Comparison of gene expression profiles in primary and immortalized human pterygium fibroblast cells.
Hou, Aihua; Voorhoeve, P Mathijs; Lan, Wanwen; Tin, Minqi; Tong, Louis
2013-11-01
Pterygium is a fibrovascular growth on the ocular surface with corneal tissue destruction, matrix degradation and varying extents of chronic inflammation. To facilitate investigation of pterygium etiology, we immortalized pterygium fibroblast cells and profiled their global transcript levels compared to primary cultured cells. Fibroblast cells were cultured from surgically excised pterygium tissue using the explant method and propagated to passage number 2-4. We hypothesized that intervention with 3 critical molecular intermediates may be necessary to propage these cells. Primary fibroblast cells were immortalized sequentially by a retroviral construct containing the human telomerase reverse transcriptase gene and another retroviral expression vector expressing p53/p16 shRNAs. Primary and immortalized fibroblast cells were evaluated for differences in global gene transcript levels using an Agilent Genechip microarray. Light microscopic morphology of immortalized cells was similar to primary pterygium fibroblast at passage 2-4. Telomerase reverse transcriptase was expressed, and p53 and p16 levels were reduced in immortalized pterygium fibroblast cells. There were 3308 significantly dysregulated genes showing at least 2 fold changes in transcript levels between immortalized and primary cultured cells (2005 genes were up-regulated and 1303 genes were down-regulated). Overall, 13.58% (95% CI: 13.08-14.10) of transcripts in immortalized cells were differentially expressed by at least 2 folds compared to primary cells. Pterygium primary fibroblast cells were successfully immortalized to at least passage 11. Although a variety of genes are differentially expressed between immortalized and primary cells, only genes related to cell cycle are significantly changed, suggesting that the immortalized cells may be used as an in vitro model for pterygium pathology. © 2013 Elsevier Inc. All rights reserved.
[A method for the primary culture of fibroblasts isolated from human airway granulation tissues].
Chen, Nan; Zhang, Jie; Xu, Min; Wang, Yu-ling; Pei, Ying-hua
2013-04-01
To establish a feasible method to culture primary fibroblasts isolated from human airway granulation tissues, and therefore to provide experimental data for the investigation of the pathogenesis of benign airway stenosis. The granulation tissues were collected from 6 patients during routine bronchoscopy at our department of Beijing Tiantan Hospital from April to June 2011. Primary fibroblasts were obtained by culturing the explanted tissues. Cell growth was observed under inverted microscope. All of these 6 primary cultures were successful. Fibroblast-like cells were observed to migrate from the tissue pieces 3 d after inoculation. After 9-11 d of culture, cells reached to 90% confluence and could be sub-cultured. After passage, the cells were still in a typical elongated spindle-shape and grew well. The cells could be sub-cultured further when they formed a monolayer. Explant culture is a reliable method for culturing primary fibroblasts from human airway granulation tissues.
Human brain metastatic stroma attracts breast cancer cells via chemokines CXCL16 and CXCL12.
Chung, Brile; Esmaeili, Ali A; Gopalakrishna-Pillai, Sailesh; Murad, John P; Andersen, Emily S; Kumar Reddy, Naveen; Srinivasan, Gayathri; Armstrong, Brian; Chu, Caleb; Kim, Young; Tong, Tommy; Waisman, James; Yim, John H; Badie, Behnam; Lee, Peter P
2017-01-01
The tumor microenvironment is composed of heterogeneous populations of cells, including cancer, immune, and stromal cells. Progression of tumor growth and initiation of metastasis is critically dependent on the reciprocal interactions between cancer cells and stroma. Through RNA-Seq and protein analyses, we found that cancer-associated fibroblasts derived from human breast cancer brain metastasis express significantly higher levels of chemokines CXCL12 and CXCL16 than fibroblasts from primary breast tumors or normal breast. To further understand the interplay between cancer cells and cancer-associated fibroblasts from each site, we developed three-dimensional organoids composed of patient-derived primary or brain metastasis cancer cells with matching cancer-associated fibroblasts. Three-dimensional CAF aggregates generated from brain metastasis promote migration of cancer cells more effectively than cancer-associated fibroblast aggregates derived from primary tumor or normal breast stromal cells. Treatment with a CXCR4 antagonist and/or CXCL16 neutralizing antibody, alone or in combination, significantly inhibited migration of cancer cells to brain metastatic cancer-associated fibroblast aggregates. These results demonstrate that human brain metastasis cancer-associated fibroblasts potently attract breast cancer cells via chemokines CXCL12 and CXCL16, and blocking CXCR6-CXCL16/CXCR4-CXCL12 receptor-ligand interactions may be an effective therapy for preventing breast cancer brain metastasis.
Nash, Claire; Boufaied, Nadia; Mills, Ian G; Franco, Omar E; Hayward, Simon W; Thomson, Axel A
2017-05-05
The androgen receptor (AR) is a transcription factor, and key regulator of prostate development and cancer, which has discrete functions in stromal versus epithelial cells. AR expressed in mesenchyme is necessary and sufficient for prostate development while loss of stromal AR is predictive of prostate cancer progression. Many studies have characterized genome-wide binding of AR in prostate tumour cells but none have used primary mesenchyme or stroma. We applied ChIPseq to identify genomic AR binding sites in primary human fetal prostate fibroblasts and patient derived cancer associated fibroblasts, as well as the WPMY1 cell line overexpressing AR. We identified AR binding sites that were specific to fetal prostate fibroblasts (7534), cancer fibroblasts (629), WPMY1-AR (2561) as well as those common among all (783). Primary fibroblasts had a distinct AR binding profile versus prostate cancer cell lines and tissue, and showed a localisation to gene promoter binding sites 1 kb upstream of the transcriptional start site, as well as non-classical AR binding sequence motifs. We used RNAseq to define transcribed genes associated with AR binding sites and derived cistromes for embryonic and cancer fibroblasts as well as a cistrome common to both. These were compared to several in vivo ChIPseq and transcript expression datasets; which identified subsets of AR targets that were expressed in vivo and regulated by androgens. This analysis enabled us to deconvolute stromal AR targets active in stroma within tumour samples. Taken together, our data suggest that the AR shows significantly different genomic binding site locations in primary prostate fibroblasts compared to that observed in tumour cells. Validation of our AR binding site data with transcript expression in vitro and in vivo suggests that the AR target genes we have identified in primary fibroblasts may contribute to clinically significant and biologically important AR-regulated changes in prostate tissue. Copyright © 2017. Published by Elsevier B.V.
Olschläger, Veronika; Schrader, Andreas; Hockertz, Stefan
2009-01-01
Cell lines present a valuable tool for in vitro assessment of skin damage caused by application of cosmeticals or pharmaceuticals. They form a reproducible test system under controllable test conditions and, in many cases, can be used as alternatives to animal testing in order to assess the compatibility of drugs or cosmetics and human skin. Yet, it can not necessarily be assumed that the behavior of cultured cells, when treated with different substances, is exactly consistent with the behavior of cells being part of a live organism. Becoming immortal, cells exhibit changes in genotype and/or phenotype, possibly resulting in modified reactions to external influences. Therefore, to obtain results close to in vivo studies, it seems apparent to use primary cells for testing that have not yet undergone any modifications. To compare the properties of primary fibroblasts (Normal Human Dermal Fibroblasts, NHDF) and primary keratinocytes (Normal Human Epidermal Keratinocytes, NHEK) with those of immortal cell lines (3T3 (ACC 173) Swiss albino mouse fibroblasts and HaCaT (human, adult, low calcium, high temperature, human adult skin keratinocytes) cells), their sensitivities in cytotoxicity assays have been assessed. While both fibroblast cell cultures showed similar sensitivities towards sodium dodecyl sulfate (SDS), primary keratinocytes died at SDS concentrations about three times lower than the immortal HaCaT cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchigami, Takao; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544; Kibe, Toshiro
Highlights: • We studied the interaction between tumor cells and fibroblasts in ameloblastoma. • AM-3 ameloblastoma cells secreted significantly high IL-1α levels. • IL-1α derived from AM-3 cells promoted IL-6 and IL-8 secretion of fibroblasts. • IL-6 and IL-8 activated the cellular motility and proliferation of AM-3 cells. - Abstract: Ameloblastoma is an odontogenic benign tumor that occurs in the jawbone, which invades bone and reoccurs locally. This tumor is treated by wide surgical excision and causes various problems, including changes in facial countenance and mastication disorders. Ameloblastomas have abundant tumor stroma, including fibroblasts and immune cells. Although cell-to-cell interactionsmore » are considered to be involved in the pathogenesis of many diseases, intercellular communications in ameloblastoma have not been fully investigated. In this study, we examined interactions between tumor cells and stromal fibroblasts via soluble factors in ameloblastoma. We used a human ameloblastoma cell line (AM-3 ameloblastoma cells), human fibroblasts (HFF-2 fibroblasts), and primary-cultured fibroblasts from human ameloblastoma tissues, and analyzed the effect of ameloblastoma-associated cell-to-cell communications on gene expression, cytokine secretion, cellular motility and proliferation. AM-3 ameloblastoma cells secreted higher levels of interleukin (IL)-1α than HFF-2 fibroblasts. Treatment with conditioned medium from AM-3 ameloblastoma cells upregulated gene expression and secretion of IL-6 and IL-8 of HFF-2 fibroblasts and primary-cultured fibroblast cells from ameloblastoma tissues. The AM3-stimulated production of IL-6 and IL-8 in fibroblasts was neutralized by pretreatment of AM-3 cells with anti-IL-1α antibody and IL-1 receptor antagonist. Reciprocally, cellular motility of AM-3 ameloblastoma cells was stimulated by HFF-2 fibroblasts in IL-6 and IL-8 dependent manner. In conclusion, ameloblastoma cells and stromal fibroblasts behave interactively via these cytokines to create a microenvironment that leads to the extension of ameloblastomas.« less
A Novel Role of Peripheral Corticotropin-Releasing Hormone (CRH) on Dermal Fibroblasts
Rassouli, Olga; Liapakis, George; Lazaridis, Iakovos; Sakellaris, George; Gkountelias, Kostas; Gravanis, Achille; Margioris, Andrew N.
2011-01-01
Corticotropin-releasing hormone, or factor, (CRH or CRF) exerts important biological effects in multiple peripheral tissues via paracrine/autocrine actions. The aim of our study was to assess the effects of endogenous CRH in the biology of mouse and human skin fibroblasts, the primary cell type involved in wound healing. We show expression of CRH and its receptors in primary fibroblasts, and we demonstrate the functionality of fibroblast CRH receptors by induction of cAMP. Fibroblasts genetically deficient in Crh (Crh−/−) had higher proliferation and migration rates and compromised production of IL-6 and TGF-β1 compared to the wildtype (Crh+/+) cells. Human primary cultures of foreskin fibroblasts exposed to the CRF1 antagonist antalarmin recapitulated the findings in the Crh−/− cells, exhibiting altered proliferative and migratory behavior and suppressed production of IL-6. In conclusion, our findings show an important role of fibroblast-expressed CRH in the proliferation, migration, and cytokine production of these cells, processes associated with the skin response to injury. Our data suggest that the immunomodulatory effects of CRH may include an important, albeit not explored yet, role in epidermal tissue remodeling and regeneration and maintenance of tissue homeostasis. PMID:21765902
Eleftheriadis, T; Liakopoulos, V; Lawson, B; Antoniadi, G; Stefanidis, I; Galaktidou, G
2011-07-01
Besides extracellular matrix production, fibroblasts are able to produce various cytokines. Their ubiquitous position makes fibroblasts appropriate cells for sensing various noxious stimuli and for attracting immune cells in the affected area. In the present study the effect of lipopolysaccharide (LPS) and cobalt chloride (CoCl(2)) on the above fibroblasts functions were evaluated in primary human skin fibroblasts cultures. Collagen, matrix metalloproteinase-1, tissue inhibitor of metalloproteinases-1, transforming growth factor-β1, interleukin-8 (IL-8) and macrophage chemoattractant protein-1 (MCP-1) were measured in fibroblasts culture supernatants. Fibroblasts proliferation and viability were assessed as well. Hypoxia inducible factor-1α and the phosphorylated p65 portion of NF-κB were assessed in fibroblasts protein extracts. LPS and CoCl(2) had a minor effect on fibrosis related factors in human primary fibroblasts, possibly due to the absence of interplay with other cell types in the used experimental system. On the contrary both LPS and CoCl(2) increased significantly IL-8. LPS also increased considerably MCP-1, but CoCl(2) decreased it. Thus LPS and CoCl(2) induce a sentinel, nevertheless not identical, phenotype in primary human fibroblasts. The last disparity could result in different body response to infectious or hypoxic noxious stimuli.
Activating the nuclear piston mechanism of 3D migration in tumor cells
2017-01-01
Primary human fibroblasts have the remarkable ability to use their nucleus like a piston, switching from low- to high-pressure protrusions in response to the surrounding three-dimensional (3D) matrix. Although migrating tumor cells can also change how they migrate in response to the 3D matrix, it is not clear if they can switch between high- and low-pressure protrusions like primary fibroblasts. We report that unlike primary fibroblasts, the nuclear piston is not active in fibrosarcoma cells. Protease inhibition rescued the nuclear piston mechanism in polarized HT1080 and SW684 cells and generated compartmentalized pressure. Achieving compartmentalized pressure required the nucleoskeleton–cytoskeleton linker protein nesprin 3, actomyosin contractility, and integrin-mediated adhesion, consistent with lobopodia-based fibroblast migration. In addition, this activation of the nuclear piston mechanism slowed the 3D movement of HT1080 cells. Together, these data indicate that inhibiting protease activity during polarized tumor cell 3D migration is sufficient to restore the nuclear piston migration mechanism with compartmentalized pressure characteristic of nonmalignant cells. PMID:27998990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolay, Nils H., E-mail: n.nicolay@dkfz.de; Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg; Sommer, Eva
2013-12-01
Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IRmore » were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.« less
NASA Astrophysics Data System (ADS)
Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.
2016-08-01
Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.
Primary Mouse Myoblast Purification using Magnetic Cell Separation.
Sincennes, Marie Claude; Wang, Yu Xin; Rudnicki, Michael A
2017-01-01
Primary myoblasts can be isolated from mouse muscle cell extracts and cultured in vitro. Muscle cells are usually dissociated manually by mincing with razor blades or scissors in a collagenase/dispase solution. Primary myoblasts are then gradually enriched by pre-plating on collagen-coated plates, based on the observation that mouse fibroblasts attach quickly to collagen-coated plates, and are less adherent. Here, we describe an automated muscle dissociation protocol. We also propose an alternative to pre-plating using magnetic bead separation of primary myoblasts, which improve myoblast purity by minimizing fibroblast contamination.
[Isolation, purification and primary culture of adult mouse cardiac fibroblasts].
Li, Rujun; Gong, Kaizheng; Zhang, Zhengang
2017-01-01
Objective To establish a method for primary culture of adult mouse cardiac fibroblasts. Methods Myocardial tissues from adult mice were digested with 1 g/L trypsin and 0.8 g/L collagenase IV by oscillating water bath for a short time repeatedly. Cardiac fibroblasts and myocardial cells were isolated with differential adhesion method. Immunofluorescence staining was used to assess the purity of cardiac fibroblasts. The cell morphology was observed under an inverted phase contrast microscope. The proliferation of cardiac fibroblasts was analyzed by growth curve and CCK-8 assay. The Smad2/3 phosphorylation induced by TGF-β1 was detected by Western blotting. Results After 90 minutes of differential adhesion, adherent fibroblasts formed spherical cell mass and after 3 days, cells were spindle-shaped and proliferated rapidly. Cells were confluent after 5 days and the growth curve presented nearly "S" shape. The positive expression rate of vimentin was 95%. CCK-8 assay showed that the optimal cell proliferating activity was found from day 3 to day 5. The level of phosphorylated Smad2/3 obviously increased at the second passage induced by TGF-β1. Conclusion This method is economical and stable to isolate cardiac fibroblasts with high activity and high purity from adult mice.
Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D
2016-01-01
This study compared the cytotoxicity of a new octenidine mouth rinse (MR) against gingival fibroblasts and epithelial cells with different established MRs. The following MRs were used: Octenidol (OCT), Chlorhexidine 0.2% (CHX), Listerine (LIS), Meridol (MER), Betaisodona (BET); and control (medium only). Human primary gingiva fibroblasts and human primary nasal epithelial cells were cultivated in cell-specific media (2 × 10(5) cells/ml) and treated with MR for 1, 5, and 15 min. Each test was performed 12 times. Metabolism activity was measured using a cytotoxicity assay. A cellometer analyzed cell viability, cell number, and cell diameter. The data were analyzed by two-way analysis of variance with subsequent Dunnett's test and additional t-tests. The cytotoxic effects of all MRs on fibroblasts and epithelial cells compared to the control depended on the contact time (p < 0.001). OCT and BET showed less influence on cell metabolism in fibroblasts than other MRs. OCT also demonstrated comparable but not significant results in epithelial cells (p > 0.005). Cell numbers of both cell types at all contact times revealed that OCT showed a less negative effect (p > 0.005), especially for epithelial cells compared to CHX after 15 min (p < 0.005). OCT and BET showed the best results for viability in fibroblasts (p > 0.005), but MER showed less influence than OCT in epithelial cells (p < 0.005). OCT is a potential alternative to CHX regarding cytotoxicity because of its lower cell-toxic effect against fibroblasts and epithelial cells.
Sazonova, E N; Samarina, E Yu; Lebed'ko, O A; Maltseva, I M; Timoshin, S S
2016-05-01
We studied the effects of a synthetic analogue of dermorphin peptide sedatin on DNA synthesis, nucleolar apparatus, and parameters of free radical oxidation in the primary culture of pulmonary fibroblasts under conditions of oxidative stress. Oxidative stress significantly enhanced production of superoxide anion radical in the culture, sufficiently inhibited DNA synthesis in fibroblasts, and reduced the size of cell nuclei and parameters of the nucleolar apparatus. Sedatin prevented accumulation of free radical oxidation products and changes in karyometry parameters induced by oxidative stress. The peptide completely eliminated changes in the parameters of fibroblast nucleolar apparatus and abolished the inhibitory effect of oxidative stress on the number of DNA-synthesizing cells. Pretreatment with non-selective opioid receptor antagonist naloxone hydrochloride partially abolished the effects of sedatin in the primary culture of pulmonary fibroblasts.
Chen, Nan; Zhang, Jie; Xu, Min; Wang, Yu Ling; Pei, Ying Hua
2013-01-01
Airway granulation tissue and scar formation pose a challenge because of the high incidence of recurrence after treatment. As an emerging treatment modality, topical application of mitomycin C has potential value in delaying the recurrence of airway obstruction. Several animal and clinical studies have already proven its feasibility and efficacy. However, the ideal dosage has still not been determined. To establish a novel method for culturing primary fibroblasts isolated from human airway granulation tissue, and to investigate the dose-effect of mitomycin C on the fibroblast proliferation in vitro, so as to provide an experimental reference for clinical practitioners. Granulation tissues were collected during the routine bronchoscopy at our department. The primary fibroblasts were obtained by culturing the explanted tissues. The cells were treated with different concentrations of mitomycin C (0.1, 0.2, 0.4, 0.8 and 1.6 mg/ml) for 5 min followed by additional 48-hour culture before an MTT assay was performed to measure cell viability. MTT assay showed that mitomycin C reduced cell viability at all tested concentrations. The inhibitory ratios were 10.26, 26.77, 32.88, 64.91 and 80.45% for cells treated with mitomycin C at 0.1, 0.2, 0.4, 0.8 and 1.6 mg/ml, respectively. Explant culture is a reliable method for culturing primary fibroblasts from human airway granulation tissue, and mitomycin C can inhibit proliferation of the fibroblasts in vitro. Copyright © 2013 S. Karger AG, Basel.
2015-01-01
We developed a three-dimensional fibroblastic nodule model for fibrogenicity testing of nanomaterials and investigated the role of fibroblast stemlike cells (FSCs) in the fibrogenic process. We showed that carbon nanotubes (CNTs) induced fibroblastic nodule formation in primary human lung fibroblast cultures resembling the fibroblastic foci in clinical fibrosis and promoted FSCs that are highly fibrogenic and a potential driving force of fibrogenesis. This study provides a predictive 3D model and mechanistic insight on CNT fibrogenesis. PMID:24873662
Fukuda, Tomokazu; Kurita, Jun; Saito, Tomomi; Yuasa, Kei; Kurita, Masanobu; Donai, Kenichiro; Nitto, Hiroshi; Soichi, Makoto; Nishimori, Katsuhiko; Uchida, Takafumi; Isogai, Emiko; Onuma, Manabu; Sone, Hideko; Oseko, Norihisa; Inoue-Murayama, Miho
2012-12-01
The hawksbill sea turtle (Eretmochelys imbricata) is a critically endangered species at a risk of extinction. Preservation of the genomic and cellular information of endangered animals is important for future genetic and biological studies. Here, we report the efficient establishment of primary fibroblast cultures from skin tissue of the hawksbill sea turtle. We succeeded in establishing 19 primary cultures from 20 hawksbill sea turtle individuals (a success rate of 95%). These cells exhibited a fibroblast-like morphology and grew optimally at a temperature of 26°C, but experienced a loss of viability when cultured at 37°C. Chromosomal analysis using the primary cells derived here revealed that hawksbill sea turtles have a 2n = 56 karyotype. Furthermore, we showed that our primary cell cultures are free of several fish-related viruses, and this finding is important for preservation purposes. To our knowledge, this report is the first to describe primary cell cultures established from normal tissues of the hawksbill sea turtle. The results will contribute to the preservation of biodiversity, especially for the sea turtles that are critically endangered owing to human activities.
Wang, Mei; Wu, Chunping; Guo, Yu; Cao, Xiaojuan; Zheng, Wenwei; Fan, Guo-Kang
2017-05-01
Most primarily cultured laryngeal squamous cell carcinoma cells are difficult to propagate in vitro and have a low survival rate. However, in our previous work to establish a laryngeal squamous cell carcinoma cell line, we found that laryngeal cancer-associated fibroblasts appeared to strongly inhibit the apoptosis of primarily cultured laryngeal squamous cell carcinoma cells in vitro. In this study, we investigated whether paired laryngeal cancer-associated fibroblasts alone can effectively support the growth of primarily cultured laryngeal squamous cell carcinoma cells in vitro. In all, 29 laryngeal squamous cell carcinoma specimens were collected and primarily cultured. The laryngeal squamous cell carcinoma cells were separated from cancer-associated fibroblasts by differential trypsinization and continuously subcultured. Morphological changes of the cultured laryngeal squamous cell carcinoma cells were observed. Immunocytofluorescence was used to authenticate the identity of the cancer-associated fibroblasts and laryngeal squamous cell carcinoma cells. Flow cytometry was used to quantify the proportion of apoptotic cells. Western blot was used to detect the protein levels of caspase-3. Enzyme-linked immunosorbent assay was used to detect the levels of chemokine (C-X-C motif) ligand 12, chemokine (C-X-C motif) ligand 7, hepatocyte growth factor, and fibroblast growth factor 1 in the supernatants of the laryngeal squamous cell carcinoma and control cells. AMD3100 (a chemokine (C-X-C motif) receptor 4 antagonist) and an anti-chemokine (C-X-C motif) ligand 7 antibody were used to block the tumor-supporting capacity of cancer-associated fibroblasts. Significant apoptotic changes were detected in the morphology of laryngeal squamous cell carcinoma cells detached from cancer-associated fibroblasts. The percentage of apoptotic laryngeal squamous cell carcinoma cells and the protein levels of caspase-3 increased gradually in subsequent subcultures. In contrast, no significant differences in the proliferation capacity of laryngeal squamous cell carcinoma cells cocultured with cancer-associated fibroblasts were detected during subculturing. High level of chemokine (C-X-C motif) ligand 12 was detected in the culture supernatant of cancer-associated fibroblasts. The tumor-supporting effect of cancer-associated fibroblasts was significantly inhibited by AMD3100. Our findings demonstrate that the paired laryngeal cancer-associated fibroblasts alone are sufficient to support the primary growth of laryngeal squamous cell carcinoma cells in vitro and that the chemokine (C-X-C motif) ligand 12/chemokine (C-X-C motif) receptor 4 axis is one of the major contributors.
Preliminary studies of primary ostrich fibroblasts for the isolation of ratite viruses.
Rodgers, S J; Vanhooser, S L; Welsh, R D; Silkwood, T G
1994-01-01
An ostrich egg at 21 days of development was used to propagate primary embryo cell cultures. Primary cultures of skeletal muscle cells (for fibroblasts) were prepared by routine typsinization techniques. The ostrich embryo fibroblasts were tested for their ability to propagate stock avian viruses of infectious bronchitis virus, paramyxiovirus-1 (PMV-1), PMV-2, PMV-3, infectious bursal disease virus, quail bronchitis virus, avian reovirus, turkey coronavirus, and two ostrich-originating specimens (one of which was a possible coronavirus identified by electron microscopy). Cytopathic effects were seen by light microscopy in cell cultures inoculated with PMV-1, turkey coronavirus, and the two ostrich specimens. Hemaglutinating titers of 4 or more were determined for PMV-1, turkey coronavrius, and the two ostrich specimens after inoculation onto monolayers of ostrich embryo fibroblasts. Hemagglutination-inhibition tests confirmed the identification of PMV-1 when homologous antisera were used as the specific inhibitor. Bovine coronavirus antisera inhibited the hemagglutination of one of the cultured ostrich specimens.
Xiang, Yang; Gao, Qian; Su, Weiting; Zeng, Lin; Wang, Jinhuan; Hu, Yi; Nie, Wenhui; Ma, Xutong; Zhang, Yong; Lee, Wenhui; Zhang, Yun
2012-01-01
The skin of the amphibian Bombina maxima is rich in biologically active proteins and peptides, most of which have mammalian analogues. The physiological functions of most of the mammalian analogues are still unknown. Thus, Bombina maxima skin may be a promising model to reveal the physiological role of these proteins and peptides because of their large capacity for secretion. To investigate the physiological role of these proteins and peptides in vitro, a fibroblast cell line was successfully established from Bombina maxima tadpole skin. The cell line grew to form a monolayer with cells of a uniform shape and abundant rough endoplasmic reticulum, which are typical characteristics of fibroblasts. Further identification at a molecular level revealed that they strongly expressed the fibroblast marker protein vimentin. The chromosome number of these cells is 2n = 28, and most of them were diploid. Growth property analysis showed that they grew well for 14 passages. However, cells showed decreased proliferative ability after passage 15. Thus, we tried to immortalize the cells through the overexpression of SV40 T antigen. After selecting by G418, cells stably expressed SV40 large T antigen and showed enhanced proliferative ability and increased telomerase activity. Signal transduction analysis revealed functional p42 mitogen-activated protein (MAP) kinase in immortalized Bombina maxima dermal fibroblasts. Primary fibroblast cells and the immortalized fibroblast cells from Bombina maxima cultured in the present study can be used to investigate the physiological role of Bombina maxima skin-secreted proteins and peptides. In addition, the methods for primary cell culturing and cell immortalization will be useful for culturing and immortalizing cells from other types of amphibians.
Vinoth, Kumar Jayaseelan; Manikandan, Jayapal; Sethu, Swaminathan; Balakrishnan, Lakshmidevi; Heng, Alexis; Lu, Kai; Hande, Manoor Prakash; Cao, Tong
2014-08-20
This study evaluated human embryonic stem cells (hESC) and their differentiated fibroblastic progenies as cellular models for genotoxicity screening. The DNA damage response of hESCs and their differentiated fibroblastic progenies were compared to a fibroblastic cell line (HEPM, CRL1486) and primary cultures of peripheral blood lymphocytes (PBL), upon exposure to Mitomycin C, gamma irradiation and H2O2. It was demonstrated that hESC-derived fibroblastic progenies (H1F) displayed significantly higher chromosomal aberrations, micronuclei formation and double strand break (DSB) formation, as compared to undifferentiated hESC upon exposure to genotoxic stress. Nevertheless, H1F cell types displayed comparable sensitivities to genotoxic challenge as HEPM and PBL, both of which are representative of somatic cell types commonly used for genotoxicity screening. Subsequently, transcriptomic and pathways analysis identified differential expression of critical genes involved in cell death and DNA damage response upon exposure to gamma irradiation. The results thus demonstrate that hESC-derived fibroblastic progenies are as sensitive as commonly-used somatic cell types for genotoxicity screening. Moreover, hESCs have additional advantages, such as their genetic normality compared to immortalized cell lines, as well as their amenability to scale-up for producing large, standardized quantities of cells for genotoxicity screening on an industrial scale, something which can never be achieved with primary cell cultures. Copyright © 2014. Published by Elsevier B.V.
Studies on Typhus and Spotted Fever.
1980-02-01
prowazekii-infected human somatic (fibroblast, endothelia)), but not chick, mouse or monkey , cells in culture: (a) intracellular antirickettsial action...that of the controls. No such effect on growth was apparent in CE cells, Nu E % o0 M Ŕ ZOO - .0 E 00 (1 CI - 4D W = .) C ~ o r- -!NBI Go !N 21501,,o o...human origin transformed or malignant cells, monkey primary or diploid and primary mouse embryo fibroblasts will permit expression of these effects to
Caires, Hugo R; Barros da Silva, Patrícia; Barbosa, Mário A; Almeida, Catarina R
2018-03-01
The biological response to implanted biomaterials is a complex and highly coordinated phenomenon involving many different cell types that interact within 3D microenvironments. Here, we increased the complexity of a 3D platform to include at least 3 cell types that play a role in the host response upon scaffold implantation. With this system, it was possible to address how immune responses triggered by 3D biomaterials mediate recruitment of stromal cells that promote tissue regeneration, mesenchymal stromal/stem cells (MSC), or a foreign body response, fibroblasts. Primary human macrophages yielded the highest fibroblast recruitment when interacting with chitosan scaffolds but not polylactic acid. Interestingly, when there were MSC and fibroblasts in the same environment, macrophages in chitosan scaffolds again promoted a significant increase on fibroblast recruitment, but not of MSC. However, macrophages that were firstly allowed to interact with MSC within the scaffolds were no longer able to recruit fibroblasts. This study illustrates the potential to use different scaffolds to regulate the dynamics of recruitment of proregenerative or fibrotic cell types through immunomodulation. Overall, this work strengths the idea that ex vivo predictive systems need to consider the different players involved in the biological response to biomaterials and that timing of arrival of specific cell types will affect the outcome. Copyright © 2017 John Wiley & Sons, Ltd.
Fibroblasts Lead the Way: A Unified View of 3D Cell Motility.
Petrie, Ryan J; Yamada, Kenneth M
2015-11-01
Primary human fibroblasts are remarkably adaptable, able to migrate in differing types of physiological 3D tissue and on rigid 2D tissue culture surfaces. The crawling behavior of these and other vertebrate cells has been studied intensively, which has helped generate the concept of the cell motility cycle as a comprehensive model of 2D cell migration. However, this model fails to explain how cells force their large nuclei through the confines of a 3D matrix environment and why primary fibroblasts can use more than one mechanism to move in 3D. Recent work shows that the intracellular localization of myosin II activity is governed by cell-matrix interactions to both force the nucleus through the extracellular matrix (ECM) and dictate the type of protrusions used to migrate in 3D. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Kamau Chapman, Sarah W.; Hassa, Paul O.; Koch-Schneidemann, Sabine; von Rechenberg, Brigitte; Hofmann-Amtenbrink, Margarethe; Steitz, Benedikt; Petri-Fink, Alke; Hofmann, Heinrich; Hottiger, Michael O.
Primary cell lines are more difficult to transfect when compared to immortalized/transformed cell lines, and hence new techniques are required to enhance the transfection efficiency in these cells. We isolated and established primary cultures of synoviocytes, chondrocytes, osteoblasts, melanocytes, macrophages, lung fibroblasts, and embryonic fibroblasts. These cells differed in several properties, and hence were a good representative sample of cells that would be targeted for expression and delivery of therapeutic genes in vivo. The efficiency of gene delivery in all these cells was enhanced using polyethylenimine-coated polyMAG magnetic nanoparticles, and the rates (17-84.2%) surpassed those previously achieved using other methods, especially in cells that are difficult to transfect. The application of permanent and pulsating magnetic fields significantly enhanced the transfection efficiencies in synoviocytes, chondrocytes, osteoblasts, melanocytes and lung fibroblasts, within 5 min of exposure to these magnetic fields. This is an added advantage for future in vivo applications, where rapid gene delivery is required before systemic clearance or filtration of the gene vectors occurs.
Kahounová, Zuzana; Kurfürstová, Daniela; Bouchal, Jan; Kharaishvili, Gvantsa; Navrátil, Jiří; Remšík, Ján; Šimečková, Šárka; Študent, Vladimír; Kozubík, Alois; Souček, Karel
2017-04-06
The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (EpCAM) identification of fibroblasts from breast and prostate tumor tissues is advised. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Arlett, C F; Green, M H; Priestley, A; Harcourt, S A; Mayne, L V
1988-12-01
We have compared cell killing following 60Co gamma irradiation in 22 primary human fibroblast strains, nine SV40-immortalized human fibroblast lines and seven SV40-transformed pre-crisis human fibroblast cultures. We have examined material from normal individuals, from ataxia-telangiectasia (A-T) patients and from A-T heterozygotes. We have confirmed the greater sensitivity of A-T derived cells to gamma radiation. The distinction between A-T and normal cells is maintained in cells immortalized by SV40 virus but the immortal cells are more gamma radiation resistant than the corresponding primary fibroblasts. Cells transformed by plasmids (pSV3gpt and pSV3neo) expressing SV40 T-antigen, both pre- and post-crisis, show this increased resistance, indicating that it is expression of SV40 T-antigen, rather than immortalization per se which is responsible for the change. We use D0, obtained from a straight line fit, and D, estimated from a multitarget curve, as parameters to compare radiosensitivity. We suggest that both have their advantages; D0 is perhaps more reproducible, but D is more realistic when comparing shouldered and non-shouldered data.
Stahnke, Thomas; Kowtharapu, Bhavani S; Stachs, Oliver; Schmitz, Klaus-Peter; Wurm, Johannes; Wree, Andreas; Guthoff, Rudolf Friedrich; Hovakimyan, Marina
2017-01-01
In glaucoma surgery, fibrotic processes occur, leading to impairment of liquid outflow. Activated fibroblasts are responsible for postoperative scarring. The transforming growth factor-β (TGF-β) pathway plays a key role in fibroblast function, differentiation and proliferation. The aim of this study was the characterization of the fibrotic potential of two subtypes of primary human ocular fibroblasts and the attempt to inhibit fibrotic processes specifically, without impairing cell viability. For fibrosis inhibition we focused on the small molecule pirfenidone, which has been shown to prevent pulmonary fibrosis by the decrease of the expression of TGF-β1, TGF-β2 and TGF-β3 cytokines. For in vitro examinations, isolated human primary fibroblasts from Tenon capsule and human intraconal orbital fat tissues were used. These fibroblast subpopulations were analyzed in terms of the expression of matrix components responsible for postoperative scarring. We concentrated on the expression of collagen I, III, VI and fibronectin. Additionally, we analyzed the expression of α-smooth muscle actin, which serves as a marker for fibrosis and indicates transformation of fibroblasts into myofibroblasts. Gene expression was analyzed by rtPCR and synthesized proteins were examined by immunofluorescence and Western blot methods. Proliferation of fibroblasts under different culture conditions was assessed using BrdU assay. TGF-β1 induced a significant increase of cell proliferation in both cell types. Also the expression of some fibrotic markers was elevated. In contrast, pirfenidone decreased cell proliferation and matrix synthesis in both fibroblast subpopulations. Pirfenidone slightly attenuated TGF-β1 induced expression of fibronectin and α-smooth muscle actin in fibroblast cultures, without impairing cell viability. To summarize, manipulation of the TGF-β signaling pathway by pirfenidone represents a specific antifibrotic approach with no toxic side effects in two human orbital fibroblast subtypes. We presume that pirfenidone is a promising candidate for the treatment of fibrosis following glaucoma surgery.
Chen, Fengying; Wu, Tianfu; Cheng, Xiangrong
2014-03-01
To date, there have been very little data on the cytotoxic responses of different cell lines to denture adhesives. To determine the cytotoxicity of three denture adhesives on primary human oral keratinocytes (HOKs), fibroblasts (HOFs) and permanent mouse fibroblasts cell lines (L929). Three commercial denture adhesives (two creams and one powder) were prepared for indirect contact using the agar diffusion test, as well as extracts in MTT assay. The results of the MTT assay were statistically analysed by one-way anova and Tukey's test (p < 0.05). All of the tested denture adhesives showed mild to moderate cytotoxicity to primary HOKs (p < 0.001), whereas none of three was toxic to L929 cells (p > 0.05) in both assays. For primary HOFs cultures, slight cytotoxicity was observed for one of the products from the agar diffusion test and undiluted eluates of all tested adhesives with MTT assay (p < 0.01). Denture adhesives are toxic to the primary HOKs and HOFs cultures, whereas non-toxic to L929 cells. The results suggest that primary human oral mucosal cells may provide more valuable information in toxicity screening of denture adhesives. © 2012 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
He, Xiaolin; Chao, Yuan; Zhou, Guangxian; Chen, Yulin
2016-01-10
To determine the relationship between fibroblast growth factor 5 (FGF5) and FGF5-short (FGF5s) in dermal papilla cells of cashmere goat primary and secondary hair follicles. We isolated dermal papilla cells from primary hair follicle (PHF) and secondary hair follicle (SHF) of cashmere goat, and found that the FGF5 receptor, fibroblast growth factor receptor 1 (FGFR1), was expressed in these two types of dermal papilla cells. Moreover, adenovirus-mediated overexpression of FGF5 could upregulate the mRNA expression of insulin-like growth factor-1 (IGF-1), versican and noggin that were important for follicle growth maintenance, whereas downregulate the expression of anagen chalone bone morphogenetic protein 4 (BMP4) in dermal papilla cells. However, these alterations were partly reversed by FGF5s overexpression. In conclusion, our results demonstrated that FGF5s acted as an inhibitor of FGF5 in the regulation of anagen-catagen transition of cashmere goat dermal papilla cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression
Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio
2010-01-01
Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor. Electronic supplementary material The online version of this article (doi:10.1007/s13277-010-0108-7) contains supplementary material, which is available to authorized users. PMID:20820980
Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression.
Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio; Folgueira, Maria Aparecida Azevedo Koike
2011-02-01
Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor.
In Vitro Comparison of Cytotoxicity of Four Root Canal Sealers on Human Gingival Fibroblasts
Konjhodzic-Prcic, Alma; Gorduysus, Omer; Kucukkaya, Selen; Atila, Burcu; Muftuoglu, Sevda; Zeybek, Dilara
2015-01-01
The goal of this in vitro study was to evaluate the relative biocompatibility of four endodontic sealers on the cell culture of the human fibroblast through cytotoxicity. Materials and Methods: In this study four endodontics sealers was used GuttaFlow (Roeko)silicone based sealer, AH plus (De Tray-DENTSPLY) epoxy resin based, Apexit (Vivadent) calcium hydroxide based and Endorez (Ultradent) methacrylate based sealer. Sealers were tested on primary cell lines of human gingival fibroblasts. Experiments were preformed in laboratories of Hacettepe University of Ankara, Turkey and Faculty of Dentistry, University of Sarajevo, Bosnia and Herzegovina Cytotoxicity was determinate using WST-1 assay. Results: Results were analyzed by SPSS 19 program. Kolgomorov-Smirnov test, Shapiro-Wilk and descriptive statistics also were used, as well as Kriskall-Wallis, ANOVA test and T- test. According to our results all four sealers showed different cytotoxicity effects on human gingival fibroblast cell culture, but all of them are slightly cytotoxic. Conclusions: According to results of this study it can be concluded: all four sealers showed different cytotoxicity effects on primary cell lines of human gingival fibroblasts, but all of them are slightly cytotoxicity. PMID:25870472
Verma, Subash Chand; Agarwal, Pooja; Krishnan, Manju Y
2016-03-01
Keeping with their classical role in wound healing, fibroblasts of the lung take part in the resolution of tubercular granulomas. They are totally absent in nascent granulomas, but surround necrotizing granulomas, and are the majority of cells in healed granulomas. Lung fibroblasts may become infected with Mycobacterium tuberculosis (Mtb). Two previous studies suggested an immunomodulatory effect of fibroblasts on infected macrophages. In the present study, we looked at the role of primary mouse lung fibroblasts on naive or activated mouse bone marrow macrophages infected with Mtb and the effect of infection on fibroblast properties. We observed that with fibroblasts in the vicinity, infected naive macrophages restricted the bacterial growth, while activated macrophages turned more bactericidal with concomitant increase in nitrite production. Neutralizing IL-1α in fibroblast supernatant reduced the nitrite production by infected macrophages. Secretion of IL-6 and MCP-1 was down-regulated, while TNF-α was up-regulated in infected naive macrophages. In infected activated macrophages, the secretion of IL-6 was up-regulated, while that of MCP-1 and TNF-α was unaffected. The 'fibroblast effects' were enhanced when the fibroblasts too were infected. Mtb induced IL-1 secretion and pro-fibrotic responses by fibroblasts. Mtb-induced myofibroblast conversion was blocked by rapamycin suggesting cell signalling via mTOR. Copyright © 2015 Elsevier Ltd. All rights reserved.
Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.
Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi
2016-02-03
After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. Copyright © 2016 John Wiley & Sons, Inc.
Ambagala, Aruna P; Marsh, Angie K; Chan, Jacqueline K; Mason, Rosemarie; Pilon, Richard; Fournier, Jocelyn; Sandstrom, Paul; Willer, David O; MacDonald, Kelly S
2013-05-01
Cynomolgus macaques are widely used as an animal model in biomedical research. We have established an immortalized cynomolgus macaque fibroblast cell line (MSF-T) by transducing primary dermal fibroblasts isolated from a 13-year-old male cynomolgus macaque with a retrovirus vector expressing human telomerase reverse transcriptase (hTERT). The MSF-T cells showed increased telomerase enzyme activity and reached over 200 in vitro passages compared to the non-transduced dermal fibroblasts, which reached senescence after 43 passages. The MSF-T cell line is free of mycoplasma contamination and is permissive to the newly identified cynomolgus macaque cytomegalovirus (CyCMV). CyCMV productively infects MSF-T cells and induces down-regulation of MHC class I expression. The MSF-T cell line will be extremely useful for the propagation of CyCMV and other cynomolgus herspesviruses in host-derived fibroblast cells, allowing for the retention of host-specific viral genes. Moreover, this cell line will be beneficial for many in vitro experiments related to this animal model.
NASA Astrophysics Data System (ADS)
Untoro, E. G.; Asrianti, D.; Usman, M.; Meidyawati, R.; Margono, A.
2017-08-01
Wharton’s Jelly-derived mesenchymal stem cells (WJMSCs) have gained interest as an alternative source of stem cells for regenerative medicine. Although many studies have characterized Wharton’s Jelly biologically, the effects of different concentrations in a cultured medium have not yet been compared. Damaged fibroblasts, the primary components of irreversible dental pulpitis, irreversibly impair the ability to regenerate and lead to the disruption of extracellular matrix. This study was performed to evaluate the potency of three WJMSCs-CM concentrations in improving serum-starved fibroblasts. Fibroblasts were cultivated in five passages, and divided into four groups. The first group (the control group) consisted of fibroblast cells that had been treated using starvation methods. The other groups (the treatment groups) were treated with various concentration of WJMSCs-CM (50%, 25% and 12.5%). Proliferative ability was evaluated using a cell count method and analyzed with a one-way ANOVA. Cultivation of serum-starved fibroblasts produced significantly higher cell counts in 12.5% WJMSCs-CM compared to the 50% group. It can be concluded that 12.5% WJMSCs-CM is the most efficient concentration for fibroblast proliferation.
The hallmarks of fibroblast ageing.
Tigges, Julia; Krutmann, Jean; Fritsche, Ellen; Haendeler, Judith; Schaal, Heiner; Fischer, Jens W; Kalfalah, Faiza; Reinke, Hans; Reifenberger, Guido; Stühler, Kai; Ventura, Natascia; Gundermann, Sabrina; Boukamp, Petra; Boege, Fritz
2014-06-01
Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-)adaptation, thus constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated, although these cells have been a preferred model of cell ageing in vitro for decades. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Transformation of primary chick embryo fibroblasts by Marek's disease virus.
Buranathai, C; Rodriguez, J; Grose, C
1997-12-08
Marek's disease virus (MDV) is an alphaherpesvirus, which can mediate the malignant transformation of lymphocytes to form lymphomas in chickens. In this study, we demonstrate that MDV can transform primary chick embryo fibroblasts (CEF). The cell line derived from primary CEF infected with the GA strain of MDV was called CEM(MDV). The fibroblast nature of CEM(MDV) was verified by absence of cytokeratin type II. The CEM(MDV) phenotype differed from either primary CEF or MDV-infected CEF. CEM(MDV) were extensively vacuolated, with unusual multilamellar structures in the cytoplasm, The nuclei were considerably larger than those in primary CEF and were uniformly positive for proliferating cell nuclear antigen. The cell line was subcultured for more than 10 generations; however, CEM(MDV) did not support a fully productive MDV infection, because complete nucleocapsids were not detected and infectivity assays showed that cell line produced no infectious virus. PCR analyses demonstrated that this cell line carried both polypeptide 38 (pp38) and Meq DNA, MDV-specific genes associated with transformation. In addition, examination by laser scanning confocal microscopy revealed that CEM(MDV) constitutively produced MDV MEQ protein in nuclei and pp38 as well as glycoprotein B in the cytoplasm and on the plasma membrane. Growth in soft agar assay demonstrated that CEM(MDV) formed colonies, similar to HeLa and human melanoma cells. Retroviral insertion was not detected in DNA from the CEM(MDV) line.
Molina-Molina, M; Machahua-Huamani, C; Vicens-Zygmunt, V; Llatjós, R; Escobar, I; Sala-Llinas, E; Luburich-Hernaiz, P; Dorca, J; Montes-Worboys, A
2018-04-27
Pirfenidone, a pleiotropic anti-fibrotic treatment, has been shown to slow down disease progression of idiopathic pulmonary fibrosis (IPF), a fatal and devastating lung disease. Rapamycin, an inhibitor of fibroblast proliferation could be a potential anti-fibrotic drug to improve the effects of pirfenidone. Primary lung fibroblasts from IPF patients and human alveolar epithelial cells (A549) were treated in vitro with pirfenidone and rapamycin in the presence or absence of transforming growth factor β1 (TGF-β). Extracellular matrix protein and gene expression of markers involved in lung fibrosis (tenascin-c, fibronectin, collagen I [COL1A1], collagen III [COL3A1] and α-smooth muscle actin [α-SMA]) were analyzed. A cell migration assay in pirfenidone, rapamycin and TGF-β-containing media was performed. Gene and protein expression of tenascin-c and fibronectin of fibrotic fibroblasts were reduced by pirfenidone or rapamycin treatment. Pirfenidone-rapamycin treatment did not revert the epithelial to mesenchymal transition pathway activated by TGF-β. However, the drug combination significantly abrogated fibroblast to myofibroblast transition. The inhibitory effect of pirfenidone on fibroblast migration in the scratch-wound assay was potentiated by rapamycin combination. These findings indicate that the combination of pirfenidone and rapamycin widen the inhibition range of fibrogenic markers and prevents fibroblast migration. These results would open a new line of research for an anti-fibrotic combination therapeutic approach.
Shukla, Vasudha; Barnhouse, Victoria; Ackerman, William E; Summerfield, Taryn L; Powell, Heather M; Leight, Jennifer L; Kniss, Douglas A; Ghadiali, Samir N
2018-01-01
The leading cause of neonatal mortality, pre-term birth, is often caused by pre-mature ripening/opening of the uterine cervix. Although cervical fibroblasts play an important role in modulating the cervix's extracellular matrix (ECM) and mechanical properties, it is not known how hormones, i.e., progesterone, and pro-inflammatory insults alter fibroblast mechanics, fibroblast-ECM interactions and the resulting changes in tissue mechanics. Here we investigate how progesterone and a pro-inflammatory cytokine, IL-1β, alter the biomechanical properties of human cervical fibroblasts and the fibroblast-ECM interactions that govern tissue-scale mechanics. Primary human fibroblasts were isolated from non-pregnant cervix and treated with estrogen/progesterone, IL-1β or both. The resulting changes in ECM gene expression, matrix remodeling, traction force generation, cell-ECM adhesion and tissue contractility were monitored. Results indicate that IL-1β induces a significant reduction in traction force and ECM adhesion independent of pre-treatment with progesterone. These cell level effects altered tissue-scale mechanics where IL-1β inhibited the contraction of a collagen gel over 6 days. Interestingly, progesterone treatment alone did not modulate traction forces or gel contraction but did result in a dramatic increase in cell-ECM adhesion. Therefore, the protective effect of progesterone may be due to altered adhesion dynamics as opposed to altered ECM remodeling.
Gillespie, Zoe E; MacKay, Kimberly; Sander, Michelle; Trost, Brett; Dawicki, Wojciech; Wickramarathna, Aruna; Gordon, John; Eramian, Mark; Kill, Ian R; Bridger, Joanna M; Kusalik, Anthony; Mitchell, Jennifer A; Eskiw, Christopher H
2015-01-01
Rapamycin is a well-known inhibitor of the Target of Rapamycin (TOR) signaling cascade; however, the impact of this drug on global genome function and organization in normal primary cells is poorly understood. To explore this impact, we treated primary human foreskin fibroblasts with rapamycin and observed a decrease in cell proliferation without causing cell death. Upon rapamycin treatment chromosomes 18 and 10 were repositioned to a location similar to that of fibroblasts induced into quiescence by serum reduction. Although similar changes in positioning occurred, comparative transcriptome analyses demonstrated significant divergence in gene expression patterns between rapamycin-treated and quiescence-induced fibroblasts. Rapamycin treatment induced the upregulation of cytokine genes, including those from the Interleukin (IL)-6 signaling network, such as IL-8 and the Leukemia Inhibitory Factor (LIF), while quiescent fibroblasts demonstrated up-regulation of genes involved in the complement and coagulation cascade. In addition, genes significantly up-regulated by rapamycin treatment demonstrated increased promoter occupancy of the transcription factor Signal Transducer and Activator of Transcription 5A/B (STAT5A/B). In summary, we demonstrated that the treatment of fibroblasts with rapamycin decreased proliferation, caused chromosome territory repositioning and induced STAT5A/B-mediated changes in gene expression enriched for cytokines. PMID:26652669
Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation
Procopio, Maria-Giuseppina; Laszlo, Csaba; Labban, Dania Al; Kim, Dong Eun; Bordignon, Pino; Jo, Seunghee; Goruppi, Sandro; Menietti, Elena; Ostano, Paola; Ala, Ugo; Provero, Paolo; Hoetzenecker, Wolfram; Neel, Victor; Kilarski, Witek; Swartz, Melody A.; Brisken, Cathrin; Lefort, Karine; Dotto, G. Paolo
2015-01-01
Stromal fibroblast senescence has been linked to aging-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAF) are frequently increased. Loss or down-modulation of the Notch effector CSL/RBP-Jκ in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumors. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 expression and function is down-modulated only in the latter, with paracrine FGF signaling as likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control. PMID:26302407
Kemény, Lajos V; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B
2016-06-02
After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.
Khan, Tapan K; Wender, Paul A; Alkon, Daniel L
2018-02-01
Skin health is associated with the day-to-day activity of fibroblasts. The primary function of fibroblasts is to synthesize structural proteins, such as collagen, extracellular matrix proteins, and other proteins that support the structural integrity of the skin and are associated with younger, firmer, and more elastic skin that is better able to resist and recover from injury. At sub-nanomolar concentrations (0.03-0.3 nM), bryostatin-1 and its synthetic analog, picolog (0.1-10 nM) sustained the survival and activation of human dermal fibroblasts cultured under the stressful condition of prolonged serum deprivation. Bryostatin-1 treatment stabilized human skin equivalents (HSEs), a bioengineered combination of primary human skin cells (keratinocytes and dermal fibroblasts) on an extracellular matrix composed of mainly collagen. Fibroblasts activated by bryostatin-1 protected the structural integrity of HSEs. Bryostatin-1 and picolog prolonged activation of Erk in fibroblasts to promote cell survival. Chronic stress promotes the progression of apoptosis. Dermal fibroblasts constitutively express all components of Fas associated apoptosis, including caspase-8, an initiator enzyme of apoptosis. Prolong bryostatin-1 treatment reduced apoptosis by decreasing caspase-8 and protected dermal fibroblasts. Our data suggest that bryostatin-1 and picolog could be useful in anti-aging skincare, and could have applications in tissue engineering and regenerative medicine. © 2017 Wiley Periodicals, Inc.
Kemény, Lajos V.; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.
2016-01-01
After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells’ nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma–stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments. PMID:27271591
Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion.
Ahluwalia, Neil; Grasberger, Paula E; Mugo, Brian M; Feghali-Bostwick, Carol; Pardo, Annie; Selman, Moisés; Lagares, David; Tager, Andrew M
2016-06-01
Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.
