viral infections, their contribution to DENV replication is poorly understood. Methods and principal findings We investigated the microRNA expression profile of primary human macrophages challenged with DENV and deciphered the contribution of microRNAs to infection. To this end, human primary macrophages were challenged with GFP-expressing DENV and sorted to differentiate between truly infected cells (DENV-positive) and DENV-exposed but non-infected cells (DENV-negative cells). The miRNAome was determined by small RNA-Seq analysis and the effect of differentially expressed microRNAs on DENV yield was examined. Five microRNAs were differentially expressed in human macrophages challenged with DENV. Of these, miR-3614-5p was found upregulated in DENV-negative cells and its overexpression reduced DENV infectivity. The cellular targets of miR-3614-5p were identified by liquid chromatography/mass spectrometry and western blot. Adenosine deaminase acting on RNA 1 (ADAR1) was identified as one of the targets of miR-3614-5p and was shown to promote DENV infectivity at early time points post-infection. Conclusion/Significance Overall, miRNAs appear to play a limited role in DENV replication in primary human macrophages. The miRNAs that were found upregulated in DENV-infected cells did not control the production of infectious virus particles. On the other hand, miR-3614-5p, which was upregulated in DENV-negative macrophages, reduced DENV infectivity and regulated ADAR1 expression, a protein that facilitates viral replication. PMID:29045406

  17. Primary arm spacing in directionally solidified Pb-10 wt percent Sn alloys

    NASA Technical Reports Server (NTRS)

    Chopra, M. A.; Tewari, S. N.

    1990-01-01

    The dependence of primary arm spacings on growth speed was investigated for cellular and dendritic arrays in Pb-10 wt percent Sn samples directionally solidified under a constant positive thermal gradient in the melt. The gradient of constitutional supercooling was varied from almost zero (near the break-down of the planar liquid-solid interface at small growth speeds, cellular morphology) to near unity (large growth speeds, dendritic morphology). The spatial arrangements of cells and dendrites, as given by their coordination number, are not very different from each other. It appears that primary arm spacing maxima and the cell to dendrite transition are strongly influenced by the magnitude of the solute partition coefficient. The planar to cellular bifurcation is supercritical in Pb-Sn which has a high partition coefficient, as compared to the subcritical behavior reported in Al-Cu and succinonitrile-acetone, both of which have low partition coefficients. The primary arm spacing model due to Hunt agrees with the experimentally observed trend for the whole growth regime. There is a good quantitative agreement at higher gradients of supercooling. However, the model overpredicts the primary arm spacings at low gradients of constitutional supercooling.

  18. Quantum dot tailored to single wall carbon nanotubes: a multifunctional hybrid nanoconstruct for cellular imaging and targeted photothermal therapy.

    PubMed

    Nair, Lakshmi V; Nagaoka, Yutaka; Maekawa, Toru; Sakthikumar, D; Jayasree, Ramapurath S

    2014-07-23

    Hybrid nanomaterial based on quantum dots and SWCNTs is used for cellular imaging and photothermal therapy. Furthermore, the ligand conjugated hybrid system (FaQd@CNT) enables selective targeting in cancer cells. The imaging capability of quantum dots and the therapeutic potential of SWCNT are available in a single system with cancer targeting property. Heat generated by the system is found to be high enough to destroy cancer cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets

    PubMed Central

    Coque, Emmanuelle; Raoul, Cédric; Bowerman, Mélissa

    2014-01-01

    Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice. PMID:25221469

  20. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin.

    PubMed

    Lecuit, Marc; Nelson, D Michael; Smith, Steve D; Khun, Huot; Huerre, Michel; Vacher-Lavenu, Marie-Cécile; Gordon, Jeffrey I; Cossart, Pascale

    2004-04-20

    Listeria monocytogenes produces severe fetoplacental infections in humans. How it targets and crosses the maternofetal barrier is unknown. We used immunohistochemistry to examine the location of L. monocytogenes in placental and amniotic tissue samples obtained from women with fetoplacental listeriosis. The results raised the possibility that L. monocytogenes crosses the maternofetal barrier through the villous syncytiotrophoblast, with secondary infection occurring via the amniotic epithelium. Because epidemiological studies indicate that the bacterial surface protein, internalin (InlA), may play a role in human fetoplacental listeriosis, we investigated the cellular patterns of expression of its host receptor, E-cadherin, at the maternofetal interface. E-cadherin was found on the basal and apical plasma membranes of syncytiotrophoblasts and in villous cytotrophoblasts. Established trophoblastic cell lines, primary trophoblast cultures, and placental villous explants were each exposed to isogenic InlA+ or InlA- strains of L. monocytogenes, and to L. innocua expressing or not InlA. Quantitative assays of cellular invasion demonstrated that bacterial entry into syncytiotrophoblasts occurs via the apical membrane in an InlA-E-cadherin dependent manner. In human placental villous explants, bacterial invasion of the syncytiotrophoblast barrier and underlying villous tissue and subsequent replication produces histopathological lesions that mimic those seen in placentas of women with listeriosis. Thus, the InlA-E-cadherin interaction that plays a key role in the crossing of the intestinal barrier in humans is also exploited by L. monocytogenes to target and cross the placental barrier. Such a ligand-receptor interaction allowing a pathogen to specifically cross the placental villous trophoblast barrier has not been reported previously.

  1. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: Role of internalin interaction with trophoblast E-cadherin

    PubMed Central

    Lecuit, Marc; Nelson, D. Michael; Smith, Steve D.; Khun, Huot; Huerre, Michel; Vacher-Lavenu, Marie-Cécile; Gordon, Jeffrey I.; Cossart, Pascale

    2004-01-01

    Listeria monocytogenes produces severe fetoplacental infections in humans. How it targets and crosses the maternofetal barrier is unknown. We used immunohistochemistry to examine the location of L. monocytogenes in placental and amniotic tissue samples obtained from women with fetoplacental listeriosis. The results raised the possibility that L. monocytogenes crosses the maternofetal barrier through the villous syncytiotrophoblast, with secondary infection occurring via the amniotic epithelium. Because epidemiological studies indicate that the bacterial surface protein, internalin (InlA), may play a role in human fetoplacental listeriosis, we investigated the cellular patterns of expression of its host receptor, E-cadherin, at the maternofetal interface. E-cadherin was found on the basal and apical plasma membranes of syncytiotrophoblasts and in villous cytotrophoblasts. Established trophoblastic cell lines, primary trophoblast cultures, and placental villous explants were each exposed to isogenic InlA+ or InlA- strains of L. monocytogenes, and to L. innocua expressing or not InlA. Quantitative assays of cellular invasion demonstrated that bacterial entry into syncytiotrophoblasts occurs via the apical membrane in an InlA–E-cadherin dependent manner. In human placental villous explants, bacterial invasion of the syncytiotrophoblast barrier and underlying villous tissue and subsequent replication produces histopathological lesions that mimic those seen in placentas of women with listeriosis. Thus, the InlA–E-cadherin interaction that plays a key role in the crossing of the intestinal barrier in humans is also exploited by L. monocytogenes to target and cross the placental barrier. Such a ligand–receptor interaction allowing a pathogen to specifically cross the placental villous trophoblast barrier has not been reported previously. PMID:15073336

  2. Active FOXO1 is a Key Determinant of Isoform-Specific Progesterone Receptor Transactivation and Senescence Programming

    PubMed Central

    Diep, Caroline H.; Knutson, Todd P.; Lange, Carol A.

    2015-01-01

    Progesterone promotes differentiation coupled to proliferation and pro-survival in the breast, but inhibits estrogen-driven growth in the reproductive tract and ovaries. Herein, it is demonstrated, using progesterone receptor (PR) isoform-specific ovarian cancer model systems, that PR-A and PR-B promote distinct gene expression profiles that differ from PR-driven genes in breast cancer cells. In ovarian cancer models, PR-A primarily regulates genes independently of progestin, while PR-B is the dominant ligand-dependent isoform. Notably, FOXO1 and the PR/FOXO1 target-gene p21 (CDKN1A) are repressed by PR-A, but induced by PR-B. In the presence of progestin, PR-B, but not PR-A, robustly induced cellular senescence via FOXO1-dependent induction of p21 and p15 (CDKN2B). Chromatin immunoprecipitation (ChIP) assays performed on PR-isoform specific cells demonstrated that while each isoform is recruited to the same PRE-containing region of the p21 promoter in response to progestin, only PR-B elicits active chromatin marks. Overexpression of constitutively active FOXO1 in PR-A-expressing cells conferred robust ligand-dependent upregulation of the PR-B target genes GZMA, IGFBP1, and p21, and induced cellular senescence. In the presence of endogenous active FOXO1, PR-A was phosphorylated on Ser294 and transactivated PR-B at PR-B target genes; these events were blocked by the FOXO1 inhibitor (AS1842856). PR isoform-specific regulation of the FOXO1/p21 axis recapitulated in human primary ovarian tumor explants treated with progestin; loss of progestin sensitivity correlated with high AKT activity. PMID:26577046

  3. Conserved structural and functional aspects of the tripartite motif gene family point towards therapeutic applications in multiple diseases.

    PubMed

    Gushchina, Liubov V; Kwiatkowski, Thomas A; Bhattacharya, Sayak; Weisleder, Noah L

    2018-05-01

    The tripartite motif (TRIM) gene family is a highly conserved group of E3 ubiquitin ligase proteins that can establish substrate specificity for the ubiquitin-proteasome complex and also have proteasome-independent functions. While several family members were studied previously, it is relatively recent that over 80 genes, based on sequence homology, were grouped to establish the TRIM gene family. Functional studies of various TRIM genes linked these proteins to modulation of inflammatory responses showing that they can contribute to a wide variety of disease states including cardiovascular, neurological and musculoskeletal diseases, as well as various forms of cancer. Given the fundamental role of the ubiquitin-proteasome complex in protein turnover and the importance of this regulation in most aspects of cellular physiology, it is not surprising that TRIM proteins display a wide spectrum of functions in a variety of cellular processes. This broad range of function and the highly conserved primary amino acid sequence of family members, particularly in the canonical TRIM E3 ubiquitin ligase domain, complicates the development of therapeutics that specifically target these proteins. A more comprehensive understanding of the structure and function of TRIM proteins will help guide therapeutic development for a number of different diseases. This review summarizes the structural organization of TRIM proteins, their domain architecture, common and unique post-translational modifications within the family, and potential binding partners and targets. Further discussion is provided on efforts to target TRIM proteins as therapeutic agents and how our increasing understanding of the nature of TRIM proteins can guide discovery of other therapeutics in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Accumulation, internalization and therapeutic efficacy of neuropilin-1-targeted liposomes

    PubMed Central

    Paoli, Eric E.; Ingham, Elizabeth S.; Zhang, Hua; Mahakian, Lisa M.; Fite, Brett Z.; Gagnon, M. Karen; Tam, Sarah; Kheirolomoom, Azadeh; Cardiff, Robert D.; Ferrara, Katherine W.

    2014-01-01

    Advancements in liposomal drug delivery have produced long circulating and very stable drug formulations. These formulations minimize systemic exposure; however, unfortunately, therapeutic efficacy has remained limited due to the slow diffusion of liposomal particles within the tumor and limited release or uptake of the encapsulated drug. Here, the carboxyl-terminated CRPPR peptide, with affinity for the receptor neuropilin-1 (NRP), which is expressed on both endothelial and cancer cells, was conjugated to liposomes to enhance the tumor accumulation. Using a pH sensitive probe, liposomes were optimized for specific NRP binding and subsequent cellular internalization using in vitro cellular assays. Liposomes conjugated with the carboxyl-terminated CRPPR peptide (termed C-LPP liposomes) bound to the NRP-positive primary prostatic carcinoma cell line (PPC-1) but did not bind to the NRP-negative PC-3 cell line, and binding was observed with liposomal peptide concentrations as low as 0.16 mol%. Binding of the C-LPP liposomes was receptor-limited, with saturation observed at high liposome concentrations. The identical peptide sequence bearing an amide terminus did not bind specifically, accumulating only with a high (2.5 mol%) peptide concentration and adhering equally to NRP positive and negative cell lines. The binding of C-LPP liposomes conjugated with 0.63 mol% of the peptide was 83-fold greater than liposomes conjugated with the amide version of the peptide. Cellular internalization was also enhanced with C-LPP liposomes, with 80% internalized following 3hr incubation. Additionally, fluorescence in the blood pool (~40% of the injected dose) was similar for liposomes conjugated with 0.63 mol% of carboxyl-terminated peptide and non-targeted liposomes at 24 hr after injection, indicating stable circulation. Prior to doxorubicin treatment, in vivo tumor accumulation and vascular targeting were increased for peptide-conjugated liposomes compared to non-targeted liposomes based on confocal imaging of a fluorescent cargo, and the availability of the vascular receptor was confirmed with ultrasound molecular imaging. Finally, over a 4-week course of therapy, tumor knockdown resulting from doxorubicin-loaded, C-LPP liposomes was similar to non-targeted liposomes in syngeneic tumor-bearing FVB mice and C-LPP liposomes reduced doxorubicin accumulation in the skin and heart and eliminated skin toxicity. Taken together, our results demonstrate that a carboxyl-terminated RXXR peptide sequence, conjugated to liposomes at a concentration of 0.63 mol%, retains long circulation but enhances binding and internalization, and reduces toxicity. PMID:24434424

  5. Building New Bridges between In Vitro and In Vivo in Early Drug Discovery: Where Molecular Modeling Meets Systems Biology.

    PubMed

    Pearlstein, Robert A; McKay, Daniel J J; Hornak, Viktor; Dickson, Callum; Golosov, Andrei; Harrison, Tyler; Velez-Vega, Camilo; Duca, José

    2017-01-01

    Cellular drug targets exist within networked function-generating systems whose constituent molecular species undergo dynamic interdependent non-equilibrium state transitions in response to specific perturbations (i.e.. inputs). Cellular phenotypic behaviors are manifested through the integrated behaviors of such networks. However, in vitro data are frequently measured and/or interpreted with empirical equilibrium or steady state models (e.g. Hill, Michaelis-Menten, Briggs-Haldane) relevant to isolated target populations. We propose that cells act as analog computers, "solving" sets of coupled "molecular differential equations" (i.e. represented by populations of interacting species)via "integration" of the dynamic state probability distributions among those populations. Disconnects between biochemical and functional/phenotypic assays (cellular/in vivo) may arise with targetcontaining systems that operate far from equilibrium, and/or when coupled contributions (including target-cognate partner binding and drug pharmacokinetics) are neglected in the analysis of biochemical results. The transformation of drug discovery from a trial-and-error endeavor to one based on reliable design criteria depends on improved understanding of the dynamic mechanisms powering cellular function/dysfunction at the systems level. Here, we address the general mechanisms of molecular and cellular function and pharmacological modulation thereof. We outline a first principles theory on the mechanisms by which free energy is stored and transduced into biological function, and by which biological function is modulated by drug-target binding. We propose that cellular function depends on dynamic counter-balanced molecular systems necessitated by the exponential behavior of molecular state transitions under non-equilibrium conditions, including positive versus negative mass action kinetics and solute-induced perturbations to the hydrogen bonds of solvating water versus kT. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Activity-based proteome profiling of potential cellular targets of Orlistat--an FDA-approved drug with anti-tumor activities.

    PubMed

    Yang, Peng-Yu; Liu, Kai; Ngai, Mun Hong; Lear, Martin J; Wenk, Markus R; Yao, Shao Q

    2010-01-20

    Orlistat, or tetrahydrolipstatin (THL), is an FDA-approved antiobesity drug with potential antitumor activities. Cellular off-targets and potential side effects of Orlistat in cancer therapies, however, have not been extensively explored thus far. In this study, we report the total of synthesis of THL-like protein-reactive probes, in which extremely conservative modifications (i.e., an alkyne handle) were introduced in the parental THL structure to maintain the native biological properties of Orlistat, while providing the necessary functionality for target identification via the bio-orthogonal click chemistry. With these natural productlike, cell-permeable probes, we were able to demonstrate, for the first time, this chemical proteomic approach is suitable for the identification of previously unknown cellular targets of Orlistat. In addition to the expected fatty acid synthase (FAS), we identified a total of eight new targets, some of which were further validated by experiments including Western blotting, recombinant protein expression, and site-directed mutagenesis. Our findings have important implications in the consideration of Orlistat as a potential anticancer drug at its early stages of development for cancer therapy. Our strategy should be broadly useful for off-target identification against quite a number of existing drugs and/or candidates, which are also covalent modifiers of their biological targets.

  7. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    PubMed

    Cheng, Feixiong; Murray, James L; Zhao, Junfei; Sheng, Jinsong; Zhao, Zhongming; Rubin, Donald H

    2016-09-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  8. The Mitotic and Metabolic Effects of Phosphatidic Acid in the Primary Muscle Cells of Turbot (Scophthalmus maximus)

    PubMed Central

    Wang, Tingting; Wang, Xuan; Zhou, Huihui; Jiang, Haowen; Mai, Kangsen; He, Gen

    2018-01-01

    Searching for nutraceuticals and understanding the underlying mechanism that promote fish growth is at high demand for aquaculture industry. In this study, the modulatory effects of soy phosphatidic acids (PA) on cell proliferation, nutrient sensing, and metabolic pathways were systematically examined in primary muscle cells of turbot (Scophthalmus maximus). PA was found to stimulate cell proliferation and promote G1/S phase transition through activation of target of rapamycin signaling pathway. The expression of myogenic regulatory factors, including myoD and follistatin, was upregulated, while that of myogenin and myostatin was downregulated by PA. Furthermore, PA increased intracellular free amino acid levels and enhanced protein synthesis, lipogenesis, and glycolysis, while suppressed amino acid degradation and lipolysis. PA also was found to increased cellular energy production through stimulated tricarboxylic acid cycle and oxidative phosphorylation. Our results identified PA as a potential nutraceutical that stimulates muscle cell proliferation and anabolism in fish. PMID:29780359

  9. A Cellular High-Throughput Screening Approach for Therapeutic trans-Cleaving Ribozymes and RNAi against Arbitrary mRNA Disease Targets

    PubMed Central

    Yau, Edwin H.; Butler, Mark C.; Sullivan, Jack M.

    2016-01-01

    Major bottlenecks in development of therapeutic post transcriptional gene silencing (PTGS) agents (e.g. ribozymes, RNA interference, antisense) include the challenge of mapping rare accessible regions of the mRNA target that are open for annealing and cleavage, testing and optimization of agents in human cells to identify lead agents, testing for cellular toxicity, and preclinical evaluation in appropriate animal models of disease. Methods for rapid and reliable cellular testing of PTGS agents are needed to identify potent lead candidates for optimization. Our goal was to develop a means of rapid assessment of many RNA agents to identify a lead candidate for a given mRNA associated with a disease state. We developed a rapid human cell-based screening platform to test efficacy of hammerhead ribozyme (hhRz) or RNA interference (RNAi) constructs, using a model retinal degeneration target, human rod opsin (RHO) mRNA. The focus is on RNA Drug Discovery for diverse retinal degeneration targets. To validate the approach, candidate hhRzs were tested against NUH↓ cleavage sites (N=G,C,A,U; H=C,A,U) within the target mRNA of secreted alkaline phosphatase (SEAP), a model gene expression reporter, based upon in silico predictions of mRNA accessibility. HhRzs were embedded in a larger stable adenoviral VAI RNA scaffold for high cellular expression, cytoplasmic trafficking, and stability. Most hhRz expression plasmids exerted statistically significant knockdown of extracellular SEAP enzyme activity when readily assayed by a fluorescence enzyme assay intended for high throughput screening (HTS). Kinetics of PTGS knockdown of cellular targets is measureable in live cells with the SEAP reporter. The validated SEAP HTS platform was transposed to identify lead PTGS agents against a model hereditary retinal degeneration target, RHO mRNA. Two approaches were used to physically fuse the model retinal gene target mRNA to the SEAP reporter mRNA. The most expedient way to evaluate a large set of potential VAI-hhRz expression plasmids against diverse NUH↓ cleavage sites uses cultured human HEK293S cells stably expressing a dicistronic Target-IRES-SEAP target fusion mRNA. Broad utility of this rational RNA drug discovery approach is feasible for any ophthalmological disease-relevant mRNA targets and any disease mRNA targets in general. The approach will permit rank ordering of PTGS agents based on potency to identify a lead therapeutic compound for further optimization. PMID:27233447

  10. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria

    PubMed Central

    Lee, Junho; Kim, Dae Heon; Hwang, Inhwan

    2014-01-01

    Chloroplasts and mitochondria are endosymbiotic organelles thought to be derived from endosymbiotic bacteria. In present-day eukaryotic cells, these two organelles play pivotal roles in photosynthesis and ATP production. In addition to these major activities, numerous reactions, and cellular processes that are crucial for normal cellular functions occur in chloroplasts and mitochondria. To function properly, these organelles constantly communicate with the surrounding cellular compartments. This communication includes the import of proteins, the exchange of metabolites and ions, and interactions with other organelles, all of which heavily depend on membrane proteins localized to the outer envelope membranes. Therefore, correct and efficient targeting of these membrane proteins, which are encoded by the nuclear genome and translated in the cytosol, is critically important for organellar function. In this review, we summarize the current knowledge of the mechanisms of protein targeting to the outer membranes of mitochondria and chloroplasts in two different directions, as well as targeting signals and cytosolic factors. PMID:24808904

  11. Targeting inflammation in pancreatic cancer: Clinical translation

    PubMed Central

    Steele, Colin William; Kaur Gill, Nina Angharad; Jamieson, Nigel Balfour; Carter, Christopher Ross

    2016-01-01

    Preclinical modelling studies are beginning to aid development of therapies targeted against key regulators of pancreatic cancer progression. Pancreatic cancer is an aggressive, stromally-rich tumor, from which few people survive. Within the tumor microenvironment cellular and extracellular components exist, shielding tumor cells from immune cell clearance, and chemotherapy, enhancing progression of the disease. The cellular component of this microenvironment consists mainly of stellate cells and inflammatory cells. New findings suggest that manipulation of the cellular component of the tumor microenvironment is possible to promote immune cell killing of tumor cells. Here we explore possible immunogenic therapeutic strategies. Additionally extracellular stromal elements play a key role in protecting tumor cells from chemotherapies targeted at the pancreas. We describe the experimental findings and the pitfalls associated with translation of stromally targeted therapies to clinical trial. Finally, we discuss the key inflammatory signal transducers activated subsequent to driver mutations in oncogenic Kras in pancreatic cancer. We present the preclinical findings that have led to successful early trials of STAT3 inhibitors in pancreatic adenocarcinoma. PMID:27096033

  12. Nano-vectors for efficient liver specific gene transfer

    PubMed Central

    Pathak, Atul; Vyas, Suresh P; Gupta, Kailash C

    2008-01-01

    Recent progress in nanotechnology has triggered the site specific drug/gene delivery research and gained wide acknowledgment in contemporary DNA therapeutics. Amongst various organs, liver plays a crucial role in various body functions and in addition, the site is a primary location of metastatic tumor growth. In past few years, a plethora of nano-vectors have been developed and investigated to target liver associated cells through receptor mediated endocytosis. This emerging paradigm in cellular drug/gene delivery provides promising approach to eradicate genetic as well as acquired diseases affecting the liver. The present review provides a comprehensive overview of potential of various delivery systems, viz., lipoplexes, liposomes, polyplexes, nanoparticles and so forth to selectively relocate foreign therapeutic DNA into liver specific cell type via the receptor mediated endocytosis. Various receptors like asialoglycoprotein receptors (ASGP-R) provide unique opportunity to target liver parenchymal cells. The results obtained so far reveal tremendous promise and offer enormous options to develop novel DNA-based pharmaceuticals for liver disorders in near future. PMID:18488414

  13. Immunonutrition in Critical Illness: What Is the Role?

    PubMed

    McCarthy, Mary S; Martindale, Robert G

    2018-06-01

    Acute illness-associated malnutrition leads to muscle wasting, delayed wound healing, failure to wean from ventilator support, and possibly higher rates of infection and longer hospital stays unless appropriate metabolic support is provided in the form of nutrition therapy. Agreement is still lacking about the value of individual immune-modulating substrates for specific patient populations. However, it has long been agreed that there are 3 primary targets for these substrates: 1) mucosal barrier function, 2) cellular defense function, and 3) local and systemic inflammation. These targets guide the multitude of interventions necessary to stabilize and treat the hypercatabolic intensive care unit patient, including specialized nutrition therapy. The paradigm shift that occurred 30 years ago created a unique role for nutrition as an agent to support host defense mechanisms and prevent infectious complications in the critically ill patient. This overview of immunonutrition will discuss the evidence for its role in critical illness today. © 2018 American Society for Parenteral and Enteral Nutrition.

  14. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation.

    PubMed

    Wang, Fang; Travins, Jeremy; DeLaBarre, Byron; Penard-Lacronique, Virginie; Schalm, Stefanie; Hansen, Erica; Straley, Kimberly; Kernytsky, Andrew; Liu, Wei; Gliser, Camelia; Yang, Hua; Gross, Stefan; Artin, Erin; Saada, Veronique; Mylonas, Elena; Quivoron, Cyril; Popovici-Muller, Janeta; Saunders, Jeffrey O; Salituro, Francesco G; Yan, Shunqi; Murray, Stuart; Wei, Wentao; Gao, Yi; Dang, Lenny; Dorsch, Marion; Agresta, Sam; Schenkein, David P; Biller, Scott A; Su, Shinsan M; de Botton, Stephane; Yen, Katharine E

    2013-05-03

    A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.

  15. Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH.

    PubMed

    Nicola, Anthony V

    2016-09-01

    Herpesviral pathogenesis stems from infection of multiple cell types including the site of latency and cells that support lytic replication. Herpesviruses utilize distinct cellular pathways, including low pH endocytic pathways, to enter different pathophysiologically relevant target cells. This review details the impact of the mildly acidic milieu of endosomes on the entry of herpesviruses, with particular emphasis on herpes simplex virus 1 (HSV-1). Epithelial cells, the portal of primary HSV-1 infection, support entry via low pH endocytosis mechanisms. Mildly acidic pH triggers reversible conformational changes in the HSV-1 class III fusion protein glycoprotein B (gB). In vitro treatment of herpes simplex virions with a similar pH range inactivates infectivity, likely by prematurely activating the viral entry machinery in the absence of a target membrane. How a given herpesvirus mediates both low pH and pH-independent entry events is a key unresolved question. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    NASA Astrophysics Data System (ADS)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector; Rangel-López, Edgar; Castillo, Claudia G.; Santamaría, Abel; Martinez-Castañon, Gabriel A.; Gonzalez, Carmen

    2015-11-01

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO3) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

  17. Proteomic Analysis of Zika Virus Infected Primary Human Fetal Neural Progenitors Suggests a Role for Doublecortin in the Pathological Consequences of Infection in the Cortex.

    PubMed

    Jiang, Xuan; Dong, Xiao; Li, Shi-Hua; Zhou, Yue-Peng; Rayner, Simon; Xia, Hui-Min; Gao, George F; Yuan, Hui; Tang, Ya-Ping; Luo, Min-Hua

    2018-01-01

    Zika virus (ZIKV) infection is associated with severe neurological defects in fetuses and newborns, such as microcephaly. However, the underlying mechanisms remain to be elucidated. In this study, proteomic analysis on ZIKV-infected primary human fetal neural progenitor cells (NPCs) revealed that virus infection altered levels of cellular proteins involved in NPC proliferation, differentiation and migration. The transcriptional levels of some of the altered targets were also confirmed by qRT-PCR. Among the altered proteins, doublecortin (DCX) plays an important role in NPC differentiation and migration. Results showed that ZIKV infection downregulated DCX, at both mRNA and protein levels, as early as 1 day post infection (1 dpi), and lasted throughout the virus replication cycle (4 days). The downregulation of DCX was also observed in a ZIKV-infected fetal mouse brain model, which displayed decreased body weight, brain size and weight, as well as defective cortex structure. By screening the ten viral proteins of ZIKV, we found that both the expression of NS4A and NS5 were correlated with the downregulation of both mRNA and protein levels of DCX in NPCs. These data suggest that DCX is modulated following infection of the brain by ZIKV. How these observed changes of DCX expression translate in the pathological consequences of ZIKV infection and if other cellular proteins are equally involved remains to be investigated.

  18. miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence.

    PubMed

    Cui, Huachun; Ge, Jing; Xie, Na; Banerjee, Sami; Zhou, Yong; Antony, Veena B; Thannickal, Victor J; Liu, Gang

    2017-02-01

    Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.

  19. Virtual target tracking (VTT) as applied to mobile satellite communication networks

    NASA Astrophysics Data System (ADS)

    Amoozegar, Farid

    1999-08-01

    Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.

  20. Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE

    NASA Astrophysics Data System (ADS)

    Siebenwirth, C.; Greubel, C.; Drexler, S. E.; Girst, S.; Reindl, J.; Walsh, D. W. M.; Dollinger, G.; Friedl, A. A.; Schmid, T. E.; Drexler, G. A.

    2015-04-01

    In the last 10 years the ion microbeam SNAKE, installed at the Munich 14 MV tandem accelerator, has been successfully used for radiobiological experiments by utilizing pattern irradiation without targeting single cells. Now for targeted irradiation of cellular substructures a precise irradiation device was added to the live cell irradiation setup at SNAKE. It combines a sub-micrometer single ion irradiation facility with a high resolution optical fluorescence microscope. Most systematic errors can be reduced or avoided by using the same light path in the microscope for beam spot verification as well as for and target recognition. In addition online observation of the induced cellular responses is possible. The optical microscope and the beam delivering system are controlled by an in-house developed software which integrates the open-source image analysis software, CellProfiler, for semi-automatic target recognition. In this work the targeting accuracy was determined by irradiation of a cross pattern with 55 MeV carbon ions on nucleoli in U2OS and HeLa cells stably expressing a GFP-tagged repair protein MDC1. For target recognition, nuclei were stained with Draq5 and nucleoli were stained with Syto80 or Syto83. The damage response was determined by live-cell imaging of MDC1-GFP accumulation directly after irradiation. No systematic displacement and a random distribution of about 0.7 μm (SD) in x-direction and 0.8 μm (SD) in y-direction were observed. An independent analysis after immunofluorescence staining of the DNA damage marker yH2AX yielded similar results. With this performance a target with a size similar to that of nucleoli (i.e. a diameter of about 3 μm) is hit with a probability of more than 80%, which enables the investigation of the radiation response of cellular subcompartments after targeted ion irradiation in the future.

  1. Optical cell stimulation for neuronal excitation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Johannsmeier, Sonja; Heeger, Patrick; Terakawa, Mitsuhiro; Heisterkamp, Alexander; Ripken, Tammo; Heinemann, Dag

    2017-02-01

    Optical manipulation of cellular functions represents a growing field in biomedical sciences. The possibility to modulate specific targets with high spatial and temporal precision in a contactless manner allows a broad range of applications. Here, we present a study on stimulation of neuronal cells by optical means. As a long-term objective, we seek to improve the performance of current electric neurostimulation, especially in the context of cochlear implants. Firstly, we tested a gold nanoparticle mediated approach to modulate transmembrane conductivity by irradiation using a picosecond pulsed Nd:YAG laser at 532 nm for 40 ms in a neuroblastoma cell line (N2A) and primary murine neurons. The light absorption leads to a rapid temperature increase of the gold nanoparticles, which can induce an increased permeabilisation of the cellular membrane. Calcium transients were recorded as an indicator of neuronal activity. Although calcium signals were reliably detected upon laser irradiation, the temporal behavior did not resemble action potentials. The origin of these signals was investigated by an inhibitor study. These results indicate calcium induced calcium release (CICR) as the major source of the calcium transients. Consecutively, we tested alternative approaches for cell stimulation, such as glutamate release and optogenetics, and evaluated the potential of these methods for the application in a cochlear implant. Compared to the gold nanoparticle approach, both techniques induce less cellular stress and reliably produce action potentials.

  2. Visualizing Oxidative Cellular Stress Induced by Nanoparticles in the Subcytotoxic Range Using Fluorescence Lifetime Imaging.

    PubMed

    Balke, Jens; Volz, Pierre; Neumann, Falko; Brodwolf, Robert; Wolf, Alexander; Pischon, Hannah; Radbruch, Moritz; Mundhenk, Lars; Gruber, Achim D; Ma, Nan; Alexiev, Ulrike

    2018-06-01

    Nanoparticles hold a great promise in biomedical science. However, due to their unique physical and chemical properties they can lead to overproduction of intracellular reactive oxygen species (ROS). As an important mechanism of nanotoxicity, there is a great need for sensitive and high-throughput adaptable single-cell ROS detection methods. Here, fluorescence lifetime imaging microscopy (FLIM) is employed for single-cell ROS detection (FLIM-ROX) providing increased sensitivity and enabling high-throughput analysis in fixed and live cells. FLIM-ROX owes its sensitivity to the discrimination of autofluorescence from the unique fluorescence lifetime of the ROS reporter dye. The effect of subcytotoxic amounts of cationic gold nanoparticles in J774A.1 cells and primary human macrophages on ROS generation is investigated. FLIM-ROX measures very low ROS levels upon gold nanoparticle exposure, which is undetectable by the conventional method. It is demonstrated that cellular morphology changes, elevated senescence, and DNA damage link the resulting low-level oxidative stress to cellular adverse effects and thus nanotoxicity. Multiphoton FLIM-ROX enables the quantification of spatial ROS distribution in vivo, which is shown for skin tissue as a target for nanoparticle exposure. Thus, this innovative method allows identifying of low-level ROS in vitro and in vivo and, subsequently, promotes understanding of ROS-associated nanotoxicity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery.

    PubMed

    Crombez, Laurence; Morris, May C; Heitz, Frederic; Divita, Gilles

    2011-01-01

    The dramatic acceleration in identification of new nucleic acid-based therapeutic molecules such as short interfering RNA (siRNA) and peptide-nucleic acid (PNA) analogues has provided new perspectives for therapeutic targeting of specific genes responsible for pathological disorders. However, the poor cellular uptake of nucleic acids together with the low permeability of the cell membrane to negatively charged molecules remain major obstacles to their clinical development. Several non-viral strategies have been proposed to improve the delivery of synthetic short oligonucleotides both in cultured cells and in vivo. Cell-penetrating peptides constitute very promising tools for non-invasive cellular import of oligonucleotides and analogs. We recently described a non-covalent strategy based on short amphiphatic peptides (MPG8/PEP3) that have been successfully applied ex vivo and in vivo for the delivery of therapeutic siRNA and PNA molecules. PEP3 and MPG8 form stable nanoparticles with PNA analogues and siRNA, respectively, and promote their efficient cellular uptake, independently of the endosomal pathway, into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. This chapter describes easy-to-handle protocols for the use of MPG-8 or PEP-3-nanoparticle technologies for PNA and siRNA delivery into adherent and suspension cell lines as well as in vivo into cancer mouse models.

  4. Preparation and characterization of vinculin-targeted polymer-lipid nanoparticle as intracellular delivery vehicle.

    PubMed

    Wang, Junping; Ornek-Ballanco, Ceren; Xu, Jiahua; Yang, Weiguo; Yu, Xiaojun

    2013-01-01

    Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer-lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin-fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin-fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles.

  5. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  6. Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes

    PubMed Central

    Terrados, Gloria; Finkernagel, Florian; Stielow, Bastian; Sadic, Dennis; Neubert, Juliane; Herdt, Olga; Krause, Michael; Scharfe, Maren; Jarek, Michael; Suske, Guntram

    2012-01-01

    The transcription factor Sp2 is essential for early mouse development and for proliferation of mouse embryonic fibroblasts in culture. Yet its mechanisms of action and its target genes are largely unknown. In this study, we have combined RNA interference, in vitro DNA binding, chromatin immunoprecipitation sequencing and global gene-expression profiling to investigate the role of Sp2 for cellular functions, to define target sites and to identify genes regulated by Sp2. We show that Sp2 is important for cellular proliferation that it binds to GC-boxes and occupies proximal promoters of genes essential for vital cellular processes including gene expression, replication, metabolism and signalling. Moreover, we identified important key target genes and cellular pathways that are directly regulated by Sp2. Most significantly, Sp2 binds and activates numerous sequence-specific transcription factor and co-activator genes, and represses the whole battery of cholesterol synthesis genes. Our results establish Sp2 as a sequence-specific regulator of vitally important genes. PMID:22684502

  7. Biochemical changes to fibroblast cells subjected to ionizing radiation.

    PubMed

    Jones, Pamala; Benghuzzi, Hamed; Tucci, Michelle; Richards, Latoya; Harrison, George; Patel, Ramesh

    2008-01-01

    High energy X-rays are capable of interacting with biological membranes to cause both functional and structural modifications. The goal of the present study was to investigate the effects human fibroblast cells exposed multiple times to 10 Gy over time. Following exposures of 2, 3, or 4 times to 10 Gy/10min the cells were evaluated for cell number changes, membrane damage, and intracellular glutathione content after 24, 48 and 72 hours. Twenty-four hours following exposure the cell numbers were reduced and increased levels of cellular membrane damage was evident. This trend was observed for the duration of the study. Interestingly, there was not an exposure dependent increase in cell damage or cell loss with time. Intracellular antioxidant systems were activated as indicated by anincrease in total cellular glutathione content. Additional studies are needed to determine if the cellular reduction is caused by a direct effect of the X-rays targeting the DNA or an indirect effect of the X-ray targeting the cellular membrane, which then generates radicals that target cell cycle checkpoints or DNA damage. In conclusion, fibroblast cells can be used to determine early and late events of cellular function following exposure to harmful levels of radiation exposure and results of exposure can be seen within twenty four hours.

  8. Glioblastoma: new therapeutic strategies to address cellular and genomic complexity

    PubMed Central

    Cai, Xue; Sughrue, Michael E.

    2018-01-01

    Glioblastoma (GBM) is the most invasive and devastating primary brain tumor with a median overall survival rate about 18 months with aggressive multimodality therapy. Its unique characteristics of heterogeneity, invasion, clonal populations maintaining stem cell-like cells and recurrence, have limited responses to a variety of therapeutic approaches, and have made GBM the most difficult brain cancer to treat. A great effort and progress has been made to reveal promising molecular mechanisms to target therapeutically. Especially with the emerging of new technologies, the mechanisms underlying the pathology of GBM are becoming more clear. The purpose of this review is to summarize the current knowledge of molecular mechanisms of GBM and highlight the novel strategies and concepts for the treatment of GBM. PMID:29507709

  9. Amino acid sequence and the cellular location of the Na(+)-dependent D-glucose symporters (SGLT1) in the ovine enterocyte and the parotid acinar cell.

    PubMed Central

    Tarpey, P S; Wood, I S; Shirazi-Beechey, S P; Beechey, R B

    1995-01-01

    The Na(+)-dependent D-glucose symporter has been shown to be located on the basolateral domain of the plasma membrane of ovine parotid acinar cells. This is in contrast to the apical location of this transporter in the ovine enterocyte. The amino acid sequences of these two proteins have been determined. They are identical. The results indicated that the signals responsible for the differential targeting of these two proteins to the apical and the basal domains of the plasma membrane are not contained within the primary amino acid sequence. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7492327

  10. Blue light-irradiated human keloid fibroblasts: an in vitro study

    NASA Astrophysics Data System (ADS)

    Magni, Giada; Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Coppi, Elisabetta; Cherchi, Federica; Fusco, Irene; Pugliese, Anna Maria; Pedata, Felicita; Fraccalvieri, Marco; Gasperini, Stefano; Pavone, Francesco S.; Tripodi, Cristina; Alfieri, Domenico; Targetti, Lorenzo

    2018-02-01

    Blue LED light irradiation is currently under investigation because of its effect in wound healing improvement. In this context, several mechanisms of action are likely to occur at the same time, consistently with the presence of different light absorbers within the skin. In our previous studies we observed the wound healing in superficial abrasions in an in vivo murine model. The results evidenced that both inflammatory infiltrate and myofibroblasts activity increase after irradiation. In this study we focused on evaluating the consequences of light absorption in fibroblasts from human cells culture: they play a key role in wound healing, both in physiological conditions and in pathological ones, such as keloid scarring. In particular we used keloids fibroblasts as a new target in order to investigate a possible metabolic or cellular mechanism correlation. Human keloid tissues were excised during standard surgery and immediately underwent primary cell culture extraction. Fibroblasts were allowed to grow in the appropriate conditions and then exposed to blue light. A metabolic colorimetric test (WST-8) was then performed. The tests evidenced an effect in mitochondrial activity, which could be modulated by the duration of the treatment. Electrophysiology pointed out a different behavior of irradiated fibroblasts. In conclusion, the Blue LED light affects the metabolic activity of fibroblasts and thus the cellular proliferation rate. No specific effect was found on keloid fibroblasts, thus indicating a very basic intracellular component, such as cytochromes, being the target of the treatment.

  11. The role of MDM2 and MDM4 in breast cancer development and prevention.

    PubMed

    Haupt, Sue; Vijayakumaran, Reshma; Miranda, Panimaya Jeffreena; Burgess, Andrew; Lim, Elgene; Haupt, Ygal

    2017-02-01

    The major cause of death from breast cancer is not the primary tumour, but relapsing, drug-resistant, metastatic disease. Identifying factors that contribute to aggressive cancer offers important leads for therapy. Inherent defence against carcinogens depends on the individual molecular make-up of each person. Important molecular determinants of these responses are under the control of the mouse double minute (MDM) family: comprised of the proteins MDM2 and MDM4. In normal, healthy adult cells, the MDM family functions to critically regulate measured, cellular responses to stress and subsequent recovery. Proper function of the MDM family is vital for normal breast development, but also for preserving genomic fidelity. The MDM family members are best characterized for their negative regulation of the major tumour suppressor p53 to modulate stress responses. Their impact on other cellular regulators is emerging. Inappropriately elevated protein levels of the MDM family are highly associated with an increased risk of cancer incidence. Exploration of the MDM family members as cancer therapeutic targets is relevant for designing tailored anti-cancer treatments, but successful approaches must strategically consider the impact on both the target cancer and adjacent healthy cells and tissues. This review focuses on recent findings pertaining to the role of the MDM family in normal and malignant breast cells. © The Author (2017). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  12. An integrative systems biology approach to understanding pulmonary diseases.

    PubMed

    Auffray, Charles; Adcock, Ian M; Chung, Kian Fan; Djukanovic, Ratko; Pison, Christophe; Sterk, Peter J

    2010-06-01

    Chronic inflammatory pulmonary diseases such as COPD and asthma are highly prevalent and associated with a major health burden worldwide. Despite a wealth of biologic and clinical information on normal and pathologic airway structure and function, the primary causes and mechanisms of disease remain to a large extent unknown, preventing the development of more efficient diagnosis and treatment. We propose to overcome these limitations through an integrative systems biology research strategy designed to identify the functional and regulatory pathways that play central roles in respiratory pathophysiology, starting with severe asthma. This approach relies on global genome, transcriptome, proteome, and metabolome data sets collected in cross-sectional patient cohorts with high-throughput measurement platforms and integrated with biologic and clinical data to inform predictive multiscale models ranging from the molecular to the organ levels. Working hypotheses formulated on the mechanisms and pathways involved in various disease states are tested through perturbation experiments using model simulation combined with targeted and global technologies in cellular and animal models. The responses observed are compared with those predicted by the initial models, which are refined to account better for the results. Novel perturbation experiments are designed and tested both computationally and experimentally to arbitrate between competing hypotheses. The process is iterated until the derived knowledge allows a better classification and subphenotyping of severe asthma using complex biomarkers, which will facilitate the development of novel diagnostic and therapeutic interventions targeting multiple components of the molecular and cellular pathways involved. This can be tested and validated in prospective clinical trials.

  13. TWIST1-WDR5-Hottip regulates Hoxa9 chromatin to facilitate prostate cancer metastasis

    PubMed Central

    Malek, Reem; Gajula, Rajendra P.; Williams, Russell D.; Nghiem, Belinda; Simons, Brian W.; Nugent, Katriana; Wang, Hailun; Taparra, Kekoa; Lemtiri-Chlieh, Ghali; Yoon, Arum R.; True, Lawrence; An, Steven S.; DeWeese, Theodore L.; Ross, Ashley E.; Schaeffer, Edward M.; Pienta, Kenneth J.; Hurley, Paula J.; Morrissey, Colm; Tran, Phuoc T.

    2017-01-01

    TWIST1 is a transcription factor critical for development which can promote prostate cancer metastasis. During embryonic development, TWIST1 and HOXA9 are co-expressed in mouse prostate and then silenced post-natally. Here we report that TWIST1 and HOXA9 co-expression are re-activated in mouse and human primary prostate tumors and are further enriched in human metastases, correlating with survival. TWIST1 formed a complex with WDR5 and the lncRNA Hottip/HOTTIP, members of the MLL/COMPASS-like H3K4 methylases, which regulate chromatin in the Hox/HOX cluster during development. TWIST1 overexpression led to co-enrichment of TWIST1 and WDR5 as well increased H3K4me3 chromatin at the Hoxa9/HOXA9 promoter which was dependent on WDR5. Expression of WDR5 and Hottip/HOTTIP was also required for TWIST1-induced upregulation of HOXA9 and aggressive cellular phenotypes such as invasion and migration. Pharmacological inhibition of HOXA9 prevented TWIST1-induced aggressive prostate cancer cellular phenotypes in vitro and metastasis in vivo. This study demonstrates a novel mechanism by which TWIST1 regulates chromatin and gene expression by cooperating with the COMPASS-like complex to increase H3K4 trimethylation at target gene promoters. Our findings highlight a TWIST1-HOXA9 embryonic prostate developmental program that is reactivated during prostate cancer metastasis and is therapeutically targetable. PMID:28484075

  14. Identification of a novel therapeutic target for head and neck squamous cell carcinomas: a role for the neurotensin-neurotensin receptor 1 oncogenic signaling pathway.

    PubMed

    Shimizu, Satoya; Tsukada, Jun; Sugimoto, Takashi; Kikkawa, Naoko; Sasaki, Keita; Chazono, Hideaki; Hanazawa, Toyoyuki; Okamoto, Yoshitaka; Seki, Naohiko

    2008-10-15

    Distant metastasis is a major factor associated with poor prognosis in head and neck squamous cell carcinomas (HNSCC), but little is known of its molecular mechanisms. New markers that predict clinical outcome, in particular the ability of primary tumors to develop metastatic tumors, are urgently needed. Based on a genome-wide gene expression analysis using clinical specimens of HNSCC, we narrowed our focus to the analysis of the neurotensin (NTS) and neurotensin receptor 1 (NTSR1) oncogenic signal pathways. Kaplan-Meier curves and log rank tests revealed that high mRNA expression levels of NTS and NTSR1 had a significant adverse effect on metastasis-free survival rate, suggesting a contribution of this pathway in HNSCC cancer progression. In HNSCC cells, which expressed NTSR1, a NTS agonist promoted cellular invasion, migration and induction of several mRNAs, such as interleukin 8 and matrix metalloproteinase 1 transcripts. In addition, knock down of NTSR1 expression with small interfering RNAs resulted in reduction of cellular invasion and migration in HNSCC cell lines. Our findings suggest a critical role for the NTS and NTSR1 oncogenic pathways in invasion and migration of HNSCC cells during the metastatic process. Our study raises the possibility that NTS and NTSR1 could be a useful predictive marker of poor prognosis in patients with HNSCC and a molecular therapeutic target in antimetastatic strategies for HNSCCs.

  15. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    PubMed

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  16. Tendencies for higher co-expression of EGFR and HER2 and downregulation of HER3 in prostate cancer lymph node metastases compared with corresponding primary tumors.

    PubMed

    Carlsson, J; Shen, L; Xiang, J; Xu, J; Wei, Q

    2013-01-01

    The epidermal growth factor receptor (EGFR) family members are potential targets for therapy using extra-cellular domain receptor binding agents, such as the antibodies trastuzumab and cetuximab, or antibodies labeled with therapeutically useful radionuclides or toxins. This is especially the case when the tumor cells are resistant to chemotherapy and tyrosine kinase inhibitors. Studies concerning the expression of these receptors in prostate cancer vary in the literature, possibly due to differences in patient inclusion, sample preparations and scoring criteria. In our study, EGFR, HER2 and HER3 expression was analyzed in prostate cancer samples from primary tumors and corresponding lymph node metastases from 12 patients. The expression of HER2 and EGFR was scored from immunohistochemical preparations and the HercepTest criteria (0, 1+, 2+ or 3+), while HER3 expression was scored as no, weak or strong staining. There were 5 EGFR-positive (2+ or 3+) primary tumors and 6 EGFR-positive lymph node metastases, and there was EGFR upregulation in one metastasis. Only 4 of the 12 patients had marked HER2 expression (2+ or 3+) in their primary tumors and there was one downregulation and 5 cases of upregulation in the metastases. Thus, a total of 8 out of 12 analyzed metastases were HER2-positive. Of the 12 primary tumors, 9 expressed HER3 while only 2 of the lymph node metastases expressed recognizable HER3 staining, so 7 metastases appeared to have downregulated HER3 expression. In one of the primary tumors there was positive co-expression of EGFR and HER2, while this co-expression was observed in 4 of the metastases. Thus, there were tendencies for upregulation of HER2, increased co-expression of EGFR and HER2 and downregulation of HER3 in the prostate cancer lymph node metastases in comparison to the primary tumors. The results are encouraging for studies involving more patients. Possible strategies for EGFR- and HER2-targeted therapy are briefly discussed in the present study, especially with regard to the expression and co-expression of EGFR and HER2 in metastases.

  17. Adaptive immune responses to booster vaccination against yellow fever virus are much reduced compared to those after primary vaccination.

    PubMed

    Kongsgaard, Michael; Bassi, Maria R; Rasmussen, Michael; Skjødt, Karsten; Thybo, Søren; Gabriel, Mette; Hansen, Morten Bagge; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup; Buus, Soren; Stryhn, Anette

    2017-04-06

    Outbreaks of Yellow Fever occur regularly in endemic areas of Africa and South America frequently leading to mass vaccination campaigns straining the availability of the attenuated Yellow Fever vaccine, YF-17D. The WHO has recently decided to discontinue regular booster-vaccinations since a single vaccination is deemed to confer life-long immune protection. Here, we have examined humoral (neutralizing antibody) and cellular (CD8 and CD4 T cell) immune responses in primary and booster vaccinees (the latter spanning 8 to 36 years after primary vaccination). After primary vaccination, we observed strong cellular immune responses with T cell activation peaking ≈2 weeks and subsiding to background levels ≈ 4 weeks post-vaccination. The number of antigen-specific CD8+ T cells declined over the following years. In >90% of vaccinees, in vitro expandable T cells could still be detected >10 years post-vaccination. Although most vaccinees responded to a booster vaccination, both the humoral and cellular immune responses observed following booster vaccination were strikingly reduced compared to primary responses. This suggests that pre-existing immunity efficiently controls booster inoculums of YF-17D. In a situation with epidemic outbreaks, one could argue that a more efficient use of a limited supply of the vaccine would be to focus on primary vaccinations.

  18. Identification of TRIM27 as a novel degradation target of herpes simplex virus 1 ICP0.

    PubMed

    Conwell, Sara E; White, Anne E; Harper, J Wade; Knipe, David M

    2015-01-01

    The herpes simplex virus 1 (HSV-1) immediate early protein ICP0 performs many functions during infection, including transactivation of viral gene expression, suppression of innate immune responses, and modification and eviction of histones from viral chromatin. Although these functions of ICP0 have been characterized, the detailed mechanisms underlying ICP0's complex role during infection warrant further investigation. We thus undertook an unbiased proteomic approach to identifying viral and cellular proteins that interact with ICP0 in the infected cell. Cellular candidates resulting from our analysis included the ubiquitin-specific protease USP7, the transcriptional repressor TRIM27, DNA repair proteins NBN and MRE11A, regulators of apoptosis, including BIRC6, and the proteasome. We also identified two HSV-1 early proteins involved in nucleotide metabolism, UL39 and UL50, as novel candidate interactors of ICP0. Because TRIM27 was the most statistically significant cellular candidate, we investigated the relationship between TRIM27 and ICP0. We observed rapid, ICP0-dependent loss of TRIM27 during HSV-1 infection. TRIM27 protein levels were restored by disrupting the RING domain of ICP0 or by inhibiting the proteasome, arguing that TRIM27 is a novel degradation target of ICP0. A mutant ICP0 lacking E3 ligase activity interacted with endogenous TRIM27 during infection as demonstrated by reciprocal coimmunoprecipitation and supported by immunofluorescence data. Surprisingly, ICP0-null mutant virus yields decreased upon TRIM27 depletion, arguing that TRIM27 has a positive effect on infection despite being targeted for degradation. These results illustrate a complex interaction between TRIM27 and viral infection with potential positive or negative effects of TRIM27 on HSV under different infection conditions. During productive infection, a virus must simultaneously redirect multiple cellular pathways to replicate itself while evading detection by the host's defenses. To orchestrate such complex regulation, viruses, including herpes simplex virus 1 (HSV-1), rely on multifunctional proteins such as the E3 ubiquitin ligase ICP0. This protein regulates various cellular pathways concurrently by targeting a diverse set of cellular factors for degradation. While some of these targets have been previously identified and characterized, we undertook a proteomic screen to identify additional targets of this activity to further characterize ICP0's role during infection. We describe a set of candidate interacting proteins of ICP0 identified through this approach and our characterization of the most statistically significant result, the cellular transcriptional repressor TRIM27. We present TRIM27 as a novel degradation target of ICP0 and describe the relationship of these two proteins during infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Peptide-Based Technologies to Alter Adenoviral Vector Tropism: Ways and Means for Systemic Treatment of Cancer

    PubMed Central

    Reetz, Julia; Herchenröder, Ottmar; Pützer, Brigitte M.

    2014-01-01

    Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors. PMID:24699364

  20. Delivery of Nano-Tethered Therapies to Brain Metastases of Primary Breast Cancer Using a Cellular Trojan Horse

    DTIC Science & Technology

    2014-10-01

    REFERENCES: 1. M.-R. Choi et al., Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer Nanotechnol. 3...subtype”, Ann Oncol, 2010, 21: 942– 948. [2] Mi-Ran Choi, et al., “Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan...horse”, Cancer Nano, 2012; 3: 47- 54. [3] Mi-Ran Choi, et al., “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors

  1. Targeting cancer by binding iron: Dissecting cellular signaling pathways

    PubMed Central

    Lui, Goldie Y.L.; Kovacevic, Zaklina; Richardson, Vera; Merlot, Angelica M.; Kalinowski, Danuta S.; Richardson, Des R.

    2015-01-01

    Newer and more potent therapies are urgently needed to effectively treat advanced cancers that have developed resistance and metastasized. One such strategy is to target cancer cell iron metabolism, which is altered compared to normal cells and may facilitate their rapid proliferation. This is supported by studies reporting the anti-neoplastic activities of the clinically available iron chelators, desferrioxamine and deferasirox. More recently, ligands of the di-2-pyridylketone thiosemicarbazone (DpT) class have demonstrated potent and selective anti-proliferative activity across multiple cancer-types in vivo, fueling studies aimed at dissecting their molecular mechanisms of action. In the past five years alone, significant advances have been made in understanding how chelators not only modulate cellular iron metabolism, but also multiple signaling pathways implicated in tumor progression and metastasis. Herein, we discuss recent research on the targeting of iron in cancer cells, with a focus on the novel and potent DpT ligands. Several key studies have revealed that iron chelation can target the AKT, ERK, JNK, p38, STAT3, TGF-β, Wnt and autophagic pathways to subsequently inhibit cellular proliferation, the epithelial-mesenchymal transition (EMT) and metastasis. These developments emphasize that these novel therapies could be utilized clinically to effectively target cancer. PMID:26125440

  2. The MicroRNA and MessengerRNA Profile of the RNA-Induced Silencing Complex in Human Primary Astrocyte and Astrocytoma Cells

    PubMed Central

    Moser, Joanna J.; Fritzler, Marvin J.

    2010-01-01

    Background GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells. Methodology/Principal Findings RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells. Conclusions/Significance The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies. PMID:20976148

  3. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    PubMed

    Moser, Joanna J; Fritzler, Marvin J

    2010-10-18

    GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells. RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells. The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  4. Involvement of pro-inflammatory cytokines and growth factors in the pathogenesis of Dupuytren's contracture: a novel target for a possible future therapeutic strategy?

    PubMed

    Bianchi, Enrica; Taurone, Samanta; Bardella, Lia; Signore, Alberto; Pompili, Elena; Sessa, Vincenzo; Chiappetta, Caterina; Fumagalli, Lorenzo; Di Gioia, Cira; Pastore, Francesco S; Scarpa, Susanna; Artico, Marco

    2015-10-01

    Dupuytren's contracture (DC) is a benign fibro-proliferative disease of the hand causing fibrotic nodules and fascial cords which determine debilitating contracture and deformities of fingers and hands. The present study was designed to characterize pro-inflammatory cytokines and growth factors involved in the pathogenesis, progression and recurrence of this disease, in order to find novel targets for alternative therapies and strategies in controlling DC. The expression of pro-inflammatory cytokines and of growth factors was detected by immunohistochemistry in fibrotic nodules and normal palmar fascia resected respectively from patients affected by DC and carpal tunnel syndrome (CTS; as negative controls). Reverse transcription (RT)-PCR analysis and immunofluorescence were performed to quantify the expression of transforming growth factor (TGF)-β1, interleukin (IL)-1β and vascular endothelial growth factor (VEGF) by primary cultures of myofibroblasts and fibroblasts isolated from Dupuytren's nodules. Histological analysis showed high cellularity and high proliferation rate in Dupuytren's tissue, together with the presence of myofibroblastic isotypes; immunohistochemical staining for macrophages was completely negative. In addition, a strong expression of TGF-β1, IL-1β and VEGF was evident in the extracellular matrix and in the cytoplasm of fibroblasts and myofibroblasts in Dupuytren's nodular tissues, as compared with control tissues. These results were confirmed by RT-PCR and by immunofluorescence in pathological and normal primary cell cultures. These preliminary observations suggest that TGF-β1, IL-1β and VEGF may be considered potential therapeutic targets in the treatment of Dupuytren's disease (DD). © 2015 Authors; published by Portland Press Limited.

  5. A CD22-reactive TCR from the T-cell allorepertoire for the treatment of acute lymphoblastic leukemia by TCR gene transfer

    PubMed Central

    Jahn, Lorenz; Hagedoorn, Renate S.; van der Steen, Dirk M.; Hombrink, Pleun; Kester, Michel G.D.; Schoonakker, Marjolein P.; de Ridder, Daniëlle; van Veelen, Peter A.; Falkenburg, J.H. Frederik; Heemskerk, Mirjam H.M.

    2016-01-01

    CD22 is currently evaluated as a target-antigen for the treatment of B-cell malignancies using chimeric antigen receptor (CAR)-engineered T-cells or monoclonal antibodies (mAbs). CAR- and mAbs-based immunotherapies have been successfully applied targeting other antigens, however, occurrence of refractory disease to these interventions urges the identification of additional strategies. Here, we identified a TCR recognizing the CD22-derived peptide RPFPPHIQL (CD22RPF) presented in human leukocyte antigen (HLA)-B*07:02. To overcome tolerance to self-antigens such as CD22, we exploited the immunogenicity of allogeneic HLA. CD22RPF-specific T-cell clone 9D4 was isolated from a healthy HLA-B*07:02neg individual, efficiently produced cytokines upon stimulation with primary acute lymphoblastic leukemia and healthy B-cells, but did not react towards healthy hematopoietic and nonhematopoietic cell subsets, including dendritic cells (DCs) and macrophages expressing low levels of CD22. Gene transfer of TCR-9D4 installed potent CD22-specificity onto recipient CD8+ T-cells that recognized and lysed primary B-cell leukemia. TCR-transduced T-cells spared healthy CD22neg hematopoietic cell subsets but weakly lysed CD22low-expressing DCs and macrophages. CD22-specific TCR-engineered T-cells could form an additional immunotherapeutic strategy with a complementary role to CAR- and antibody-based interventions in the treatment of B-cell malignancies. However, CD22 expression on non-B-cells may limit the attractiveness of CD22 as target-antigen in cellular immunotherapy. PMID:27689397

  6. A CD22-reactive TCR from the T-cell allorepertoire for the treatment of acute lymphoblastic leukemia by TCR gene transfer.

    PubMed

    Jahn, Lorenz; Hagedoorn, Renate S; van der Steen, Dirk M; Hombrink, Pleun; Kester, Michel G D; Schoonakker, Marjolein P; de Ridder, Daniëlle; van Veelen, Peter A; Falkenburg, J H Frederik; Heemskerk, Mirjam H M

    2016-11-01

    CD22 is currently evaluated as a target-antigen for the treatment of B-cell malignancies using chimeric antigen receptor (CAR)-engineered T-cells or monoclonal antibodies (mAbs). CAR- and mAbs-based immunotherapies have been successfully applied targeting other antigens, however, occurrence of refractory disease to these interventions urges the identification of additional strategies. Here, we identified a TCR recognizing the CD22-derived peptide RPFPPHIQL (CD22RPF) presented in human leukocyte antigen (HLA)-B*07:02. To overcome tolerance to self-antigens such as CD22, we exploited the immunogenicity of allogeneic HLA. CD22RPF-specific T-cell clone 9D4 was isolated from a healthy HLA-B*07:02neg individual, efficiently produced cytokines upon stimulation with primary acute lymphoblastic leukemia and healthy B-cells, but did not react towards healthy hematopoietic and nonhematopoietic cell subsets, including dendritic cells (DCs) and macrophages expressing low levels of CD22. Gene transfer of TCR-9D4 installed potent CD22-specificity onto recipient CD8+ T-cells that recognized and lysed primary B-cell leukemia. TCR-transduced T-cells spared healthy CD22neg hematopoietic cell subsets but weakly lysed CD22low-expressing DCs and macrophages. CD22-specific TCR-engineered T-cells could form an additional immunotherapeutic strategy with a complementary role to CAR- and antibody-based interventions in the treatment of B-cell malignancies. However, CD22 expression on non-B-cells may limit the attractiveness of CD22 as target-antigen in cellular immunotherapy.

  7. Novel BAFF-Receptor Antibody to Natively Folded Recombinant Protein Eliminates Drug-Resistant Human B-cell Malignancies In Vivo.

    PubMed

    Qin, Hong; Wei, Guowei; Sakamaki, Ippei; Dong, Zhenyuan; Cheng, Wesley A; Smith, D Lynne; Wen, Feng; Sun, Han; Kim, Kunhwa; Cha, Soungchul; Bover, Laura; Neelapu, Sattva S; Kwak, Larry W

    2018-03-01

    Purpose: mAbs such as anti-CD20 rituximab are proven therapies in B-cell malignancies, yet many patients develop resistance. Novel therapies against alternative targets are needed to circumvent resistance mechanisms. We sought to generate mAbs against human B-cell-activating factor receptor (BAFF-R/TNFRSF13C), which has not yet been targeted successfully for cancer therapy. Experimental Design: Novel mAbs were generated against BAFF-R, expressed as a natively folded cell surface immunogen on mouse fibroblast cells. Chimeric BAFF-R mAbs were developed and assessed for in vitro and in vivo monotherapy cytotoxicity. The chimeric mAbs were tested against human B-cell tumor lines, primary patient samples, and drug-resistant tumors. Results: Chimeric antibodies bound with high affinity to multiple human malignant B-cell lines and induced potent antibody-dependent cellular cytotoxicity (ADCC) against multiple subtypes of human lymphoma and leukemia, including primary tumors from patients who had relapsed after anti-CD20 therapy. Chimeric antibodies also induced ADCC against ibrutinib-resistant and rituximab-insensitive CD20-deficient variant lymphomas, respectively. Importantly, they demonstrated remarkable in vivo growth inhibition of drug-resistant tumor models in immunodeficient mice. Conclusions: Our method generated novel anti-BAFF-R antibody therapeutics with remarkable single-agent antitumor effects. We propose that these antibodies represent an effective new strategy for targeting and treating drug-resistant B-cell malignancies and warrant further development. Clin Cancer Res; 24(5); 1114-23. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. A mathematical model for IL-6-mediated, stem cell driven tumor growth and targeted treatment

    PubMed Central

    Nör, Jacques Eduardo

    2018-01-01

    Targeting key regulators of the cancer stem cell phenotype to overcome their critical influence on tumor growth is a promising new strategy for cancer treatment. Here we present a modeling framework that operates at both the cellular and molecular levels, for investigating IL-6 mediated, cancer stem cell driven tumor growth and targeted treatment with anti-IL6 antibodies. Our immediate goal is to quantify the influence of IL-6 on cancer stem cell self-renewal and survival, and to characterize the subsequent impact on tumor growth dynamics. By including the molecular details of IL-6 binding, we are able to quantify the temporal changes in fractional occupancies of bound receptors and their influence on tumor volume. There is a strong correlation between the model output and experimental data for primary tumor xenografts. We also used the model to predict tumor response to administration of the humanized IL-6R monoclonal antibody, tocilizumab (TCZ), and we found that as little as 1mg/kg of TCZ administered weekly for 7 weeks is sufficient to result in tumor reduction and a sustained deceleration of tumor growth. PMID:29351275

  9. Viperin targets flavivirus virulence by inducing assembly of non-infectious capsid particles.

    PubMed

    Vonderstein, Kirstin; Nilsson, Emma; Hubel, Philipp; Nygård Skalman, Lars; Upadhyay, Arunkumar; Pasto, Jenny; Pichlmair, Andreas; Lundmark, Richard; Överby, Anna K

    2017-10-18

    Efficient antiviral immunity requires interference with virus replication at multiple layers targeting diverse steps in the viral life cycle. Here we describe a novel flavivirus inhibition mechanism that results in interferon-mediated obstruction of tick-borne encephalitis virus particle assembly, and involves release of malfunctional membrane associated capsid (C) particles. This mechanism is controlled by the activity of the interferon-induced protein viperin, a broad spectrum antiviral interferon stimulated gene. Through analysis of the viperin-interactome, we identified the Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1), as the cellular protein targeted by viperin. Viperin-induced antiviral activity as well as C-particle release was stimulated by GBF1 inhibition and knock down, and reduced by elevated levels of GBF1. Our results suggest that viperin targets flavivirus virulence by inducing the secretion of unproductive non-infectious virus particles, by a GBF1-dependent mechanism. This yet undescribed antiviral mechanism allows potential therapeutic intervention. Importance The interferon response can target viral infection on almost every level, however, very little is known about interference of flavivirus assembly. Here we show that interferon, through the action of viperin, can disturb assembly of tick-borne encephalitis virus. The viperin protein is highly induced after viral infection and exhibit broad-spectrum antiviral activity. However, the mechanism of action is still elusive and appear to vary between the different viruses, indicating that cellular targets utilized by several viruses might be involved. In this study we show that viperin induce capsid particle release by interacting and inhibiting the function of the cellular protein Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1). GBF1 is a key protein in the cellular secretory pathway and essential in the life cycle of many viruses, also targeted by viperin, implicating GBF1 as a novel putative drug target. Copyright © 2017 Vonderstein et al.

  10. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines

    PubMed Central

    Lopez, Cecilia M.; Yu, Peter Y.; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A.

    2018-01-01

    Background Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. Methodology and principal findings RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. Conclusions These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA. PMID:29293555

  11. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines.

    PubMed

    Lopez, Cecilia M; Yu, Peter Y; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A; Fenger, Joelle M

    2018-01-01

    Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA.

  12. Therapeutic effect of photodynamic therapy combined with targeted delivery of silencing vascular endothelial growth factor (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hsu, Yih-Chih

    2016-03-01

    Photodynamic therapy is a novel therapeutic modality to treat cancer by using a photosensitizer which is activated by a light source to produce reactive oxygen species and mediates tumours oxygen-independent hypoxic conditions. Vascular endothelial growth factor (VEGF) is one of the primary factors that affect tumor angiogenesis. Another emerging treatment to cure cancer is the use of interference RNA to silence a specific mRNA sequence. Such treatment requires a delivery system such as liposomes. The nanoparticle size measured was about 30 nm. Cellular uptake study was performed to verify that the nanoparticles have a sigma receptor mediated pathway. Non-targeted LCP NPs did not show significant difference with or without haloperidol but has a lower intensity as than targeted LCP NPs. These results confirm that LCP NPs have a receptor mediated pathway. Cell viability was found to decrease at 25 nM of transfected VEGF siRNA. Combined therapy of PDT and VEGF siRNA showed significant response as compared with PDT and gene therapy alone. In vivo toxicity assay with mice treated with targeted LCP NPs containing control siRNA or VEGF siRNA and non-targeted LCP NPs containing VEGF siRNA did not show any significant difference with the PBS injected group which suggests that there is no toxicity with the dose. It suggests that PDT combined with targeted gene therapy has a potential mean to achieve better therapeutic outcome.

  13. p21-activated kinase signaling in breast cancer.

    PubMed

    Gururaj, Anupama E; Rayala, Suresh K; Kumar, Rakesh

    2005-01-01

    The p21-activated kinases signal through a number of cellular pathways fundamental to growth, differentiation and apoptosis. A wealth of information has accumulated at an impressive pace in the recent past, both with regard to previously identified targets for p21-activated kinases that regulate the actin cytoskeleton and cellular stress pathways and with regard to newly identified targets and their role in cancer. Emerging data also provide new clues towards a previously unappreciated link between these various cellular processes. The present review attempts to provide a quick tutorial to the reader about the evolving significance of p21-activated kinases and small GTPases in breast cancer, using information from mouse models, tissue culture studies, and human materials.