Oncogenes induce the cancer-associated fibroblast phenotype
Lisanti, Michael P; Martinez-Outschoorn, Ubaldo E; Sotgia, Federica
2013-01-01
Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and “glycolytic reprogramming” in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is “mirrored” by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating “metabolic symbiosis” and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting “fibroblast addiction” in primary and metastatic tumor cells may expose a critical Achilles’ heel, leading to disease regression in both sporadic and familial cancers. PMID:23860382
Li, Minglun; Ping, Gong; Plathow, Christian; Trinh, Thuy; Lipson, Kenneth E; Hauser, Kai; Krempien, Robert; Debus, Juergen; Abdollahi, Amir; Huber, Peter E
2006-01-01
Background Several small receptor tyrosine kinase inhibitors (RTKI) have entered clinical cancer trials alone and in combination with radiotherapy or chemotherapy. The inhibitory spectrum of these compounds is often not restricted to a single target. For example Imatinib/Gleevec (primarily a bcr/abl kinase inhibitor) or SU11248 (mainly a VEGFR inhibitor) are also potent inhibitors of PDGFR and other kinases. We showed previously that PDGF signaling inhibition attenuates radiation-induced lung fibrosis in a mouse model. Here we investigate effects of SU9518, a PDGFR inhibitor combined with ionizing radiation in human primary fibroblasts and endothelial cells in vitro, with a view on utilizing RTKI for antifibrotic therapy. Methods Protein levels of PDGFR-α/-β and phosphorylated PDGFR in fibroblasts were analyzed using western and immunocytochemistry assays. Functional proliferation and clonogenic assays were performed (i) to assess PDGFR-mediated survival and proliferation in fibroblasts and endothelial cells after SU9518 (small molecule inhibitor of PDGF receptor tyrosine kinase); (ii) to test the potency und selectivity of the PDGF RTK inhibitor after stimulation with PDGF isoforms (-AB, -AA, -BB) and VEGF+bFGF. In order to simulate in vivo conditions and to understand the role of radiation-induced paracrine PDGF secretion, co-culture models consisting of fibroblasts and endothelial cells were employed. Results In fibroblasts, radiation markedly activated PDGF signaling as detected by enhanced PDGFR phosphorylation which was potently inhibited by SU9518. In fibroblast clonogenic assay, SU9518 reduced PDGF stimulated fibroblast survival by 57%. Likewise, SU9518 potently inhibited fibroblast and endothelial cell proliferation. In the co-culture model, radiation of endothelial cells and fibroblast cells substantially stimulated proliferation of non irradiated fibroblasts and vice versa. Importantly, the RTK inhibitor significantly inhibited this paracrine radiation-induced fibroblast and endothelial cell activation. Conclusion Radiation-induced autocrine and paracrine PDGF signaling plays an important role in fibroblast and endothelial cell proliferation. SU9518, a PDGFR tyrosine kinase inhibitor, reduces radiation-induced fibroblast and endothelial cell activation. This may explain therapeutic anticancer effects of Imatinib/Gleevec, and at the same time it could open a way of attenuating radiation-induced fibrosis. PMID:16556328
NASA Astrophysics Data System (ADS)
Zhao, Guoping; Chen, Shaopeng; Zhao, Ye; Zhu, Lingyan; Huang, Pei; Bao, Lingzhi; Wang, Jun; Wang, Lei; Wu, Lijun; Wu, Yuejin; Xu, An
2010-02-01
Magnetic resonance image (MRI) systems with a much higher magnetic flux density were developed and applied for potential use in medical diagnostic. Recently, much attention has been paid to the biological effects of static, strong magnetic fields (SMF). With the 13 T SMF facility in the Institute of Plasma Physics, Chinese Academy of Sciences, the present study focused on the cellular effects of the SMF with 13 T on the cell viability and the cell cycle distribution in immortalized hamster cells, such as human-hamster hybrid (AL) cells, Chinese hamster ovary (CHO) cells, DNA double-strand break repair deficient mutant (XRS-5) cells, and human primary skin fibroblasts (AG1522) cells. It was found that the exposure of 13 T SMF had less effect on the colony formation in either nonsynchronized or synchronized AL cells. Moreover, as compared to non-exposed groups, there were slight differences in the cell cycle distribution no matter in either synchronized or nonsynchronized immortalized hamster cells after exposure to 13 T SMF. However, it should be noted that the percentage of exposed AG1522 cells at G0/G1 phase was decreased by 10% as compared to the controls. Our data indicated that although 13 T SMF had minimal effects in immortalized hamster cells, the cell cycle distribution was slightly modified by SMF in human primary fibroblasts.
An in-vitro scaffold-free epithelial-fibroblast coculture model for the larynx
Walimbe, Tanaya; Panitch, Alyssa; Sivasankar, M. Preeti
2017-01-01
Objective Physiologically relevant, well-characterized in vitro vocal fold coculture models are needed to test the effects of various challenges and therapeutics on vocal fold physiology. We characterize a healthy state coculture model, created by using bronchial/tracheal epithelial cells and immortalized vocal fold fibroblasts. We also demonstrate that this model can be induced into a fibroplastic state to overexpress stress fibers using TGFβ1. Method Cell metabolic activity of immortalized human vocal fold fibroblasts incubated in different media combinations were confirmed with MTT assay. Fibroblasts were grown to confluence and primary bronchial/tracheal epithelial cells suspended in coculture media were seeded directly over the base layer of the fibroblasts. Cells were treated with TGFβ1 to induce myofibroblast formation. Cell shape and position was confirmed by live cell tracking, fibrosis was confirmed by probing for α smooth muscle actin (α-SMA) and phenotype was confirmed by immunostaining for vimentin and E-cadherin. Results Fibroblasts retain metabolic activity in coculture epithelial media. Live cell imaging revealed a layer of epithelial cells atop fibroblasts. α-SMA expression was enhanced in TGFβ1 treated cells, confirming that both cell types maintained a healthy phenotype in coculture, and can be induced into overexpressing stress fibers. Vimentin and E-cadherin immunostaining show that cells retain phenotype in coculture. Conclusion These data lay effective groundwork for a functional coculture model that retains the reproducibility necessary to serve as a viable diagnostic and therapeutic screening platform. Level of Evidence NA PMID:27859361
Parlanti, Eleonora; Pietraforte, Donatella; Iorio, Egidio; Visentin, Sergio; De Nuccio, Chiara; Zijno, Andrea; D'Errico, Mariarosaria; Simonelli, Valeria; Sanchez, Massimo; Fattibene, Paola; Falchi, Mario; Dogliotti, Eugenia
2015-12-01
Xeroderma pigmentosum (XP)-A patients are characterized by increased solar skin carcinogenesis and present also neurodegeneration. XPA deficiency is associated with defective nucleotide excision repair (NER) and increased basal levels of oxidatively induced DNA damage. In this study we search for the origin of increased levels of oxidatively generated DNA lesions in XP-A cell genome and then address the question of whether increased oxidative stress might drive genetic instability. We show that XP-A human primary fibroblasts present increased levels and different types of intracellular reactive oxygen species (ROS) as compared to normal fibroblasts, with O₂₋• and H₂O₂ being the major reactive species. Moreover, XP-A cells are characterized by decreased reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios as compared to normal fibroblasts. The significant increase of ROS levels and the alteration of the glutathione redox state following silencing of XPA confirmed the causal relationship between a functional XPA and the control of redox balance. Proton nuclear magnetic resonance (¹H NMR) analysis of the metabolic profile revealed a more glycolytic metabolism and higher ATP levels in XP-A than in normal primary fibroblasts. This perturbation of bioenergetics is associated with different morphology and response of mitochondria to targeted toxicants. In line with cancer susceptibility, XP-A primary fibroblasts showed increased spontaneous micronuclei (MN) frequency, a hallmark of cancer risk. The increased MN frequency was not affected by inhibition of ROS to normal levels by N-acetyl-L-cysteine. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, H; You, S; Kong, B W; Foster, L K; Farris, J; Foster, D N
2001-08-22
The reactive oxygen species are known as endogenous toxic oxidant damaging factors in a variety of cell types, and in response, the antioxidant genes have been implicated in cell proliferation, senescence, immortalization, and tumorigenesis. The expression of manganese superoxide dismutase mRNA was shown to increase in most of the immortal chicken embryo fibroblast (CEF) cells tested, while expression of catalase mRNA appeared to be dramatically decreased in all immortal CEF cells compared to their primary counterparts. The expression of copper-zinc superoxide dismutase mRNA was shown to increase slightly in some immortal CEF cells. The glutathione peroxidase expressed relatively similar levels in both primary and immortal CEF cells. As primary and immortal DF-1 CEF cells were treated with 10-100 microM of hydrogen peroxide (concentrations known to be sublethal in human diploid fibroblasts), immortal DF-1 CEF cells were shown to be more sensitive to hydrogen peroxide, and total cell numbers were dramatically reduced when compared with primary cell counterparts. This increased sensitivity to hydrogen peroxide in immortal DF-1 cells occurred without evident changes in either antioxidant gene expression, mitochondrial membrane potential, cell cycle distribution or chromatin condensation. However, the total number of dead cells without chromatin condensation was dramatically elevated in immortal DF-1 CEFs treated with hydrogen peroxide, indicating that the inhibition of immortal DF-1 cell growth by low concentrations of hydrogen peroxide is due to increased necrotic cell death, but not apoptosis. Taken together, our observation suggests that the balanced antioxidant function might be important for cell proliferation in response to toxic oxidative damage by hydrogen peroxide.
Koch, R J; Goode, R L; Simpson, G T
1997-04-01
The purpose of this study was to develop an in vitro serum-free keloid fibroblast model. Keloid formation remains a problem for every surgeon. Prior evaluations of fibroblast characteristics in vitro, especially those of growth factor measurement, have been confounded by the presence of serum-containing tissue culture media. The serum itself contains growth factors, yet has been a "necessary evil" to sustain cell growth. The design of this study is laboratory-based and uses keloid fibroblasts obtained from five patients undergoing facial (ear lobule) keloid removal in a university-affiliated clinic. Keloid fibroblasts were established in primary cell culture and then propagated in a serum-free environment. The main outcome measures included sustained keloid fibroblast growth and viability, which was comparable to serum-based models. The keloid fibroblast cell cultures exhibited logarithmic growth, sustained a high cellular viability, maintained a monolayer, and displayed contact inhibition. Demonstrating model consistency, there was no statistically significant difference between the mean cell counts of the five keloid fibroblast cell lines at each experimental time point. The in vitro growth of keloid fibroblasts in a serum-free model has not been done previous to this study. The results of this study indicate that the proliferative characteristics described are comparable to those of serum-based models. The described model will facilitate the evaluation of potential wound healing modulators, and cellular effects and collagen modifications of laser resurfacing techniques, and may serve as a harvest source for contaminant-free fibroblast autoimplants. Perhaps its greatest utility will be in the evaluation of endogenous and exogenous growth factors.
Arsenic is Cytotoxic and Genotoxic to Primary Human Lung Cells
Xie, Hong; Huang, ShouPing; Martin, Sarah; Wise, John P.
2014-01-01
Arsenic originates from both geochemical and numerous anthropogenic activities. Exposure of the general public to significant levels of arsenic is widespread. Arsenic is a well-documented human carcinogen. Long-term exposure to high levels of arsenic in drinking water have been linked to bladder, lung, kidney, liver, prostate, and skin cancer. Among them, lung cancer is of great public concern. However, little is known about how arsenic causes lung cancer and few studies have considered effects in normal human lung cells. The purpose of this study was to determine the cytotoxicity and genotoxicity of arsenic in human primary bronchial fibroblast and epithelial cells. Our data show that arsenic induces a concentration-dependent decrease in cell survival after short (24 h) or long (120 h) exposures. Arsenic induces concentration-dependent but not time-dependent increases in chromosome damage in fibroblasts. No chromosome damage is induced after either 24 h or 120 h arsenic exposure in epithelial cells. Using neutral comet assay and gamma-H2A.X foci forming assay, we found that 24 h or 120 h exposure to arsenic induces increases in DNA double strand breaks in both cell lines. These data indicate that arsenic is cytotoxic and genotoxic to human lung primary cells but lung fibroblasts are more sensitive to arsenic than epithelial cells. Further research is needed to understand the specific mechanisms involved in arsenic-induced genotoxicity in human lung cells. PMID:24291234
Stimulatory effects of histamine on migration of nasal fibroblasts.
Hong, Sung-Moon; Park, Il-Ho; Um, Ji-Young; Shin, Jae-Min; Lee, Heung-Man
2015-10-01
Fibroblast migration is crucial for normal wound repair after sinonasal surgery. Histamine is known to be involved in wound healing by its effects on cell proliferation and migration. This study aimed to determine whether histamine affects the migration of nasal fibroblasts and to investigate the mechanism of action of histamine on nasal fibroblasts. Primary cultures of nasal fibroblasts were established from inferior turbinate samples. Fibroblast migration was evaluated with scratch assays. Cells were treated with histamine and/or histamine receptor-selective antagonists. U-73122 and pertussis toxin, which are selective inhibitors of the lower signaling pathway of H1R and H4R, were used to confirm the modulation of nasal fibroblast migration by histamine. Fibroblast cytoskeletal structures were visualized with immunocytochemistry. Histamine significantly stimulated the migration of nasal fibroblasts. Antagonists selective for HR1 and HR4 significantly reduced nasal fibroblast migration. In immunocytochemical staining, histamine treatment increased membrane ruffling and pyrilamine, diphenhydramine, fexofenadine, and JNJ7777120 decreased histamine-induced membrane ruffling. U-73122 and pertussis toxin also decreased histamine-induced migration of fibroblasts. Histamine maintains its stimulatory effects on fibroblast migration in the presence of mitomycin C, which blocks proliferation of cells. We showed that histamine stimulates fibroblast migration in nasal fibroblasts. This effect appeared to be mediated by HR1 and HR4. However, because fibroblast migration also can be involved in scaring and fibrosis, more research is necessary to determine the effects of antihistamine on wound healing after sinus surgery. © 2015 ARS-AAOA, LLC.
Bao, Kai; Akguel, Baki; Bostanci, Nagihan
2014-01-01
In vitro studies using 3D co-cultures of gingival cells can resemble their in vivo counterparts much better than 2D models that typically only utilize monolayer cultures with short-living primary cells. However, the use of 3D gingival models is still limited through lack of appropriate cell lines. We aimed to establish immortalized cell line models of primary human gingival epithelium keratinocytes (HGEK) and gingival fibroblasts (GFB). Immortalized cell lines (HGEK-16 and GFB-16) were induced by E6 and E7 oncoproteins of human papillomavirus. In addition, 3D multilayered organotypic cultures were formed by embedding GFB-16 cells within a collagen (Col) matrix and seeding of HGEK-16 cells on the upper surfaces. Cell growth was analyzed in both immortalized cell lines and their parental primary cells. The expression levels of cell type-specific markers, i.e. cytokeratin (CK) 10, CK13, CK16, CK18, CK19 for HGEK-16 and Col I and Col II for GFB-16, were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Expansion of the primary cultures was impeded at early passages, while the transformed immortalized cell lines could be expanded for more than 30 passages. In 3D cultures, immortalized HGEK formed a multilayer of epithelial cells. qRT-PCR showed that cell-specific marker expression in the 3D cultures was qualitatively and quantitatively closer to that in human gingival tissue than to monolayer cultures. These results indicate that immortalized gingival fibroblastic and epithelial cell lines can successfully form organotypic multilayered cultures and, therefore, may be useful tools for studying gingival tissue in vitro. © 2014 S. Karger AG, Basel.
Reijnders, Christianne M.A.; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J.
2015-01-01
Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin–eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely from human cell lines, provides an excellent opportunity to study in vitro skin biology and can also be used for drug targeting and testing new therapeutics, and ultimately, for incorporating into skin-on-a chip in the future. PMID:26135533
Reijnders, Christianne M A; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J; Gibbs, Susan
2015-09-01
Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin-eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely from human cell lines, provides an excellent opportunity to study in vitro skin biology and can also be used for drug targeting and testing new therapeutics, and ultimately, for incorporating into skin-on-a chip in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yingting, E-mail: yitizhu@yahoo.com; Tissue Tech Inc., Miami, FL 33173; Zhu, Min
2012-08-31
Highlights: Black-Right-Pointing-Pointer Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE{sub 2}. Black-Right-Pointing-Pointer The fibroblasts interact with human colonic epithelial cancer cells. Black-Right-Pointing-Pointer Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. Black-Right-Pointing-Pointer Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulationmore » of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yingting, E-mail: yitizhu@yahoo.com; Tissue Tech Inc, Miami, FL 33173; Zhu, Min
2012-11-15
COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1{beta} in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts withmore » or without stimulation of IL-1{beta}, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1{beta}. Further analysis indicated that the major COX-2 product, prostaglandin E{sub 2}, directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1{beta}. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1{beta} in the fibroblasts.« less
Normal Fibroblasts Induce E-Cadherin Loss and Increase Lymph Node Metastasis in Gastric Cancer
Xu, Wen; Hu, Xinlei; Chen, Zhongting; Zheng, Xiaoping; Zhang, Chenjing; Wang, Gang; Chen, Yu; Zhou, Xinglu; Tang, Xiaoxiao; Luo, Laisheng; Xu, Xiang; Pan, Wensheng
2014-01-01
Background A tumor is considered a heterogeneous complex in a three-dimensional environment that is flush with pathophysiological and biomechanical signals. Cell-stroma interactions guide the development and generation of tumors. Here, we evaluate the contributions of normal fibroblasts to gastric cancer. Methodology/Principal Findings By coculturing normal fibroblasts in monolayers of BGC-823 gastric cancer cells, tumor cells sporadically developed short, spindle-like morphological characteristics and demonstrated enhanced proliferation and invasive potential. Furthermore, the transformed tumor cells demonstrated decreased tumor formation and increased lymphomatic and intestinal metastatic potential. Non-transformed BGC-823 cells, in contrast, demonstrated primary tumor formation and delayed intestinal and lymph node invasion. We also observed E-cadherin loss and the upregulation of vimentin expression in the transformed tumor cells, which suggested that the increase in metastasis was induced by epithelial-to-mesenchymal transition. Conclusion Collectively, our data indicated that normal fibroblasts sufficiently induce epithelial-to-mesenchymal transition in cancer cells, thereby leading to metastasis. PMID:24845259
Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu
2018-03-05
Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3 cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yanfu; Chai, Jiake, E-mail: cjk304@126.com; Sun, Tianjun
2011-10-07
Highlights: {yields} Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. {yields} Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. {yields} We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. {yields} Collagen type I and collagen type III mRNA level was higher in differentiated cells. {yields} UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. Inmore » this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue-engineered dermis.« less
He, Shan; Li, Yangyang; Chen, Yang; Zhu, Yue; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang
2016-08-01
Pigs are the most economically important livestock, but pig cell lines useful for physiological studies and/or vaccine development are limited. Although several pig cell lines have been generated by oncogene transformation or human telomerase reverse transcriptase (TERT) immortalization, these cell lines contain viral sequences and/or antibiotic resistance genes. In this study, we established a new method for generating pig cell lines using the Sleeping Beauty (SB) transposon-mediated ectopic expression of porcine telomerase reverse transcriptase (pTERT). The performance of the new method was confirmed by generating a pig fibroblast cell (PFC) line. After transfection of primary PFCs with the SB transposon system, one cell clone containing the pTERT expression cassette was selected by dilution cloning and passed for different generations. After passage for more than 40 generations, the cell line retained stable expression of ectopic pTERT and continuous growth potential. Further characterization showed that the cell line kept the fibroblast morphology, growth curve, population doubling time, cloning efficiency, marker gene expression pattern, cell cycle distribution and anchorage-dependent growth property of the primary cells. These data suggest that the new method established is useful for generating pig cell lines without viral sequence and antibiotic resistant gene.
Yajing, Sun; Rajput, Imran Rashid; Ying, Huang; Fei, Yu; Sanganyado, Edmond; Ping, Li; Jingzhen, Wang; Wenhua, Liu
2018-01-01
The pygmy killer whale (Feresa attenuata) (PKW) is a tropical and subtropical marine mammal commonly found in the Atlantic, Indian and Pacific oceans. Since the PKWs live in offshore protected territories, they are rarely seen onshore. Hence, PKW are one of the most poorly understood oceanic species of odontocetes. The dermal tissue comes primarily from stranding events that occur along the coast of the Shantou, Guangdong, China. The sampled tissues were immediately processed and attached on collagen-coated 6-well tissue culture plate. The complete medium (DMEM and Ham's F12, fetal bovine serum, antibiotic and essential amino acids) was added to the culture plates. The primary culture (PKW-LWH) cells were verified as fibroblast by vimentin and karyotype analyses, which revealed 42 autosomes and two sex chromosomes X and Y. Following transfection of PKW-LWH cells with a plasmid encoding, the SV40 large T-antigens and the transfected cells were isolated and expanded. Using RT-PCR, western blot, immunofluorescence analysis and SV40 large T-antigen stability was confirmed. The cell proliferation rate of the fibroblast cells, PKW-LWHT was faster than the primary cells PKW-LWH with the doubling time 68.9h and 14.4h, respectively. In this study, we established PKW dermal fibroblast cell line for the first time, providing a unique opportunity for in vitro studies on the effects of environmental pollutants and pathogens that could be determined in PKW and/or Cetaceans.
Warters, Raymond L.; Packard, Ann T.; Kramer, Gwen F.; Gaffney, David K.; Moos, Philip J.
2009-01-01
Although skin is usually exposed during human exposures to ionizing radiation, there have been no thorough examinations of the transcriptional response of skin fibroblasts and keratinocytes to radiation. The transcriptional response of quiescent primary fibroblasts and keratinocytes exposed to from 10 cGy to 5 Gy and collected 4 h after treatment was examined. RNA was isolated and examined by microarray analysis for changes in the levels of gene expression. Exposure to ionizing radiation altered the expression of 279 genes across both cell types. Changes in RNA expression could be arranged into three main categories: (1) changes in keratinocytes but not in fibroblasts, (2) changes in fibroblasts but not in keratinocytes, and (3) changes in both. All of these changes were primarily of p53 target genes. Similar radiation-induced changes were induced in immortalized fibroblasts or keratinocytes. In separate experiments, protein was collected and analyzed by Western blotting for expression of proteins observed in microarray experiments to be overexpressed at the mRNA level. Both Q-PCR and Western blot analysis experiments validated these transcription changes. Our results are consistent with changes in the expression of p53 target genes as indicating the magnitude of cell responses to ionizing radiation. PMID:19580510
Role of fibroblast-derived factors in the pathogenesis of melasma.
Byun, J W; Park, I S; Choi, G S; Shin, J
2016-08-01
The hyperactive melanocytes present in melasma skin are confined to the epidermis, but epidermal ablation to treat melasma pigmentation may lead to disease recurrence and aggravation. Melanocyte function is regulated by interactions between melanocytes and neighbouring cells such as keratinocytes and fibroblasts. Because melasma skin usually shows dermal changes after exposure to sunlight, we hypothesized that sun-damaged fibroblasts might play a crucial role in the pathogenesis of melasma. In this study, the melanogenic role of primary cultured fibroblasts from human melasma skin was investigated. We explored whether primary cultured fibroblasts from melasma tissue have a melanogenic function on cultured human epidermal melanocytes and artificial skin. The cytokine profile derived from fibroblasts and their effect on the pigmented epidermal equivalents were investigated. Fibroblasts from the melasma lesion and perilesional skin increased melanogenesis in cultured human epidermal melanocytes and in artificial skin. Fibroblasts from the melasma lesion and perilesional skin secreted more nerve growth factor (NGF)-β than those in normal buttock skin, and also increased melanogenesis and the expression level of NGF-β in cultured human epidermal melanocytes and artificial skin. These results suggest that fibroblasts may play a role in melanogenesis and the pathogenesis of melasma. © 2016 British Association of Dermatologists.
Kannenberg, Frank; Gorzelniak, Kerstin; Jäger, Kathrin; Fobker, Manfred; Rust, Stephan; Repa, Joyce; Roth, Mike; Björkhem, Ingemar; Walter, Michael
2013-01-01
We compared the consequences of an ABCA1 mutation that produced an apparent lack of atherosclerosis (Tangier family 1, N935S) with an ABCA1 mutation with functional ABCA1 knockout that was associated with severe atherosclerosis (Tangier family 2, Leu548:Leu575-End), using primary and telomerase-immortalized fibroblasts. Telomerase-immortalized Tangier fibroblasts of family 1 (TT1) showed 30% residual cholesterol efflux capacity in response to apolipoprotein A-I, whereas telomerase-immortalized Tangier fibroblasts of family 2 (TT2) showed only 20%. However, there were a number of secondary differences that were often stronger and may help to explain the more rapid development of atherosclerosis in family 2. First, the total cellular cholesterol content increase was 2–3-fold and 3–5-fold in TT1 and TT2 cells, respectively. The corresponding increase in esterified cholesterol concentration was 10- and 40-fold, respectively. Second, 24-, 25-, and 27-hydroxycholesterol concentrations were moderately increased in TT1 cells, but were increased as much as 200-fold in TT2 cells. Third, cholesterol biosynthesis was moderately decreased in TT1 cells, but was markedly decreased in TT2 cells. Fourth, potentially atheroprotective LXR-dependent SREBP1c signaling was normal in TT1, but was rather suppressed in TT2 cells. Cultivated primary Tangier fibroblasts were characterized by premature aging in culture and were associated with less obvious biochemical differences. In summary, these results may help to understand the differential atherosclerotic susceptibility in Tangier disease and further demonstrate the usefulness of telomerase-immortalized cells in studying this cellular phenotype. The data support the contention that side chain-oxidized oxysterols are strong suppressors of cholesterol biosynthesis under specific pathological conditions in humans. PMID:24196952
Kannenberg, Frank; Gorzelniak, Kerstin; Jäger, Kathrin; Fobker, Manfred; Rust, Stephan; Repa, Joyce; Roth, Mike; Björkhem, Ingemar; Walter, Michael
2013-12-27
We compared the consequences of an ABCA1 mutation that produced an apparent lack of atherosclerosis (Tangier family 1, N935S) with an ABCA1 mutation with functional ABCA1 knockout that was associated with severe atherosclerosis (Tangier family 2, Leu(548):Leu(575)-End), using primary and telomerase-immortalized fibroblasts. Telomerase-immortalized Tangier fibroblasts of family 1 (TT1) showed 30% residual cholesterol efflux capacity in response to apolipoprotein A-I, whereas telomerase-immortalized Tangier fibroblasts of family 2 (TT2) showed only 20%. However, there were a number of secondary differences that were often stronger and may help to explain the more rapid development of atherosclerosis in family 2. First, the total cellular cholesterol content increase was 2-3-fold and 3-5-fold in TT1 and TT2 cells, respectively. The corresponding increase in esterified cholesterol concentration was 10- and 40-fold, respectively. Second, 24-, 25-, and 27-hydroxycholesterol concentrations were moderately increased in TT1 cells, but were increased as much as 200-fold in TT2 cells. Third, cholesterol biosynthesis was moderately decreased in TT1 cells, but was markedly decreased in TT2 cells. Fourth, potentially atheroprotective LXR-dependent SREBP1c signaling was normal in TT1, but was rather suppressed in TT2 cells. Cultivated primary Tangier fibroblasts were characterized by premature aging in culture and were associated with less obvious biochemical differences. In summary, these results may help to understand the differential atherosclerotic susceptibility in Tangier disease and further demonstrate the usefulness of telomerase-immortalized cells in studying this cellular phenotype. The data support the contention that side chain-oxidized oxysterols are strong suppressors of cholesterol biosynthesis under specific pathological conditions in humans.
Anastasia, Luigi; Sampaolesi, Maurilio; Papini, Nadia; Oleari, Diego; Lamorte, Giuseppe; Tringali, Cristina; Monti, Eugenio; Galli, Daniela; Tettamanti, Guido; Cossu, Giulio; Venerando, Bruno
2006-12-01
Stem cells hold a great potential for the regeneration of damaged tissues in cardiovascular or musculoskeletal diseases. Unfortunately, problems such as limited availability, control of cell fate, and allograft rejection need to be addressed before therapeutic applications may become feasible. Generation of multipotent progenitors from adult differentiated cells could be a very attractive alternative to the limited in vitro self-renewal of several types of stem cells. In this direction, a recently synthesized unnatural purine, named reversine, has been proposed to induce reversion of adult cells to a multipotent state, which could be then converted into other cell types under appropriate stimuli. Our study suggests that reversine treatment transforms primary murine and human dermal fibroblasts into myogenic-competent cells both in vitro and in vivo. Moreover, this is the first study to demonstrate that plasticity changes arise in primary mouse and human cells following reversine exposure.
CHOLESTEROL REQUIREMENT OF PRIMARY DIPLOID HUMAN FIBROBLASTS
Holmes, Richard; Helms, Judy; Mercer, Gretchen
1969-01-01
Primary cultures of fibroblast-like cells were obtained from skin and articular cartilage of human donors in the age bracket of 1 to 15 years. For growth these cultures required 1 mg/liter of cholesterol added to Medium A2 plus acetyl choline, Na pyruvate, and D-galactosamine HCl (APG) containing 10% lipoprotein-free human serum. Established cell lines did not require cholesterol for growth. Eagle's medium could be used in place of Medium A2 plus APG with the same results. Desmosterol could replace cholesterol but lansterol or 7 dehydrocholesterol could not. Other cholesterol precursors were tested and found to be inactive. With the proviso that cholesterol precursors entered the cell and had to be converted to cholesterol to function, it was concluded that the particular primaries studied lacked a functional enzyme system to reduce the double bond at carbon 7. PMID:5786984
Wang, Xiao-Ming; Yik, Wing Yan; Zhang, Peilin; Lu, Wange; Huang, Ning; Kim, Bo Ram; Shibata, Darryl; Zitting, Madison; Chow, Robert H; Moser, Ann B; Steinberg, Steven J; Hacia, Joseph G
2015-08-29
Zellweger spectrum disorder (PBD-ZSD) is a disease continuum caused by mutations in a subset of PEX genes required for normal peroxisome assembly and function. They highlight the importance of peroxisomes in the development and functions of the central nervous system, liver, and other organs. To date, the underlying bases for the cell-type specificity of disease are not fully elucidated. Primary skin fibroblasts from seven PBD-ZSD patients with biallelic PEX1, PEX10, PEX12, or PEX26 mutations and three healthy donors were transduced with retroviral vectors expressing Yamanaka reprogramming factors. Candidate induced pluripotent stem cells (iPSCs) were subject to global gene expression, DNA methylation, copy number variation, genotyping, in vitro differentiation and teratoma formation assays. Confirmed iPSCs were differentiated into neural progenitor cells (NPCs), neurons, oligodendrocyte precursor cells (OPCs), and hepatocyte-like cell cultures with peroxisome assembly evaluated by microscopy. Saturated very long chain fatty acid (sVLCFA) and plasmalogen levels were determined in primary fibroblasts and their derivatives. iPSCs were derived from seven PBD-ZSD patient-derived fibroblasts with mild to severe peroxisome assembly defects. Although patient and control skin fibroblasts had similar gene expression profiles, genes related to mitochondrial functions and organelle cross-talk were differentially expressed among corresponding iPSCs. Mitochondrial DNA levels were consistent among patient and control fibroblasts, but varied among all iPSCs. Relative to matching controls, sVLCFA levels were elevated in patient-derived fibroblasts, reduced in patient-derived iPSCs, and not significantly different in patient-derived NPCs. All cell types derived from donors with biallelic null mutations in a PEX gene showed plasmalogen deficiencies. Reporter gene assays compatible with high content screening (HCS) indicated patient-derived OPC and hepatocyte-like cell cultures had impaired peroxisome assembly. Normal peroxisome activity levels are not required for cellular reprogramming of skin fibroblasts. Patient iPSC gene expression profiles were consistent with hypotheses highlighting the role of altered mitochondrial activities and organelle cross-talk in PBD-ZSD pathogenesis. sVLCFA abnormalities dramatically differed among patient cell types, similar to observations made in iPSC models of X-linked adrenoleukodystrophy. We propose that iPSCs could assist investigations into the cell type-specificity of peroxisomal activities, toxicology studies, and in HCS for targeted therapies for peroxisome-related disorders.
Anitua, E; Sanchez, M; De la Fuente, M; Zalduendo, M M; Orive, G
2012-09-01
Cell migration plays an essential role in development, wound healing, and tissue regeneration. Plasma rich in growth factors (PRGF-Endoret) technology offers a potential source of growth factors involved in tissue regeneration. Here, we evaluate the potential of PRGF-Endoret over tendon cells and synovial fibroblasts migration and study whether the combination of this autologous technology with hyaluronic acid (HA) improves the effect and potential of the biomaterials over the motility of both types of fibroblasts. Migration of primary tendon cells and synovial fibroblasts after culturing with either PRGF or PPGF (plasma poor in growth factors) at different doses was evaluated. Furthermore, the migratory capacity induced by the combination of PPGF and PRGF with HA was tested. PPGF stimulated migration of both types of cells but this effect was significantly higher when PRGF was used. Tendon cells showed an increase of 212% in migratory ability when HA was combined with PPGF and of 335% in the case of HA + PRGF treatment compared with HA alone. PRGF-Endoret stimulates migration of tendon cells and synovial fibroblasts and improves the biological properties of HA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Lars, E-mail: lars.mueller@uksh-kiel.de; Seggern, Lena von; Schumacher, Jennifer
2010-07-02
Cancer-associated fibroblasts (CAFs) represent the predominant cell type of the neoplastic stroma of solid tumors, yet their biology and functional specificity for cancer pathogenesis remain unclear. We show here that primary CAFs from colorectal liver metastases express several inflammatory, tumor-enhancing factors, including interleukin (IL)-6 and monocyte-chemoattractant protein (MCP)-1. Both molecules were intensely induced by TNF-{alpha} on the transcript and protein level, whereas PDGF-BB, TGF-{beta}1 and EGF showed no significant effects. To verify their potential specialization for metastasis progression, CAFs were compared to fibroblasts from non-tumor liver tissue. Interestingly, these liver fibroblasts (LFs) displayed similar functions. Further analyses revealed a comparablemore » up-regulation of intercellular adhesion molecule-1 (ICAM-1) by TNF-{alpha}, and of alpha-smooth muscle actin, by TGF-{beta}1. Moreover, the proliferation of both cell types was induced by PDGF-BB, and CAFs and LFs displayed an equivalent migration towards HT29 colon cancer cells in Boyden chamber assays. In conclusion, colorectal liver metastasis may be supported by CAFs and resident fibroblastic cells competent to generate a prometastatic microenvironment through inflammatory activation of IL-6 and MCP-1.« less
Human fetal enterocytes in vitro: modulation of the phenotype by extracellular matrix.
Sanderson, I R; Ezzell, R M; Kedinger, M; Erlanger, M; Xu, Z X; Pringault, E; Leon-Robine, S; Louvard, D; Walker, W A
1996-01-01
The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8755542
Defective Wound-healing in Aging Gingival Tissue.
Cáceres, M; Oyarzun, A; Smith, P C
2014-07-01
Aging may negatively affect gingival wound-healing. However, little is known about the mechanisms underlying this phenomenon. The present study examined the cellular responses associated with gingival wound-healing in aging. Primary cultures of human gingival fibroblasts were obtained from healthy young and aged donors for the analysis of cell proliferation, cell invasion, myofibroblastic differentiation, and collagen gel remodeling. Serum from young and old rats was used to stimulate cell migration. Gingival repair was evaluated in Sprague-Dawley rats of different ages. Data were analyzed by the Mann-Whitney and Kruskal-Wallis tests, with a p value of .05. Fibroblasts from aged donors showed a significant decrease in cell proliferation, migration, Rac activation, and collagen remodeling when compared with young fibroblasts. Serum from young rats induced higher cell migration when compared with serum from old rats. After TGF-beta1 stimulation, both young and old fibroblasts demonstrated increased levels of alpha-SMA. However, alpha-SMA was incorporated into actin stress fibers in young but not in old fibroblasts. After 7 days of repair, a significant delay in gingival wound-healing was observed in old rats. The present study suggests that cell migration, myofibroblastic differentiation, collagen gel remodeling, and proliferation are decreased in aged fibroblasts. In addition, altered cell migration in wound-healing may be attributable not only to cellular defects but also to changes in serum factors associated with the senescence process. © International & American Associations for Dental Research.
GAN, ZHEN; JING, JIAN; ZHU, GUANGYU; QIN, YONGLIN; TENG, GAOJUN; GUO, JINHE
2015-01-01
The present study aimed to evaluate the effects of iodine-125 (125I) seeds on the proliferation of primary esophageal fibroblasts in dogs, and to assess the safety and preventive efficacy of 125I seed-pre-loaded esophageal stents in benign restenosis following implantation. Primary fibroblasts were cultured with various 125I seed activities, which were then evaluated using cell proliferation and apoptosis assays as well as cell cycle analysis using Annexin V/propidium iodide (PI) double staining and PI staining. Prior to sacrification, animals were submitted to esophageal radiography under digital subtraction angiography. Esophageal tissues were collected and examined for macroscopic, microscopic and pathological alterations. The results demonstrated a significant and dose-dependent inhibition of fibroblast proliferation and increased apoptosis following exposure to 125I seeds. G0/G1 fibroblast populations increased in a dose-dependent manner following treatment with 125I seeds, in contrast to cells in S phase. Four weeks following implantation, α-smooth muscle actin and proliferating cell nuclear antigen expression levels in the experimental group were significantly lower compared with those in the control group; in addition, eight weeks following implantation, esophageal inner diameters were increased in the experimental group. 125I seeds inhibited proliferation of dog esophageal fibroblasts via cell cycle arrest and apoptosis. In conclusion, 125I seed-pre-loaded esophageal stents inhibited benign hyperplasia in the upper edge of the stent to a certain extent, which relieved benign restenosis following implantation with a good safety profile. PMID:25543838
Del Valle, Paulo Roberto; Milani, Cintia; Brentani, Maria Mitzi; Katayama, Maria Lucia Hirata; de Lyra, Eduardo Carneiro; Carraro, Dirce Maria; Brentani, Helena; Puga, Renato; Lima, Leandro A; Rozenchan, Patricia Bortman; Nunes, Bárbara Dos Santos; Góes, João Carlos Guedes Sampaio; Azevedo Koike Folgueira, Maria Aparecida
2014-09-01
Cancer-associated fibroblasts (CAF) influence tumor development at primary as well as in metastatic sites, but there have been no direct comparisons of the transcriptional profiles of stromal cells from different tumor sites. In this study, we used customized cDNA microarrays to compare the gene expression profile of stromal cells from primary tumor (CAF, n = 4), lymph node metastasis (N+, n = 3) and bone marrow (BM, n = 4) obtained from breast cancer patients. Biological validation was done in another 16 samples by RT-qPCR. Differences between CAF vs N+, CAF vs BM and N+ vs BM were represented by 20, 235 and 245 genes, respectively (SAM test, FDR < 0.01). Functional analysis revealed that genes related to development and morphogenesis were overrepresented. In a biological validation set, NOTCH2 was confirmed to be more expressed in N+ (vs CAF) and ADCY2, HECTD1, HNMT, LOX, MACF1, SLC1A3 and USP16 more expressed in BM (vs CAF). Only small differences were observed in the transcriptional profiles of fibroblasts from the primary tumor and lymph node of breast cancer patients, whereas greater differences were observed between bone marrow stromal cells and the other two sites. These differences may reflect the activities of distinct differentiation programs.
Del Valle, Paulo Roberto; Milani, Cintia; Brentani, Maria Mitzi; Katayama, Maria Lucia Hirata; de Lyra, Eduardo Carneiro; Carraro, Dirce Maria; Brentani, Helena; Puga, Renato; Lima, Leandro A.; Rozenchan, Patricia Bortman; Nunes, Bárbara dos Santos; Góes, João Carlos Guedes Sampaio; Azevedo Koike Folgueira, Maria Aparecida
2014-01-01
Cancer-associated fibroblasts (CAF) influence tumor development at primary as well as in metastatic sites, but there have been no direct comparisons of the transcriptional profiles of stromal cells from different tumor sites. In this study, we used customized cDNA microarrays to compare the gene expression profile of stromal cells from primary tumor (CAF, n = 4), lymph node metastasis (N+, n = 3) and bone marrow (BM, n = 4) obtained from breast cancer patients. Biological validation was done in another 16 samples by RT-qPCR. Differences between CAF vs N+, CAF vs BM and N+ vs BM were represented by 20, 235 and 245 genes, respectively (SAM test, FDR < 0.01). Functional analysis revealed that genes related to development and morphogenesis were overrepresented. In a biological validation set, NOTCH2 was confirmed to be more expressed in N+ (vs CAF) and ADCY2, HECTD1, HNMT, LOX, MACF1, SLC1A3 and USP16 more expressed in BM (vs CAF). Only small differences were observed in the transcriptional profiles of fibroblasts from the primary tumor and lymph node of breast cancer patients, whereas greater differences were observed between bone marrow stromal cells and the other two sites. These differences may reflect the activities of distinct differentiation programs. PMID:25249769
Genotype-Phenotype Correlation in Primary Carnitine Deficiency
Rose, Emily Cornforth; di San Filippo, Cristina Amat; Ndukwe Erlingsson, Uzochi C.; Ardon, Orly; Pasquali, Marzia; Longo, Nicola
2011-01-01
Primary carnitine deficiency is caused by defective OCTN2 carnitine transporters encoded by the SLC22A5 gene. Lack of carnitine impairs fatty acid oxidation resulting in hypoketotic hypoglycemia, hepatic encephalopathy, skeletal and cardiac myopathy. Recently, asymptomatic mothers with primary carnitine deficiency were identified by low carnitine levels in their infant by newborn screening. Here we evaluate mutations in the SLC22A5 gene and carnitine transport in fibroblasts from symptomatic patients and asymptomatic women. Carnitine transport was significantly reduced in fibroblasts obtained from all patients with primary carnitine deficiency, but was significantly higher in the asymptomatic women’s than in the symptomatic patients’ fibroblasts (p<0.01). By contrast, ergothioneine transport (a selective substrate of the OCTN1 transporter, tested here as a control) was similar in cells from controls and patients with carnitine deficiency. DNA sequencing indicated an increased frequency of nonsense mutations in symptomatic patients (p<0.001). Expression of the missense mutations in CHO cells indicated that many mutations retained residual carnitine transport activity, with no difference in the average activity of missense mutations identified in symptomatic versus asymptomatic patients. These results indicate that cells from asymptomatic women have on average higher levels of residual carnitine transport activity as compared to that of symptomatic patients due to the presence of at least one missense mutation. PMID:21922592
Circadian actin dynamics drive rhythmic fibroblast mobilisation during wound healing
Hoyle, Nathaniel P.; Seinkmane, Estere; Putker, Marrit; Feeney, Kevin A.; Krogager, Toke P.; Chesham, Johanna E.; Bray, Liam K.; Thomas, Justyn M.; Dunn, Ken; Blaikley, John; O’Neill, John S.
2017-01-01
Fibroblasts are primary cellular protagonists of wound healing. They also exhibit circadian timekeeping which imparts a ~24-hour rhythm to their biological function. We interrogated the functional consequences of the cell-autonomous clockwork in fibroblasts using a proteome-wide screen for rhythmically expressed proteins. We observed temporal coordination of actin regulators that drives cell-intrinsic rhythms in actin dynamics. In consequence the cellular clock modulates the efficiency of actin-dependent processes such as cell migration and adhesion, which ultimately impact the efficacy of wound healing. Accordingly, skin wounds incurred during a mouse’s active phase exhibited increased fibroblast invasion in vivo and ex vivo, as well as in cultured fibroblasts and keratinocytes. Our experimental results correlate with the observation that the time of injury significantly affects healing after burns in humans, with daytime wounds healing ~60% faster than night-time wounds. We suggest that circadian regulation of the cytoskeleton influences wound healing efficacy from the cellular to the organismal scale. PMID:29118260
In vitro adhesion of fibroblastic cells to titanium alloy discs treated with sodium hydroxide.
Al Mustafa, Maisa; Agis, Hermann; Müller, Heinz-Dieter; Watzek, Georg; Gruber, Reinhard
2015-01-01
Adhesion of osteogenic cells on titanium surfaces is a prerequisite for osseointegration. Alkali treatment can increase the hydrophilicity of titanium implant surfaces, thereby supporting the adhesion of blood components. However, it is unclear if alkali treatment also supports the adhesion of cells with a fibroblastic morphology to titanium. Here, we have used a titanium alloy (Ti-6AL-4V) processed by alkali treatment to demonstrate the impact of hydrophilicity on the adhesion of primary human gingival fibroblast and bone cells. Also included were the osteosarcoma and fibroblastoma cell lines, MG63 and L929, respectively. Cell adhesion was determined by scanning electron microscopy. We also measured viability, proliferation, and protein synthesis of the adherent cells. Alkali treatment increased the adhesion of gingival fibroblasts, bone cells, and the two cell lines when seeded onto the titanium alloy surface for 1 h. At 3 h, no significant changes in cell adhesion were observed. Cells grown for 1 day on the titanium alloy surfaces processed by alkali treatment behave similarly to untreated controls with regard to viability, proliferation, and protein synthesis. Based on these preliminary In vitro findings, we conclude that alkali treatment can support the early adhesion of cells with fibroblastic characteristics to a titanium alloy surface. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Basal Cell Carcinoma in Gorlin's Patients: a Matter of Fibroblasts-Led Protumoral Microenvironment?
Gache, Yannick; Brellier, Florence; Rouanet, Sophie; Al-Qaraghuli, Sahar; Goncalves-Maia, Maria; Burty-Valin, Elodie; Barnay, Stéphanie; Scarzello, Sabine; Ruat, Martial; Sevenet, Nicolas; Avril, Marie-Françoise; Magnaldo, Thierry
2015-01-01
Basal cell carcinoma (BCC) is the commonest tumor in human. About 70% sporadic BCCs bear somatic mutations in the PATCHED1 tumor suppressor gene which encodes the receptor for the Sonic Hedgehog morphogen (SHH). PATCHED1 germinal mutations are associated with the dominant Nevoid Basal Cell Carcinoma Syndrome (NBCCS), a major hallmark of which is a high susceptibility to BCCs. Although the vast majority of sporadic BCCs arises exclusively in sun exposed skin areas, 40 to 50% BCCs from NBCCS patients develop in non photo-exposed skin. Since overwhelming evidences indicate that microenvironment may both be modified by- and influence the- epithelial tumor, we hypothesized that NBCCS fibroblasts could contribute to BCCs in NBCCS patients, notably those developing in non photo-exposed skin areas. The functional impact of NBCCS fibroblasts was then assessed in organotypic skin cultures with control keratinocytes. Onset of epidermal differentiation was delayed in the presence of primary NBCCS fibroblasts. Unexpectedly, keratinocyte proliferation was severely reduced and showed high levels of nuclear P53 in both organotypic skin cultures and in fibroblast-led conditioning experiments. However, in spite of increased levels of senescence associated β-galactosidase activity in keratinocytes cultured in the presence of medium conditioned by NBCCS fibroblasts, we failed to observe activation of P16 and P21 and then of bona fide features of senescence. Constitutive extinction of P53 in WT keratinocytes resulted in an invasive phenotype in the presence of NBCCS fibroblasts. Finally, we found that expression of SHH was limited to fibroblasts but was dependent on the presence of keratinocytes. Inhibition of SHH binding resulted in improved epidermal morphogenesis. Altogether, these data suggest that the repertoire of diffusible factors (including SHH) expressed by primary NBCCS fibroblasts generate a stress affecting keratinocytes behavior and epidermal homeostasis. Our findings suggest that defects in dermo/epidermal interactions could contribute to BCC susceptibility in NBCCS patients.
Martinez-Outschoorn, Ubaldo E; Pavlides, Stephanos; Whitaker-Menezes, Diana; Daumer, Kristin M; Milliman, Janet N; Chiavarina, Barbara; Migneco, Gemma; Witkiewicz, Agnieszka K; Martinez-Cantarin, Maria P; Flomenberg, Neal; Howell, Anthony; Pestell, Richard G; Lisanti, Michael P; Sotgia, Federica
2010-06-15
Loss of stromal caveolin 1 (Cav-1) is a novel biomarker for cancer-associated fibroblasts that predicts poor clinical outcome in breast cancer and DCIS patients. We hypothesized that epithelial cancer cells may have the ability to drive Cav-1 downregulation in adjacent normal fibroblasts, thereby promoting the cancer associated fibroblast phenotype. To test this hypothesis directly, here we developed a novel co-culture model employing (i) human breast cancer cells (MCF7), and (ii) immortalized fibroblasts (hTERT-BJ1), which are grown under defined experimental conditions. Importantly, we show that co-culture of immortalized human fibroblasts with MCF7 breast cancer cells leads to Cav-1 downregulation in fibroblasts. These results were also validated using primary cultures of normal human mammary fibroblasts co-cultured with MCF7 cells. In this system, we show that Cav-1 downregulation is mediated by autophagic/lysosomal degradation, as pre-treatment with lysosome-specific inhibitors rescues Cav-1 expression. Functionally, we demonstrate that fibroblasts co-cultured with MCF7 breast cancer cells acquire a cancer associated fibroblast phenotype, characterized by Cav-1 downregulation, increased expression of myofibroblast markers and extracellular matrix proteins, and constitutive activation of TGFβ/Smad2 signaling. siRNA-mediated Cav-1 downregulation mimics several key changes that occur in co-cultured fibroblasts, clearly indicating that a loss of Cav-1 is a critical initiating factor, driving stromal fibroblast activation during tumorigenesis. As such, this co-culture system can now be used as an experimental model for generating "synthetic" cancer associated fibroblasts (CAFs). More specifically, these "synthetic" CAFs could be used for drug screening to identify novel therapeutics that selectively target the Cav-1-negative tumor micro-environment. Our findings also suggest that chloroquine, or other autophagy/lysosome inhibitors, may be useful as anti-cancer agents, to therapeutically restore the expression of stromal Cav-1 in cancer associated fibroblasts. We discuss this possibility, in light of the launch of a new clinical trial that uses chloroquine to treat DCIS patients: PINC (Preventing Invasive Breast Neoplasia with Cholorquine) [See http://clinicaltrials.gov/show/NCT01023477].
Anitua, Eduardo; Sanchez, Mikel; Merayo-Lloves, Jesus; De la Fuente, Maria; Muruzabal, Francisco; Orive, Gorka
2011-08-01
Plasma rich in growth factors (PRGF-Endoret) technology is an autologous platelet-enriched plasma obtained from patient's own blood, which after activation with calcium chloride allows the release of a pool of biologically active proteins that influence and promote a range of biological processes including cell recruitment, and growth and differentiation. Because ocular surface wound healing is mediated by different growth factors, we decided to explore the potential of PRGF-Endoret technology in stimulating the biological processes related with fibroblast-induced tissue repair. Furthermore, the anti-fibrotic properties of this technology were also studied. Blood from healthy donors was collected, centrifuged and, whole plasma column (WP) and the plasma fraction with the highest platelet concentration (F3) were drawn off, avoiding the buffy coat. Primary human cells including keratocytes and conjunctival fibroblasts were used to perform the "in vitro" investigations. The potential of PRGF-Endoret in promoting wound healing was evaluated by means of a proliferation and migration assays. Fibroblast cells were induced to myofibroblast differentiation after the treatment with 2.5 ng/mL of TGF-β1. The capability of WP and F3 to prevent and inhibit TGF-β1-induced differentiation was evaluated. Results show that this autologous approach significantly enhances proliferation and migration of both keratocytes and conjunctival fibroblasts. In addition, plasma rich in growth factors prevents and inhibits TGF-β1-induced myofibroblast differentiation. No differences were found between WP and F3 plasma fractions. These results suggest that PRGF-Endoret could reduce scarring while stimulating wound healing in ocular surface. F3 or whole plasma column show similar biological effects in keratocytes and conjunctival fibroblast cells.
The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells.
Kim, H; You, S; Foster, L K; Farris, J; Foster, D N
2001-08-23
The steady-state levels of p53 mRNA were dramatically lower in immortal chicken embryo fibroblast (CEF) cell lines compared to primary CEF cells. In the presence of cycloheximide (CHX), the steady-state levels of p53 mRNA markedly increased in immortal CEF cell lines, similar to levels found in primary cells. The de novo synthetic rates of p53 mRNA were relatively similar in primary and immortal cells grown in the presence or absence of CHX. Destabilization of p53 mRNA was observed in the nuclei of immortal, but not primary, CEF cells. The half-life of p53 mRNA in primary cells was found to be a relatively long 23 h compared to only 3 h in immortal cells. The expression of transfected p53 cDNA was inhibited in immortal cells, but restored upon CHX treatment. The 5'-region of the p53 mRNA was shown to be involved in the rapid p53 mRNA destabilization in immortal cells by expression analysis of 5'- and 3'-deleted p53 cDNAs as well as fusion mRNA constructs of N-terminal p53 and N-terminal deleted LacZ genes. Together, it is suggestive that the downregulation of p53 mRNA in immortal CEF cells occurs through a post-transcriptional destabilizing mechanism.
2011-01-01
Background Numerous reports have identified therapeutic roles for plants and their extracts and constituents. The aim of this study was to assess the efficacies of three plant extracts for their potential antioxidant and anti-inflammatory activity in primary human skin fibroblasts. Methods Aqueous extracts and formulations of white tea, witch hazel and rose were subjected to assays to measure anti-collagenase, anti-elastase, trolox equivalent and catalase activities. Skin fibroblast cells were employed to determine the effect of each extract/formulation on IL-8 release induced by the addition of hydrogen peroxide. Microscopic examination along with Neutral Red viability testing was employed to ascertain the effects of hydrogen peroxide directly on cell viability. Results Considerable anti-collagenase, anti-elastase, and antioxidant activities were measured for all extracts apart from the witch hazel distillate which showed no activity in the collagenase assay or in the trolox equivalence assay. All of the extracts and products tested elicited a significant decrease in the amount of IL-8 produced by fibroblast cells compared to the control (p < 0.05). None of the test samples exhibited catalase activity or had a significant effect on the spontaneous secretion of IL-8 in the control cells which was further corroborated with the microscopy results and the Neutral Red viability test. Conclusions These data show that the extracts and products tested have a protective effect on fibroblast cells against hydrogen peroxide induced damage. This approach provides a potential method to evaluate the claims made for plant extracts and the products in which these extracts are found. PMID:21995704
NASA Astrophysics Data System (ADS)
Maleki-Ghaleh, H.; Aghaie, E.; Nadernezhad, A.; Zargarzadeh, M.; Khakzad, A.; Shakeri, M. S.; Beygi Khosrowshahi, Y.; Siadati, M. H.
2016-06-01
Modern techniques for expanding stem cells play a substantial role in tissue engineering: the raw material that facilitates regeneration of damaged tissues and treats diseases. The environmental conditions and bioprocessing methods are the primary determinants of the rate of cultured stem cell proliferation. Bioceramic scaffolds made of calcium phosphate are effective substrates for optimal cell proliferation. The present study investigates the effects of two bioceramic scaffolds on proliferating cells in culture media. One scaffold was made of hydroxyapatite and the other was a mixture of hydroxyapatite and ferromagnetic material (Fe3O4 nanoparticles). Disk-shaped (10 mm × 2 mm) samples of the two scaffolds were prepared. Primary human fibroblast proliferation was 1.8- and 2.5-fold faster, respectively, when cultured in the presence of hydroxyapatite or ferrous nanoparticle/hydroxyapatite mixtures. Optical microscopy images revealed that the increased proliferation was due to enhanced cell-cell contact. The presence of magnetic Fe3O4 nanoparticles in the ceramic scaffolds significantly increased cell proliferation compared to hydroxyapatite scaffolds and tissue culture polystyrene.
Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David
2018-03-12
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.
Cellular characteristics of primary and immortal canine embryonic fibroblast cells.
You, Seungkwon; Moon, Jai-Hee; Kim, Tae-Kyung; Kim, Sung-Chan; Kim, Jai-Woo; Yoon, Du-Hak; Kwak, Sungwook; Hong, Ki-Chang; Choi, Yun-Jaie; Kim, Hyunggee
2004-08-31
Using normal canine embryonic fibroblasts (CaEF) that were shown to be senescent at passages 7th-9th, we established two spontaneously immortalized CaEF cell lines (designated CGFR-Ca-1 and -2) from normal senescent CaEF cells, and an immortal CaEF cell line by exogenous introduction of a catalytic telomerase subunit (designated CGFR-Ca-3). Immortal CGFR- Ca-1, -2 and -3 cell lines grew faster than primary CaEF counterpart in the presence of either 0.1% or 10% FBS. Cell cycle analysis demonstrated that all three immortal CaEF cell lines contained a significantly high proportion of S-phase cells compared to primary CaEF cells. CGFR-Ca-1 and -3 cell lines showed a loss of p53 mRNA and protein expression leading to inactivation of p53 regulatory function, while the CGFR-Ca-2 cell line was found to have the inactive mutant p53. Unlike the CGFR-Ca-3 cell line that down-regulated p16INK4a mRNA due to its promoter methylation but had an intact p16INK4a regulatory function, CGFR-Ca-1 and -2 cell lines expressed p16INK4a mRNA but had a functionally inactive p16INK4a regulatory pathway as judged by the lack of obvious differences in cell growth and phenotype when reconstituted with wild-type p16INK4a. All CGFR-Ca-1, -2 and -3 cell lines were shown to be untransformed but immortal as determined by anchorage-dependent assay, while these cell lines were fully transformed when overexpressed oncogenic H-rasG12V. Taken together, similar to the nature of murine embryo fibroblasts, the present study suggests that normal primary CaEF cells have relatively short in vitro lifespans and should be spontaneously immortalized at high frequency.
MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes
Polioudakis, Damon; Abell, Nathan S.; Iyer, Vishwanath R.
2015-01-01
miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS) pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191’s regulation of primary human fibroblast proliferation. PMID:25992613
Mestre-Citrinovitz, Ana Cecilia; Sestelo, Adrián Jorge; Ceballos, María Belén; Barañao, José Lino; Saragüeta, Patricia
2016-10-10
Cell line establishment of somatic cells is a valuable resource to preserve genetic material of rare, difficult-to-find, endangered and giant species like Jaguar (Panthera onca), the largest South American felid. This unit focuses on the isolation and culture of fibroblasts from Jaguar skin and muscle biopsies, and ear cartilage dissection immediately after death to preserve one of the several endangered species in this biome. These culture techniques enabled us to contribute 570 samples from 45 autochthonous and endangered species, including Jaguar. The fibroblasts obtained are a part of the Genetic Bank of Buenos Aires Zoo with the 6700 samples, including tissues such as muscle, ovarian, testicular, blood, fibroblast cultures, sperm, hair, and fluids and cells from 450 individuals of 87 different species. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Li-Pin; Ovchinnikov, Dmitry; Wolvetang, Ernst, E-mail: e.wolvetang@uq.edu.au
2012-05-15
The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatmentsmore » we observed marked differences in mitochondrial structure, membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans. -- Highlights: ► Cells respond to certain environmental toxins by increasing mitochondrial biogenesis. ► We investigated the effect of Chloramphenicol and EtBr in primary human fibroblasts. ► Inhibiting mitochondrial protein synthesis or DNA replication elicit different effects. ► We provide novel insights into the cellular responses toxins and antibiotics.« less
Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging
Zeng, Qinghai; Zhou, Fang; Lei, Li; Chen, Jing; Lu, Jianyun; Zhou, Jianda; Cao, Ke; Gao, Lihua; Xia, Fang; Ding, Shu; Huang, Lihua; Xiang, Hong; Wang, Jingjing; Xiao, Yangfan; Xiao, Rong; Huang, Jinhua
2017-01-01
Ganoderma lucidum has featured in traditional Chinese medicine for >1,000 years. Ganoderma polysaccharides (GL-PS), a major active ingredient in Ganoderma, confer immune regulation, antitumor effects and significant antioxidant effects. The aim of the present study was to investigate the efficacy and mechanism of GL-PS-associated inhibition of ultraviolet B (UVB)-induced photoaging in human fibroblasts in vitro. Primary human skin fibroblasts were cultured, and a fibroblast photoaging model was built through exposure to UVB. Cell viability was measured by MTT assay. Aged cells were stained using a senescence-associated β-galactosidase staining (SA-β-gal) kit. ELISA kits were used to analyze matrix metalloproteinase (MMP) −1 and C-telopeptides of Type I collagen (CICP) protein levels in cellular supernatant. ROS levels were quantified by flow cytometry. Cells exposed to UVB had decreased cell viability, increased aged cells, decreased CICP protein expression, increased MMP-1 protein expression, and increased cellular ROS levels compared with non-exposed cells. However, cells exposed to UVB and treated with 10, 20 and 40 µg/ml GL-PS demonstrated increased cell viability, decreased aged cells, increased CICP protein expression, decreased MMP-1 protein expression, and decreased cellular ROS levels compared with UVB exposed/GL-PS untreated cells. These results demonstrate that GL-PS protects fibroblasts against photoaging by eliminating UVB-induced ROS. This finding indicates GL-PS treatment may serve as a novel strategy for antiphotoaging. PMID:27959406
Ali, Mohammad Javed; Mariappan, Indumathi; Maddileti, Savitri; Ali, Md Hasnat; Naik, Milind N
2013-01-01
To establish primary cultures of human nasal mucosal fibroblasts (HNMFs) and to test the effect of varying concentrations of mitomycin C (MMC) and treatment durations on cellular proliferation and viability of the fibroblasts. Laboratory investigation. Nasal mucosa harvested from patients undergoing a dacryocystorhinostomy was used to establish primary cultures by explant culture method. Cells were expanded and frozen at every passage, and passage 3 cells were used for further experiments. The cells were then treated with different concentrations of mitomycin C (0.1-0.5 mg/ml) for different time periods (3, 5, and 10 minutes). Cell viability was checked by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Cellular proliferation index was determined with bromodeoxyuridine immunostaining. Apoptotic index was measured using annexin A5 affinity assay, propidium iodide staining, and 4',6-diamidino-2-phenylindole counterstaining. The actin cytoskeletons of fibroblasts were studied using phalloidin staining. The doubling time of cultured HNMFs is approximately 24 hours. Similarly, 0.4 mg/ml beyond 5 minutes and 0.5 mg/ml concentration at all time points were lethal and caused extensive cell death when compared with controls. A concentration of 0.2 mg/ml for 3 minutes of exposure prevented cell proliferation of HNMF cells by inducing cell cycle arrest, without causing extensive apoptosis. The minimum effective concentration appears to be 0.2 mg/ml for 3 minutes. This in vitro study could be the starting point for further clinical and histopathologic studies to validate its clinical usefulness.
The effects of acoustic vibration on fibroblast cell migration.
Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic
2016-12-01
Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.
Antoccia, Antonio; Sgura, Antonella; Berardinelli, Francesco; Cavinato, Maria; Cherubini, Roberto; Gerardi, Silvia; Tanzarella, Caterina
2009-09-01
The effect of graded doses of high-linear energy transfer (LET) low-energy protons to induce cycle perturbations and genotoxic damage was investigated in normal human fibroblasts. Furthermore, such effects were compared with those produced by low-LET radiations. HFFF2, human primary fibroblasts were exposed to either protons (LET = 28.5 keV/microm) or X/gamma-rays, and endpoints related to cell cycle kinetics and DNA damage analysed. Following both type of irradiations, unsynchronized cells suffered an inhibition to entry into S-phase for doses of 1-4 Gy and remained arrested in the G(1)-phase for several days. The levels of induction of regulator proteins, such as TP53 and CDKN1A showed a clear LET-dependence. DSB induction and repair as measured by scoring for gamma-H2AX foci indicated that protons, with respect to X-rays, yielded a lower number of DSBs per Gy, which showed a slower kinetics of disappearance. Such result was in agreement with the extent of MN induction in binucleated cells after X-irradiation. No significant differences between the two types of radiations were observed with the clonogenic assay, resulting anyway the slope of gamma-ray curve higher than that the proton one. In conclusion, in normal human primary fibroblasts cell cycle arrest at the G(1)/S transition can be triggered shortly after irradiation and maintained for several hours post-irradiation of both protons and X-rays. DNA damage produced by protons appears less amenable to be repaired and could be transformed in cytogenetic damage in the form of MN.
Al-Rakan, Maha A; Hendrayani, Siti-Faujiah; Aboussekhra, Abdelilah
2016-08-02
Active fibroblasts, the predominant and the most active cells of breast cancer stroma, are responsible for tumor growth and spread. However, the molecular mediators and pathways responsible for stromal fibroblast activation, and their paracrine pro-carcinogenic effects are still not well defined. The CHEK2 tumor suppressor gene codes for a protein kinase, which plays important roles in the cellular response to various genotoxic stresses. Immunoblotting, quantitative RT-PCR and Immunofluorescence were used to assess the expression of CHEK2 in different primary breast fibroblasts and in tissues. The effect of CHEK2 on the expression and secretion of SDF-1 and IL-6 was evaluated by immunoblotting and ELISA. The WST-1 colorimetric assay was used to assess cell proliferation, while the BD BioCoat Matrigel invasion chambers were utilized to determine the effects of CHEK2 on the migratory and the invasiveness capacities of breast stromal fibroblasts as well as breast cancer cells. We have shown that CHEK2 is down-regulated in most cancer-associated fibroblasts (CAFs) as compared to their corresponding tumor counterpart fibroblasts (TCFs) at both the mRNA and protein levels. Interestingly, CHEK2 down-regulation using specific siRNA increased the expression/secretion of both cancer-promoting cytokines SDF-1 and IL-6, and transdifferentiated stromal fibroblasts to myofibroblasts. These cells were able to enhance the proliferation of non-cancerous epithelial cells, and also boosted the migration/invasion abilities of breast cancer cells in a paracrine manner. The later effect was SDF-1/IL-6-dependent. Importantly, ectopic expression of CHEK2 in active CAFs converted these cells to a normal state, with lower migration/invasion capacities and reduced paracrine pro-carcinogenic effects. These results indicate that CHEK2 possesses non-cell-autonomous tumor suppressor functions, and present the Chk2 protein as an important mediator in the functional interplay between breast carcinomas and their stromal fibroblasts.
Schwartze, Julian T.; Becker, Simone; Sakkas, Elpidoforos; Wujak, Łukasz A.; Niess, Gero; Usemann, Jakob; Reichenberger, Frank; Herold, Susanne; Vadász, István; Mayer, Konstantin; Seeger, Werner; Morty, Rory E.
2014-01-01
Glucocorticoids represent the mainstay therapy for many lung diseases, providing outstanding management of asthma but performing surprisingly poorly in patients with acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung fibrosis, and blunted lung development associated with bronchopulmonary dysplasia in preterm infants. TGF-β is a pathogenic mediator of all four of these diseases, prompting us to explore glucocorticoid/TGF-β signaling cross-talk. Glucocorticoids, including dexamethasone, methylprednisolone, budesonide, and fluticasone, potentiated TGF-β signaling by the Acvrl1/Smad1/5/8 signaling axis and blunted signaling by the Tgfbr1/Smad2/3 axis in NIH/3T3 cells, as well as primary lung fibroblasts, smooth muscle cells, and endothelial cells. Dexamethasone drove expression of the accessory type III TGF-β receptor Tgfbr3, also called betaglycan. Tgfbr3 was demonstrated to be a “switch” that blunted Tgfbr1/Smad2/3 and potentiated Acvrl1/Smad1 signaling in lung fibroblasts. The Acvrl1/Smad1 axis, which was stimulated by dexamethasone, was active in lung fibroblasts and antagonized Tgfbr1/Smad2/3 signaling. Dexamethasone acted synergistically with TGF-β to drive differentiation of primary lung fibroblasts to myofibroblasts, revealed by acquisition of smooth muscle actin and smooth muscle myosin, which are exclusively Smad1-dependent processes in fibroblasts. Administration of dexamethasone to live mice recapitulated these observations and revealed a lung-specific impact of dexamethasone on lung Tgfbr3 expression and phospho-Smad1 levels in vivo. These data point to an interesting and hitherto unknown impact of glucocorticoids on TGF-β signaling in lung fibroblasts and other constituent cell types of the lung that may be relevant to lung physiology, as well as lung pathophysiology, in terms of drug/disease interactions. PMID:24347165
Green, M H; Karran, P; Lowe, J E; Priestley, A; Arlett, C F; Mayne, L
1990-01-01
We have examined O6-methylguanine-DNA methyltransferase (MT) activity in four human fibroblast cell lines during immortalization. Transfection of primary fibroblasts with the plasmid pSV3gpt or pSV3neo, which encode the SV40 large T antigen, confers a transformed phenotype but not immediate immortality. After a period of growth (pre-crisis) the cells enter a quiescent phase (crisis) from which an immortal clone of cells eventually grows out. From measurements of MT activity in extracts of cells taken at different defined stages of the immortalization process, we conclude that the establishment of a Mex- (MT-deficient) cell population is not specifically associated with cellular transformation or with any particular stage of immortalization. It appears that in different cell populations the change from Mex+ to Mex- may occur at different times during the immortalization process and that the change may be very abrupt.
AGEs trigger autophagy in diabetic skin tissues and fibroblasts.
Sun, Kan; Wang, Wei; Wang, Chuan; Lao, Guojuan; Liu, Dan; Mai, Lifang; Yan, Li; Yang, Chuan; Ren, Meng
2016-03-11
Accumulation of advanced glycation end products (AGEs) contributes to the development of diabetic ulcers. Recent evidence indicates that AGEs administration enhanced autophagy in many cell types. As a positive trigger of autophagy, the effect of AGEs on autophagy in skin tissues and fibroblasts remains unknown. Skin tissues were isolated from Spreqne-Dawley rats and immunohistochemical staining was performed to analyze the location of LC3 and FOXO1 in skin tissues. Then primary cultured foreskin fibroblast cells with treated with AGEs and the effect of AGEs on autophagy was investigated. Protein level expressions of LC3, Beclin-1 and FOXO1 in fibroblasts were analyzed by Western blotting. Autophagic flux is detected with autophagy inhibitor chloroquine and mRFP-GFP-LC3 tandem construct. Compared with skin from normal rats, immunohistochemical staining shows a predominant LC3 localization in fibroblasts cytoplasm in diabetic rats. Elevated expression of FOXO1 also existed in diabetic rats dermis fibroblasts when compared with normal rats in immunohistochemical analysis. In human skin fibroblasts cells, AGEs administration stimulated the autophagy related LC3-II/LC3-I and Beclin-1 expressions and increased autophagy flux. In mRFP-GFP-LC3 puncta formation assays, both autolysosome and autophagosome were increased in human fibroblasts after treatment with AGEs. Fibroblasts exposed to AGEs also have increased FOXO1 expression compared with control group. AGEs could induce autophagy at least in part via regulating the FOXO1 activity in diabetic skin tissues and fibroblasts. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Burong; Zhu, Jiayun; Zhou, Hongning; Hei, Tom K.
2013-02-01
A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G2 phase premature chromosome condensation (G2-PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. mFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration.
Hu, Burong; Zhu, Jiayun; Zhou, Hongning; Hei, Tom K
2013-02-01
A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G 2 phase premature chromosome condensation (G 2 -PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. MFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration.
Quiescent Fibroblasts Exhibit High Metabolic Activity
Lemons, Johanna M. S.; Feng, Xiao-Jiang; Bennett, Bryson D.; Legesse-Miller, Aster; Johnson, Elizabeth L.; Raitman, Irene; Pollina, Elizabeth A.; Rabitz, Herschel A.; Rabinowitz, Joshua D.; Coller, Hilary A.
2010-01-01
Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled glutamine, we also detected a “backwards” flux in the tricarboxylic acid cycle from α-ketoglutarate to citrate that was enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions beneficial to the organism as a whole. PMID:21049082
Yu, Shengqiang; Yeh, Chiuan-Ren; Niu, Yuanjie; Chang, Hong-Chiang; Tsai, Yu-Chieh; Moses, Harold L; Shyr, Chih-Rong; Chang, Chawnshang; Yeh, Shuyuan
2012-03-01
Androgens and the androgen receptor (AR) play important roles in the development of male urogenital organs. We previously found that mice with total AR knockout (ARKO) and epithelial ARKO failed to develop normal prostate with loss of differentiation. We have recently knocked out AR gene in smooth muscle cells and found the reduced luminal infolding and IGF-1 production in the mouse prostate. However, AR roles of stromal fibroblasts in prostate development remain unclear. To further probe the stromal fibroblast AR roles in prostate development, we generated tissue-selective knockout mice with the AR gene deleted in stromal fibroblasts (FSP-ARKO). We also used primary culture stromal cells to confirm the in vivo data and investigate mechanisms related to prostate development. The results showed cellular alterations in the FSP-ARKO mouse prostate with decreased epithelial proliferation, increased apoptosis, and decreased collagen composition. Further mechanistic studies demonstrated that FSP-ARKO mice have defects in the expression of prostate stromal growth factors. To further confirm these in vivo findings, we prepared primary cultured mouse prostate stromal cells and found knocking down the stromal AR could result in growth retardation of prostate stromal cells and co-cultured prostate epithelial cells, as well as decrease of some stromal growth factors. Our FSP-ARKO mice not only provide the first in vivo evidence in Cre-loxP knockout system for the requirement of stromal fibroblast AR to maintain the normal development of the prostate, but may also suggest the selective knockdown of stromal AR might become a potential therapeutic approach to battle prostate hyperplasia and cancer. Copyright © 2011 Wiley Periodicals, Inc.
Ramaglia, L; Capece, G; Di Spigna, G; Bruno, M P; Buonocore, N; Postiglione, L
2013-01-01
The aim of the present study was to evaluate in vitro the biological behavior of human gingival fibroblasts cultured on two different titanium surfaces. Titanium test disks were prepared with a machined, relatively smooth (S) surface or a rough surface (O) obtained by a double acid etching procedure. Primary cultures of human gingival fibroblasts were plated on the experimental titanium disks and cultured up to 14 days. Titanium disk surfaces were analysed by scanning electron microscopy (SEM). Cell proliferation and a quantitative analysis by ELISA in situ of ECM components as CoI, FN and TN were performed. Results have shown different effects of titanium surface microtopography on cell expression and differentiation. At 96 hours of culture on experimental surfaces human gingival fibroblasts displayed a favourable cell attachment and proliferation on both surfaces although showing some differences. Both the relatively smooth and the etched surfaces interacted actively with in vitro cultures of human gingival fibroblasts, promoting cell proliferation and differentiation. Results suggested that the microtopography of a double acid-etched rough surface may induce a greater Co I and FN production, thus conditioning in vivo the biological behaviour of human gingival fibroblasts during the process of peri-implant soft tissue healing.
Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S; Lagares, David; Wada, Takashi; Luster, Andrew D; Tager, Andrew M
2017-03-01
The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA 1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA 1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA 1 -deficient (LPA 1 -/- ) or -sufficient (LPA 1 +/+ ) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA 1 -/- Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA 1 -/- Col-GFP mice. LPA-LPA 1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA 1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Comparative analysis of lysyl oxidase (like) family members in pulmonary fibrosis.
Aumiller, Verena; Strobel, Benjamin; Romeike, Merrit; Schuler, Michael; Stierstorfer, Birgit E; Kreuz, Sebastian
2017-03-10
Extracellular matrix (ECM) composition and stiffness are major driving forces for the development and persistence of fibrotic diseases. Lysyl oxidase (LOX) and LOX-like (LOXL) proteins play crucial roles in ECM remodeling due to their collagen crosslinking and intracellular functions. Here, we systematically investigated LOX/L expression in primary fibroblasts and epithelial cells under fibrotic conditions, Bleomycin (BLM) induced lung fibrosis and in human IPF tissue. Basal expression of all LOX/L family members was detected in epithelial cells and at higher levels in fibroblasts. Various pro-fibrotic stimuli broadly induced LOX/L expression in fibroblasts, whereas specific induction of LOXL2 and partially LOX was observed in epithelial cells. Immunohistochemical analysis of lung tissue from 14 IPF patients and healthy donors revealed strong induction of LOX and LOXL2 in bronchial and alveolar epithelium as well as fibroblastic foci. Using siRNA experiments we observed that LOXL2 and LOXL3 were crucial for fibroblast-to-myofibroblast transition (FMT). As FMT could only be reconstituted with an enzymatically active LOXL2 variant, we conclude that LOXL2 enzymatic function is crucial for fibroblast transdifferentiation. In summary, our study provides a comprehensive analysis of the LOX/L family in fibrotic lung disease and indicates prominent roles for LOXL2/3 in fibroblast activation and LOX/LOXL2 in IPF.
Żurek, Jarek; Dominiak, Marzena; Botzenhart, Ute; Bednarz, Wojciech
2015-05-01
The method for covering gingival recession defects and augmenting keratinized gingiva involves the use of autogenuous connective tissue grafts obtained from palatal mucosa in combination with various techniques of flap repositioning or tunnel techniques. In the case of multiple gingival recession defects the amount of connective tissue available for grafting is insufficient. Therefore, the use of substitutes is necessary. The most widely used material in recent years has been the acellular dermal matrix allograft. The disadvantage of its application lies in the absence of cells and blood vessels, which increases incorporation time. Primary cultured human autologic fibroblasts are commonly used to optimize the healing process. The aim of this study was to examine the in vitro biocompatibility of human fascia lata allograft as a new scaffold for primary cultured human autologic fibroblasts. For that, a fibroblast culture obtained from a fragment of gingival tissue taken from the hard palate mucosa of a subject was used. After 14 days the colony cells were inoculated on a fragment of human fascia lata allograft. After a further 7 days of incubation the material was frozen, cut and prepared for histochemical examination. After two weeks of incubation, and 7 days after inoculation on a fragment of fascia lata allograft numerous accumulations of the cultured fibroblast were found that had a typical structure and produced collagen fibres. A human fascia lata allograft can be used as a scaffold for primary cultured human autologic fibroblasts. Further studies should confirm the clinical efficacy of this solution. Copyright © 2014 Elsevier GmbH. All rights reserved.
Hunt, M. E.; Brown, D. R.
2005-01-01
Mycoplasma alligatoris causes acute lethal primary infection of susceptible hosts. A genome survey implicated sialidase and hyaluronidase, potential promoters of CD95-mediated eukaryotic cell death, as virulence factors of M. alligatoris. We used immunofluorescence imaging and flow cytometry to examine the effects of M. alligatoris infection in vitro on CD95 expression and apoptosis by alligator cardiac fibroblasts, a major cell type of a target organ of M. alligatoris infection in vivo. A uniform distribution of CD95 in primary cultured cardiac, skeletal muscle, and embryonic fibroblasts was demonstrated by using polyclonal antibodies against the N or C terminus of mouse or human CD95. Anti-CD95 antibodies reacted on Western blots of fibroblast lysates with a band with the predicted apparent molecular weight of CD95, but soluble CD95 was not detected in plasma from control or M. alligatoris-infected alligators. The proportion of CD95-gated cardiac fibroblasts increased threefold (P < 0.01) 48 h after inoculation with M. alligatoris. Infection induced morphological changes in cardiac fibroblasts, including translocation of CD95 characteristic of apoptosis and an eightfold increase (P < 0.16) in 5-bromo-2′-deoxyuridine (BrdU) incorporation measured in a terminal deoxynucleotide transferase dUTP nick end-labeling apoptosis assay. The proportion of BrdU-gated controls activated with agonistic immunoglobulin M against human CD95 also increased threefold (P < 0.03 for muscle). Heat-inactivated M. alligatoris and sterile M. alligatoris-conditioned culture supernatant had no effect. This is the first report of a CD95 homolog in the class Reptilia and establishes a new model that can be used to test the direct bacterial interaction with upstream components of the CD95 signal transduction pathway. PMID:16339059
Jimenez, Ana Gabriela; Williams, Joseph B
2014-10-01
The rate of metabolism is the speed at which organisms use energy, an integration of energy transformations within the body; it governs biological processes that influence rates of growth and reproduction. Progress at understanding functional linkages between whole organism metabolic rate and underlying mechanisms that influence its magnitude has been slow despite the central role this issue plays in evolutionary and physiological ecology. Previous studies that have attempted to relate how cellular processes translate into whole-organism physiology have done so over a range of body masses of subjects. However, the data still remains controversial when observing metabolic rates at the cellular level. To bridge the gap between these ideas, we examined cellular metabolic rate of primary dermal fibroblasts isolated from 49 species of birds representing a 32,000-fold range in body masses to test the hypothesis that metabolic rate of cultured cells scales with body size. We used a Seahorse XF-96 Extracellular flux analyzer to measure cellular respiration in fibroblasts. Additionally, we measured fibroblast size and mitochondrial content. We found no significant correlation between cellular metabolic rate, cell size, or mitochondrial content and body mass. Additionally, there was a significant relationship between cellular basal metabolic rate and proton leak in these cells. We conclude that metabolic rate of cells isolated in culture does not scale with body mass, but cellular metabolic rate is correlated to growth rate in birds. Copyright © 2014 Elsevier Inc. All rights reserved.
The Influence of Primary Microenvironment on Prostate Cancer Osteoblastic Bone Lesion Development
2015-09-01
for inhibiting PCa bone lesion development: 3a. Basic fibroblast growth factor (bFGF) in PC3 bone metastasis: bFGF was identified by cytokine...II receptor (TβRII) knockout (Tgfbr2 KO) mouse models. Col1creERT/Tgfbr2 KO (Col/Tgfbr2 KO), which have TGF-β signaling specific KO in fibroblasts ... fibroblasts and osteoblasts in the bone by Colcre/Tgfbr2 KO, or in the myeloid lineage cells, including osteoclasts in the bone by LysMcre/Tgfbr2 KO
Ultrastructural study of the primary olfactory pathway in Macaca fascicularis.
Herrera, Loren P; Casas, Carlos E; Bates, Margaret L; Guest, James D
2005-08-08
Olfactory ensheathing glial cells (OEGs) interact with a wide repertoire of cell types and support extension of olfactory axons (OAs) within the olfactory pathway. OEGs are thought to exclude OAs from contact with all other cells between the olfactory epithelium and the glomerulus of the olfactory bulb. These properties have lead to testing to determine whether OEGs support axonal growth following transplantation. The cellular interactions of transplanted OEGs will probably resemble those that occur within the normal pathway where interactions between OEGs and fibroblasts are prominent. No previous primate studies have focused on these interactions, knowledge of which is important if clinical application is envisioned. We describe the detailed intercellular interactions of OAs with supporting cells throughout the olfactory epithelium, the lamina propria, the fila olfactoria, and the olfactory nerve layer by using transmission electron microscopy in adult Macaca fascicularis. Patterns of OEG ensheathment and variations of the endo- and perineurium formed by olfactory nerve fibroblasts are described. OAs mainly interacted with horizontal basal cells, OEGs, and astrocytes. At both transitional ends of the pathway seamless intercellular interactions were observed, and fibroblast processes were absent. Perineurial cells produced surface basal lamina; however, endoneurial, epineurial, and meningeal fibroblasts did not. Perineurial cells contained intermediate filaments and were distinct from other fibroblasts and meningeal cells. OAs had direct contacts with astrocytes near the glia limitans. The properties of OEGs differed depending on whether astrocytic or fibroblastic processes were present. This indicates the importance of the cellular milieu in the structure and function of OEGs in primates.
EphA2 is a biomarker of hMSCs derived from human placenta and umbilical cord.
Shen, Shih-Pei; Liu, Wei-Ting; Lin, Yun; Li, Yuan-Tsung; Chang, Chih-Hao; Chang, Fung-Wei; Wang, Le-Ming; Teng, Sen-Wen; Hsuan, Yogi
2015-12-01
The heterogeneous nature of mesenchymal stem cells (MSCs) and the absence of known MSC-specific biomarkers make it challenging to define MSC phenotypes and characteristics. In this study, we compared the phenotypic and functional features of human placenta-derived MSCs with those of human dermal fibroblasts in vitro in order to identify a biomarker that can be used to increase the purity of MSCs in a primary culture of placenta-derived cells. Liquid chromatography-tandem mass spectrometry analysis was used to analyze and compare the proteome of human placenta-derived MSCs with that of fibroblasts. Quantitative real-time polymerase chain reaction, immunofluorescence, and flow cytometry were used to determine expression levels of EphA2 in placenta-derived MSCs. EphA2-positive cells were enriched by magnetic-activated cell sorting or with a cell sorter. An shRNA-mediated EphA2 knockdown was used to assess the role of EphA2 in MSC response to Tumor necrosis factor (TNF)-α stimulation. Analysis of proteomics data from MSCs and fibroblasts resulted in the identification of the EphA2 surface protein biomarker, which could reliably distinguish MSCs from fibroblasts. EphA2 was significantly upregulated in placenta-derived MSCs when compared to fibroblasts. EphA2 played an important role in MSC migration in response to inflammatory stimuli, such as TNF-α. EphA2-enriched MSCs were also more responsive to inflammatory stimuli in vitro when compared to unsorted MSCs, indicating a role for EphA2 in the immunomodulatory functionality of MSCs. EphA2 can be used to distinguish and isolate MSCs from a primary culture of placenta-derived cells. EphA2-sorted MSCs exhibited superior responsiveness to TNF-α signaling in an inflammatory environment compared with unsorted MSCs or MSC-like cells. Copyright © 2015. Published by Elsevier B.V.
Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging.
Zeng, Qinghai; Zhou, Fang; Lei, Li; Chen, Jing; Lu, Jianyun; Zhou, Jianda; Cao, Ke; Gao, Lihua; Xia, Fang; Ding, Shu; Huang, Lihua; Xiang, Hong; Wang, Jingjing; Xiao, Yangfan; Xiao, Rong; Huang, Jinhua
2017-01-01
Ganoderma lucidum has featured in traditional Chinese medicine for >1,000 years. Ganoderma polysaccharides (GL-PS), a major active ingredient in Ganoderma, confer immune regulation, antitumor effects and significant antioxidant effects. The aim of the present study was to investigate the efficacy and mechanism of GL‑PS‑associated inhibition of ultraviolet B (UVB)‑induced photoaging in human fibroblasts in vitro. Primary human skin fibroblasts were cultured, and a fibroblast photoaging model was built through exposure to UVB. Cell viability was measured by MTT assay. Aged cells were stained using a senescence‑associated β-galactosidase staining (SA‑β‑gal) kit. ELISA kits were used to analyze matrix metalloproteinase (MMP) ‑1 and C‑telopeptides of Type I collagen (CICP) protein levels in cellular supernatant. ROS levels were quantified by flow cytometry. Cells exposed to UVB had decreased cell viability, increased aged cells, decreased CICP protein expression, increased MMP‑1 protein expression, and increased cellular ROS levels compared with non‑exposed cells. However, cells exposed to UVB and treated with 10, 20 and 40 µg/ml GL‑PS demonstrated increased cell viability, decreased aged cells, increased CICP protein expression, decreased MMP‑1 protein expression, and decreased cellular ROS levels compared with UVB exposed/GL‑PS untreated cells. These results demonstrate that GL‑PS protects fibroblasts against photoaging by eliminating UVB‑induced ROS. This finding indicates GL‑PS treatment may serve as a novel strategy for antiphotoaging.
Guo, Xiujuan; Yang, Yangfan; Liu, Liling; Liu, Xiaoan; Xu, Jiangang; Wu, Kaili; Yu, Minbin
2017-06-01
To investigate the underlying mechanism by which pirfenidone blocks the transition from the G1 to S phase in primary human Tenon's fibroblasts. Primary human Tenon's fibroblasts were characterized by immunocytofluorescence staining with vimentin, fibroblast surface protein, and cytokeratin. After treating Tenon's fibroblasts with pirfenidone under proliferation conditions (10% fetal bovine serum), cell proliferation was measured using a WST-1 assay. Progression through the cell cycle was analyzed by flow cytometry. The expression of CDK2, CDK6, cyclinD1, cyclinD3, and cyclinE and the phosphorylation of AKT, ERK1/2/MAPK, JNK/MAPK, and p38 MAPK were estimated using western blot analysis. Under proliferative conditions, pirfenidone inhibited Tenon's fibroblasts proliferation and arrested the cell cycle at the G1 phase; decreased the phosphorylation of AKT, GSK3β, ERK1/2/MAPK, and JNK/MAPK; increased the phosphorylation of p38 MAPK; and inhibited CDK2, CDK6, cyclin D1, cyclin D3, and cyclin E in a dose-dependent manner. Inhibitors of AKT (LY294002), ERK1/2 (U0126), and JNK (SP600125) arrested the G1/S transition, similar to the effect of pirfenidone. The p38 inhibitor (SB202190) decreased the G1-blocking effect of pirfenidone. The expression of CDK2, CDK6, cyclin D1, and cyclin D3 were inhibited by LY294002, U0126, and SP600125. SB202190 attenuated the pirfenidone-induced reduction of CDK2, CDK6, cyclin D1, cyclin D3, and cyclin E. Pirfenidone inhibited HTFs proliferation and induced G1 arrest by downregulating CDKs and cyclins involving the AKT/GSK3β and MAPK signaling pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shitara, Shingo; Kakeda, Minoru; Nagata, Keiko
2008-05-09
Telomerase-mediated life-span extension enables the expansion of normal cells without malignant transformation, and thus has been thought to be useful in cell therapies. Currently, integrating vectors including the retrovirus are used for human telomerase reverse transcriptase (hTERT)-mediated expansion of normal cells; however, the use of these vectors potentially causes unexpected insertional mutagenesis and/or activation of oncogenes. Here, we established normal human fibroblast (hPF) clones retaining non-integrating human artificial chromosome (HAC) vectors harboring the hTERT expression cassette. In hTERT-HAC/hPF clones, we observed the telomerase activity and the suppression of senescent-associated SA-{beta}-galactosidase activity. Furthermore, the hTERT-HAC/hPF clones continued growing beyond 120 daysmore » after cloning, whereas the hPF clones retaining the silent hTERT-HAC senesced within 70 days. Thus, hTERT-HAC-mediated episomal expression of hTERT allows the extension of the life-span of human primary cells, implying that gene delivery by non-integrating HAC vectors can be used to control cellular proliferative capacity of primary cultured cells.« less
Shindo, Ryodai; Yamazaki, Soh; Ohmuraya, Masaki; Araki, Kimi; Nakano, Hiroyasu
2016-11-04
Cellular FLICE-inhibitory protein (cFLIP) is a catalytically inactive homolog of the initiator caspase, caspase 8 and blocks apoptosis through binding to caspase 8. Human CFLAR gene encodes two proteins, a long form cFLIP (cFLIP L ) and a short form cFLIP (cFLIPs) due to an alternative splicing. Recent studies have shown that expression of cFLIPs, but not cFLIP L promotes programmed necrosis (also referred to as necroptosis) in an immortalized human keratinocyte cell line, HaCaT. Here, we found that expression of cFLIPs similarly promoted necroptosis in immortalized fibroblasts. To further expand this observation and exclude the possibility that immortalization process of keratinocytes or fibroblasts might affect the phenotype induced by cFLIPs expression, we generated human CFLARs transgenic (Tg) mice. Primary fibroblasts derived from CFLARs Tg mice were increased in susceptibility to TNFα-induced necroptosis, but not apoptosis compared to wild-type (WT) fibroblasts. Moreover, hallmarks of necroptosis, such as phosphorylation of receptor-interacting protein kinase (RIPK)1 and RIPK3, and oligomer formation of mixed lineage kinase domain-like (MLKL) were robustly induced in CFLARs Tg fibroblasts compared to wild-type fibroblasts following TNFα stimulation. Thus, cFLIPs-dependent promotion of necroptosis is not unique to immortalized keratinocytes or fibroblasts, but also to generalized to primary fibroblasts. Copyright © 2016 Elsevier Inc. All rights reserved.
Méjécase, Cécile; Bertelli, Matteo; Terray, Angélique; Michiels, Christelle; Condroyer, Christel; Fouquet, Stéphane; Sadoun, Maxime; Clérin, Emmanuelle; Liu, Binqian; Léveillard, Thierry; Goureau, Olivier; Sahel, José-Alain; Audo, Isabelle
2017-01-01
We identified herein additional patients with rod-cone dystrophy (RCD) displaying mutations in KIZ, encoding the ciliary centrosomal protein kizuna and performed functional characterization of the respective protein in human fibroblasts and of its mouse ortholog PLK1S1 in the retina. Mutation screening was done by targeted next generation sequencing and subsequent Sanger sequencing validation. KIZ mRNA levels were assessed on blood and serum-deprived human fibroblasts from a control individual and a patient, compound heterozygous for the c.52G>T (p.Glu18*) and c.119_122del (p.Lys40Ilefs*14) mutations in KIZ. KIZ localization, documentation of cilium length and immunoblotting were performed in these two fibroblast cell lines. In addition, PLK1S1 immunolocalization was conducted in mouse retinal cryosections and isolated rod photoreceptors. Analyses of additional RCD patients enabled the identification of two homozygous mutations in KIZ, the known c.226C>T (p.Arg76*) mutation and a novel variant, the c.3G>A (p.Met1?) mutation. Albeit the expression levels of KIZ were three-times lower in the patient than controls in whole blood cells, further analyses in control- and mutant KIZ patient-derived fibroblasts unexpectedly revealed no significant difference between the two genotypes. Furthermore, the averaged monocilia length in the two fibroblast cell lines was similar, consistent with the preserved immunolocalization of KIZ at the basal body of the primary cilia. Analyses in mouse retina and isolated rod photoreceptors showed PLK1S1 localization at the base of the photoreceptor connecting cilium. In conclusion, two additional patients with mutations in KIZ were identified, further supporting that defects in KIZ/PLK1S1, detected at the basal body of the primary cilia in fibroblasts, and the photoreceptor connecting cilium in mouse, respectively, are involved in RCD. However, albeit the mutations were predicted to lead to nonsense mediated mRNA decay, we could not detect changes upon expression levels, protein localization or cilia length in KIZ-mutated fibroblast cells. Together, our findings unveil the limitations of fibroblasts as a cellular model for RCD and call for other models such as induced pluripotent stem cells to shed light on retinal pathogenic mechanisms of KIZ mutations. PMID:29057815
Germline BAP1 mutations induce a Warburg effect
Bononi, Angela; Yang, Haining; Giorgi, Carlotta; Patergnani, Simone; Pellegrini, Laura; Su, Mingming; Xie, Guoxiang; Signorato, Valentina; Pastorino, Sandra; Morris, Paul; Sakamoto, Greg; Kuchay, Shafi; Gaudino, Giovanni; Pass, Harvey I; Napolitano, Andrea; Pinton, Paolo; Jia, Wei; Carbone, Michele
2017-01-01
Carriers of heterozygous germline BAP1 mutations (BAP1+/−) develop cancer. We studied plasma from 16 BAP1+/− individuals from 2 families carrying different germline BAP1 mutations and 30 BAP1 wild-type (BAP1WT) controls from these same families. Plasma samples were analyzed by liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS), ultra-performance liquid chromatography triple quadrupole mass spectrometry (UPLC-TQ-MS), and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). We found a clear separation in the metabolic profile between BAP1WT and BAP1+/− individuals. We confirmed the specificity of the data in vitro using 12 cell cultures of primary fibroblasts we derived from skin punch biopsies from 12/46 of these same individuals, 6 BAP1+/− carriers and 6 controls from both families. BAP1+/− fibroblasts displayed increased aerobic glycolysis and lactate secretion, and reduced mitochondrial respiration and ATP production compared with BAP1WT. siRNA-mediated downregulation of BAP1 in primary BAP1WT fibroblasts and in primary human mesothelial cells, led to the same reduced mitochondrial respiration and increased aerobic glycolysis as we detected in primary fibroblasts from carriers of BAP1+/− mutations. The plasma and cell culture results were highly reproducible and were specifically and only linked to BAP1 status and not to gender, age or family, or cell type, and required an intact BAP1 catalytic activity. Accordingly, we were able to build a metabolomic model capable of predicting BAP1 status with 100% accuracy using data from human plasma. Our data provide the first experimental evidence supporting the hypothesis that aerobic glycolysis, also known as the ‘Warburg effect’, does not necessarily occur as an adaptive process that is consequence of carcinogenesis, but rather that it may also predate malignancy by many years and facilitate carcinogenesis. PMID:28665402
Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone
2009-09-04
Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPIImore » expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.« less
Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts.
Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone; Huai, Jisen; Mandal, Pankaj Kumar; Niedermann, Gabriele
2009-09-04
Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPII expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.
Schenkel, Laila C.; Singh, Ratnesh K.; Michel, Vera; Zeisel, Steven H.; da Costa, Kerry-Ann; Johnson, Amy R.; Mudd, Harvey S.; Bakovic, Marica
2015-01-01
Fibroblasts from a patient with postural orthostatic tachycardia syndrome (POTS), who presented with low plasma choline and betaine, were studied to determine the metabolic characteristics of the choline deficiency. Choline is required for the synthesis of the phospholipid phosphatidylcholine (PC) and for betaine, an important osmoregulator. Here, choline transport, lipid homeostasis, and mitochondria function were analyzed in skin fibroblasts from POTS and compared with control cells. The choline transporter-like protein 1/solute carrier 44A1 (CTL1/SLC44A1) and mRNA expression were 2–3 times lower in POTS fibroblasts, and choline uptake was reduced 60% (P < 0.05). Disturbances of membrane homeostasis were observed by reduced ratios between PC:phosphatidylethanolamine and sphingomyelin:cholesterol, as well as by modified phospholipid fatty acid composition. Choline deficiency also impaired mitochondria function, which was observed by a reduction in oxygen consumption, mitochondrial potential, and glycolytic activity. When POTS cells were treated with choline, transporter was up-regulated, and uptake of choline increased, offering an option for patient treatment. The characteristics of the POTS fibroblasts described here represent a first model of choline and CTL1/SLC44A1 deficiency, in which choline transport, membrane homeostasis, and mitochondrial function are impaired.—Schenkel, L. C., Singh, R. K., Michel, V., Zeisel, S. H., da Costa, K.-A., Johnson, A. R., Mudd, H. S., Bakovic, M. Mechanism of choline deficiency and membrane alteration in postural orthostatic tachycardia syndrome primary skin fibroblasts. PMID:25466896
Li, Ping; Liu, Ping; Peng, Yan; Zhang, Zhuo-Hang; Li, Xiao-Ming; Xiong, Ren-Ping; Chen, Xing; Zhao, Yan; Ning, Ya-Lei; Yang, Nan; Zhang, Bo; Zhou, Yuan-Guo
2018-06-27
Increasing evidence has suggested that bidirectional regulation of cell proliferation is one important effect of TGF-β1 in wound healing. Increased c-Ski expression plays a role in promoting fibroblast proliferation at low TGF-β1 concentrations, but the mechanism by which low TGF-β1 concentrations regulate c-Ski levels remains unclear. In this study, the proliferation of rat primary fibroblasts was assessed with an ELISA BrdU kit. The mRNA and protein expression and phosphorylation levels of corresponding factors were measured by RT-qPCR, immunohistochemistry or Western blotting. We first found that low TGF-β1 concentrations not only promoted c-Ski mRNA and protein expression in rat primary fibroblasts but also increased the phosphorylation levels of Extracellular Signal-Regulated Kinases (ERK) and cAMP response element binding (CREB) protein. An ERK kinase (mitogen-activated protein kinase kinase, MEK) inhibitor significantly inhibited ERK1/2 phosphorylation levels, markedly reducing c-Ski expression and CREB phosphorylation levels and abrogating the growth-promoting effect of low TGF-β1 concentrations. At the same time, Smad2/3 phosphorylation levels were not significantly changed. Taken together, these results suggest that the increased cell proliferation induced by low TGF-β1 concentrations mediates c-Ski expression potentially through the ERK/CREB pathway rather than through the classic TGF-β1/Smad pathway.
Bratka-Robia, Christine B; Mitteregger, Gerda; Aichinger, Amanda; Egerbacher, Monika; Helmreich, Magdalena; Bamberg, Elmar
2002-02-01
Skin biopsies were taken from female dogs, the primary hair follicles isolated and the dermal papilla dissected. After incubation in supplemented Amniomax complete C100 medium in 24-well culture plates, the dermal papilla cells (DPC) grew to confluence within 3 weeks. Thereafter, they were subcultivated every 7 days. Dermal fibroblast (DFB) cultures were established by explant culture of interfollicular dermis in serum-free medium, where they reached confluence in 10 days. They were subcultivated every 5 days. For immunohistochemistry, cells were grown on cover slips for 24 h, fixed and stained with antibodies against collagen IV and laminin. DPC showed an aggregative growth pattern and formation of pseudopapillae. Intensive staining for collagen IV and laminin could be observed until the sixth passage. DFB grew as branching, parallel lines and showed only weak staining for collagen IV and laminin.
IFN-Dependent and -Independent Reduction in West Nile Virus Infectivity in Human Dermal Fibroblasts
Hoover, Lisa I.; Fredericksen, Brenda L.
2014-01-01
Although dermal fibroblasts are one of the first cell types exposed to West Nile virus (WNV) during a blood meal by an infected mosquito, little is known about WNV replication within this cell type. Here, we demonstrate that neuroinvasive, WNV-New York (WNV-NY), and nonneuroinvasive, WNV-Australia (WNV-AUS60) strains are able to infect and replicate in primary human dermal fibroblasts (HDFs). However, WNV-AUS60 replication and spread within HDFs was reduced compared to that of WNV-NY due to an interferon (IFN)-independent reduction in viral infectivity early in infection. Additionally, replication of both strains was constrained late in infection by an IFN-β-dependent reduction in particle infectivity. Overall, our data indicates that human dermal fibroblasts are capable of supporting WNV replication; however, the low infectivity of particles produced from HDFs late in infection suggests that this cell type likely plays a limited role as a viral reservoir in vivo. PMID:24662674
Chen, Jung-Tsu; Wang, Chen-Ying; Chen, Min-Huey
2018-01-13
Many fibrotic processes are associated with an increased level of transforming growth factor-β1 (TGF-β1). TGF-β1 can increase synthesis of matrix proteins and enhance secretion of protease inhibitors, resulting in matrix accumulation. Connective tissue growth factor (CTGF) is a downstream profibrotic effector of TGF-β1 and is associated with the fibrosis in several human organs. Curcumin has been applied to reduce matrix accumulation in fibrotic diseases. This study was aimed to evaluate whether curcumin could suppress TGF-β1-induced CTGF expression and its related signaling pathway involving in this inhibitory action in primary human gingival fibroblasts. The differences in CTGF expression among three types of gingival overgrowth and normal gingival tissues were assessed by immunohistochemistry. Gingival fibroblast viability in cultured media with different concentrations of curcumin was studied by MTT assay. The effect of curcumin on TGF-β1-induced CTGF expression in primary human gingival fibroblasts was examined by immunoblotting. Moreover, the proteins involved in TGF-β1 signaling pathways including TGF-β1 receptors and Smad2 were also analyzed by immunoblotting. CTGF was highly expressed in fibroblasts, epithelial cells and some of endothelial cells, smooth muscle cells, and inflammatory cells in phenytoin-induced gingival overgrowth tissues rather than in those of hereditary and inflammatory gingival overgrowth tissues. Moreover, CTGF expression in the epithelial and connective tissue layers was higher in phenytoin-induced gingival overgrowth tissues than in normal gingival tissues. Curcumin was nontoxic and could reduce TGF-β1-induced CTGF expression by attenuating the phosphorylation and nuclear translocation of Smad2. Curcumin can suppress TGF-β1-induced CTGF expression through the interruption of Smad2 signaling. Copyright © 2018. Published by Elsevier B.V.
Kuo, Shiu-Ming; Burl, Lana R.; Hu, Zihua
2012-01-01
Vitamin C has been shown to delay the cellular senescence and was considered a candidate for chemoprevention and cancer therapy. To understand the reported contrasting roles of vitamin C: growth-promoting in the primary cells and growth-inhibiting in cancer cells, primary mouse embryonic fibroblasts (MEF) and their isogenic spontaneously immortalized fibroblasts with unlimited cell division potential were used as the model pair. We used microarray gene expression profiling to show that the immortalized MEF possess human cancer gene expression fingerprints including a pattern of up-regulation of inflammatory response-related genes. Using the MEF model, we found that a physiological treatment level of vitamin C (10−5 M), but not other unrelated antioxidants, enhanced cell growth. The growth-promoting effect was associated with a pattern of enhanced expression of cell cycle- and cell division-related genes in both primary and immortalized cells. In the immortalized MEF, physiological treatment levels of vitamin C also enhanced the expression of immortalization-associated genes including a down-regulation of genes in the extracellular matrix functional category. In contrast, confocal immunofluorescence imaging of the primary MEF suggested an increase in collagen IV protein upon vitamin C treatment. Similar to the cancer cells, the growth-inhibitory effect of the redox-active form of vitamin C was preferentially observed in immortalized MEF. All effects of vitamin C required its intracellular presence since the transporter-deficient SVCT2−/− MEF did not respond to vitamin C. SVCT2−/− MEF divided and became immortalized readily indicating little dependence on vitamin C for the cell division. Immortalized SVCT2−/− MEF required higher concentration of vitamin C for the growth inhibition compared to the immortalized wildtype MEF suggesting an intracellular vitamin C toxicity. The relevance of our observation in aging and human cancer prevention was discussed. PMID:22427916
Andriani, Francesca; Majorini, Maria Teresa; Mano, Miguel; Landoni, Elena; Miceli, Rosalba; Facchinetti, Federica; Mensah, Mavis; Fontanella, Enrico; Dugo, Matteo; Giacca, Mauro; Pastorino, Ugo; Sozzi, Gabriella; Delia, Domenico; Roz, Luca; Lecis, Daniele
2018-03-20
Fibroblasts are crucial mediators of tumor-stroma cross-talk through synthesis and remodeling of the extracellular matrix and production of multiple soluble factors. Nonetheless, little is still known about specific determinants of fibroblast pro-tumorigenic activity in lung cancer. Here, we aimed at understanding the role of miRNAs, which are often altered in stromal cells, in reprogramming fibroblasts towards a tumor-supporting phenotype. We employed a co-culture-based high-throughput screening to identify specific miRNAs modulating the pro-tumorigenic potential of lung fibroblasts. Multiplex assays and ELISA were instrumental to study the effect of miRNAs on the secretome of both primary and immortalized lung fibroblasts from lung cancer patients and to evaluate plasmatic levels of HGF in heavy smokers. Direct mRNA targeting by miRNAs was investigated through dual-luciferase reporter assay and western blot. Finally, the pro-tumorigenic activity of fibroblasts and their conditioned media was tested by employing in vitro migration experiments and mouse xenografts. We identified miR-16 as a master regulator of fibroblast secretome and showed that its upregulation reduces HGF secretion by fibroblasts, impairing their capacity to promote cancer cell migration. This effect is due to a pleiotropic activity of miR-16 which prevents HGF expression through direct inhibition of FGFR-1 signaling and targeting of HGF mRNA. Mechanistically, miR-16 targets FGFR-1 downstream mediator MEK1, thus reducing ERK1/2 activation. Consistently, chemical or genetic inhibition of FGFR-1 mimics miR-16 activity and prevents HGF production. Of note, we report that primary fibroblast cell lines derived from lungs of heavy smokers express reduced miR-16 levels compared to those from lungs not exposed to smoke and that HGF concentration in heavy smokers' plasma correlates with levels of tobacco exposure. Finally, in vivo experiments confirmed that restoration of miR-16 expression in fibroblasts reduced their ability to promote tumor growth and that HGF plays a central role in the pro-tumorigenic activity of fibroblasts. Overall, these results uncover a central role for miR-16 in regulating HGF production by lung fibroblasts, thus affecting their pro-tumorigenic potential. Correlation between smoking exposure and miR-16 levels could provide novel clues regarding the formation of a tumor-proficient milieu during the early phases of lung cancer development.
The Isolation and Characterization of Human Prostate Cancer Stem Cells
2012-02-01
established cell lines and primary patient samples) with human prostate fibroblasts hold promise as models of tumor initiation/cancer stem cell activity...We continue to optimize and validate our in vitro model of prostate cancer initiation to facilitate cancer stem cell discovery as well as drug targeting.
Ultra-Soft PDMS-Based Magnetoactive Elastomers as Dynamic Cell Culture Substrata
Mayer, Matthias; Rabindranath, Raman; Börner, Juliane; Hörner, Eva; Bentz, Alexander; Salgado, Josefina; Han, Hong; Böse, Holger; Probst, Jörn; Shamonin, Mikhail; Monkman, Gareth J.; Schlunck, Günther
2013-01-01
Mechanical cues such as extracellular matrix stiffness and movement have a major impact on cell differentiation and function. To replicate these biological features in vitro, soft substrata with tunable elasticity and the possibility for controlled surface translocation are desirable. Here we report on the use of ultra-soft (Young’s modulus <100 kPa) PDMS-based magnetoactive elastomers (MAE) as suitable cell culture substrata. Soft non-viscous PDMS (<18 kPa) is produced using a modified extended crosslinker. MAEs are generated by embedding magnetic microparticles into a soft PDMS matrix. Both substrata yield an elasticity-dependent (14 vs. 100 kPa) modulation of α-smooth muscle actin expression in primary human fibroblasts. To allow for static or dynamic control of MAE material properties, we devise low magnetic field (≈40 mT) stimulation systems compatible with cell-culture environments. Magnetic field-instigated stiffening (14 to 200 kPa) of soft MAE enhances the spreading of primary human fibroblasts and decreases PAX-7 transcription in human mesenchymal stem cells. Pulsatile MAE movements are generated using oscillating magnetic fields and are well tolerated by adherent human fibroblasts. This MAE system provides spatial and temporal control of substratum material characteristics and permits novel designs when used as dynamic cell culture substrata or cell culture-coated actuator in tissue engineering applications or biomedical devices. PMID:24204603
Teotia, Pooja; Sharma, Shilpa; Airan, Balram; Mohanty, Sujata
2016-12-01
Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.