  14. Label-Free Raman Microspectral Analysis for Comparison of Cellular Uptake and Distribution between Non-Targeted and EGFR-Targeted Biodegradable Polymeric Nanoparticles

    PubMed Central

    Chernenko, Tatyana; Buyukozturk, Fulden; Miljkovic, Milos; Carrier, Rebecca; Diem, Max; Amiji, Mansoor

    2013-01-01

    Active targeted delivery of nanoparticle-encapsulated agents to tumor cells in vivo is expected to enhance therapeutic effect with significantly less non-specific toxicity. Active targeting is based on surface modification of nanoparticles with ligands that bind with extracellular targets and enhance payload delivery in the cells. In this study, we have used label-free Raman micro-spectral analysis and kinetic modeling to study cellular interactions and intracellular delivery of C6-ceramide using a non-targeted and an epidermal growth factor receptor (EGFR) targeted biodegradable polymeric nano-delivery systems, in EGFR-expressing human ovarian adenocarcinoma (SKOV3) cells. The results show that EGFR peptide-modified nanoparticles were rapidly internalized in SKOV3 cells leading to significant intracellular accumulation as compared to non-specific uptake by the non-targeted nanoparticles. Raman micro-spectral analysis enables visualization and quantification of the carrier system, drug-load, and responses of the biological systems interrogated, without exogenous staining and labeling procedures. PMID:24298430

  15. Differential cellular recognition pattern to M. tuberculosis targets defined by IFN-γ and IL-17 production in blood from TB + patients from Honduras as compared to health care workers: TB and immune responses in patients from Honduras.

    PubMed

    Alvarez-Corrales, Nancy; Ahmed, Raija K; Rodriguez, Carol A; Balaji, Kithiganahalli N; Rivera, Rebeca; Sompallae, Ramakrishna; Vudattu, Nalini K; Hoffner, Sven E; Zumla, Alimuddin; Pineda-Garcia, Lelany; Maeurer, Markus

    2013-03-06

    A better understanding of the quality of cellular immune responses directed against molecularly defined targets will guide the development of TB diagnostics and identification of molecularly defined, clinically relevant M.tb vaccine candidates. Recombinant proteins (n = 8) and peptide pools (n = 14) from M. tuberculosis (M.tb) targets were used to compare cellular immune responses defined by IFN-γ and IL-17 production using a Whole Blood Assay (WBA) in a cohort of 148 individuals, i.e. patients with TB + (n = 38), TB- individuals with other pulmonary diseases (n = 81) and individuals exposed to TB without evidence of clinical TB (health care workers, n = 29). M.tb antigens Rv2958c (glycosyltransferase), Rv2962c (mycolyltransferase), Rv1886c (Ag85B), Rv3804c (Ag85A), and the PPE family member Rv3347c were frequently recognized, defined by IFN-γ production, in blood from healthy individuals exposed to M.tb (health care workers). A different recognition pattern was found for IL-17 production in blood from M.tb exposed individuals responding to TB10.4 (Rv0288), Ag85B (Rv1886c) and the PPE family members Rv0978c and Rv1917c. The pattern of immune target recognition is different in regard to IFN-γ and IL-17 production to defined molecular M.tb targets in PBMCs from individuals frequently exposed to M.tb. The data represent the first mapping of cellular immune responses against M.tb targets in TB patients from Honduras.

  16. Specific markers, micro-environmental anomalies and tropism: opportunities for gold nanorods targeting of tumors in laser-induced hyperthermia

    NASA Astrophysics Data System (ADS)

    Tatini, Francesca; Ratto, Fulvio; Centi, Sonia; Landini, Ida; Nobili, Stefania; Witort, Ewa; Fusi, Franco; Capaccioli, Sergio; Mini, Enrico; Pini, Roberto

    2014-03-01

    Gold nanorods (GNRs) are optimal contrast agents for near-infrared (NIR) laser-induced photothermal ablation of cancer. Selective targeting of cancer cells can be pursued by attaching specific molecules on the particles surface or by the use of cellular vectors loaded with GNRs. We performed and tested various targeting approaches by means of GNRs functionalization with (i) antibodies against Cancer-Antigen-125 (CA-125), (ii) inhibitors of the carbonic anhydrase 9 (CA9) and (iii) by the use of macrophages as cellular vectors. GNRs with a NIR absorption band at 810 nm were synthesized and PEGylated. For GNRs functionalization the targets of choice were CA-125, the most widely used biomarker for ovarian cancer, and CA9, overexpressed by hypoxic cells which are often located within the tumor mass. In the case of cellular vectors, to be used as Trojan horses naturally able to reach tumor areas, the surface of PEG-GNRs was modified to achieve unspecific interactions with macrophage membranes. In all cases the cellular uptake was evaluated by silver staining and cell viability was assessed by MTT test. Then tests of laser-induced GNRs-mediated hyperthermia were performed in various cell cultures illuminating with an 810 nm diode laser (CW, 0,5-4 W/cm2 power density, 1-10 min exposure time) and cell death was evaluated. Each targeting strategy we tested may be used alone or in combination, to maximize the tumor loading and therefore the efficiency of the laser treatment. Moreover, a multiple approach could help when the tumor variability interferes with the targeting directed to a single marker.

  17. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction

    PubMed Central

    Anderson, Eric J; Falls, Thomas D; Sorkin, Adam M; Tate, Melissa L Knothe

    2006-01-01

    Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV) experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable. PMID:16672051

  18. Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level

    PubMed Central

    Esteban-Fernández de Ávila, B.; Yáñez-Sedeño, P.

    2017-01-01

    A perspective review of recent strategies involving the use of nano/microvehicles to address the key challenges associated with delivery and (bio)sensing at the cellular level is presented. The main types and characteristics of the different nano/microvehicles used for these cellular applications are discussed, including fabrication pathways, propulsion (catalytic, magnetic, acoustic or biological) and navigation strategies, and relevant parameters affecting their propulsion performance and sensing and delivery capabilities. Thereafter, selected applications are critically discussed. An emphasis is made on enhancing the extra- and intra-cellular biosensing capabilities, fast cell internalization, rapid inter- or intra-cellular movement, efficient payload delivery and targeted on-demand controlled release in order to greatly improve the monitoring and modulation of cellular processes. A critical discussion of selected breakthrough applications illustrates how these smart multifunctional nano/microdevices operate as nano/microcarriers and sensors at the intra- and extra-cellular levels. These advances allow both the real-time biosensing of relevant targets and processes even at a single cell level, and the delivery of different cargoes (drugs, functional proteins, oligonucleotides and cells) for therapeutics, gene silencing/transfection and assisted fertilization, while overcoming challenges faced by current affinity biosensors and delivery vehicles. Key challenges for the future and the envisioned opportunities and future perspectives of this remarkably exciting field are discussed. PMID:29147499

  19. Targeting bacterial central metabolism for drug development.

    PubMed

    Murima, Paul; McKinney, John D; Pethe, Kevin

    2014-11-20

    Current antibiotics, derived mainly from natural sources, inhibit a narrow spectrum of cellular processes, namely DNA replication, protein synthesis, and cell wall biosynthesis. With the worldwide explosion of drug resistance, there is renewed interest in the investigation of alternate essential cellular processes, including bacterial central metabolic pathways, as a drug target space for the next generation of antibiotics. However, the validation of targets in central metabolism is more complex, as essentiality of such targets can be conditional and/or contextual. Bearing in mind our enhanced understanding of prokaryotic central metabolism, a key question arises: can central metabolism be bacteria's Achilles' heel and a therapeutic target for the development of new classes of antibiotics? In this review, we draw lessons from oncology and attempt to address some of the open questions related to feasibility of targeting bacterial central metabolism as a strategy for developing new antibacterial drugs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Improved Cellular Specificity of Plasmonic Nanobubbles versus Nanoparticles in Heterogeneous Cell Systems

    PubMed Central

    Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Constantinou, Pamela E.; Danysh, Brian P.; Shenefelt, Derek L.; Carson, Daniel D.; Farach-Carson, Mary C.; Kulchitsky, Vladimir A.; Wu, Xiangwei; Wagner, Daniel S.; Lapotko, Dmitri O.

    2012-01-01

    The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level. PMID:22509318

  1. Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Ren, Xiaoyang; Constantinou, Pamela E; Danysh, Brian P; Shenefelt, Derek L; Carson, Daniel D; Farach-Carson, Mary C; Kulchitsky, Vladimir A; Wu, Xiangwei; Wagner, Daniel S; Lapotko, Dmitri O

    2012-01-01

    The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level.

  2. Toward a systems-level view of dynamic phosphorylation networks

    PubMed Central

    Newman, Robert H.; Zhang, Jin; Zhu, Heng

    2014-01-01

    To better understand how cells sense and respond to their environment, it is important to understand the organization and regulation of the phosphorylation networks that underlie most cellular signal transduction pathways. These networks, which are composed of protein kinases, protein phosphatases and their respective cellular targets, are highly dynamic. Importantly, to achieve signaling specificity, phosphorylation networks must be regulated at several levels, including at the level of protein expression, substrate recognition, and spatiotemporal modulation of enzymatic activity. Here, we briefly summarize some of the traditional methods used to study the phosphorylation status of cellular proteins before focusing our attention on several recent technological advances, such as protein microarrays, quantitative mass spectrometry, and genetically-targetable fluorescent biosensors, that are offering new insights into the organization and regulation of cellular phosphorylation networks. Together, these approaches promise to lead to a systems-level view of dynamic phosphorylation networks. PMID:25177341

  3. Preparation and characterization of vinculin-targeted polymer–lipid nanoparticle as intracellular delivery vehicle

    PubMed Central

    Wang, Junping; Örnek-Ballanco, Ceren; Xu, Jiahua; Yang, Weiguo; Yu, Xiaojun

    2013-01-01

    Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer–lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin–fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin–fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles. PMID:23293518

  4. Cellular metabolic rates from primary dermal fibroblast cells isolated from birds of different body masses.

    PubMed

    Jimenez, Ana Gabriela; Williams, Joseph B

    2014-10-01

    The rate of metabolism is the speed at which organisms use energy, an integration of energy transformations within the body; it governs biological processes that influence rates of growth and reproduction. Progress at understanding functional linkages between whole organism metabolic rate and underlying mechanisms that influence its magnitude has been slow despite the central role this issue plays in evolutionary and physiological ecology. Previous studies that have attempted to relate how cellular processes translate into whole-organism physiology have done so over a range of body masses of subjects. However, the data still remains controversial when observing metabolic rates at the cellular level. To bridge the gap between these ideas, we examined cellular metabolic rate of primary dermal fibroblasts isolated from 49 species of birds representing a 32,000-fold range in body masses to test the hypothesis that metabolic rate of cultured cells scales with body size. We used a Seahorse XF-96 Extracellular flux analyzer to measure cellular respiration in fibroblasts. Additionally, we measured fibroblast size and mitochondrial content. We found no significant correlation between cellular metabolic rate, cell size, or mitochondrial content and body mass. Additionally, there was a significant relationship between cellular basal metabolic rate and proton leak in these cells. We conclude that metabolic rate of cells isolated in culture does not scale with body mass, but cellular metabolic rate is correlated to growth rate in birds. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. K-RasG12D–induced T-cell lymphoblastic lymphoma/leukemias harbor Notch1 mutations and are sensitive to γ-secretase inhibitors

    PubMed Central

    Cornejo, Melanie G.; Scholl, Claudia; Liu, Jianing; Leeman, Dena S.; Haydu, J. Erika; Fröhling, Stefan; Lee, Benjamin H.; Gilliland, D. Gary

    2008-01-01

    To study the impact of oncogenic K-Ras on T-cell leukemia/lymphoma development and progression, we made use of a conditional K-RasG12D murine knockin model, in which oncogenic K-Ras is expressed from its endogenous promoter. Transplantation of whole bone marrow cells that express oncogenic K-Ras into wild-type recipient mice resulted in a highly penetrant, aggressive T-cell leukemia/lymphoma. The lymphoblasts were composed of a CD4/CD8 double-positive population that aberrantly expressed CD44. Thymi of primary donor mice showed reduced cellularity, and immunophenotypic analysis demonstrated a block in differentiation at the double-negative 1 stage. With progression of disease, approximately 50% of mice acquired Notch1 mutations within the PEST domain. Of note, primary lymphoblasts were hypersensitive to γ-secretase inhibitor treatment, which is known to impair Notch signaling. This inhibition was Notch-specific as assessed by down-regulation of Notch1 target genes and intracellular cleaved Notch. We also observed that the oncogenic K-Ras-induced T-cell disease was responsive to rapamycin and inhibitors of the RAS/MAPK pathway. These data indicate that patients with T-cell leukemia with K-Ras mutations may benefit from therapies that target the NOTCH pathway alone or in combination with inhibition of the PI3K/AKT/MTOR and RAS/MAPK pathways. PMID:18663146

  6. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.

    PubMed

    Okada, Masahiro; Kanamori, Mitsuhiro; Someya, Kazue; Nakatsukasa, Hiroko; Yoshimura, Akihiko

    2017-01-01

    Epigenome editing is expected to manipulate transcription and cell fates and to elucidate the gene expression mechanisms in various cell types. For functional epigenome editing, assessing the chromatin context-dependent activity of artificial epigenetic modifier is required. In this study, we applied clustered regularly interspaced short palindromic repeats (CRISPR)-dCas9-based epigenome editing to mouse primary T cells, focusing on the Forkhead box P3 (Foxp3) gene locus, a master transcription factor of regulatory T cells (Tregs). The Foxp3 gene locus is regulated by combinatorial epigenetic modifications, which determine the Foxp3 expression. Foxp3 expression is unstable in transforming growth factor beta (TGF-β)-induced Tregs (iTregs), while stable in thymus-derived Tregs (tTregs). To stabilize Foxp3 expression in iTregs, we introduced dCas9-TET1CD (dCas9 fused to the catalytic domain (CD) of ten-eleven translocation dioxygenase 1 (TET1), methylcytosine dioxygenase) and dCas9-p300CD (dCas9 fused to the CD of p300, histone acetyltransferase) with guide RNAs (gRNAs) targeted to the Foxp3 gene locus. Although dCas9-TET1CD induced partial demethylation in enhancer region called conserved non-coding DNA sequences 2 (CNS2), robust Foxp3 stabilization was not observed. In contrast, dCas9-p300CD targeted to the promoter locus partly maintained Foxp3 transcription in cultured and primary T cells even under inflammatory conditions in vitro. Furthermore, dCas9-p300CD promoted expression of Treg signature genes and enhanced suppression activity in vitro. Our results showed that artificial epigenome editing modified the epigenetic status and gene expression of the targeted loci, and engineered cellular functions in conjunction with endogenous epigenetic modification, suggesting effective usage of these technologies, which help elucidate the relationship between chromatin states and gene expression.

  7. Constitutively Activated STAT3 Frequently Coexpresses with Epidermal Growth Factor Receptor in High-Grade Gliomas and Targeting STAT3 Sensitizes Them to Iressa and Alkylators

    PubMed Central

    Lo, Hui-Wen; Cao, Xinyu; Zhu, Hu; Ali-Osman, Francis

    2009-01-01

    Purpose The goals of this study are to elucidate the relationship of the oncogenic transcription factor signal transducer and activator of transcription 3(STAT3) with glioma aggressiveness and to understand the role of high STAT3 activity in the resistance of malignant gliomas and medulloblastomas to chemotherapy. Experimental Design Immunohistochemical staining and biochemical methods were used to examine the extent of STAT3 activation and EGFR expression in primary specimens and cell lines, respectively. Cellular response to drug treatments was determined using cell cytotoxicity and clonogenic growth assays. Results We found STAT3 to be constitutively activated in 60% of primary high-grade/malignant gliomas and the extent of activation correlated positively with glioma grade. High levels of activated/phosphorylated STAT3 were also present in cultured human malignant glioma and medulloblastoma cells. Three STAT3-activating kinases, Janus-activated kinase 2 (JAK2), EGFR, and EGFRvIII, contributed to STAT3 activation. An inhibitor toJAK2/STAT3, JSI-124, significantly reduced expression of STAT3 target genes, suppressed cancer cell growth, and induced apoptosis. Furthermore, we found that STAT3 constitutive activation coexisted with EGFR expression in 27.2% of primary high-grade/malignant gliomas and such coexpression correlated positively with glioma grade. Combination of an anti-EGFR agent Iressa and a JAK2/STAT3 inhibitor synergistically suppressed STAT3 activation and potently killed glioblastoma cell lines that expressed EGFR or EGFRvIII. JSI-124 also sensitized malignant glioma and medulloblastoma cells to temozolomide, 1,3-bis(2-chloroethyl)-1-nitrosourea, and cisplatin in which a synergism existed between JSI-124 and cisplatin. Conclusion STAT3 constitutive activation, alone and in concurrence with EGFR expression, plays an important role in high-grade/malignant gliomas and targeting STAT3/JAK2 sensitizes these tumors to anti-EGFR and alkylating agents. PMID:18829483

  8. R-ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis

    PubMed Central

    Guo, Yuna; Kenney, Shelby Ray; Muller, Carolyn Y.; Adams, Sarah; Rutledge, Teresa; Romero, Elsa; Murray-Krezan, Cristina; Prekeris, Rytis; Sklar, Larry A.; Hudson, Laurie G.; Wandinger-Ness, Angela

    2015-01-01

    Cdc42 (cell division control protein 42) and Rac1 (Ras-related C3 botulinum toxin substrate 1) are attractive therapeutic targets in ovarian cancer based on established importance in tumor cell migration, adhesion and invasion. Despite a predicted benefit, targeting GTPases has not yet been translated to clinical practice. We previously established that Cdc42 and constitutively active Rac1b are overexpressed in primary ovarian tumor tissues. Through high throughput screening and computational shape homology approaches we identified R-ketorolac as a Cdc42 and Rac1 inhibitor; distinct from the anti-inflammatory, cyclooxygenase inhibitory activity of S-ketorolac. In the present study, we establish R-ketorolac as an allosteric inhibitor of Cdc42 and Rac1. Cell-based assays validate R-ketorolac activity against Cdc42 and Rac1. Studies on immortalized human ovarian adenocarcinoma cells (SKOV3ip), and primary, patient-derived ovarian cancer cells show R-ketorolac is a robust inhibitor of growth factor or serum dependent Cdc42 and Rac1 activation with a potency and cellular efficacy similar to small molecule inhibitors of Cdc42 (CID2950007/ML141) and Rac1 (NSC23766). Furthermore, GTPase inhibition by R-ketorolac reduces downstream p21-activated kinases (PAK1/PAK2) effector activation by >80%. Multiple assays of cell behavior using SKOV3ip and primary patient-derived ovarian cancer cells show that R-ketorolac significantly inhibits cell adhesion, migration and invasion. In sum, we provide evidence for R-ketorolac as direct inhibitor of Cdc42 and Rac1 that is capable of modulating downstream GTPase-dependent, physiological responses, which are critical to tumor metastasis. Our findings demonstrate the selective inhibition of Cdc42 and Rac1 GTPases by an FDA approved drug-racemic ketorolac that can be used in humans. PMID:26206334

  9. R-Ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis.

    PubMed

    Guo, Yuna; Kenney, S Ray; Muller, Carolyn Y; Adams, Sarah; Rutledge, Teresa; Romero, Elsa; Murray-Krezan, Cristina; Prekeris, Rytis; Sklar, Larry A; Hudson, Laurie G; Wandinger-Ness, Angela

    2015-10-01

    Cdc42 (cell division control protein 42) and Rac1 (Ras-related C3 botulinum toxin substrate 1) are attractive therapeutic targets in ovarian cancer based on established importance in tumor cell migration, adhesion, and invasion. Despite a predicted benefit, targeting GTPases has not yet been translated to clinical practice. We previously established that Cdc42 and constitutively active Rac1b are overexpressed in primary ovarian tumor tissues. Through high-throughput screening and computational shape homology approaches, we identified R-ketorolac as a Cdc42 and Rac1 inhibitor, distinct from the anti-inflammatory, cyclooxygenase inhibitory activity of S-ketorolac. In the present study, we establish R-ketorolac as an allosteric inhibitor of Cdc42 and Rac1. Cell-based assays validate R-ketorolac activity against Cdc42 and Rac1. Studies on immortalized human ovarian adenocarcinoma cells (SKOV3ip) and primary patient-derived ovarian cancer cells show that R-ketorolac is a robust inhibitor of growth factor or serum-dependent Cdc42 and Rac1 activation with a potency and cellular efficacy similar to small-molecule inhibitors of Cdc42 (CID2950007/ML141) and Rac1 (NSC23766). Furthermore, GTPase inhibition by R-ketorolac reduces downstream p21-activated kinases (PAK1/PAK2) effector activation by >80%. Multiple assays of cell behavior using SKOV3ip and primary patient-derived ovarian cancer cells show that R-ketorolac significantly inhibits cell adhesion, migration, and invasion. In summary, we provide evidence for R-ketorolac as a direct inhibitor of Cdc42 and Rac1 that is capable of modulating downstream GTPase-dependent, physiologic responses, which are critical to tumor metastasis. Our findings demonstrate the selective inhibition of Cdc42 and Rac1 GTPases by an FDA-approved drug, racemic ketorolac, that can be used in humans. ©2015 American Association for Cancer Research.

  10. Pericyte-targeting drug delivery and tissue engineering.

    PubMed

    Kang, Eunah; Shin, Jong Wook

    2016-01-01

    Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes.

  11. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the presentmore » study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.« less

  12. Reduced background autofluorescence for cell imaging using nanodiamonds and lanthanide chelates.

    PubMed

    Cordina, Nicole M; Sayyadi, Nima; Parker, Lindsay M; Everest-Dass, Arun; Brown, Louise J; Packer, Nicolle H

    2018-03-14

    Bio-imaging is a key technique in tracking and monitoring important biological processes and fundamental biomolecular interactions, however the interference of background autofluorescence with targeted fluorophores is problematic for many bio-imaging applications. This study reports on two novel methods for reducing interference with cellular autofluorescence for bio-imaging. The first method uses fluorescent nanodiamonds (FNDs), containing nitrogen vacancy centers. FNDs emit at near-infrared wavelengths typically higher than most cellular autofluorescence; and when appropriately functionalized, can be used for background-free imaging of targeted biomolecules. The second method uses europium-chelating tags with long fluorescence lifetimes. These europium-chelating tags enhance background-free imaging due to the short fluorescent lifetimes of cellular autofluorescence. In this study, we used both methods to target E-selectin, a transmembrane glycoprotein that is activated by inflammation, to demonstrate background-free fluorescent staining in fixed endothelial cells. Our findings indicate that both FND and Europium based staining can improve fluorescent bio-imaging capabilities by reducing competition with cellular autofluorescence. 30 nm nanodiamonds coated with the E-selectin antibody was found to enable the most sensitive detective of E-selectin in inflamed cells, with a 40-fold increase in intensity detected.

  13. Deep Sequencing Reveals Direct Targets of Gammaherpesvirus-Induced mRNA Decay and Suggests That Multiple Mechanisms Govern Cellular Transcript Escape

    PubMed Central

    Clyde, Karen; Glaunsinger, Britt A.

    2011-01-01

    One characteristic of lytic infection with gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and murine herpesvirus 68 (MHV68), is the dramatic suppression of cellular gene expression in a process known as host shutoff. The alkaline exonuclease proteins (KSHV SOX, MHV-68 muSOX and EBV BGLF5) have been shown to induce shutoff by destabilizing cellular mRNAs. Here we extend previous analyses of cellular mRNA abundance during lytic infection to characterize the effects of SOX and muSOX, in the absence of other viral genes, utilizing deep sequencing technology (RNA-seq). Consistent with previous observations during lytic infection, the majority of transcripts are downregulated in cells expressing either SOX or muSOX, with muSOX acting as a more potent shutoff factor than SOX. Moreover, most cellular messages fall into the same expression class in both SOX- and muSOX-expressing cells, indicating that both factors target similar pools of mRNAs. More abundant mRNAs are more efficiently downregulated, suggesting a concentration effect in transcript targeting. However, even among highly expressed genes there are mRNAs that escape host shutoff. Further characterization of select escapees reveals multiple mechanisms by which cellular genes can evade downregulation. While some mRNAs are directly refractory to SOX, the steady state levels of others remain unchanged, presumably as a consequence of downstream effects on mRNA biogenesis. Collectively, these studies lay the framework for dissecting the mechanisms underlying the susceptibility of mRNA to destruction during lytic gammaherpesvirus infection. PMID:21573023

  14. Plant-Derived Polyphenols in Human Health: Biological Activity, Metabolites and Putative Molecular Targets.

    PubMed

    Olivares-Vicente, Marilo; Barrajon-Catalan, Enrique; Herranz-Lopez, Maria; Segura-Carretero, Antonio; Joven, Jorge; Encinar, Jose Antonio; Micol, Vicente

    2018-01-01

    Hibiscus sabdariffa, Lippia citriodora, Rosmarinus officinalis and Olea europaea, are rich in bioactive compounds that represent most of the phenolic compounds' families and have exhibited potential benefits in human health. These plants have been used in folk medicine for their potential therapeutic properties in human chronic diseases. Recent evidence leads to postulate that polyphenols may account for such effects. Nevertheless, the compounds or metabolites that are responsible for reaching the molecular targets are unknown. data based on studies directly using complex extracts on cellular models, without considering metabolic aspects, have limited applicability. In contrast, studies exploring the absorption process, metabolites in the blood circulation and tissues have become essential to identify the intracellular final effectors that are responsible for extracts bioactivity. Once the cellular metabolites are identified using high-resolution mass spectrometry, docking techniques suppose a unique tool for virtually screening a large number of compounds on selected targets in order to elucidate their potential mechanisms. we provide an updated overview of the in vitro and in vivo studies on the toxicity, absorption, permeability, pharmacokinetics and cellular metabolism of bioactive compounds derived from the abovementioned plants to identify the potential compounds that are responsible for the observed health effects. we propose the use of targeted metabolomics followed by in silico studies to virtually screen identified metabolites on selected protein targets, in combination with the use of the candidate metabolites in cellular models, as the methods of choice for elucidating the molecular mechanisms of these compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Mechanism-based Proteomic Screening Identifies Targets of Thioredoxin-like Proteins*

    PubMed Central

    Nakao, Lia S.; Everley, Robert A.; Marino, Stefano M.; Lo, Sze M.; de Souza, Luiz E.; Gygi, Steven P.; Gladyshev, Vadim N.

    2015-01-01

    Thioredoxin (Trx)-fold proteins are protagonists of numerous cellular pathways that are subject to thiol-based redox control. The best characterized regulator of thiols in proteins is Trx1 itself, which together with thioredoxin reductase 1 (TR1) and peroxiredoxins (Prxs) comprises a key redox regulatory system in mammalian cells. However, there are numerous other Trx-like proteins, whose functions and redox interactors are unknown. It is also unclear if the principles of Trx1-based redox control apply to these proteins. Here, we employed a proteomic strategy to four Trx-like proteins containing CXXC motifs, namely Trx1, Rdx12, Trx-like protein 1 (Txnl1) and nucleoredoxin 1 (Nrx1), whose cellular targets were trapped in vivo using mutant Trx-like proteins, under conditions of low endogenous expression of these proteins. Prxs were detected as key redox targets of Trx1, but this approach also supported the detection of TR1, which is the Trx1 reductant, as well as mitochondrial intermembrane proteins AIF and Mia40. In addition, glutathione peroxidase 4 was found to be a Rdx12 redox target. In contrast, no redox targets of Txnl1 and Nrx1 could be detected, suggesting that their CXXC motifs do not engage in mixed disulfides with cellular proteins. For some Trx-like proteins, the method allowed distinguishing redox and non-redox interactions. Parallel, comparative analyses of multiple thiol oxidoreductases revealed differences in the functions of their CXXC motifs, providing important insights into thiol-based redox control of cellular processes. PMID:25561728

  16. Identification of broad-spectrum antiviral compounds and assessment of the druggability of their target for efficacy against respiratory syncytial virus (RSV)

    PubMed Central

    Bonavia, Aurelio; Franti, Michael; Pusateri Keaney, Erin; Kuhen, Kelli; Seepersaud, Mohindra; Radetich, Branko; Shao, Jian; Honda, Ayako; Dewhurst, Janetta; Balabanis, Kara; Monroe, James; Wolff, Karen; Osborne, Colin; Lanieri, Leanne; Hoffmaster, Keith; Amin, Jakal; Markovits, Judit; Broome, Michelle; Skuba, Elizabeth; Cornella-Taracido, Ivan; Joberty, Gerard; Bouwmeester, Tewis; Hamann, Lawrence; Tallarico, John A.; Tommasi, Ruben; Compton, Teresa; Bushell, Simon M.

    2011-01-01

    The search for novel therapeutic interventions for viral disease is a challenging pursuit, hallmarked by the paucity of antiviral agents currently prescribed. Targeting of viral proteins has the inextricable challenge of rise of resistance. Safe and effective vaccines are not possible for many viral pathogens. New approaches are required to address the unmet medical need in this area. We undertook a cell-based high-throughput screen to identify leads for development of drugs to treat respiratory syncytial virus (RSV), a serious pediatric pathogen. We identified compounds that are potent (nanomolar) inhibitors of RSV in vitro in HEp-2 cells and in primary human bronchial epithelial cells and were shown to act postentry. Interestingly, two scaffolds exhibited broad-spectrum activity among multiple RNA viruses. Using the chemical matter as a probe, we identified the targets and identified a common cellular pathway: the de novo pyrimidine biosynthesis pathway. Both targets were validated in vitro and showed no significant cell cytotoxicity except for activity against proliferative B- and T-type lymphoid cells. Corollary to this finding was to understand the consequences of inhibition of the target to the host. An in vivo assessment for antiviral efficacy failed to demonstrate reduced viral load, but revealed microscopic changes and a trend toward reduced pyrimidine pools and findings in histopathology. We present here a discovery program that includes screen, target identification, validation, and druggability that can be broadly applied to identify and interrogate other host factors for antiviral effect starting from chemical matter of unknown target/mechanism of action. PMID:21502533

  17. Identification of broad-spectrum antiviral compounds and assessment of the druggability of their target for efficacy against respiratory syncytial virus (RSV).

    PubMed

    Bonavia, Aurelio; Franti, Michael; Pusateri Keaney, Erin; Kuhen, Kelli; Seepersaud, Mohindra; Radetich, Branko; Shao, Jian; Honda, Ayako; Dewhurst, Janetta; Balabanis, Kara; Monroe, James; Wolff, Karen; Osborne, Colin; Lanieri, Leanne; Hoffmaster, Keith; Amin, Jakal; Markovits, Judit; Broome, Michelle; Skuba, Elizabeth; Cornella-Taracido, Ivan; Joberty, Gerard; Bouwmeester, Tewis; Hamann, Lawrence; Tallarico, John A; Tommasi, Ruben; Compton, Teresa; Bushell, Simon M

    2011-04-26

    The search for novel therapeutic interventions for viral disease is a challenging pursuit, hallmarked by the paucity of antiviral agents currently prescribed. Targeting of viral proteins has the inextricable challenge of rise of resistance. Safe and effective vaccines are not possible for many viral pathogens. New approaches are required to address the unmet medical need in this area. We undertook a cell-based high-throughput screen to identify leads for development of drugs to treat respiratory syncytial virus (RSV), a serious pediatric pathogen. We identified compounds that are potent (nanomolar) inhibitors of RSV in vitro in HEp-2 cells and in primary human bronchial epithelial cells and were shown to act postentry. Interestingly, two scaffolds exhibited broad-spectrum activity among multiple RNA viruses. Using the chemical matter as a probe, we identified the targets and identified a common cellular pathway: the de novo pyrimidine biosynthesis pathway. Both targets were validated in vitro and showed no significant cell cytotoxicity except for activity against proliferative B- and T-type lymphoid cells. Corollary to this finding was to understand the consequences of inhibition of the target to the host. An in vivo assessment for antiviral efficacy failed to demonstrate reduced viral load, but revealed microscopic changes and a trend toward reduced pyrimidine pools and findings in histopathology. We present here a discovery program that includes screen, target identification, validation, and druggability that can be broadly applied to identify and interrogate other host factors for antiviral effect starting from chemical matter of unknown target/mechanism of action.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Togi, Sumihito; Nakasuji, Misa; Muromoto, Ryuta

    Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA), which interacts with cellular proteins, plays a central role in modification of viral and/or cellular gene expression. Here, we show that LANA associates with glucocorticoid receptor (GR), and that LANA enhances the transcriptional activity of GR. Co-immunoprecipitation revealed a physical interaction between LANA and GR in transiently transfected 293T and HeLa cells. In human B-lymphoma cells, LANA overexpression enhanced GR activity and cell growth suppression following glucocorticoid stimulation. Furthermore, confocal microscopy showed that activated GR was bound to LANA and accumulated in the nucleus, leading to an increase in binding of activatedmore » GR to the glucocorticoid response element of target genes. Taken together, KSHV-derived LANA acts as a transcriptional co-activator of GR. Our results might suggest a careful use of glucocorticoids in the treatment of patients with KSHV-related malignancies such as Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. - Highlights: • KSHV-LANA enhances the transcriptional activity of GR in 293T and HeLa cells. • KSHV-LANA physically associates with GR. • KSHV-LANA enhances GR activation and cell growth suppression in human B-lymphocytes. • KSHV-LANA influences the nuclear retention and DNA binding activity of GR.« less

  19. Perinatal Asphyxia and Brain Development: Mitochondrial Damage Without Anatomical or Cellular Losses.

    PubMed

    Lima, Jean Pierre Mendes; Rayêe, Danielle; Silva-Rodrigues, Thaia; Pereira, Paula Ribeiro Paes; Mendonca, Ana Paula Miranda; Rodrigues-Ferreira, Clara; Szczupak, Diego; Fonseca, Anna; Oliveira, Marcus F; Lima, Flavia Regina Souza; Lent, Roberto; Galina, Antonio; Uziel, Daniela

    2018-03-26

    Perinatal asphyxia remains a significant cause of neonatal mortality and is associated with long-term neurodegenerative disorders. In the present study, we evaluated cellular and subcellular damages to brain development in a model of mild perinatal asphyxia. Survival rate in the experimental group was 67%. One hour after the insult, intraperitoneally injected Evans blue could be detected in the fetuses' brains, indicating disruption of the blood-brain barrier. Although brain mass and absolute cell numbers (neurons and non-neurons) were not reduced after perinatal asphyxia immediately and in late brain development, subcellular alterations were detected. Cortical oxygen consumption increased immediately after asphyxia, and remained high up to 7 days, returning to normal levels after 14 days. We observed an increased resistance to mitochondrial membrane permeability transition, and calcium buffering capacity in asphyxiated animals from birth to 14 days after the insult. In contrast to ex vivo data, mitochondrial oxygen consumption in primary cell cultures of neurons and astrocytes was not altered after 1% hypoxia. Taken together, our results demonstrate that although newborns were viable and apparently healthy, brain development is subcellularly altered by perinatal asphyxia. Our findings place the neonate brain mitochondria as a potential target for therapeutic protective interventions.

  20. Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review).

    PubMed

    Bryukhovetskiy, Igor; Ponomarenko, Arina; Lyakhova, Irina; Zaitsev, Sergey; Zayats, Yulia; Korneyko, Maria; Eliseikina, Marina; Mischenko, Polina; Shevchenko, Valerie; Shanker Sharma, Hari; Sharma, Aruna; Khotimchenko, Yuri

    2018-08-01

    Glioblastoma multiforme (GBM) is one of the most aggressive brain tumors. GBM represents >50% of primary tumors of the nervous system and ~20% of intracranial neoplasms. Standard treatment involves surgery, radiation and chemotherapy. However, the prognosis of GBM is usually poor, with a median survival of 15 months. Resistance of GBM to treatment can be explained by the presence of cancer stem cells (CSCs) among the GBM cell population. At present, there are no effective therapeutic strategies for the elimination of CSCs. The present review examined the nature of human GBM therapeutic resistance and attempted to systematize and put forward novel approaches for a personalized therapy of GBM that not only destroys tumor tissue, but also regulates cellular signaling and the morphogenetic properties of CSCs. The CSCs are considered to be an informationally accessible living system, and the CSC proteome should be used as a target for therapy directed at suppressing clonal selection mechanisms and CSC generation, destroying CSC hierarchy, and disrupting the interaction of CSCs with their microenvironment and extracellular matrix. These objectives can be achieved through the use of biomedical cellular products.

  1. Metals and Alzheimer’s Disease: How Far Have We Come in the Clinic?

    PubMed Central

    Adlard, Paul A.; Bush, Ashley I.

    2018-01-01

    It is estimated that by the year 2050 there will be more than 1.5 billion people globally over the age of 65 years. Aging is associated with changes to a number of different cellular processes which are driven by a variety of factors that contribute to the characteristic decline in function that is seen across multiple physiological domains/tissues in the elderly (including the brain). Importantly, aging is also the primary risk factor for the development of neurodegenerative disorders such as Alzheimer’s disease. As such, there is an urgent need to provide a greater understanding of both the pathogenesis and treatment of these devastating neurodegenerative disorders. One of the key cellular processes that becomes dysregulated with age and participates both directly and indirectly in age-related dysfunction, is metal homeostasis and the neurochemistry of metalloproteins, the basic science of which has been extensively reviewed in the past. In this review, we will focus on the human clinical intervention trials that have been conducted over approximately the last four decades that have attempted to establish the efficacy of targeting metal ions in the treatment of AD. PMID:29562528

  2. Quantitative modeling of clinical, cellular, and extracellular matrix variables suggest prognostic indicators in cancer: a model in neuroblastoma.

    PubMed

    Tadeo, Irene; Piqueras, Marta; Montaner, David; Villamón, Eva; Berbegall, Ana P; Cañete, Adela; Navarro, Samuel; Noguera, Rosa

    2014-02-01

    Risk classification and treatment stratification for cancer patients is restricted by our incomplete picture of the complex and unknown interactions between the patient's organism and tumor tissues (transformed cells supported by tumor stroma). Moreover, all clinical factors and laboratory studies used to indicate treatment effectiveness and outcomes are by their nature a simplification of the biological system of cancer, and cannot yet incorporate all possible prognostic indicators. A multiparametric analysis on 184 tumor cylinders was performed. To highlight the benefit of integrating digitized medical imaging into this field, we present the results of computational studies carried out on quantitative measurements, taken from stromal and cancer cells and various extracellular matrix fibers interpenetrated by glycosaminoglycans, and eight current approaches to risk stratification systems in patients with primary and nonprimary neuroblastoma. New tumor tissue indicators from both fields, the cellular and the extracellular elements, emerge as reliable prognostic markers for risk stratification and could be used as molecular targets of specific therapies. The key to dealing with personalized therapy lies in the mathematical modeling. The use of bioinformatics in patient-tumor-microenvironment data management allows a predictive model in neuroblastoma.

  3. Dicarbonyls stimulate cellular protection systems in primary rat hepatocytes and show anti-inflammatory properties.

    PubMed

    Buetler, Timo M; Latado, Hélia; Baumeyer, Alexandra; Delatour, Thierry

    2008-04-01

    Advanced glycation endproducts (AGEs) and their precursor dicarbonyls are generally perceived as having adverse health effects. They are also considered to be initiators and promoters of disease and aging. However, proof for a causal relationship is lacking. On the other hand, it is known that AGEs and melanoidins possess beneficial properties, such as antioxidant and metal-chelating activities. Furthermore, some AGEs may stimulate the cellular detoxification system, generally known as the phase II drug metabolizing system. We show here that several reactive dicarbonyl intermediates have the capability to stimulate the cellular phase II detoxification systems in both a reporter cell line and primary rat hepatocytes. In addition, we demonstrate that dicarbonyls can attenuate the inflammatory signaling induced by tumor necrosis factor-alpha in a reporter cell system.

  4. CPTAC Collaborates with Molecular & Cellular Proteomics to Address Reproducibility in Targeted Assay Development | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The journal Molecular & Cellular Proteomics (MCP), in collaboration with the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI), part of the National Institutes of Health, announce new guidelines and requirements for papers describing the development and application of targeted mass spectrometry measurements of peptides, modified peptides and proteins (Mol Cell Proteomics 2017; PMID: 28183812).  NCI’s participation is part of NIH’s overall effort to address the r

  5. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0420 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...Autosomal Dominant Polycystic Kidney Disease 5b. GRANT NUMBER W81XWH-15-1-0420 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kenneth R. Hallows, MD...polycystic kidney disease (ADPKD) is a common inherited disorder where patients, over the course of decades, develop large fluid filled cysts that

  6. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0419 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...Polycystic Kidney Disease 5b. GRANT NUMBER W81XWH-15-1-0419 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Michael J. Caplan, MD, PhD Kenneth...dominant polycystic kidney disease (ADPKD) is a common inherited disorder where patients, over the course of decades, develop large fluid filled

  7. Xenophagic pathways and their bacterial subversion in cellular self-defense - παντα ρει - everything is in flux.

    PubMed

    Radomski, Nadine; Rebbig, Annica; Leonhardt, Ralf M; Knittler, Michael R

    2017-11-02

    Autophagy is an evolutionarily ancient and highly conserved eukaryotic mechanism that targets cytoplasmic material for degradation. Autophagic flux involves the formation of autophagosomes and their degradation by lysosomes. The process plays a crucial role in maintaining cellular homeostasis and responds to various environmental conditions. While autophagy had previously been thought to be a non-selective process, it is now clear that it can also selectively target cellular organelles, such as mitochondria (referred to as mitophagy) and/or invading pathogens (referred to as xenophagy). Selective autophagy is characterized by specific substrate recognition and requires distinct cellular adaptor proteins. Here we review xenophagic mechanisms involved in the recognition and autolysosomal or autophagolysosomal degradation of different intracellular bacteria. In this context, we also discuss a recently discovered cellular self-defense pathway, termed mito-xenophagy, which occurs during bacterial infection of dendritic cells and depends on a TNF-α-mediated metabolic switch from oxidative phosphorylation to glycolysis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Clinically translatable nanotheranostic platforms for peripheral nerve regeneration: design with outcome in mind

    NASA Astrophysics Data System (ADS)

    Janjic, Jelena M.; Gorantla, Vijay S.

    2018-02-01

    Neuroinflammation is a dynamic immune phenomenon that changes in severity with time after neurotrauma and has a profound impact on neuroregeneration, tissue healing and neuropathic pain, which is a common consequence of peripheral nerve injury (PNI). Macrophages are key cellular mediators of neuroinflammation. Macrophage-targeted nanotherapies, such as complex (perfluorocarbon/hydrocarbon) multimodal nanoemulsions (NEs) provide highly specific imaging signatures of neuroinflammation and hence indirect surrogate metrics of regeneration. We present a novel strategy where these NEs incorporating multiple imaging modalities and biosensors are delivered locally to directly target key cellular players of neuroregeneration. Two representative formulations of a nanotheranostic platform for local delivery of cell targeted NEs are presented: 1) A dual (macrophage and neuronal) targeted nanoparticle laden hydrogel for synergistic modulation of neuroinflammation and analgesia following PNI; and 2) neurotherapeutic loaded nanoparticles with extended release profile for sustained support of neuroregeneration. Each platform is capable of dual imaging payloads (NIRF, MRI and/or PET) and/or cell specific targeting moieties for controlled drug release. In vitro and pilot in vivo results will be presented. Theranostic nanosystem based platforms offer a unique opportunity to sequentially monitor cellular and molecular events at the site of neuronal injury, enabling dynamic, in-vivo mechanistic insights rather than static, ex-vivo histopathologic evaluation. Given their targeted capabilities, these platforms can help achieve personalized treatments that are customized and optimized for patients with PNI.

  9. Evidence supporting a role for TopBP1 and Brd4 in the initiation but not continuation of human papillomavirus 16 E1/E2-mediated DNA replication.

    PubMed

    Gauson, Elaine J; Donaldson, Mary M; Dornan, Edward S; Wang, Xu; Bristol, Molly; Bodily, Jason M; Morgan, Iain M

    2015-05-01

    To replicate the double-stranded human papillomavirus 16 (HPV16) DNA genome, viral proteins E1 and E2 associate with the viral origin of replication, and E2 can also regulate transcription from adjacent promoters. E2 interacts with host proteins in order to regulate both transcription and replication; TopBP1 and Brd4 are cellular proteins that interact with HPV16 E2. Previous work with E2 mutants demonstrated the Brd4 requirement for the transactivation properties of E2, while TopBP1 is required for DNA replication induced by E2 from the viral origin of replication in association with E1. More-recent studies have also implicated Brd4 in the regulation of DNA replication by E2 and E1. Here, we demonstrate that both TopBP1 and Brd4 are present at the viral origin of replication and that interaction with E2 is required for optimal initiation of DNA replication. Both cellular proteins are present in E1-E2-containing nuclear foci, and the viral origin of replication is required for the efficient formation of these foci. Short hairpin RNA (shRNA) against either TopBP1 or Brd4 destroys the E1-E2 nuclear bodies but has no effect on E1-E2-mediated levels of DNA replication. An E2 mutation in the context of the complete HPV16 genome that compromises Brd4 interaction fails to efficiently establish episomes in primary human keratinocytes. Overall, the results suggest that interactions between TopBP1 and E2 and between Brd4 and E2 are required to correctly initiate DNA replication but are not required for continuing DNA replication, which may be mediated by alternative processes such as rolling circle amplification and/or homologous recombination. Human papillomavirus 16 (HPV16) is causative in many human cancers, including cervical and head and neck cancers, and is responsible for the annual deaths of hundreds of thousands of people worldwide. The current vaccine will save lives in future generations, but antivirals targeting HPV16 are required for the alleviation of disease burden on the current, and future, generations. Targeting viral DNA replication that is mediated by two viral proteins, E1 and E2, in association with cellular proteins such as TopBP1 and Brd4 would have therapeutic benefits. This report suggests a role for these cellular proteins in the initiation of viral DNA replication by HPV16 E1-E2 but not for continuing replication. This is important if viral replication is to be effectively targeted; we need to understand the viral and cellular proteins required at each phase of viral DNA replication so that it can be effectively disrupted. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Evidence Supporting a Role for TopBP1 and Brd4 in the Initiation but Not Continuation of Human Papillomavirus 16 E1/E2-Mediated DNA Replication

    PubMed Central

    Gauson, Elaine J.; Donaldson, Mary M.; Dornan, Edward S.; Wang, Xu; Bristol, Molly; Bodily, Jason M.

    2015-01-01

    ABSTRACT To replicate the double-stranded human papillomavirus 16 (HPV16) DNA genome, viral proteins E1 and E2 associate with the viral origin of replication, and E2 can also regulate transcription from adjacent promoters. E2 interacts with host proteins in order to regulate both transcription and replication; TopBP1 and Brd4 are cellular proteins that interact with HPV16 E2. Previous work with E2 mutants demonstrated the Brd4 requirement for the transactivation properties of E2, while TopBP1 is required for DNA replication induced by E2 from the viral origin of replication in association with E1. More-recent studies have also implicated Brd4 in the regulation of DNA replication by E2 and E1. Here, we demonstrate that both TopBP1 and Brd4 are present at the viral origin of replication and that interaction with E2 is required for optimal initiation of DNA replication. Both cellular proteins are present in E1-E2-containing nuclear foci, and the viral origin of replication is required for the efficient formation of these foci. Short hairpin RNA (shRNA) against either TopBP1 or Brd4 destroys the E1-E2 nuclear bodies but has no effect on E1-E2-mediated levels of DNA replication. An E2 mutation in the context of the complete HPV16 genome that compromises Brd4 interaction fails to efficiently establish episomes in primary human keratinocytes. Overall, the results suggest that interactions between TopBP1 and E2 and between Brd4 and E2 are required to correctly initiate DNA replication but are not required for continuing DNA replication, which may be mediated by alternative processes such as rolling circle amplification and/or homologous recombination. IMPORTANCE Human papillomavirus 16 (HPV16) is causative in many human cancers, including cervical and head and neck cancers, and is responsible for the annual deaths of hundreds of thousands of people worldwide. The current vaccine will save lives in future generations, but antivirals targeting HPV16 are required for the alleviation of disease burden on the current, and future, generations. Targeting viral DNA replication that is mediated by two viral proteins, E1 and E2, in association with cellular proteins such as TopBP1 and Brd4 would have therapeutic benefits. This report suggests a role for these cellular proteins in the initiation of viral DNA replication by HPV16 E1-E2 but not for continuing replication. This is important if viral replication is to be effectively targeted; we need to understand the viral and cellular proteins required at each phase of viral DNA replication so that it can be effectively disrupted. PMID:25694599

  11. Discovery and Development of Kelch-like ECH-Associated Protein 1. Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1:NRF2) Protein-Protein Interaction Inhibitors: Achievements, Challenges, and Future Directions.

    PubMed

    Jiang, Zheng-Yu; Lu, Meng-Chen; You, Qi-Dong

    2016-12-22

    The transcription factor Nrf2 is the primary regulator of the cellular defense system, and enhancing Nrf2 activity has potential usages in various diseases, especially chronic age-related and inflammatory diseases. Recently, directly targeting Keap1-Nrf2 protein-protein interaction (PPI) has been an emerging strategy to selectively and effectively activate Nrf2. This Perspective summarizes the progress in the discovery and development of Keap1-Nrf2 PPI inhibitors, including the Keap1-Nrf2 regulatory mechanisms, biochemical techniques for inhibitor identification, and approaches for identifying peptide and small-molecule inhibitors, as well as discusses privileged structures and future directions for further development of Keap1-Nrf2 PPI inhibitors.

  12. Modern approach to metabolic rehabilitation of cancer patients: biguanides (phenformin and metformin) and beyond.

    PubMed

    Berstein, Lev M

    2010-08-01

    Comparing the experience accumulated for more than 40 years in the Laboratory of Endocrinology of Petrov Institute of Oncology (St Petersburg, Russia) with similar approaches practiced elsewhere, evidence supports the reasonability of metabolic rehabilitation of patients suffering from breast cancer or other hormone-dependent malignancies. The primary objective of such approaches is to improve treatment results by ameliorating hormonal-metabolic disturbances, including excess body fat, glucose intolerance, insulin resistance and manifestations of endocrine-genotoxic switchings, and modify tissue and cellular targets or mechanisms related or nondirectly related to the aforementioned disturbances. The relevant measures may be categorized as pharmacological (antidiabetic biguanides exemplified with metformin being most popular but not exclusive) and nonpharmacological (rational nutrition, moderate physical activity and so forth) and used separately or in different combinations.

  13. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires

    NASA Astrophysics Data System (ADS)

    Parameswaran, Ramya; Carvalho-de-Souza, João L.; Jiang, Yuanwen; Burke, Michael J.; Zimmerman, John F.; Koehler, Kelliann; Phillips, Andrew W.; Yi, Jaeseok; Adams, Erin J.; Bezanilla, Francisco; Tian, Bozhi

    2018-02-01

    Optical methods for modulating cellular behaviour are promising for both fundamental and clinical applications. However, most available methods are either mechanically invasive, require genetic manipulation of target cells or cannot provide subcellular specificity. Here, we address all these issues by showing optical neuromodulation with free-standing coaxial p-type/intrinsic/n-type silicon nanowires. We reveal the presence of atomic gold on the nanowire surfaces, likely due to gold diffusion during the material growth. To evaluate how surface gold impacts the photoelectrochemical properties of single nanowires, we used modified quartz pipettes from a patch clamp and recorded sustained cathodic photocurrents from single nanowires. We show that these currents can elicit action potentials in primary rat dorsal root ganglion neurons through a primarily atomic gold-enhanced photoelectrochemical process.

  14. The role of antisense oligonucleotide therapy in patients with familial hypercholesterolemia: risks, benefits, and management recommendations.

    PubMed

    Agarwala, Anandita; Jones, Peter; Nambi, Vijay

    2015-01-01

    Antisense oligonucleotide therapy is a promising approach for the treatment of a broad variety of medical conditions. It functions at the cellular level by interfering with RNA function, often leading to degradation of specifically targeted abnormal gene products implicated in the disease process. Mipomersen is a novel antisense oligonucleotide directed at apolipoprotein (apoB)-100, the primary apolipoprotein associated with low-density lipoprotein cholesterol (LDL-C), which has recently been approved for the treatment of familial hypercholesterolemia. A number of clinical studies have demonstrated its efficacy in lowering LDL-C and apoB levels in patients with elevated LDL-C despite maximal medical therapy using conventional lipid-lowering agents. This review outlines the risks and benefits of therapy and provides recommendations on the use of mipomersen.

  15. Autophagy in Alcohol-Induced Multiorgan Injury: Mechanisms and Potential Therapeutic Targets

    PubMed Central

    Wang, Shaogui; Ni, Hong-Min; Huang, Heqing

    2014-01-01

    Autophagy is a genetically programmed, evolutionarily conserved intracellular degradation pathway involved in the trafficking of long-lived proteins and cellular organelles to the lysosome for degradation to maintain cellular homeostasis. Alcohol consumption leads to injury in various tissues and organs including liver, pancreas, heart, brain, and muscle. Emerging evidence suggests that autophagy is involved in alcohol-induced tissue injury. Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury in most tissues but could be detrimental in heart and muscle. This review summarizes current knowledge about the role of autophagy in alcohol-induced injury in different tissues/organs and its potential molecular mechanisms as well as possible therapeutic targets based on modulation of autophagy. PMID:25140315

  16. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy.

    PubMed

    Figueroa, Jose A; Reidy, Adair; Mirandola, Leonardo; Trotter, Kayley; Suvorava, Natallia; Figueroa, Alejandro; Konala, Venu; Aulakh, Amardeep; Littlefield, Lauren; Grizzi, Fabio; Rahman, Rakhshanda Layeequr; Jenkins, Marjorie R; Musgrove, Breeanna; Radhi, Saba; D'Cunha, Nicholas; D'Cunha, Luke N; Hermonat, Paul L; Cobos, Everardo; Chiriva-Internati, Maurizio

    2015-03-01

    Cancer immunotherapy comprises different therapeutic strategies that exploit the use of distinct components of the immune system, with the common goal of specifically targeting and eradicating neoplastic cells. These varied approaches include the use of specific monoclonal antibodies, checkpoint inhibitors, cytokines, therapeutic cancer vaccines and cellular anticancer strategies such as activated dendritic cell (DC) vaccines, tumor-infiltrating lymphocytes (TILs) and, more recently, genetically engineered T cells. Each one of these approaches has demonstrated promise, but their generalized success has been hindered by the paucity of specific tumor targets resulting in suboptimal tumor responses and unpredictable toxicities. This review will concentrate on recent advances on the use of engineered T cells for adoptive cellular immunotherapy (ACI) in cancer.

  17. Myxofibrosarcoma primary cultures: molecular and pharmacological profile

    PubMed Central

    De Vita, Alessandro; Recine, Federica; Mercatali, Laura; Miserocchi, Giacomo; Liverani, Chiara; Spadazzi, Chiara; Casadei, Roberto; Bongiovanni, Alberto; Pieri, Federica; Riva, Nada; Amadori, Dino; Ibrahim, Toni

    2017-01-01

    Background: Myxofibrosarcoma (MFS), formerly considered as a myxoid variant of malignant fibrous histiocytoma, is the most common sarcoma of the extremities in adults and is characterized by a high frequency of local recurrence. The clinical behavior of MFS is unpredictable and the efficacy of chemotherapy is still not well documented. Furthermore, given the relatively recent recognition of MFS as a distinct pathologic entity its cellular and molecular biology has still not been extensively studied in patient-derived preclinical models. We examined the molecular biology and treatment outcomes of high-grade, patient-derived MFS primary cultures. Methods: A total of three patient-derived MFS primary cultures were analyzed. We evaluated the role of CD109 expression and also looked for a correlation between transforming growth factor-beta (TGF-β) expression and sensitivity of the primary cultures to different drugs. Results: CD109 was a promising marker for the identification of more aggressive high-grade MFS and a potential therapeutic target. The results also highlighted the potential role of TGF-β in chemoresistance. Pharmacological analysis confirmed the sensitivity of the cultures to chemotherapy. The most active treatments were epirubicin alone and epirubicin in combination with ifosfamide, the latter representing the current standard of care for soft tissue sarcomas (STSs), including MFS. Conclusions: Our results provide a starting point for further research aimed at improving the management of MFS patients undergoing chemotherapy. PMID:29449896

  18. A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins

    PubMed Central

    de Wilde, Adriaan H.; Wannee, Kazimier F.; Scholte, Florine E. M.; Goeman, Jelle J.; ten Dijke, Peter; Snijder, Eric J.

    2015-01-01

    ABSTRACT To identify host factors relevant for severe acute respiratory syndrome-coronavirus (SARS-CoV) replication, we performed a small interfering RNA (siRNA) library screen targeting the human kinome. Protein kinases are key regulators of many cellular functions, and the systematic knockdown of their expression should provide a broad perspective on factors and pathways promoting or antagonizing coronavirus replication. In addition to 40 proteins that promote SARS-CoV replication, our study identified 90 factors exhibiting an antiviral effect. Pathway analysis grouped subsets of these factors in specific cellular processes, including the innate immune response and the metabolism of complex lipids, which appear to play a role in SARS-CoV infection. Several factors were selected for in-depth validation in follow-up experiments. In cells depleted for the β2 subunit of the coatomer protein complex (COPB2), the strongest proviral hit, we observed reduced SARS-CoV protein expression and a >2-log reduction in virus yield. Knockdown of the COPB2-related proteins COPB1 and Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) also suggested that COPI-coated vesicles and/or the early secretory pathway are important for SARS-CoV replication. Depletion of the antiviral double-stranded RNA-activated protein kinase (PKR) enhanced virus replication in the primary screen, and validation experiments confirmed increased SARS-CoV protein expression and virus production upon PKR depletion. In addition, cyclin-dependent kinase 6 (CDK6) was identified as a novel antiviral host factor in SARS-CoV replication. The inventory of pro- and antiviral host factors and pathways described here substantiates and expands our understanding of SARS-CoV replication and may contribute to the identification of novel targets for antiviral therapy. IMPORTANCE Replication of all viruses, including SARS-CoV, depends on and is influenced by cellular pathways. Although substantial progress has been made in dissecting the coronavirus replicative cycle, our understanding of the host factors that stimulate (proviral factors) or restrict (antiviral factors) infection remains far from complete. To study the role of host proteins in SARS-CoV infection, we set out to systematically identify kinase-regulated processes that influence virus replication. Protein kinases are key regulators in signal transduction, controlling a wide variety of cellular processes, and many of them are targets of approved drugs and other compounds. Our screen identified a variety of hits and will form the basis for more detailed follow-up studies that should contribute to a better understanding of SARS-CoV replication and coronavirus-host interactions in general. The identified factors could be interesting targets for the development of host-directed antiviral therapy to treat infections with SARS-CoV or other pathogenic coronaviruses. PMID:26041291

  19. Fine tuning cellular recognition: The function of the leucine rich repeat (LRR) trans-membrane protein, LRT, in muscle targeting to tendon cells.

    PubMed

    Gilsohn, Eli; Volk, Talila

    2010-01-01

    The formation of complex tissues during embryonic development is often accompanied by directed cellular migration towards a target tissue. Specific mutual recognition between the migrating cell and its target tissue leads to the arrest of the cell migratory behavior and subsequent contact formation between the two interacting cell types. Recent studies implicated a novel family of surface proteins containing a trans-membrane domain and single leucine-rich repeat (LRR) domain in inter-cellular recognition and the arrest of cell migration. Here, we describe the involvement of a novel LRR surface protein, LRT, in targeting migrating muscles towards their corresponding tendon cells in the Drosophila embryo. LRT is specifically expressed by the target tendon cells and is essential for arresting the migratory behavior of the muscle cells. Additional studies in Drosophila S2 cultured cells suggest that LRT forms a protein complex with the Roundabout (Robo) receptor, essential for guiding muscles towards their tendon partners. Genetic analysis supports a model in which LRT performs its activity non-autonomously through its interaction with the Robo receptors expressed on the muscle surfaces. These results suggest a novel mechanism of intercellular recognition through interactions between LRR family members and Robo receptors.

  20. Twist1 Suppresses Senescence Programs and Thereby Accelerates and Maintains Mutant Kras-Induced Lung Tumorigenesis

    PubMed Central

    Thiyagarajan, Saravanan; Das, Sandhya T.; Zabuawala, Tahera; Chen, Joy; Cho, Yoon-Jae; Luong, Richard; Tamayo, Pablo; Salih, Tarek; Aziz, Khaled; Adam, Stacey J.; Vicent, Silvestre; Nielsen, Carsten H.; Withofs, Nadia; Sweet-Cordero, Alejandro; Gambhir, Sanjiv S.; Rudin, Charles M.; Felsher, Dean W.

    2012-01-01

    KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with KrasG12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy. PMID:22654667

  1. Modification of antisense phosphodiester oligodeoxynucleotides by a 5' cholesteryl moiety increases cellular association and improves efficacy.

    PubMed

    Krieg, A M; Tonkinson, J; Matson, S; Zhao, Q; Saxon, M; Zhang, L M; Bhanja, U; Yakubov, L; Stein, C A

    1993-02-01

    Phosphodiester oligodeoxynucleotides bearing a 5' cholesteryl (chol) modification bind to low density lipoprotein (LDL), apparently by partitioning the chol-modified oligonucleotides into the lipid layer. Both HL60 cells and primary mouse spleen T and B cells incubated with fluorescently labeled chol-modified oligonucleotide showed substantially increased cellular association by flow cytometry and increased internalization by confocal microscopy compared to an identical molecule not bearing the chol group. Cellular internalization of chol-modified oligonucleotide occurred at least partially through the LDL receptor; it was increased in mouse spleen cells by cell culture in lipoprotein-deficient medium and/or lovastatin, and it was decreased by culture in high serum medium. To determine whether chol-modified oligonucleotides are more potent antisense agents, we titered antisense unmodified phosphodiester and chol-modified oligonucleotides targeted against a mouse immunosuppressive protein. Murine spleen cells cultured with 20 microM phosphodiester antisense oligonucleotides had a 2-fold increase in RNA synthesis, indicating the expected lymphocyte activation. Antisense chol-modified oligonucleotides showed an 8-fold increase in relative potency: they caused a 2-fold increase in RNA synthesis at just 2.5 microM. The increased efficacy was blocked by heparin and was further increased by cell culture in 1% (vs. 10%) fetal bovine serum, suggesting that the effect may, at least in part, be mediated via the LDL receptor. Antisense chol-modified oligonucleotides are sequence specific and have increased potency as compared to unmodified oligonucleotides.

  2. The requirement of iron transport for lymphocyte function.

    PubMed

    Lo, Bernice

    2016-01-01

    Iron is essential in multiple cellular processes and is especially critical for cellular respiration and division. A new study identified a mutation affecting the iron import receptor TfR1 as the cause of a human primary immunodeficiency, illuminating the importance of iron in immune cell function.

  3. Self-focusing therapeutic gene delivery with intelligent gene vector swarms: intra-swarm signalling through receptor transgene expression in targeted cells.

    PubMed

    Tolmachov, Oleg E

    2015-01-01

    Gene delivery in vivo that is tightly focused on the intended target cells is essential to maximize the benefits of gene therapy and to reduce unwanted side-effects. Cell surface markers are immediately available for probing by therapeutic gene vectors and are often used to direct gene transfer with these vectors to specific target cell populations. However, it is not unusual for the choice of available extra-cellular markers to be too scarce to provide a reliable definition of the desired therapeutically relevant set of target cells. Therefore, interrogation of intra-cellular determinants of cell-specificity, such as tissue-specific transcription factors, can be vital in order to provide detailed cell-guiding information to gene vector particles. An important improvement in cell-specific gene delivery can be achieved through auto-buildup in vector homing efficiency using intelligent 'self-focusing' of swarms of vector particles on target cells. Vector self-focusing was previously suggested to rely on the release of diffusible chemo-attractants after a successful target-specific hit by 'scout' vector particles. I hypothesize that intelligent self-focusing behaviour of swarms of cell-targeted therapeutic gene vectors can be accomplished without the employment of difficult-to-use diffusible chemo-attractants, instead relying on the intra-swarm signalling through cells expressing a non-diffusible extra-cellular receptor for the gene vectors. In the proposed model, cell-guiding information is gathered by the 'scout' gene vector particles, which: (1) attach to a variety of cells via a weakly binding (low affinity) receptor; (2) successfully facilitate gene transfer into these cells; (3) query intra-cellular determinants of cell-specificity with their transgene expression control elements and (4) direct the cell-specific biosynthesis of a vector-encoded strongly binding (high affinity) cell-surface receptor. Free members of the vector swarm loaded with therapeutic cargo are then attracted to and internalized into the intended target cells via the expressed cognate strongly binding extra-cellular receptor, causing escalation of gene transfer into these cells and increasing the copy number of the therapeutic gene expression modules. Such self-focusing swarms of gene vectors can be either homogeneous, with 'scout' and 'therapeutic' members of the swarm being structurally identical, or, alternatively, heterogeneous (split), with 'scout' and 'therapeutic' members of the swarm being structurally specialized. It is hoped that the proposed self-focusing cell-targeted gene vector swarms with receptor-mediated intra-swarm signalling could be particularly effective in 'top-up' gene delivery scenarios, achieving high-level and sustained expression of therapeutic transgenes that are prone to shut-down through degradation and silencing. Crucially, in contrast to low-precision 'general location' vector guidance by diffusible chemo-attractants, ear-marking non-diffusible receptors can provide high-accuracy targeting of therapeutic vector particles to the specific cell, which has undergone a 'successful cell-specific hit' by a 'scout' vector particle. Opportunities for cell targeting could be expanded, since in the proposed model of self-focusing it could be possible to probe a broad selection of intra-cellular determinants of cell-specificity and not just to rely exclusively on extra-cellular markers of cell-specificity. By employing such self-focusing gene vectors for the improvement of cell-targeted delivery of therapeutic genes, e.g., in cancer therapy or gene addition therapy of recessive genetic diseases, it could be possible to broaden a leeway for the reduction of the vector load and, consequently, to minimize undesired vector cytotoxicity, immune reactions, and the risk of inadvertent genetic modification of germline cells in genetic treatment in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. HIV-1 Tat targets Tip60 to impair the apoptotic cell response to genotoxic stresses

    PubMed Central

    Col, Edwige; Caron, Cécile; Chable-Bessia, Christine; Legube, Gaelle; Gazzeri, Sylvie; Komatsu, Yasuhiko; Yoshida, Minoru; Benkirane, Monsef; Trouche, Didier; Khochbin, Saadi

    2005-01-01

    HIV-1 transactivator Tat uses cellular acetylation signalling by targeting several cellular histone acetyltransferases (HAT) to optimize its various functions. Although Tip60 was the first HAT identified to interact with Tat, the biological significance of this interaction has remained obscure. We had previously shown that Tat represses Tip60 HAT activity. Here, a new mechanism of Tip60 neutralization by Tat is described, where Tip60 is identified as a substrate for the newly reported p300/CBP-associated E4-type ubiquitin-ligase activity, and Tat uses this mechanism to induce the polyubiquitination and degradation of Tip60. Tip60 targeting by Tat results in a dramatic impairment of the Tip60-dependent apoptotic cell response to DNA damage. These data reveal yet unknown strategies developed by HIV-1 to increase cell resistance to genotoxic stresses and show a role of Tat as a modulator of cellular protein ubiquitination. PMID:16001085

  5. TWIST1-WDR5-Hottip Regulates Hoxa9 Chromatin to Facilitate Prostate Cancer Metastasis.

    PubMed

    Malek, Reem; Gajula, Rajendra P; Williams, Russell D; Nghiem, Belinda; Simons, Brian W; Nugent, Katriana; Wang, Hailun; Taparra, Kekoa; Lemtiri-Chlieh, Ghali; Yoon, Arum R; True, Lawrence; An, Steven S; DeWeese, Theodore L; Ross, Ashley E; Schaeffer, Edward M; Pienta, Kenneth J; Hurley, Paula J; Morrissey, Colm; Tran, Phuoc T

    2017-06-15

    TWIST1 is a transcription factor critical for development that can promote prostate cancer metastasis. During embryonic development, TWIST1 and HOXA9 are coexpressed in mouse prostate and then silenced postnatally. Here we report that TWIST1 and HOXA9 coexpression are reactivated in mouse and human primary prostate tumors and are further enriched in human metastases, correlating with survival. TWIST1 formed a complex with WDR5 and the lncRNA Hottip/HOTTIP, members of the MLL/COMPASS-like H3K4 methylases, which regulate chromatin in the Hox/HOX cluster during development. TWIST1 overexpression led to coenrichment of TWIST1 and WDR5 as well as increased H3K4me3 chromatin at the Hoxa9/HOXA9 promoter, which was dependent on WDR5. Expression of WDR5 and Hottip/HOTTIP was also required for TWIST1-induced upregulation of HOXA9 and aggressive cellular phenotypes such as invasion and migration. Pharmacologic inhibition of HOXA9 prevented TWIST1-induced aggressive prostate cancer cellular phenotypes in vitro and metastasis in vivo This study demonstrates a novel mechanism by which TWIST1 regulates chromatin and gene expression by cooperating with the COMPASS-like complex to increase H3K4 trimethylation at target gene promoters. Our findings highlight a TWIST1-HOXA9 embryonic prostate developmental program that is reactivated during prostate cancer metastasis and is therapeutically targetable. Cancer Res; 77(12); 3181-93. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Targeting myeloid differentiation protein 2 by the new chalcone L2H21 protects LPS-induced acute lung injury.