Nietzer, Sarah; Baur, Florentin; Sieber, Stefan; Hansmann, Jan; Schwarz, Thomas; Stoffer, Carolin; Häfner, Heide; Gasser, Martin; Waaga-Gasser, Ana Maria; Walles, Heike; Dandekar, Gudrun
2016-07-01
Tumor models based on cancer cell lines cultured two-dimensionally (2D) on plastic lack histological complexity and functionality compared to the native microenvironment. Xenogenic mouse tumor models display higher complexity but often do not predict human drug responses accurately due to species-specific differences. We present here a three-dimensional (3D) in vitro colon cancer model based on a biological scaffold derived from decellularized porcine jejunum (small intestine submucosa+mucosa, SISmuc). Two different cell lines were used in monoculture or in coculture with primary fibroblasts. After 14 days of culture, we demonstrated a close contact of human Caco2 colon cancer cells with the preserved basement membrane on an ultrastructural level as well as morphological characteristics of a well-differentiated epithelium. To generate a tissue-engineered tumor model, we chose human SW480 colon cancer cells, a reportedly malignant cell line. Malignant characteristics were confirmed in 2D cell culture: SW480 cells showed higher vimentin and lower E-cadherin expression than Caco2 cells. In contrast to Caco2, SW480 cells displayed cancerous characteristics such as delocalized E-cadherin and nuclear location of β-catenin in a subset of cells. One central drawback of 2D cultures-especially in consideration of drug testing-is their artificially high proliferation. In our 3D tissue-engineered tumor model, both cell lines showed decreased numbers of proliferating cells, thus correlating more precisely with observations of primary colon cancer in all stages (UICC I-IV). Moreover, vimentin decreased in SW480 colon cancer cells, indicating a mesenchymal to epithelial transition process, attributed to metastasis formation. Only SW480 cells cocultured with fibroblasts induced the formation of tumor-like aggregates surrounded by fibroblasts, whereas in Caco2 cocultures, a separate Caco2 cell layer was formed separated from the fibroblast compartment beneath. To foster tissue generation, a bioreactor was constructed for dynamic culture approaches. This induced a close tissue-like association of cultured tumor cells with fibroblasts reflecting tumor biopsies. Therapy with 5-fluorouracil (5-FU) was effective only in 3D coculture. In conclusion, our 3D tumor model reflects human tissue-related tumor characteristics, including lower tumor cell proliferation. It is now available for drug testing in metastatic context-especially for substances targeting tumor-stroma interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin M. Prise
This project was a small part of a larger collaborative study headed by Dr Aloke Chatterjee, (Lawrence Berkeley National Laboratory) and including Drs Les Braby, John Ford (Texas A&M) and Kathy Held (MGH Boston), which was developing an integrated theoretical and experimental model of the radiation-induced bystander response. Our part of the study has been to determine the effectiveness of soft X-rays at inducing chromosomal damage under conditions of direct and bystander exposure. The aim was to compare this with the effectiveness of the low energy 60 kV electron microbeam available at Texas A&M. Previous studies have been performed withmore » primary human fibroblasts measuring micronuclei formation to determine the relative yields of direct versus bystander mediated micronuclei formation after cells were individually irradiated utilizing our novel focused soft X-ray microprobe, which is capable of producing localized submicron beams of carbon-K (278 eV) X-rays. Only a brief overview is given here as the study has been published in several papers. Our original hypothesis was to study yields of bystander-induced micronucleated cells in both wild-type and mutant fibroblast from mouse embryo fibroblasts. Difficulties with the level of background micronuclei in the MEFs prevented systematic studies of bystander responses in the laboratories involved in the collaboration. We then performed these studies with AG1522 primary human fibroblast cells using a siRNA approach developed by John Ford at Texas A&M to knock down DNA PKcs in the first instance. Our soft X-ray source has been in routine use for carbon-K X-rays and is now available with Aluminium-K (1.49 keV) and titanium-K (4.5 keV), although the dose-rate from titanium is still too low at present for most experiments, where large numbers of cells need to be exposed. A separately funded project developed a new soft X-ray microprobe which will give much greater flexibility for changing energies and giving high dose-rates for exposures (See DE-FG02-01ER63236). However, we performed pilot studies measuring bystander responses with titanium-K. To date we have performed studies with V79 cells measuring cell survival as an endpoint and are starting studies in our human fibroblasts to measure micronuclei yields. A significant bystander response is observed in the V79 cells under conditions where only a single cell within a population was irradiated either with carbon-K or titanium-K X-rays. Typically around 10% cell killing is observed under these conditions. These studies are now being extended to measure micronuclei yields in the AG1522 cells under direct and bystander conditions. Our work has suggested that the yield of micronuclei in fibroblasts exposed to soft X-rays may be reduced in comparison to conventional X-ray exposures (Prise et al., 2003). Although further studies are required to confirm this using a range of scoring times.« less
Stromal Androgen Receptor in Prostate Cancer Development and Progression
Leach, Damien A.; Buchanan, Grant
2017-01-01
Prostate cancer development and progression is the result of complex interactions between epithelia cells and fibroblasts/myofibroblasts, in a series of dynamic process amenable to regulation by hormones. Whilst androgen action through the androgen receptor (AR) is a well-established component of prostate cancer biology, it has been becoming increasingly apparent that changes in AR signalling in the surrounding stroma can dramatically influence tumour cell behavior. This is reflected in the consistent finding of a strong association between stromal AR expression and patient outcomes. In this review, we explore the relationship between AR signalling in fibroblasts/myofibroblasts and prostate cancer cells in the primary site, and detail the known functions, actions, and mechanisms of fibroblast AR signaling. We conclude with an evidence-based summary of how androgen action in stroma dramatically influences disease progression. PMID:28117763
ATF6α regulates morphological changes associated with senescence in human fibroblasts
Martin, Nathalie; Saas, Laure; Cormenier, Johanna; Malaquin, Nicolas; Huot, Ludovic; Slomianny, Christian; Bouali, Fatima; Vercamer, Chantal; Hot, David; Pourtier, Albin; Chevet, Eric; Abbadie, Corinne; Pluquet, Olivier
2016-01-01
Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated β-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-β-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts. PMID:27563820
ATF6α regulates morphological changes associated with senescence in human fibroblasts.
Druelle, Clémentine; Drullion, Claire; Deslé, Julie; Martin, Nathalie; Saas, Laure; Cormenier, Johanna; Malaquin, Nicolas; Huot, Ludovic; Slomianny, Christian; Bouali, Fatima; Vercamer, Chantal; Hot, David; Pourtier, Albin; Chevet, Eric; Abbadie, Corinne; Pluquet, Olivier
2016-10-18
Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated β-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-β-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts.
Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors.
Chen, Jin; Chaurio, Ricardo A; Maueröder, Christian; Derer, Anja; Rauh, Manfred; Kost, Andriy; Liu, Yi; Mo, Xianming; Hueber, Axel; Bilyy, Rostyslav; Herrmann, Martin; Zhao, Yi; Muñoz, Luis E
2017-01-01
Many antitumor therapies induce apoptotic cell death in order to cause tumor regression. Paradoxically, apoptotic cells are also known to promote wound healing, cell proliferation, and tumor cell repopulation in multicellular organisms. We aimed to characterize the nature of the regenerative signals concentrated in the micromilieu of dead and dying cells. Cultures of viable melanoma B16F10 cells, mouse fibroblasts, and primary human fibroblast-like synoviocytes (FLS) in the presence of dead and dying cells, their supernatants (SNs), or purified agonists and antagonists were used to evaluate the stimulation of proliferation. Viable cell quantification was performed by either flow cytometry of harvested cells or by crystal violet staining of adherent cells. High-performance liquid chromatography and liquid chromatography coupled with mass spectrometry of cell SNs were deployed to identify the nature of growth-promoting factors. Coimplantation of living cells in the presence of SNs collected from dead and dying cells and specific agonists was used to evaluate tumor growth in vivo . The stimulation of proliferation of few surviving cells by bystander dead cells was confirmed for melanoma cells, mouse fibroblasts, and primary FLS. We found that small soluble molecules present in the protein-free fraction of SNs of dead and dying cells were responsible for the promotion of proliferation. The nucleoside inosine released by dead and dying cells acting via adenosine receptors was identified as putative inducer of proliferation of surviving tumor cells after irradiation and heat treatment. Inosine released by dead and dying cells mediates tumor cell proliferation via purinergic receptors. Therapeutic strategies surmounting this pathway may help to reduce the rate of recurrence after radio- and chemotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Słonina, Dorota, E-mail: z5slonin@cyfronet.pl; Biesaga, Beata; Janecka, Anna
Purpose: In our previous study, using the micronucleus assay, a low-dose hyper-radiosensitivity (HRS)-like phenomenon was observed for normal fibroblasts of 2 of the 40 cancer patients investigated. In this article we report, for the first time, the survival response of primary fibroblasts from 25 of these patients to low-dose irradiation and answer the question regarding the effect of G2-phase enrichment on HRS elicitation. Methods and Materials: The clonogenic survival of asynchronous as well as G2-phase enriched fibroblast populations was measured. Separation of G2-phase cells and precise cell counting was performed using a fluorescence-activated cell sorter. Sorted and plated cells weremore » irradiated with single doses (0.1-4 Gy) of 6-MV x-rays. For each patient, at least 4 independent experiments were performed, and the induced-repair model was fitted over the whole data set to confirm the presence of HRS effect. Results: The HRS response was demonstrated for the asynchronous and G2-phase enriched cell populations of 4 patients. For the rest of patients, HRS was not defined in either of the 2 fibroblast populations. Thus, G2-phase enrichment had no effect on HRS elicitation. Conclusions: The fact that low-dose hyper-radiosensitivity is not a common effect in normal human fibroblasts implies that HRS may be of little consequence in late-responding connective tissues with regard to radiation fibrosis.« less
IDO-expressing Fibroblasts Suppress the Development of Imiquimod-induced Psoriasis-like Dermatitis.
Elizei, Sanam Salimi; Pakyari, Mohammadreza; Ghoreishi, Mehraneh; Kilani, Ruhangiz; Mahmoudi, Sanaz; Ghahary, Aziz
2018-01-01
Psoriasis is a chronic skin condition whose pathogenesis is reported to be due to the activation of the interleukin-23/interleukin-17 (IL-23/IL-17) pathway. Here, we report that indoleamine 2,3-dioxygenase (IDO)-expressing fibroblasts reduce the activity of this pathway in activated immune cells. The findings showed that intralesional injection of IDO-expressing fibroblasts in imiquimod-induced psoriasis-like dermatitis on the back and ear (Pso. ear group) in mice significantly improves the clinical lesional appearance by reducing the number of skin-infiltrated IL-17+ CD4+ T cells (1.9% ± 0.3% vs. 6.9% ± 0.6%, n = 3, P value < 0.01), IL-17+ γδ+ T cells (2.8% ± 0.3% vs. 11.6% ± 1.2%, n = 3, P value < 0.01), IL-23+ activated dendritic cells (7.6% ± 0.9% vs. 14.0% ± 0.5%, n = 3, P < 0.01), macrophages (4.3% ± 0.1% vs. 11.3% ± 1.0%, n = 3, P value < 0.01), and granulocytes (2.5% ± 0.4% vs. 4.5% ± 0.3%, n = 3, P value < 0.01) as compared to untreated psoriatic mice. This finding suggests that IDO-expressing fibroblasts, and to a lesser extent, non-IDO primary fibroblasts suppress the psoriatic-like symptoms by inhibiting the infiltration of key immune cells involved in the development of psoriasis.
The CC chemokine eotaxin/CCL11 has a selective profibrogenic effect on human lung fibroblasts.
Puxeddu, Ilaria; Bader, Reem; Piliponsky, Adrian Martin; Reich, Reuven; Levi-Schaffer, Francesca; Berkman, Neville
2006-01-01
Eotaxin/CCL11 plays an important role in asthma. It acts through the chemokine receptor CCR3 expressed on hematopoietic and nonhematopoietic cells in the lung. To determine whether eotaxin/CCL11 modulates lung and bronchial fibroblast properties and thereby might contribute to airway remodeling. CCR3 expression was characterized on a lung fibroblast line (MRC-5; flow cytometry, fluorescent microscopy, RT-PCR, and Northern blotting), on primary bronchial fibroblasts (flow cytometry), and on fibroblasts in human lung tissue (confocal laser microscopy). The effects of eotaxin/CCL11 on lung fibroblast migration (Boyden chamber), proliferation (tritiated thymidine incorporation), alpha-smooth muscle actin expression (ELISA), 3-dimensional collagen gel contraction (floating gel), pro-alpha1(I) collagen mRNA (Northern blotting), total collagen synthesis (tritiated proline incorporation), matrix metalloproteinase activity (gelatin zymography), and TGF-beta(1) release (ELISA) were evaluated. The contribution of eotaxin/CCL11/CCR3 binding on lung fibroblasts was also investigated by neutralizing experiments. CCR3 is constitutively expressed in cultured lung and primary bronchial fibroblasts and colocalizes with specific surface markers for human fibroblasts in lung tissue. Eotaxin/CCL11 selectively modulates fibroblast activities by increasing their proliferation, matrix metalloproteinase 2 activity, and collagen synthesis but not their differentiation into myofibroblasts, contractility in collagen gel, or TGF-beta(1) release. Eotaxin/CCL11 enhances migration of lung fibroblasts in response to nonspecific chemoattractants, and this effect is completely inhibited by anti-CCR3-neutralizing antibodies. These data demonstrate that eotaxin/CCL11 has a direct and selective profibrogenic effect on lung and bronchial fibroblasts, providing a novel mechanism whereby eotaxin/CCL11 can participate in airway remodeling in asthma.
Diffuse colonies of human skin fibroblasts in relation to cellular senescence and proliferation.
Zorin, Vadim; Zorina, Alla; Smetanina, Nadezhda; Kopnin, Pavel; Ozerov, Ivan V; Leonov, Sergey; Isaev, Artur; Klokov, Dmitry; Osipov, Andreyan N
2017-05-16
Development of personalized skin treatment in medicine and skin care may benefit from simple and accurate evaluation of the fraction of senescent skin fibroblasts that lost their proliferative capacity. We examined whether enriched analysis of colonies formed by primary human skin fibroblasts, a simple and widely available cellular assay, could reveal correlations with the fraction of senescent cells in heterogenic cell population. We measured fractions of senescence associated β-galactosidase (SA-βgal) positive cells in either mass cultures or colonies of various morphological types (dense, mixed and diffuse) formed by skin fibroblasts from 10 human donors. Although the donors were chosen to be within the same age group (33-54 years), the colony forming efficiency of their fibroblasts (ECO-f) and the percentage of dense, mixed and diffuse colonies varied greatly among the donors. We showed, for the first time, that the SA-βgal positive fraction was the largest in diffuse colonies, confirming that they originated from cells with the least proliferative capacity. The percentage of diffuse colonies was also found to correlate with the SA-βgal positive cells in mass culture. Using Ki67 as a cell proliferation marker, we further demonstrated a strong inverse correlation (r=-0.85, p=0.02) between the percentage of diffuse colonies and the fraction of Ki67+ cells. Moreover, a significant inverse correlation (r=-0.94, p=0.0001) between the percentage of diffuse colonies and ECO-f was found. Our data indicate that quantification of a fraction of diffuse colonies may provide a simple and useful method to evaluate the extent of cellular senescence in human skin fibroblasts.
Zhang, Quanhui; Yang, Junping; Bai, Jie; Ren, Jianzhuang
2018-04-01
The tumor microenvironment orchestrates the sustained growth, metastasis and recurrence of cancer. As an indispensable component of the tumor microenvironment, cancer-associated fibroblasts (CAF) are considered as an essential synthetic machine producing various tumor components, leading to cancer sustained stemness, drug resistance and tumor recurrence. Here, we developed a sustainable primary culture of lung cancer cells fed with lung cancer-associated fibroblasts, resulting in enrichment and acquisition of drug resistance in cancer cells. Moreover, IGF2/AKT/Sox2/ABCB1 signaling activation in cancer cells was observed in the presence of CAF, which induces upregulation of P-glycoprotein expression and the drug resistance of non-small cell lung cancer cells. Our results demonstrated that CAF cells constitute a mechanism for cancer drug resistance. Thus, traditional chemotherapy combined with insulin-like growth factor 2 (IGF2) signaling inhibitor may present an innovative therapeutic strategy for non-small cell lung cancer therapy. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras.
Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Meehan, Brian; Montermini, Laura; Garnier, Delphine; D'Asti, Esterina; Hou, Wenyang; Magnus, Nathalie; Gayden, Tenzin; Jabado, Nada; Eppert, Kolja; Majewska, Loydie; Rak, Janusz
2016-08-09
Extracellular vesicles (EVs) enable the exit of regulatory, mutant and oncogenic macromolecules (proteins, RNA and DNA) from their parental tumor cells and uptake of this material by unrelated cellular populations. Among the resulting biological effects of interest is the notion that cancer-derived EVs may mediate horizontal transformation of normal cells through transfer of mutant genes, including mutant ras. Here, we report that H-ras-mediated transformation of intestinal epithelial cells (IEC-18) results in the emission of exosome-like EVs containing genomic DNA, HRAS oncoprotein and transcript. However, EV-mediated horizontal transformation of non-transformed cells (epithelial, astrocytic, fibroblastic and endothelial) is transient, limited or absent due to barrier mechanisms that curtail the uptake, retention and function of oncogenic H-ras in recipient cells. Thus, epithelial cells and astrocytes are resistant to EV uptake, unless they undergo malignant transformation. In contrast, primary and immortalized fibroblasts are susceptible to the EV uptake, retention of H-ras DNA and phenotypic transformation, but these effects are transient and fail to produce a permanent tumorigenic conversion of these cells in vitro and in vivo, even after several months of observation. Increased exposure to EVs isolated from H-ras-transformed cancer cells, but not to those from their indolent counterparts, triggers demise of recipient fibroblasts. Uptake of H-ras-containing EVs stimulates but fails to transform primary endothelial cells. Thus, we suggest that intercellular transfer of oncogenes exerts regulatory rather than transforming influence on recipient cells, while cancer cells may often act as preferential EV recipients.
Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras
Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Meehan, Brian; Montermini, Laura; Garnier, Delphine; D'Asti, Esterina; Hou, Wenyang; Magnus, Nathalie; Gayden, Tenzin; Jabado, Nada; Eppert, Kolja; Majewska, Loydie; Rak, Janusz
2016-01-01
Extracellular vesicles (EVs) enable the exit of regulatory, mutant and oncogenic macromolecules (proteins, RNA and DNA) from their parental tumor cells and uptake of this material by unrelated cellular populations. Among the resulting biological effects of interest is the notion that cancer-derived EVs may mediate horizontal transformation of normal cells through transfer of mutant genes, including mutant ras. Here, we report that H-ras-mediated transformation of intestinal epithelial cells (IEC-18) results in the emission of exosome-like EVs containing genomic DNA, HRAS oncoprotein and transcript. However, EV-mediated horizontal transformation of non-transformed cells (epithelial, astrocytic, fibroblastic and endothelial) is transient, limited or absent due to barrier mechanisms that curtail the uptake, retention and function of oncogenic H-ras in recipient cells. Thus, epithelial cells and astrocytes are resistant to EV uptake, unless they undergo malignant transformation. In contrast, primary and immortalized fibroblasts are susceptible to the EV uptake, retention of H-ras DNA and phenotypic transformation, but these effects are transient and fail to produce a permanent tumorigenic conversion of these cells in vitro and in vivo, even after several months of observation. Increased exposure to EVs isolated from H-ras-transformed cancer cells, but not to those from their indolent counterparts, triggers demise of recipient fibroblasts. Uptake of H-ras-containing EVs stimulates but fails to transform primary endothelial cells. Thus, we suggest that intercellular transfer of oncogenes exerts regulatory rather than transforming influence on recipient cells, while cancer cells may often act as preferential EV recipients. PMID:27437771
Hung, Chi-Feng; Hsiao, Chien-Yu; Hsieh, Wen-Hao; Li, Hsin-Ju; Tsai, Yi-Ju; Lin, Chun-Nan; Chang, Hsun-Hsien; Wu, Nan-Lin
2017-01-01
Licorice (Glycyrrhiza) species have been widely used as a traditional medicine and a natural sweetener in foods. The 18β-glycyrrhetinic acid (18β-GA) is a bioactive compound in licorice that exhibits potential anti-cancer, anti-inflammatory, and anti-microbial activities. Many synthesized derivatives of 18β-GA have been reported to be cytotoxic and suggested for the treatment of malignant diseases. In this study, we explored the possible pharmacological roles of an 18β-GA derivative in skin biology using primary human dermal fibroblasts and HaCaT keratinocytes as cell models. We found that this 18β-GA derivative did not cause cell death, but significantly enhanced the proliferation of dermal fibroblasts and HaCaT keratinocytes. A scratch wound healing assay revealed that the 18β-GA derivative promoted the migration of fibroblasts. Due to the important role of aquaporin-3 in cell migration and proliferation, we also investigated the expression of aquaporin-3 and found this compound up-regulated the expression of aquaporin-3 in dermal fibroblasts and HaCaT keratinocytes. In dermal fibroblasts, the 18β-GA derivative induced the phosphorylation of Akt, ERK, and p38. The inhibitor of Akt predominantly suppressed the 18β-GA derivative-induced expression of aquaporin-3. Collectively, this compound had a positive effect on the proliferation, migration, and aquaporin-3 expression of skin cells, implying its potential role in the treatment of skin diseases characterized by impaired wound healing or dermal defects.
Chen, Tsan-Chi; Chang, Shu-Wen
2010-03-01
To investigate how mitomycin C (MMC) modulates hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) secretions in human corneal fibroblasts and regulates human corneal epithelial (HCE) cell migration. Primary human corneal fibroblasts were treated with MMC (0.05, 0.1, or 0.2 mg/mL for 5 minutes) and were cultivated with or without interleukin (IL)-1beta. Transcript and secretion of HGF and KGF were determined by quantitative real-time RT-PCR and Western blot analysis, respectively. The effect of MMC-treated fibroblasts on HCE cell migration was evaluated using a transwell migration assay. The influence of MMC on HGF expression/secretion and HCE cell migration was further confirmed by RNA interference. The number of IL-1 receptors (IL-1R) on the fibroblast surface was analyzed by flow cytometry. MMC alone did not affect endogenous HGF expression, whereas IL-1beta alone significantly upregulated HGF transcripts and secretion. By modifying IL-1R numbers, MMC further upregulated IL-1beta-related HGF expression at a concentration of 0.05 mg/mL but to a lesser extent at 0.1 and 0.2 mg/mL. KGF transcripts and intracellular expression were suppressed by MMC dose dependently in the presence or absence of IL-1beta, whereas KGF secretion was not affected. Conditioned medium from MMC-treated fibroblasts exerted a similar concentration-dependent effect on HCE cell migration, enhancing migration most significantly at 0.05 mg/mL MMC in the presence of IL-1beta. The MMC dose-dependent modulation of HCE cell migration was abolished in HGF-silenced fibroblasts. MMC differentially modulated IL-1R expression at various concentrations and regulated HGF and KGF differently. MMC alone did not alter HGF expression. In the presence of IL-1beta, MMC-treated corneal fibroblasts modified HCE cell migration through IL-1beta-induced HGF secretion.
Islam, M Q; Ringe, J; Reichmann, E; Migotti, R; Sittinger, M; da S Meirelles, L; Nardi, N B; Magnusson, P; Islam, K
2006-10-01
Bone marrow mesenchymal stem cells (MSC) integrate into various organs and contribute to the regeneration of diverse tissues. However, the mechanistic basis of the plasticity of MSC is not fully understood. The change of cell fate has been suggested to occur through cell fusion. We have generated hybrid cell lines by polyethylene-glycol-mediated cell fusion of primary porcine MSC with the immortal murine fibroblast cell line F7, a derivative of the GM05267 cell line. The hybrid cell lines display fibroblastic morphology and proliferate like immortal cells. They contain tetraploid to hexaploid porcine chromosomes accompanied by hypo-diploid murine chromosomes. Interestingly, many hybrid cell lines also express high levels of tissue-nonspecific alkaline phosphatase, which is considered to be a marker of undifferentiated embryonic stem cells. All tested hybrid cell lines retain osteogenic differentiation, a few of them also retain adipogenic potential, but none retain chondrogenic differentiation. Conditioned media from hybrid cells enhance the proliferation of both early-passage and late-passage porcine MSC, indicating that the hybrid cells secrete diffusible growth stimulatory factors. Murine F7 cells thus have the unique property of generating immortal cell hybrids containing unusually high numbers of chromosomes derived from normal cells. These hybrid cells can be employed in various studies to improve our understanding of regenerative biology. This is the first report, to our knowledge, describing the generation of experimentally induced cell hybrids by using normal primary MSC.
McCormack, Ryan; de Armas, Lesley R.; Shiratsuchi, Motoaki; Ramos, Jay; Podack, Eckhard R.
2013-01-01
Fibroblasts are known to eliminate intracellular bacteria, but the lethal hit of the bactericidal mechanism has not been defined. We show that primary embryonic and established fibroblasts can be induced by interferons or by intracellular bacterial infection to express a perforin-like mRNA previously described as macrophage expressed gene 1 (mpeg1). The presence and level of the perforin-like mRNA correlate with the ability of primary mouse embryonic fibroblasts (MEF) to eliminate intracellular bacteria. In addition, siRNA knock-down of the perforin-like molecule abolishes bactericidal activity and allows intracellular bacterial replication. Complementation of MEF in which the endogenous perforin-like molecule has been knocked down with an RFP-tagged version restores bactericidal activity. The perforin-like molecule has broad bactericidal specificity for pathogenic and non-pathogenic bacteria including Gram positive, Gram negative and acid fast bacteria. The perforin-like molecule renders previously lysozyme-resistant bacteria sensitive to lysis by lysozyme suggesting physical damage of the outer cell wall by the perforin-like protein. MEFs damage cell walls of intracellular bacteria by insertion, polymerization and pore-formation of the perforin-like protein, analogous to pore-formers of complement and Perforin-1 of cytolytic lymphocytes. We propose the name Perforin-2. PMID:23257510
Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts
NASA Technical Reports Server (NTRS)
Eckes, B.; Dogic, D.; Colucci-Guyon, E.; Wang, N.; Maniotis, A.; Ingber, D.; Merckling, A.; Langa, F.; Aumailley, M.; Delouvee, A.;
1998-01-01
Loss of a vimentin network due to gene disruption created viable mice that did not differ overtly from wild-type littermates. Here, primary fibroblasts derived from vimentin-deficient (-/-) and wild-type (+/+) mouse embryos were cultured, and biological functions were studied in in vitro systems resembling stress situations. Stiffness of -/- fibroblasts was reduced by 40% in comparison to wild-type cells. Vimentin-deficient cells also displayed reduced mechanical stability, motility and directional migration towards different chemo-attractive stimuli. Reorganization of collagen fibrils and contraction of collagen lattices were severely impaired. The spatial organization of focal contact proteins, as well as actin microfilament organization was disturbed. Thus, absence of a vimentin filament network does not impair basic cellular functions needed for growth in culture, but cells are mechanically less stable, and we propose that therefore they are impaired in all functions depending upon mechanical stability.
Ma, Siming; Upneja, Akhil; Galecki, Andrzej; Tsai, Yi-Miau; Burant, Charles F; Raskind, Sasha; Zhang, Quanwei; Zhang, Zhengdong D; Seluanov, Andrei; Gorbunova, Vera; Clish, Clary B; Miller, Richard A; Gladyshev, Vadim N
2016-11-22
Mammalian lifespan differs by >100 fold, but the mechanisms associated with such longevity differences are not understood. Here, we conducted a study on primary skin fibroblasts isolated from 16 species of mammals and maintained under identical cell culture conditions. We developed a pipeline for obtaining species-specific ortholog sequences, profiled gene expression by RNA-seq and small molecules by metabolite profiling, and identified genes and metabolites correlating with species longevity. Cells from longer lived species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated proteolysis and protein transport, and showed high levels of amino acids but low levels of lysophosphatidylcholine and lysophosphatidylethanolamine. The amino acid patterns were recapitulated by further analyses of primate and bird fibroblasts. The study suggests that fibroblast profiling captures differences in longevity across mammals at the level of global gene expression and metabolite levels and reveals pathways that define these differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.
Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adultmore » lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced following infection of both fetal and adult cells and many of the genes upregulated in both cell types were those involved in establishment of an antiviral state; this is the first demonstration of an interferon response at this early stage of human embryonic development. In both fetal and adult cells, interferon controlled but did not eliminate virus spread and apoptosis was not induced in infected fetal cells in the absence of interferon. In addition to the interferon response, chemokines were induced in both infected fetal and adult cells. Thus, it is possible that fetal damage following congenital RUB infection, which involves cell proliferation and differentiation, could be due to induction of the innate immune response as well as frank virus infection.« less
Infarct-Induced Steroidogenic Acute Regulatory Protein: A Survival Role in Cardiac Fibroblasts
Anuka, Eli; Yivgi-Ohana, Natalie; Eimerl, Sarah; Garfinkel, Benjamin; Melamed-Book, Naomi; Chepurkol, Elena; Aravot, Dan; Zinman, Tova; Shainberg, Asher; Hochhauser, Edith
2013-01-01
Steroidogenic acute regulatory protein (StAR) is indispensable for steroid hormone synthesis in the adrenal cortex and the gonadal tissues. This study reveals that StAR is also expressed at high levels in nonsteroidogenic cardiac fibroblasts confined to the left ventricle of mouse heart examined 3 days after permanent ligation of the left anterior descending coronary artery. Unlike StAR, CYP11A1 and 3β-hydroxysteroid dehydrogenase proteins were not observed in the postinfarction heart, suggesting an apparent lack of de novo cardiac steroidogenesis. Work with primary cultures of rat heart cells revealed that StAR is induced in fibroblasts responding to proapoptotic treatments with hydrogen peroxide or the kinase inhibitor staurosporine (STS). Such induction of StAR in culture was noted before spontaneous differentiation of the fibroblasts to myofibroblasts. STS induction of StAR in the cardiac fibroblasts conferred a marked resistance to apoptotic cell death. Consistent with that finding, down-regulation of StAR by RNA interference proportionally increased the number of STS-treated apoptotic cells. StAR down-regulation also resulted in a marked increase of BAX activation in the mitochondria, an event known to associate with the onset of apoptosis. Last, STS treatment of HeLa cells showed that apoptotic demise characterized by mitochondrial fission, cytochrome c release, and nuclear fragmentation is arrested in individual HeLa cells overexpressing StAR. Collectively, our in vivo and ex vivo evidence suggests that postinfarction expression of nonsteroidogenic StAR in cardiac fibroblasts has novel antiapoptotic activity, allowing myofibroblast precursor cells to survive the traumatized event, probably to differentiate and function in tissue repair at the infarction site. PMID:23831818
Shi, Kun; Wang, Daode; Cao, Xiaojian; Ge, Yingbin
2013-01-01
Endoplasmic reticulum (ER) stress-mediated cell apoptosis has been implicated in various cell types, including fibroblasts. Previous studies have shown that mitomycin C (MMC)-induced apoptosis occurs in fibroblasts, but the effects of MMC on ER stress-mediated apoptosis in fibroblasts have not been examined. Here, MMC-induced apoptosis in human primary fibroblasts was investigated by exposing cells to a single dose of MMC for 5 minutes. Significant inhibition of cell proliferation and increased apoptosis were observed using a cell viability assay, Annexin V/propidium iodide double staining, cell cycle analysis, and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) staining. Upregulation of proapoptotic factors, including cleaved caspase-3 and poly ADP-ribose polymerase (PARP), was detected by Western blotting. MMC-induced apoptosis was correlated with elevation of 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP), which are hallmarks of ER stress. Three unfolded protein response (UPR) sensors (inositol-requiring enzyme 1, IRE1; activating transcription factor 6, ATF6; and PKR-like ER kinase, PERK) and their downstream signaling pathways were also activated. Knockdown of CHOP attenuated MMC-induced apoptosis by increasing the ratio of BCL-2/BAX and decreasing BIM expression, suggesting that ER stress is involved in MMC-induced fibroblast apoptosis. Interestingly, knockdown of PERK significantly decreased ER stress-mediated apoptosis by reducing the expression of CHOP, BIM and cleaved caspase-3. Reactive oxygen species (ROS) scavenging also decreased the expression of GRP78, phospho-PERK, CHOP, and BIM. These results demonstrate that MMC-induced apoptosis is triggered by ROS generation and PERK activation.
Cao, Xiaojian; Ge, Yingbin
2013-01-01
Endoplasmic reticulum (ER) stress-mediated cell apoptosis has been implicated in various cell types, including fibroblasts. Previous studies have shown that mitomycin C (MMC)-induced apoptosis occurs in fibroblasts, but the effects of MMC on ER stress-mediated apoptosis in fibroblasts have not been examined. Here, MMC-induced apoptosis in human primary fibroblasts was investigated by exposing cells to a single dose of MMC for 5 minutes. Significant inhibition of cell proliferation and increased apoptosis were observed using a cell viability assay, Annexin V/propidium iodide double staining, cell cycle analysis, and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) staining. Upregulation of proapoptotic factors, including cleaved caspase-3 and poly ADP-ribose polymerase (PARP), was detected by Western blotting. MMC-induced apoptosis was correlated with elevation of 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP), which are hallmarks of ER stress. Three unfolded protein response (UPR) sensors (inositol-requiring enzyme 1, IRE1; activating transcription factor 6, ATF6; and PKR-like ER kinase, PERK) and their downstream signaling pathways were also activated. Knockdown of CHOP attenuated MMC-induced apoptosis by increasing the ratio of BCL-2/BAX and decreasing BIM expression, suggesting that ER stress is involved in MMC-induced fibroblast apoptosis. Interestingly, knockdown of PERK significantly decreased ER stress-mediated apoptosis by reducing the expression of CHOP, BIM and cleaved caspase-3. Reactive oxygen species (ROS) scavenging also decreased the expression of GRP78, phospho-PERK, CHOP, and BIM. These results demonstrate that MMC-induced apoptosis is triggered by ROS generation and PERK activation. PMID:23533616
Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie
2015-11-18
Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.
Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells
Choi, WooJae; Kim, Eunji; Yum, Soo-Young; Lee, ChoongIl; Lee, JiHyun; Moon, JoonHo; Ramachandra, Sisitha; Malaweera, Buddika Oshadi; Cho, JongKi; Kim, Jin-Soo; Kim, SeokJoong; Jang, Goo
2015-01-01
abstract Even though prion (encoded by the PRNP gene) diseases like bovine spongiform encephalopathy (BSE) are fatal neurodegenerative diseases in cattle, their study via gene deletion has been limited due to the absence of cell lines or mutant models. In this study, we aim to develop an immortalized fibroblast cell line in which genome-engineering technology can be readily applied to create gene-modified clones for studies. To this end, this study is designed to 1) investigate the induction of primary fibroblasts to immortalization by introducing Bmi-1 and hTert genes; 2) investigate the disruption of the PRNP in those cells; and 3) evaluate the gene expression and embryonic development using knockout (KO) cell lines. Primary cells from a male neonate were immortalized with Bmi-1and hTert. Immortalized cells were cultured for more than 180 days without any changes in their doubling time and morphology. Furthermore, to knockout the PRNP gene, plasmids that encode transcription activator-like effector nuclease (TALEN) pairs were transfected into the cells, and transfected single cells were propagated. Mutated clonal cell lines were confirmed by T7 endonuclease I assay and sequencing. Four knockout cell lines were used for somatic cell nuclear transfer (SCNT), and the resulting embryos were developed to the blastocyst stage. The genes (CSNK2A1, FAM64A, MPG and PRND) were affected after PRNP disruption in immortalized cells. In conclusion, we established immortalized cattle fibroblasts using Bmi-1 and hTert genes, and used TALENs to knockout the PRNP gene in these immortalized cells. The efficient PRNP KO is expected to be a useful technology to develop our understanding of in vitro prion protein functions in cattle. PMID:26217959
Limat, A; Hunziker, T; Boillat, C; Bayreuther, K; Noser, F
1989-05-01
For growth at low seeding densities, keratinocytes isolated from human tissues like epidermis or hair follicles are dependent on mesenchyme-derived feeder cells such as the 3T3-cell employed so far. As an alternative method, the present study describes the use of post-mitotic human dermal fibroblasts sublethally irradiated or mitomycin C-treated. Special emphasis was put on efficient growth of primary keratinocyte cultures plated at very low seeding densities. Thus, outer root sheath cells isolated from two anagen human hair follicles and plated in a 35-mm culture dish (3 - 6 X 10(2) attached cells) grew to confluence within 3 weeks (6 - 8 X 10(5) cells). Similar results were obtained for interfollicular keratinocytes. A crucial point for the function of these fibroblast feeder cells is plating at appropriate densities, considering their tremendous increase in cell size at the post-mitotic state. Plating densities of 4 - 5 X 10(3/cm2 allow full spreading of the feeder cells and do not impede the settling and expansion of the keratinocytes. Major advantages of this system include easier handling and better reproducibility than using 3T3-cells. Moreover, homologous fibroblast feeders mimic more closely the physiologic situation and therefore might provide a valuable tool for studying interactions between human mesenchymal and epithelial cells. Finally, potential hazards of using transformed feeder cells from a different species in keratinocyte cultures raised for wound covering in humans could be thus avoided.
Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M
2015-01-01
Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Xiao-shan; Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501; Fujishiro, Masako
In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells weremore » tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.« less
Nolte, Andrea; Aufderklamm, Stefan; Scheu, Katrin; Walker, Tobias; König, Olivia; Böttcher, Miriam; Niederlaender, Jan; Schwentner, Christian; Schlensak, Christian; Stenzl, Arnulf; Wendel, Hans Peter
2013-02-01
To treat urethral strictures of the lower urinary tract, urethrotomy is the method of choice. But this minimally invasive method suffers from poor outcome rates and leads often to restenosis of the urinary tract because of hyper-proliferating fibroblasts. Our aim is to minimize the proliferation of excessive tissue due to a new minimal invasive therapeutic approach. As an appropriate model, we isolated fibroblasts from different benign prostatic hyperplasia patients and transfected them with small interfering RNA (siRNA) against the transcription factor serum response factor (SRF), a key factor for cell cycle regulation and apoptosis. The resulting knockdown of SRF was examined on the messenger RNA level by quantitative real-time polymerase chain reaction and on the protein level by western blot. The correlation of SRF silencing and impact on cell proliferation was examined by xCELLigence, 5-bromo-2'-deoxiuridine proliferation assay, total cell counts, and senescence assay. The transfection of primary prostatic fibroblasts with SRFsiRNA revealed specific and significant knockdown of SRF, leading to significant inhibition of proliferation after the second transfection, which was revealed by proliferation assay and total cell number. The results of this study indicate a substantial role of SRF in prostatic fibroblasts and we suggest that SRF silencing might be used for the treatment of urethral strictures to achieve a durably patent urethra.
Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.
Mohamed, Tamer M A; Stone, Nicole R; Berry, Emily C; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N; Srivastava, Deepak
2017-03-07
Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. We found that a combination of the transforming growth factor-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-β and WNT inhibition and was achieved most efficiently with GMT plus myocardin. Transforming growth factor-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. © 2016 American Heart Association, Inc.
Sun, Qingzhu; Liu, Li; Mandal, Jyotshna; Molino, Antonio; Stolz, Daiana; Tamm, Michael; Lu, Shemin; Roth, Michael
2016-04-01
Tissue remodeling of sub-epithelial mesenchymal cells is a major pathology occurring in chronic obstructive pulmonary disease (COPD) and asthma. Fibroblasts, as a major source of interstitial connective tissue extracellular matrix, contribute to the fibrotic and inflammatory changes in these airways diseases. Previously, we described that protein arginine methyltransferase-1 (PRMT1) participates in airway remodeling in a rat model of pulmonary inflammation. In this study we investigated the mechanism by which PDGF-BB regulates PRMT1 in primary lung fibroblasts, isolated from human lung biopsies. Fibroblasts were stimulated with PDGF-BB for up-to 48h and the regulatory and activation of signaling pathways controlling PRMT1 expression were determined. PRMT1 was localized by immuno-histochemistry in human lung tissue sections and by immunofluorescence in isolated fibroblasts. PRMT1 activity was suppressed by the pan-PRMT inhibitor AMI1. ERK1/2 mitogen activated protein kinase (MAPK) was blocked by PD98059, p38 MAPK by SB203580, and STAT1 by small interference (si) RNA treatment. The results showed that PDGF-BB significantly increased PRMT1 expression after 1h lasting over 48h, through ERK1/2 MAPK and STAT1 signaling. The inhibition of ERK1/2 MAPK or of PRMT1 activity decreased PDGF-BB induced fibroblast proliferation, COX2 production, collagen-1A1 secretion, and fibronectin production. These findings suggest that PRMT1 is a central regulator of tissue remodeling and that the signaling sequence controlling its expression in primary human lung fibroblast is PDGF-ERK-STAT1. Therefore, PRMT1 presents a novel therapeutic and diagnostic target for the control of airway wall remodeling in chronic lung diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Beermann, Julia; Kirste, Dominique; Iwanov, Katharina; Lu, Dongchao; Kleemiß, Felix; Kumarswamy, Regalla; Schimmel, Katharina; Bär, Christian; Thum, Thomas
2018-01-01
The mammalian cell cycle is a complex and tightly controlled event. Myriads of different control mechanisms are involved in its regulation. Long non-coding RNAs (lncRNA) have emerged as important regulators of many cellular processes including cellular proliferation. However, a more global and unbiased approach to identify lncRNAs with importance for cell proliferation is missing. Here, we present a lentiviral shRNA library-based approach for functional lncRNA profiling. We validated our library approach in NIH3T3 (3T3) fibroblasts by identifying lncRNAs critically involved in cell proliferation. Using stringent selection criteria we identified lncRNA NR_015491.1 out of 3842 different RNA targets represented in our library. We termed this transcript Ntep (non-coding transcript essential for proliferation), as a bona fide lncRNA essential for cell cycle progression. Inhibition of Ntep in 3T3 and primary fibroblasts prevented normal cell growth and expression of key fibroblast markers. Mechanistically, we discovered that Ntep is important to activate P53 concomitant with increased apoptosis and cell cycle blockade in late G2/M. Our findings suggest Ntep to serve as an important regulator of fibroblast proliferation and function. In summary, our study demonstrates the applicability of an innovative shRNA library approach to identify long non-coding RNA functions in a massive parallel approach. PMID:29099486
Taguchi, Ayumi; Kawana, Kei; Tomio, Kensuke; Yamashita, Aki; Isobe, Yosuke; Nagasaka, Kazunori; Koga, Kaori; Inoue, Tomoko; Nishida, Haruka; Kojima, Satoko; Adachi, Katsuyuki; Matsumoto, Yoko; Arimoto, Takahide; Wada-Hiraike, Osamu; Oda, Katsutoshi; Kang, Jing X; Arai, Hiroyuki; Arita, Makoto; Osuga, Yutaka; Fujii, Tomoyuki
2014-01-01
Cancer associated fibroblasts (CAFs) are responsible for tumor growth, angiogenesis, invasion, and metastasis. Matrix metalloproteinase (MMP)-9 secreted from cancer stroma populated by CAFs is a prerequisite for cancer angiogenesis and metastasis. Omega-3 polyunsaturated fatty acids (omega-3 PUFA) have been reported to have anti-tumor effects on diverse types of malignancies. Fat-1 mice, which can convert omega-6 to omega-3 PUFA independent of diet, are useful to investigate the functions of endogenous omega-3 PUFA. To examine the effect of omega-3 PUFA on tumorigenesis, TC-1 cells, a murine epithelial cell line immortalized by human papillomavirus (HPV) oncogenes, were injected subcutaneously into fat-1 or wild type mice. Tumor growth and angiogenesis of the TC-1 tumor were significantly suppressed in fat-1 compared to wild type mice. cDNA microarray of the tumors derived from fat-1 and wild type mice revealed that MMP-9 is downregulated in fat-1 mice. Immunohistochemical study demonstrated immunoreactivity for MMP-9 in the tumor stromal fibroblasts was diffusely positive in wild type whereas focal in fat-1 mice. MMP-9 was expressed in primary cultured fibroblasts isolated from fat-1 and wild type mice but was not expressed in TC-1 cells. Co-culture of fibroblasts with TC-1 cells enhanced the expression and the proteinase activity of MMP-9, although the protease activity of MMP-9 in fat-1-derived fibroblasts was lower than that in wild type fibroblasts. Our data suggests that omega-3 PUFAs suppress MMP-9 induction and tumor angiogenesis. These findings may provide insight into mechanisms by which omega-3 PUFAs exert anti-tumor effects by modulating tumor microenvironment.
Sarukawa, Junichiro; Takahashi, Masaaki; Abe, Masashi; Suzuki, Daisuke; Tokura, Seiichi; Furuike, Tetsuya; Tamura, Hiroshi
2011-01-01
Material selection in tissue-engineering scaffolds is one of the primary factors defining cellular response and matrix formation. In this study, we fabricated chitosan-coated poly(lactic acid) (PLA) fiber scaffolds to test our hypothesis that PLA fibers coated with chitosan highly promoted cell supporting properties compared to those without chitosan. Both PLA fibers (PLA group) and chitosan-coated PLA fibers (PLA-chitosan group) were fabricated for this study. Anterior cruciate ligament (ACL) fibroblasts were isolated from Japanese white rabbits and cultured on scaffolds consisting of each type of fiber. The effects of cell adhesivity, proliferation, and synthesis of the extracellular matrix (ECM) for each fiber were analyzed by cell counting, hydroxyproline assay, scanning electron microscopy and quantitative RT-PCR. Cell adhesivity, proliferation, hydroxyproline content and the expression of type-I collagen mRNA were significantly higher in the PLA-chitosan group than in the PLA group. Scanning electron microscopic observation showed that fibroblasts proliferated with a high level of ECM synthesis around the cells. Chitosan coating improved ACL fibroblast adhesion and proliferation, and had a positive effect on matrix production. Thus, the advantages of chitosan-coated PLA fibers show them to be a suitable biomaterial for ACL tissue-engineering scaffolds.
Bol, S A; van Steeg, H; van Oostrom, C T; Tates, A D; Vrieling, H; de Groot, A J; Mullenders, L H; van Zeeland, A A; Jansen, J G
1999-05-01
The butylating agent N-n-butyl-N-nitrosourea (BNU) was employed to study the role of nucleotide excision repair (NER) in protecting mammalian cells against the genotoxic effects of monofunctional alkylating agents. The direct acting agent BNU was found to be mutagenic in normal and XPA mouse splenocytes after a single i.p. treatment in vivo. After 25 and 35 mg/kg BNU, but not after 75 mg/ kg, 2- to 3-fold more hprt mutants were detected in splenocytes from XPA mice than from normal mice. Using O6-alkylguanine-DNA alkyltransferase (AGT)-deficient hamster cells, it was found that NER-deficient CHO UV5 cells carrying a mutation in the ERCC-2 gene were 40% more mutable towards lesions induced by BNU when compared with parental NER-proficient CHO AA8 cells. UV5 cells were 1.4-fold more sensitive to the cytotoxic effects of BNU compared with AA8 cells. To investigate whether this increased sensitivity of NER-deficient cells is modulated by AGT activity, cell survival studies were performed in human and mouse primary fibroblasts as well. BNU was 2.7-fold more toxic for mouse XPA fibroblasts compared with normal mouse fibroblasts. Comparable results were found for human fibroblasts. Taken together these data indicate that the role of NER in protecting rodent cells against the mutagenic and cytotoxic effects of the alkylating agent BNU depends on AGT.
Limat, A; Hunziker, T; Boillat, C; Noser, F; Wiesmann, U
1990-07-01
In vitro, human dermal fibroblasts (HDF) differentiate through morphologically and biochemically identified compartments. In the course of this spontaneous differentiation through mitotic and postmitotic states, a tremendous increase in cellular and nuclear size occurs. Induction of postmitotic states can be accelerated by chemical (e.g., mitomycin C) or physical (e.g., x-ray) treatments. Such experimentally induced postmitotic HDF cells support very efficiently the growth of cutaneous epithelial cells, i.e. interfollicular keratinocytes and follicular outer root sheath cells, especially in primary cultures starting from very low cell seeding densities. The HDF feeder system provides more fundamental and also practical advantages, i.e. use of initially diploid human fibroblasts from known anatomic locations, easy handling and excellent reproducibility, and the possibility of long-term storage by incubation at 37 degrees C. Conditions for the cryogenic storage of postmitotic HDF cells in liquid nitrogen are presented and related to the feeder capacity for epithelial cell growth. Because postmitotic HDF cells preserve intact feeder properties after long-term storage, the immediate availability of feeder cells and the possibility to repeat experiments with identical materials further substantiate the usefulness of this feeder system.
Xu, Qian; Liu, Wei; Liu, Xiaoling; Liu, Weiwei; Wang, Hongju; Yao, Guodong; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi
2016-09-01
Primary cilium is a cellular antenna, signalling as a sensory organelle. Numerous pathological manifestation is associated with change of its length. Although the interaction between autophagy and primary cilia has been suggested, the role of autophagy in primary cilia length is largely unknown. In this study the primary cilia were immunostained and observed by using confocal fluorescence microscopy, and we found that silibinin, a natural flavonoid, shortened the length of primary cilia, meanwhile it also induced autophagy in 3T3-L1 cells. This study was designed to investigate the significance of silibinin-induced autophagy in primary ciliary structure in confluent mouse embryo fibroblast 3T3-L1 cells. Either blocking the autophagic flux with pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), or transfection of siRNA targeting LC3 inhibited the reduction of cilia length caused by silibinin exposure. Autophagy induced by silibinin decreased expressions of the cilia-associated proteins, such as IFT88, KIF3a and Ac-tubulin, while 3-MA restored it, indicating that autophagy induced by silibinin led to a reduction of primary cilia length. Histone deacetylase 6 (HDAC6), which was suggested as a mediator of autophagy, was up-regulated by silibinin in a time-dependent manner. In addition, 3T3-L1 cells treated with siRNA against HDAC6 had a reduced autophagic level and were protected from silibinin-induced cilia shortening. Taken together, we conclude that the HDAC6-mediated autophagy negatively regulates primary cilia length during silibinin treatment and has the potential to serve as a therapeutic target for primary cilia-associated ciliopathies. These findings thus provide new information about the potential link between autophagy and primary cilia.
Zanotti, Simona; Mora, Marina
2018-01-01
An in vitro model of muscle fibrosis, based on the use of primary human fibroblasts isolated from muscle biopsies of patients affected by Duchenne muscular dystrophies (DMD) and cultivated in monolayer and 3D conditions, is used to test the potential antifibrotic activity of pirfenidone (PFD). This in vitro model may be usefully also to evaluate the toxicity and efficacy of other candidate molecules for the treatment of fibrosis. The drug toxicity is evaluated using a colorimetric assay based on the conversion of tetrazolium salt (MTT) to insoluble formazan, while the effect of the drug on cell proliferation is measured with the bromodeoxyuridine incorporation assay. The efficacy of the drug is evaluated in fibroblast monolayers by quantitating synthesis and deposition of intracellular collagen with a spectrophotometric picrosirius red-based assay, and by quantitating cell migration using a "scratch" assay. The efficacy of PFD as antifibrotic drug is also evaluated in a 3D fibroblast model by measuring diameters and number of nodules.
Rozenchan, Patricia Bortman; Carraro, Dirce Maria; Brentani, Helena; de Carvalho Mota, Louise Danielle; Bastos, Elen Pereira; e Ferreira, Elisa Napolitano; Torres, Cesar H; Katayama, Maria Lúcia Hirata; Roela, Rosimeire Aparecida; Lyra, Eduardo C; Soares, Fernando Augusto; Folgueira, Maria Aparecida Azevedo Koike; Góes, João Carlos Guedes Sampaio; Brentani, Maria Mitzi
2009-12-15
The importance of epithelial-stroma interaction in normal breast development and tumor progression has been recognized. To identify genes that were regulated by these reciprocal interactions, we cocultured a nonmalignant (MCF10A) and a breast cancer derived (MDA-MB231) basal cell lines, with fibroblasts isolated from breast benign-disease adjacent tissues (NAF) or with carcinoma-associated fibroblasts (CAF), in a transwell system. Gene expression profiles of each coculture pair were compared with the correspondent monocultures, using a customized microarray. Contrariwise to large alterations in epithelial cells genomic profiles, fibroblasts were less affected. In MDA-MB231 highly represented genes downregulated by CAF derived factors coded for proteins important for the specificity of vectorial transport between ER and golgi, possibly affecting cell polarity whereas the response of MCF10A comprised an induction of genes coding for stress responsive proteins, representing a prosurvival effect. While NAF downregulated genes encoding proteins associated to glycolipid and fatty acid biosynthesis in MDA-MB231, potentially affecting membrane biogenesis, in MCF10A, genes critical for growth control and adhesion were altered. NAFs responded to coculture with MDA-MB231 by a decrease in the expression of genes induced by TGFbeta1 and associated to motility. However, there was little change in NAFs gene expression profile influenced by MCF10A. CAFs responded to the presence of both epithelial cells inducing genes implicated in cell proliferation. Our data indicate that interactions between breast fibroblasts and basal epithelial cells resulted in alterations in the genomic profiles of both cell types which may help to clarify some aspects of this heterotypic signaling. Copyright (c) 2009 UICC.
Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V
2016-01-01
It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma. PMID:27468688
Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V
2016-07-28
It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma.
Hung, Chi-Feng; Hsiao, Chien-Yu; Hsieh, Wen-Hao; Li, Hsin-Ju; Tsai, Yi-Ju; Lin, Chun-Nan; Chang, Hsun-Hsien; Wu, Nan-Lin
2017-01-01
Licorice (Glycyrrhiza) species have been widely used as a traditional medicine and a natural sweetener in foods. The 18β-glycyrrhetinic acid (18β-GA) is a bioactive compound in licorice that exhibits potential anti-cancer, anti-inflammatory, and anti-microbial activities. Many synthesized derivatives of 18β-GA have been reported to be cytotoxic and suggested for the treatment of malignant diseases. In this study, we explored the possible pharmacological roles of an 18β-GA derivative in skin biology using primary human dermal fibroblasts and HaCaT keratinocytes as cell models. We found that this 18β-GA derivative did not cause cell death, but significantly enhanced the proliferation of dermal fibroblasts and HaCaT keratinocytes. A scratch wound healing assay revealed that the 18β-GA derivative promoted the migration of fibroblasts. Due to the important role of aquaporin-3 in cell migration and proliferation, we also investigated the expression of aquaporin-3 and found this compound up-regulated the expression of aquaporin-3 in dermal fibroblasts and HaCaT keratinocytes. In dermal fibroblasts, the 18β-GA derivative induced the phosphorylation of Akt, ERK, and p38. The inhibitor of Akt predominantly suppressed the 18β-GA derivative-induced expression of aquaporin-3. Collectively, this compound had a positive effect on the proliferation, migration, and aquaporin-3 expression of skin cells, implying its potential role in the treatment of skin diseases characterized by impaired wound healing or dermal defects. PMID:28813533
Culturing primary mouse pancreatic ductal cells.
Reichert, Maximilian; Rhim, Andrew D; Rustgi, Anil K
2015-06-01
The most common subtype of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). PDAC resembles ductal cells morphologically. To study pancreatic ductal cell (PDC) and pancreatic intraepithelial neoplasia (PanIN)/PDAC biology, it is essential to have reliable in vitro culture conditions. Here we describe a methodology to isolate, culture, and passage PDCs and duct-like cells from the mouse pancreas. It can be used to isolate cells from genetically engineered mouse models (GEMMs), providing a valuable tool to study disease models in vitro to complement in vivo findings. The culture conditions allow epithelial cells to outgrow fibroblast and other "contaminating" cell types within a few passages. However, the resulting cultures, although mostly epithelial, are not completely devoid of fibroblasts. Regardless, this protocol provides guidelines for a robust in vitro culture system to isolate, maintain, and expand primary pancreatic ductal epithelial cells. It can be applied to virtually all GEMMs of pancreatic disease and other diseases and cancers that arise from ductal structures. Because most carcinomas resemble ductal structures, this protocol has utility in the study of other cancers in addition to PDAC, such as breast and prostate cancers. © 2015 Cold Spring Harbor Laboratory Press.