    PubMed

    Zhang, Yali; Xu, Tingting; Wu, Beibei; Chen, Hongjin; Pan, Zheer; Huang, Yi; Mei, Liqin; Dai, Yuanrong; Liu, Xing; Shan, Xiaoou; Liang, Guang

    2017-04-01

    Acute inflammatory diseases are the leading causes of mortality in intensive care units. Myeloid differentiation 2 (MD-2) is required for recognizing lipopolysaccharide (LPS) by toll-like receptor 4 (TLR4), and represents an attractive therapeutic target for LPS-induced inflammatory diseases. In this study, we report a chalcone derivative, L2H21, as a new MD2 inhibitor, which could inhibit LPS-induced inflammation both in vitro and in vivo. We identify that L2H21 as a direct inhibitor of MD-2 by binding to Arg 90 and Tyr 102 residues in MD-2 hydrophobic pocket using a series of biochemical experiments, including surface plasmon response, molecular docking and amino acid mutation. L2H21 dose dependently inhibited LPS-induced inflammatory cytokine expression in primary macrophages. In mice with LPS intratracheal instillation, L2H21 significantly decreased LPS-induced pulmonary oedema, pathological changes in lung tissue, protein concentration increase in bronchoalveolar lavage fluid, inflammatory cells infiltration and inflammatory gene expression, accompanied with the decrease in pulmonary TLR4/MD-2 complex. Meanwhile, administration with L2H21 protects mice from LPS-induced mortality at a degree of 100%. Taken together, this study identifies a new MD2 inhibitor L2H21 as a promising candidate for the treatment of acute lung injury (ALI) and sepsis, and validates that inhibition of MD-2 is a potential therapeutic strategy for ALI. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. The Biogenic Amine Tyramine and its Receptor (AmTyr1) in Olfactory Neuropils in the Honey Bee (Apis mellifera) Brain

    PubMed Central

    Sinakevitch, Irina T.; Daskalova, Sasha M.; Smith, Brian H.

    2017-01-01

    This article describes the cellular sources for tyramine and the cellular targets of tyramine via the Tyramine Receptor 1 (AmTyr1) in the olfactory learning and memory neuropils of the honey bee brain. Clusters of approximately 160 tyramine immunoreactive neurons are the source of tyraminergic fibers with small varicosities in the optic lobes, antennal lobes, lateral protocerebrum, mushroom body (calyces and gamma lobes), tritocerebrum and subesophageal ganglion (SEG). Our tyramine mapping study shows that the primary sources of tyramine in the antennal lobe and calyx of the mushroom body are from at least two Ventral Unpaired Median neurons (VUMmd and VUMmx) with cell bodies in the SEG. To reveal AmTyr1 receptors in the brain, we used newly characterized anti-AmTyr1 antibodies. Immunolocalization studies in the antennal lobe with anti-AmTyr1 antibodies showed that the AmTyr1 expression pattern is mostly in the presynaptic sites of olfactory receptor neurons (ORNs). In the mushroom body calyx, anti-AmTyr1 mapped the presynaptic sites of uniglomerular Projection Neurons (PNs) located primarily in the microglomeruli of the lip and basal ring calyx area. Release of tyramine/octopamine from VUM (md and mx) neurons in the antennal lobe and mushroom body calyx would target AmTyr1 expressed on ORN and uniglomerular PN presynaptic terminals. The presynaptic location of AmTyr1, its structural similarity with vertebrate alpha-2 adrenergic receptors, and previous pharmacological evidence suggests that it has an important role in the presynaptic inhibitory control of neurotransmitter release. PMID:29114209

  8. S-adenosyl-methionine (SAM) alters the transcriptome and methylome and specifically blocks growth and invasiveness of liver cancer cells

    PubMed Central

    Wang, Yan; Sun, ZhongSheng; Szyf, Moshe

    2017-01-01

    S-adenosyl methionine (SAM) is a ubiquitous methyl donor that was reported to have chemo- protective activity against liver cancer, however the molecular footprint of SAM is unknown. We show here that SAM selectively inhibits growth, transformation and invasiveness of hepatocellular carcinoma cell lines but not normal primary liver cells. Analysis of the transcriptome of SAM treated and untreated liver cancer cell lines HepG2 and SKhep1 and primary liver cells reveals pathways involved in cancer and metastasis that are upregulated in cancer cells and are downregulated by SAM. Analysis of the methylome using bisulfite mapping of captured promoters and enhancers reveals that SAM hyper-methylates and downregulates genes in pathways of growth and metastasis that are upregulated in liver cancer cells. Depletion of two SAM downregulated genes STMN1 and TAF15 reduces cellular transformation and invasiveness, providing evidence that SAM targets are genes important for cancer growth and invasiveness. Taken together these data provide a molecular rationale for SAM as an anticancer agent. PMID:29340097

  9. S-adenosyl-methionine (SAM) alters the transcriptome and methylome and specifically blocks growth and invasiveness of liver cancer cells.

    PubMed

    Wang, Yan; Sun, ZhongSheng; Szyf, Moshe

    2017-12-19

    S-adenosyl methionine (SAM) is a ubiquitous methyl donor that was reported to have chemo- protective activity against liver cancer, however the molecular footprint of SAM is unknown. We show here that SAM selectively inhibits growth, transformation and invasiveness of hepatocellular carcinoma cell lines but not normal primary liver cells. Analysis of the transcriptome of SAM treated and untreated liver cancer cell lines HepG2 and SKhep1 and primary liver cells reveals pathways involved in cancer and metastasis that are upregulated in cancer cells and are downregulated by SAM. Analysis of the methylome using bisulfite mapping of captured promoters and enhancers reveals that SAM hyper-methylates and downregulates genes in pathways of growth and metastasis that are upregulated in liver cancer cells. Depletion of two SAM downregulated genes STMN1 and TAF15 reduces cellular transformation and invasiveness, providing evidence that SAM targets are genes important for cancer growth and invasiveness. Taken together these data provide a molecular rationale for SAM as an anticancer agent.

  10. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks

    PubMed Central

    Liu, Kun-hsiang; Niu, Yajie; Konishi, Mineko; Wu, Yue; Du, Hao; Sun Chung, Hoo; Li, Lei; Boudsocq, Marie; McCormack, Matthew; Maekawa, Shugo; Ishida, Tetsuya; Zhang, Chao; Shokat, Kevan; Yanagisawa, Shuichi; Sheen, Jen

    2018-01-01

    Nutrient signalling integrates and coordinates gene expression, metabolism and growth. However, its primary molecular mechanisms remain incompletely understood in plants and animals. Here we report novel Ca2+ signalling triggered by nitrate with live imaging of an ultrasensitive biosensor in Arabidopsis leaves and roots. A nitrate-sensitized and targeted functional genomic screen identifies subgroup III Ca2+-sensor protein kinases (CPKs) as master regulators orchestrating primary nitrate responses. A chemical switch with the engineered CPK10(M141G) kinase enables conditional analyses of cpk10,30,32 to define comprehensive nitrate-associated regulatory and developmental programs, circumventing embryo lethality. Nitrate-CPK signalling phosphorylates conserved NIN-LIKE PROTEIN (NLP) transcription factors (TFs) to specify reprogramming of gene sets for downstream TFs, transporters, N-assimilation, C/N-metabolism, redox, signalling, hormones, and proliferation. Conditional cpk10,30,32 and nlp7 similarly impair nitrate-stimulated system-wide shoot growth and root establishment. The nutrient-coupled Ca2+ signalling network integrates transcriptome and cellular metabolism with shoot-root coordination and developmental plasticity in shaping organ biomass and architecture. PMID:28489820

  11. Neuroblastoma pathogenesis: deregulation of embryonic neural crest development.

    PubMed

    Tomolonis, Julie A; Agarwal, Saurabh; Shohet, Jason M

    2018-05-01

    Neuroblastoma (NB) is an aggressive pediatric cancer that originates from neural crest tissues of the sympathetic nervous system. NB is highly heterogeneous both from a clinical and a molecular perspective. Clinically, this cancer represents a wide range of phenotypes ranging from spontaneous regression of 4S disease to unremitting treatment-refractory progression and death of high-risk metastatic disease. At a cellular level, the heterogeneous behavior of NB likely arises from an arrest and deregulation of normal neural crest development. In the present review, we summarize our current knowledge of neural crest development as it relates to pathways promoting 'stemness' and how deregulation may contribute to the development of tumor-initiating CSCs. There is an emerging consensus that such tumor subpopulations contribute to the evolution of drug resistance, metastasis and relapse in other equally aggressive malignancies. As relapsed, refractory disease remains the primary cause of death for neuroblastoma, the identification and targeting of CSCs or other primary drivers of tumor progression remains a critical, clinically significant goal for neuroblastoma. We will critically review recent and past evidence in the literature supporting the concept of CSCs as drivers of neuroblastoma pathogenesis.

  12. A combination HIV reporter virus system for measuring post-entry event efficiency and viral outcome in primary CD4+ T cell subsets.

    PubMed

    Tilton, Carisa A; Tabler, Caroline O; Lucera, Mark B; Marek, Samantha L; Haqqani, Aiman A; Tilton, John C

    2014-01-01

    Fusion between the viral membrane of human immunodeficiency virus (HIV) and the host cell marks the end of the HIV entry process and the beginning of a series of post-entry events including uncoating, reverse transcription, integration, and viral gene expression. The efficiency of post-entry events can be modulated by cellular factors including viral restriction factors and can lead to several distinct outcomes: productive, latent, or abortive infection. Understanding host and viral proteins impacting post-entry event efficiency and viral outcome is critical for strategies to reduce HIV infectivity and to optimize transduction of HIV-based gene therapy vectors. Here, we report a combination reporter virus system measuring both membrane fusion and viral promoter-driven gene expression. This system enables precise determination of unstimulated primary CD4+ T cell subsets targeted by HIV, the efficiency of post-entry viral events, and viral outcome and is compatible with high-throughput screening and cell-sorting methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks.

    PubMed

    Liu, Kun-Hsiang; Niu, Yajie; Konishi, Mineko; Wu, Yue; Du, Hao; Sun Chung, Hoo; Li, Lei; Boudsocq, Marie; McCormack, Matthew; Maekawa, Shugo; Ishida, Tetsuya; Zhang, Chao; Shokat, Kevan; Yanagisawa, Shuichi; Sheen, Jen

    2017-05-18

    Nutrient signalling integrates and coordinates gene expression, metabolism and growth. However, its primary molecular mechanisms remain incompletely understood in plants and animals. Here we report unique Ca 2+ signalling triggered by nitrate with live imaging of an ultrasensitive biosensor in Arabidopsis leaves and roots. A nitrate-sensitized and targeted functional genomic screen identifies subgroup III Ca 2+ -sensor protein kinases (CPKs) as master regulators that orchestrate primary nitrate responses. A chemical switch with the engineered mutant CPK10(M141G) circumvents embryo lethality and enables conditional analyses of cpk10 cpk30 cpk32 triple mutants to define comprehensive nitrate-associated regulatory and developmental programs. Nitrate-coupled CPK signalling phosphorylates conserved NIN-LIKE PROTEIN (NLP) transcription factors to specify the reprogramming of gene sets for downstream transcription factors, transporters, nitrogen assimilation, carbon/nitrogen metabolism, redox, signalling, hormones and proliferation. Conditional cpk10 cpk30 cpk32 and nlp7 mutants similarly impair nitrate-stimulated system-wide shoot growth and root establishment. The nutrient-coupled Ca 2+ signalling network integrates transcriptome and cellular metabolism with shoot-root coordination and developmental plasticity in shaping organ biomass and architecture.

  14. Features of Modularly Assembled Compounds That Impart Bioactivity Against an RNA Target

    PubMed Central

    Rzuczek, Suzanne G.; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A.; Kodadek, Thomas; Disney, Matthew D.

    2013-01-01

    Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the non-coding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)exp. Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). Based on activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely PTAs, are optimal. Notably, we determined that r(CUG)exp is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived and faster on rates than the protein that binds r(CUG)exp, the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets. PMID:24032410

  15. Features of modularly assembled compounds that impart bioactivity against an RNA target.

    PubMed

    Rzuczek, Suzanne G; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A; Kodadek, Thomas; Disney, Matthew D

    2013-10-18

    Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell-permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the noncoding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)(exp). Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated, including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). On the basis of activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely, PTAs, are optimal. Notably, we determined that r(CUG)(exp) is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived. Moreover, they have faster on rates than the protein that binds r(CUG)(exp), the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets.

  16. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication

    PubMed Central

    Ou, Horng D.; May, Andrew P.

    2010-01-01

    One of the greatest challenges in biomedicine is to define the critical targets and network interactions that are subverted to elicit growth deregulation in human cells. Understanding and developing rational treatments for cancer requires a definition of the key molecular targets and how they interact to elicit the complex growth deregulation phenotype. Viral proteins provide discerning and powerful probes to understand both how cells work and how they can be manipulated using a minimal number of components. The small DNA viruses have evolved to target inherent weaknesses in cellular protein interaction networks to hijack the cellular DNA and protein replication machinery. In the battle to escape the inevitability of senescence and programmed cell death, cancers have converged on similar mechanisms, through the acquisition and selection of somatic mutations that drive unchecked cellular replication in tumors. Understanding the dynamic mechanisms through which a minimal number of viral proteins promote host cells to undergo unscheduled and pathological replication is a powerful strategy to identify critical targets that are also disrupted in cancer. Viruses can therefore be used as tools to probe the system-wide protein-protein interactions and structures that drive growth deregulation in human cells. Ultimately this can provide a path for developing system context-dependent therapeutics. This review will describe ongoing experimental approaches using viruses to study pathways deregulated in cancer, with a particular focus on viral cellular protein-protein interactions and structures. PMID:21061422

  17. The membrane mucin MUC4 is elevated in breast tumor lymph node metastases relative to matched primary tumors and confers aggressive properties to breast cancer cells.

    PubMed

    Workman, Heather C; Miller, Jamie K; Ingalla, Ellen Q; Kaur, Rouminder P; Yamamoto, Diane I; Beckett, Laurel A; Young, Lawrence Jt; Cardiff, Robert D; Borowsky, Alexander D; Carraway, Kermit L; Sweeney, Colleen; Carraway, Kermit L

    2009-01-01

    Previous studies indicate that overexpression of the membrane-associated mucin MUC4 is potently anti-adhesive to cultured tumor cells, and suppresses cellular apoptotic response to a variety of insults. Such observations raise the possibility that MUC4 expression could contribute to tumor progression or metastasis, but the potential involvement of MUC4 in breast cancer has not been rigorously assessed. The present study aimed to investigate the expression of the membrane mucin MUC4 in normal breast tissue, primary breast tumors and lymph node metastases, and to evaluate the role of MUC4 in promoting the malignant properties of breast tumor cells. MUC4 expression levels in patient-matched normal and tumor breast tissue was initially examined by immunoblotting lysates of fresh frozen tissue samples with a highly specific preparation of anti-MUC4 monoclonal antibody 1G8. Immunohistochemical analysis was then carried out using tissue microarrays encompassing patient-matched normal breast tissue and primary tumors, and patient-matched lymph node metastases and primary tumors. Finally, shRNA-mediated knockdown was employed to assess the contribution of MUC4 to the cellular growth and malignancy properties of JIMT-1 breast cancer cells. Immunoblotting and immunohistochemistry revealed that MUC4 levels are suppressed in the majority (58%, p < 0.001) of primary tumors relative to patient-matched normal tissue. On the other hand, lymph node metastatic lesions from 37% (p < 0.05) of patients expressed higher MUC4 protein levels than patient-matched primary tumors. MUC4-positive tumor emboli were often found in lymphovascular spaces of lymph node metastatic lesions. shRNA-mediated MUC4 knockdown compromised the migration, proliferation and anoikis resistance of JIMT-1 cells, strongly suggesting that MUC4 expression actively contributes to cellular properties associated with breast tumor metastasis. Our observations suggest that after an initial loss of MUC4 levels during the transition of normal breast tissue to primary tumor, the re-establishment of elevated MUC4 levels confers an advantage to metastasizing breast tumor cells by promoting the acquisition of cellular properties associated with malignancy.

  18. Rkr1/Ltn1 Ubiquitin Ligase-mediated Degradation of Translationally Stalled Endoplasmic Reticulum Proteins*

    PubMed Central

    Crowder, Justin J.; Geigges, Marco; Gibson, Ryan T.; Fults, Eric S.; Buchanan, Bryce W.; Sachs, Nadine; Schink, Andrea; Kreft, Stefan G.; Rubenstein, Eric M.

    2015-01-01

    Aberrant nonstop proteins arise from translation of mRNA molecules beyond the coding sequence into the 3′-untranslated region. If a stop codon is not encountered, translation continues into the poly(A) tail, resulting in C-terminal appendage of a polylysine tract and a terminally stalled ribosome. In Saccharomyces cerevisiae, the ubiquitin ligase Rkr1/Ltn1 has been implicated in the proteasomal degradation of soluble cytosolic nonstop and translationally stalled proteins. Rkr1 is essential for cellular fitness under conditions associated with increased prevalence of nonstop proteins. Mutation of the mammalian homolog causes significant neurological pathology, suggesting broad physiological significance of ribosome-associated quality control. It is not known whether and how soluble or transmembrane nonstop and translationally stalled proteins targeted to the endoplasmic reticulum (ER) are detected and degraded. We generated and characterized model soluble and transmembrane ER-targeted nonstop and translationally stalled proteins. We found that these proteins are indeed subject to proteasomal degradation. We tested three candidate ubiquitin ligases (Rkr1 and ER-associated Doa10 and Hrd1) for roles in regulating abundance of these proteins. Our results indicate that Rkr1 plays the primary role in targeting the tested model ER-targeted nonstop and translationally stalled proteins for degradation. These data expand the catalog of Rkr1 substrates and highlight a previously unappreciated role for this ubiquitin ligase at the ER membrane. PMID:26055716

  19. Potential role for mammalian target of rapamycin inhibitors as first-line therapy in hormone receptor–positive advanced breast cancer

    PubMed Central

    Beck, J Thaddeus

    2015-01-01

    Despite advances in cytotoxic chemotherapy and targeted therapies, 5-year survival rates remain low for patients with advanced breast cancer at diagnosis. This highlights the limited effectiveness of current treatment options. An improved understanding of cellular functions associated with the development and progression of breast cancer has resulted in the creation of a number of novel targeted molecular therapies. However, more work is needed to improve outcomes, particularly in the first-line recurrent or metastatic hormone receptor–positive breast cancer setting. The phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) pathway is a major intracellular signaling pathway that is often upregulated in breast cancer, and overactivation of this pathway has been associated with primary or developed resistance to endocrine treatment. Clinical data from the Phase III Breast Cancer Trials of Oral Everolimus-2 (BOLERO-2) study of the mTOR inhibitor everolimus combined with exemestane in hormone receptor–positive advanced breast cancer were very promising, highlighting the potential role of mTOR inhibitors in combination with endocrine therapies as a first-line treatment option for these patients. It is hoped that the use of mTOR inhibitors combined with current standard-of-care endocrine therapies, such as aromatase inhibitors, in the first-line advanced breast cancer setting may result in greater antitumor effects and also delay or reverse treatment resistance. PMID:26675495

  20. The aurora kinase inhibitor VX-680 shows anti-cancer effects in primary metastatic cells and the SW13 cell line.

    PubMed

    Pezzani, Raffaele; Rubin, Beatrice; Bertazza, Loris; Redaelli, Marco; Barollo, Susi; Monticelli, Halenya; Baldini, Enke; Mian, Caterina; Mucignat, Carla; Scaroni, Carla; Mantero, Franco; Ulisse, Salvatore; Iacobone, Maurizio; Boscaro, Marco

    2016-10-01

    New therapeutic targets are needed to fight cancer. Aurora kinases (AK) were recently identified as vital key regulators of cell mitosis and have consequently been investigated as therapeutic targets in preclinical and clinical studies. Aurora kinase inhibitors (AKI) have been studied in many cancer types, but their potential capacity to limit or delay metastases has rarely been considered, and never in adrenal tissue. Given the lack of an effective pharmacological therapy for adrenal metastasis and adrenocortical carcinoma, we assessed AKI (VX-680, SNS314, ZM447439) in 2 cell lines (H295R and SW13 cells), 3 cell cultures of primary adrenocortical metastases (from lung cancer), and 4 primary adrenocortical tumor cell cultures. We also tested reversan, which is a P-gp inhibitor (a fundamental efflux pump that can extrude drugs), and we measured AK expression levels in 66 adrenocortical tumor tissue samples. Biomolecular and cellular tests were performed (such as MTT, thymidine assay, Wright's staining, cell cycle and apoptosis analysis, Western blot, qRT-PCR, and mutation analysis). Our results are the first to document AK overexpression in adrenocortical carcinoma as well as in H295R and SW13 cell lines, thus proving the efficacy of AKI against adrenal metastases and in the SW13 cancer cell model. We also demonstrated that reversan and AKI Vx-680 are useless in the H295R cell model, and therefore should not be considered as potential treatments for ACC. Serine/threonine AK inhibition, essentially with VX-680, could be a promising, specific therapeutic tool for eradicating metastases in adrenocortical tissue.

  1. Novel targets for the treatment of autosomal dominant polycystic kidney disease

    PubMed Central

    Belibi, Franck A; Edelstein, Charles L

    2010-01-01

    Importance of the field Autosomal dominant (AD) polycystic kidney disease (PKD) is the most common life-threatening hereditary disorder. There is currently no therapy that slows or prevents cyst formation and kidney enlargement in humans. An increasing number of animal studies have advanced our understanding of molecular and cellular targets of PKD. Areas covered in the review The purpose of this review is to summarize the molecular and cellular targets involved in cystogenesis and to update on the promising therapies that are being developed and tested based on knowledge of these molecular and cellular targets. What the reader will gain Insight into the pathogenesis of PKD and how a better understanding of the pathogenesis of PKD has led to the development of potential therapies to inhibit cyst formation and/or growth and improve kidney function. Take home message The results of animal studies in PKD have led to the development of clinical trials testing potential new therapies to reduce cyst formation and/or growth. A vasopressin V2 receptor antagonist, mTOR inhibitors, blockade of the renin–angiotensin system and statins that reduce cyst formation and improve renal function in animal models of PKD are being tested in interventional studies in humans. PMID:20141351

  2. Celastrol Analogs as Inducers of the Heat Shock Response. Design and Synthesis of Affinity Probes for the Identification of Protein Targets

    PubMed Central

    Klaić, Lada; Morimoto, Richard I.; Silverman, Richard B.

    2012-01-01

    The natural product celastrol (1) possesses numerous beneficial therapeutic properties and affects numerous cellular pathways. The mechanism of action and cellular target(s) of celastrol, however, remain unresolved. While a number of studies have proposed that the activity of celastrol is mediated through reaction with cysteine residues, these observations have been based on studies with specific proteins or by in vitro analysis of a small fraction of the proteome. In this study, we have investigated the spatial and structural requirements of celastrol for the design of suitable affinity probes to identify cellular binding partners of celastrol. Although celastrol has several potential sites for modification, some of these were not synthetically amenable or yielded unstable analogs. Conversion of the carboxylic acid functionality to amides and long-chain analogs, however, yielded bioactive compounds that induced the heat shock response (HSR) and antioxidant response and inhibited Hsp90 activity. This led to the synthesis of biotinylated celastrols (23 and 24) that were used as affinity reagents in extracts of human Panc-1 cells to identify Annexin II, eEF1A, and β-tubulin as potential targets of celastrol. PMID:22380712

  3. Combination therapeutics in complex diseases.

    PubMed

    He, Bing; Lu, Cheng; Zheng, Guang; He, Xiaojuan; Wang, Maolin; Chen, Gao; Zhang, Ge; Lu, Aiping

    2016-12-01

    The biological redundancies in molecular networks of complex diseases limit the efficacy of many single drug therapies. Combination therapeutics, as a common therapeutic method, involve pharmacological intervention using several drugs that interact with multiple targets in the molecular networks of diseases and may achieve better efficacy and/or less toxicity than monotherapy in practice. The development of combination therapeutics is complicated by several critical issues, including identifying multiple targets, targeting strategies and the drug combination. This review summarizes the current achievements in combination therapeutics, with a particular emphasis on the efforts to develop combination therapeutics for complex diseases. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer

    DTIC Science & Technology

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0177 TITLE: Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer PRINCIPAL INVESTIGATOR: Katerina Politi...CONTRACT NUMBER Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer 5b. GRANT NUMBER W81XWH-14-1-0177 5c. PROGRAM ELEMENT NUMBER 6...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Phenotypic changes have been observed in EGFR mutant lung cancers that become resistant to targeted

  5. Turbulence Measurement in the Atmospheric Boundary Layer Using Cellular Telephone Signals

    DTIC Science & Technology

    2012-03-01

    TURBULENCE MEASUREMENT IN THE ATMOSPHERIC BOUNDARY LAYER USING CELLULAR TELEPHONE SIGNALS THESIS Lee R. Burchett, Civilian AFIT/APPLPHY/ENP/12 - M01...85 xiv TURBULENCE MEASUREMENT IN THE ATMOSPHERIC BOUNDARY LAYER USING CELLULAR TELEPHONE SIGNALS I. Introduction What follows is an...efficient use of these systems. For example, the effective range of a laser weapon is limited by the strength of turbulence on the path to the target

  6. TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells.

    PubMed

    Jeon, Yoon; Ko, Eun; Lee, Kyung Yong; Ko, Min Ji; Park, Seo Young; Kang, Jeeheon; Jeon, Chang Hwan; Lee, Ho; Hwang, Deog Su

    2011-02-18

    TopBP1 plays important roles in chromosome replication, DNA damage response, and other cellular regulatory functions in vertebrates. Although the roles of TopBP1 have been studied mostly in cancer cell lines, its physiological function remains unclear in mice and untransformed cells. We generated conditional knock-out mice in which exons 5 and 6 of the TopBP1 gene are flanked by loxP sequences. Although TopBP1-deficient embryos developed to the blastocyst stage, no homozygous mutant embryos were recovered at E8.5 or beyond, and completely resorbed embryos were frequent at E7.5, indicating that mutant embryos tend to die at the peri-implantation stage. This finding indicated that TopBP1 is essential for cell proliferation during early embryogenesis. Ablation of TopBP1 in TopBP1(flox/flox) mouse embryonic fibroblasts and 3T3 cells using Cre recombinase-expressing retrovirus arrests cell cycle progression at the G(1), S, and G(2)/M phases. The TopBP1-ablated mouse cells exhibit phosphorylation of H2AX and Chk2, indicating that the cells contain DNA breaks. The TopBP1-ablated mouse cells enter cellular senescence. Although RNA interference-mediated knockdown of TopBP1 induced cellular senescence in human primary cells, it induced apoptosis in cancer cells. Therefore, TopBP1 deficiency in untransformed mouse and human primary cells induces cellular senescence rather than apoptosis. These results indicate that TopBP1 is essential for cell proliferation and maintenance of chromosomal integrity.

  7. The fate of chemoresistance in triple negative breast cancer (TNBC)

    PubMed Central

    O’Reilly, Elma A.; Gubbins, Luke; Sharma, Shiva; Tully, Riona; Guang, Matthew Ho Zhing; Weiner-Gorzel, Karolina; McCaffrey, John; Harrison, Michele; Furlong, Fiona; Kell, Malcolm; McCann, Amanda

    2015-01-01

    Background Treatment options for women presenting with triple negative breast cancer (TNBC) are limited due to the lack of a therapeutic target and as a result, are managed with standard chemotherapy such as paclitaxel (Taxol®). Following chemotherapy, the ideal tumour response is apoptotic cell death. Post-chemotherapy, cells can maintain viability by undergoing viable cellular responses such as cellular senescence, generating secretomes which can directly enhance the malignant phenotype. Scope of Review How tumour cells retain viability in response to chemotherapeutic engagement is discussed. In addition we discuss the implications of this retained tumour cell viability in the context of the development of recurrent and metastatic TNBC disease. Current adjuvant and neo-adjuvant treatments available and the novel potential therapies that are being researched are also reviewed. Major conclusions Cellular senescence and cytoprotective autophagy are potential mechanisms of chemoresistance in TNBC. These two non-apoptotic outcomes in response to chemotherapy are inextricably linked and are neglected outcomes of investigation in the chemotherapeutic arena. Cellular fate assessments may therefore have the potential to predict TNBC patient outcome. General Significance Focusing on the fact that cancer cells can bypass the desired cellular apoptotic response to chemotherapy through cellular senescence and cytoprotective autophagy will highlight the importance of targeting non-apoptotic survival pathways to enhance chemotherapeutic efficacy. PMID:26676166

  8. Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection.

    PubMed

    Bull, Rowena A; Leung, Preston; Gaudieri, Silvana; Deshpande, Pooja; Cameron, Barbara; Walker, Melanie; Chopra, Abha; Lloyd, Andrew R; Luciani, Fabio

    2015-05-01

    The interaction between hepatitis C virus (HCV) and cellular immune responses during very early infection is critical for disease outcome. To date, the impact of antigen-specific cellular immune responses on the evolution of the viral population establishing infection and on potential escape has not been studied. Understanding these early host-virus dynamics is important for the development of a preventative vaccine. Three subjects who were followed longitudinally from the detection of viremia preseroconversion until disease outcome were analyzed. The evolution of transmitted/founder (T/F) viruses was undertaken using deep sequencing. CD8(+) T cell responses were measured via enzyme-linked immunosorbent spot (ELISpot) assay using HLA class I-restricted T/F epitopes. T/F viruses were rapidly extinguished in all subjects associated with either viral clearance (n = 1) or replacement with viral variants leading to establishment of chronic infection (n = 2). CD8(+) T cell responses against 11 T/F epitopes were detectable by 33 to 44 days postinfection, and 5 of these epitopes had not previously been reported. These responses declined rapidly in those who became chronically infected and were maintained in the subject who cleared infection. Higher-magnitude CD8(+) T cell responses were associated with rapid development of immune escape variants at a rate of up to 0.1 per day. Rapid escape from CD8(+) T cell responses has been quantified for the first time in the early phase of primary HCV infection. These rapid escape dynamics were associated with higher-magnitude CD8(+) T cell responses. These findings raise questions regarding optimal selection of immunogens for HCV vaccine development and suggest that detailed analysis of individual epitopes may be required. A major limitation in our detailed understanding of the role of immune response in HCV clearance has been the lack of data on very early primary infection when the transmitted viral variants successfully establish the acute infection. This study was made possible through the availability of specimens from a unique cohort of asymptomatic primary infection cases in whom the first available viremic samples were collected approximately 3 weeks postinfection and at regular intervals thereafter. The study included detailed examination of both the evolution of the viral population and the host cellular immune responses against the T/F viruses. The findings here provide the first evidence of host cellular responses targeting T/F variants and imposing a strong selective force toward viral escape. The results of this study provide useful insight on how virus escapes the host response and consequently on future analysis of vaccine-induced immunity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. 2015 Clinical trials update in sickle cell anemia

    PubMed Central

    Archer, Natasha; Galacteros, Frédéric; Brugnara, Carlo

    2017-01-01

    Polymerization of HbS and cell sickling are the prime pathophysiological events in sickle cell disease (SCD). Over the last 30 years, a substantial understanding at the molecular level has been acquired on how a single amino acid change in the structure of the beta chain of hemoglobin leads to the explosive growth of the HbS polymer and the associated changes in red cell morphology. O2 tension and intracellular HbS concentration are the primary molecular drivers of this process, and are obvious targets for developing new therapies. However, polymerization and sickling are driving a complex network of associated cellular changes inside and outside of the erythrocyte, which become essential components of the inflammatory vasculopathy and result in a large range of potential acute and chronic organ damages. In these areas, a multitude of new targets for therapeutic developments have emerged, with several ongoing or planned new therapeutic interventions. This review outlines the key points of SCD pathophysiology as they relate to the development of new therapies, both at the pre-clinical and clinical levels. PMID:26178236

  10. Combination of Fluorescent in situ Hybridization (FISH) and Immunofluorescence Imaging for Detection of Cytokine Expression in Microglia/Macrophage Cells

    PubMed Central

    Fe Lanfranco, Maria; Loane, David J.; Mocchetti, Italo; Burns, Mark P.; Villapol, Sonia

    2017-01-01

    Microglia and macrophage cells are the primary producers of cytokines in response to neuroinflammatory processes. But these cytokines are also produced by other glial cells, endothelial cells, and neurons. It is essential to identify the cells that produce these cytokines to target their different levels of activation. We used dual RNAscope® fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) techniques to visualize the mRNA expression pattern of pro- and anti-inflammatory cytokines in microglia/macrophages cells. Using these methods, we can associate one mRNA to specific cell types when combining with different cellular markers by immunofluorescence. Results from RNAscope® probes IL-1β, TNFα, TGFβ, IL-10 or Arg1, showed colocalization with antibodies for microglia/macrophage cells. These target probes showed adequate sensitivity and specificity to detect mRNA expression. New FISH detection techniques combined with immunohistochemical techniques will help to jointly determine the protein and mRNA localization, as well as provide reliable quantification of the mRNA expression levels. PMID:29238736

  11. SIRT5 Regulates both Cytosolic and Mitochondrial Protein Malonylation with Glycolysis as a Major Target.

    PubMed

    Nishida, Yuya; Rardin, Matthew J; Carrico, Chris; He, Wenjuan; Sahu, Alexandria K; Gut, Philipp; Najjar, Rami; Fitch, Mark; Hellerstein, Marc; Gibson, Bradford W; Verdin, Eric

    2015-07-16

    Protein acylation links energetic substrate flux with cellular adaptive responses. SIRT5 is a NAD(+)-dependent lysine deacylase and removes both succinyl and malonyl groups. Using affinity enrichment and label free quantitative proteomics, we characterized the SIRT5-regulated lysine malonylome in wild-type (WT) and Sirt5(-/-) mice. 1,137 malonyllysine sites were identified across 430 proteins, with 183 sites (from 120 proteins) significantly increased in Sirt5(-/-) animals. Pathway analysis identified glycolysis as the top SIRT5-regulated pathway. Importantly, glycolytic flux was diminished in primary hepatocytes from Sirt5(-/-) compared to WT mice. Substitution of malonylated lysine residue 184 in glyceraldehyde 3-phosphate dehydrogenase with glutamic acid, a malonyllysine mimic, suppressed its enzymatic activity. Comparison with our previous reports on acylation reveals that malonylation targets a different set of proteins than acetylation and succinylation. These data demonstrate that SIRT5 is a global regulator of lysine malonylation and provide a mechanism for regulation of energetic flux through glycolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy.

    PubMed

    Lu, Weiqin; Hu, Yumin; Chen, Gang; Chen, Zhao; Zhang, Hui; Wang, Feng; Feng, Li; Pelicano, Helene; Wang, Hua; Keating, Michael J; Liu, Jinsong; McKeehan, Wallace; Wang, Huamin; Luo, Yongde; Huang, Peng

    2012-01-01

    Elevated aerobic glycolysis in cancer cells (the Warburg effect) may be attributed to respiration injury or mitochondrial dysfunction, but the underlying mechanisms and therapeutic significance remain elusive. Here we report that induction of mitochondrial respiratory defect by tetracycline-controlled expression of a dominant negative form of DNA polymerase γ causes a metabolic shift from oxidative phosphorylation to glycolysis and increases ROS generation. We show that upregulation of NOX is critical to support the elevated glycolysis by providing additional NAD+. The upregulation of NOX is also consistently observed in cancer cells with compromised mitochondria due to the activation of oncogenic Ras or loss of p53, and in primary pancreatic cancer tissues. Suppression of NOX by chemical inhibition or genetic knockdown of gene expression selectively impacts cancer cells with mitochondrial dysfunction, leading to a decrease in cellular glycolysis, a loss of cell viability, and inhibition of cancer growth in vivo. Our study reveals a previously unrecognized function of NOX in cancer metabolism and suggests that NOX is a potential novel target for cancer treatment.

  13. Mast cell desensitization inhibits calcium flux and aberrantly remodels actin

    PubMed Central

    Ang, W.X. Gladys; Church, Alison M.; Kulis, Mike; Choi, Hae Woong; Burks, A. Wesley

    2016-01-01

    Rush desensitization (DS) is a widely used and effective clinical strategy for the rapid inhibition of IgE-mediated anaphylactic responses. However, the cellular targets and underlying mechanisms behind this process remain unclear. Recent studies have implicated mast cells (MCs) as the primary target cells for DS. Here, we developed a murine model of passive anaphylaxis with demonstrated MC involvement and an in vitro assay to evaluate the effect of DS on MCs. In contrast with previous reports, we determined that functional IgE remains on the cell surface of desensitized MCs following DS. Despite notable reductions in MC degranulation following DS, the high-affinity IgE receptor FcεRI was still capable of transducing signals in desensitized MCs. Additionally, we found that displacement of the actin cytoskeleton and its continued association with FcεRI impede the capacity of desensitized MCs to evoke the calcium response that is essential for MC degranulation. Together, these findings suggest that reduced degranulation responses in desensitized MCs arise from aberrant actin remodeling, providing insights that may lead to improvement of DS treatments for anaphylactic responses. PMID:27669462

  14. The host immunological response to cancer therapy: An emerging concept in tumor biology.

    PubMed

    Voloshin, Tali; Voest, Emile E; Shaked, Yuval

    2013-07-01

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction-both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. The expanding universe of noncoding RNAs.

    PubMed

    Hannon, G J; Rivas, F V; Murchison, E P; Steitz, J A

    2006-01-01

    The 71st Cold Spring Harbor Symposium on Quantitative Biology celebrated the numerous and expanding roles of regulatory RNAs in systems ranging from bacteria to mammals. It was clearly evident that noncoding RNAs are undergoing a renaissance, with reports of their involvement in nearly every cellular process. Previously known classes of longer noncoding RNAs were shown to function by every possible means-acting catalytically, sensing physiological states through adoption of complex secondary and tertiary structures, or using their primary sequences for recognition of target sites. The many recently discovered classes of small noncoding RNAs, generally less than 35 nucleotides in length, most often exert their effects by guiding regulatory complexes to targets via base-pairing. With the ability to analyze the RNA products of the genome in ever greater depth, it has become clear that the universe of noncoding RNAs may extend far beyond the boundaries we had previously imagined. Thus, as much as the Symposium highlighted exciting progress in the field, it also revealed how much farther we must go to understand fully the biological impact of noncoding RNAs.

  16. Strategic Therapeutic Targeting to Overcome Venetoclax Resistance in Aggressive B-cell Lymphomas.

    PubMed

    Pham, Lan V; Huang, Shengjian; Zhang, Hui; Zhang, Jun; Bell, Taylor; Zhou, Shouhao; Pogue, Elizabeth; Ding, Zhiyong; Lam, Laura; Westin, Jason; Davis, R Eric; Young, Ken H; Medeiros, L Jeffrey; Ford, Richard J; Nomie, Krystle; Zhang, Leo; Wang, Michael

    2018-04-17

    Purpose: B-cell lymphoma-2 (BCL-2), an antiapoptotic protein often dysregulated in B-cell lymphomas, promotes cell survival and provides protection from stress. A recent phase I first-in-human study of the BCL-2 inhibitor venetoclax in non-Hodgkin lymphoma showed an overall response rate of 44%. These promising clinical results prompted our examination of the biological effects and mechanism of action underlying venetoclax activity in aggressive B-cell lymphoma, including mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL). Experimental Design: MCL and DLBCL cell lines, primary patient samples, and in vivo patient-derived xenograft (PDX) models were utilized to examine venetoclax efficacy. Furthermore, the mechanisms underlying venetoclax response and the development of venetoclax resistance were evaluated using proteomics analysis and Western blotting. Results: Potential biomarkers linked to venetoclax activity and targeted combination therapies that can augment venetoclax response were identified. We demonstrate that DLBCL and MCL cell lines, primary patient samples, and PDX mouse models expressing high BCL-2 levels are extremely sensitive to venetoclax treatment. Proteomics studies showed that venetoclax substantially alters the expression levels and phosphorylation status of key proteins involved in cellular processes, including the DNA damage response, cell metabolism, cell growth/survival, and apoptosis. Short- and long-term exposure to venetoclax inhibited PTEN expression, leading to enhanced AKT pathway activation and concomitant susceptibility to PI3K/AKT inhibition. Intrinsic venetoclax-resistant cells possess high AKT activation and are highly sensitive to PI3K/AKT inhibition. Conclusions: These findings demonstrate the on-target effect of venetoclax and offer potential mechanisms to overcome acquired and intrinsic venetoclax resistance through PI3K/AKT inhibition. Clin Cancer Res; 1-14. ©2018 AACR. ©2018 American Association for Cancer Research.

  17. Differentiation of a Highly Tumorigenic Basal Cell Compartment in Urothelial Carcinoma

    PubMed Central

    He, Xiaobing; Marchionni, Luigi; Hansel, Donna E.; Yu, Wayne; Sood, Akshay; Yang, Jie; Parmigiani, Giovanni; Matsui, William; Berman, David M.

    2011-01-01

    Highly tumorigenic cancer cell (HTC) populations have been identified for a variety of solid tumors and assigned stem cell properties. Strategies for identifying HTCs in solid tumors have been primarily empirical rather than rational, particularly in epithelial tumors, which are responsible for 80% of cancer deaths. We report evidence for a spatially restricted bladder epithelial (urothelial) differentiation program in primary urothelial cancers (UCs) and in UC xenografts. We identified a highly tumorigenic UC cell compartment that resembles benign urothelial stem cells (basal cells), co-expresses the 67-kDa laminin receptor and the basal cell-specific cytokeratin CK17, and lacks the carcinoembryonic antigen family member CEACAM6 (CD66c). This multipotent compartment resides at the tumor-stroma interface, is easily identified on histologic sections, and possesses most, if not all, of the engraftable tumor-forming ability in the parental xenograft. We analyzed differential expression of genes and pathways in basal-like cells versus more differentiated cells. Among these, we found significant enrichment of pathways comprising “hallmarks” of cancer, and pharmacologically targetable signaling pathways, including Janus kinase-signal transducer and activator of transcription, Notch, focal adhesion, mammalian target of rapamycin, epidermal growth factor receptor (erythroblastic leukemia viral oncogene homolog [ErbB]), and wingless-type MMTV integration site family (Wnt). The basal/HTC gene expression signature was essentially invisible within the context of nontumorigenic cell gene expression and overlapped significantly with genes driving progression and death in primary human UC. The spatially restricted epithelial differentiation program described here represents a conceptual advance in understanding cellular heterogeneity of carcinomas and identifies basal-like HTCs as attractive targets for cancer therapy. PMID:19544456

  18. Targeting the cytosolic innate immune receptors RIG-I and MDA5 effectively counteracts cancer cell heterogeneity in glioblastoma.

    PubMed

    Glas, Martin; Coch, Christoph; Trageser, Daniel; Dassler, Juliane; Simon, Matthias; Koch, Philipp; Mertens, Jerome; Quandel, Tamara; Gorris, Raphaela; Reinartz, Roman; Wieland, Anja; Von Lehe, Marec; Pusch, Annette; Roy, Kristin; Schlee, Martin; Neumann, Harald; Fimmers, Rolf; Herrlinger, Ulrich; Brüstle, Oliver; Hartmann, Gunther; Besch, Robert; Scheffler, Björn

    2013-06-01

    Cellular heterogeneity, for example, the intratumoral coexistence of cancer cells with and without stem cell characteristics, represents a potential root of therapeutic resistance and a significant challenge for modern drug development in glioblastoma (GBM). We propose here that activation of the innate immune system by stimulation of innate immune receptors involved in antiviral and antitumor responses can similarly target different malignant populations of glioma cells. We used short-term expanded patient-specific primary human GBM cells to study the stimulation of the cytosolic nucleic acid receptors melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene I (RIG-I). Specifically, we analyzed cells from the tumor core versus "residual GBM cells" derived from the tumor resection margin as well as stem cell-enriched primary cultures versus specimens without stem cell properties. A portfolio of human, nontumor neural cells was used as a control for these studies. The expression of RIG-I and MDA5 could be induced in all of these cells. Receptor stimulation with their respective ligands, p(I:C) and 3pRNA, led to in vitro evidence for an effective activation of the innate immune system. Most intriguingly, all investigated cancer cell populations additionally responded with a pronounced induction of apoptotic signaling cascades revealing a second, direct mechanism of antitumor activity. By contrast, p(I:C) and 3pRNA induced only little toxicity in human nonmalignant neural cells. Granted that the challenge of effective central nervous system (CNS) delivery can be overcome, targeting of RIG-I and MDA5 could thus become a quintessential strategy to encounter heterogeneous cancers in the sophisticated environments of the brain. Copyright © 2013 AlphaMed Press.

  19. Infection with hepatitis C virus depends on TACSTD2, a regulator of claudin-1 and occludin highly downregulated in hepatocellular carcinoma

    PubMed Central

    Alayli, Farah; Melis, Marta; Kabat, Juraj; Pomerenke, Anna; Altan-Bonnet, Nihal; Zamboni, Fausto; Emerson, Suzanne U.

    2018-01-01

    Entry of hepatitis C virus (HCV) into hepatocytes is a complex process that involves numerous cellular factors, including the scavenger receptor class B type 1 (SR-B1), the tetraspanin CD81, and the tight junction (TJ) proteins claudin-1 (CLDN1) and occludin (OCLN). Despite expression of all known HCV-entry factors, in vitro models based on hepatoma cell lines do not fully reproduce the in vivo susceptibility of liver cells to primary HCV isolates, implying the existence of additional host factors which are critical for HCV entry and/or replication. Likewise, HCV replication is severely impaired within hepatocellular carcinoma (HCC) tissue in vivo, but the mechanisms responsible for this restriction are presently unknown. Here, we identify tumor-associated calcium signal transducer 2 (TACSTD2), one of the most downregulated genes in primary HCC tissue, as a host factor that interacts with CLDN1 and OCLN and regulates their cellular localization. TACSTD2 gene silencing disrupts the typical linear distribution of CLDN1 and OCLN along the cellular membrane in both hepatoma cells and primary human hepatocytes, recapitulating the pattern observed in vivo in primary HCC tissue. Mechanistic studies suggest that TACSTD2 is involved in the phosphorylation of CLDN1 and OCLN, which is required for their proper cellular localization. Silencing of TACSTD2 dramatically inhibits HCV infection with a pan-genotype effect that occurs at the level of viral entry. Our study identifies TACSTD2 as a novel regulator of two major HCV-entry factors, CLDN1 and OCLN, which is strongly downregulated in malignant hepatocytes. These results provide new insights into the complex process of HCV entry into hepatocytes and may assist in the development of more efficient cellular systems for HCV propagation in vitro. PMID:29538454

  20. Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma

    PubMed Central

    Tong, Alexander A.; Hashem, Hasan; Eid, Saada; Allen, Frederick; Kingsley, Daniel

    2017-01-01

    ABSTRACT The survival of patients with metastatic or relapsed Ewing sarcoma (ES) remains dismal despite intensification of combination chemotherapy and radiotherapy, precipitating the need for novel alternative therapies with minimal side effects. Natural killer (NK) cells are promising additions to the field of cellular immunotherapy. Adoptive NK cell therapy has shown encouraging results in hematological malignancies. Despite these initial promising successes, however, NK cell therapy for solid tumors remains to be investigated using in vivo tumor models. The purpose of this study is to evaluate the efficacy of ex vivo expanded human NK cells in controlling primary and metastatic ES tumor growth in vitro and in vivo. Using membrane-bound IL-21 containing K562 (K562-mbIL-21) expansion platform, we were able to obtain sufficient numbers of expanded NK (eNK) cells that display favorable activation phenotypes and inflammatory cytokine secretion, along with a strong in vitro cytotoxic effect against ES. Furthermore, eNK therapy significantly decreased lung metastasis without any significant therapeutic effect in limiting primary tumor growth in an in vivo xenograft model. Our data demonstrate that eNK may be effective against pulmonary metastatic ES, but challenges remain to direct proper trafficking and augmenting the cytotoxic function of eNK to target primary tumor sites. PMID:28507811

  1. Comparison of the reaction of bone-derived cells to enhanced MgCl2-salt concentrations.

    PubMed

    Burmester, Anna; Luthringer, Bérengère; Willumeit, Regine; Feyerabend, Frank

    2014-01-01

    Magnesium-based implants exhibit various advantages such as biodegradability and potential for enhanced in vivo bone formation. However, the cellular mechanisms behind this possible osteoconductivity remain unclear. To determine whether high local magnesium concentrations can be osteoconductive and exclude other environmental factors that occur during the degradation of magnesium implants, magnesium salt (MgCl2) was used as a model system. Because cell lines are preferred targets in studies of non-degradable implant materials, we performed a comparative study of 3 osteosarcoma-derived cell lines (MG63, SaoS2 and U2OS) with primary human osteoblasts. The correlation among cell count, viability, cell size and several MgCl2 concentrations was used to examine the influence of magnesium on proliferation in vitro. Moreover, bone metabolism alterations during proliferation were investigated by analyzing the expression of genes involved in osteogenesis. It was observed that for all cell types, the cell count decreases at concentrations above 10 mM MgCl2. However, detailed analysis showed that MgCl2 has a relevant but very diverse influence on proliferation and bone metabolism, depending on the cell type. Only for primary cells was a clear stimulating effect observed. Therefore, reliable results demonstrating the osteoconductivity of magnesium implants can only be achieved with primary osteoblasts.

  2. Comparison of the reaction of bone-derived cells to enhanced MgCl2-salt concentrations

    PubMed Central

    Burmester, Anna; Luthringer, Bérengère; Willumeit, Regine; Feyerabend, Frank

    2014-01-01

    Magnesium-based implants exhibit various advantages such as biodegradability and potential for enhanced in vivo bone formation. However, the cellular mechanisms behind this possible osteoconductivity remain unclear. To determine whether high local magnesium concentrations can be osteoconductive and exclude other environmental factors that occur during the degradation of magnesium implants, magnesium salt (MgCl2) was used as a model system. Because cell lines are preferred targets in studies of non-degradable implant materials, we performed a comparative study of 3 osteosarcoma-derived cell lines (MG63, SaoS2 and U2OS) with primary human osteoblasts. The correlation among cell count, viability, cell size and several MgCl2 concentrations was used to examine the influence of magnesium on proliferation in vitro. Moreover, bone metabolism alterations during proliferation were investigated by analyzing the expression of genes involved in osteogenesis. It was observed that for all cell types, the cell count decreases at concentrations above 10 mM MgCl2. However, detailed analysis showed that MgCl2 has a relevant but very diverse influence on proliferation and bone metabolism, depending on the cell type. Only for primary cells was a clear stimulating effect observed. Therefore, reliable results demonstrating the osteoconductivity of magnesium implants can only be achieved with primary osteoblasts. PMID:25482335

  3. A Screen for Novel Phosphoinositide 3-kinase Effector Proteins*

    PubMed Central

    Dixon, Miles J.; Gray, Alexander; Boisvert, François-Michel; Agacan, Mark; Morrice, Nicholas A.; Gourlay, Robert; Leslie, Nicholas R.; Downes, C. Peter; Batty, Ian H.

    2011-01-01

    Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). As few molecular targets for PtdIns(3,4)P2 have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P2. A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P2 selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates the presence of a pleckstrin homology domain whose lipid binding character remains to be established. IQ motif containing GAP1 lacks known lipid interacting components and a preliminary analysis here indicates that this may exemplify a novel class of atypical phosphoinositide (aPI) binding domain. PMID:21263009

  4. Transmitted virus fitness and host T cell responses collectively define divergent infection outcomes in two HIV-1 recipients

    DOE PAGES

    Yue, Ling; Pfafferott, Katja J.; Baalwa, Joshua; ...

    2015-01-08

    Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/foundermore » (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.« less

  5. Transmitted virus fitness and host T cell responses collectively define divergent infection outcomes in two HIV-1 recipients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Ling; Pfafferott, Katja J.; Baalwa, Joshua

    Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/foundermore » (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.« less

  6. Multimodality cellular and molecular imaging of concomitant tumour enhancement in a syngeneic mouse model of breast cancer metastasis.

    PubMed

    Parkins, Katie M; Dubois, Veronica P; Hamilton, Amanda M; Makela, Ashley V; Ronald, John A; Foster, Paula J

    2018-06-12

    The mechanisms that influence metastatic growth rates are poorly understood. One mechanism of interest known as concomitant tumour resistance (CTR) can be defined as the inhibition of metastasis by existing tumour mass. Conversely, the presence of a primary tumour has also been shown to increase metastatic outgrowth, termed concomitant tumour enhancement (CTE). The majority of studies evaluating CTR/CTE in preclinical models have relied on endpoint histological evaluation of tumour burden. The goal of this research was to use conventional magnetic resonance imaging (MRI), cellular MRI, and bioluminescence imaging to study the impact of a primary tumour on the development of brain metastases in a syngeneic mouse model. Here, we report that the presence of a 4T1 primary tumour significantly enhances total brain tumour burden in Balb/C mice. Using in vivo BLI/MRI we could determine this was not related to differences in initial arrest or clearance of viable cells in the brain, which suggests that the presence of a primary tumour can increase the proliferative growth of brain metastases in this model. The continued application of our longitudinal cellular and molecular imaging tools will yield a better understanding of the mechanism(s) by which this physiological inhibition (CTR) and/or enhancement (CTE) occurs.

  7. Elucidation of the Ebola virus VP24 cellular interactome and disruption of virus biology through targeted inhibition of host-cell protein function.

    PubMed

    García-Dorival, Isabel; Wu, Weining; Dowall, Stuart; Armstrong, Stuart; Touzelet, Olivier; Wastling, Jonathan; Barr, John N; Matthews, David; Carroll, Miles; Hewson, Roger; Hiscox, Julian A

    2014-11-07

    Viral pathogenesis in the infected cell is a balance between antiviral responses and subversion of host-cell processes. Many viral proteins specifically interact with host-cell proteins to promote virus biology. Understanding these interactions can lead to knowledge gains about infection and provide potential targets for antiviral therapy. One such virus is Ebola, which has profound consequences for human health and causes viral hemorrhagic fever where case fatality rates can approach 90%. The Ebola virus VP24 protein plays a critical role in the evasion of the host immune response and is likely to interact with multiple cellular proteins. To map these interactions and better understand the potential functions of VP24, label-free quantitative proteomics was used to identify cellular proteins that had a high probability of forming the VP24 cellular interactome. Several known interactions were confirmed, thus placing confidence in the technique, but new interactions were also discovered including one with ATP1A1, which is involved in osmoregulation and cell signaling. Disrupting the activity of ATP1A1 in Ebola-virus-infected cells with a small molecule inhibitor resulted in a decrease in progeny virus, thus illustrating how quantitative proteomics can be used to identify potential therapeutic targets.

  8. Altered decorin leads to disrupted endothelial cell function: a possible mechanism in the pathogenesis of fetal growth restriction?

    PubMed

    Chui, A; Murthi, P; Gunatillake, T; Brennecke, S P; Ignjatovic, V; Monagle, P T; Whitelock, J M; Said, J M

    2014-08-01

    Fetal growth restriction (FGR) is a key cause of adverse pregnancy outcome where maternal and fetal factors are identified as contributing to this condition. Idiopathic FGR is associated with altered vascular endothelial cell functions. Decorin (DCN) has important roles in the regulation of endothelial cell functions in vascular environments. DCN expression is reduced in FGR. The objectives were to determine the functional consequences of reduced DCN in a human microvascular endothelial cell line model (HMVEC), and to determine downstream targets of DCN and their expression in primary placental microvascular endothelial cells (PLECs) from control and FGR-affected placentae. Short-interference RNA was used to reduce DCN expression in HMVECs and the effect on proliferation, angiogenesis and thrombin generation was determined. A Growth Factor PCR Array was used to identify downstream targets of DCN. The expression of target genes in control and FGR PLECs was performed. DCN reduction decreased proliferation and angiogenesis but increased thrombin generation with no effect on apoptosis. The array identified three targets of DCN: FGF17, IL18 and MSTN. Validation of target genes confirmed decreased expression of VEGFA, MMP9, EGFR1, IGFR1 and PLGF in HMVECs and PLECs from control and FGR pregnancies. Reduction of DCN in vascular endothelial cells leads to disrupted cell functions. The targets of DCN include genes that play important roles in angiogenesis and cellular growth. Therefore, differential expression of these may contribute to the pathogenesis of FGR and disease states in other microvascular circulations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Murine Hyperglycemic Vasculopathy and Cardiomyopathy: Whole-Genome Gene Expression Analysis Predicts Cellular Targets and Regulatory Networks Influenced by Mannose Binding Lectin

    PubMed Central

    Zou, Chenhui; La Bonte, Laura R.; Pavlov, Vasile I.; Stahl, Gregory L.

    2012-01-01

    Hyperglycemia, in the absence of type 1 or 2 diabetes, is an independent risk factor for cardiovascular disease. We have previously demonstrated a central role for mannose binding lectin (MBL)-mediated cardiac dysfunction in acute hyperglycemic mice. In this study, we applied whole-genome microarray data analysis to investigate MBL’s role in systematic gene expression changes. The data predict possible intracellular events taking place in multiple cellular compartments such as enhanced insulin signaling pathway sensitivity, promoted mitochondrial respiratory function, improved cellular energy expenditure and protein quality control, improved cytoskeleton structure, and facilitated intracellular trafficking, all of which may contribute to the organismal health of MBL null mice against acute hyperglycemia. Our data show a tight association between gene expression profile and tissue function which might be a very useful tool in predicting cellular targets and regulatory networks connected with in vivo observations, providing clues for further mechanistic studies. PMID:22375142

  10. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate.

    PubMed

    Kim, Sun Hwa; Jeong, Ji Hoon; Chun, Ki Woo; Park, Tae Gwan

    2005-09-13

    Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with anionic surface charge were surface coated with cationic di-block copolymer, poly(L-lysine)-poly(ethylene glycol)-folate (PLL-PEG-FOL) conjugate, for enhancing their site-specific intracellular delivery against folate receptor overexpressing cancer cells. The PLGA nanoparticles coated with the conjugate were characterized in terms of size, surface charge, and change in surface composition by XPS. By employing the flow cytometry method and confocal image analysis, the extent of cellular uptake was comparatively evaluated under various conditions. PLL-PEG-FOL coated PLGA nanoparticles demonstrated far greater extent of cellular uptake to KB cells, suggesting that they were mainly taken up by folate receptor-mediated endocytosis. The enhanced cellular uptake was also observed even in the presence of serum proteins, possibly due to the densely seeded PEG chains. The PLL-PEG-FOL coated PLGA nanoparticles could be potentially applied for cancer cell targeted delivery of various therapeutic agents.

  11. Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9.

    PubMed

    Lebar, Tina; Jerala, Roman

    2018-01-01

    Transcriptional regulation lies at the center of many cellular processes and is the result of cellular response to different external and internal signals. Control of transcription of selected genes enables an unprecedented access to shape the cellular response. While orthogonal transcription factors from bacteria, yeast, plants, or other cells have been used to introduce new cellular logic into mammalian cells, the discovery of designable modular DNA binding domains, such as Transcription Activator-Like Effectors (TALEs) and the CRISPR system, enable targeting of almost any selected DNA sequence. Fusion or conditional association of DNA targeting domain with transcriptional effector domains enables controlled regulation of almost any endogenous or ectopic gene. Moreover, the designed regulators can be linked into genetic circuits to implement complex responses, such as different types of Boolean functions and switches. In this chapter, we describe the protocols for achieving efficient transcriptional regulation with TALE- and CRISPR-based designed transcription factors in mammalian cells.

  12. Method of forming a continuous polymeric skin on a cellular foam material

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1985-01-01

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.

  13. Membrane-targeting liquid crystal nanoparticles (LCNPs) for drug delivery

    NASA Astrophysics Data System (ADS)

    Nag, Okhil K.; Naciri, Jawad; Spillmann, Christopher M.; Delehanty, James B.

    2016-03-01

    In addition to maintaining the structural integrity of the cell, the plasma membrane regulates multiple important cellular processes, such as endocytosis and trafficking, apoptotic pathways and drug transport. The modulation or tracking of such cellular processes by means of controlled delivery of drugs or imaging agents via nanoscale delivery systems is very attractive. Nanoparticle-mediated delivery systems that mediate long-term residence (e.g., days) and controlled release of the cargoes in the plasma membrane while simultaneously not interfering with regular cellular physiology would be ideal for this purpose. Our laboratory has developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs which can be slowly released from the particle over time. Here we highlight the utility of these nanopreparations for membrane delivery and imaging.

  14. Comparative Analysis of Predicted Plastid-Targeted Proteomes of Sequenced Higher Plant Genomes

    PubMed Central

    Schaeffer, Scott; Harper, Artemus; Raja, Rajani; Jaiswal, Pankaj; Dhingra, Amit

    2014-01-01

    Plastids are actively involved in numerous plant processes critical to growth, development and adaptation. They play a primary role in photosynthesis, pigment and monoterpene synthesis, gravity sensing, starch and fatty acid synthesis, as well as oil, and protein storage. We applied two complementary methods to analyze the recently published apple genome (Malus × domestica) to identify putative plastid-targeted proteins, the first using TargetP and the second using a custom workflow utilizing a set of predictive programs. Apple shares roughly 40% of its 10,492 putative plastid-targeted proteins with that of the Arabidopsis (Arabidopsis thaliana) plastid-targeted proteome as identified by the Chloroplast 2010 project and ∼57% of its entire proteome with Arabidopsis. This suggests that the plastid-targeted proteomes between apple and Arabidopsis are different, and interestingly alludes to the presence of differential targeting of homologs between the two species. Co-expression analysis of 2,224 genes encoding putative plastid-targeted apple proteins suggests that they play a role in plant developmental and intermediary metabolism. Further, an inter-specific comparison of Arabidopsis, Prunus persica (Peach), Malus × domestica (Apple), Populus trichocarpa (Black cottonwood), Fragaria vesca (Woodland Strawberry), Solanum lycopersicum (Tomato) and Vitis vinifera (Grapevine) also identified a large number of novel species-specific plastid-targeted proteins. This analysis also revealed the presence of alternatively targeted homologs across species. Two separate analyses revealed that a small subset of proteins, one representing 289 protein clusters and the other 737 unique protein sequences, are conserved between seven plastid-targeted angiosperm proteomes. Majority of the novel proteins were annotated to play roles in stress response, transport, catabolic processes, and cellular component organization. Our results suggest that the current state of knowledge regarding plastid biology, preferentially based on model systems is deficient. New plant genomes are expected to enable the identification of potentially new plastid-targeted proteins that will aid in studying novel roles of plastids. PMID:25393533

  15. Targeting Signal Transducers and Activators of Transcription-3 (STAT3) as a Novel Strategy in Sensitizing Breast Cancer to EGFR-Targeted Therapy

    DTIC Science & Technology

    2009-06-01

    Osman, F. The human glutathione S-transferase P1 ( GSTP1 ) gene is transactivated by cyclic AMP (cAMP) via a cAMP response element (CRE) proximal to the...transcription start site. Chem-Biol. Interactions 133, 320-321, 2001. 4. Lo, H.-W. and Ali-Osman, F. Cyclic AMP mediated GSTP1 gene activation in...tumor cells involves the interaction of activated CREB-1 with the GSTP1 CRE: a novel mechanism of cellular GSTP1 gene regulation. Journal of Cellular

  16. Entry mechanisms of herpes simplex virus 1 into murine epidermis: involvement of nectin-1 and herpesvirus entry mediator as cellular receptors.

    PubMed

    Petermann, Philipp; Thier, Katharina; Rahn, Elena; Rixon, Frazer J; Bloch, Wilhelm; Özcelik, Semra; Krummenacher, Claude; Barron, Martin J; Dixon, Michael J; Scheu, Stefanie; Pfeffer, Klaus; Knebel-Mörsdorf, Dagmar

    2015-01-01

    Skin keratinocytes represent a primary entry site for herpes simplex virus 1 (HSV-1) in vivo. The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) act as efficient receptors for both serotypes of HSV and are sufficient for disease development mediated by HSV-2 in mice. How HSV-1 enters skin and whether both nectin-1 and HVEM are involved are not known. We addressed the impact of nectin-1 during entry of HSV-1 into murine epidermis and investigated the putative contribution of HVEM. Using ex vivo infection of murine epidermis, we showed that HSV-1 entered the basal keratinocytes of the epidermis very efficiently. In nectin-1-deficient epidermis, entry was strongly reduced. Almost no entry was observed, however, in nectin-1-deficient keratinocytes grown in culture. This observation correlated with the presence of HVEM on the keratinocyte surface in epidermis and with the lack of HVEM expression in nectin-1-deficient primary keratinocytes. Our results suggest that nectin-1 is the primary receptor in epidermis, while HVEM has a more limited role. For primary murine keratinocytes, on which nectin-1 acts as a single receptor, electron microscopy suggested that HSV-1 can enter both by direct fusion with the plasma membrane and via endocytic vesicles. Thus, we concluded that nectin-1 directs internalization into keratinocytes via alternative pathways. In summary, HSV-1 entry into epidermis was shown to strongly depend on the presence of nectin-1, but the restricted presence of HVEM can potentially replace nectin-1 as a receptor, illustrating the flexibility employed by HSV-1 to efficiently invade tissue in vivo. Herpes simplex virus (HSV) can cause a range of diseases in humans, from uncomplicated mucocutaneous lesions to life-threatening infections. The skin is one target tissue of HSV, and the question of how the virus overcomes the protective skin barrier and penetrates into the tissue to reach its receptors is still open. Previous studies analyzing entry into cells grown in vitro revealed nectin-1 and HVEM as HSV receptors. To explore the contributions of nectin-1 and HVEM to entry into a natural target tissue, we established an ex vivo infection model. Using nectin-1- or HVEM-deficient mice, we demonstrated the distinct involvement of nectin-1 and HVEM for HSV-1 entry into epidermis and characterized the internalization pathways. Such advances in understanding the involvement of receptors in tissue are essential preconditions for unraveling HSV invasion of skin, which in turn will allow the development of antiviral reagents. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Identification and Analyses of AUX-IAA target genes controlling multiple pathways in developing fiber cells of Gossypium hirsutum L

    PubMed Central

    Nigam, Deepti; Sawant, Samir V

    2013-01-01

    Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development. PMID:24497725

  18. The PTPN14 Tumor Suppressor Is a Degradation Target of Human Papillomavirus E7.

    PubMed

    Szalmás, Anita; Tomaić, Vjekoslav; Basukala, Om; Massimi, Paola; Mittal, Suruchi; Kónya, József; Banks, Lawrence

    2017-04-01

    Activation of signaling pathways ensuring cell growth is essential for the proliferative competence of human papillomavirus (HPV)-infected cells. Tyrosine kinases and phosphatases are key regulators of cellular growth control pathways. A recently identified potential cellular target of HPV E7 is the cytoplasmic protein tyrosine phosphatase PTPN14, which is a potential tumor suppressor and is linked to the control of the Hippo and Wnt/beta-catenin signaling pathways. In this study, we show that the E7 proteins of both high-risk and low-risk mucosal HPV types can interact with PTPN14. This interaction is independent of retinoblastoma protein (pRb) and involves residues in the carboxy-terminal region of E7. We also show that high-risk E7 induces proteasome-mediated degradation of PTPN14 in cells derived from cervical tumors. This degradation appears to be independent of cullin-1 or cullin-2 but most likely involves the UBR4/p600 ubiquitin ligase. The degree to which E7 downregulates PTPN14 would suggest that this interaction is important for the viral life cycle and potentially also for the development of malignancy. In support of this we find that overexpression of PTPN14 decreases the ability of HPV-16 E7 to cooperate with activated EJ-ras in primary cell transformation assays. IMPORTANCE This study links HPV E7 to the deregulation of protein tyrosine phosphatase signaling pathways. PTPN14 is classified as a potential tumor suppressor protein, and here we show that it is very susceptible to HPV E7-induced proteasome-mediated degradation. Intriguingly, this appears to use a mechanism that is different from that employed by E7 to target pRb. Therefore, this study has important implications for our understanding of the molecular basis for E7 function and also sheds important light on the potential role of PTPN14 as a tumor suppressor. Copyright © 2017 American Society for Microbiology.

  19. Selective and membrane-permeable small molecule inhibitors of nicotinamide N-methyltransferase reverse high fat diet-induced obesity in mice.

    PubMed

    Neelakantan, Harshini; Vance, Virginia; Wetzel, Michael D; Wang, Hua-Yu Leo; McHardy, Stanton F; Finnerty, Celeste C; Hommel, Jonathan D; Watowich, Stanley J

    2018-01-01

    There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidities. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide-N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanistic, and physiological properties of a series of small molecule NNMT inhibitors. Membrane permeability of NNMT inhibitors was characterized using parallel artificial membrane permeability and Caco-2 cell assays. Selectivity was tested against structurally-related methyltransferases and nicotinamide adenine dinucleotide (NAD + ) salvage pathway enzymes. Effects of NNMT inhibitors on lipogenesis and intracellular levels of metabolites, including NNMT reaction product 1-methylnicotianamide (1-MNA) were evaluated in cultured adipocytes. Effects of a potent NNMT inhibitor on obesity measures and plasma lipid were assessed in diet-induced obese mice fed a high-fat diet. Methylquinolinium scaffolds with primary amine substitutions displayed high permeability from passive and active transport across membranes. Importantly, methylquinolinium analogues displayed high selectivity, not inhibiting related SAM-dependent methyltransferases or enzymes in the NAD + salvage pathway. NNMT inhibitors reduced intracellular 1-MNA, increased intracellular NAD + and S-(5'-adenosyl)-l-methionine (SAM), and suppressed lipogenesis in adipocytes. Treatment of diet-induced obese mice systemically with a potent NNMT inhibitor significantly reduced body weight and white adipose mass, decreased adipocyte size, and lowered plasma total cholesterol levels. Notably, administration of NNMT inhibitors did not impact total food intake nor produce any observable adverse effects. These results support development of small molecule NNMT inhibitors as therapeutics to reverse diet-induced obesity and validate NNMT as a viable target to treat obesity and related metabolic conditions. Increased flux of key cellular energy regulators, including NAD + and SAM, may potentially define the therapeutic mechanism-of-action of NNMT inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Stem cells in pharmaceutical biotechnology.