Hsu, Mei-Fang; Chiang, Been-Huang
2009-09-25
Radix astragali, a well-known Chinese herb, which has been traditionally used for skincare, and microbial fermentation is one of the conventional methods for processing Chinese herbs. This research studied the effects of non-fermented (HQNB) and fermented preparations (HQB) of Radix astragali on hyaluronic acid (HA) production in primary human skin cells. HQB and HQNB were prepared and added to the cultures of primary human skin cells. Hyaluronic acid content was determined using ELISA. Real-time RT-PCR was used to evaluate hyaluronan synthase gene expression. The bioactive compounds were analyzed by HPLC. The growth-stimulating effect of HQNB on both of keratinocytes and fibroblasts were significantly higher than that of HQB. Conversely, HQB, but not HQNB significantly stimulated HA production in both cultured primary human epidermal keratinocytes and human dermal fibroblasts in dose-dependent manners. In addition, HQB markedly and dose-dependently increased the expression of hyaluronan synthase 3 and hyaluronan synthase 2 mRNA in HaCaT cells and human fibroblasts, respectively. Therefore, HQB might be a promising candidate for preventing the age-dependent loss of HA content in aged human skin, and its effect on the enhancement of HA synthesis in skin cells is highly related to its effect on the expression of hyaluronan synthase genes. The three major active isoflavonoids in Radix astragali were identified as ononin, calycosin, and formononetin. After fermentation, all of these three compounds in HQB were significantly reduced. However, HQB still had significantly higher enhancement effect on the production of HA than HQNB. It appeared that isoflavonoid aglycones or other metabolites, converted from their primary isoflavones during fermentation, might be responsible for the skincare functions found in this study. This study demonstrated the low toxicity and the stimulating effects of HQB on HA synthesis, and suggests that HQB may play a promising role in anti-aging cosmetic applications.
Christ, Eva-Maria; Hobernik, Dominika; Bros, Matthias; Wagner, Manfred; Frey, Holger
2015-10-12
The cationic ring-opening copolymerization of 3,3-bis(hydroxymethyl)oxetane (BHMO) with glycidol using different comonomer ratios (BHMO content from 25 to 90%) and BF3OEt2 as an initiator has been studied. Apparent molecular weights of the resulting hyperbranched polyether copolymers ranged from 1400 to 3300 g mol(-1) (PDI: 1.21-1.48; method: SEC, linear PEG standards). Incorporation of both comonomers is evidenced by MALDI-TOF mass spectroscopy. All hyperbranched polyether polyols with high content of primary hydroxyl groups portray good solubility in water, which correlates with an increasing content of glycerol units. Detailed NMR characterization was employed to elucidate the copolymer microstructures. Kinetic studies via FTIR demonstrated a weak gradient-type character of the copolymers. MTT assays of the copolymers (up to 100 μg mL(-1)) on HEK and fibroblast cell lines (3T3, L929, WEHI) as well as viability tests on the fibroblast cells were carried out to assess the biocompatibility of the materials, confirming excellent biocompatibility. Transfection efficiency characterization by flow cytometry and confocal laser microscopy demonstrated cellular uptake of the copolymers. Antiadhesive properties of the materials on surfaces were assessed by adhesion assays with fibroblast cells.
KATAYAMA, Masafumi; HIRAYAMA, Takashi; KIYONO, Tohru; ONUMA, Manabu; TANI, Tetsuya; TAKEDA, Satoru; NISHIMORI, Katsuhiko; FUKUDA, Tomokazu
2017-01-01
The cellular conditions required to establish induced pluripotent stem cells (iPSCs), such as the number of reprogramming factors and/or promoter selection, differ among species. The establishment of iPSCs derived from cells of previously unstudied species therefore requires the extensive optimization of programming conditions, including promoter selection and the optimal number of reprogramming factors, through a trial-and-error approach. While the four Yamanaka factors Oct3/4, Sox2, Klf4, and c-Myc are sufficient for iPSC establishment in mice, we reported previously that six reprogramming factors were necessary for the creation of iPSCs from primary prairie vole-derived cells. Further to this study, we now show detailed data describing the optimization protocol we developed in order to obtain iPSCs from immortalized prairie vole-derived fibroblasts. Immortalized cells can be very useful tools in the optimization of cellular reprogramming conditions, as cellular senescence is known to dramatically decrease the efficiency of iPSC establishment. The immortalized prairie vole cells used in this optimization were designated K4DT cells as they contained mutant forms of CDK4, cyclin D, and telomerase reverse transcriptase (TERT). We show that iPSCs derived from these immortalized cells exhibit the transcriptional silencing of exogenous reprogramming factors while maintaining pluripotent cell morphology. There were no observed differences between the iPSCs derived from primary and immortalized prairie vole fibroblasts. Our data suggest that cells that are immortalized with mutant CDK4, cyclin D, and TERT provide a useful tool for the determination of the optimal conditions for iPSC establishment. PMID:28331164
Katayama, Masafumi; Hirayama, Takashi; Kiyono, Tohru; Onuma, Manabu; Tani, Tetsuya; Takeda, Satoru; Nishimori, Katsuhiko; Fukuda, Tomokazu
2017-06-21
The cellular conditions required to establish induced pluripotent stem cells (iPSCs), such as the number of reprogramming factors and/or promoter selection, differ among species. The establishment of iPSCs derived from cells of previously unstudied species therefore requires the extensive optimization of programming conditions, including promoter selection and the optimal number of reprogramming factors, through a trial-and-error approach. While the four Yamanaka factors Oct3/4, Sox2, Klf4, and c-Myc are sufficient for iPSC establishment in mice, we reported previously that six reprogramming factors were necessary for the creation of iPSCs from primary prairie vole-derived cells. Further to this study, we now show detailed data describing the optimization protocol we developed in order to obtain iPSCs from immortalized prairie vole-derived fibroblasts. Immortalized cells can be very useful tools in the optimization of cellular reprogramming conditions, as cellular senescence is known to dramatically decrease the efficiency of iPSC establishment. The immortalized prairie vole cells used in this optimization were designated K4DT cells as they contained mutant forms of CDK4, cyclin D, and telomerase reverse transcriptase (TERT). We show that iPSCs derived from these immortalized cells exhibit the transcriptional silencing of exogenous reprogramming factors while maintaining pluripotent cell morphology. There were no observed differences between the iPSCs derived from primary and immortalized prairie vole fibroblasts. Our data suggest that cells that are immortalized with mutant CDK4, cyclin D, and TERT provide a useful tool for the determination of the optimal conditions for iPSC establishment.
Li, Yanjie; Polak, Urszula; Clark, Amanda D; Bhalla, Angela D; Chen, Yu-Yun; Li, Jixue; Farmer, Jennifer; Seyer, Lauren; Lynch, David; Butler, Jill S; Napierala, Marek
2016-08-01
Friedreich's ataxia (FRDA) represents a rare neurodegenerative disease caused by expansion of GAA trinucleotide repeats in the first intron of the FXN gene. The number of GAA repeats in FRDA patients varies from approximately 60 to <1000 and is tightly correlated with age of onset and severity of the disease symptoms. The heterogeneity of Friedreich's ataxia stresses the need for a large cohort of patient samples to conduct studies addressing the mechanism of disease pathogenesis or evaluate novel therapeutic candidates. Herein, we report the establishment and characterization of an FRDA fibroblast repository, which currently includes 50 primary cell lines derived from FRDA patients and seven lines from mutation carriers. These cells are also a source for generating induced pluripotent stem cell (iPSC) lines by reprogramming, as well as disease-relevant neuronal, cardiac, and pancreatic cells that can then be differentiated from the iPSCs. All FRDA and carrier lines are derived using a standard operating procedure and characterized to confirm mutation status, as well as expression of FXN mRNA and protein. Consideration and significance of creating disease-focused cell line and tissue repositories, especially in the context of rare and heterogeneous disorders, are presented. Although the economic aspect of creating and maintaining such repositories is important, the benefits of easy access to a collection of well-characterized cell lines for the purpose of drug discovery or disease mechanism studies overshadow the associated costs. Importantly, all FRDA fibroblast cell lines collected in our repository are available to the scientific community.
Li, Yanjie; Polak, Urszula; Clark, Amanda D.; Bhalla, Angela D.; Chen, Yu-Yun; Li, Jixue; Farmer, Jennifer; Seyer, Lauren; Lynch, David
2016-01-01
Friedreich's ataxia (FRDA) represents a rare neurodegenerative disease caused by expansion of GAA trinucleotide repeats in the first intron of the FXN gene. The number of GAA repeats in FRDA patients varies from approximately 60 to <1000 and is tightly correlated with age of onset and severity of the disease symptoms. The heterogeneity of Friedreich's ataxia stresses the need for a large cohort of patient samples to conduct studies addressing the mechanism of disease pathogenesis or evaluate novel therapeutic candidates. Herein, we report the establishment and characterization of an FRDA fibroblast repository, which currently includes 50 primary cell lines derived from FRDA patients and seven lines from mutation carriers. These cells are also a source for generating induced pluripotent stem cell (iPSC) lines by reprogramming, as well as disease-relevant neuronal, cardiac, and pancreatic cells that can then be differentiated from the iPSCs. All FRDA and carrier lines are derived using a standard operating procedure and characterized to confirm mutation status, as well as expression of FXN mRNA and protein. Consideration and significance of creating disease-focused cell line and tissue repositories, especially in the context of rare and heterogeneous disorders, are presented. Although the economic aspect of creating and maintaining such repositories is important, the benefits of easy access to a collection of well-characterized cell lines for the purpose of drug discovery or disease mechanism studies overshadow the associated costs. Importantly, all FRDA fibroblast cell lines collected in our repository are available to the scientific community. PMID:27002638
SIPERT, Carla Renata; MORANDINI, Ana Carolina de Faria; MODENA, Karin Cristina da Silva; DIONÍSIO, Thiago José; MACHADO, Maria Aparecida Andrade Moreira; de OLIVEIRA, Sandra Helena Penha; CAMPANELLI, Ana Paula; SANTOS, Carlos Ferreira
2013-01-01
Objective: The aim of this study was to compare the production of the chemokines CCL3 and CXCL12 by cultured dental pulp fibroblasts from permanent (PDPF) and deciduous (DDPF) teeth under stimulation by Porphyromonas gingivalis LPS (PgLPS). Material and Methods: Primary culture of fibroblasts from permanent (n=3) and deciduous (n=2) teeth were established using an explant technique. After the fourth passage, fibroblasts were stimulated by increasing concentrations of PgLPS (0 - 10 µg/mL) at 1, 6 and 24 h. The cells were tested for viability through MTT assay, and production of the chemokines CCL3 and CXCL12 was determined through ELISA. Comparisons among samples were performed using One-way ANOVA for MTT assay and Two-way ANOVA for ELISA results. Results: Cell viability was not affected by the antigen after 24 h of stimulation. PgLPS induced the production of CCL3 by dental pulp fibroblasts at similar levels for both permanent and deciduous pulp fibroblasts. Production of CXCL12, however, was significantly higher for PDPF than DDPF at 1 and 6 h. PgLPS, in turn, downregulated the production of CXCL12 by PDPF but not by DDPF. Conclusion: These data suggest that dental pulp fibroblasts from permanent and deciduous teeth may present a differential behavior under PgLPS stimulation. PMID:23739851
Micera, Alessandra; Lambiase, Alessandro; Puxeddu, Ilaria; Aloe, Luigi; Stampachiacchiere, Barbara; Levi-Schaffer, Francesca; Bonini, Sergio; Bonini, Stefano
2006-10-01
In response to corneal injury, cytokines and growth factors play a crucial role by influencing epithelial-stromal interaction during the healing and reparative processes which may resolve in tissue remodeling and fibrosis. While transforming growth factor-beta1 (TGF-beta1) is considered the main profibrogenic modulator of these process, recently the nerve growth factor (NGF) appears as a pleiotropic modulator of wound-healing and inflammatory responses. Interestingly in the cornea, where NGF, trkA(NGFR) and p75(NTR) are expressed by epithelial cells and keratocytes, the NGF eye-drop induces the healing of neurotrophic or autoimmune corneal ulcers. During corneal healing, quiescent keratocytes are replaced by active fibroblast-like keratocytes/myofibroblasts. While the NGF effect on epithelial cells has been investigated, no data are reported for NGF effects on fibroblastic-keratocytes, during corneal healing. NGF, trkA(NGFR) and p75(NTR) were found expressed by fibroblastic-keratocytes. NGF was able to induce fibroblastic-keratocyte differentiation into myofibroblasts, migration, Metalloproteinase-9 expression/activity and contraction of a 3D collagen gel, without affecting their proliferation and collagen production. These data also show a two-directional control of fibroblastic-keratocytes by NGF and TGF-beta1. To sum up, the findings of this study indicate that NGF can modulate some functional activities of fibroblastic-keratocytes, thus substantiating the healing effects of NGF on corneal wound-healing.
Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts.
Questa, María; Romorini, Leonardo; Blüguermann, Carolina; Solari, Claudia María; Neiman, Gabriel; Luzzani, Carlos; Scassa, María Élida; Sevlever, Gustavo Emilio; Guberman, Alejandra Sonia; Miriuka, Santiago Gabriel
2016-03-01
Human foreskin fibroblasts were used to generate the iPSC line iPSC-FH2.1 using the EF1a-hSTEMCCA-loxP vector expressing OCT4, SOX2, c-MYC and KLF4, in 5% O2 culture conditions. Stemness was confirmed, as was pluripotency both in vivo and in vitro, in normoxia and hypoxia. Human Embryonic Stem Cell (hESC) line WA-09 and reprogrammed fibroblast primary culture HFF-FM were used as controls. Copyright © 2015 University of Texas at Austin Dell Medical School. Published by Elsevier B.V. All rights reserved.
Fibroblastic osteosarcoma with epithelioid and squamous differentiation in a dog.
Jenkins, Tiffany L; Agnew, Dalen; Rissi, Daniel R
2018-04-01
A fibroblastic osteosarcoma with epithelioid and squamous differentiation in the distal femur of a 9-y-old spayed female Greyhound dog is described. Grossly, the tumor consisted of a pale-white, firm-to-hard mass that replaced the medullary and cortical areas of the distal end of the right femur. Histologically, the mass was composed predominantly of spindle cells admixed with areas of mineralized and non-mineralized osteoid matrix that were surrounded by stellate osteoblasts and scattered multinucleate giant cells, consistent with the diagnosis of a fibroblastic osteosarcoma. In addition, well-demarcated clusters of neoplastic epithelioid cells and foci of squamous differentiation with keratin pearls were present throughout the neoplasm. The spindle cells, epithelioid cells, and areas of squamous differentiation expressed cytoplasmic immunostaining for osteocalcin and osteonectin. The spindle cells and epithelioid cells were also immunopositive for vimentin. Epithelioid cells also expressed occasional cytoplasmic immunostaining for pancytokeratin (PCK) Lu-5, and areas of squamous differentiation were immunoreactive for PCK Lu-5 and high molecular weight CK; these areas were inconsistently immunoreactive for CK 5-6 and immunonegative for low molecular weight CK. Foci of squamous differentiation were not located within blood or lymphatic vessels, given that no immunoreactivity for factor VIII-related antigen was observed around these areas. A thorough autopsy and an evaluation of the medical history excluded a primary carcinoma or other neoplasm elsewhere in the dog. The findings were consistent with a diagnosis of fibroblastic osteosarcoma with epithelioid and squamous differentiation.
Stahnke, Thomas; Löbler, Marian; Kastner, Christian; Stachs, Oliver; Wree, Andreas; Sternberg, Katrin; Schmitz, Klaus-Peter; Guthoff, Rudolf
2012-07-01
The aim of this study is the characterization of fibroblasts mainly responsible for fibrosis processes associated with trabeculectomy or microstent implantation for glaucoma therapy. Therefore we isolated human primary fibroblasts from choroidea, sclera, Tenon capsule, and orbital fat tissues. These fibroblast subpopulations were analysed in vitro for expression of the extracellular matrix components which are responsible for postoperative scarring in glaucoma therapy. For scarring the proteins of the collagen family are predominant and so we focused on the expression of collagen I, collagen III and collagen VI in every fibroblast subpopulation. Also, the extracellular matrix protein fibronectin which crosslinks collagen fibres or other extracellular matrix components and cell surfaces, was analyzed. Collagen I, III and VI were prominent in every fibroblast subpopulation. The highest amounts of collagen III were found in hCF and hOF, whereas the signal in hSF and hTF was negligible. Additionally, there is a link between scarring processes and proliferating potential of fibroblasts, in case of microstent implantation triggered through the infiltration of inflammatory cells. Thus we analyzed fibroblast subpopulations for the presence of TGF-β1 which is one of the most important cytokines involved in proliferation processes. TGF-β1 was prominent in all fibroblast subpopulations with lowest expression in hCF cultures. To prevent postoperative fibroblast proliferation we analyzed in vitro the proliferation-inhibitors paclitaxel and mitomycin C which are potential candidates in drug eluting drainage systems on ocular fibroblast subpopulations. These inhibitors arrest fibroblast proliferation and viability, being, however, not very specific and have a cytotoxic potential also on healthy tissues surrounding the microstent outflow area. Significant differences in protein synthesis of fibroblasts subpopulations which could be specific targets for inhibition may help to find out fibroblast specific inhibitors to prevent postoperative scarring and could prevent patients from secondary surgery after microstent implantation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shi, Qiang; Liu, Xiaoyan; Bai, Yuanyuan; Cui, Chuanjue; Li, Jun; Li, Yishi; Hu, Shengshou; Wei, Yingjie
2011-01-01
Cardiac fibroblasts (CFs) are the primary cell type responsible for cardiac fibrosis during pathological myocardial remodeling. Several studies have illustrated that pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) attenuates cardiac fibrosis in different animal models. However, the effects of pirfenidone on cardiac fibroblast behavior have not been examined. In this study, we investigated whether pirfenidone directly modulates cardiac fibroblast behavior that is important in myocardial remodeling such as proliferation, myofibroblast differentiation, migration and cytokine secretion. Fibroblasts were isolated from neonatal rat hearts and bioassays were performed to determine the effects of pirfenidone on fibroblast function. We demonstrated that treatment of CFs with pirfenidone resulted in decreased proliferation, and attenuated fibroblast α-smooth muscle actin expression and collagen contractility. Boyden chamber assay illustrated that pirfenidone inhibited fibroblast migration ability, probably by decreasing the ratio of matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1. Furthermore, pirfenidone attenuated the synthesis and secretion of transforming growth factor-β1 but elevated that of interleukin-10. These direct and pleiotropic effects of pirfenidone on cardiac fibroblasts point to its potential use in the treatment of adverse myocardial remodeling. PMID:22132230
Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi
2013-05-01
Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.
Production of Prnp-/- goats by gene targeting in adult fibroblasts.
Zhu, Caihong; Li, Bei; Yu, Guohua; Chen, Jianquan; Yu, Huiqing; Chen, Juan; Xu, Xujun; Wu, Youbing; Zhang, Aimin; Cheng, Guoxiang
2009-04-01
Homozygous mice devoid of functional Prnp are resistant to scrapie and prion propagation, but heterozygous mice for Prnp disruption still suffer from prion disease and prion deposition. We have previously generated heterozygous cloned goats with one allele of Prnp functional disruption. To obtain goats with both alleles of Prnp be disrupted which would be resistant to scrapie completely, a second-round gene targeting was applied to disrupt the wild type allele of Prnp in the heterozygous goats. By second-round gene targeting, we successfully disrupted the wild type allele of Prnp in primary Prnp (+/-) goat skin fibroblasts and obtained a Prnp (-/-) cell line without Prnp expression. This is the first report on successful targeting modification in primary adult somatic cells of animals. These cells were used as nuclear donors for somatic cell cloning to produce Prnp (-/-) goats. A total of 57 morulae or blastocytes developed from the reconstructed embryos were transferred to 31 recipients, which produced 7 pregnancies at day 35. At 73 days of gestation, we obtained one cloned fetus with Prnp (-/-) genotype. Our research not only indicated that multiple genetic modifications could be accomplished by multi-round gene targeting in primary somatic cells, but also provided strong evidence that gene targeting in adult cells other than fetal cells could be applied to introduce precise genetic modifications in animals without destroying the embryos.
Peptide promotes overcoming of the division limit in human somatic cell.
Khavinson, V Kh; Bondarev, I E; Butyugov, A A; Smirnova, T D
2004-05-01
We previously showed that treatment of normal human diploid cells with Epithalon (Ala-Glu-Asp-Gly) induced expression of telomerase catalytic subunit, its enzymatic activity, and elongation of telomeres. Here we studied the effect of this peptide on proliferative potential of human fetal fibroblasts. Primary pulmonary fibroblasts derived from a 24-week fetus lost the proliferative potential at the 34th passage. The mean size of telomeres in these cells was appreciably lower than during early passages (passage 10). Addition of Epithalon to aging cells in culture induced elongation of telomeres to the size comparable to their length during early passages. Peptide-treated cells with elongated telomeres made 10 extra divisions (44 passages) in comparison with the control and continued dividing. Hence, Epithalon prolonged the vital cycle of normal human cells due to overcoming the Heyflick limit.
Buskermolen, Jeroen K; Reijnders, Christianne M A; Spiekstra, Sander W; Steinberg, Thorsten; Kleverlaan, Cornelis J; Feilzer, Albert J; Bakker, Astrid D; Gibbs, Susan
2016-08-01
Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines would solve these problems. The aim of this study was to develop fully differentiated human gingiva equivalents (GE) constructed entirely from cell lines, to compare them with the primary cell counterpart (Prim), and to test relevance in an in vitro wound healing assay. Reconstructed gingiva epithelium on a gingiva fibroblast-populated collagen hydrogel was constructed from cell lines (keratinocytes: TERT or HPV immortalized; fibroblasts: TERT immortalized) and compared to GE-Prim and native gingiva. GE were characterized by immunohistochemical staining for proliferation (Ki67), epithelial differentiation (K10, K13), and basement membrane (collagen type IV and laminin 5). To test functionality of GE-TERT, full-thickness wounds were introduced. Reepithelialization, fibroblast repopulation of hydrogel, metabolic activity (MTT assay), and (pro-)inflammatory cytokine release (enzyme-linked immunosorbent assay) were assessed during wound closure over 7 days. Significant differences in basal KC cytokine secretion (IL-1α, IL-18, and CXCL8) were only observed between KC-Prim and KC-HPV. When Fib-Prim and Fib-TERT were stimulated with TNF-α, no differences were observed regarding cytokine secretion (IL-6, CXCL8, and CCL2). GE-TERT histology, keratin, and basement membrane protein expression very closely represented native gingiva and GE-Prim. In contrast, the epithelium of GE made with HPV-immortalized KC was disorganized, showing suprabasal proliferating cells, limited keratinocyte differentiation, and the absence of basement membrane proteins. When a wound was introduced into the more physiologically relevant GE-TERT model, an immediate inflammatory response (IL-6, CCL2, and CXCL8) was observed followed by complete reepithelialization. Seven days after wounding, tissue integrity, metabolic activity, and cytokine levels had returned to the prewounded state. In conclusion, immortalized human gingiva KC and fibroblasts can be used to make physiologically relevant GE, which resemble either the healthy gingiva or a neoplastic disease model. These organotypic models will provide valuable tools to investigate oral mucosa biology and can also be used as an animal alternative for drug targeting, vaccination studies, microbial biofilm studies, and testing new therapeutics.
Buskermolen, Jeroen K.; Reijnders, Christianne M.A.; Spiekstra, Sander W.; Steinberg, Thorsten; Kleverlaan, Cornelis J.; Feilzer, Albert J.; Bakker, Astrid D.
2016-01-01
Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines would solve these problems. The aim of this study was to develop fully differentiated human gingiva equivalents (GE) constructed entirely from cell lines, to compare them with the primary cell counterpart (Prim), and to test relevance in an in vitro wound healing assay. Reconstructed gingiva epithelium on a gingiva fibroblast-populated collagen hydrogel was constructed from cell lines (keratinocytes: TERT or HPV immortalized; fibroblasts: TERT immortalized) and compared to GE-Prim and native gingiva. GE were characterized by immunohistochemical staining for proliferation (Ki67), epithelial differentiation (K10, K13), and basement membrane (collagen type IV and laminin 5). To test functionality of GE-TERT, full-thickness wounds were introduced. Reepithelialization, fibroblast repopulation of hydrogel, metabolic activity (MTT assay), and (pro-)inflammatory cytokine release (enzyme-linked immunosorbent assay) were assessed during wound closure over 7 days. Significant differences in basal KC cytokine secretion (IL-1α, IL-18, and CXCL8) were only observed between KC-Prim and KC-HPV. When Fib-Prim and Fib-TERT were stimulated with TNF-α, no differences were observed regarding cytokine secretion (IL-6, CXCL8, and CCL2). GE-TERT histology, keratin, and basement membrane protein expression very closely represented native gingiva and GE-Prim. In contrast, the epithelium of GE made with HPV-immortalized KC was disorganized, showing suprabasal proliferating cells, limited keratinocyte differentiation, and the absence of basement membrane proteins. When a wound was introduced into the more physiologically relevant GE-TERT model, an immediate inflammatory response (IL-6, CCL2, and CXCL8) was observed followed by complete reepithelialization. Seven days after wounding, tissue integrity, metabolic activity, and cytokine levels had returned to the prewounded state. In conclusion, immortalized human gingiva KC and fibroblasts can be used to make physiologically relevant GE, which resemble either the healthy gingiva or a neoplastic disease model. These organotypic models will provide valuable tools to investigate oral mucosa biology and can also be used as an animal alternative for drug targeting, vaccination studies, microbial biofilm studies, and testing new therapeutics. PMID:27406216
Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu
2015-08-01
At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.
Sharma, Manjinder; Dubey, Pawan K; Kumar, Rajesh; Nath, Amar; Kumar, G Sai; Sharma, G Taru
2013-05-01
Use of somatic cells as a feeder layer to maintain the embryonic stem cells (ESCs) in undifferentiated state limits the stem cell research design, since experimental data may result from a combined ESCs and feeder cell response to various stimuli. Therefore, present study was designed to evaluate the developmental competence of the buffalo ESCs over different homogenous feeders and compare with various extracellular matrices using different concentrations of LIF. Inner cell masses (ICMs) of in vitro hatched blastocysts were cultured onto homologous feeders viz. fetal fibroblast, granulosa and oviductal cell feeder layers and synthetic matrices viz. fibronectin, collagen type I and matrigel in culture medium. Developmental efficiency was found higher for ESCs cultured on fetal fibroblast and granulosa layers (83.33%) followed by fibronectin (77.78%) at 30 ng LIF. Oviductal feeder was found to be the least efficient feeder showing only 11.11% undifferentiated primary ESC colonies at 30 ng LIF. However, neither feeder layer nor synthetic matrix could support the development of primary colonies at 10 ng LIF. Expression of SSEA- 4, TRA-1-60 and Oct-4 were found positive in ESC colonies from all the feeders and synthetic matrices with 20 ng and 30 ng LIF. Fetal fibroblast and granulosa cell while, amongst synthetic matrices, fibronectin were found to be equally efficient to support the growth and maintenance of ESCs pluripotency with 30 ng LIF. This well-defined culture conditions may provide an animal model for culturing human embryonic stem cells in the xeno-free or feeder-free conditions for future clinical applications.
Deters, Alexandra; Zippel, Janina; Hellenbrand, Nils; Pappai, Dirk; Possemeyer, Cathleen; Hensel, Andreas
2010-01-08
Aqueous extracts from the roots of Althea officinalis L. (Malvaceae) are widely used for treatment of irritated mucosa. The clinical proven effects are related to the presence of bioadhesive and mucilaginous polysaccharides from the rhamnogalacturonan type, leading to the physical formation of mucin-like on top of the irritated tissues. No data are available if the extracts or the polysaccharides from these extract exert an active influence on mucosal or connective tissue cells, in order to initiated changes in cell physiology, useful for better tissue regeneration. In vitro investigations of aqueous A. officinalis extract AE and raw polysaccharides (RPS) on epithelial KB cells and primary dermal human fibroblasts (pNHF) using WST1 vitality test and BrdU proliferation ELISA. Gene expression analysis by microarray from KB cells. Internalisation studies of polysaccharides were performed by laser scanning microscopy. AE (1, 10 microg/mL) had stimulating effect on cell viability and proliferation of epithelial KB cells. RPS (1, 10 microg/mL) stimulated cell vitality of epithelial cells significantly without triggering the cells into higher proliferation status. Neither AE nor RPS had any effect on fibroblasts. FITC-labeled RPS was shown to be internalised into epithelial cells, but not into fibroblasts. FITC-RPS was shown to form bioadhesive layers on the cell surface of dermal fibroblasts. Microarray analysis indicated an up-regulation of genes related to cell adhesion proteins, growth regulators, extracellular matrix, cytokine release and apoptosis. Aqueous extracts and polysaccharides from the roots of A. officinalis are effective stimulators of cell physiology of epithelial cells which can prove the traditional use of Marshmallow preparations for treatment of irritated mucous membranes within tissue regeneration. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Antibacterial titanium nano-patterned arrays inspired by dragonfly wings
NASA Astrophysics Data System (ADS)
Bhadra, Chris M.; Khanh Truong, Vi; Pham, Vy T. H.; Al Kobaisi, Mohammad; Seniutinas, Gediminas; Wang, James Y.; Juodkazis, Saulius; Crawford, Russell J.; Ivanova, Elena P.
2015-11-01
Titanium and its alloys remain the most popular choice as a medical implant material because of its desirable properties. The successful osseointegration of titanium implants is, however, adversely affected by the presence of bacterial biofilms that can form on the surface, and hence methods for preventing the formation of surface biofilms have been the subject of intensive research over the past few years. In this study, we report the response of bacteria and primary human fibroblasts to the antibacterial nanoarrays fabricated on titanium surfaces using a simple hydrothermal etching process. These fabricated titanium surfaces were shown to possess selective bactericidal activity, eliminating almost 50% of Pseudomonas aeruginosa cells and about 20% of the Staphylococcus aureus cells coming into contact with the surface. These nano-patterned surfaces were also shown to enhance the aligned attachment behavior and proliferation of primary human fibroblasts over 10 days of growth. These antibacterial surfaces, which are capable of exhibiting differential responses to bacterial and eukaryotic cells, represent surfaces that have excellent prospects for biomedical applications.
Antibacterial titanium nano-patterned arrays inspired by dragonfly wings
Bhadra, Chris M.; Khanh Truong, Vi; Pham, Vy T. H.; Al Kobaisi, Mohammad; Seniutinas, Gediminas; Wang, James Y.; Juodkazis, Saulius; Crawford, Russell J.; Ivanova, Elena P.
2015-01-01
Titanium and its alloys remain the most popular choice as a medical implant material because of its desirable properties. The successful osseointegration of titanium implants is, however, adversely affected by the presence of bacterial biofilms that can form on the surface, and hence methods for preventing the formation of surface biofilms have been the subject of intensive research over the past few years. In this study, we report the response of bacteria and primary human fibroblasts to the antibacterial nanoarrays fabricated on titanium surfaces using a simple hydrothermal etching process. These fabricated titanium surfaces were shown to possess selective bactericidal activity, eliminating almost 50% of Pseudomonas aeruginosa cells and about 20% of the Staphylococcus aureus cells coming into contact with the surface. These nano-patterned surfaces were also shown to enhance the aligned attachment behavior and proliferation of primary human fibroblasts over 10 days of growth. These antibacterial surfaces, which are capable of exhibiting differential responses to bacterial and eukaryotic cells, represent surfaces that have excellent prospects for biomedical applications. PMID:26576662
Wu, Lian; Zhang, Jing; Qu, Jie Ming; Bai, Chun-Xue; Merrilees, Mervyn J
2017-01-01
A reduced content of alveolar elastic fibers is a key feature of COPD lung. Despite continued elastogenic potential by alveolar fibroblasts in the lung affected by COPD, repair of elastic fibers does not take place, which is due to increased levels of the chondroitin sulfate proteoglycan versican that inhibits the assembly of tropoelastin into fibers. In this study, primary pulmonary fibroblast cell lines from COPD and non-COPD patients were treated with a small interfering RNA (siRNA) against versican to determine if knockdown of versican could restore the deposition of insoluble elastin. Versican siRNA treatment reduced versican expression and secretion by pulmonary fibroblasts from both COPD and non-COPD patients ( P <0.01) and significantly increased deposition of insoluble elastin in the COPD cell cultures ( P <0.05). The treatment, however, did not significantly affect production of soluble elastin (tropoelastin) in either the COPD or non-COPD cell cultures, supporting a role for versican in inhibiting assembly but not synthesis of tropoelastin. These results suggest that removal or knockdown of versican may be a possible therapeutic strategy for increasing deposition of insoluble elastin and stimulating repair of elastic fibers in COPD lung.
Modafinil inhibits K(Ca)3.1 currents and muscle contraction via a cAMP-dependent mechanism.
Choi, Shinkyu; Kim, Moon Young; Joo, Ka Young; Park, Seonghee; Kim, Ji Aee; Jung, Jae-Chul; Oh, Seikwan; Suh, Suk Hyo
2012-07-01
Modafinil has been used as a psychostimulant for the treatment of narcolepsy. However, its primary mechanism of action remains elusive. Therefore, we examined the effects of modafinil on K(Ca)3.1 channels and vascular smooth muscle contraction. K(Ca)3.1 currents and channel activity were measured using a voltage-clamp technique and inside-out patches in mouse embryonic fibroblast cell line, NIH-3T3 fibroblasts. Intracellular adenosine 3',5'-cyclic monophosphate (cAMP) concentration was measured, and the phosphorylation of K(Ca)3.1 channel protein was examined using western blotting in NIH-3T3 fibroblasts and/or primary cultured mouse aortic smooth muscle cells (SMCs). Muscle contractions were recorded from mouse aorta and rat pulmonary artery by using a myograph developed in-house. Modafinil was found to inhibit K(Ca)3.1 currents in a concentration-dependent manner, and the half-maximal inhibition (IC(50)) of modafinil for the current inhibition was 6.8 ± 0.7 nM. The protein kinase A (PKA) activator forskolin also inhibited K(Ca)3.1 currents. The inhibitory effects of modafinil and forskolin on K(Ca)3.1 currents were blocked by the PKA inhibitors PKI(14-22) or H-89. In addition, modafinil relaxed blood vessels (mouse aorta and rat pulmonary artery) in a concentration-dependent manner. Modafinil increased cAMP concentrations in NIH-3T3 fibroblasts or primary cultured mouse aortic SMCs and phosphorylated K(Ca)3.1 channel protein in NIH-3T3 fibroblasts. However, open probability and single-channel current amplitudes of K(Ca)3.1 channels were not changed by modafinil. From these results, we conclude that modafinil inhibits K(Ca)3.1 channels and vascular smooth muscle contraction by cAMP-dependent phosphorylation, suggesting that modafinil can be used as a cAMP-dependent K(Ca)3.1 channel blocker and vasodilator. Copyright © 2012 Elsevier Ltd. All rights reserved.
Burkard, Michael; Whitworth, Deanne; Schirmer, Kristin; Nash, Susan Bengtson
2015-10-01
This paper reports the first successful derivation and characterization of humpback whale fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin biopsies, cultured at 37 °C and 5% CO2 in the standard mammalian medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were established from two different animals and designated HuWa1 and HuWa2. The cells have a stable karyotype with 2n=44, which has commonly been observed in other baleen whale species. Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to plastic and positive immunoreaction to vimentin. Population doubling time was determined to be ∼41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37 °C, but show the highest rate of proliferation at 37 °C. Short-term exposure to para,para'-dichlorodiphenyldichloroethylene (p,p'-DDE), a priority compound accumulating in southern hemisphere humpback whales, resulted in a concentration-dependent loss of cell viability. The effective concentration which caused a 50% reduction in HuWa1 cell viability (EC50 value) was approximately six times greater than the EC50 value for the same chemical measured with human dermal fibroblasts. HuWa1 exposed to a natural, p,p'-DDE-containing, chemical mixture extracted from whale blubber showed distinctively higher sensitivity than to p,p'-DDE alone. Thus, we provide the first cytotoxicological data for humpback whales and with establishment of the HuWa cell lines, a unique in vitro model for the study of the whales' sensitivity and cellular response to chemicals and other environmental stressors. Copyright © 2015 Elsevier B.V. All rights reserved.
Hakki, Sema S; Korkusuz, Petek; Purali, Nuhan; Bozkurt, Buket; Kus, Mahmut; Duran, Ismet
2013-01-01
The purpose of this study was to investigate adhesion, proliferation and type I collagen (COL I) mRNA expression of gingival fibroblasts on different membranes used in periodontal applications. Collagen (C), acellular dermal matrix (ADM) and polylactic acid; polyglycolic acid; lactide/glycolide copolymer (PLGA) biodegradable membranes were combined with gingival fibroblasts in culture and incubated for 48 h. Cell adhesion was examined with scanning electron and confocal microscopy. MTT assay was used to measure proliferation. COL I mRNA expression was assessed using quantitative-polymerase chain reaction (QPCR). The PLGA group exhibited the lowest cell survival on day 5 and 10, and lowest cell proliferation on days 5, 10 and 14. While cell proliferation was similar in C and ADM groups, the C membrane showed a slightly greater increase in viable cells to day 10. Confocal and scanning electron microscopy confirmed the results of proliferation and MTT assays. The highest COL I mRNA expression was noted in the PLGA membrane group when compared to the C (p < 0.01) and ADM (p < 0.05) membrane groups. These data revealed that adherence and proliferation of primary gingival fibroblasts on collagen-based C and ADM membranes is better than that seen with PLGA membranes, and thus may be preferable in the treatment of gingival recession defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xueting; Fang, Shencun; Liu, Haijun
Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO{sub 2}). Phagocytosis of SiO{sub 2} in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO{sub 2} produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Methods and results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO{sub 2} treatment resultedmore » in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO{sub 2}-induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO{sub 2}-induced increase in cell migration. Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO{sub 2}. CCR2 was also up-regulated in response to SiO{sub 2}, and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO{sub 2}-induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. - Highlights: • Role of pulmonary fibroblast-derived MCP-1 in experimental silicosis was studied. • SiO{sub 2} induced MCP-1 release from cultured human pulmonary fibroblast (HPF-a). • SiO{sub 2} directly activated HPF-a via the MCP-1/CCR2 pathway. • SiO{sub 2} increased HPF-a migration in both 2D and 3D model via the MCP-1/CCR2 pathway. • RNA-i of MCP-1/CCR2 decreased HPF-a activation and migration induced by SiO{sub 2}.« less
Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming
Mohamed, Tamer M. A.; Stone, Nicole R.; Berry, Emily C.; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N.; Srivastava, Deepak
2017-01-01
Background Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells (iCMs) in situ represents a promising strategy for cardiac regeneration. A combination of three cardiac transcription factors, Gata4, Mef2c and Tbx5 (GMT), can convert fibroblasts into iCMs, albeit with low efficiency in vitro. Methods We screened 5,500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. Results We found that a combination of the transforming growth factor (TGF)-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency eight-fold when added to GMT-overexpressing cardiac fibroblasts. The small-molecules also enhanced the speed and the quality of cell conversion, as we observed beating cells as early as 1 week after reprogramming compared to 6–8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared to those exposed to only GMT. Human cardiac reprogramming was similarly enhanced upon TGF-β and WNT inhibition and was achieved most efficiently with GMT plus Myocardin. Conclusions Thus, TGF-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. PMID:27834668
Rotondo Dottore, Giovanna; Leo, Marenza; Casini, Giamberto; Latrofa, Francesco; Cestari, Luca; Sellari-Franceschini, Stefano; Nardi, Marco; Vitti, Paolo; Marcocci, Claudio; Marinò, Michele
2017-02-01
A recent clinical trial has shown a beneficial effect of the antioxidant agent selenium in Graves' orbitopathy (GO). In order to shed light on the cellular mechanisms on which selenium may act, this study investigated its effects in cultured orbital fibroblasts. Primary cultures of orbital fibroblasts from six GO patients and six control subjects were established. Cells were treated with H 2 O 2 to induce oxidative stress, after pre-incubation with selenium-(methyl)selenocysteine (SeMCys). The following assays were performed: glutathione disulfide (GSSG), as a measure of oxidative stress, glutathione peroxidase (GPX) activity, cell proliferation, hyaluronic acid (HA), and pro-inflammatory cytokines. H 2 O 2 induced an increase in cell GSSG and fibroblast proliferation, which were reduced by SeMCys. Incubation of H 2 O 2 -treated cells with SeMCys was followed by an increase in glutathione peroxidase activity, one of the antioxidant enzymes into which selenium is incorporated. At the concentrations used (5 μM), H 2 O 2 did not significantly affect HA release, but it was reduced by SeMCys. H 2 O 2 determined an increase in endogenous cytokines involved in the response to oxidative stress and GO pathogenesis, namely tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma. The increases in tumor necrosis factor alpha and interferon gamma were blocked by SeMCys. While the effects of SeMCys on oxidative stress and cytokines were similar in GO and control fibroblasts, they were exclusive to GO fibroblasts in terms of inhibiting proliferation and HA secretion. Selenium, in the form of SeMCys, abolishes some of the effects of oxidative stress in orbital fibroblasts, namely increased proliferation and secretion of pro-inflammatory cytokines. SeMCys reduces HA release in GO fibroblasts in a manner that seems at least in part independent from H 2 O 2 -induced oxidative stress. Some effects of SeMCys are specific for GO fibroblasts. These findings reveal some cellular mechanisms by which selenium may act in patients with GO.
Analysis of Induced Pluripotent Stem Cells from a BRCA1 Mutant Family
Soyombo, Abigail A.; Wu, Yipin; Kolski, Lauren; Rios, Jonathan J.; Rakheja, Dinesh; Chen, Alice; Kehler, James; Hampel, Heather; Coughran, Alanna; Ross, Theodora S.
2013-01-01
Summary Understanding BRCA1 mutant cancers is hampered by difficulties in obtaining primary cells from patients. We therefore generated and characterized 24 induced pluripotent stem cell (iPSC) lines from fibroblasts of eight individuals from a BRCA1 5382insC mutant family. All BRCA1 5382insC heterozygous fibroblasts, iPSCs, and teratomas maintained equivalent expression of both wild-type and mutant BRCA1 transcripts. Although no difference in differentiation capacity was observed between BRCA1 wild-type and mutant iPSCs, there was elevated protein kinase C-theta (PKC-theta) in BRCA1 mutant iPSCs. Cancer cell lines with BRCA1 mutations and hormone-receptor-negative breast cancers also displayed elevated PKC-theta. Genome sequencing of the 24 iPSC lines showed a similar frequency of reprogramming-associated de novo mutations in BRCA1 mutant and wild-type iPSCs. These data indicate that iPSC lines can be derived from BRCA1 mutant fibroblasts to study the effects of the mutation on gene expression and genome stability. PMID:24319668
Rico de Souza, Angela; Zago, Michela; Pollock, Stephen J.; Sime, Patricia J.; Phipps, Richard P.; Baglole, Carolyn J.
2011-01-01
Cigarette smoke is the primary risk factor for chronic obstructive pulmonary disease (COPD). Alterations in the balance between apoptosis and proliferation are involved in the etiology of COPD. Fibroblasts and epithelial cells are sensitive to the oxidative properties of cigarette smoke, and whose loss may precipitate the development of COPD. Fibroblasts express the aryl hydrocarbon receptor (AhR), a transcription factor that attenuates pulmonary inflammation and may also regulate apoptosis. We hypothesized the AhR would prevent apoptosis caused by cigarette smoke. Using genetically deleted in vitro AhR expression models and an established method of cigarette smoke exposure, we report that AhR expression regulates fibroblasts proliferation and prevents morphological features of apoptosis, including membrane blebbing and chromatin condensation caused by cigarette smoke extract (CSE). Absence of AhR expression results in cleavage of PARP, lamin, and caspase-3. Mitochondrial dysfunction, including cytochrome c release, was associated with loss of AhR expression, indicating activation of the intrinsic apoptotic cascade. Heightened sensitivity of AhR-deficient fibroblasts was not the result of alterations in GSH, Nrf2, or HO-1 expression. Instead, AhR−/− cells had significantly less MnSOD and CuZn-SOD expression, enzymes that protects against oxidative stress. The ability of the AhR to suppress apoptosis was not restricted to fibroblasts, as siRNA-mediated knockdown of the AhR in lung epithelial cells also increased sensitivity to smoke-induced apoptosis. Collectively, these results suggest that cigarette smoke induced loss of lung structural support (i.e. fibroblasts, epithelial cells) caused by aberrations in AhR expression may explain why some smokers develop lung diseases such as COPD. PMID:21984831
Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn
2016-09-06
Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.
Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino
2016-07-01
Endothelial and epithelial cell transition to a mesenchymal phenotype was identified as cellular paradigms implicated in the appearance of fibroblasts and development of reactive fibrosis in interstitial lung disease. The intermediate filament protein nestin was highly expressed in fibrotic tissue, detected in fibroblasts and participated in proliferation and migration. The present study tested the hypothesis that the transition of endothelial and epithelial cells to a mesenchymal phenotype was delineated by nestin expression. Three weeks following hypobaric hypoxia, adult male Sprague-Dawley rats characterized by alveolar and perivascular lung fibrosis were associated with increased nestin protein and mRNA levels and marked appearance of nestin/collagen type I((+))-fibroblasts. In the perivascular region of hypobaric hypoxic rats, displaced CD31((+))-endothelial cells were detected, exhibited a mesenchymal phenotype and co-expressed nestin. Likewise, epithelial cells in the lungs of hypobaric hypoxic rats transitioned to a mesenchymal phenotype distinguished by the co-expression of E-cadherin and collagen. Following the removal of FBS from primary passage rat alveolar epithelial cells, TGF-β1 was detected in the media and a subpopulation acquired a mesenchymal phenotype characterized by E-cadherin downregulation and concomitant induction of collagen and nestin. Bone morphogenic protein-7 treatment of alveolar epithelial cells prevented E-cadherin downregulation, suppressed collagen induction but partially inhibited nestin expression. These data support the premise that the transition of endothelial and epithelial cells to a mesenchymal cell may have contributed in part to the appearance nestin/collagen type I((+))-fibroblasts and the reactive fibrotic response in the lungs of hypobaric hypoxic rats. © 2015 Wiley Periodicals, Inc.
Walch-Rückheim, Barbara; Mavrova, Russalina; Henning, Melanie; Vicinus, Benjamin; Kim, Yoo-Jin; Bohle, Rainer Maria; Juhasz-Böss, Ingolf; Solomayer, Erich-Franz; Smola, Sigrun
2015-12-15
Cervical cancer is a consequence of persistent infection with human papillomaviruses (HPV). Progression to malignancy is linked to an inflammatory microenvironment comprising T-helper-17 (Th17) cells, a T-cell subset with protumorigenic properties. Neoplastic cells express only low endogenous levels of the Th17 chemoattractant CCL20, and therefore, it is unclear how Th17 cells are recruited to the cervical cancer tissue. In this study, we demonstrate that CCL20 was predominantly expressed in the stroma of cervical squamous cell carcinomas in situ. This correlated with stromal infiltration of CD4(+)/IL17(+) cells and with advancing International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, we show that cervical cancer cells instructed primary cervical fibroblasts to produce high levels of CCL20 and to attract CD4/IL17/CCR6-positive cells, generated in vitro, in a CCL20/CCR6-dependent manner. Further mechanistic investigations identified cervical cancer cell-derived IL6 as an important mediator of paracrine CCL20 induction at the promoter, mRNA, and protein level in fibroblasts. CCL20 was upregulated through the recently described CCAAT/enhancer-binding protein β (C/EBPβ) pathway as shown with a dominant-negative version of C/EBPβ and through siRNA-mediated knockdown. In summary, our study defines a novel molecular mechanism by which cervical neoplastic cells shape their local microenvironment by instructing fibroblasts to support Th17 cell infiltration in a paracrine IL6/C/EBPβ-dependent manner. Th17 cells may in turn maintain chronic inflammation within high-grade cervical lesions to further promote cancer progression. ©2015 American Association for Cancer Research.
Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R
2016-01-19
The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Human gingival fibroblast response to electropolished NiTi surfaces.
Es-Souni, Martha; Fischer-Brandies, Helge; Es-Souni, Mohammed
2007-01-01
In the present study the in vitro biocompatibility of electropolished NiTi sheets is investigated. The assessment of cytotoxic effects due to potential Ni leaching from metal sheets was performed in direct contact with primary human fibroblast cultures using the 5-bromo-2'-deoxyuridine cell proliferation assay and morphologic studies via light microscopy and scanning electron microscopy. To assess toxic effects related to Ni-ions release, cells cultured in the presence of increasing concentrations of Ni(2+) (NiSO(4).6H(2)O) served as positive controls. It is shown that while the addition of NiSO(4) caused severe proliferation decrease (approximately 80%) and morphologic damage at a concentration of 50 mg/L Ni(2+) no negative effects were observed in fibroblasts cultured in the presence of electropolished NiTi sheets. The results are discussed in terms of surface topography effects on the biocompatibility of NiTi shape memory alloys. (c) 2006 Wiley Periodicals, Inc.
L1 Antibodies Block Lymph Node Fibroblastic Reticular Matrix Remodeling In Vivo
Di Sciullo, Gino; Donahue, Tim; Schachner, Melitta; Bogen, Steven A.
1998-01-01
L1 is an immunoglobulin superfamily adhesion molecule highly expressed on neurons and involved in cell motility, neurite outgrowth, axon fasciculation, myelination, and synaptic plasticity. L1 is also expressed by nonneural cells, but its function outside of the nervous system has not been studied extensively. We find that administration of an L1 monoclonal antibody in vivo disrupts the normal remodeling of lymph node reticular matrix during an immune response. Ultrastructural examination reveals that reticular fibroblasts in mice treated with L1 monoclonal antibodies fail to spread and envelop collagen fibers with their cellular processes. The induced defect in the remodeling of the fibroblastic reticular system results in the loss of normal nodal architecture, collapsed cortical sinusoids, and macrophage accumulation in malformed sinuses. Surprisingly, such profound architectural abnormalities have no detectable effects on the primary immune response to protein antigens. PMID:9625755
Lohberger, Birgit; Kaltenegger, Heike; Stuendl, Nicole; Rinner, Beate; Leithner, Andreas; Sadoghi, Patrick
2016-12-01
Mechanical stimulation plays an important role in the development and remodelling of tendons. The aim of the study was to evaluate the effects of mechanical stimulation on the expression of extracellular matrix proteins in human primary rotator cuff (RC) fibroblasts. RC fibroblasts were isolated from patients with degenerative RC tears and characterized using flow cytometry and immunohistochemistry. Cells were stimulated using the Flexcell FX5K™ Tension System. The stimulation regime was a uniaxial sinusoidal waveform with 10 % elongation and a frequency of 0.5 Hz, whereby each cycle consists of 10-s strain and 30-s relaxation. Data were normalized to mechanically unstimulated control groups for every experimental condition. RT-qPCR was performed to determine relative mRNA levels, and collagen production was measured by a colorimetric assay. The positive expression of CD91 and CD10, and negativity for CD45 and CD4 confirmed the fibroblast phenotype of RC primary cells. RT-qPCR revealed that 10 % continuous cyclic strain for 7 and 14 days induced a significant increase in the mRNA expression both on the matrix metalloproteinases MMP1, MMP3, MMP13, and MMP14 and on the extracellular matrix proteins decorin, tenascin-C, and scleraxis. Furthermore, mechanically stimulated groups produced significantly higher amounts of total collagen. These results may contribute to a better understanding of strain-induced tendon remodelling and will form the basis for the correct choice of applied force in rehabilitation after orthopaedic surgery. These findings underline the fact that early passive motion of the joint in order to induce remodelling of the tendon should be included within a rehabilitation protocol for rotator cuff repair.
Xi, Chunfang; Liu, Mingwei; Sun, Haichen; Liu, Shuang; Song, Lei
2018-01-01
Background Breast cancer stem cells (BCSCs) are associated with the invasion of breast cancer. In recent years, studies have demonstrated different phenotypes among BCSCs. Furthermore, BCSCs of diverse phenotypes are present at different tumour sites and different histological stages. Fibroblasts are involved in the phenotypic transformation of BCSCs. Cancer-associated fibroblasts (CAFs) participate in the induction of epithelial–mesenchymal transition, thereby promoting the acquisition of stem cell characteristics, but little is known about the role of normal fibroblasts (NFs) in the phenotypic transformation of BCSCs or about the effect of CAFs and NFs on BCSC phenotypes. Methods A total of six pairs of primary CAFs and NFs were isolated from surgical samples of breast cancer patients and subjected to morphological, immunohistochemical, cell invasion and proteomics analyses. After establishing a cell culture system with conditioned medium from CAFs and NFs, we used the mammosphere formation assay to explore the effect of CAFs and NFs on the self-renewal ability of BCSCs. The effect of CAFs and NFs on the phenotypic differentiation of BCSCs was further analysed by flow cytometry and immunofluorescence. Results The isolated CAFs and NFs did not show significant differences in cell morphology or alpha-smooth muscle actin (α-SMA) expression, but cell invasion and proteomics analyses demonstrated heterogeneity among these fibroblasts. Both CAFs and NFs could promote the generation of BCSCs, but CAFs displayed a greater ability than NFs in promoting mammosphere formation. Conditioned medium from CAFs increased the proportion of aldehyde dehydrogenase-1 positive (ALDH1+) BCSCs, but conditioned medium from NFs was more likely to promote the generation of CD44+CD24− BCSCs from MCF-7 cells. Discussion This study validated the heterogeneity among CAFs and NFs and expanded on the conclusion that fibroblasts promote the generation of cancer stem cells. Our results particularly emphasized the effect of NFs on the phenotypic transformation of BCSCs. In addition, this study further highlighted the roles of CAFs and NFs in the induction of different phenotypes in BCSCs. PMID:29780673
Wang, Bixiao; Xi, Chunfang; Liu, Mingwei; Sun, Haichen; Liu, Shuang; Song, Lei; Kang, Hua
2018-01-01
Breast cancer stem cells (BCSCs) are associated with the invasion of breast cancer. In recent years, studies have demonstrated different phenotypes among BCSCs. Furthermore, BCSCs of diverse phenotypes are present at different tumour sites and different histological stages. Fibroblasts are involved in the phenotypic transformation of BCSCs. Cancer-associated fibroblasts (CAFs) participate in the induction of epithelial-mesenchymal transition, thereby promoting the acquisition of stem cell characteristics, but little is known about the role of normal fibroblasts (NFs) in the phenotypic transformation of BCSCs or about the effect of CAFs and NFs on BCSC phenotypes. A total of six pairs of primary CAFs and NFs were isolated from surgical samples of breast cancer patients and subjected to morphological, immunohistochemical, cell invasion and proteomics analyses. After establishing a cell culture system with conditioned medium from CAFs and NFs, we used the mammosphere formation assay to explore the effect of CAFs and NFs on the self-renewal ability of BCSCs. The effect of CAFs and NFs on the phenotypic differentiation of BCSCs was further analysed by flow cytometry and immunofluorescence. The isolated CAFs and NFs did not show significant differences in cell morphology or alpha-smooth muscle actin (α-SMA) expression, but cell invasion and proteomics analyses demonstrated heterogeneity among these fibroblasts. Both CAFs and NFs could promote the generation of BCSCs, but CAFs displayed a greater ability than NFs in promoting mammosphere formation. Conditioned medium from CAFs increased the proportion of aldehyde dehydrogenase-1 positive (ALDH1 + ) BCSCs, but conditioned medium from NFs was more likely to promote the generation of CD44 + CD24 - BCSCs from MCF-7 cells. This study validated the heterogeneity among CAFs and NFs and expanded on the conclusion that fibroblasts promote the generation of cancer stem cells. Our results particularly emphasized the effect of NFs on the phenotypic transformation of BCSCs. In addition, this study further highlighted the roles of CAFs and NFs in the induction of different phenotypes in BCSCs.
HDAC2 Suppresses IL17A-Mediated Airway Remodeling in Human and Experimental Modeling of COPD.
Lai, Tianwen; Tian, Baoping; Cao, Chao; Hu, Yue; Zhou, Jiesen; Wang, Yong; Wu, Yanping; Li, Zhouyang; Xu, Xuchen; Zhang, Min; Xu, Feng; Cao, Yuan; Chen, Min; Wu, Dong; Wu, Bin; Dong, Chen; Li, Wen; Ying, Songmin; Chen, Zhihua; Shen, Huahao
2018-04-01
Although airway remodeling is a central feature of COPD, the mechanisms underlying its development have not been fully elucidated. The goal of this study was to determine whether histone deacetylase (HDAC) 2 protects against cigarette smoke (CS)-induced airway remodeling through IL-17A-dependent mechanisms. Sputum samples and lung tissue specimens were obtained from control subjects and patients with COPD. The relationships between HDAC2, IL-17A, and airway remodeling were investigated. The effect of HDAC2 on IL-17A-mediated airway remodeling was assessed by using in vivo models of COPD induced by CS and in vitro culture of human bronchial epithelial cells and primary human fibroblasts exposed to CS extract, IL-17A, or both. HDAC2 and IL-17A expression in the sputum cells and lung tissue samples of patients with COPD were associated with bronchial wall thickening and collagen deposition. Il-17a deficiency (Il-17a -/- ) resulted in attenuation of, whereas Hdac2 deficiency (Hdac2 +/- ) exacerbated, CS-induced airway remodeling in mice. IL-17A deletion also attenuated airway remodeling in CS-exposed Hdac2 +/- mice. HDAC2 regulated IL-17A production partially through modulation of CD4 + T cells during T helper 17 cell differentiation and retinoid-related orphan nuclear receptor γt in airway epithelial cells. In vitro, IL-17A deficiency attenuated CS-induced mouse fibroblast activation from Hdac2 +/- mice. IL-17A-induced primary human fibroblast activation was at least partially mediated by autocrine production of transforming growth factor beta 1. These findings suggest that activation of HDAC2 and/or inhibition of IL-17A production could prevent the development of airway remodeling by suppressing airway inflammation and modulating fibroblast activation in COPD. Copyright © 2017. Published by Elsevier Inc.
Chang, Shu-Wen; Chou, San-Fang; Yu, Shuen-Yuen
2010-01-01
The purpose of this study was to investigate the effect of dexamethasone (DEX) on mitomycin C (MMC)-induced inflammatory cytokine expression in corneal fibroblasts. Primary human corneal fibroblasts were treated with MMC, dexamethasone, or in combination. Morphological changes and cell growth were documented using phase-contrast microscopy and PicoGreen assay, respectively. Cell apoptosis was evaluated by annexin V/propidium iodide staining, whereas viability was tested by the live/dead assay and analyzed by flow cytometry. The relative expression of interleukin-8 and monocyte chemoattractant protein-1 was investigated with quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Mitogen-activated protein kinase activation and mitogen-activated protein kinase phosphatase-1 expression were documented by Western blot analysis. We found that MMC induced corneal fibroblast elongation, apoptosis, and retarded cell growth, whereas DEX did not significantly alter cell morphology or viability. The combination of DEX and MMC did not induce additional apoptosis and cell death. DEX dose dependently down-regulated basal and MMC-induced interleukin-8 and monocyte chemoattractant protein-1 mRNA expression and protein secretion. DEX attenuated MMC-induced p38 and Jun N-terminal kinases activation and up-regulated expression. These suggested that DEX may inhibit MMC-induced interleukin-8 and monocyte chemoattractant protein-1 by up-regulating MKP-1 expression, which subsequently deactivated p38 and Jun N-terminal kinases activation. Combined MMC and DEX treatment may facilitate corneal wound healing.
Jia, Dongyu; Liu, Zhenqiu; Deng, Nan; Tan, Tuan Zea; Huang, Ruby Yun-Ju; Taylor-Harding, Barbie; Cheon, Dong-Joo; Lawrenson, Kate; Wiedemeyer, Wolf R.; Walts, Ann E.; Karlan, Beth Y.; Orsulic, Sandra
2016-01-01
Although cancer-associated fibroblasts (CAFs) are viewed as a promising therapeutic target, the design of rational therapy has been hampered by two key obstacles. First, attempts to ablate CAFs have resulted in significant toxicity because currently used biomarkers cannot effectively distinguish activated CAFs from non-cancer associated fibroblasts and mesenchymal progenitor cells. Second, it is unclear whether CAFs in different organs have different molecular and functional properties that necessitate organ-specific therapeutic designs. Our analyses uncovered COL11A1 as a highly specific biomarker of activated CAFs. Using COL11A1 as a ‘seed’, we identified co-expressed genes in 13 types of primary carcinoma in The Cancer Genome Atlas. We demonstrated that a molecular signature of activated CAFs is conserved in epithelial cancers regardless of organ site and transforming events within cancer cells, suggesting that targeting fibroblast activation should be effective in multiple cancers. We prioritized several potential pan-cancer therapeutic targets that are likely to have high specificity for activated CAFs and minimal toxicity in normal tissues. PMID:27609069
Furuya, Sonoko; Furuya, Kishio; Shigemoto, Ryuichi; Sokabe, Masahiro
2010-11-01
Subepithelial fibroblasts of the intestinal villi, which form a contractile cellular network beneath the epithelium, are in close contact with epithelial cells, nerve varicosities, capillaries, smooth muscles and immune cells, and secrete extracellular matrix molecules, growth factors and cytokines, etc. Cultured subepithelial fibroblasts of the rat duodenal villi display various receptors such as endothelins, ATP, substance-P and bradykinin, and release ATP in response to mechanical stimulation. In this study, the presence of functional NK1 receptors (NK1R) was pharmacologically confirmed in primary culture by Ca(2+) measurement, and the effects of substance-P were measured in an acute preparation of epithelium-free duodenal villi from 2- to 3-week-old rats using a two-photon laser microscope. Substance-P elicited an increase in the intracellular Ca(2+) concentration and contraction of the subepithelial fibroblasts in culture and the isolated villi. The localization of NK1R and substance-P in the villi was examined by light and electron microscopic immunohistochemistry. NK1R-like immunoreactivity was intensely localized on the plasma membrane of villous subepithelial fibroblasts in 10-day- to 4-week-old rats and mice and was decreased or absent in adulthood. The pericryptal fibroblasts of the small and large intestine were NK1R immuno-negative. These villous subepithelial fibroblasts form synapse-like structures with both substance-P-immunopositive and -immunonegative nerve varicosities. Here, we propose that the mutual interaction between villous subepithelial fibroblasts and afferent neurons via substance-P and ATP plays important roles in the maturation of the structure and function of the small intestine.
Blue light-irradiated human keloid fibroblasts: an in vitro study
NASA Astrophysics Data System (ADS)
Magni, Giada; Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Coppi, Elisabetta; Cherchi, Federica; Fusco, Irene; Pugliese, Anna Maria; Pedata, Felicita; Fraccalvieri, Marco; Gasperini, Stefano; Pavone, Francesco S.; Tripodi, Cristina; Alfieri, Domenico; Targetti, Lorenzo
2018-02-01
Blue LED light irradiation is currently under investigation because of its effect in wound healing improvement. In this context, several mechanisms of action are likely to occur at the same time, consistently with the presence of different light absorbers within the skin. In our previous studies we observed the wound healing in superficial abrasions in an in vivo murine model. The results evidenced that both inflammatory infiltrate and myofibroblasts activity increase after irradiation. In this study we focused on evaluating the consequences of light absorption in fibroblasts from human cells culture: they play a key role in wound healing, both in physiological conditions and in pathological ones, such as keloid scarring. In particular we used keloids fibroblasts as a new target in order to investigate a possible metabolic or cellular mechanism correlation. Human keloid tissues were excised during standard surgery and immediately underwent primary cell culture extraction. Fibroblasts were allowed to grow in the appropriate conditions and then exposed to blue light. A metabolic colorimetric test (WST-8) was then performed. The tests evidenced an effect in mitochondrial activity, which could be modulated by the duration of the treatment. Electrophysiology pointed out a different behavior of irradiated fibroblasts. In conclusion, the Blue LED light affects the metabolic activity of fibroblasts and thus the cellular proliferation rate. No specific effect was found on keloid fibroblasts, thus indicating a very basic intracellular component, such as cytochromes, being the target of the treatment.
Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D
2018-04-01
This study aimed at comparing the cytotoxicity of a new octenidine mouth rinse (MR) on gingival fibroblasts and epithelial cells using different established MRs. Octenidol (OCT), Chlorhexidine 0.2% (CHX), Meridol (MER), Oral B (OB), and control (PBS only) were used. Human primary gingival fibroblasts (HGFIBs) and human primary nasal epithelial cells (HNEPCs) were cultivated in cell-specific media (2 × 10 5 cells/well) and treated with a MR or PBS for 1, 5, and 15 min. All tests were performed in duplicate and repeated 12 times. The apoptosis and necrosis were determined using a Caspase-3/7 assay and LDH assay, respectively. The data were analyzed using two-way analysis of variance with subsequent Mann-Whitney U-test. No significant differences could be found between the incubation times of the MR, neither for apoptosis nor necrosis (p > 0.05). Regarding apoptosis of HGFIBs, MRs had no influence at all. In HNEPCs, OCT induced relevantly lower apoptosis than CHX (p = 0.01). Considering necrosis, MER showed the lowest numbers of necrotic HGFIBs and HNEPCs, whereas OB induced the highest number of necrotic cells. The differences between both MR were statistically relevant (p < 0.01). OCT did neither differ from the other MRs nor from the control (PBS) in induction of necrosis in both cell types. In conclusion, the slightly negative effect of OCT considering apoptosis and necrosis of HGFIBs and HNEPCs is nearly the same or even lower compared to the established MRs included in this study. The results confirm that OCT is a potential alternative to CHX.
Zhang, Weiruo; Bouchard, Gina; Yu, Alice; Shafiq, Majid; Jamali, Mehran; Shrager, Joseph B; Ayers, Kelsey; Bakr, Shaimaa; Gentles, Andrew J; Diehn, Maximilian; Quon, Andrew; West, Robert B; Nair, Viswam; van de Rijn, Matt; Napel, Sandy; Plevritis, Sylvia K
2018-05-14
Metabolic reprogramming of the tumor microenvironment is recognized as a cancer hallmark. To identify new molecular processes associated with tumor metabolism, we analyzed the transcriptome of bulk and flow-sorted human primary non-small cell lung cancer (NSCLC) together with 18FDG-positron emission tomography scans, which provide a clinical measure of glucose uptake. Tumors with higher glucose uptake were functionally enriched for molecular processes associated with invasion in adenocarcinoma (AD) and cell growth in squamous cell carcinoma (SCC). Next, we identified genes correlated to glucose uptake that were predominately overexpressed in a single cell-type comprising the tumor microenvironment. For SCC, most of these genes were expressed by malignant cells, whereas in AD they were predominately expressed by stromal cells, particularly cancer-associated fibroblasts (CAFs). Among these AD genes correlated to glucose uptake, we focused on Glutamine-Fructose-6-Phosphate Transaminase 2 (GFPT2), which codes for the Glutamine-Fructose-6-Phosphate Aminotransferase 2 (GFAT2), a rate-limiting enzyme of the hexosamine biosynthesis pathway (HBP), which is responsible for glycosylation. GFPT2 was predictive of glucose uptake independent of GLUT1, the primary glucose transporter, and was prognostically significant at both gene and protein level. We confirmed that normal fibroblasts transformed to CAF-like cells, following TGF-β treatment, upregulated HBP genes, including GFPT2, with less change in genes driving glycolysis, pentose phosphate pathway and TCA cycle. Our work provides new evidence of histology-specific tumor-stromal properties associated with glucose uptake in NSCLC and identifies GFPT2 as a critical regulator of tumor metabolic reprogramming in AD. Copyright ©2018, American Association for Cancer Research.
Single-cell multimodal profiling reveals cellular epigenetic heterogeneity.
Cheow, Lih Feng; Courtois, Elise T; Tan, Yuliana; Viswanathan, Ramya; Xing, Qiaorui; Tan, Rui Zhen; Tan, Daniel S W; Robson, Paul; Loh, Yuin-Han; Quake, Stephen R; Burkholder, William F
2016-10-01
Sample heterogeneity often masks DNA methylation signatures in subpopulations of cells. Here, we present a method to genotype single cells while simultaneously interrogating gene expression and DNA methylation at multiple loci. We used this targeted multimodal approach, implemented on an automated, high-throughput microfluidic platform, to assess primary lung adenocarcinomas and human fibroblasts undergoing reprogramming by profiling epigenetic variation among cell types identified through genotyping and transcriptional analysis.
Li, Chung-Pin; Buza, Elizabeth L.; Blomberg, Rachel; Govindaraju, Priya; Avery, Diana; Monslow, James; Hsiao, Michael
2017-01-01
Pancreatic ductal adenocarcinomas (PDAs) are desmoplastic and can undergo epithelial-to-mesenchymal transition to confer metastasis and chemoresistance. Studies have demonstrated that phenotypically and functionally distinct stromal cell populations exist in PDAs. Fibroblast activation protein–expressing (FAP-expressing) cells act to enhance PDA progression, while α–smooth muscle actin myofibroblasts can restrain PDA. Thus, identification of precise molecular targets that mediate the protumorigenic activity of FAP+ cells will guide development of therapy for PDA. Herein, we demonstrate that FAP overexpression in the tumor microenvironment correlates with poor overall and disease-free survival of PDA patients. Genetic deletion of FAP delayed onset of primary tumor and prolonged survival of mice in the KPC mouse model of PDA. While genetic deletion of FAP did not affect primary tumor weight in advanced disease, FAP deficiency increased tumor necrosis and impeded metastasis to multiple organs. Lineage-tracing studies unexpectedly showed that FAP is not only expressed by stromal cells, but can also be detected in a subset of CD90+ mesenchymal PDA cells, representing up to 20% of total intratumoral FAP+ cells. These data suggest that FAP may regulate PDA progression and metastasis in cell-autonomous and/or non-cell-autonomous fashions. Together, these data support pursuing FAP as a therapeutic target in PDA. PMID:28978805
LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.
Zhang, Hui; Sweezey, Neil B; Kaplan, Feige
2015-02-15
Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development. Copyright © 2015 the American Physiological Society.
Upregulation of RGS2: a new mechanism for pirfenidone amelioration of pulmonary fibrosis.
Xie, Yan; Jiang, Haihong; Zhang, Qian; Mehrotra, Suneet; Abel, Peter W; Toews, Myron L; Wolff, Dennis W; Rennard, Stephen; Panettieri, Reynold A; Casale, Thomas B; Tu, Yaping
2016-08-22
Pirfenidone was recently approved for treatment of idiopathic pulmonary fibrosis. However, the therapeutic dose of pirfenidone is very high, causing side effects that limit its doses and therapeutic effectiveness. Understanding the molecular mechanisms of action of pirfenidone could improve its safety and efficacy. Because activated fibroblasts are critical effector cells associated with the progression of fibrosis, this study investigated the genes that change expression rapidly in response to pirfenidone treatment of pulmonary fibroblasts and explored their contributions to the anti-fibrotic effects of pirfenidone. We used the GeneChip microarray to screen for genes that were rapidly up-regulated upon exposure of human lung fibroblast cells to pirfenidone, with confirmation for specific genes by real-time PCR and western blots. Biochemical and functional analyses were used to establish their anti-fibrotic effects in cellular and animal models of pulmonary fibrosis. We identified Regulator of G-protein Signaling 2 (RGS2) as an early pirfenidone-induced gene. Treatment with pirfenidone significantly increased RGS2 mRNA and protein expression in both a human fetal lung fibroblast cell line and primary pulmonary fibroblasts isolated from patients without or with idiopathic pulmonary fibrosis. Pirfenidone treatment or direct overexpression of recombinant RGS2 in human lung fibroblasts inhibited the profibrotic effects of thrombin, whereas loss of RGS2 exacerbated bleomycin-induced pulmonary fibrosis and mortality in mice. Pirfenidone treatment reduced bleomycin-induced pulmonary fibrosis in wild-type but not RGS2 knockout mice. Endogenous RGS2 exhibits anti-fibrotic functions. Upregulated RGS2 contributes significantly to the anti-fibrotic effects of pirfenidone.
Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson's disease.
Ambrosi, Giulia; Ghezzi, Cristina; Sepe, Sara; Milanese, Chiara; Payan-Gomez, Cesar; Bombardieri, Cintia R; Armentero, Marie-Therese; Zangaglia, Roberta; Pacchetti, Claudio; Mastroberardino, Pier Giorgio; Blandini, Fabio
2014-09-01
Parkinson's disease (PD) is a complex disease and the current interest and focus of scientific research is both investigating the variety of causes that underlie PD pathogenesis, and identifying reliable biomarkers to diagnose and monitor the progression of pathology. Investigation on pathogenic mechanisms in peripheral cells, such as fibroblasts derived from patients with sporadic PD and age/gender matched controls, might generate deeper understanding of the deficits affecting dopaminergic neurons and, possibly, new tools applicable to clinical practice. Primary fibroblast cultures were established from skin biopsies. Increased susceptibility to the PD-related toxin rotenone was determined with apoptosis- and necrosis-specific cell death assays. Protein quality control was evaluated assessing the efficiency of the Ubiquitin Proteasome System (UPS) and protein levels of autophagic markers. Changes in cellular bioenergetics were monitored by measuring oxygen consumption and glycolysis-dependent medium acidification. The oxido-reductive status was determined by detecting mitochondrial superoxide production and oxidation levels in proteins and lipids. PD fibroblasts showed higher vulnerability to necrotic cell death induced by complex I inhibitor rotenone, reduced UPS function and decreased maximal and rotenone-sensitive mitochondrial respiration. No changes in autophagy and redox markers were detected. Our study shows that increased susceptibility to rotenone and the presence of proteolytic and bioenergetic deficits that typically sustain the neurodegenerative process of PD can be detected in fibroblasts from idiopathic PD patients. Fibroblasts might therefore represent a powerful and minimally invasive tool to investigate PD pathogenic mechanisms, which might translate into considerable advances in clinical management of the disease. Copyright © 2014 Elsevier B.V. All rights reserved.
SMC1A recruits tumor-associated-fibroblasts (TAFs) and promotes colorectal cancer metastasis.
Zhou, Pengyang; Xiao, Nan; Wang, Jian; Wang, Zhanhuai; Zheng, Shuchun; Shan, Siyang; Wang, Jianping; Du, Jinlin; Wang, Jianwei
2017-01-28
Tumor-associated-fibroblasts (TAFs) are the most important host cells in the stroma and take part in extracellular matrix construction and cancer colony development. During cancer colonization, seed cells from primary tumor can reconstruct the microenvironment by recruiting circulating cancer cells and TAFs to the metastasis site. Previous studies have established that SMC1A, a subunit of cohesin, is an important trigger signal for liver metastasis in colorectal cancer. We investigated the particular effects as well as the underlying mechanism of SMC1A on TAFs recruitment during liver metastasis of colorectal cancer. Here, We found that: first, the high expression of SMC1A in colorectal cancer cells promotes the invasiveness and the viability of these cells by recruiting circulating TAFs, facilitating early tumor construction and tumorigenesis; second, different expression levels of SMC1A influenced the reformation of fibroblasts, which assisted tumorigenesis, and third, expression of SMC1A stimulated the secretion of the inflammatory mediators of TNF-α and IL-1β, and up-regulated the transcriptional expression of MMP2 and VEGF-β, both of which were involved in the tumor-related gene pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.
Rimann, Markus; Bono, Epifania; Annaheim, Helene; Bleisch, Matthias; Graf-Hausner, Ursula
2016-08-01
Cells grown in 3D are more physiologically relevant than cells cultured in 2D. To use 3D models in substance testing and regenerative medicine, reproducibility and standardization are important. Bioprinting offers not only automated standardizable processes but also the production of complex tissue-like structures in an additive manner. We developed an all-in-one bioprinting solution to produce soft tissue models. The holistic approach included (1) a bioprinter in a sterile environment, (2) a light-induced bioink polymerization unit, (3) a user-friendly software, (4) the capability to print in standard labware for high-throughput screening, (5) cell-compatible inkjet-based printheads, (6) a cell-compatible ready-to-use BioInk, and (7) standard operating procedures. In a proof-of-concept study, skin as a reference soft tissue model was printed. To produce dermal equivalents, primary human dermal fibroblasts were printed in alternating layers with BioInk and cultured for up to 7 weeks. During long-term cultures, the models were remodeled and fully populated with viable and spreaded fibroblasts. Primary human dermal keratinocytes were seeded on top of dermal equivalents, and epidermis-like structures were formed as verified with hematoxylin and eosin staining and immunostaining. However, a fully stratified epidermis was not achieved. Nevertheless, this is one of the first reports of an integrative bioprinting strategy for industrial routine application. © 2015 Society for Laboratory Automation and Screening.
PRGF exerts a cytoprotective role in zoledronic acid-treated oral cells.
Anitua, Eduardo; Zalduendo, Mar; Troya, María; Orive, Gorka
2016-04-01
Bisphosphonates-related osteonecrosis of the jaw (BRONJ) is a common problem in patients undergoing long-term administration of highly potent nitrogen-containing bisphosphonates (N-BPs). This pathology occurs via bone and soft tissue mechanism. Zoledronic acid (ZA) is the most potent intravenous N-BP used to prevent bone loss in patients with bone dysfunction. The objective of this in vitro study was to evaluate the role of different ZA concentrations on the cells from human oral cavity, as well as the potential of plasma rich in growth factors (PRGF) to overcome the negative effects of this BP. Primary human gingival fibroblasts and primary human alveolar osteoblasts were used. Cell proliferation was evaluated by means of a fluorescence-based method. A colorimetric assay to detect DNA fragmentation undergoing apoptosis was used to determine cell death, and the expression of both NF-κB and pNF-κB were quantified by Western blot analysis. ZA had a cytotoxic effect on both human gingival fibroblasts and human alveolar osteoblasts. This BP inhibits cell proliferation, stimulates apoptosis, and induces inflammation. However, the addition of PRGF suppresses all these negative effects of the ZA. PRGF shows a cytoprotective role against the negative effects of ZA on primary oral cells. At present, there is no definitive treatment for bisphosphonates-related osteonecrosis of the jaw (BRONJ), being mainly palliatives. Our results revealed that PRGF has a cytoprotective role in cells exposed to zoledronic acid, thus providing a reliable adjunctive therapy for the treatment of BRONJ pathology.
miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence.
Cui, Huachun; Ge, Jing; Xie, Na; Banerjee, Sami; Zhou, Yong; Antony, Veena B; Thannickal, Victor J; Liu, Gang
2017-02-01
Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.
Yuan, Jie; Liu, Manran; Yang, Li; Tu, Gang; Zhu, Qing; Chen, Maoshan; Cheng, Hong; Luo, Haojun; Fu, Weijie; Li, Zhenhua; Yang, Guanglun
2015-05-21
Acquired tamoxifen resistance remains the major obstacle to breast cancer endocrine therapy. β1-integrin was identified as one of the target genes of G protein-coupled estrogen receptor (GPER), a novel estrogen receptor recognized as an initiator of tamoxifen resistance. Here, we investigated the role of β1-integrin in GPER-mediated tamoxifen resistance in breast cancer. The expression of β1-integrin and biomarkers of epithelial-mesenchymal transition were evaluated immunohistochemically in 53 specimens of metastases and paired primary tumors. The function of β1-integrin was investigated in tamoxifen-resistant (MCF-7R) subclones, derived from parental MCF-7 cells, and MCF-7R β1-integrin-silenced subclones in MTT and Transwell assays. Involved signaling pathways were identified using specific inhibitors and Western blotting analysis. GPER, β1-integrin and mesenchymal biomarkers (vimentin and fibronectin) expression in metastases increased compared to the corresponding primary tumors; a close expression pattern of β1-integrin and GPER were in metastases. Increased β1-integrin expression was also confirmed in MCF-7R cells compared with MCF-7 cells. This upregulation of β1-integrin was induced by agonists of GPER and blocked by both antagonist and knockdown of it in MCF-7R cells. Moreover, the epidermal growth factor receptor/extracellular regulated protein kinase (EGFR/ERK) signaling pathway was involved in this transcriptional regulation since specific inhibitors of these kinases also reduced the GPER-induced upregulation of β1-integrin. Interestingly, silencing of β1-integrin partially rescued the sensitivity of MCF-7R cells to tamoxifen and the α5β1-integrin subunit is probably responsible for this phenomenon. Importantly, the cell migration and epithelial-mesenchymal transition induced by cancer-associated fibroblasts, or the product of cancer-associated fibroblasts, fibronectin, were reduced by knockdown of β1-integrin in MCF-7R cells. In addition, the downstream kinases of β1-integrin including focal adhesion kinase, Src and AKT were activated in MCF-7R cells and may be involved in the interaction between cancer cells and cancer-associated fibroblasts. GPER/EGFR/ERK signaling upregulates β1-integrin expression and activates downstream kinases, which contributes to cancer-associated fibroblast-induced cell migration and epithelial-mesenchymal transition, in MCF-7R cells. GPER probably contributes to tamoxifen resistance via interaction with the tumor microenvironment in a β1-integrin-dependent pattern. Thus, β1-integrin may be a potential target to improve anti-hormone therapy responses in breast cancer patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Ci-Hang; Wang, Xin-Tong; Ma, Wei
2015-03-06
Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial–mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiatedmore » fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and β-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and β-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC. - Highlights: • Irradiated CAFs accelerated invasiveness and scattering of ESCC cell lines. • Irradiated CAFs promoted EMT of ESCC cells. • Irradiated fibroblasts induced nuclear β-catenin relocalization in ESCC cells. • Irradiated fibroblasts increased HDGF expression in vitro and in vivo.« less
Knuchel, Sarah; Anderle, Pascale; Werfelli, Patricia; Diamantis, Eva; Rüegg, Curzio
2015-01-01
Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion. PMID:25973543
Knuchel, Sarah; Anderle, Pascale; Werfelli, Patricia; Diamantis, Eva; Rüegg, Curzio
2015-06-10
Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion.
Identification of Primary Transcriptional Regulation of Cell Cycle-Regulated Genes upon DNA Damage
Zhou, Tong; Chou, Jeff; Mullen, Thomas E.; Elkon, Rani; Zhou, Yingchun; Simpson, Dennis A.; Bushel, Pierre R.; Paules, Richard S.; Lobenhofer, Edward K.; Hurban, Patrick; Kaufmann, William K.
2007-01-01
The changes in global gene expression in response to DNA damage may derive from either direct induction or repression by transcriptional regulation or indirectly by synchronization of cells to specific cell cycle phases, such as G1 or G2. We developed a model that successfully estimated the expression levels of >400 cell cycle-regulated genes in normal human fibroblasts based on the proportions of cells in each phase of the cell cycle. By isolating effects on the gene expression associated with the cell cycle phase redistribution after genotoxin treatment, the direct transcriptional target genes were distinguished from genes for which expression changed secondary to cell synchronization. Application of this model to ionizing radiation (IR)-treated normal human fibroblasts identified 150 of 406 cycle-regulated genes as putative direct transcriptional targets of IR-induced DNA damage. Changes in expression of these genes after IR treatment derived from both direct transcriptional regulation and cell cycle synchronization. PMID:17404513
Ting, Aloysius Poh Leong; Low, Grace Kah Mun; Gopalakrishnan, Kalpana; Hande, M Prakash
2010-01-01
Abstract Xeroderma pigmentosum B (XPB/ERCC3/p89) is an ATP-dependent 3′→5′ directed DNA helicase involved in basal RNA transcription and the nucleotide excision repair (NER) pathway. While the role of NER in alleviating oxidative DNA damage has been acknowledged it remains poorly understood. To study the involvement of XPB in repair of oxidative DNA damage, we utilized primary fibroblasts from a patient suffering from XP with Cockayne syndrome and hydrogen peroxide (H2O2) to induce oxidative stress. Mutant cells retained higher viability and cell cycle dysfunction after H2O2 exposure. Cytokinesis blocked micronucleus assay revealed increased genome instability induced by H2O2. Single cell gel electrophoresis (comet) assay showed that the missense mutation caused a reduced repair capacity for oxidative DNA damage. Mutant fibroblasts also displayed decreased population doubling rate, increased telomere attrition rate and early emergence of senescent characteristics under chronic low dose exposure to H2O2. Fibroblasts from a heterozygous individual displayed intermediate traits in some assays and normal traits in others, indicating possible copy number dependence. The results show that a deficiency in functional XPB paradoxically renders cells more sensitive to the genotoxic effects of oxidative stress while reducing the cytotoxic effects. These findings have implications in the mechanisms of DNA repair, mutagenesis and carcinogenesis and ageing in normal physiological systems. PMID:19840190
Petermann, Philipp; Rahn, Elena; Thier, Katharina; Hsu, Mei-Ju; Rixon, Frazer J; Kopp, Sarah J; Knebel-Mörsdorf, Dagmar
2015-09-01
The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) can both mediate the entry of herpes simplex virus 1 (HSV-1). We have recently shown how these receptors contribute to infection of skin by investigating HSV-1 entry into murine epidermis. Ex vivo infection studies reveal nectin-1 as the primary receptor in epidermis, whereas HVEM has a more limited role. Although the epidermis represents the outermost layer of skin, the contribution of nectin-1 and HVEM in the underlying dermis is still open. Here, we analyzed the role of each receptor during HSV-1 entry in murine dermal fibroblasts that were deficient in expression of either nectin-1 or HVEM or both receptors. Because infection was not prevented by the absence of either nectin-1 or HVEM, we conclude that they can act as alternative receptors. Although HVEM was found to be highly expressed on fibroblasts, entry was delayed in nectin-1-deficient cells, suggesting that nectin-1 acts as the more efficient receptor. In the absence of both receptors, entry was strongly delayed leading to a much reduced viral spread and virus production. These results suggest an unidentified cellular component that acts as alternate but inefficient receptor for HSV-1 on dermal fibroblasts. Characterization of the cellular entry mechanism suggests that HSV-1 can enter dermal fibroblasts both by direct fusion with the plasma membrane and via endocytic vesicles and that this is not dependent on the presence or absence of nectin-1. Entry was also shown to require dynamin and cholesterol, suggesting comparable entry pathways in keratinocytes and dermal fibroblasts. Herpes simplex virus (HSV) is a human pathogen which infects its host via mucosal surfaces or abraded skin. To understand how HSV-1 overcomes the protective barrier of mucosa or skin and reaches its receptors in tissue, it is essential to know which receptors contribute to the entry into individual skin cells. Previously, we have explored the contribution of nectin-1 and herpesvirus entry mediator (HVEM) as receptors for HSV-1 entry into murine epidermis, where keratinocytes form the major cell type. Since the underlying dermis consists primarily of fibroblasts, we have now extended our study of HSV-1 entry to dermal fibroblasts isolated from nectin-1- or HVEM-deficient mice or from mice deficient in both receptors. Our results demonstrate a role for both nectin-1 and HVEM as receptors and suggest a further receptor which appears much less efficient. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Li, Yulin; Li, Zhenya; Zhang, Congcong; Li, Ping; Wu, Yina; Wang, Chunxiao; Bond Lau, Wayne; Ma, Xin-Liang; Du, Jie
2017-05-23
Hypertensive ventricular remodeling is a common cause of heart failure. However, the molecular mechanisms regulating ventricular remodeling remain poorly understood. We used a discovery-driven/nonbiased approach to identify increased activating transcription factor 3 (ATF3) expression in hypertensive heart. We used loss/gain of function approaches to understand the role of ATF3 in heart failure. We also examined the mechanisms through transcriptome, chromatin immunoprecipitation sequencing analysis, and in vivo and in vitro experiments. ATF3 expression increased in murine hypertensive heart and human hypertrophic heart. Cardiac fibroblast cells are the primary cell type expressing high ATF3 levels in response to hypertensive stimuli. ATF3 knockout (ATF3KO) markedly exaggerated hypertensive ventricular remodeling, a state rescued by lentivirus-mediated/miRNA-aided cardiac fibroblast-selective ATF3 overexpression. Conversely, conditional cardiac fibroblast cell-specific ATF3 transgenic overexpression significantly ameliorated ventricular remodeling and heart failure. We identified Map2K3 as a novel ATF3 target. ATF3 binds with the Map2K3 promoter, recruiting HDAC1, resulting in Map2K3 gene-associated histone deacetylation, thereby inhibiting Map2K3 expression. Genetic Map2K3 knockdown rescued the profibrotic/hypertrophic phenotype in ATF3KO cells. Last, we demonstrated that p38 is the downstream molecule of Map2K3 mediating the profibrotic/hypertrophic effects in ATF3KO animals. Inhibition of p38 signaling reduced transforming growth factor-β signaling-related profibrotic and hypertrophic gene expression, and blocked exaggerated cardiac remodeling in ATF3KO cells. Our study provides the first evidence that ATF3 upregulation in cardiac fibroblasts in response to hypertensive stimuli protects the heart by suppressing Map2K3 expression and subsequent p38-transforming growth factor-β signaling. These results suggest that positive modulation of cardiac fibroblast ATF3 may represent a novel therapeutic approach against hypertensive cardiac remodeling. © 2017 American Heart Association, Inc.
Ishii, Genichiro; Aoyagi, Kazuhiko; Sasaki, Hiroki; Ochiai, Atsushi
2015-01-01
Background Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their transcriptional diversity has not been sufficiently explored. The aim of this study was to elucidate the transcriptional diversity of human fibroblasts within the whole body. Methods Global gene expression analysis was performed on 63 human primary fibroblasts from 13 organs. Of these, 32 fibroblasts from gastrointestinal organs (gastrointestinal fibroblasts: GIFs) were obtained from a pair of 2 anatomical sites: the submucosal layer (submucosal fibroblasts: SMFs) and the subperitoneal layer (subperitoneal fibroblasts: SPFs). Using hierarchical clustering analysis, we elucidated identifiable subgroups of fibroblasts and analyzed the transcriptional character of each subgroup. Results In unsupervised clustering, 2 major clusters that separate GIFs and non-GIFs were observed. Organ- and anatomical site-dependent clusters within GIFs were also observed. The signature genes that discriminated GIFs from non-GIFs, SMFs from SPFs, and the fibroblasts of one organ from another organ consisted of genes associated with transcriptional regulation, signaling ligands, and extracellular matrix remodeling. Conclusions GIFs are characteristic fibroblasts with specific gene expressions from transcriptional regulation, signaling ligands, and extracellular matrix remodeling related genes. In addition, the anatomical site- and organ-dependent diversity of GIFs was also discovered. These features of GIFs contribute to their specific physiological function and homeostatic maintenance, and create a functional diversity of the gastrointestinal tract. PMID:26046848
Schenkel, Laila C; Singh, Ratnesh K; Michel, Vera; Zeisel, Steven H; da Costa, Kerry-Ann; Johnson, Amy R; Mudd, Harvey S; Bakovic, Marica
2015-05-01
Fibroblasts from a patient with postural orthostatic tachycardia syndrome (POTS), who presented with low plasma choline and betaine, were studied to determine the metabolic characteristics of the choline deficiency. Choline is required for the synthesis of the phospholipid phosphatidylcholine (PC) and for betaine, an important osmoregulator. Here, choline transport, lipid homeostasis, and mitochondria function were analyzed in skin fibroblasts from POTS and compared with control cells. The choline transporter-like protein 1/solute carrier 44A1 (CTL1/SLC44A1) and mRNA expression were 2-3 times lower in POTS fibroblasts, and choline uptake was reduced 60% (P < 0.05). Disturbances of membrane homeostasis were observed by reduced ratios between PC:phosphatidylethanolamine and sphingomyelin:cholesterol, as well as by modified phospholipid fatty acid composition. Choline deficiency also impaired mitochondria function, which was observed by a reduction in oxygen consumption, mitochondrial potential, and glycolytic activity. When POTS cells were treated with choline, transporter was up-regulated, and uptake of choline increased, offering an option for patient treatment. The characteristics of the POTS fibroblasts described here represent a first model of choline and CTL1/SLC44A1 deficiency, in which choline transport, membrane homeostasis, and mitochondrial function are impaired. © FASEB.
Comito, Giuseppina; Pons Segura, Coral; Taddei, Maria Letizia; Lanciotti, Michele; Serni, Sergio; Morandi, Andrea; Chiarugi, Paola; Giannoni, Elisa
2017-01-03
Zoledronic acid (ZA) is a biphosphonate used for osteoporosis treatment and also proved to be effective to reduce the pain induced by bone metastases when used as adjuvant therapy in solid cancers. However, it has been recently proposed that ZA could have direct anti-tumour effects, although the molecular mechanism is unknown. We herein unravel a novel anti-tumour activity of ZA in prostate cancer (PCa), by targeting the pro-tumorigenic properties of both stromal and immune cells. Particularly, we demonstrate that ZA impairs PCa-induced M2-macrophages polarization, reducing their pro-invasive effect on tumour cells and their pro-angiogenic features. Crucially, ZA administration reverts cancer associated fibroblasts (CAFs) activation by targeting the mevalonate pathway and RhoA geranyl-geranylation, thereby impairing smooth muscle actin-α fibers organization, a prerequisite of fibroblast activation. Moreover, ZA prevents the M2 macrophages-mediated activation of normal fibroblast, highlighting the broad efficacy of this drug on tumour microenvironment. These results are confirmed in a metastatic xenograft PCa mouse model in which ZA-induced stromal normalization impairs cancer-stromal cells crosstalk, resulting in a significant reduction of primary tumour growth and metastases. Overall these findings reinforce the efficacy of ZA as a potential therapeutic approach to reduce cancer aggressiveness, by abrogating the supportive role of tumour microenvironment.
Chamba, Anita; Holder, Michelle J; Jarrett, Ruth F; Shield, Lesley; Toellner, Kai M; Drayson, Mark T; Barnes, Nicholas M; Gordon, John
2010-08-01
B-cell lines of diverse neoplastic origin express the serotonin transporter (SERT/SLC6A4) and growth arrest in response to SERT-ligands, including the antidepressants chlomipramine and fluoxetine. Here we detail SLC6A4 transcript (Q-PCR) and protein (FACS) expression in primary cells from patients with: chronic lymphocytic leukaemia; mantle cell lymphoma; follicular lymphoma; Burkitt's lymphoma; and diffuse large B-cell lymphoma. The ability of the SERT-binding antidepressants to impact the growth of these cells when sustained on CD154-transfected fibroblasts was also determined. The results reveal a broad spectrum of primary B-cell malignancies expressing SLC6A4 with a proportion additionally displaying growth arrest on SERT-ligand exposure. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Chen, Fanfan; Zhang, Guoqiang; Yu, Ling; Feng, Yanye; Li, Xianghui; Zhang, Zhijun; Wang, Yongting; Sun, Dapeng; Pradhan, Sriharsa
2016-07-30
Induced pluripotent mesenchymal stem cells (iPMSCs) are novel candidates for drug screening, regenerative medicine, and cell therapy. However, introduction of transcription factor encoding genes for induced pluripotent stem cell (iPSC) generation which could be used to generate mesenchymal stem cells is accompanied by the risk of insertional mutations in the target cell genome. We demonstrate a novel method using an inactivated viral particle to package and deliver four purified recombinant Yamanaka transcription factors (Sox2, Oct4, Klf4, and c-Myc) resulting in reprogramming of human primary fibroblasts. Whole genome bisulfite sequencing was used to analyze genome-wide CpG methylation of human iPMSCs. Western blot, quantitative PCR, immunofluorescence, and in-vitro differentiation were used to assess the pluripotency of iPMSCs. The resulting reprogrammed fibroblasts show high-level expression of stem cell markers. The human fibroblast-derived iPMSC genome showed gains in DNA methylation in low to medium methylated regions and concurrent loss of methylation in previously hypermethylated regions. Most of the differentially methylated regions are close to transcription start sites and many of these genes are pluripotent pathway associated. We found that DNA methylation of these genes is regulated by the four iPSC transcription factors, which functions as an epigenetic switch during somatic reprogramming as reported previously. These iPMSCs successfully differentiate into three embryonic germ layer cells, both in vitro and in vivo. Following multipotency induction in our study, the delivered transcription factors were degraded, leading to an improved efficiency of subsequent programmed differentiation. Recombinant transcription factor based reprogramming and derivatization of iPMSC offers a novel high-efficiency approach for regenerative medicine from patient-derived cells.
Inada, Masaki; Takita, Morichika; Yokoyama, Satoshi; Watanabe, Kenta; Tominari, Tsukasa; Matsumoto, Chiho; Hirata, Michiko; Maru, Yoshiro; Maruyama, Takayuki; Sugimoto, Yukihiko; Narumiya, Shuh; Uematsu, Satoshi; Akira, Shizuo; Murphy, Gillian; Nagase, Hideaki; Miyaura, Chisato
2015-12-11
The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1(-/-)) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4(-/-) mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Inada, Masaki; Takita, Morichika; Yokoyama, Satoshi; Watanabe, Kenta; Tominari, Tsukasa; Matsumoto, Chiho; Hirata, Michiko; Maru, Yoshiro; Maruyama, Takayuki; Sugimoto, Yukihiko; Narumiya, Shuh; Uematsu, Satoshi; Akira, Shizuo; Murphy, Gillian; Nagase, Hideaki; Miyaura, Chisato
2015-01-01
The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1−/−) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4−/− mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors. PMID:26475855
Very late antigen-5 facilitates stromal progenitor cell differentiation into myofibroblast.
Sen, Namita; Weingarten, Mark; Peter, Yakov
2014-11-01
Fibrotic disease is associated with abrogated stromal cell proliferation and activity. The precise identity of the cells that drive fibrosis remains obscure, in part because of a lack of information on their lineage development. To investigate the role of an early stromal progenitor cell (SPC) on the fibrotic process, we selected for, and monitored the stages of, fibroblast development from a previously reported free-floating anchorage-independent cell (AIC) progenitor population. Our findings demonstrate that organotypic pulmonary, cardiac, and renal fibroblast commitment follows a two-step process of attachment and remodeling in culture. Cell differentiation was confirmed by the inability of SPCs to revert to the free-floating state and functional mesenchymal stem/stromal cell (MSC) differentiation into osteoblast, adipocyte, chondrocyte, and fibroblastic lineages. The myofibroblastic phenotype was reflected by actin stress-fiber formation, α-smooth muscle production, and a greater than threefold increase in proliferative activity compared with that of the progenitors. SPC-derived pulmonary myofibroblasts demonstrated a more than 300-fold increase in fibronectin-1 (Fn1), collagen, type 1, α1, integrin α-5 (Itga5), and integrin β-1 (Itgb1) transcript levels. Very late antigen-5 (ITGA5/ITGB1) protein cluster formations were also prevalent on the differentiated cells. Normalized SPC-derived myofibroblast expression patterns reflected those of primary cultured lung myofibroblasts. Intratracheal implantation of pulmonary AICs into recipient mouse lungs resulted in donor cell FN1 production and evidence of epithelial derivation. SPC derivation into stromal tissue in vitro and in vivo and the observation that MSC and fibroblast lineages share a common ancestor could potentially lead to personalized antifibrotic therapies. ©AlphaMed Press.
An avian cell line designed for production of highly attenuated viruses.
Jordan, Ingo; Vos, Ad; Beilfuss, Stefanie; Neubert, Andreas; Breul, Sabine; Sandig, Volker
2009-01-29
Several viral vaccines, including highly promising vectors such as modified vaccinia Ankara (MVA), are produced on chicken embryo fibroblasts. Dependence on primary cells complicates production especially in large vaccination programs. With primary cells it is also not possible to create packaging lines for replication-deficient vectors that are adapted to proliferation in an avian host. To obviate requirement for primary cells permanent lines from specific tissues of muscovy duck were derived (AGE1.CR, CS, and CA) and further modified: we demonstrate that stable expression of the structural gene pIX from human adenovirus increases titers for unrelated poxvirus in the avian cells. This augmentation appears to be mediated via induction of heat shock and thus provides a novel cellular substrate that may allow further attenuation of vaccine strains.
Madeo, Antonio; Maggiolini, Marcello
2010-07-15
Fibroblasts are the principal cellular component of connective tissue and are associated with cancer cells at all stages of tumor progression. Structural and functional contributions of fibroblasts to the growth, survival, and invasive capacity of cancer cells are beginning to emerge. In breast carcinoma, approximately 80% of stromal fibroblasts termed cancer-associated fibroblasts (CAF) are thought to manifest an activated phenotype that promotes cancer cell proliferation tumor growth at metastatic sites similar to the primary tumor. In this report, we show that CAFs respond to physiologic concentrations of 17beta-estradiol (E2) by rapidly inducing extracellular signal-regulated kinase phosphorylation and immediate early gene expression, including c-fos and connective tissue growth factor, and cyclin D1. Notably, the E2 response is mediated by the alternate estrogen receptor GPR30, which interfaces with the epidermal growth factor receptor (EGFR) signaling pathway. In particular, E2 stimulates a physical interaction between GPR30 and phosphorylated EGFR, recruiting them to the cyclin D1 gene promoter. Nuclear localization induced by E2 was confirmed by cellular immunofluorescence methods. GPR30 was required for CAF proliferation and migration induced by E2. Our results provide important new mechanistic insights into how CAFs are stimulated by estrogen through a GPR30-mediated nuclear signaling pathway. More generally, they define estrogenic GPR30 signaling as a functionally important component of the tumor microenvironment. (c)2010 AACR.
Dutta, Rahul; Malakar, Dhruba; Khate, Keviletsu; Sahu, Shailendra; Akshey, Yogesh; Mukesh, Manishi
2011-09-15
The main purpose of the experiment was to compare the efficiency of three cell types, namely adult fibroblast, putative embryonic stem (ES) cell, and lymphocyte, as donor cells for somatic cell nuclear transfer by handmade cloning in goats. The outcome clearly shows that putative embryonic stem cells, with a cleavage and blastocyst production rate of 74.69% ± 3.92 and 39.75% ± 3.86, respectively, performs better in comparison to adult fibroblast cell and lymphocyte. Between adult fibroblast cell and lymphocyte no statistically significant difference exists at P < 0.05. An overall cleavage and blastocyst formation rate of 67.41% ± 3.92 and 26.96% ± 3.86 was obtained using adult fibroblast donor cells. The study establishes beyond doubt the reprogrammability of lymphocyte by handmade cloning (HMC) protocol with a cleavage and blastocyst production rate of 56.47% ± 3.92 and 24.70% ± 3.86, respectively. PCR analysis of highly polymorphic 286 bp fragment of MHC II DRB genes of cloned embryos and three donor cells were performed to verify the cloned embryos. The amplified PCR products were subjected to SSCP to confirm their genetic identity. The karyotyping of the cloned embryos showed normal chromosomal status as expected in goat. Significantly, in the second stage of the experiment, the produced cloned embryos were successfully used to derive ntES-like cells. The rate of primary colony formation rate was 62.50% ± 4.62 for fibroblast donor cell derived embryos. The same was 60.60% ± 4.62 for putative ES donor cell derived embryos and 66.66% ± 4.62 for lymphocyte donor cell derived embryos, respectively. The putative ntES colonies were positively characterized for alkaline phosphatase, Oct-4, TRA-1-60, TRA-1-81, Sox-2, and Nanog by Immunocytochemistry and Reverse Transcription PCR. To further validate the stem ness, the produced putative ntES colonies were differentiated to embryoid bodies. Immunocytochemistry revealed that embryoid bodies expressed NESTIN specific for ectodermal lineage; GATA-4 for endodermal lineage and smooth muscle actin-I, and troponin-I specific for mesodermal lineage. The study has established an efficient protocol for putative ntES cell derivation from HMC embryos. It could be of substantial significance as patient specific ntES cells have proven therapeutic significance. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salmenperä, Pertteli, E-mail: pertteli.salmenpera@helsinki.fi; Karhemo, Piia-Riitta; Räsänen, Kati
Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similarmore » secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. - Highlights: • Fibroblasts acquire a sustained quiescence when grown as multicellular spheroids. • This quiescence is associated with drastic change in gene expression. • Fibroblasts spheroids secrete various inflammation-linked cytokines and chemokines. • Fibroblasts spheroids reduced growth of RT3 SCC cells in xenograft model.« less
Xu, Jing; Lu, Yang; Qiu, Songbo; Chen, Zhi-Nan; Fan, Zhen
2013-01-01
We tested the novel hypothesis that EMMPRIN/CD147, a transmembrane glycoprotein overexpressed in breast cancer cells, has a previously unknown role in transforming fibroblasts to cancer-associated fibroblasts, and that cancer-associated fibroblasts in turn induce epithelial-to-mesenchymal transition of breast cancer cells. Co-culture of fibroblasts with breast cancer cells or treatment of fibroblasts with breast cancer cell conditioned culture medium or recombinant EMMPRIN/CD147 induced expression of α-SMA in the fibroblasts in an EMMPRIN/CD147-dependent manner and promoted epithelial-to-mesenchymal transition of breast cancer cells and enhanced cell migration potential. These findings support a novel role of EMMPRIN/CD147 in regulating the interaction between cancer and stroma. PMID:23474495
Effect of chloramphenicol on sister chromatid exchange in bovine fibroblasts.
Arruga, M V; Catalan, J; Moreno, C
1992-03-01
The genotoxic potential of different chloramphenicol concentrations (5, 20, 40 and 60 micrograms ml-1) was investigated in bovine fibroblast primary lines by sister chromatid exchange assay. Chloramphenicol acted for long enough to ensure similar effects to persistent storage in the kidney. In this experiment 10 micrograms ml-1 of 5-bromodeoxyuridine was added for 60 hours for all doses of chloramphenicol and to the control. When the tissue culture cells were exposed to increasing doses, increased numbers of sister chromatid exchanges developed. Differences were significantly different to the control.
From fibroblasts and stem cells: implications for cell therapies and somatic cloning.
Kues, Wilfried A; Carnwath, Joseph W; Niemann, Heiner
2005-01-01
Pluripotent embryonic stem cells (ESCs) from the inner cell mass of early murine and human embryos exhibit extensive self-renewal in culture and maintain their ability to differentiate into all cell lineages. These features make ESCs a suitable candidate for cell-replacement therapy. However, the use of early embryos has provoked considerable public debate based on ethical considerations. From this standpoint, stem cells derived from adult tissues are a more easily accepted alternative. Recent results suggest that adult stem cells have a broader range of potency than imagined initially. Although some claims have been called into question by the discovery that fusion between the stem cells and differentiated cells can occur spontaneously, in other cases somatic stem cells have been induced to commit to various lineages by the extra- or intracellular environment. Recent data from our laboratory suggest that changes in culture conditions can expand a subpopulation of cells with a pluripotent phenotype from primary fibroblast cultures. The present paper critically reviews recent data on the potency of somatic stem cells, methods to modify the potency of somatic cells and implications for cell-based therapies.
Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine
2014-01-01
Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the -112/-61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications.
Cytotoxic effects of cuphiin D1 on the growth of human cervical carcinoma and normal cells.
Wang, Ching-Chiung; Chen, Lih-Geeng; Yang, Ling-Ling
2002-01-01
Cuphiin D1 (CD1), macrocyclic hydrolyzable tannin isolated from Cuphea hyssopifolia, has been shown to exert an antitumor effect both in vitro and in vivo. Furthermore, CD1 significantly inhibited the growth of the human cervical carcinoma, i.e. HeLa, cells and showed less cytotoxicity to normal primary-cultured cervical fibroblasts. In this study, we explored the cytotoxic mechanism of CD1 on HeLa cells. The cytotoxic effects of CD1 showed dose-dependency at 3.15-100 micrograms/ml on HeLa for 12, 24, 48 and 72 hours and with an IC50 value at 14.2 micrograms/ml for 48 hours. However, the IC50 value of CD1 in primary-cultured normal cervical fibroblasts was 74.5 micrograms/ml. Therefore, the selectivity shown by CD1 is ascribed to differences in growth speeds between normal and tumor cells. HeLa cells treated with 50 micrograms/ml CD1 for 24 hours exhibited chromatin condensation, indicating the occurrence of apoptosis. Flow cytometric analysis demonstrated the presence of apoptotic cells with low DNA content among HeLa cells. CD1 also caused DNA fragmentation and inhibited Bcl-2, pro-caspase 3, and inactived PARP expression in HeLa cells. These results suggest that the inhibition of Bcl-2 expression in HeLa cells might account for the mechanism of CD1-induced apoptosis.
Up-Regulation and Profibrotic Role of Osteopontin in Human Idiopathic Pulmonary Fibrosis
Pardo, Annie; Gibson, Kevin; Cisneros, José; Richards, Thomas J; Yang, Yinke; Becerril, Carina; Yousem, Samueal; Herrera, Iliana; Ruiz, Victor; Selman, Moisés; Kaminski, Naftali
2005-01-01
Background Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disorder characterized by fibroproliferation and excessive accumulation of extracellular matrix in the lung. Methods and Findings Using oligonucleotide arrays, we identified osteopontin as one of the genes that significantly distinguishes IPF from normal lungs. Osteopontin was localized to alveolar epithelial cells in IPF lungs and was also significantly elevated in bronchoalveolar lavage from IPF patients. To study the fibrosis-relevant effects of osteopontin we stimulated primary human lung fibroblasts and alveolar epithelial cells (A549) with recombinant osteopontin. Osteopontin induced a significant increase of migration and proliferation in both fibroblasts and epithelial cells. Epithelial growth was inhibited by the pentapeptide Gly-Arg-Gly-Asp-Ser (GRGDS) and antibody to CD44, while fibroproliferation was inhibited by GRGDS and antibody to αvβ3 integrin. Fibroblast and epithelial cell migration were inhibited by GRGDS, anti-CD44, and anti-αvβ3. In fibroblasts, osteopontin up-regulated tissue inhibitor of metalloprotease-1 and type I collagen, and down-regulated matrix metalloprotease-1 (MMP-1) expression, while in A549 cells it caused up-regulation of MMP-7. In human IPF lungs, osteopontin colocalized with MMP-7 in alveolar epithelial cells, and application of weakest link statistical models to microarray data suggested a significant interaction between osteopontin and MMP-7. Conclusions Our results provide a potential mechanism by which osteopontin secreted from the alveolar epithelium may exert a profibrotic effect in IPF lungs and highlight osteopontin as a potential target for therapeutic intervention in this incurable disease. PMID:16128620
Induced pluripotent stem cells from goat fibroblasts.
Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng
2013-12-01
Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo. © 2013 Wiley Periodicals, Inc.
van den Brule, Sybille; Wallemme, Laurent; Uwambayinema, Francine; Huaux, François; Lison, Dominique
2010-11-01
Prostaglandin (PG) D(2) exerts contrasting activities in the inflamed lung via two receptors, the D prostanoid receptor (DP) and the chemoattractant receptor-homologous molecule expressed on T helper 2 lymphocytes. DP activation is known mainly to inhibit proinflammatory cell functions. We tested the effect of a DP-specific agonist, (4S)-(3-[(3R,S)-3-cyclohexyl-3-hydroxypropyl]-2,5-dioxo)-4-imidazolidineheptanoic acid (BW245C), on pulmonary fibroblast functions in vitro and in a mouse model of lung fibrosis induced by bleomycin. DP mRNA expression was detected in cultured mouse lung primary fibroblasts and human fetal lung fibroblasts and found to be up- and down-regulated by interleukin-13 and transforming growth factor (TGF)-β, respectively. Although micromolar concentrations of BW245C and PGD(2) did not affect mouse fibroblast collagen synthesis or differentiation in myofibroblasts, they both inhibited fibroblast basal and TGF-β-induced proliferation in vitro. The repeated administration of BW245C (500 nmol/kg body weight instilled transorally in the lungs 2 days before and three times per week for 3 weeks) in bleomycin-treated mice significantly decreased both inflammatory cell recruitment and collagen accumulation in the lung (21 days). Our results indicate that BW245C can reduce lung fibrosis in part via its activity on fibroblast proliferation and suggest that DP activation should be considered as a new therapeutic target in fibroproliferative lung diseases.
Antiproliferative effect of methanolic extraction of tualang honey on human keloid fibroblasts
2011-01-01
Background Keloid is a type of scar which extends beyond the boundaries of the original wound. It can spread to the surrounding skin by invasion. The use of Tualang honey is a possible approach for keloid treatment. The objective of this study was to determine the antiproliferative effect of methanolic extraction of Tualang honey to primary human keloid fibroblasts and to identify the volatile compounds in methanol extraction of Tualang honey. Methods Crude Tualang honey was extracted with methanol and then dried using rota vapor to remove remaining methanol from honey. Normal and keloid fibroblasts were verified and treated with the extracted honey. Cell proliferation was tested with [3-(4,5-dimethylthiazol-2-yi)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] (MTS) assay. Extraction of Tualang honey using methanol was carried out and the extracted samples were analysed using gas chromatography-mass spectrometry (GC-MS). The result was analysed using SPSS and tested with Kruskal-Wallis and Mann-Whitney tests. Results Methanolic extraction of honey has positive anti proliferative effect on keloid fibroblasts in a dose-dependent manner. The presence of fatty acids such as palmitic acid, stearic acid, oleic acid, linoleic acid and octadecanoic acid may contribute to the anti-proliferative effect in keloid fibroblasts. Conclusions The methanolic honey extraction has an antiproliferative effect on keloid fibroblasts and a range of volatile compounds has been identified from Tualang honey. The antiproliferative effect of keloid fibroblasts towards Tualang honey may involve cell signaling pathway. Identifying other volatile compounds from different organic solvents should be carried out in future. PMID:21943200
Wiley, Shu Z; Sriram, Krishna; Liang, Wenjing; Chang, Sarah E; French, Randall; McCann, Thalia; Sicklick, Jason; Nishihara, Hiroshi; Lowy, Andrew M; Insel, Paul A
2018-03-01
The microenvironment of pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense fibrotic stroma (desmoplasia) generated by pancreatic cancer-associated fibroblasts (CAFs) derived from pancreatic stellate cells (PSCs) and pancreatic fibroblasts (PFs). Using an unbiased GPCRomic array approach, we identified 82 G-protein-coupled receptors (GPCRs) commonly expressed by CAFs derived from 5 primary PDAC tumors. Compared with PSCs and PFs, CAFs have increased expression of GPR68 (a proton-sensing GPCR), with the results confirmed by immunoblotting, The Cancer Genome Atlas data, and immunohistochemistry of PDAC tumors. Co-culture of PSCs with PDAC cells, or incubation with TNF-α, induced GPR68 expression. GPR68 activation (by decreasing the extracellular pH) enhanced IL-6 expression via a cAMP/PKA/cAMP response element binding protein signaling pathway. Knockdown of GPR68 by short interfering RNA diminished low pH-induced production of IL-6 and enhancement of PDAC cell proliferation by CAF conditioned media. CAFs from other gastrointestinal cancers also express GPR68. PDAC cells thus induce expression by CAFs of GPR68, which senses the acidic microenvironment, thereby increasing production of fibrotic markers and IL-6 and promoting PDAC cell proliferation. CAF-expressed GPR68 is a mediator of low-pH-promoted regulation of the tumor microenvironments, in particular to PDAC cell-CAF interaction and may be a novel therapeutic target for pancreatic and perhaps other types of cancers.-Wiley, S. Z., Sriram, K., Liang, W., Chang, S. E., French, R., McCann, T., Sicklick, J., Nishihara, H., Lowy, A. M., Insel, P. A. GPR68, a proton-sensing GPCR, mediates interaction of cancer-associated fibroblasts and cancer cells.
Zhang, M; Dang, L; Guo, F; Wang, X; Zhao, W; Zhao, R
2012-06-01
Coenzyme Q(10) (CoQ(10) ) is a well-known antioxidant and has been used in many skincare products for anti-ageing purpose. However, the molecular mechanisms of CoQ(10) function in skin cells are not fully understood. In this paper, we compared the effects of CoQ(10) on primary human dermal fibroblasts from three individuals, including adult. We demonstrated that CoQ(10) treatment promoted proliferation of fibroblasts, increased type IV collagen expression and reduced UVR-induced matrix metalloproteinases-1 (MMP-1) level in embryonic and adult cells. In addition, CoQ(10) treatment increased elastin gene expression in cultured fibroblasts and significantly decreased UVR-induced IL-1α production in HaCat cells. Taken together, CoQ(10) presented anti-ageing benefits against intrinsic ageing as well as photo damage. Interestingly, CoQ(10) was able to inhibit tyrosinase activity, resulting in reduced melanin content in B16 cells. Thus, CoQ(10) may have potential depigmentation effects for skincare. © 2012 Space Biology Research & Technology Center, CASC. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Jensen, Gitte S; Shah, Bijal; Holtz, Robert; Patel, Ashok; Lo, Donald C
2016-01-01
Objective The aim of this study was to evaluate the effects of water-soluble egg membrane (WSEM) on wrinkle reduction in a clinical pilot study and to elucidate specific mechanisms of action using primary human immune and dermal cell-based bioassays. Methods To evaluate the effects of topical application of WSEM (8%) on human skin, an open-label 8-week study was performed involving 20 healthy females between the age of 45 years and 65 years. High-resolution photography and digital analysis were used to evaluate the wrinkle depth in the facial skin areas beside the eye (crow’s feet). WSEM was tested for total antioxidant capacity and effects on the formation of reactive oxygen species by human polymorphonuclear cells. Human keratinocytes (HaCaT cells) were used for quantitative polymerase chain reaction analysis of the antioxidant response element genes Nqo1, Gclm, Gclc, and Hmox1. Evaluation of effects on human primary dermal fibroblasts in vitro included cellular viability and production of the matrix components collagen and elastin. Results Topical use of a WSEM-containing facial cream for 8 weeks resulted in a significant reduction of wrinkle depth (P<0.05). WSEM contained antioxidants and reduced the formation of reactive oxygen species by inflammatory cells in vitro. Despite lack of a quantifiable effect on Nrf2, WSEM induced the gene expression of downstream Nqo1, Gclm, Gclc, and Hmox1 in human keratinocytes. Human dermal fibroblasts treated with WSEM produced more collagen and elastin than untreated cells or cells treated with dbcAMP control. The increase in collagen production was statistically significant (P<0.05). Conclusion The topical use of WSEM on facial skin significantly reduced the wrinkle depth. The underlying mechanisms of this effect may be related to protection from free radical damage at the cellular level and induction of several antioxidant response elements, combined with stimulation of human dermal fibroblasts to secrete high levels of matrix components. PMID:27789968
The effect of growth hormone on fibroblast proliferation and keratinocyte migration.
Lee, Sang Woo; Kim, Suk Hwa; Kim, Ji Youn; Lee, Yoonho
2010-04-01
The beneficial effects of growth hormones (GHs) on wound healing have been reported. Although the mechanism of how GH promotes wound healing is unclear, there are reports showing that the principal factor lies in the GH-stimulated production of IGF-1 in topical wounds. In this study, a human primary cell model was devised to examine how the topical application of GHs affects fibroblast proliferation and keratinocyte migration, which play fundamental roles in wound healing. The fibroblasts were cultured in media with different concentrations of GH. The amount of fibroblast proliferation was assessed using a tetrazolium-based colourimetric assay (MTT assay). The amount of newly formed IGF-I mRNA was measured by reverse transcription and polymerase chain reaction (RT-PCR). Keratinocyte migration was compared using a migration assay. Fibroblast proliferation was significantly higher in the experimental group than in the control group (the absorbance of 2.5IU L(-1) GH applied group: 0.3954+/-0.056, control group: 0.2943+/-0.0554, P<0.05), and the promotion of IGF-I formation by fibroblasts was observed. There was more keratinocyte migration in the experimental group than in the control group (the remaining gap in the 2.5IU L(-1) GH applied group after keratinocyte migration: 46.57+/-2.22% of the primary gap, control group: 75.14+/-3.44%, P<0.05). GH enhances the local formation of IGF-1, which activates fibroblast proliferation and keratinocyte migration. These results highlight the potential of the topical application of GHs in the treatment of wounds. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. All rights reserved.
Regulation of fibroblast Fas expression by soluble and mechanical pro-fibrotic stimuli.
Dodi, Amos E; Ajayi, Iyabode O; Chang, Christine; Beard, Meghan; Ashley, Shanna L; Huang, Steven K; Thannickal, Victor J; Tschumperlin, Daniel J; Sisson, Thomas H; Horowitz, Jeffrey C
2018-05-10
Fibroblast apoptosis is a critical component of normal repair and the acquisition of an apoptosis-resistant phenotype contributes to the pathogenesis of fibrotic repair. Fibroblasts from fibrotic lungs of humans and mice demonstrate resistance to apoptosis induced by Fas-ligand and prior studies have shown that susceptibility to apoptosis is enhanced when Fas (CD95) expression is increased in these cells. Moreover, prior work shows that Fas expression in fibrotic lung fibroblasts is reduced by epigenetic silencing of the Fas promoter. However, the mechanisms by which microenvironmental stimuli such as TGF-β1 and substrate stiffness affect fibroblast Fas expression are not well understood. Primary normal human lung fibroblasts (IMR-90) were cultured on tissue culture plastic or on polyacrylamide hydrogels with Young's moduli to recapitulate the compliance of normal (400 Pa) or fibrotic (6400 Pa) lung tissue and treated with or without TGF-β1 (10 ng/mL) in the presence or absence of protein kinase inhibitors and/or inflammatory cytokines. Expression of Fas was assessed by quantitative real time RT-PCR, ELISA and Western blotting. Soluble Fas (sFas) was measured in conditioned media by ELISA. Apoptosis was assessed using the Cell Death Detection Kit and by Western blotting for cleaved PARP. Fas expression and susceptibility to apoptosis was diminished in fibroblasts cultured on 6400 Pa substrates compared to 400 Pa substrates. TGF-β1 reduced Fas mRNA and protein in a time- and dose-dependent manner dependent on focal adhesion kinase (FAK). Surprisingly, TGF-β1 did not significantly alter cell-surface Fas expression, but did stimulate secretion of sFas. Finally, enhanced Fas expression and increased susceptibility to apoptosis was induced by combined treatment with TNF-α/IFN-γ and was not inhibited by TGF-β1. Soluble and matrix-mediated pro-fibrotic stimuli promote fibroblast resistance to apoptosis by decreasing Fas transcription while stimulating soluble Fas secretion. These findings suggest that distinct mechanisms regulating Fas expression in fibroblasts may serve different functions in the complex temporal and spatial evolution of normal and fibrotic wound-repair responses.
Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József
2017-11-01
Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.
Schwingel, Melanie; Bastmeyer, Martin
2013-01-01
Focal contacts act as mechanosensors allowing cells to respond to their biomechanical environment. Force transmission through newly formed contact sites is a highly dynamic process requiring a stable link between the intracellular cytoskeleton and the extracellular environment. To simultaneously investigate cellular traction forces in several individual maturing adhesion sites within the same cell, we established a custom-built multiple trap optical tweezers setup. Beads functionalized with fibronectin or RGD-peptides were placed onto the apical surface of a cell and trapped with a maximum force of 160 pN. Cells form adhesion contacts around the beads as demonstrated by vinculin accumulation and start to apply traction forces after 30 seconds. Force transmission was found to strongly depend on bead size, surface density of integrin ligands and bead location on the cell surface. Highest traction forces were measured for beads positioned on the leading edge. For mouse embryonic fibroblasts, traction forces acting on single beads are in the range of 80 pN after 5 minutes. If two beads were positioned parallel to the leading edge and with a center-to-center distance less than 10 µm, traction forces acting on single beads were reduced by 40%. This indicates a spatial and temporal coordination of force development in closely related adhesion sites. We also used our setup to compare traction forces, retrograde transport velocities, and migration velocities between two cell lines (mouse melanoma and fibroblasts) and primary chick fibroblasts. We find that maximal force development differs considerably between the three cell types with the primary cells being the strongest. In addition, we observe a linear relation between force and retrograde transport velocity: a high retrograde transport velocity is associated with strong cellular traction forces. In contrast, migration velocity is inversely related to traction forces and retrograde transport velocity. PMID:23372781
Zippel, Janina; Deters, Alexandra; Hensel, Andreas
2009-07-30
Aqueous extracts from the bark of Mimosa tenuiflora (Willd.) Poirett (Mimosaceae), tradionally known as "tepescohuite", are widely used for wound-healing and burns in middle and South America. No pharmacological data are available on the influence of aqueous extracts and high molecular constituents on human skin cells. Tests were performed on human primary dermal fibroblasts and human HaCaT keratinocytes by quantification of mitochondrial activity (MTT, WST-1), proliferation (BrdU incorporation), necrosis (LDH) and gene expression profiling (RT-PCR). Water extract WE (10 and 100 microg/mL) expressed loss of cell viability and proliferation in dermal fibroblasts. Ethanol-precipitated compounds EPC (10 microg/mL), isolated from WE significantly stimulated mitochondrial activity and proliferation of dermal fibroblasts. Minor stimulation of human kerationocytes by EPC was found only at 100 microg/mL level. The differentiation behavior of keratinocytes was not influenced by EPC. EPC had no influence on the expression of specific proliferation and differentiation related genes so that the mode of action remains unclear. By bioactivity-guided fractionation two arabinogalactan-enriched fractions (F2, F3) were isolated from EPC and identified as the stimulating principles of EPC against fibroblasts. A significant in vitro stimulation of dermal fibroblast activity and proliferation by arabinogalactans from Mimosa tenuiflora provides a rational for the traditional use of the bark material for wound healing.
Blanchet, Lionel; Smeitink, Jan A M; van Emst-de Vries, Sjenet E; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I; Rodenburg, Richard J T; Buydens, Lutgarde M C; Beyrath, Julien; Willems, Peter H G M; Koopman, Werner J H
2015-01-26
In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.
NASA Astrophysics Data System (ADS)
Blanchet, Lionel; Smeitink, Jan A. M.; van Emst-de Vries, Sjenet E.; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I.; Rodenburg, Richard J. T.; Buydens, Lutgarde M. C.; Beyrath, Julien; Willems, Peter H. G. M.; Koopman, Werner J. H.
2015-01-01
In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.
Gehin, Charlotte; Montenegro, Javier; Bang, Eun-Kyoung; Cajaraville, Ana; Takayama, Shota; Hirose, Hisaaki; Futaki, Shiroh; Matile, Stefan; Riezman, Howard
2013-06-26
Dynamic amphiphiles are amphiphiles with dynamic covalent bridges between their hydrophilic heads and their hydrophobic tails. Their usefulness to activate ion transporters, for odorant release, and for differential sensing of odorants and perfumes, has been demonstrated recently. Here, we report that the same "fragrant" dynamic amphiphiles are ideal to screen for new siRNA transfection agents. The advantages of this approach include rapid access to fairly large libraries of complex structures, and possible transformation en route to assist uptake and minimize toxicity. We report single-component systems that exceed the best commercially available multicomponent cocktails with regard to both efficiency and velocity of EGFP knockdown in HeLa cells. In human primary fibroblasts, siRNA-mediated enzyme knockdown nearly doubled from >30% for Lipofectamine to >60% for our best hit. The identified structures were predictable neither from literature nor from results in fluorogenic vesicles and thus support the importance of conceptually innovative screening approaches.
Ma, Mingming; Zhang, Zhengwei; Niu, Weiran; Zheng, Wenjing; Kelimu, Jiang
2011-01-01
Purpose This in vitro study aimed to gain insight into the function of fibroblast growth factor 10 (FGF10) on the ocular surface, especially its effect on mRNA expression of the mucins Muc1, Muc4, and Muc5ac, and mucin protein synthesis. Methods We isolated primary cultured rat conjunctival epithelial cells (Cj-ECs) and treated them with FGF10 (1 ng/ml, 10 ng/ml, 100 ng/ml, and 200 ng/ml) and basic fibroblast growth factor 2 (FGF2; 10 ng/ml) for 24 h or 48 h. The proliferation of Cj-ECs was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS). mRNA levels of Muc1, Muc4, and Muc5ac were determined by real-time PCR. Synthesis levels of MUC1 and MUC4 were measured by western blot. Flow cytometry and Annexin V/PI double staining revealed degrees of apoptosis. Results In primary culture, the epithelial cells were compact and cobblestone pavement in shape. Most of the cells were positive for cytokeratin (CK). FGF10 and FGF2 significantly stimulated Muc1, Muc4, and Muc5ac mRNA expression, cell proliferation, and synthesis of MUC1 and MUC4 proteins. FGF10 was more potent than FGF2 in these regards. FGF10 did not restrain the apoptosis of Cj-ECs. Conclusions The results of this study demonstrated that FGF10 is associated with the promotion of Cj-EC proliferation and mucin production. The effects of FGF10 on Cj-ECs support a rationale to investigate its therapeutic potential for ocular surface diseases. PMID:22065934
Lupatov, A Yu; Kim, Ya S; Bystrykh, O A; Vakhrushev, I V; Pavlovich, S V; Yarygin, K N; Sukhikh, G T
2017-02-01
We studied immunosuppressive properties of skin fibroblasts and mesenchymal stromal cells against NK cells. In vitro experiments showed that mesenchymal stromal cells isolated from human umbilical cord and human skin fibroblasts can considerably attenuate cytotoxic activity of NK cells against Jurkat cells sensitive to NK-mediated lysis. NK cells cultured in lymphocyte population exhibited higher cytotoxic activity than isolated NK cells. Mesenchymal stromal cells or fibroblasts added 1:1 to lymphocyte culture almost completely suppressed NK cell cytotoxicity. This suggests that fibroblast-like cells can suppress not only isolated NK cells, but also NK cells in natural cell microenvironment.
Mesenchymal stem cells induce dermal fibroblast responses to injury
Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.
2009-01-01
Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury. PMID:19666021
SORBS2 and TLR3 induce premature senescence in primary human fibroblasts and keratinocytes
2013-01-01
Background Genetic aberrations are required for the progression of HPV-induced cervical precancers. A prerequisite for clonal expansion of cancer cells is unlimited proliferative capacity. In a cell culture model for cervical carcinogenesis loss of genes located on chromosome 4q35→qter and chromosome 10p14-p15 were found to be associated with escape from senescence. Moreover, by LOH and I-FISH analyses a higher frequency of allele loss of these regions was also observed in cervical carcinomas as compared to CIN3. The aim of this study was to identify candidate senescence-related genes located on chromosome 4q35→qter and chromosome 10p14-p15 which may contribute to clonal expansion at the transition of CIN3 to cancer. Methods Microarray expression analyses were used to identify candidate genes down-regulated in cervical carcinomas as compared to CIN3. In order to relate these genes with the process of senescence their respective cDNAs were overexpressed in HPV16-immortalized keratinocytes as well as in primary human fibroblasts and keratinocytes using lentivirus mediated gene transduction. Results Overall fifteen genes located on chromosome 4q35→qter and chromosome 10p14-p15 were identified. Ten of these genes could be validated in biopsies by RT-PCR. Of interest is the novel finding that SORBS2 and TLR3 can induce senescence in primary human fibroblasts and keratinocytes but not in HPV-immortalized cell lines. Intriguingly, the endogenous expression of both genes increases during finite passaging of primary keratinocytes in vitro. Conclusions The relevance of the genes SORBS2 and TLR3 in the process of cellular senescence warrants further investigation. In ongoing experiments we are investigating whether this increase in gene expression is also characteristic of replicative senescence. PMID:24165198
Panax ginseng induces human Type I collagen synthesis through activation of Smad signaling.
Lee, Jongsung; Jung, Eunsun; Lee, Jiyoung; Huh, Sungran; Kim, Jieun; Park, Mijung; So, Jungwoon; Ham, Younggeun; Jung, Kwangseon; Hyun, Chang-Gu; Kim, Yeong Shik; Park, Deokhoon
2007-01-03
Skin aging appears to be principally related to a decrease in levels of Type I collagen, the primary component of the dermal layer of skin. It is important to introduce an efficient agent for effective management of skin aging; this agent should have the fewest possible side effects and the greatest wrinkle-reducing effect. In the course of screening collagen production-promoting agents, we obtained Panax ginseng C.A. Meyer. This study was designed to investigate the possible collagen production-promoting activities of Panax ginseng C.A. Meyer root extract (PGRE) in human dermal fibroblast cells. As a first step to this end, human COL1A2 promoter luciferase assay was performed in human dermal fibroblast cells. In this assay, PGRE activated human COL1A2 promoter activity in a concentration-dependent manner. Human Type I procollagen synthesis was also induced by PGRE. These results suggest that PGRE promotes collagen production in human dermal fibroblast cells. Additionally, we have attempted to characterize the mechanism of action of PGRE in Type I procollagen synthesis. PGRE was found to induce the phosphorylation of Smad2, an important transcription factor in the production of Type I procollagen. When applied topically in a human skin primary irritation test, PGRE did not induce any adverse reactions. Therefore, based on these results, we suggest the possibility that PGRE may be considered as an attractive, wrinkle-reducing candidate for topical application.
Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing
2016-11-15
Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.
Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis.
Malaquin, Nicolas; Vercamer, Chantal; Bouali, Fatima; Martien, Sébastien; Deruy, Emeric; Wernert, Nicolas; Chwastyniak, Maggy; Pinet, Florence; Abbadie, Corinne; Pourtier, Albin
2013-01-01
The incidence of carcinoma increases greatly with aging, but the cellular and molecular mechanisms underlying this correlation are only partly known. It is established that senescent fibroblasts promote the malignant progression of already-transformed cells through secretion of inflammatory mediators. We investigated here whether the senescent fibroblast secretome might have an impact on the very first stages of carcinogenesis. We chose the cultured normal primary human epidermal keratinocyte model, because after these cells reach the senescence plateau, cells with transformed and tumorigenic properties systematically and spontaneously emerge from the plateau. In the presence of medium conditioned by autologous senescent dermal fibroblasts, a higher frequency of post-senescence emergence was observed and the post-senescence emergent cells showed enhanced migratory properties and a more marked epithelial-mesenchymal transition. Using pharmacological inhibitors, siRNAs, and blocking antibodies, we demonstrated that the MMP-1 and MMP-2 matrix metalloproteinases, known to participate in late stages of cancer invasion and metastasis, are responsible for this enhancement of early migratory capacity. We present evidence that MMPs act by activating the protease-activated receptor 1 (PAR-1), whose expression is specifically increased in post-senescence emergent keratinocytes. The physiopathological relevance of these results was tested by analyzing MMP activity and PAR-1 expression in skin sections. Both were higher in skin sections from aged subjects than in ones from young subjects. Altogether, our results suggest that during aging, the dermal and epidermal skin compartments might be activated coordinately for initiation of skin carcinoma, via a paracrine axis in which MMPs secreted by senescent fibroblasts promote very early epithelial-mesenchymal transition of keratinocytes undergoing transformation and oversynthesizing the MMP-activatable receptor PAR-1.
Pirfenidone Nanoparticles Improve Corneal Wound Healing and Prevent Scarring Following Alkali Burn
Chowdhury, Sushovan; Guha, Rajdeep; Trivedi, Ruchit; Kompella, Uday B.; Konar, Aditya; Hazra, Sarbani
2013-01-01
Purpose To evaluate the effects of pirfenidone nanoparticles on corneal re-epithelialization and scarring, major clinical challenges after alkali burn. Methods Effect of pirfenidone on collagen I and α-smooth muscle actin (α-SMA) synthesis by TGFβ induced primary corneal fibroblast cells was evaluated by immunoblotting and immunocytochemistry. Pirfenidone loaded poly (lactide-co-glycolide) (PLGA) nanoparticles were prepared, characterized and their cellular entry was examined in primary corneal fibroblast cells by fluorescence microscopy. Alkali burn was induced in one eye of Sprague Dawley rats followed by daily topical treatment with free pirfenidone, pirfenidone nanoparticles or vehicle. Corneal re-epithelialization was assessed daily by flourescein dye test; absence of stained area indicated complete re-epithelialization and the time for complete re-epithelialization was determined. Corneal haze was assessed daily for 7 days under slit lamp microscope and graded using a standard method. After 7 days, collagen I deposition in the superficial layer of cornea was examined by immunohistochemistry. Results Pirfenidone prevented (P<0.05) increase in TGF β induced collagen I and α-SMA synthesis by corneal fibroblasts in a dose dependent manner. Pirfenidone could be loaded successfully within PLGA nanoparticles, which entered the corneal fibroblasts within 5 minutes. Pirfenidone nanoparticles but not free pirfenidone significantly (P<0.05) reduced collagen I level, corneal haze and the time for corneal re-epithelialization following alkali burn. Conclusion Pirfenidone decreases collagen synthesis and prevents myofibroblast formation. Pirfenidone nanoparticles improve corneal wound healing and prevent fibrosis. Pirfenidone nanoparticles are of potential value in treating corneal chemical burns and other corneal fibrotic diseases. PMID:23940587
Lamore, Sarah D.; Wondrak, Georg T.
2013-01-01
Cutaneous exposure to chronic solar UVA-radiation is a causative factor in photocarcinogenesis and photoaging. Recently, we have identified the thiol-dependent cysteine-protease cathepsin B as a novel UVA-target undergoing photo-oxidative inactivation upstream of autophagic-lysosomal dysfunction in fibroblasts. In this study, we examined UVA effects on a wider range of cathepsins and explored the occurrence of UVA-induced cathepsin inactivation in other cultured skin cell types. In dermal fibroblasts, chronic exposure to non-cytotoxic doses of UVA caused pronounced inactivation of the lysosomal cysteine-proteases cathepsin B and L, effects not observed in primary keratinocytes and occurring only to a minor extent in primary melanocytes. In order to determine if UVA-induced lysosomal impairment requires single or dual inactivation of cathepsin B and/or L, we used a genetic approach (siRNA) to selectively downregulate enzymatic activity of these target cathepsins. Monitoring an established set of protein markers (including LAMP1, LC3-II, and p62) and cell ultrastructural changes detected by electron microscopy, we observed that only dual genetic antagonism (targeting both CTSB and CTSL expression) could mimic UVA-induced autophagic-lysosomal alterations, whereas single knockdown (targeting CTSB or CTSL only) did not display ‘UVA-mimetic’ effects failing to reproduce the UVA-induced phenotype. Taken together, our data demonstrate that chronic UVA inhibits both cathepsin B and L enzymatic activity and that dual inactivation of both enzymes is a causative factor underlying UVA-induced impairment of lysosomal function in dermal fibroblasts. PMID:23603447
Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line
2011-01-01
Background When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. Results A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. Conclusions The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells. PMID:22111699
Distinct epigenomic landscapes of pluripotent and lineage-committed human cells.
Hawkins, R David; Hon, Gary C; Lee, Leonard K; Ngo, Queminh; Lister, Ryan; Pelizzola, Mattia; Edsall, Lee E; Kuan, Samantha; Luu, Ying; Klugman, Sarit; Antosiewicz-Bourget, Jessica; Ye, Zhen; Espinoza, Celso; Agarwahl, Saurabh; Shen, Li; Ruotti, Victor; Wang, Wei; Stewart, Ron; Thomson, James A; Ecker, Joseph R; Ren, Bing
2010-05-07
Human embryonic stem cells (hESCs) share an identical genome with lineage-committed cells, yet possess the remarkable properties of self-renewal and pluripotency. The diverse cellular properties in different cells have been attributed to their distinct epigenomes, but how much epigenomes differ remains unclear. Here, we report that epigenomic landscapes in hESCs and lineage-committed cells are drastically different. By comparing the chromatin-modification profiles and DNA methylomes in hESCs and primary fibroblasts, we find that nearly one-third of the genome differs in chromatin structure. Most changes arise from dramatic redistributions of repressive H3K9me3 and H3K27me3 marks, which form blocks that significantly expand in fibroblasts. A large number of potential regulatory sequences also exhibit a high degree of dynamics in chromatin modifications and DNA methylation. Additionally, we observe novel, context-dependent relationships between DNA methylation and chromatin modifications. Our results provide new insights into epigenetic mechanisms underlying properties of pluripotency and cell fate commitment.
Chandra, R Viswa; Jagetia, Ganesh Chandra; Bhat, K Mahalinga
2006-02-15
The present in vitro study has been designed to establish and compare the effects of citric acid, EDTA, and tetracycline HCl on human periodontally diseased roots on the structure, attachment, and orientation of V79 (primary Chinese hamster lung fibroblasts) cells and human periodontal ligament fibroblasts (HPDL). Commercially available V79 cells and HPDL derived from healthy human third molars were used in this study. These fibroblasts were left in solution for seven days in order to attain confluence. Forty single-rooted teeth were obtained from patients diagnosed with periodontitis. The crown part was removed under constant irrigation and the root was split vertically into two equal halves, thus, yielding 80 specimens. Following scaling and root planing, the specimens were washed with phosphate buffered saline (PBS) and kept in 50 microg/ml gentamycin sulphate solution for 24 hours. The root pieces were then treated as follows: citric acid at pH 1, 24% EDTA, or with a 10% solution of tetracycline HCl and were then placed in V79 fibroblast cultures and HPDL cultures. The specimens were harvested after four weeks and were fixed in 2.5% glutaraldehyde in PBS before preparation for scanning electron microscopy (SEM). The behavior of V79 cells was similar to that of human periodontal ligament cells on root conditioned surfaces. V79 and HPDL showed a healthy morphology on root surfaces treated with citric acid and EDTA and a relatively unhealthy appearance on root surfaces treated with tetracycline HCl and distilled water (control group). The results suggest the use of citric acid and EDTA as root conditioning agents favorably affects the migration, attachment, and morphology of fibroblasts on human root surfaces, which may play a significant role in periodontal healing and regeneration.
Zago, Michela; Sheridan, Jared A.; Traboulsi, Hussein; Hecht, Emelia; Zhang, Yelu; Guerrina, Necola; Matthews, Jason; Nair, Parameswaran; Eidelman, David H.; Hamid, Qutayba
2017-01-01
Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients. PMID:28749959
Zago, Michela; Sheridan, Jared A; Traboulsi, Hussein; Hecht, Emelia; Zhang, Yelu; Guerrina, Necola; Matthews, Jason; Nair, Parameswaran; Eidelman, David H; Hamid, Qutayba; Baglole, Carolyn J
2017-01-01
Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients.
Kosmacek, Elizabeth A.; Chatterjee, Arpita; Tong, Qiang; Lin, Chi; Oberley, Rebecca E.
2016-01-01
Manganese porphyrins have been shown to be potent radioprotectors in a variety of cancer models. However, the mechanism as to how these porphyrins protect normal tissues from radiation damage still remains largely unknown. In the current study, we determine the effects of the manganese porphyrin, MnTnBuOE-2-PyP, on primary colorectal fibroblasts exposed to irradiation. We found that 2 Gy of radiation enhances the fibroblasts' ability to contract a collagen matrix, increases cell size and promotes cellular senesence. Treating fibroblasts with MnTnBuOE-2-PyP significantly inhibited radiation-induced collagen contraction, preserved cell morphology and also inhibited cellular senescence. We further showed that MnTnBuOE-2-PyP enhanced the overall viability of the fibroblasts following exposure to radiation but did not protect colorectal cancer cell viability. Specifically, MnTnBuOE-2-PyP in combination with irradiation, caused a significant decrease in tumor clonogenicity. Since locally advanced rectal cancers are treated with chemoradiation therapy followed by surgery and non-metastatic anal cancers are treated with chemoradiation therapy, we also investigated the effects of MnTnBuOE-2-PyP in combination with radiation, 5-fluorouracil with and without Mitomycin C. We found that MnTnBuOE-2-PyP in combination with Mitomycin C or 5-fluorouracil further enhances those compounds' ability to suppress tumor cell growth. When MnTnBuOE-2-PyP was combined with the two chemotherapeutics and radiation, we observed the greatest reduction in tumor cell growth. Therefore, these studies indicate that MnTnBuOE-2-PyP could be used as a potent radioprotector for normal tissue, while at the same time enhancing radiation and chemotherapy treatment for rectal and anal cancers. PMID:27119354
Kosmacek, Elizabeth A; Chatterjee, Arpita; Tong, Qiang; Lin, Chi; Oberley-Deegan, Rebecca E
2016-06-07
Manganese porphyrins have been shown to be potent radioprotectors in a variety of cancer models. However, the mechanism as to how these porphyrins protect normal tissues from radiation damage still remains largely unknown. In the current study, we determine the effects of the manganese porphyrin, MnTnBuOE-2-PyP, on primary colorectal fibroblasts exposed to irradiation. We found that 2 Gy of radiation enhances the fibroblasts' ability to contract a collagen matrix, increases cell size and promotes cellular senesence. Treating fibroblasts with MnTnBuOE-2-PyP significantly inhibited radiation-induced collagen contraction, preserved cell morphology and also inhibited cellular senescence. We further showed that MnTnBuOE-2-PyP enhanced the overall viability of the fibroblasts following exposure to radiation but did not protect colorectal cancer cell viability. Specifically, MnTnBuOE-2-PyP in combination with irradiation, caused a significant decrease in tumor clonogenicity. Since locally advanced rectal cancers are treated with chemoradiation therapy followed by surgery and non-metastatic anal cancers are treated with chemoradiation therapy, we also investigated the effects of MnTnBuOE-2-PyP in combination with radiation, 5-fluorouracil with and without Mitomycin C. We found that MnTnBuOE-2-PyP in combination with Mitomycin C or 5-fluorouracil further enhances those compounds' ability to suppress tumor cell growth. When MnTnBuOE-2-PyP was combined with the two chemotherapeutics and radiation, we observed the greatest reduction in tumor cell growth. Therefore, these studies indicate that MnTnBuOE-2-PyP could be used as a potent radioprotector for normal tissue, while at the same time enhancing radiation and chemotherapy treatment for rectal and anal cancers.
Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.
Cong, Shan; Cao, Guifang; Liu, Dongjun
2014-12-01
To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.
Page, Melissa M; Sinclair, Amy; Robb, Ellen L; Stuart, Jeffrey A; Withers, Dominic J; Selman, Colin
2014-01-01
Reduced signalling through the insulin/insulin-like growth factor-1 signalling (IIS) pathway is a highly conserved lifespan determinant in model organisms. The precise mechanism underlying the effects of the IIS on lifespan and health is currently unclear, although cellular stress resistance may be important. We have previously demonstrated that mice globally lacking insulin receptor substrate 1 (Irs1−/−) are long-lived and enjoy a greater period of their life free from age-related pathology compared with wild-type (WT) controls. In this study, we show that primary dermal fibroblasts and primary myoblasts derived from Irs1−/− mice are no more resistant to a range of oxidant and nonoxidant chemical stressors than cells derived from WT mice. PMID:25059507
TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.
Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H
2015-05-01
Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics.
TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts
Bernstein, Diana L.; Le Lay, John E.; Ruano, Elena G.; Kaestner, Klaus H.
2015-01-01
Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator–like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics. PMID:25866970
Cutolo, Maurizio; Ruaro, Barbara; Montagna, Paola; Brizzolara, Renata; Stratta, Emanuela; Trombetta, Amelia Chiara; Scabini, Stefano; Tavilla, Pier Paolo; Parodi, Aurora; Corallo, Claudio; Giordano, Nicola; Paolino, Sabrina; Pizzorni, Carmen; Sulli, Alberto; Smith, Vanessa; Soldano, Stefano
2018-05-02
Myofibroblasts contribute to fibrosis through the overproduction of extracellular matrix (ECM) proteins, primarily type I collagen (COL-1) and fibronectin (FN), a process which is mediated in systemic sclerosis (SSc) by the activation of fibrogenic intracellular signaling transduction molecules, including extracellular signal-regulated kinases 1 and 2 (Erk1/2) and protein kinase B (Akt). Selexipag is a prostacyclin receptor agonist synthesized for the treatment of pulmonary arterial hypertension. The study investigated the possibility for selexipag and its active metabolite (ACT-333679) to downregulate the profibrotic activity in primary cultures of SSc fibroblasts/myofibroblasts and the fibrogenic signaling molecules involved. Fibroblasts from skin biopsies obtained with Ethics Committee (EC) approval from patients with SSc, after giving signed informed consent, were cultured until the 3 rd culture passage and then either maintained in normal growth medium (untreated cells) or independently treated with different concentrations of selexipag (from 30 μM to 0.3 μM) or ACT-333679 (from 10 μM to 0.1 μM) for 48 h. Protein and gene expressions of α-smooth muscle actin (α-SMA), fibroblast specific protein-1 (S100A4), COL-1, and FN were investigated by western blotting and quantitative real-time PCR. Erk1/2 and Akt phosphorylation was investigated in untreated and ACT-333679-treated cells by western botting. Selexipag and ACT-333679 significantly reduced protein synthesis and gene expression of α-SMA, S100A4, and COL-1 in cultured SSc fibroblasts/myofibroblasts compared to untreated cells, whereas FN was significantly downregulated at the protein level. Interestingly, ACT-333679 significantly reduced the phosphorylation of Erk1/2 and Akt in cultured SSc fibroblasts/myofibroblasts. Selexipag and mainly its active metabolite ACT-333679 were found for the first time to potentially interfere with the profibrotic activity of cultured SSc fibroblasts/myofibroblasts at least in vitro, possibly through the downregulation of fibrogenic Erk1/2 and Akt signaling molecules.
Kruse, Carla R; Singh, Mansher; Targosinski, Stefan; Sinha, Indranil; Sørensen, Jens A; Eriksson, Elof; Nuutila, Kristo
2017-04-01
Wound microenvironment plays a major role in the process of wound healing. It contains various external and internal factors that participate in wound pathophysiology. The pH is an important factor that influences wound healing by changing throughout the healing process. Several previous studies have investigated the role of pH in relation to pathogens but studies concentrating on the effects of pH on wound healing itself are inconclusive. The purpose of this study was to comprehensively and in a controlled fashion investigate the effect of pH on wound healing by studying its effect on human primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used to investigate the effect of pH (5.5-9.5) on wound healing in vivo. The effect of pH on inflammation was monitored by measuring IL-1 α concentrations from wounds and cell cultures exposed to different pH environments. Our results showed that both skin cell types tolerated wide range of pH very well. They further demonstrated that both acidic and alkaline environments decelerated cell migration in comparison to neutral environments and interestingly alkaline conditions significantly enhanced cell proliferation. Results from the in vivo experiments indicated that a prolonged, strongly acidic wound environment prevents both wound closure and reepithelialization while a prolonged alkaline environment did not have any negative impact on wound closure or reepithelialization. Separately, both in vitro and in vivo studies showed that prolonged acidic conditions significantly increased the expression of IL-1 α in fibroblast cultures and in wound fluid, whereas prolonged alkaline conditions did not result in elevated amounts of IL-1 α. © 2017 by the Wound Healing Society.
Luo, Haojun; Liu, Manran; Luo, Shujuan; Yu, Tenghua; Wu, Chengyi; Yang, Guanglun; Tu, Gang
2016-08-01
Cancer associated fibroblasts (CAFs) are crucial contributors to breast cancer development. Estrogen affects mammary stroma in both physiological and pathophysiological conditions. We show here that estrogen (G-protein coupled) receptor (GPER) could be detected by immunohistochemistry in stromal fibroblasts of primary breast cancers. The presence of GPER expression was further confirmed by immunofluorescence and quantitative PCR in CAFs isolated from primary breast cancers. Based on dynamic monitoring by real time cell analyzer (RTCA) system, 17-β-estradiol (E2) as well as GPER specific agonist G1 were observed to trigger transient cell index increasing within an hour in a dosage-dependent manner in breast CAFs. In addition, E2 and G1 stimulated intracellular calcium modulation and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 within seconds and minutes in CAFs, respectively. Moreover, E2 and G1 promoted cell proliferation of breast CAFs measured by RTCA monitoring, cell viability assay and cell cycle analysis, and this promotion could be blocked by a GPER-selective antagonist G15. Interestingly, dynamic RTCA monitoring indicated that E2 increased adhesion of resuspended cells, and microscopy confirmed that E2 stimulated cell spreading. Both the adhesion and spreading were proposed to be mediated by GPER, since G1 also stimulated these effects similar to E2, and G15 reduced them. Moreover, GPER was found to mediate migration that was increased by E2 and G1 but reduced by G15 in RTCA cell migration assay and transwell assay. Accordingly, GPER mediates not only rapid actions but also slow effects including adhesion/spreading, proliferation and migration in breast CAFs. Estrogen is likely to affect tumor associated stroma and contributes to mammary carcinoma development through CAFs. Copyright © 2016. Published by Elsevier Inc.
Effects of laser immunotherapy on tumor microenvironment
NASA Astrophysics Data System (ADS)
Acquaviva, Joseph T.; Wood, Ethan W.; Hasanjee, Aamr; Chen, Wei R.; Vaughan, Melville B.
2014-02-01
The microenvironments of tumors are involved in a complex and reciprocal dialog with surrounding cancer cells. Any novel treatment must consider the impact of the therapy on the microenvironment. Recently, clinical trials with laser immunotherapy (LIT) have proven to effectively treat patients with late-stage, metastatic breast cancer and melanoma. LIT is the synergistic combination of phototherapy (laser irradiation) and immunological stimulation. One prominent cell type found in the tumor stroma is the fibroblast. Fibroblast cells can secrete different growth factors and extracellular matrix modifying molecules. Furthermore, fibroblast cells found in the tumor stroma often express alpha smooth muscle actin. These particular fibroblasts are coined cancer-associated fibroblast cells (CAFs). CAFs are known to facilitate the malignant progression of tumors. A collagen lattice assay with human fibroblast cells is used to elucidate the effects LIT has on the microenvironment of tumors. Changes in the contraction of the lattice, the differentiation of the fibroblast cells, as well as the proliferation of the fibroblast cells will be determined.
Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J
2015-04-01
to identify biological interactions between proliferating fibroblasts and HeLa cells in vitro. Fibroblasts were isolated from both normal and tumour human tissues. Coverslip co-cultures of HeLa and fibroblasts in various ratios with medium replacement every 48 h were studied using fixed cell staining with dyes such as Giemsa and silver staining, with immunochemistry for Ki-67 and E-cadherin, with dihydrofolate reductase (DHFR) enzyme reaction, as well as live cell staining for non-specific esterases and lipids. Other techniques included carmine cell labeling, autoradiography and apoptosis assessment. Under conditions of feeding and cell: cell ratios allowing parallel growth of human fibroblasts and HeLa cells, co-cultured for up to 20 days, a series of phenomena occur consecutively: profound affinity between the two cell types and exchange of small molecules; encircling of the HeLa colonies by the fibroblasts and enhanced growth of both cell types at their contact areas; expression of carbonic anhydrase in both cell types and high expression of non-specific esterases and cytoplasmic argyrophilia in the surrounding fibroblasts; intense production and secretion of lipid droplets by the surrounding fibroblasts; development of a complex net of argyrophilic projections of the fibroblasts; E-cadherin expression in the HeLa cells; from the 10th day onwards, an increasing detachment of batches of HeLa cells at the peripheries of colonies and appearance of areas with many multi-nucleated and apoptotic HeLa cells, and small HeLa fragments; from the 17th day, appearance of fibroblasts blocked at the G2-M phase. Co-cultures at approximately 17-20 days display a cell-cell fight with foci of (a) sparse growth of both cell types, (b) overgrowth of the fibroblasts and (c) regrowth of HeLa in small colonies. These results indicate that during their interaction with HeLa cells in vitro, proliferating fibroblasts can be activated against HeLa. This type of activation is not observed if fibroblast proliferation is blocked by contact inhibition of growth at confluency, or by omitting replacement of the nutrient medium. The present observations show that: (a) interaction between proliferating fibroblasts and HeLa cells in vitro drastically influences each other's protein expression, growth pattern, chromatin features and survival; (b) these functions depend on the fibroblast/HeLa ratio, cell topology (cell-cell contact and the architectural pattern developed during co-culture) and frequent medium change, as prerequisites for fibroblast proliferation; (c) this co-culture model is useful in the study of the complex processes within the tumour microenvironment, as well as the in vitro reproduction and display of several phenomena conventionally seen in tumour cytological sections, such as desmoplasia, apoptosis, nuclear abnormalities; and (d) overgrown fibroblasts adhering to the boundaries of HeLa colonies produce and secrete lipid droplets. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
APC+/− alters colonic fibroblast proteome in FAP
Dixon, Maketa P.; Blagoi, Elena L.; Nicolas, Emmanuelle; Seeholzer, Steven H.; Cheng, David; He, Yin A.; Coudry, Renata A.; Howard, Sharon D.; Riddle, Dawn M.; Cooper, Harry S.; Boman, Bruce M.; Conrad, Peggy; Crowell, James A.; Bellacosa, Alfonso; Knudson, Alfred; Yeung, Anthony T.; Kopelovich, Levy
2011-01-01
Here we compared the proteomes of primary fibroblast cultures derived from morphologically normal colonic mucosa of familial adenomatous polyposis (FAP) patients with those obtained from unaffected controls. The expression signature of about 19% of total fibroblast proteins separates FAP mutation carriers from unaffected controls (P < 0.01). More than 4,000 protein spots were quantified by 2D PAGE analysis, identifying 368 non-redundant proteins and 400 of their isoforms. Specifically, all three classes of cytoskeletal filaments and their regulatory proteins were altered as were oxidative stress response proteins. Given that FAP fibroblasts showed heightened sensitivity to transformation by KiMSV and SV40 including elevated levels of the p53 protein, events controlled in large measure by the Ras suppressor protein-1 (RSU-1) and oncogenic DJ-1, here we show decreased RSU1 and augmented DJ-1 expression in both fibroblasts and crypt-derived epithelial cells from morphologically normal colonic mucosa of FAP gene-carriers. The results indicate that heterozygosity for a mutant APC tumor suppressor gene alters the proteomes of both colon-derived normal fibroblasts in a gene-specific manner, consistent with a “one-hit” effect. PMID:21411865
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Xia, E-mail: zhai_xia_cool@126.com; Qin, Ying, E-mail: qinyinggaofeng@163.com; Chen, Yang, E-mail: cy_hmu@126.com
Coxsackievirus group B (CVB) is one of the common pathogens that cause myocarditis and cardiomyopathy. Evidence has shown that CVB replication in cardiomyocytes is responsible for the damage and loss of cardiac muscle and the dysfunction of the heart. However, it remains largely undefined how CVB would directly impact cardiac fibroblasts, the most abundant cells in human heart. In this study, cardiac fibroblasts were isolated from Balb/c mice and infected with CVB type 3 (CVB3). Increased double-membraned, autophagosome-like vesicles in the CVB3-infected cardiac fibroblasts were observed with electron microscope. Punctate distribution of LC3 and increased level of LC3-II were alsomore » detected in the infected cardiac fibroblasts. Furthermore, we observed that the expression of pro-inflammatory cytokines, IL-6 and TNF-α, was increased in the CVB3-infected cardiac fibroblasts, while suppressed autophagy by 3-MA and Atg7-siRNA inhibited cytokine expression. Consistent with the in vitro findings, increased formation of autophagosomes was observed in the cardiac fibroblasts of Balb/c mice infected with CVB3. In conclusion, our data demonstrated that cardiac fibroblasts respond to CVB3 infection with the formation of autophagosomes and the release of the pro-inflammatory cytokines. These results suggest that the autophagic response of cardiac fibroblasts may play a role in the pathogenesis of myocarditis caused by CVB3 infection. - Highlights: • CVB3 replication induced autophagosome assembly in primary cardiac fibroblasts. • Both IL-6 and TNF-α in cardiac fibroblasts infected by CVB3 were increased. • IL-6 and TNF-α were reduced in cardiac fibroblasts when autophagy was inhibited. • Autophagosome assembly in cardiac fibroblasts of CVB-infected mice was increased.« less
Lipid profiling of parkin-mutant human skin fibroblasts.
Lobasso, Simona; Tanzarella, Paola; Vergara, Daniele; Maffia, Michele; Cocco, Tiziana; Corcelli, Angela
2017-12-01
Parkin mutations are a major cause of early-onset Parkinson's disease (PD). The impairment of protein quality control system together with defects in mitochondria and autophagy process are consequences of the lack of parkin, which leads to neurodegeneration. Little is known about the role of lipids in these alterations of cell functions. In the present study, parkin-mutant human skin primary fibroblasts have been considered as cellular model of PD to investigate on possible lipid alterations associated with the lack of parkin protein. Dermal fibroblasts were obtained from two unrelated PD patients with different parkin mutations and their lipid compositions were compared with that of two control fibroblasts. The lipid extracts of fibroblasts have been analyzed by combined matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) and thin-layer chromatography (TLC). In parallel, we have performed direct MALDI-TOF/MS lipid analyses of intact fibroblasts by skipping lipid extraction steps. Results show that the proportions of some phospholipids and glycosphingolipids were altered in the lipid profiles of parkin-mutant fibroblasts. The detected higher level of gangliosides, phosphatidylinositol, and phosphatidylserine could be linked to dysfunction of autophagy and mitochondrial turnover; in addition, the lysophosphatidylcholine increase could represent the marker of neuroinflammatory state, a well-known component of PD. © 2017 Wiley Periodicals, Inc.
Mesenchymal stem cells induce dermal fibroblast responses to injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Andria N., E-mail: snosmith@u.washington.edu; Willis, Elise, E-mail: elise.willis@gmail.com; Chan, Vincent T.
2010-01-01
Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. Whenmore » co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.« less
You, Hi-Jin; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung
2015-11-01
Our previous studies demonstrated that human bone marrow-derived mesenchymal stromal cells have great potential for wound healing. However, it is difficult to clinically utilize cultured stem cells. Recently, human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have been commercialized for cartilage repair as a first cell therapy product that uses allogeneic stem cells. Should hUCB-MSCs have a superior effect on wound healing as compared with fibroblasts, which are the main cell source in current cell therapy products for wound healing, they may possibly replace fibroblasts. The purpose of this in vitro study was to compare the wound-healing activity of hUCB-MSCs with that of fibroblasts. This study was particularly designed to compare the effect of hUCB-MSCs on diabetic wound healing with those of allogeneic and autologous fibroblasts. Healthy (n = 5) and diabetic (n = 5) fibroblasts were used as the representatives of allogeneic and autologous fibroblasts for diabetic patients in the control group. Human UCB-MSCs (n = 5) were used in the experimental group. Cell proliferation, collagen synthesis and growth factor (basic fibroblast growth factor, vascular endothelial growth factor and transforming growth factor-β) production were compared among the three cell groups. Human UCB-MSCs produced significantly higher amounts of vascular endothelial growth factor and basic fibroblast growth factor when compared with both fibroblast groups. Human UCB-MSCs were superior to diabetic fibroblasts but not to healthy fibroblasts in collagen synthesis. There were no significant differences in cell proliferation and transforming growth factor-β production. Human UCB-MSCs may have greater capacity for diabetic wound healing than allogeneic or autologous fibroblasts, especially in angiogenesis. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Comito, Giuseppina; Segura, Coral Pons; Taddei, Maria Letizia; Lanciotti, Michele; Serni, Sergio; Morandi, Andrea; Chiarugi, Paola; Giannoni, Elisa
2017-01-01
Zoledronic acid (ZA) is a biphosphonate used for osteoporosis treatment and also proved to be effective to reduce the pain induced by bone metastases when used as adjuvant therapy in solid cancers. However, it has been recently proposed that ZA could have direct anti-tumour effects, although the molecular mechanism is unknown. We herein unravel a novel anti-tumour activity of ZA in prostate cancer (PCa), by targeting the pro-tumorigenic properties of both stromal and immune cells. Particularly, we demonstrate that ZA impairs PCa-induced M2-macrophages polarization, reducing their pro-invasive effect on tumour cells and their pro-angiogenic features. Crucially, ZA administration reverts cancer associated fibroblasts (CAFs) activation by targeting the mevalonate pathway and RhoA geranyl-geranylation, thereby impairing smooth muscle actin-α fibers organization, a prerequisite of fibroblast activation. Moreover, ZA prevents the M2 macrophages-mediated activation of normal fibroblast, highlighting the broad efficacy of this drug on tumour microenvironment. These results are confirmed in a metastatic xenograft PCa mouse model in which ZA-induced stromal normalization impairs cancer-stromal cells crosstalk, resulting in a significant reduction of primary tumour growth and metastases. Overall these findings reinforce the efficacy of ZA as a potential therapeutic approach to reduce cancer aggressiveness, by abrogating the supportive role of tumour microenvironment. PMID:27223431
C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice.
Kimura, Toru; Nojiri, Takashi; Hino, Jun; Hosoda, Hiroshi; Miura, Koichi; Shintani, Yasushi; Inoue, Masayoshi; Zenitani, Masahiro; Takabatake, Hiroyuki; Miyazato, Mikiya; Okumura, Meinoshin; Kangawa, Kenji
2016-02-19
Pulmonary fibrosis has high rates of mortality and morbidity; however, no effective pharmacological therapy has been established. C-type natriuretic peptide (CNP), a member of the natriuretic peptide family, selectively binds to the transmembrane guanylyl cyclase (GC)-B receptor and exerts anti-inflammatory and anti-fibrotic effects in various organs through vascular endothelial cells and fibroblasts that have a cell-surface GC-B receptor. Given the pathophysiological importance of fibroblast activation in pulmonary fibrosis, we hypothesized that the anti-fibrotic and anti-inflammatory effects of exogenous CNP against bleomycin (BLM)-induced pulmonary fibrosis were exerted in part by the effect of CNP on pulmonary fibroblasts. C57BL/6 mice were divided into two groups, CNP-treated (2.5 μg/kg/min) and vehicle, to evaluate BLM-induced (1 mg/kg) pulmonary fibrosis and inflammation. A periostin-CNP transgenic mouse model exhibiting CNP overexpression in fibroblasts was generated and examined for the anti-inflammatory and anti-fibrotic effects of CNP via fibroblasts in vivo. Additionally, we assessed CNP attenuation of TGF-β-induced differentiation into myofibroblasts by using immortalized human lung fibroblasts stably expressing GC-B receptors. Furthermore, to investigate whether CNP acts on human lung fibroblasts in a clinical setting, we obtained primary-cultured fibroblasts from surgically resected lungs of patients with lung cancer and analyzed levels of GC-B mRNA transcription. CNP reduced mRNA levels of the profibrotic cytokines interleukin (IL)-1β and IL-6, as well as collagen deposition and the fibrotic area in lungs of mice with bleomycin-induced pulmonary fibrosis. Furthermore, similar CNP effects were observed in transgenic mice exhibiting fibroblast-specific CNP overexpression. In cultured-lung fibroblasts, CNP treatment attenuated TGF-β-induced phosphorylation of Smad2 and increased mRNA and protein expression of α-smooth muscle actin and SM22α, indicating that CNP suppresses fibroblast differentiation into myofibroblasts. Furthermore, human lung fibroblasts from patients with or without interstitial lung disease substantially expressed GC-B receptor mRNA. These data suggest that CNP ameliorates bleomycin-induced pulmonary fibrosis by suppressing TGF-β signaling and myofibroblastic differentiation in lung fibroblasts. Therefore, we propose consideration of CNP for clinical application to pulmonary fibrosis treatment.