    PubMed

    Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef

    2011-11-01

    Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All together, the applications of various cell types derived from patient specific pluripotent stem cells may lead to targeted drug and cellular therapies for certain individuals.

  1. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs.

    PubMed

    Dumkova, Jana; Vrlikova, Lucie; Vecera, Zbynek; Putnova, Barbora; Docekal, Bohumil; Mikuska, Pavel; Fictum, Petr; Hampl, Ales; Buchtova, Marcela

    2016-06-03

    The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level.

  2. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets

    PubMed Central

    Vinayagam, Arunachalam; Gibson, Travis E.; Lee, Ho-Joon; Yilmazel, Bahar; Roesel, Charles; Hu, Yanhui; Kwon, Young; Sharma, Amitabh; Liu, Yang-Yu; Perrimon, Norbert; Barabási, Albert-László

    2016-01-01

    The protein–protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as “indispensable,” “neutral,” or “dispensable,” which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network’s control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets. PMID:27091990

  3. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs

    PubMed Central

    Dumkova, Jana; Vrlikova, Lucie; Vecera, Zbynek; Putnova, Barbora; Docekal, Bohumil; Mikuska, Pavel; Fictum, Petr; Hampl, Ales; Buchtova, Marcela

    2016-01-01

    The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level. PMID:27271611

  4. Human, vector and parasite Hsp90 proteins: A comparative bioinformatics analysis.

    PubMed

    Faya, Ngonidzashe; Penkler, David L; Tastan Bishop, Özlem

    2015-01-01

    The treatment of protozoan parasitic diseases is challenging, and thus identification and analysis of new drug targets is important. Parasites survive within host organisms, and some need intermediate hosts to complete their life cycle. Changing host environment puts stress on parasites, and often adaptation is accompanied by the expression of large amounts of heat shock proteins (Hsps). Among Hsps, Hsp90 proteins play an important role in stress environments. Yet, there has been little computational research on Hsp90 proteins to analyze them comparatively as potential parasitic drug targets. Here, an attempt was made to gain detailed insights into the differences between host, vector and parasitic Hsp90 proteins by large-scale bioinformatics analysis. A total of 104 Hsp90 sequences were divided into three groups based on their cellular localizations; namely cytosolic, mitochondrial and endoplasmic reticulum (ER). Further, the parasitic proteins were divided according to the type of parasite (protozoa, helminth and ectoparasite). Primary sequence analysis, phylogenetic tree calculations, motif analysis and physicochemical properties of Hsp90 proteins suggested that despite the overall structural conservation of these proteins, parasitic Hsp90 proteins have unique features which differentiate them from human ones, thus encouraging the idea that protozoan Hsp90 proteins should be further analyzed as potential drug targets.

  5. Conserved herpesvirus protein kinases

    PubMed Central

    Gershburg, Edward; Pagano, Joseph S.

    2008-01-01

    Conserved herpesviral protein kinases (CHPKs) are a group of enzymes conserved throughout all subfamilies of Herpesviridae. Members of this group are serine/threonine protein kinases that are likely to play a conserved role in viral infection by interacting with common host cellular and viral factors; however along with a conserved role, individual kinases may have unique functions in the context of viral infection in such a way that they are only partially replaceable even by close homologues. Recent studies demonstrated that CHPKs are crucial for viral infection and suggested their involvement in regulation of numerous processes at various infection steps (primary infection, nuclear egress, tegumentation), although the mechanisms of this regulation remain unknown. Notwithstanding, recent advances in discovery of new CHPK targets, and studies of CHPK knockout phenotypes have raised their attractiveness as targets for antiviral therapy. A number of compounds have been shown to inhibit the activity of human cytomegalovirus (HCMV)-encoded UL97 protein kinase and exhibit a pronounced antiviral effect, although the same compounds are inactive against Epstein-Barr Virus (EBV)-encoded protein kinase BGLF4, illustrating the fact that low homology between the members of this group complicates development of compounds targeting the whole group, and suggesting that individualized, structure-based inhibitor design will be more effective. Determination of CHPK structures will greatly facilitate this task. PMID:17881303

  6. Differentially Expressed Genes Associated with Low-Dose Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Hegyesi, Hargita; Sándor, Nikolett; Schilling, Boglárka; Kis, Enikő; Lumniczky, Katalin; Sáfrány, Géza

    We have studied low dose radiation induced gene expression alterations in a primary human fibroblast cell line using Agilent's whole human genome microarray. Cells were irradiated with 60Co γ-rays (0; 0.1; 0.5 Gy) and 2 hours later total cellular RNA was isolated. We observed differential regulation of approximately 300-500 genes represented on the microarray. Of these, 126 were differentially expressed at both doses, among them significant elevation of GDF-15 and KITLG was confirmed by qRT-PCR. Based on the transcriptional studies we selected GDF-15 to assess its role in radiation response, since GDF-15 is one of the p53 gene targets and is believed to participate in mediating p53 activities. First we confirmed gamma-radiation induced dose-dependent changes in GDF-15 expression by qRT-PCR. Next we determined the effect of GDF-15 silencing on radiosensitivity. Four GDF-15 targeting shRNA expressing lentiviral vectors were transfected into immortalized human fibroblast cells. We obtained efficient GDF-15 silencing in one of the four constructs. RNA interference inhibited GDF-15 gene expression and enhanced the radiosensitivity of the cells. Our studies proved that GDF-15 plays an essential role in radiation response and may serve as a promising target in radiation therapy.

  7. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.

    PubMed

    Dröse, Stefan; Brandt, Ulrich; Wittig, Ilka

    2014-08-01

    The respiratory chain of the inner mitochondrial membrane is a unique assembly of protein complexes that transfers the electrons of reducing equivalents extracted from foodstuff to molecular oxygen to generate a proton-motive force as the primary energy source for cellular ATP-synthesis. Recent evidence indicates that redox reactions are also involved in regulating mitochondrial function via redox-modification of specific cysteine-thiol groups in subunits of respiratory chain complexes. Vice versa the generation of reactive oxygen species (ROS) by respiratory chain complexes may have an impact on the mitochondrial redox balance through reversible and irreversible thiol-modification of specific target proteins involved in redox signaling, but also pathophysiological processes. Recent evidence indicates that thiol-based redox regulation of the respiratory chain activity and especially S-nitrosylation of complex I could be a strategy to prevent elevated ROS production, oxidative damage and tissue necrosis during ischemia-reperfusion injury. This review focuses on the thiol-based redox processes involving the respiratory chain as a source as well as a target, including a general overview on mitochondria as highly compartmentalized redox organelles and on methods to investigate the redox state of mitochondrial proteins. This article is part of a Special Issue entitled: Thiol-Based Redox Processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Understanding mechanisms of autoimmunity through translational research in vitiligo

    PubMed Central

    Strassner, James P; Harris, John E

    2016-01-01

    Vitiligo is an autoimmune disease of the skin that leads to life-altering depigmentation and remains difficult to treat. However, clinical observations and translational studies over 30-40 years have led to the development of an insightful working model of disease pathogenesis: Genetic risk spanning both immune and melanocyte functions is pushed over a threshold by known and suspected environmental factors to initiate autoimmune T cell-mediated killing of melanocytes. While under cellular stress, melanocytes appear to signal innate immunity to activate T cells. Once the autoimmune T cell response is established, the IFN-γ-STAT1-CXCL10 signaling axis becomes the primary inflammatory pathway driving both progression and maintenance of vitiligo. This pathway is a tempting target for both existing and developing pharmaceuticals, but further detailing how melanocytes signal their own demise may also lead to new therapeutic targets. Research in vitiligo may be the future key to understand the pathogenesis of organ-specific autoimmunity, as vitiligo is common, reversible, progresses over the life of the individual, has been relatively well-defined, and is quite easy to study using translational and clinical approaches. What is revealed in these studies can lead to innovative treatments and also help elucidate the principles that underlie similar organ-specific autoimmune diseases, especially in cases where the target organ is less accessible. PMID:27764715

  9. Application of stem cells in targeted therapy of breast cancer: a systematic review.

    PubMed

    Madjd, Zahra; Gheytanchi, Elmira; Erfani, Elham; Asadi-Lari, Mohsen

    2013-01-01

    The aim of this systematic review was to investigate whether stem cells could be effectively applied in targeted therapy of breast cancer. A systematic literature search was performed for original articles published from January 2007 until May 2012. Nine studies met the inclusion criteria for phase I or II clinical trials, of which three used stem cells as vehicles, two trials used autologous hematopoetic stem cells and in four trials cancer stem cells were targeted. Mesenchymal stem cells (MSCs) were applied as cellular vehicles to transfer therapeutic agents. Cell therapy with MSC can successfully target resistant cancers. Cancer stem cells were selectively targeted via a proteasome-dependent suicide gene leading to tumor regression. Wnt/β-catenin signaling pathway has been also evidenced to be an attractive CSC-target. This systematic review focused on two different concepts of stem cells and breast cancer marking a turning point in the trials that applied stem cells as cellular vehicles for targeted delivery therapy as well as CSC-targeted therapies. Applying stem cells as targeted therapy could be an effective therapeutic approach for treatment of breast cancer in the clinic and in therapeutic marketing; however this needs to be confirmed with further clinical investigations.

  10. A generalized target theory and its applications.

    PubMed

    Zhao, Lei; Mi, Dong; Hu, Bei; Sun, Yeqing

    2015-09-28

    Different radiobiological models have been proposed to estimate the cell-killing effects, which are very important in radiotherapy and radiation risk assessment. However, most applied models have their own scopes of application. In this work, by generalizing the relationship between "hit" and "survival" in traditional target theory with Yager negation operator in Fuzzy mathematics, we propose a generalized target model of radiation-induced cell inactivation that takes into account both cellular repair effects and indirect effects of radiation. The simulation results of the model and the rethinking of "the number of targets in a cell" and "the number of hits per target" suggest that it is only necessary to investigate the generalized single-hit single-target (GSHST) in the present theoretical frame. Analysis shows that the GSHST model can be reduced to the linear quadratic model and multitarget model in the low-dose and high-dose regions, respectively. The fitting results show that the GSHST model agrees well with the usual experimental observations. In addition, the present model can be used to effectively predict cellular repair capacity, radiosensitivity, target size, especially the biologically effective dose for the treatment planning in clinical applications.

  11. Distinctive Behaviors of Druggable Proteins in Cellular Networks

    PubMed Central

    Workman, Paul; Al-Lazikani, Bissan

    2015-01-01

    The interaction environment of a protein in a cellular network is important in defining the role that the protein plays in the system as a whole, and thus its potential suitability as a drug target. Despite the importance of the network environment, it is neglected during target selection for drug discovery. Here, we present the first systematic, comprehensive computational analysis of topological, community and graphical network parameters of the human interactome and identify discriminatory network patterns that strongly distinguish drug targets from the interactome as a whole. Importantly, we identify striking differences in the network behavior of targets of cancer drugs versus targets from other therapeutic areas and explore how they may relate to successful drug combinations to overcome acquired resistance to cancer drugs. We develop, computationally validate and provide the first public domain predictive algorithm for identifying druggable neighborhoods based on network parameters. We also make available full predictions for 13,345 proteins to aid target selection for drug discovery. All target predictions are available through canSAR.icr.ac.uk. Underlying data and tools are available at https://cansar.icr.ac.uk/cansar/publications/druggable_network_neighbourhoods/. PMID:26699810

  12. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    USDA-ARS?s Scientific Manuscript database

    Many pathogenic fungi are becoming resistant to currently available drugs. Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. The aim of this study was to identify benzaldehydes that...

  13. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolay, Nils H., E-mail: n.nicolay@dkfz.de; Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg; Sommer, Eva

    2013-12-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IRmore » were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.« less

  14. Comparison of Human Induced Pluripotent Stem Cell-Derived Neurons and Rat Primary CorticalNeurons as In Vitro Models of Neurite Outgrowth

    EPA Science Inventory

    High-throughput assays that can quantify chemical-induced changes at the cellular and molecular level have been recommended for use in chemical safety assessment. High-throughput, high content imaging assays for the key cellular events of neurodevelopment have been proposed to ra...

  15. Diverse solid tumors expressing a restricted epitope of L1-CAM can be targeted by chimeric antigen receptor redirected T lymphocytes.

    PubMed

    Hong, Hao; Stastny, Michael; Brown, Christine; Chang, Wen-Chung; Ostberg, Julie R; Forman, Stephen J; Jensen, Michael C

    2014-01-01

    Adhesion molecule L1-CAM (CD171) was originally reported to be overexpressed on neuroblastoma and to play an important role during tumor progression. More recently, it has been shown to be overexpressed on many other solid tumors such as melanoma and carcinomas of the cervix, ovary, bladder, and others. Thus, there has been a growing interest in using this cell-surface molecule as a target for both antibody-based and cellular-based therapy-our group has previously examined the clinical utility of chimeric antigen receptor (CAR)-redirected cytolytic T cells that specifically target the CE7 epitope of L1-CAM on neuroblastoma patients. Here, we sought to determine whether this CE7 epitope is present on other recently identified L1-CAM tumors and whether it too can be targeted by CAR T cells. Our studies demonstrate that a diverse array of human tumor cell lines and primary solid tumors (ovarian, lung, and renal carcinoma, glioblastoma and neuroblastoma) do express the CE7 epitope and can efficiently stimulate CE7-specific CAR-redirected (CE7R) T-cell lytic activity and secretion of proinflamatory cytokines. L1-CAM was also detected on a limited number of normal tissues; however, L1-CAM expressed on normal human monocytes was not bound by the CE7 mAb nor was it targeted by CE7R T cells, suggesting that the CE7 epitope is more tumor restricted and not expressed on all L1-CAM tissues. Overall, the CE7 epitope of L1-CAM on a variety of tumors may be amenable to targeting by CE7R T cells, making it a promising target for adoptive immunotherapy.

  16. Innovative Methodology in the Discovery of Novel Drug Targets in the Free-Living Amoebae

    PubMed

    Baig, Abdul Mannan

    2018-04-25

    Despite advances in drug discovery and modifications in the chemotherapeutic regimens, human infections caused by free-living amoebae (FLA) have high mortality rates (~95%). The FLA that cause fatal human cerebral infections include Naegleria fowleri, Balamuthia mandrillaris and Acanthamoeba spp. Novel drug-target discovery remains the only viable option to tackle these central nervous system (CNS) infection in order to lower the mortality rates caused by the FLA. Of these FLA, N. fowleri causes primary amoebic meningoencephalitis (PAM), while the A. castellanii and B. Mandrillaris are known to cause granulomatous amoebic encephalitis (GAE). The infections caused by the FLA have been treated with drugs like Rifampin, Fluconazole, Amphotericin-B and Miltefosine. Miltefosine is an anti-leishmanial agent and an experimental anti-cancer drug. With only rare incidences of success, these drugs have remained unsuccessful to lower the mortality rates of the cerebral infection caused by FLA. Recently, with the help of bioinformatic computational tools and the discovered genomic data of the FLA, discovery of newer drug targets has become possible. These cellular targets are proteins that are either unique to the FLA or shared between the humans and these unicellular eukaryotes. The latter group of proteins has shown to be targets of some FDA approved drugs prescribed in non-infectious diseases. This review out-lines the bioinformatic methodologies that can be used in the discovery of such novel drug-targets, their chronicle by in-vitro assays done in the past and the translational value of such target discoveries in human diseases caused by FLA. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Global Transcriptome Analysis of Primary Cerebrocortical Cells: Identification of Genes Regulated by Triiodothyronine in Specific Cell Types.

    PubMed

    Gil-Ibañez, Pilar; García-García, Francisco; Dopazo, Joaquín; Bernal, Juan; Morte, Beatriz

    2017-01-01

    Thyroid hormones, thyroxine, and triiodothyronine (T3) are crucial for cerebral cortex development acting through regulation of gene expression. To define the transcriptional program under T3 regulation, we have performed RNA-Seq of T3-treated and untreated primary mouse cerebrocortical cells. The expression of 1145 genes or 7.7% of expressed genes was changed upon T3 addition, of which 371 responded to T3 in the presence of cycloheximide indicating direct transcriptional regulation. The results were compared with available transcriptomic datasets of defined cellular types. In this way, we could identify targets of T3 within genes enriched in astrocytes and neurons, in specific layers including the subplate, and in specific neurons such as prepronociceptin, cholecystokinin, or cortistatin neurons. The subplate and the prepronociceptin neurons appear as potentially major targets of T3 action. T3 upregulates mostly genes related to cell membrane events, such as G-protein signaling, neurotransmission, and ion transport and downregulates genes involved in nuclear events associated with the M phase of cell cycle, such as chromosome organization and segregation. Remarkably, the transcriptomic changes induced by T3 sustain the transition from fetal to adult patterns of gene expression. The results allow defining in molecular terms the elusive role of thyroid hormones on neocortical development. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Proteomic identification of fat-browning markers in cultured white adipocytes treated with curcumin.

    PubMed

    Kim, Sang Woo; Choi, Jae Heon; Mukherjee, Rajib; Hwang, Ki-Chul; Yun, Jong Won

    2016-04-01

    We previously reported that curcumin induces browning of primary white adipocytes via enhanced expression of brown adipocyte-specific genes. In this study, we attempted to identify target proteins responsible for this fat-browning effect by analyzing proteomic changes in cultured white adipocytes in response to curcumin treatment. To elucidate the role of curcumin in fat-browning, we conducted comparative proteomic analysis of primary adipocytes between control and curcumin-treated cells using two-dimensional electrophoresis combined with MALDI-TOF-MS. We also investigated fatty acid metabolic targets, mitochondrial biogenesis, and fat-browning-associated proteins using combined proteomic and network analyses. Proteomic analysis revealed that 58 protein spots from a total of 325 matched spots showed differential expression between control and curcumin-treated adipocytes. Using network analysis, most of the identified proteins were proven to be involved in various metabolic and cellular processes based on the PANTHER classification system. One of the most striking findings is that hormone-sensitive lipase (HSL) was highly correlated with main browning markers based on the STRING database. HSL and two browning markers (UCP1, PGC-1α) were co-immunoprecipitated with these markers, suggesting that HSL possibly plays a role in fat-browning of white adipocytes. Our results suggest that curcumin increased HSL levels and other browning-specific markers, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis by trans-differentiation from white adipocytes into brown adipocytes (beige).

  19. Therapeutic potential of MEK inhibition in acute myelogenous leukemia: rationale for "vertical" and "lateral" combination strategies.

    PubMed

    Ricciardi, Maria Rosaria; Scerpa, Maria Cristina; Bergamo, Paola; Ciuffreda, Ludovica; Petrucci, Maria Teresa; Chiaretti, Sabina; Tavolaro, Simona; Mascolo, Maria Grazia; Abrams, Stephen L; Steelman, Linda S; Tsao, Twee; Marchetti, Antonio; Konopleva, Marina; Del Bufalo, Donatella; Cognetti, Francesco; Foà, Robin; Andreeff, Michael; McCubrey, James A; Tafuri, Agostino; Milella, Michele

    2012-10-01

    In hematological malignancies, constitutive activation of the RAF/MEK/ERK pathway is frequently observed, conveys a poor prognosis, and constitutes a promising target for therapeutic intervention. Here, we investigated the molecular and functional effects of pharmacological MEK inhibition in cell line models of acute myeloid leukemia (AML) and freshly isolated primary AML samples. The small-molecule, ATP-non-competitive, MEK inhibitor PD0325901 markedly inhibited ERK phosphorylation and growth of several AML cell lines and approximately 70 % of primary AML samples. Growth inhibition was due to G(1)-phase arrest and induction of apoptosis. Transformation by constitutively active upstream pathway elements (HRAS, RAF-1, and MEK) rendered FDC-P1 cells exquisitely prone to PD0325901-induced apoptosis. Gene and protein expression profiling revealed a selective effect of PD0325901 on ERK phosphorylation and compensatory upregulation of the RAF/MEK and AKT/p70( S6K ) kinase modules, potentially mediating resistance to drug-induced growth inhibition. Consequently, in appropriate cellular contexts, both "vertical" (i.e., inhibition of RAF and MEK along the MAPK pathway) and "lateral" (i.e., simultaneous inhibition of the MEK/ERK and mTOR pathways) combination strategies may result in synergistic anti-leukemic effects. Overall, MEK inhibition exerts potent growth inhibitory and proapoptotic activity in preclinical models of AML, particularly in combination with other pathway inhibitors. Deeper understanding of the molecular mechanisms of action of MEK inhibitors will likely translate into more effective targeted strategies for the treatment of AML.

  20. Evaluation of the antitumor effects of c-Myc-Max heterodimerization inhibitor 100258-F4 in ovarian cancer cells.

    PubMed

    Wang, Jiandong; Ma, Xiaoli; Jones, Hannah M; Chan, Leo Li-Ying; Song, Fang; Zhang, Weiyuan; Bae-Jump, Victoria L; Zhou, Chunxiao

    2014-08-21

    Epithelial ovarian carcinoma is the most lethal gynecological cancer due to its silent onset and recurrence with resistance to chemotherapy. Overexpression of oncogene c-Myc is one of the most frequently encountered events present in ovarian carcinoma. Disrupting the function of c-Myc and its downstream target genes is a promising strategy for cancer therapy. Our objective was to evaluate the potential effects of small-molecule c-Myc inhibitor, 10058-F4, on ovarian carcinoma cells and the underlying mechanisms by which 10058-F4 exerts its actions. Using MTT assay, colony formation, flow cytometry and Annexin V FITC assays, we found that 10058-F4 significantly inhibited cell proliferation of both SKOV3 and Hey ovarian cancer cells in a dose dependent manner through induction of apoptosis and cell cycle G1 arrest. Treatment with 10058-F4 reduced cellular ATP production and ROS levels in SKOV3 and Hey cells. Consistently, primary cultures of ovarian cancer treated with 10058-F4 showed induction of caspase-3 activity and inhibition of cell proliferation in 15 of 18 cases. The response to 10058-F4 was independent the level of c-Myc protein over-expression in primary cultures of ovarian carcinoma. These novel findings suggest that the growth of ovarian cancer cells is dependent upon c-MYC activity and that targeting c-Myc-Max heterodimerization could be a potential therapeutic strategy for ovarian cancer.

  1. Vemurafenib Synergizes with Nutlin-3 to Deplete Survivin and Suppress Melanoma Viability and Tumor Growth

    PubMed Central

    Ji, Zhenyu; Kumar, Raj; Taylor, Michael; Rajadurai, Anpuchchelvi; Marzuka-Alcalá, Alexander; Chen, Y. Erin; Njauw, Ching-Ni Jenny; Flaherty, Keith; Jönsson, Goran; Tsao, Hensin

    2013-01-01

    Background For patients with advanced melanoma, primary and secondary resistance to selective BRAF inhibition remains one of the most critically compelling challenges. One rationale argues that novel biologically-informed strategies are needed to maximally cripple melanoma cells up front before compensatory mechanisms emerge. Since p53 is uncommonly mutated in melanoma, restoration of its function represents an attractive adjunct to selective BRAF inhibition. Experimental Design Thirty-seven BRAF(V600E)-mutated melanoma lines were subjected to synergy studies in vitro using a combination of vemurafenib and nutlin-3 (Nt-3). In addition, cellular responses and in vivo efficacy were also determined. We also analyzed changes in the levels of canonical apoptotic/survival factors in response to vemurafenib. Results Dual targeting of BRAF(V600E) and HDM2 with vemurafenib and Nt-3, respectively, synergistically induced apoptosis and suppressed melanoma viability in vitro and tumor growth in vivo. Suppression of p53 in melanoma cells abrogated Nt-3′s effects fully and vemurafenib’s effects partially. A survey of canonical survival factors revealed that both vemurafenib and Nt-3 independently attenuated levels of the anti-apoptotic protein, survivin. Genetic depletion of survivin reproduces the cytotoxic effects of the combination strategy. Conclusion These results demonstrate preclinical feasibility for overcoming primary vemurafenib resistance by restoring p53 function. Moreover, it identifies survivin as one downstream mediator of the observed synergism and a potential secondary target. PMID:23812671

  2. Modulation of Enhancer Looping and Differential Gene Targeting by Epstein-Barr Virus Transcription Factors Directs Cellular Reprogramming

    PubMed Central

    McClellan, Michael J.; Wood, C. David; Ojeniyi, Opeoluwa; Cooper, Tim J.; Kanhere, Aditi; Arvey, Aaron; Webb, Helen M.; Palermo, Richard D.; Harth-Hertle, Marie L.; Kempkes, Bettina; Jenner, Richard G.; West, Michelle J.

    2013-01-01

    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors. PMID:24068937

  3. Delivery of Nano-Tethered Therapies to Brain Metastases of Primary Breast Cancer Using a Cellular Trojan Horse

    DTIC Science & Technology

    2014-10-01

    Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer Nanotechnol. 3, 47–54 (2012). 2. C. Qiao et...nn5002886. 8. H. Gao et al., Behavior and anti-glioma effect of lapatinib-incorporated lipoprotein-like nanoparticles . Nanotechnology . 23, 435101 (2012...948. [2] Mi-Ran Choi, et al., “Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse”, Cancer Nano, 2012; 3

  4. Mitochondrial Dynamics in Mitochondrial Diseases

    PubMed Central

    Suárez-Rivero, Juan M.; Villanueva-Paz, Marina; de la Cruz-Ojeda, Patricia; de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; de Lavera, Isabel; Álvarez-Córdoba, Mónica; Luzón-Hidalgo, Raquel; Sánchez-Alcázar, José A.

    2016-01-01

    Mitochondria are very versatile organelles in continuous fusion and fission processes in response to various cellular signals. Mitochondrial dynamics, including mitochondrial fission/fusion, movements and turnover, are essential for the mitochondrial network quality control. Alterations in mitochondrial dynamics can cause neuropathies such as Charcot-Marie-Tooth disease in which mitochondrial fusion and transport are impaired, or dominant optic atrophy which is caused by a reduced mitochondrial fusion. On the other hand, mitochondrial dysfunction in primary mitochondrial diseases promotes reactive oxygen species production that impairs its own function and dynamics, causing a continuous vicious cycle that aggravates the pathological phenotype. Mitochondrial dynamics provides a new way to understand the pathophysiology of mitochondrial disorders and other diseases related to mitochondria dysfunction such as diabetes, heart failure, or Hungtinton’s disease. The knowledge about mitochondrial dynamics also offers new therapeutics targets in mitochondrial diseases. PMID:28933354

  5. Oral CCR5 inhibitors: will they make it through?

    PubMed

    Biswas, Priscilla; Nozza, Silvia; Scarlatti, Gabriella; Lazzarin, Adriano; Tambussi, Giuseppe

    2006-05-01

    The therapeutic armamentarium against HIV has recently gained a drug belonging to a novel class of antiretrovirals, the entry inhibitors. The last decade has driven an in-depth knowledge of the HIV entry process, unravelling the multiple engagements of the HIV envelope proteins with the cellular receptorial complex that is composed of a primary receptor (CD4) and a co-receptor (CCR5 or CXCR4). The vast majority of HIV-infected subjects exhibit biological viral variants that use CCR5 as a co-receptor. Individuals with a mutated CCR5 gene, both homo- and heterozygotes, appear to be healthy. For these and other reasons, CCR5 represents an appealing target for treatment intervention, although certain challenges can not be ignored. Promising small-molecule, orally bioavailable CCR5 antagonists are under development for the treatment of HIV-1 infection.

  6. Autism: A “Critical Period” Disorder?

    PubMed Central

    LeBlanc, Jocelyn J.; Fagiolini, Michela

    2011-01-01

    Cortical circuits in the brain are refined by experience during critical periods early in postnatal life. Critical periods are regulated by the balance of excitatory and inhibitory (E/I) neurotransmission in the brain during development. There is now increasing evidence of E/I imbalance in autism, a complex genetic neurodevelopmental disorder diagnosed by abnormal socialization, impaired communication, and repetitive behaviors or restricted interests. The underlying cause is still largely unknown and there is no fully effective treatment or cure. We propose that alteration of the expression and/or timing of critical period circuit refinement in primary sensory brain areas may significantly contribute to autistic phenotypes, including cognitive and behavioral impairments. Dissection of the cellular and molecular mechanisms governing well-established critical periods represents a powerful tool to identify new potential therapeutic targets to restore normal plasticity and function in affected neuronal circuits. PMID:21826280

  7. Viral and Cellular Determinants of the Hepatitis C Virus Envelope-Heparan Sulfate Interaction▿

    PubMed Central

    Barth, Heidi; Schnober, Eva K.; Zhang, Fuming; Linhardt, Robert J.; Depla, Erik; Boson, Bertrand; Cosset, Francois-Loic; Patel, Arvind H.; Blum, Hubert E.; Baumert, Thomas F.

    2006-01-01

    Cellular binding and entry of hepatitis C virus (HCV) are the first steps of viral infection and represent a major target for antiviral antibodies and novel therapeutic strategies. We have recently demonstrated that heparan sulfate (HS) plays a key role in the binding of HCV envelope glycoprotein E2 to target cells (Barth et al., J. Biol. Chem. 278:41003-41012, 2003). In this study, we characterized the HCV-HS interaction and analyzed its inhibition by antiviral host immune responses. Using recombinant envelope glycoproteins, virus-like particles, and HCV pseudoparticles as model systems for the early steps of viral infection, we mapped viral and cellular determinants of HCV-HS interaction. HCV-HS binding required a specific HS structure that included N-sulfo groups and a minimum of 10 to 14 saccharide subunits. HCV envelope binding to HS was mediated by four viral epitopes overlapping the E2 hypervariable region 1 and E2-CD81 binding domains. In functional studies using HCV pseudoparticles, we demonstrate that HCV binding and entry are specifically inhibited by highly sulfated HS. Finally, HCV-HS binding was markedly inhibited by antiviral antibodies derived from HCV-infected individuals. In conclusion, our results demonstrate that binding of the viral envelope to a specific HS configuration represents an important step for the initiation of viral infection and is a target of antiviral host immune responses in vivo. Mapping of viral and cellular determinants of HCV-HS interaction sets the stage for the development of novel HS-based antiviral strategies targeting viral attachment and entry. PMID:16928753

  8. Cotransporting Ion is a Trigger for Cellular Endocytosis of Transporter-Targeting Nanoparticles: A Case Study of High-Efficiency SLC22A5 (OCTN2)-Mediated Carnitine-Conjugated Nanoparticles for Oral Delivery of Therapeutic Drugs.

    PubMed

    Kou, Longfa; Yao, Qing; Sun, Mengchi; Wu, Chunnuan; Wang, Jia; Luo, Qiuhua; Wang, Gang; Du, Yuqian; Fu, Qiang; Wang, Jian; He, Zhonggui; Ganapathy, Vadivel; Sun, Jin

    2017-09-01

    OCTN2 (SLC22A5) is a Na + -coupled absorption transporter for l-carnitine in small intestine. This study tests the potential of this transporter for oral delivery of therapeutic drugs encapsulated in l-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) and discloses the molecular mechanism for cellular endocytosis of transporter-targeting nanoparticles. Conjugation of l-carnitine to a surface of PLGA-NPs enhances the cellular uptake and intestinal absorption of encapsulated drug. In both cases, the uptake process is dependent on cotransporting ion Na + . Computational OCTN2 docking analysis shows that the presence of Na + is important for the formation of the energetically stable intermediate complex of transporter-Na + -LC-PLGA NPs, which is also the first step in cellular endocytosis of nanoparticles. The transporter-mediated intestinal absorption of LC-PLGA NPs occurs via endocytosis/transcytosis rather than via the traditional transmembrane transport. The portal blood versus the lymphatic route is evaluated by the plasma appearance of the drug in the control and lymph duct-ligated rats. Absorption via the lymphatic system is the predominant route in the oral delivery of the NPs. In summary, LC-PLGA NPs can effectively target OCTN2 on the enterocytes for enhancing oral delivery of drugs and the critical role of cotransporting ions should be noticed in designing transporter-targeting nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High-speed imaging and small-scale explosive characterization techniques to understand effects of primary blast-induced injury on nerve cell structure and function

    NASA Astrophysics Data System (ADS)

    Piehler, T.; Banton, R.; Zander, N.; Duckworth, J.; Benjamin, R.; Sparks, R.

    2018-01-01

    Traumatic brain injury (TBI) is often associated with blast exposure. Even in the absence of penetrating injury or evidence of tissue injury on imaging, blast TBI may trigger a series of neural/glial cellular and functional changes. Unfortunately, the diagnosis and proper treatment of mild traumatic brain injury (mTBI) caused by explosive blast is challenging, as it is not easy to clinically distinguish blast from non-blast TBI on the basis of patient symptoms. Damage to brain tissue, cell, and subcellular structures continues to occur slowly and in a manner undetectable by conventional imaging techniques. The threshold shock impulse levels required to induce damage and the cumulative effects upon multiple exposures are not well characterized. Understanding how functional and structural damage from realistic blast impact at cellular and tissue levels at variable timescales after mTBI events may be vital for understanding this injury phenomenon and for linking mechanically induced structural changes with measurable effects on the nervous system. Our working hypothesis is that there is some transient physiological dysfunction occurring at cellular and subcellular levels within the central nervous system due to primary blast exposure. We have developed a novel in vitro indoor experimental system that uses real military explosive charges to more accurately represent military blast exposure and to probe the effects of primary explosive blast on dissociated neurons. We believe this system offers a controlled experimental method to analyze and characterize primary explosive blast-induced cellular injury and to understand threshold injury phenomenon. This paper will also focus on the modeling aspect of our work and how it relates to the experimental work.

  10. Effects of 5-fluorouracil in nuclear and cellular morphology, proliferation, cell cycle, apoptosis, cytoskeletal and caveolar distribution in primary cultures of smooth muscle cells.

    PubMed

    Filgueiras, Marcelo de Carvalho; Morrot, Alexandre; Soares, Pedro Marcos Gomes; Costa, Manoel Luis; Mermelstein, Cláudia

    2013-01-01

    Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer.

  11. Effects of 5-Fluorouracil in Nuclear and Cellular Morphology, Proliferation, Cell Cycle, Apoptosis, Cytoskeletal and Caveolar Distribution in Primary Cultures of Smooth Muscle Cells

    PubMed Central

    Filgueiras, Marcelo de Carvalho; Morrot, Alexandre; Soares, Pedro Marcos Gomes; Costa, Manoel Luis; Mermelstein, Cláudia

    2013-01-01

    Colon cancer is one of the most prevalent types of cancer in the world and is one of the leading causes of cancer death. The anti-metabolite 5- fluorouracil (5-FU) is widely used in the treatment of patients with colon cancer and other cancer types. 5-FU-based chemotherapy has been shown to be very efficient in the improvement of overall survival of the patients and for the eradication of the disease. Unfortunately, common side effects of 5-FU include severe alterations in the motility of the gastrointestinal tissues. Nevertheless, the molecular and cellular effects of 5-FU in smooth muscle cells are poorly understood. Primary smooth muscle cell cultures are an important tool for studies of the biological consequences of 5-FU at the cellular level. The avian gizzard is one of the most robust organs of smooth muscle cells. Here we studied the molecular and cellular effects of the chemotherapic drug 5-FU in a primary culture of chick gizzard smooth muscle cells. We found that treatment of smooth muscle cells with 5-FU inhibits cell proliferation by the arrest of cells in the G1 phase of cell cycle and induce apoptosis. 5-FU induced a decrease in the percentage of histone H3-positive cells. Treatment of cells with 5-FU induced changes in cellular and nuclear morphology, a decrease in the number of stress fibers and a major decrease in the number of caveolin-3 positive cells. Our results suggest that the disorganization of the actin cytoskeleton and the reduction of caveolin-3 expression could explain the alterations in contractility observed in patients treated with 5-FU. These findings might have an impact in the understanding of the cellular effects of 5-FU in smooth muscle tissues and might help the improvement of new therapeutic protocols for the treatment of colon cancer. PMID:23646193

  12. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies.

    PubMed

    Marie, Pierre J

    2015-04-01

    Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.

  13. In vivo Labeling of Constellations of Functionally Identified Neurons for Targeted in vitro Recordings

    PubMed Central

    Lien, Anthony D.; Scanziani, Massimo

    2011-01-01

    Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B–PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo. PMID:22144948

  14. Arc/Arg3.1 mRNA expression reveals a sub-cellular trace of prior sound exposure in adult primary auditory cortex

    PubMed Central

    Ivanova, Tamara; Matthews, Andrew; Gross, Christina; Mappus, Rudolph C.; Gollnick, Clare; Swanson, Andrew; Bassell, Gary J.; Liu, Robert C.

    2011-01-01

    Acquiring the behavioral significance of a sound has repeatedly been shown to correlate with long term changes in response properties of neurons in the adult primary auditory cortex. However, the molecular and cellular basis for such changes is still poorly understood. To address this, we have begun examining the auditory cortical expression of an activity-dependent effector immediate early gene (IEG) with documented roles in synaptic plasticity and memory consolidation in the hippocampus: Arc/Arg3.1. For initial characterization, we applied a repeated 10 minute (24 hour separation) sound exposure paradigm to determine the strength and consistency of sound-evoked Arc/Arg3.1 mRNA expression in the absence of explicit behavioral contingencies for the sound. We used 3D surface reconstruction methods in conjunction with fluorescent in-situ hybridization (FISH) to assess the layer-specific sub-cellular compartmental expression of Arc/Arg3.1 mRNA. We unexpectedly found that both the intranuclear and cytoplasmic patterns of expression depended on the prior history of sound stimulation. Specifically, the percentage of neurons with expression only in the cytoplasm increased for repeated versus singular sound exposure, while intranuclear expression decreased. In contrast, the total cellular expression did not differ, consistent with prior IEG studies of primary auditory cortex. Our results were specific for cortical layers 3–6, as there was virtually no sound driven Arc/Arg3.1 mRNA in layers 1–2 immediately after stimulation. Our results are consistent with the kinetics and/or detectability of cortical sub-cellular Arc/Arg3.1 mRNA expression being altered by the initial exposure to the sound, suggesting exposure-induced modifications in the cytoplasmic Arc/Arg3.1 mRNA pool. PMID:21334422

  15. [Cellular uptake of TPS-L-carnitine synthesised as transporter-based renal targeting prodrug].

    PubMed

    Li, Li; Zhu, Di; Sun, Xun

    2012-11-01

    To synthesize transporter-based renal targeting prodrug TPS-L-Carnitine and to determine its cellular uptake in vitro. Triptolide (TP) was conjugated with L-carnitine using succinate as the linker to form TPS-L-Carnitine, which could be specifically recognized by OCTN2, a cationic transporter with high affinity to L-Carnitine and is highly expressed on the apical membrane of renal proximal tubule cells. Cellular uptake assays of the prodrug and its parent drug were performed on HK-2 cells, a human proximal tubule cell line, in different temperature, concentration and in the presence of competitive inhibitors. TPS-L-Carnitine was taken up into HK-2 cells in a saturable and temperature- and concentration-dependent manner. The uptake process could be inhibited by the competitive inhibitors. The uptake of TPS-L-Carnitine was significantly higher than that of TP at 37 degrees C in the same drug concentration. TPS-L-Carnitine was taken through endocytosis mediated by transporter. TPS-L-Carnitine provides a good renal targeting property and lays the foundation for further studies in vivo.

  16. Genetically targeted 3D visualisation of Drosophila neurons under Electron Microscopy and X-Ray Microscopy using miniSOG

    PubMed Central

    Ng, Julian; Browning, Alyssa; Lechner, Lorenz; Terada, Masako; Howard, Gillian; Jefferis, Gregory S. X. E.

    2016-01-01

    Large dimension, high-resolution imaging is important for neural circuit visualisation as neurons have both long- and short-range patterns: from axons and dendrites to the numerous synapses at terminal endings. Electron Microscopy (EM) is the favoured approach for synaptic resolution imaging but how such structures can be segmented from high-density images within large volume datasets remains challenging. Fluorescent probes are widely used to localise synapses, identify cell-types and in tracing studies. The equivalent EM approach would benefit visualising such labelled structures from within sub-cellular, cellular, tissue and neuroanatomical contexts. Here we developed genetically-encoded, electron-dense markers using miniSOG. We demonstrate their ability in 1) labelling cellular sub-compartments of genetically-targeted neurons, 2) generating contrast under different EM modalities, and 3) segmenting labelled structures from EM volumes using computer-assisted strategies. We also tested non-destructive X-ray imaging on whole Drosophila brains to evaluate contrast staining. This enabled us to target specific regions for EM volume acquisition. PMID:27958322

  17. Genetically Encoded Catalytic Hairpin Assembly for Sensitive RNA Imaging in Live Cells.

    PubMed

    Mudiyanselage, Aruni P K K Karunanayake; Yu, Qikun; Leon-Duque, Mark A; Zhao, Bin; Wu, Rigumula; You, Mingxu

    2018-06-26

    DNA and RNA nanotechnology has been used for the development of dynamic molecular devices. In particular, programmable enzyme-free nucleic acid circuits, such as catalytic hairpin assembly, have been demonstrated as useful tools for bioanalysis and to scale up system complexity to an extent beyond current cellular genetic circuits. However, the intracellular functions of most synthetic nucleic acid circuits have been hindered by challenges in the biological delivery and degradation. On the other hand, genetically encoded and transcribed RNA circuits emerge as alternative powerful tools for long-term embedded cellular analysis and regulation. Herein, we reported a genetically encoded RNA-based catalytic hairpin assembly circuit for sensitive RNA imaging inside living cells. The split version of Broccoli, a fluorogenic RNA aptamer, was used as the reporter. One target RNA can catalytically trigger the fluorescence from tens-to-hundreds of Broccoli. As a result, target RNAs can be sensitively detected. We have further engineered our circuit to allow easy programming to image various target RNA sequences. This design principle opens the arena for developing a large variety of genetically encoded RNA circuits for cellular applications.

  18. Dynamic expression of viral and cellular microRNAs in infectious mononucleosis caused by primary Epstein-Barr virus infection in children.

    PubMed

    Gao, Liwei; Ai, Junhong; Xie, Zhengde; Zhou, Chen; Liu, Chunyan; Zhang, Hui; Shen, Kunling

    2015-12-03

    Epstein-Barr virus (EBV) was the first virus identified to encode microRNAs (miRNAs). Both of viral and human cellular miRNAs are important in EBV infection. However, the dynamic expression profile of miRNAs during primary EBV infection was unknown. This study aimed to investigate the dynamic expression profile of viral and cellular miRNAs in infectious mononucleosis (IM) caused by primary EBV infection. The levels of viral and cellular miRNAs were measured in fifteen pediatric IM patients at three different time-points. Fifteen healthy children who were seropositive for EBV were enrolled in the control group. Relative expression levels of miRNAs were detected by quantitative real-time PCR (qPCR) assay. EBV-miR-BHRF1-1, 1-2-3P, miR-BART13-1, 19-3p, 11-3P, 12-1, and 16-1 in IM patients of early phase were significantly higher than in healthy children. Most cellular miRNAs of B cells, such as hsa-miR-155-5p, -34a-5p, -18b-5p, -181a-5p, and -142-5p were up-regulated; while most of cellular miRNAs of CD8 + T cells, such as hsa-miR-223, -29c-3p, -181a, -200a-3p, miR-155-5p, -146a, and -142-5p were down-regulated in IM patients. With disease progression, nearly all of EBV-miRNAs decreased, especially miR-BHRF1, but at a slower rate than EBV DNA loads. Most of the cellular miRNAs of B cells, including hsa-miR-134-5p, -18b-5p, -34a-5p, and -196a-5p increased with time. However, most of the cellular miRNAs of CD8 + T cells, including hsa-let-7a-5p, -142-3p, -142-5p, and -155-5p decreased with time. Additionally, hsa-miR-155-5p of B cells and hsa-miR-18b-5p of CD8+ T cells exhibited a positive correlation with miR-BHRF1-2-5P and miR-BART2-5P (0.96 ≤ r ≤ 0.99, P < 0.05). Finally, hsa-miR-181a-5p of B cells had positive correlation with miR-BART4-3p, 4-5P, 16-1, and 22 (0.97 ≤ r ≤ 0.99, P < 0.05). Our study is the first to describe the expression profile of viral and cellular miRNAs in IM caused by primary EBV infection. These results might be the basis of investigating the pathogenic mechanism of EBV-related diseases and bring new insights into their diagnosis and treatment.

  19. Harnessing the Power of Metabolism for Seizure Prevention: Focus on Dietary Treatments

    PubMed Central

    Hartman, Adam L.; Stafstrom, Carl E.

    2012-01-01

    The continued occurrence of refractory seizures in at least one-third of children and adults with epilepsy, despite the availability of almost 15 conventional and novel anticonvulsant drugs, speaks to a dire need to develop novel therapeutic approaches. Cellular metabolism, the critical pathways by which cells access and utilize energy, is critical for normal neuronal function. Furthermore, mounting evidence suggests direct links between energy metabolism and cellular excitability. The high-fat, low-carbohydrate ketogenic diet has been used as a treatment for drug-refractory epilepsy for almost a century. Yet, the multitude of alternative therapies to target aspects of cellular metabolism and hyperexcitability is almost untapped. Approaches discussed in this review offer a wide diversity of therapeutic targets that might be exploited by investigators in the search for safer and more effective epilepsy treatments. PMID:23110824

  20. Redox Regulation of Mitochondrial Function

    PubMed Central

    Handy, Diane E.

    2012-01-01

    Abstract Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367. PMID:22146081

  1. Lysosomal storage disorders: The cellular impact of lysosomal dysfunction

    PubMed Central

    2012-01-01

    Lysosomal storage diseases (LSDs) are a family of disorders that result from inherited gene mutations that perturb lysosomal homeostasis. LSDs mainly stem from deficiencies in lysosomal enzymes, but also in some non-enzymatic lysosomal proteins, which lead to abnormal storage of macromolecular substrates. Valuable insights into lysosome functions have emerged from research into these diseases. In addition to primary lysosomal dysfunction, cellular pathways associated with other membrane-bound organelles are perturbed in these disorders. Through selective examples, we illustrate why the term “cellular storage disorders” may be a more appropriate description of these diseases and discuss therapies that can alleviate storage and restore normal cellular function. PMID:23185029

  2. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas.

    PubMed

    Etemadmoghadam, Dariush; deFazio, Anna; Beroukhim, Rameen; Mermel, Craig; George, Joshy; Getz, Gad; Tothill, Richard; Okamoto, Aikou; Raeder, Maria B; Harnett, Paul; Lade, Stephen; Akslen, Lars A; Tinker, Anna V; Locandro, Bianca; Alsop, Kathryn; Chiew, Yoke-Eng; Traficante, Nadia; Fereday, Sian; Johnson, Daryl; Fox, Stephen; Sellers, William; Urashima, Mitsuyoshi; Salvesen, Helga B; Meyerson, Matthew; Bowtell, David

    2009-02-15

    A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. Genome-wide copy number variation was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate copy number variation to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of 12 candidate genes as independent validation of previously reported associations with clinical outcome. Likely copy number variation targets and tumor molecular subtypes were further characterized by gene expression profiling. Amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor coactivator NCOA3, was significantly associated with poor response to primary treatment. Other genes previously associated with copy number variation and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too was a subset of treatment-responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification overexpressed genes involved in extracellular matrix deposition. We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer.

  3. Glycyrrhetinic acid-functionalized mesoporous silica nanoparticles as hepatocellular carcinoma-targeted drug carrier.

    PubMed

    Lv, Yongjiu; Li, Jingjing; Chen, Huali; Bai, Yan; Zhang, Liangke

    2017-01-01

    In this study, a glycyrrhetinic acid-functionalized mesoporous silica nanoparticle (MSN-GA) was prepared for active tumor targeting. MSN-GA exhibited satisfactory loading capacity for insoluble drugs, uniform size distribution, and specific tumor cell targeting. Glycyrrhetinic acid, a hepatocellular carcinoma-targeting group, was covalently decorated on the surface of MSN via an amido bond. The successful synthesis of MSN-GA was validated by the results of Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and zeta potential measurement. TEM images revealed the spherical morphology and uniform size distribution of the naked MSN and MSN-GA. Curcumin (CUR), an insoluble model drug, was loaded into MSN-GA (denoted as MSN-GA-CUR) with a high-loading capacity (8.78%±1.24%). The results of the in vitro cellular experiment demonstrated that MSN-GA-CUR significantly enhanced cytotoxicity and cellular uptake toward hepatocellular carcinoma (HepG2) cells via a specific GA receptor-mediated endocytosis mechanism. The results of this study provide a promising nanoplatform for the targeting of hepatocellular carcinoma.

  4. Immunotherapy for B-Cell Neoplasms using T Cells expressing Chimeric Antigen Receptors

    PubMed Central

    Boulassel, Mohamed-Rachid; Galal, Ahmed

    2012-01-01

    Immunotherapy with T cells expressing chimeric antigen receptors (CAR) is being evaluated as a potential treatment for B-cell neoplasms. In recent clinical trials it has shown promising results. As the number of potential candidate antigens expands, the choice of suitable target antigens becomes more challenging to design studies and to assess optimal efficacy of CAR. Careful evaluation of candidate target antigens is required to ensure that T cells expressing CAR will preferentially kill malignant cells with a minimal toxicity against normal tissues. B cells express specific surface antigens that can theoretically act as targets for CAR design. Although many of these antigens can stimulate effective cellular immune responses in vivo, their implementation in clinical settings remains a challenge. Only targeted B-cell antigens CD19 and CD20 have been tested in clinical trials. This article reviews exploitable B cell surface antigens for CAR design and examines obstacles that could interfere with the identification of potentially useful cellular targets. PMID:23269948

  5. Cellular and molecular mechanisms of HIV-1 integration targeting.

    PubMed

    Engelman, Alan N; Singh, Parmit K

    2018-07-01

    Integration is central to HIV-1 replication and helps mold the reservoir of cells that persists in AIDS patients. HIV-1 interacts with specific cellular factors to target integration to interior regions of transcriptionally active genes within gene-dense regions of chromatin. The viral capsid interacts with several proteins that are additionally implicated in virus nuclear import, including cleavage and polyadenylation specificity factor 6, to suppress integration into heterochromatin. The viral integrase protein interacts with transcriptional co-activator lens epithelium-derived growth factor p75 to principally position integration within gene bodies. The integrase additionally senses target DNA distortion and nucleotide sequence to help fine-tune the specific phosphodiester bonds that are cleaved at integration sites. Research into virus-host interactions that underlie HIV-1 integration targeting has aided the development of a novel class of integrase inhibitors and may help to improve the safety of viral-based gene therapy vectors.

  6. Target identification by image analysis.

    PubMed

    Fetz, V; Prochnow, H; Brönstrup, M; Sasse, F

    2016-05-04

    Covering: 1997 to the end of 2015Each biologically active compound induces phenotypic changes in target cells that are characteristic for its mode of action. These phenotypic alterations can be directly observed under the microscope or made visible by labelling structural elements or selected proteins of the cells with dyes. A comparison of the cellular phenotype induced by a compound of interest with the phenotypes of reference compounds with known cellular targets allows predicting its mode of action. While this approach has been successfully applied to the characterization of natural products based on a visual inspection of images, recent studies used automated microscopy and analysis software to increase speed and to reduce subjective interpretation. In this review, we give a general outline of the workflow for manual and automated image analysis, and we highlight natural products whose bacterial and eucaryotic targets could be identified through such approaches.

  7. Cell- and Tissue-based Proteome Profiling and Bioimaging with the Probes Derived from a Potent AXL Kinase Inhibitor.

    PubMed

    Li, Zhengqiu; Zheng, Binbin; Guo, Haijun; Xu, Jiaqian; Ma, Nan; Ni, Yun; Li, Lin; Hao, Piliang; Ding, Ke

    2018-06-25

    AXL has been defined as a novel target for cancer therapeutics. However, only a few potent and selective inhibitors targeting AXL are available to date. Our group has developed a lead compound, 9im, capable of excellent inhibition against AXL. With the aim of understanding its cellular and tissue mechanism of actions and direct subsequent structure optimization, a study on competitive affinity-based proteome profiling and bioimaging was carried out. A series of unknown cellular and tissue targets, including RYK, PCK, ATP1A3, EIF4A, Ptprn and Cox5b were discovered. In addition, trans-cyclooctene (TCO) and acedan-containing probes were developed to image the binding between 9im and its target proteins inside live cells and tumor tissues. These probes would be useful tools in the detection of expression and activity of AXL. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rational Design of Cancer-Targeted Benzoselenadiazole by RGD Peptide Functionalization for Cancer Theranostics.

    PubMed

    Yang, Liye; Li, Wenying; Huang, Yanyu; Zhou, Yangliang; Chen, Tianfeng

    2015-09-01

    A cancer-targeted conjugate of the selenadiazole derivative BSeC (benzo[1,2,5] selenadiazole-5-carboxylic acid) with RGD peptide as targeting molecule and PEI (polyethylenimine) as a linker is rationally designed and synthesized in the present study. The results show that RGD-PEI-BSeC forms nanoparticles in aqueous solution with a core-shell nanostructure and high stability under physiological conditions. This rational design effectively enhances the selective cellular uptake and cellular retention of BSeC in human glioma cells, and increases its selectivity between cancer and normal cells. The nanoparticles enter the cells through receptor-mediated endocytosis via clathrin-mediated and nystatin-dependent lipid raft-mediated pathways. Internalized nanoparticles trigger glioma cell apoptosis by activation of ROS-mediated p53 phosphorylation. Therefore, this study provides a strategy for the rational design of selenium-containing cancer-targeted theranostics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Optogenetic Tools for Subcellular Applications in Neuroscience.

    PubMed

    Rost, Benjamin R; Schneider-Warme, Franziska; Schmitz, Dietmar; Hegemann, Peter

    2017-11-01

    The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Drug Target Discovery Methods In Targeting Neurotropic Parasitic Amoebae.

    PubMed

    Baig, Abdul Mannan; Waliani, Nuzair; Karim, Saiqa

    2018-02-21

    Neurotropic parasitic amoebal infections have imposed an enormous challenge to chemotherapy in patients who fall victims to the infections caused by them. Conventional antibiotics that are given to treat these infections have a low patient compliance because of the serious adverse effects that are associated with their use. Additionally, the growing incidence of the development of drug resistance by the neurotropic parasites like Naegleria fowleri, Balamuthia mandrillaris, and Acanthamoeba spp has made the drug therapy more challenging. Recent studies have reported some cellular targets in the neurotropic parasitic Acanthamoeba that are used as receptors by human neurotransmitters like acetylcholine. This Viewpoint attempts to highlight the novel methodologies that use drug assays and structural modeling to uncover cellular targets of diverse groups of drugs and the safety issues of the drugs proposed for their use in brain infections caused by the neurotropic parasitic amoebae.

  11. Evaluation of low doses BPA-induced perturbation of glycemia by toxicogenomics points to a primary role of pancreatic islets and to the mechanism of toxicity.

    PubMed

    Carchia, E; Porreca, I; Almeida, P J; D'Angelo, F; Cuomo, D; Ceccarelli, M; De Felice, M; Mallardo, M; Ambrosino, C

    2015-10-29

    Epidemiologic and experimental studies have associated changes of blood glucose homeostasis to Bisphenol A (BPA) exposure. We took a toxicogenomic approach to investigate the mechanisms of low-dose (1 × 10(-9 )M) BPA toxicity in ex vivo cultures of primary murine pancreatic islets and hepatocytes. Twenty-nine inhibited genes were identified in islets and none in exposed hepatocytes. Although their expression was slightly altered, their impaired cellular level, as a whole, resulted in specific phenotypic changes. Damage of mitochondrial function and metabolism, as predicted by bioinformatics analyses, was observed: BPA exposure led to a time-dependent decrease in mitochondrial membrane potential, to an increase of ROS cellular levels and, finally, to an induction of apoptosis, attributable to the bigger Bax/Bcl-2 ratio owing to activation of NF-κB pathway. Our data suggest a multifactorial mechanism for BPA toxicity in pancreatic islets with emphasis to mitochondria dysfunction and NF-κB activation. Finally, we assessed in vitro the viability of BPA-treated islets in stressing condition, as exposure to high glucose, evidencing a reduced ability of the exposed islets to respond to further damages. The result was confirmed in vivo evaluating the reduction of glycemia in hyperglycemic mice transplanted with control and BPA-treated pancreatic islets. The reported findings identify the pancreatic islet as the main target of BPA toxicity in impairing the glycemia. They suggest that the BPA exposure can weaken the response of the pancreatic islets to damages. The last observation could represent a broader concept whose consideration should lead to the development of experimental plans better reproducing the multiple exposure conditions.

  12. Redox activation of DUSP4 by N-acetylcysteine protects endothelial cells from Cd²⁺-induced apoptosis.

    PubMed

    Barajas-Espinosa, Alma; Basye, Ariel; Jesse, Erin; Yan, Haixu; Quan, David; Chen, Chun-An

    2014-09-01

    Redox imbalance is a primary cause of endothelial dysfunction (ED). Under oxidant stress, many critical proteins regulating endothelial function undergo oxidative modifications that lead to ED. Cellular levels of glutathione (GSH), the primary reducing source in cells, can significantly regulate cell function via reversible protein thiol modification. N-acetylcysteine (NAC), a precursor for GSH biosynthesis, is beneficial for many vascular diseases; however, the detailed mechanism of these benefits is still not clear. From HPLC analysis, NAC significantly increases both cellular GSH and tetrahydrobiopterin levels. Immunoblotting of endothelial NO synthase (eNOS) and DUSP4, a dual-specificity phosphatase with a cysteine as its active residue, revealed that both enzymes are upregulated by NAC. EPR spin trapping further demonstrated that NAC enhances NO generation from cells. Long-term exposure to Cd(2+) contributes to DUSP4 degradation and the uncontrolled activation of p38 and ERK1/2, leading to apoptosis. Treatment with NAC prevents DUSP4 degradation and protects cells against Cd(2+)-induced apoptosis. Moreover, the increased DUSP4 expression can redox-regulate the p38 and ERK1/2 pathways from hyperactivation, providing a survival mechanism against the toxicity of Cd(2+). DUSP4 gene knockdown further supports the hypothesis that DUSP4 is an antioxidant gene, critical in the modulation of eNOS expression, and thus protects against Cd(2+)-induced stress. Depletion of intracellular GSH by buthionine sulfoximine makes cells more susceptible to Cd(2+)-induced apoptosis. Pretreatment with NAC prevents p38 overactivation and thus protects the endothelium from this oxidative stress. Therefore, the identification of DUSP4 activation by NAC provides a novel target for future drug design. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression.

    PubMed

    Lamontagne, Jason; Mell, Joshua C; Bouchard, Michael J

    2016-02-01

    Globally, a chronic hepatitis B virus (HBV) infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication.

  14. Natural Compounds as a Therapeutic Intervention following Traumatic Brain Injury: The Role of Phytochemicals.

    PubMed

    Scheff, Stephen W; Ansari, Mubeen A

    2017-04-15

    There has been a tremendous focus on the discovery and development of neuroprotective agents that might have clinical relevance following traumatic brain injury (TBI). This type of brain injury is very complex and is divided into two major components. The first component, a primary injury, occurs at the time of impact and is the result of the mechanical insult itself. This primary injury is thought to be irreversible and resistant to most treatments. A second component or secondary brain injury, is defined as cellular damage that is not immediately obvious after trauma, but that develops after a delay of minutes, hours, or even days. This injury appears to be amenable to treatment. Because of the complexity of the secondary injury, any type of therapeutic intervention needs to be multi-faceted and have the ability to simultaneously modulate different cellular changes. Because of diverse pharmaceutical interactions, combinations of different drugs do not work well in concert and result in adverse physiological conditions. Research has begun to investigate the possibility of using natural compounds as a therapeutic intervention following TBI. These compounds normally have very low toxicity and have reduced interactions with other pharmaceuticals. In addition, many natural compounds have the potential to target numerous different components of the secondary injury. Here, we review 33 different plant-derived natural compounds, phytochemicals, which have been investigated in experimental animal models of TBI. Some of these phytochemicals appear to have potential as possible therapeutic interventions to offset key components of the secondary injury cascade. However, not all studies have used the same scientific rigor, and one should be cautious in the interpretation of studies using naturally occurring phytochemical in TBI research.

  15. Targeting Photoinduced DNA Destruction by Ru(II) Tetraazaphenanthrene in Live Cells by Signal Peptide.

    PubMed

    Burke, Christopher S; Byrne, Aisling; Keyes, Tia E

    2018-06-06

    Exploiting NF-κB transcription factor peptide conjugation, a Ru(II)-bis-tap complex (tap = 1,4,5,8-tetraazaphenanthrene) was targeted specifically to the nuclei of live HeLa and CHO cells for the first time. DNA binding of the complex  within the nucleus of live cells was evident from gradual extinction of the metal complex luminescence after it had crossed the nuclear envelope, attributed to guanine quenching of the ruthenium emission via photoinduced electron transfer. Resonance Raman imaging confirmed that the complex remained in the nucleus after emission is extinguished. In the dark and under imaging conditions the cells remain viable, but efficient cellular destruction was induced with precise spatiotemporal control by applying higher irradiation intensities to selected cells. Solution studies indicate that the peptide conjugated complex associates strongly with calf thymus DNA ex-cellulo and gel electrophoresis confirmed that the peptide conjugate is capable of singlet oxygen independent photodamage to plasmid DNA. This indicates that the observed efficient cellular destruction likely operates via direct DNA oxidation by photoinduced electron transfer between guanine and the precision targeted Ru(II)-tap probe. The discrete targeting of polyazaaromatic complexes to the cell nucleus and confirmation that they are photocytotoxic after nuclear delivery is an important step toward their application in cellular phototherapy.

  16. An overview of transcriptional regulation in response to toxicological insult.

    PubMed

    Jennings, Paul; Limonciel, Alice; Felice, Luca; Leonard, Martin O

    2013-01-01

    The completion of the human genome project and the subsequent advent of DNA microarray and high-throughput sequencing technologies have led to a renaissance in molecular toxicology. Toxicogenomic data sets, from both in vivo and in vitro studies, are growing exponentially, providing a wealth of information on regulation of stress pathways at the transcriptome level. Through such studies, we are now beginning to appreciate the diversity and complexity of biological responses to xenobiotics. In this review, we aim to consolidate and summarise the major toxicologically relevant transcription factor-governed molecular pathways. It is becoming clear that different chemical entities can cause oxidative, genotoxic and proteotoxic stress, which induce cellular responses in an effort to restore homoeostasis. Primary among the response pathways involved are NFE2L2 (Nrf2), NFE2L1 (Nrf1), p53, heat shock factor and the unfolded protein response. Additionally, more specific mechanisms exist where xenobiotics act as ligands, including the aryl hydrocarbon receptor, metal-responsive transcription factor-1 and the nuclear receptor family of transcription factors. Other pathways including the immunomodulatory transcription factors NF-κB and STAT together with the hypoxia-inducible transcription factor HIF are also implicated in cellular responses to xenobiotic exposure. A less specific but equally important aspect to cellular injury controlled by transcriptional activity is loss of tissue-specific gene expression, resulting in dedifferentiation of target cells and compromise of tissue function. Here, we review these pathways and the genes they regulate in order to provide an overview of this growing field of molecular toxicology.

  17. Overlapping and Divergent Actions of Structurally Distinct Histone Deacetylase Inhibitors in Cardiac Fibroblasts

    PubMed Central

    Schuetze, Katherine B.; Stratton, Matthew S.; Blakeslee, Weston W.; Wempe, Michael F.; Wagner, Florence F.; Holson, Edward B.; Kuo, Yin-Ming; Andrews, Andrew J.; Gilbert, Tonya M.; Hooker, Jacob M.

    2017-01-01

    Inhibitors of zinc-dependent histone deacetylases (HDACs) profoundly affect cellular function by altering gene expression via changes in nucleosomal histone tail acetylation. Historically, investigators have employed pan-HDAC inhibitors, such as the hydroxamate trichostatin A (TSA), which simultaneously targets members of each of the three zinc-dependent HDAC classes (classes I, II, and IV). More recently, class- and isoform-selective HDAC inhibitors have been developed, providing invaluable chemical biology probes for dissecting the roles of distinct HDACs in the control of various physiologic and pathophysiological processes. For example, the benzamide class I HDAC-selective inhibitor, MGCD0103 [N-(2-aminophenyl)-4-[[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl] benzamide], was shown to block cardiac fibrosis, a process involving excess extracellular matrix deposition, which often results in heart dysfunction. Here, we compare the mechanisms of action of structurally distinct HDAC inhibitors in isolated primary cardiac fibroblasts, which are the major extracellular matrix–producing cells of the heart. TSA, MGCD0103, and the cyclic peptide class I HDAC inhibitor, apicidin, exhibited a common ability to enhance histone acetylation, and all potently blocked cardiac fibroblast cell cycle progression. In contrast, MGCD0103, but not TSA or apicidin, paradoxically increased expression of a subset of fibrosis-associated genes. Using the cellular thermal shift assay, we provide evidence that the divergent effects of HDAC inhibitors on cardiac fibroblast gene expression relate to differential engagement of HDAC1- and HDAC2-containing complexes. These findings illustrate the importance of employing multiple compounds when pharmacologically assessing HDAC function in a cellular context and during HDAC inhibitor drug development. PMID:28174211

  18. Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder

    PubMed Central

    Chiu, Chi-Tso; Wang, Zhifei; Hunsberger, Joshua G.

    2013-01-01

    The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs’ primary targets—glycogen synthase kinase-3 for lithium and histone deacetylases for VPA—induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA’s beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders. PMID:23300133

  19. Development and application of a quantitative PCR assay to study equine herpesvirus 5 invasion and replication in equine tissues in vitro and in vivo.

    PubMed

    Zarski, Lila M; High, Emily A; Nelli, Rahul K; Bolin, Steven R; Williams, Kurt J; Hussey, Gisela

    2017-10-01

    Equine herpesvirus 5 (EHV-5) infection is associated with pulmonary fibrosis in horses, but further studies on EHV-5 persistence in equine cells are needed to fully understand viral and host contributions to disease pathogenesis. Our aim was to develop a quantitative PCR (qPCR) assay to measure EHV-5 viral copy number in equine cell cultures, blood lymphocytes, and nasal swabs of horses. Furthermore, we used a recently developed equine primary respiratory cell culture system to study EHV-5 pathogenesis at the respiratory tract. PCR primers and a probe were designed to target gene E11 of the EHV-5 genome. Sensitivity and repeatability were established, and specificity was verified by testing multiple isolates of EHV-5, as well as DNA from other equine herpesviruses. Four-week old fully differentiated (mature), newly seeded (immature) primary equine respiratory epithelial cell (ERECs), and equine dermal cell cultures were inoculated with EHV-5 and the cells and supernatants collected daily for 14days. Blood lymphocytes and nasal swabs were collected from horses experimentally infected with equine herpesvirus 1 (EHV-1). The qPCR assay detected EHV-5 at stable concentrations throughout 14days in inoculated mature EREC and equine dermal cell cultures (peaking at 202 and 5861 viral genomes per 10 6 cellular β actin, respectively). EHV-5 copies detected in the immature EREC cultures increased over 14days and reached levels greater than 10,000 viral genomes per 10 6 cellular β actin. Moreover, EHV-5 was detected in the lymphocytes of 76% of horses and in the nasal swabs of 84% of horses experimentally infected with EHV-1 pre-inoculation with EHV-1. Post-inoculation with EHV-1, EHV-5 was detected in lymphocytes of 52% of horses while EHV-5 levels in nasal swabs were not significantly different from pre-inoculation levels. In conclusion, qPCR was a reliable technique to investigate viral load in in vivo and in vitro samples, and EHV-5 replication in equine epithelial cells may be influenced by cellular stages of differentiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer.

    PubMed

    Stacpoole, Peter W

    2017-11-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) irreversibly decarboxylates pyruvate to acetyl coenzyme A, thereby linking glycolysis to the tricarboxylic acid cycle and defining a critical step in cellular bioenergetics. Inhibition of PDC activity by pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation has been associated with the pathobiology of many disorders of metabolic integration, including cancer. Consequently, the PDC/PDK axis has long been a therapeutic target. The most common underlying mechanism accounting for PDC inhibition in these conditions is post-transcriptional upregulation of one or more PDK isoforms, leading to phosphorylation of the E1α subunit of PDC. Such perturbations of the PDC/PDK axis induce a "glycolytic shift," whereby affected cells favor adenosine triphosphate production by glycolysis over mitochondrial oxidative phosphorylation and cellular proliferation over cellular quiescence. Dichloroacetate is the prototypic xenobiotic inhibitor of PDK, thereby maintaining PDC in its unphosphorylated, catalytically active form. However, recent interest in the therapeutic targeting of the PDC/PDK axis for the treatment of cancer has yielded a new generation of small molecule PDK inhibitors. Ongoing investigations of the central role of PDC in cellular energy metabolism and its regulation by pharmacological effectors of PDKs promise to open multiple exciting vistas into the biochemical understanding and treatment of cancer and other diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

Top