Cell-based capacitance sensor for analysis of EGFR expression on cell membrane
NASA Astrophysics Data System (ADS)
Shin, Dong-Myeong; Shin, Yong-Cheol; Ha, Ji Hye; Lee, Jong-Ho; Han, Dong-Wook; Kim, Jong-Man; Kim, Hyung Kook; Hwang, Yoon-Hwae
2013-02-01
Cancer cells have many kinds of cancer biomarkers. Among them, the epidermal growth factor (EGF) receptors can show a possibility for a cancer marker because the over-expression of EGF receptor is related with fibrous, colorectal, cervical and gastric tumorigenesis. We fabricated the capacitance sensor with a gap area of 50 μm × 200 μm by using photolithography and lift-off method. Using the capacitance sensor, we investigated the time dependent capacitance changes of different kinds of fibrous cells, such as HT1080 fibrosarcoma, L-929 fibroblast cell line and nHDF dermal fibroblast primary cell. We found that when we put the EGF, the capacitance decreased due to the immobilization of EGF to EGF receptor on the cell membrane. The quantitative determination of EGF receptor level for various fibrous cells was carried out and the results showed good correlation with conventional method. Based on our results, we suggest that the capacitance sensor can measure the expression level of the EGF receptor on cell membrane and be a good candidate as a cancer diagnosis.
Endothelin-1 stimulates colon cancer adjacent fibroblasts.
Knowles, Jonathan P; Shi-Wen, Xu; Haque, Samer-ul; Bhalla, Ashish; Dashwood, Michael R; Yang, Shiyu; Taylor, Irving; Winslet, Marc C; Abraham, David J; Loizidou, Marilena
2012-03-15
Endothelin-1 (ET-1) is produced by and stimulates colorectal cancer cells. Fibroblasts produce tumour stroma required for cancer development. We investigated whether ET-1 stimulated processes involved in tumour stroma production by colonic fibroblasts. Primary human fibroblasts, isolated from normal tissues adjacent to colon cancers, were cultured with or without ET-1 and its antagonists. Cellular proliferation, migration and contraction were measured. Expression of enzymes involved in tumour stroma development and alterations in gene transcription were determined by Western blotting and genome microarrays. ET-1 stimulated proliferation, contraction and migration (p < 0.01 v control) and the expression of matrix degrading enzymes TIMP-1 and MMP-2, but not MMP-3. ET-1 upregulated genes for profibrotic growth factors and receptors, signalling molecules, actin modulators and extracellular matrix components. ET-1 stimulated colonic fibroblast cellular processes in vitro that are involved in developing tumour stroma. Upregulated genes were consistent with these processes. By acting as a strong stimulus for tumour stroma creation, ET-1 is proposed as a target for adjuvant cancer therapy. Copyright © 2011 UICC.
Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts.
Koukourakis, Michael I; Kalamida, Dimitra; Mitrakas, Achilleas G; Liousia, Maria; Pouliliou, Stamatia; Sivridis, Efthimios; Giatromanolaki, Alexandra
2017-11-01
Cooperation of cancer cells with stromal cells, such as cancer-associated fibroblasts (CAFs), has been revealed as a mechanism sustaining cancer cell survival and growth. In the current study, we focus on the metabolic interactions of MRC5 lung fibroblasts with lung cancer cells (A549 and H1299) using co-culture experiments and studying changes of the metabolic protein expression profile and of their growth and migration abilities. Using western blotting, confocal microscopy and RT-PCR, we observed that in co-cultures MRC5 respond by upregulating pyruvate dehydrogenase (PDH) and the monocarboxylate transporter MCT1. In contrast, cancer cells increase the expression of glucose transporters (GLUT1), LDH5, PDH kinase and the levels of phosphorylated/inactivated pPDH. H1299 cells growing in the same culture medium with fibroblasts exhibit a 'metastasis-like' phenomenon by forming nests within the fibroblast area. LDH5 and pPDH were drastically upregulated in these nests. The growth rate of both MRC5 and cancer cells increased in co-cultures. Suppression of LDHA or PDK1 in cancer cells abrogates the stimulatory signal from cancer cells to fibroblasts. Incubation of MRC5 fibroblasts with lactate resulted in an increase of LDHB and of PDH expression. Silencing of PDH gene in fibroblasts, or silencing of PDK1 or LDHA gene in tumor cells, impedes cancer cell's migration ability. Overall, a metabolic cooperation between lung cancer cells and fibroblasts has been confirmed in the context of direct Warburg effect, thus the fibroblasts reinforce aerobic metabolism to support the intensified anaerobic glycolytic pathways exploited by cancer cells.
Griffin, M; Bhandari, R; Hamilton, G; Chan, Y C; Powell, J T
1993-06-01
During alveolar development and alveolar repair close contacts are established between fibroblasts and lung epithelial cells through gaps in the basement membrane. Using co-culture systems we have investigated whether these close contacts influence synthesis and secretion of the principal surfactant apoprotein (SP-A) by cultured rat lung alveolar type II cells and the synthesis and secretion of type I collagen by fibroblasts. The alveolar type II cells remained cuboidal and grew in colonies on fibroblast feeder layers and on Matrigel-coated cell culture inserts but were progressively more flattened on fixed fibroblast monolayers and plastic. Alveolar type II cells cultured on plastic released almost all their SP-A into the medium by 4 days. Alveolar type II cells cultured on viable fibroblasts or Matrigel-coated inserts above fibroblasts accumulated SP-A in the medium at a constant rate for the first 4 days, and probably recycle SP-A by endocytosis. The amount of mRNA for SP-A was very low after 4 days of culture of alveolar type II cells on plastic, Matrigel-coated inserts or fixed fibroblast monolayers: relatively, the amount of mRNA for SP-A was increased 4-fold after culture of alveolar type II cells on viable fibroblasts. Co-culture of alveolar type II cells with confluent human dermal fibroblasts stimulated by 2- to 3-fold the secretion of collagen type I into the culture medium, even after the fibroblasts' growth had been arrested with mitomycin C. Collagen secretion, by fibroblasts, also was stimulated 2-fold by conditioned medium from alveolar type II cells cultured on Matrigel. The amount of mRNA for type I collagen increased only modestly when fibroblasts were cultured in this conditioned medium. This stimulation of type I collagen secretion diminished as the conditioned medium was diluted out, but at high dilutions further stimulation occurred, indicating that a factor that inhibited collagen secretion also was being diluted out. The conditioned medium contained low levels of IGF-1 and the stimulation of type I collagen secretion was abolished when the conditioned medium was pre-incubated with antibodies to insulin-like growth factor 1 (IGF-1). There are important reciprocal interactions between alveolar type II cells and fibroblasts in co-culture. Direct contacts between alveolar type II cells and fibroblasts appear to have a trophic effect on cultured alveolar type II cells, increasing the levels of mRNA for SP-A. Rat lung alveolar type II cells appear to release a factor (possibly IGF-1) that stimulates type I collagen secretion by fibroblasts.
Harati, K; Behr, B; Daigeler, A; Hirsch, T; Jacobsen, F; Renner, M; Harati, A; Wallner, C; Lehnhardt, M; Becerikli, M
2017-01-01
The cytostatic effects of the polyphenol curcumin and Viscum album extract (VAE) were assessed in soft-tissue sarcoma (STS) cells. Eight human STS cell lines were used: fibrosarcoma (HT1080), liposarcoma (SW872, T778, MLS-402), synovial sarcoma (SW982, SYO1, 1273), and malignant fibrous histiocytoma (U2197). Primary human fibroblasts served as control cells. Cell proliferation, viability, and cell index (CI) were analyzed by BrdU assay, MTT assay, and real-time cell analysis (RTCA). As indicated by BrdU and MTT, curcumin significantly decreased the cell proliferation of five cell lines (HT1080, SW872, SYO1, 1273, and U2197) and the viability of two cell lines (SW872 and SW982). VAE led to significant decreases of proliferation in eight cell lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, 1293, and U2197) and reduced viability in seven STS lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, and 1273). As indicated by RTCA for 160 h, curcumin decreased the CI of all synovial sarcoma cell lines as well as T778 and HT1080. VAE diminished the CI in most of the synovial sarcoma (SW982, SYO1) and liposarcoma (SW872, T778) cell lines as well as HT1080. Primary fibroblasts were not affected adversely by the two compounds in RTCA. Curcumin and VAE can inhibit the proliferation and viability of STS cells.
Müller, Stephan A; van der Smissen, Anja; von Feilitzsch, Margarete; Anderegg, Ulf; Kalkhof, Stefan; von Bergen, Martin
2012-12-01
Fibroblasts are the main matrix producing cells of the dermis and are also strongly regulated by their matrix environment which can be used to improve and guide skin wound healing processes. Here, we systematically investigated the molecular effects on primary dermal fibroblasts in response to high-sulfated hyaluronan [HA] (hsHA) by quantitative proteomics. The comparison of non- and high-sulfated HA revealed regulation of 84 of more than 1,200 quantified proteins. Based on gene enrichment we found that sulfation of HA alters extracellular matrix remodeling. The collagen degrading enzymes cathepsin K, matrix metalloproteinases-2 and -14 were found to be down-regulated on hsHA. Additionally protein expression of thrombospondin-1, decorin, collagen types I and XII were reduced, whereas the expression of trophoblast glycoprotein and collagen type VI were slightly increased. This study demonstrates that global proteomics provides a valuable tool for revealing proteins involved in molecular effects of growth substrates for further material optimization.
Kim, Eun Joo; Kim, Yeoun-Hee; Kang, Sun-Hee; Lee, Kyoo Won; Park, Young Jeung
2013-12-01
Long-term use of topical medication is needed for glaucoma treatment. One of the most commonly prescribed classes of hypotensive agents are prostaglandin analogs (PGs) used as both first-line monotherapy; as well as in combination therapy with other hypotensive agents. Several side effects of eye drops can be caused by preservatives. The purpose of this study was to evaluate the effects of PGs with varying concentrations of benzalkonium chloride (BAC), alternative preservatives, or no preservatives on human conjunctival fibroblast cells. Primary human conjunctival fibroblast cells were used in these experiments. Cells were exposed to the following drugs: BAC at different concentrations, bimatoprost 0.01% (with BAC 0.02%), latanoprost 0.005% (with BAC 0.02%), tafluprost 0.0015% with/without 0.001% BAC and travoprost 0.004% (with 0.001% Polyquad) for 15 and 30 minutes. Cell cytotoxicity was evaluated by phase-contrast microscopy to monitor morphological changes of cells, Counting Kit-8 (CCK-8) assay to cell viability, and fluorescent activated cell sorting (FACS) analysis to measure apoptosis. BAC caused cell shrinkage and detachment from the plate in a dose-dependent manner. Morphological changes were observed in cells treated with bimatoprost 0.01% and latanoprost 0.005%. However, mild cell shrinkage was noted in cells treated with tafluprost 0.0015%, while a non-toxic effect was noted with travoprost 0.004% and preservative-free tafluprost 0.0015%. CCK-8 assay and FACS analysis showed all groups had a significantly decreased cell viability and higher apoptosis rate compared with the control group. However, travoprost 0.004% and preservative-free tafluprost 0.0015% showed lower cytotoxicity and apoptosis rate than other drugs. This in vitro study revealed that BAC-induced cytotoxicity is dose-dependent, although it is important to emphasize that the clinical significance of toxicity differences observed among the different PGs formulations has not yet been firmly established. Alternatively preserved or preservative-free glaucoma medications seem to be a reasonable and viable alternative to those preserved with BAC.
Kim, Eun Joo; Kim, Yeoun-Hee; Kang, Sun-Hee; Lee, Kyoo Won
2013-01-01
Purpose Long-term use of topical medication is needed for glaucoma treatment. One of the most commonly prescribed classes of hypotensive agents are prostaglandin analogs (PGs) used as both first-line monotherapy; as well as in combination therapy with other hypotensive agents. Several side effects of eye drops can be caused by preservatives. The purpose of this study was to evaluate the effects of PGs with varying concentrations of benzalkonium chloride (BAC), alternative preservatives, or no preservatives on human conjunctival fibroblast cells. Methods Primary human conjunctival fibroblast cells were used in these experiments. Cells were exposed to the following drugs: BAC at different concentrations, bimatoprost 0.01% (with BAC 0.02%), latanoprost 0.005% (with BAC 0.02%), tafluprost 0.0015% with/without 0.001% BAC and travoprost 0.004% (with 0.001% Polyquad) for 15 and 30 minutes. Cell cytotoxicity was evaluated by phase-contrast microscopy to monitor morphological changes of cells, Counting Kit-8 (CCK-8) assay to cell viability, and fluorescent activated cell sorting (FACS) analysis to measure apoptosis. Results BAC caused cell shrinkage and detachment from the plate in a dose-dependent manner. Morphological changes were observed in cells treated with bimatoprost 0.01% and latanoprost 0.005%. However, mild cell shrinkage was noted in cells treated with tafluprost 0.0015%, while a non-toxic effect was noted with travoprost 0.004% and preservative-free tafluprost 0.0015%. CCK-8 assay and FACS analysis showed all groups had a significantly decreased cell viability and higher apoptosis rate compared with the control group. However, travoprost 0.004% and preservative-free tafluprost 0.0015% showed lower cytotoxicity and apoptosis rate than other drugs. Conclusions This in vitro study revealed that BAC-induced cytotoxicity is dose-dependent, although it is important to emphasize that the clinical significance of toxicity differences observed among the different PGs formulations has not yet been firmly established. Alternatively preserved or preservative-free glaucoma medications seem to be a reasonable and viable alternative to those preserved with BAC. PMID:24311931
Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine
2014-01-01
Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the −112/−61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications. PMID:24949635
Bhise, Nupura S; Wahlin, Karl J; Zack, Donald J; Green, Jordan J
2013-01-01
Gene delivery can potentially be used as a therapeutic for treating genetic diseases, including neurodegenerative diseases, as well as an enabling technology for regenerative medicine. A central challenge in many gene delivery applications is having a safe and effective delivery method. We evaluated the use of a biodegradable poly(beta-amino ester) nanoparticle-based nonviral protocol and compared this with an electroporation-based approach to deliver episomal plasmids encoding reprogramming factors for generation of human induced pluripotent stem cells (hiPSCs) from human fibroblasts. A polymer library was screened to identify the polymers most promising for gene delivery to human fibroblasts. Feeder-independent culturing protocols were developed for nanoparticle-based and electroporation-based reprogramming. The cells reprogrammed by both polymeric nanoparticle-based and electroporation-based nonviral methods were characterized by analysis of pluripotency markers and karyotypic stability. The hiPSC-like cells were further differentiated toward the neural lineage to test their potential for neurodegenerative retinal disease modeling. 1-(3-aminopropyl)-4-methylpiperazine end-terminated poly(1,4-butanediol diacry-late-co-4-amino-1-butanol) polymer (B4S4E7) self-assembled with plasmid DNA to form nanoparticles that were more effective than leading commercially available reagents, including Lipofectamine® 2000, FuGENE® HD, and 25 kDa branched polyethylenimine, for nonviral gene transfer. B4S4E7 nanoparticles showed effective gene delivery to IMR-90 human primary fibroblasts and to dermal fibroblasts derived from a patient with retinitis pigmentosa, and enabled coexpression of exogenously delivered genes, as is needed for reprogramming. The karyotypically normal hiPSC-like cells generated by conventional electroporation, but not by poly(beta-amino ester) reprogramming, could be differentiated toward the neuronal lineage, specifically pseudostratified optic cups. This study shows that certain nonviral reprogramming methods may not necessarily be safer than viral approaches and that maximizing exogenous gene expression of reprogramming factors is not sufficient to ensure successful reprogramming.
Jung, Jae-A; Yoon, Young-Don; Lee, Hyup-Woo; Kang, So-Ra; Han, Seung-Kyu
2018-02-01
Various types of skin substitutes composed of fibroblasts and/or keratinocytes have been used for the treatment of diabetic ulcers. However, the effects have generally not been very dramatic. Recently, human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have been commercialised for cartilage repair as a first cell therapy product using allogeneic stem cells. In a previous pilot study, we reported that hUCB-MSCs have a superior wound-healing capability compared with fibroblasts. The present study was designed to compare the treatment effect of hUCB-MSCs with that of fibroblasts on the diabetic wound healing in vitro. Diabetic fibroblasts were cocultured with healthy fibroblasts or hUCB-MSCs. Five groups were evaluated: group I, diabetic fibroblasts without coculture; groups II and III, diabetic fibroblasts cocultured with healthy fibroblasts or hUCB-MSCs; and groups IV and V, no cell cocultured with healthy fibroblasts or hUCB-MSCs. After a 3-day incubation, cell proliferation, collagen synthesis levels and glycosaminoglycan levels, which are the major contributing factors in wound healing, were measured. As a result, a hUCB-MSC-treated group showed higher cell proliferation, collagen synthesis and glycosaminoglycan level than a fibroblast-treated group. In particular, there were significant statistical differences in collagen synthesis and glycosaminoglycan levels (P = 0·029 and P = 0·019, respectively). In conclusion, these results demonstrate that hUCB-MSCs may have a superior effect to fibroblasts in stimulating diabetic wound healing. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Hida, A; Ohsawa, Y; Kitamura, S; Nakazaki, K; Ayabe, N; Motomura, Y; Matsui, K; Kobayashi, M; Usui, A; Inoue, Y; Kusanagi, H; Kamei, Y; Mishima, K
2017-04-25
We evaluated the circadian phenotypes of patients with delayed sleep-wake phase disorder (DSWPD) and non-24-hour sleep-wake rhythm disorder (N24SWD), two different circadian rhythm sleep disorders (CRSDs) by measuring clock gene expression rhythms in fibroblast cells derived from individual patients. Bmal1-luciferase (Bmal1-luc) expression rhythms were measured in the primary fibroblast cells derived from skin biopsy samples of patients with DSWPD and N24SWD, as well as control subjects. The period length of the Bmal1-luc rhythm (in vitro period) was distributed normally and was 22.80±0.47 (mean±s.d.) h in control-derived fibroblasts. The in vitro periods in DSWPD-derived fibroblasts and N24SWD-derived fibroblasts were 22.67±0.67 h and 23.18±0.70 h, respectively. The N24SWD group showed a significantly longer in vitro period than did the control or DSWPD group. Furthermore, in vitro period was associated with response to chronotherapy in the N24SWD group. Longer in vitro periods were observed in the non-responders (mean±s.d.: 23.59±0.89 h) compared with the responders (mean±s.d.: 22.97±0.47 h) in the N24SWD group. Our results indicate that prolonged circadian periods contribute to the onset and poor treatment outcome of N24SWD. In vitro rhythm assays could be useful for predicting circadian phenotypes and clinical prognosis in patients with CRSDs.
van Rooyen, Beverley A; Schäfer, Georgia; Leaner, Virna D; Parker, M Iqbal
2013-10-03
Recent studies have revealed that interactions between tumour cells and the surrounding stroma play an important role in facilitating tumour growth and invasion. Stromal fibroblasts produce most of the extracellular matrix components found in the stroma. The aim of this study was to investigate mechanisms involved in tumour cell-mediated regulation of extracellular matrix and adhesion molecules in co-cultured fibroblasts. To this end, microarray analysis was performed on CCD-1068SK human fibroblast cells after direct co-culture with MDA-MB-231 human breast tumour cells. We found that the expression of both connective tissue growth factor (CTGF/CCN2) and type I collagen was negatively regulated in CCD-1068SK fibroblast cells under direct co-culture conditions. Further analysis revealed that Smad7, a known negative regulator of the Smad signalling pathway involved in CCN2 promoter regulation, was increased in directly co-cultured fibroblasts. Inhibition of Smad7 expression in CCD-1068SK fibroblasts resulted in increased CCN2 expression, while Smad7 overexpression had the opposite effect. Silencing CCN2 gene expression in fibroblasts led, in turn, to a decrease in type I collagen mRNA and protein levels. ERK signalling was also shown to be impaired in CCD-1068SK fibroblasts after direct co-culture with MDA-MB-231 tumour cells, with Smad7 overexpression in fibroblasts leading to a similar decrease in ERK activity. These effects were not, however, seen in fibroblasts that were indirectly co-cultured with tumour cells. We therefore conclude that breast cancer cells require close contact with fibroblasts in order to upregulate Smad7 which, in turn, leads to decreased ERK signalling resulting in diminished expression of the stromal proteins CCN2 and type I collagen.
The Role of Intrinsic Pathway in Apoptosis Activation and Progression in Peyronie's Disease
Loreto, Carla; Caltabiano, Rosario; Vespasiani, Giuseppe; Castorina, Sergio; Ralph, David J.; Musumeci, Giuseppe; Djinovic, Rados; Sansalone, Salvatore
2014-01-01
Peyronie's disease (PD) is characterized with formation of fibrous plaques which result in penile deformity, pain, and erectile dysfunction. The aim of this study was to investigate the activation of the intrinsic apoptotic pathway in plaques from PD patients. Tunica albuginea from either PD or control patients was assessed for the expression of bax, bcl-2 and caspases 9 and 3 using immunohistochemistry and by measurement of apoptotic cells using TUNEL assay. Bax overexpression was observed in metaplastic bone tissue, in fibroblasts, and in myofibroblast of plaques from PD patients. Little or no bcl-2 immunostaining was detected in samples from either patients or controls. Caspase 3 immunostaining was very strong in fibrous tissue, in metaplasic bone osteocytes, and in primary ossification center osteoblasts. Moderate caspase 9 immunostaining was seen in fibrous cells plaques and in osteocytes and osteoblasts of primary ossification centers from PD patients. Control samples were negative for caspase 9 immunostaining. In PD patients the TUNEL immunoassay showed intense immunostaining of fibroblasts and myofibroblasts, the absence of apoptotic cells in metaplasic bone tissue and on the border between fibrous and metaplastic bone tissue. Apoptosis occurs in stabilized PD plaques and is partly induced by the intrinsic pathway. PMID:25197653
[Primary culture and characteristics of colorectal cancer-associated fibroblasts].
Wen, Huan; Nie, Qianqian; Jiang, Zhinong; Deng, Hong
2015-10-01
To compare the biological characteristics of colorectal cancer associated fibroblasts (CAFs) with normal fibroblasts (NFs). CAFs and NFs were isolated from fresh specimens of colorectal cancer and their paired normal colon tissue and cultured by tissue explant method. Light microscopy, quantitative polymerase chain reaction (qPCR), Western blot, immunofluorescence microscopy, electron microscopy and flow cytometry were used to identify isolated fibroblasts and to explore their characteristics of activation and growth. Primary colorectal CAFs and NFs were isolated and cultured successfully. NFs showed spindled morphology and were arranged in interlacing or spiral bundles. CAFs were polygonal or spindle, but were fatter than NFs. They were distributed randomly and arranged irregularly, and had obvious actin expression. CAFs and NFs both expressed fibronectin, but not E-cadherin, CD31 and caldesmon. qPCR showed that CAFs expressed more fibroblast activation protein (FAP) and less fibroblast specific protein 1 (FSP1) than that of NFs. There was no difference in the expression of α-SMA between NFs and CAFs by Western blot. α-SMA was bundled in parallel to the long axis of the cell by immunofluorescence. By electron microscopy, CAFs but not NFs showed dense myofilament that was arranged regularly. Flow cytometry showed that the percentage of S- and G2-phase in CAFs were significantly lower than that in NFs. mRNA expression of transforming growth factor β1, stromal derived factor 1 (SDF-1) and platelet derived growth factor (PDGF)-D in CAFs were lower while that for PDGFC was higher than that in NFs. That indicated the proliferation of CAFs was inhibited and the secretion of some cytokines was different when compared with NFs. CAFs show differences with NFs in morphology, characteristics of activation and secretion of some cytokines. The proliferation of CAFs is down regulated as compared with NFs.
Mesenchymal-endothelial-transition contributes to cardiac neovascularization
Ubil, Eric; Duan, Jinzhu; Pillai, Indulekha C.L.; Rosa-Garrido, Manuel; Wu, Yong; Bargiacchi, Francesca; Lu, Yan; Stanbouly, Seta; Huang, Jie; Rojas, Mauricio; Vondriska, Thomas M.; Stefani, Enrico; Deb, Arjun
2014-01-01
Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair. PMID:25317562
Igci, Nasit; Sharafi, Parisa; Demiralp, Duygu Ozel; Demiralp, Cemil Ozerk; Yuce, Aysel; Emre, Serap Dokmeci
2017-10-01
Gaucher disease (GD) is defined as an autosomal recessive disorder resulting from the deficiency of glucocerebrosidase (E.C. 3.2.1.45). Glucocerebrosidase is responsible for the degradation of glucosylceramide into ceramide and glucose. The deficiency of this enzyme results in the accumulation of undegraded glucosylceramide, almost exclusively in macrophages. With Fourier transform infrared (FTIR) spectroscopy, the complete molecular diversity of the samples can be studied comparatively and the amount of the particular materials can be determined. Also, the secondary structure ratios of proteins can be determined by analysing the amide peaks. The primary aim of this study is to introduce FTIR-ATR spectroscopy technique to GD research for the first time in the literature and to assess its potential as a new molecular method. Primary fibroblast cell cultures obtained from biopsy samples were used, since this material is widely used for the diagnosis of GD. Intact cells were placed onto a FTIR-ATR crystal and dried by purging nitrogen gas. Spectra were recorded in the mid-infrared region between 4500-850 cm-1 wavenumbers. Each peak in the spectra was assigned to as organic biomolecules according to their chemical bond information. A quantitative analysis was performed using peak areas and we also used a hierarchical cluster analysis as a multivariate spectral analysis. We obtained FTIR spectra of fibroblast samples and assigned the biomolecule origins of the peaks. We observed individual heterogeneity in FTIR spectra of GD fibroblast samples, confirming the well-known phenotypic heterogeneity in GD at the molecular level. Significant alterations in protein, lipid and carbohydrate levels related to the enzyme replacement therapy were also observed, which is also supported by cluster analysis. Our results showed that the application of FTIR spectroscopy to GD research deserves more attention and detailed studies with an increased sample size in order to evaluate its potential in the diagnosis and follow-up of GD patients.
Nesti, C; Trippi, F; Scarpato, R; Migliore, L; Turchi, G
2000-03-01
Primary liver fibroblasts were applied in a cytokinesis-block micronucleus assay in combination with fluorescence in situ hybridization (FISH) using two protocols. In protocol A (Prot. A), cytochalasin B (Cyt B) was added at the end of the treatment time directly to the medium containing the standard compounds, whereas in protocol B (Prot. B) the chemical-containing medium was removed and fresh medium with Cyt B was added. The study was performed using the aneugen griseofulvin (GF) and the clastogen mitomycin C (MMC) as standard compounds. With both protocols GF induced a significant increase in MN frequency over controls in a dose-related manner at the lower concentrations tested (7.5 and 15 microg/ml). At the highest dose (30 microg/ml) the aneugen effect was substantially reduced. MN induction obtained with Prot. A was significantly higher ( approximately 3-fold) than with Prot. B at the most effective concentration. The aneugen effect induced by GF did not change when different cell densities were used, but again with Prot. A we obtained the highest effect. MN induced by MMC showed a dose- and time-dependent increase in both protocols. In contrast to GF, the greater clastogenic response induced by MMC in human liver fibroblasts was obtained with Prot. B, approximately 3-fold higher than Prot. A at the most effective concentration and approximately 2-fold with 24 h treatment at 0.17 microg/ml MMC. With GF, the FISH data in human liver fibroblasts (80% C+MN) were fairly consistent with those obtained in the rodent cell lines. In human whole blood cultures, the same dose used in our experiment produced a relatively higher percentage of C+MN. FISH analysis showed that MMC induced mainly MN containing acentric fragments rather than whole chromosomes. In conclusion we have demostrated that chemically induced genetic effects are strongly dependent on the cell culture employed, treatment schedule and intra- and post-treatment experimental conditions.
Shorrocks, Julie; Tobi, Simon E; Latham, Harry; Peacock, John H; Eeles, Ros; Eccles, Diana; McMillan, Trevor J
2004-02-01
There is evidence to suggest that the breast cancer predisposing gene, BRCA1, is involved in cell cycle control and the response to damage but mouse brca1+/- heterozygotes have no distinctive phenotype. Here the response to the three forms of cellular stress was examined in primary human fibroblasts from individuals with a +/+ or +/- genotype for BRCA1. Fibroblasts from individuals carrying mutations in the BRCA1 gene were compared with those from those wild-type for BRCA1 in their response to long wavelength uv (UVA), hydrogen peroxide, and mitomycin C (MMC). Cell cycle progression and micronucleus formation (MN) were used as end points. After UVA treatment there was no difference between +/- and +/+ cells in the initial fall in DNA synthetic activity (G(1) arrest) but the reentry into S-phase was restored at a faster rate in the BRCA1+/- cells after UVA exposure. Thus, for three normal (+/+) cell lines irradiated in monolayer, S-phase values averaged 15 +/- 3.7% 14 h post-UVA (1 x 10(5) J/m(2)), as compared with 35.7 +/- 1.9 (range) for two BRCA1(+/-) strains. Because a defective G(1)/S checkpoint in BRCA1 heterozygotes could lead to a greater proportion of S-phase cells with unrepaired DNA damage (strand breaks) and a resultant increase in chromosomal instability, the frequency of micronuclei induced by UVA was examined. Three normal (+/+) and three mutant (+/-) strains (two of which were used in the cell cycle experiments) produced mean micronuclei frequencies of 0.077 +/- 0.016 and 0.094 +/- 0.04/binucleate cell respectively (not statistically significant), 48 h after UVA exposure. No differences were found between BRCA1+/+ and +/- cells in MN formation after treatment with MMC or hydrogen peroxide. Our data suggest a defective G(1)/S checkpoint in cells from BRCA1 heterozygotes in response to UVA although this is not reflected in genomic instability as measured by micronuclei induction after oxidative stress or MMC treatment.
Identification of cell density signal molecule
Schwarz, Richard I.
1998-01-01
Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use.
Coenzyme Q{sub 10} and alpha-tocopherol protect against amitriptyline toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordero, Mario D.; Dpto. Citologia e Histologia Normal y Patologica, Facultad de Medicina. Universidad de Sevilla. 41009 Sevilla; Moreno-Fernandez, Ana Maria
Since amitriptyline is a very frequently prescribed antidepressant drug, it is not surprising that amitriptyline toxicity is relatively common. Amitriptyline toxic systemic effects include cardiovascular, autonomous nervous, and central nervous systems. To understand the mechanisms of amitriptyline toxicity we studied the cytotoxic effects of amitriptyline treatment on cultured primary human fibroblasts and zebrafish embryos, and the protective role of coenzyme Q{sub 10} and alpha-tocopherol, two membrane antioxidants. We found that amitriptyline treatment induced oxidative stress and mitochondrial dysfunction in primary human fibroblasts. Mitochondrial dysfunction in amitriptyline treatment was characterized by reduced expression levels of mitochondrial proteins and coenzyme Q{sub 10},more » decreased NADH:cytochrome c reductase activity, and a drop in mitochondrial membrane potential. Moreover, and as a consequence of these toxic effects, amitriptyline treatment induced a significant increase in apoptotic cell death activating mitochondrial permeability transition. Coenzyme Q{sub 10} and alpha-tocopherol supplementation attenuated ROS production, lipid peroxidation, mitochondrial dysfunction, and cell death, suggesting that oxidative stress affecting cell membrane components is involved in amitriptyline cytotoxicity. Furthermore, amitriptyline-dependent toxicity and antioxidant protection were also evaluated in zebrafish embryos, a well established vertebrate model to study developmental toxicity. Amitriptyline significantly increased embryonic cell death and apoptosis rate, and both antioxidants provided a significant protection against amitriptyline embryotoxicity.« less
Mineralization and Expression of Col1a1-3.6GFP Transgene in Primary Dental Pulp Culture
Balic, Anamaria; Rodgers, Barbara; Mina, Mina
2008-01-01
We have examined and compared the effects of various differentiation-inducing media on mineralization, cell morphology and expression of pOBCol3.6GFP (3.6-GFP) in primary dental pulp cultures derived from 3.6-GFP transgenic mice. Our results show that media containing ascorbic acid only could not induce mineralization in primary dental pulp cultures. On the other hand, media containing ascorbic acid and β-glycerophosphate induced formation of mineralized matrix-containing dentin. The amount of mineralized matrix was increased by addition of dexamethasone. Cells treated with ascorbic acid and β-glycerophosphate were fibroblast like and cells treated with dexamethasone were cuboidal. In all culture conditions, high levels of 3.6-GFP were expressed in areas of mineralization PMID:18781059
Effect of mitomycin on normal dermal fibroblast and HaCat cell: an in vitro study
Wang, Yao-wen; Ren, Ji-hao; Xia, Kun; Wang, Shu-hui; Yin, Tuan-fang; Xie, Ding-hua; Li, Li-hua
2012-01-01
Objective: To evaluate the effects of mitomycin on the growth of human dermal fibroblast and immortalized human keratinocyte line (HaCat cell), particularly the effect of mitomycin on intracellular messenger RNA (mRNA) synthesis of collagen and growth factors of fibroblast. Methods: The normal dermal fibroblast and HaCat cell were cultured in vitro. Cell cultures were exposed to 0.4 and 0.04 mg/ml of mitomycin solution, and serum-free culture medium was used as control. The cellular morphology change, growth characteristics, cell proliferation, and apoptosis were observed at different intervals. For the fibroblasts, the mRNA expression changes of transforming growth factor (TGF)-β1, basic fibroblast growth factor (bFGF), procollagen I, and III were detected by reverse transcription polymerase chain reaction (RT-PCR). Results: The cultured normal human skin fibroblast and HaCat cell grew exponentially. A 5-min exposure to mitomycin at either 0.4 or 0.04 mg/ml caused marked dose-dependent cell proliferation inhibition on both fibroblasts and HaCat cells. Cell morphology changed, cell density decreased, and the growth curves were without an exponential phase. The fibroblast proliferated on the 5th day after the 5-min exposure of mitomycin at 0.04 mg/ml. Meanwhile, 5-min application of mitomycin at either 0.04 or 0.4 mg/ml induced fibroblast apoptosis but not necrosis. The apoptosis rate of the fibroblast increased with a higher concentration of mytomycin (p<0.05). A 5-min exposure to mitomycin at 0.4 mg/ml resulted in a marked decrease in the mRNA production of TGF-β1, procollagen I and III, and a marked increase in the mRNA production of bFGF. Conclusions: Mitomycin can inhibit fibroblast proliferation, induce fibroblast apoptosis, and regulate intracellular protein expression on mRNA levels. In additon, mitomycin can inhibit HaCat cell proliferation, so epithelial cell needs more protecting to avoid mitomycin’s side effect when it is applied clinically. PMID:23225855
T lymphocyte mediated lysis of mitomycin C treated Tenon’s capsule fibroblasts
Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N
2004-01-01
Aims: To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon’s capsule fibroblasts. Methods: IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. Results: T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). Conclusion: T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically. PMID:14977777
T lymphocyte mediated lysis of mitomycin C treated Tenon's capsule fibroblasts.
Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N
2004-03-01
To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon's capsule fibroblasts. IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically.
Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L
2011-08-01
Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.
Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.
2011-01-01
Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938
YAP1 Is a Driver of Myofibroblast Differentiation in Normal and Diseased Fibroblasts.
Piersma, Bram; de Rond, Saskia; Werker, Paul M N; Boo, Stellar; Hinz, Boris; van Beuge, Marike M; Bank, Ruud A
2015-12-01
Dupuytren disease is a fibrotic disorder characterized by contraction of myofibroblast-rich cords and nodules in the hands. The Hippo member Yes-associated protein 1 (YAP1) is activated by tissue stiffness and the profibrotic transforming growth factor-β1, but its role in cell fibrogenesis is yet unclear. We hypothesized that YAP1 regulates the differentiation of dermal fibroblasts into highly contractile myofibroblasts and that YAP1 governs the maintenance of a myofibroblast phenotype in primary Dupuytren cells. Knockdown of YAP1 in transforming growth factor-β1-stimulated dermal fibroblasts decreased the formation of contractile smooth muscle α-actin stress fibers and the deposition of collagen type I, which are hallmark features of myofibroblasts. Translating our findings to a clinically relevant model, we found that YAP1 deficiency in Dupuytren disease myofibroblasts resulted in decreased expression of ACTA2, COL1A1, and CCN2 mRNA, but this did not result in decreased protein levels. YAP1-deficient Dupuytren myofibroblasts showed decreased contraction of a collagen hydrogel. Finally, we showed that YAP1 levels and nuclear localization were elevated in affected Dupuytren disease tissue compared with matched control tissue and partly co-localized with smooth muscle α-actin-positive cells. In conclusion, our data show that YAP1 is a regulator of myofibroblast differentiation and contributes to the maintenance of a synthetic and contractile phenotype, in both transforming growth factor-β1-induced myofibroblast differentiation and primary Dupuytren myofibroblasts. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Baghaban Eslaminejad, Mohamadreza; Bordbar, Sima
2013-02-01
Objective(s) : Throughout evolution, mammalians have increasingly lost their ability to regenerate structures however rabbits are exceptional since they develop a blastema in their ear wound for regeneration purposes. Blastema consists of a group of undifferentiated cells capable of dividing and differentiating into the ear tissue. The objective of the present study is to isolate, culture expand, and characterize blastema progenitor cells in terms of their in vitro differentiation capacity. Five New Zealand white male rabbits were used in the present study. Using a punching apparatus, a 4-mm hole was created in the animal ears. Following 4 days, the blastema ring which was created in the periphery of primary hole in the ears was removed and cultivated. The cells migrated from the blastema were expanded through 3 successive subcultures and characterized in terms of their potential differentiation, growth characteristics, and culture requirements. The primary cultures tended to be morphologically heterogeneous having spindly-shaped fibroblast-like cells as well as flattened cells. Fibroblast-like cells survived and dominated the cultures. These cells tended to have the osteogenic, chondrogenic, and adipogenic differentiation potentials. They were highly colonogenic and maximum proliferation was achieved when the cells were plated at density of 100 cells/cm2 in a medium which contained 10% fetal bovine serum (FBS). Taken together, blastema tissue-derived stem cells from rabbit ear are of mesenchymal stem cell-like population. Studies similar to this will assist scientist better understanding the nature of blastema tissue formed at rabbit ear to regenerate the wound.
Benny, Paula; Badowski, Cedric; Lane, E Birgitte; Raghunath, Michael
2015-01-01
Skin is one of the most accessible tissues for experimental biomedical sciences, and cultured skin cells represent one of the longest-running clinical applications of stem cell therapy. However, culture-generated skin mimetic multicellular structures are still limited in their application by the time taken to develop these constructs in vitro and by their incomplete differentiation. The development of a functional dermal-epidermal junction (DEJ) is one of the most sought after aspects of cultured skin, and one of the hardest to recreate in vitro. At the DEJ, dermal fibroblasts and epidermal keratinocytes interact to form an interlinked basement membrane of extracellular matrix (ECM), which forms as a concerted action of both keratinocytes and fibroblasts. Successful formation of this basement membrane is essential for take and stability of cultured skin autografts. We studied interactive matrix production by monocultures and cocultures of primary human keratinocytes and fibroblasts in an attempt to improve the efficiency of basement membrane production in culture using mixed macromolecular crowding (mMMC); resulting ECM were enriched with the deposition of collagens I, IV, fibronectin, and laminin 332 (laminin 5) and also in collagen VII, the anchoring fibril component. Our in vitro data point to fibroblasts, rather than keratinocytes, as the major cellular contributors of the DEJ. Not only did we find more collagen VII production and deposition by fibroblasts in comparison to keratinocytes, but also observed that decellularized fibroblast ECM stimulated the production and deposition of collagen VII by keratinocytes, over and above that of keratinocyte monocultures. In confrontation cultures, keratinocytes and fibroblasts showed spontaneous segregation and demarcation of cell boundaries by DEJ protein deposition. Finally, mMMC was used in a classical organotypic coculture protocol with keratinocytes seeded over fibroblast-containing collagen gels. Applied during the submerged phase, mMMC was sufficient to accelerate the emergence of collagen VII along the de novo DEJ, together with stronger transglutaminase activity in the neoepidermis. Our findings corroborate the role of fibroblasts as important players in producing collagen VII and inducing collagen VII deposition in the DEJ, and that macromolecular crowding leads to organotypic epidermal differentiation in tissue culture in a significantly condensed time frame.
NASA Technical Reports Server (NTRS)
Story, Michael; Stivers, David N.
2004-01-01
This project was funded as a pilot project to determine the feasibility of using gene expression profiles to characterize the response of human cells to exposure to particulate radiations such as those encountered in the spaceflight environment. We proposed to use microarray technology to examine the gene expression patterns of a bank of well-characterized human fibroblast cell cultures. These fibroblast cultures were derived from breast or head and neck cancer patients who exhibited normal, minimal, or severe normal tissue reactions following low LET radiation exposure via radiotherapy. Furthermore, determination of SF2 values from fibroblasts cultured from these individuals were predictive of risk for severe late reactions. We hypothesized that by determining the expression of thousands of genes we could identify gene expression patterns that reflect how normal tissues respond to high Z and energy (HZE) particles, that is, that there are molecular signatures for HZE exposures. We also hypothesized that individuals who are intrinsically radiosensitive may elicit a unique response. Because this was funded as a pilot project we focused our initial studies on logistics and appropriate experimental design, and then to test our hypothesis that there is a unique molecular response to specific particles, in this case C and Fe, for primary human skin fibroblasts.
Wang, Kai; Jin, Song; Fan, Dongdong; Wang, Mingshuai; Xing, Nianzeng; Niu, Yinong
2017-01-01
This study aimed to identify the role of mouse fibroblast-mediated c-Jun and IGF-1 signaling in the therapeutic effect of finasteride on benign prostatic epithelial cells. BPH-1 cells, alone or with fibroblasts (c-Jun+/+ or c-Jun-/-), were implanted subcutaneously in male nude mice who were then treated with finasteride. The degrees of cell proliferation, apoptosis, and sizes of the xenografts were determined. BPH-1 cells were grown alone or co-cultured with mouse fibroblasts in the presence of finasteride and the level of IGF-1 secreted into the medium by the fibroblasts was determined. The proliferation-associated signaling pathway in BPH-1 cells was also evaluated. Fibroblasts and c-Jun promoted xenograft growth, stimulated Ki-67 expression, and inhibited BPH-1 apoptosis. Finasteride did not induce the shrinkage of xenografts in the combined-grafted groups despite repressing Ki-67 expression and inducing cell apoptosis. The addition of c-Jun-/- fibroblasts did not promote xenograft growth. In the absence of c-Jun and fibroblasts, finasteride did not alter xenograft growth, Ki-67 expression, or cell apoptosis. The in vitro results demonstrated that when BPH-1 cells were grown in monoculture, treatment with finasteride did not induce cell death and stimulated the expression of pro-proliferative signaling molecules, while in the presence of fibroblasts containing c-Jun, finasteride treatment repressed epithelial cell proliferation, the level of IGF-1 in the medium, and the activation of downstream pro-proliferative signaling pathways. Taken together, our results suggest that fibroblasts, c-Jun, and IGF-1 play key roles in mediating stromal-epithelial interactions that are required for the therapeutic effects of finasteride in benign prostate epithelial cells.
Fan, Dongdong; Wang, Mingshuai; Xing, Nianzeng; Niu, Yinong
2017-01-01
This study aimed to identify the role of mouse fibroblast-mediated c-Jun and IGF-1 signaling in the therapeutic effect of finasteride on benign prostatic epithelial cells. BPH-1 cells, alone or with fibroblasts (c-Jun+/+ or c-Jun-/-), were implanted subcutaneously in male nude mice who were then treated with finasteride. The degrees of cell proliferation, apoptosis, and sizes of the xenografts were determined. BPH-1 cells were grown alone or co-cultured with mouse fibroblasts in the presence of finasteride and the level of IGF-1 secreted into the medium by the fibroblasts was determined. The proliferation-associated signaling pathway in BPH-1 cells was also evaluated. Fibroblasts and c-Jun promoted xenograft growth, stimulated Ki-67 expression, and inhibited BPH-1 apoptosis. Finasteride did not induce the shrinkage of xenografts in the combined-grafted groups despite repressing Ki-67 expression and inducing cell apoptosis. The addition of c-Jun-/- fibroblasts did not promote xenograft growth. In the absence of c-Jun and fibroblasts, finasteride did not alter xenograft growth, Ki-67 expression, or cell apoptosis. The in vitro results demonstrated that when BPH-1 cells were grown in monoculture, treatment with finasteride did not induce cell death and stimulated the expression of pro-proliferative signaling molecules, while in the presence of fibroblasts containing c-Jun, finasteride treatment repressed epithelial cell proliferation, the level of IGF-1 in the medium, and the activation of downstream pro-proliferative signaling pathways. Taken together, our results suggest that fibroblasts, c-Jun, and IGF-1 play key roles in mediating stromal-epithelial interactions that are required for the therapeutic effects of finasteride in benign prostate epithelial cells. PMID:28196103
Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun
2017-01-01
Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.
Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun
2017-01-01
Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6–78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts. PMID:28860768
Biofunctionalized aligned microgels provide 3D cell guidance to mimic complex tissue matrices.
Rose, Jonas C; Gehlen, David B; Haraszti, Tamás; Köhler, Jens; Licht, Christopher J; De Laporte, Laura
2018-05-01
Natural healing is based on highly orchestrated processes, in which the extracellular matrix plays a key role. To resemble the native cell environment, we introduce an artificial extracellular matrix (aECM) with the capability to template hierarchical and anisotropic structures in situ, allowing a minimally-invasive application via injection. Synthetic, magnetically responsive, rod-shaped microgels are locally aligned and fixed by a biocompatible surrounding hydrogel, creating a hybrid anisotropic hydrogel (Anisogel), of which the physical, mechanical, and chemical properties can be tailored. The microgels are rendered cell-adhesive with GRGDS and incorporated either inside a cell-adhesive fibrin or bioinert poly(ethylene glycol) hydrogel to strongly interact with fibroblasts. GRGDS-modified microgels inside a fibrin-based Anisogel enhance fibroblast alignment and lead to a reduction in fibronectin production, indicating successful replacement of structural proteins. In addition, YAP-translocation to the nucleus increases with the concentration of microgels, indicating cellular sensing of the overall anisotropic mechanical properties of the Anisogel. For bioinert surrounding PEG hydrogels, GRGDS-microgels are required to support cell proliferation and fibronectin production. In contrast to fibroblasts, primary nerve growth is not significantly affected by the biomodification of the microgels. In conclusion, this approach opens new opportunities towards advanced and complex aECMs for tissue regeneration. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Moruzzi, Noah; Del Sole, Marianna; Fato, Romana; Gerdes, Jantje M; Berggren, Per-Olof; Bergamini, Christian; Brismar, Kerstin
2014-08-01
High blood glucose levels are the main feature of diabetes. However, the underlying mechanism linking high glucose concentration to diabetic complications is still not fully elucidated, particularly with regard to human physiology. Excess of glucose is likely to trigger a metabolic response depending on the cell features, activating deleterious pathways involved in the complications of diabetes. In this study, we aim to elucidate how acute and prolonged hyperglycaemia alters the biology and metabolism in human fibroblasts and endothelial cells. We found that hyperglycaemia triggers a metabolic switch from oxidative phosphorylation to glycolysis that is maintained over prolonged time. Moreover, osmotic pressure is a major factor in the early metabolic response, decreasing both mitochondrial transmembrane potential and cellular proliferation. After prolonged exposure to hyperglycaemia we observed decreased mitochondrial steady-state and uncoupled respiration, together with a reduced ATP/ADP ratio. At the same time, we could not detect major changes in mitochondrial transmembrane potential and reactive oxygen species. We suggest that the physiological and metabolic alterations observed in healthy human primary fibroblasts and endothelial cells are an adaptive response to hyperglycaemia. The severity of metabolic and bioenergetics impairment associated with diabetic complications may occur after longer glucose exposure or due to interactions with cell types more sensitive to hyperglycaemia. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Chemical Form of Mitochondrial Iron in Friedreich's Ataxia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, B.F.Gh.; Pickering, I.J.; George, G.N.
2007-07-12
Friedreich's ataxia (FRDA) results from cellular damage caused by a deficiency in the mitochondrial matrix protein frataxin. To address the effect of frataxin deficiency on mitochondrial iron chemistry, the heavy mitochondrial fraction (HMF) was isolated from primary fibroblasts from FRDA affected and unaffected individuals. X-ray absorption spectroscopy was used to characterize the chemical form of iron. Near K-edge spectra were fitted with a series of model iron compounds to determine the proportion of each iron species. Most of the iron in both affected and unaffected fibroblasts was ferrihydrite. The iron K-edge from unaffected HMFs were best fitted with poorly organizedmore » ferrihydrite modeled by frataxin whereas HMFs from affected cells were best fitted with highly organized ferrihydrite modeled by ferritin. Both had several minor iron species but these did not differ consistently with disease. Since the iron K-edge spectra of ferritin and frataxin are very similar, we present additional evidence for the presence of ferritin-bound iron in HMF. The predominant ferritin subunit in HMFs from affected cells resembled mitochondrial ferritin (MtFt) in size and antigenicity. Western blotting of native gels showed that HMF from affected cells had 3-fold more holoferritin containing stainable iron. We conclude that most of the iron in fibroblast HMF from both affected and unaffected cells is ferrihydrite but only FRDA affected cells mineralize significant iron in mitochondrial ferritin.« less
Saitoh, Ohki; Mitsutake, Norisato; Nakayama, Toshiyuki; Nagayama, Yuji
2009-07-01
It is known that genetic abnormalities in oncogenes and/or tumor suppressor genes promote carcinogenesis. Numerous recent articles, however, have demonstrated that epithelial-stromal interaction also plays a critical role for initiation and progression of carcinoma cells. Furthermore, ionizing radiation induces alterations in the tissue microenvironments that promote carcinogenesis. There is little or no information on epithelial-stromal interaction in thyroid carcinoma cells. The objective of this study was to determine if epithelial-stromal interaction influenced the growth of thyroid carcinoma cells in vivo and in vitro and to determine if radiation had added or interacting effects. Normal Fisher rat thyroid follicular cells (FRTL5 cells) and tumorigenic rat thyroid carcinoma cells (FRTL-Tc cells) derived from FRTL5 cells were employed. The cells were injected into thyroids or subcutaneously into left flanks of rats alone or in combination with skin-derived fibroblasts. In groups of rats, fibroblasts were irradiated with 0.1 or 4 Gy x-ray 3 days before inoculation. In vitro growth of FRTL-Tc and FRTL-5 cells were evaluated using the fibroblast-conditioned medium and in a co-culture system with fibroblasts. The in vivo experiments demonstrated that FRTL-Tc cells injected intrathyroidally grew faster than those injected subcutaneously, and that admixed fibroblasts enhanced growth of subcutaneous FRTL-Tc tumors, indicating that the intrathyroidal milieu, particularly in the presence of fibroblasts, confer growth-promoting advantage to thyroid carcinoma cells. This in vivo growth-promoting effect of fibroblasts on FRTL-Tc cells was duplicated in the in vitro experiments using the fibroblast-conditioned medium. Thus, our data demonstrate that this effect is mediated by soluble factor(s), is reversible, and is comparable to that of 10% fetal bovine serum. However, normal FRTL5 cells did not respond to the fibroblast-conditioned medium. Furthermore, high- and low-dose irradiation enhanced and suppressed, respectively, the in vivo fibroblast-mediated growth promotion. This effect was, however, not observed in the in vitro experiment with conditioned medium or even that allowing cell-cell contact. The intrathyroidal stromal microenvironments, particularly fibroblasts, appear to enhance the growth of thyroid carcinomas through soluble factor(s), which is modulated differently by high- and low-dose irradiation. To our knowledge this is the first study to show epithelial-stromal interaction in thyroid carcinoma.
Paolella, Gaetana; Lepretti, Marilena; Barone, Maria Vittoria; Nanayakkara, Merlin; Di Zenzo, Marina; Sblattero, Daniele; Auricchio, Salvatore; Esposito, Carla; Caputo, Ivana
2017-03-01
Type 2 transglutaminase (TG2) has an important pathogenic role in celiac disease (CD), an inflammatory intestinal disease that is caused by the ingestion of gluten-containing cereals. Indeed, TG2 deamidates specific gliadin peptides, thus enhancing their immunogenicity. Moreover, the transamidating activity seems to provoke an autoimmune response, where TG2 is the main autoantigen. Many studies have highlighted a possible pathogenetic role of anti-TG2 antibodies, because they modulate TG2 enzymatic activity and they can interact with cell-surface TG2, triggering a wide range of intracellular responses. Autoantibodies also alter the uptake of the alpha-gliadin peptide 31-43 (p31-43), responsible of the innate immune response in CD, thus partially protecting cells from p31-43 damaging effects in an intestinal cell line. Here, we investigated whether anti-TG2 antibodies protect cells from p31-43-induced damage in a CD model consisting of primary dermal fibroblasts. We found that the antibodies specifically reduced the uptake of p31-43 by fibroblasts derived from healthy subjects but not in those derived from CD patients. Analyses of TG2 expression and enzymatic activity did not reveal any significant difference between fibroblasts from healthy and celiac subjects, suggesting that other features related to TG2 may be responsible of such different behaviors, e.g., trafficking or subcellular distribution. Our findings are in line with the concept that a "celiac cellular phenotype" exists and that TG2 may contribute to this phenotype. Moreover, they suggest that the autoimmune response to TG2, which alone may damage the celiac mucosa, also fails in its protective role in celiac cells.
Henry, Claire; Hacker, Neville; Ford, Caroline
2017-01-01
OBJECTIVE Elevated expression of the ROR1 and ROR2 Wnt receptors has been noted in both the tumour and stromal compartments of ovarian cancer patient tissue samples. In vitro studies have suggested these receptors play a role in ovarian cancer metastasis. However, these previous studies have utilised simple 2D in vitro models to investigate cancer cell growth and migration, which does not allow investigation of stromal involvement in Wnt driven metastasis. AIM To investigate targeting ROR1 and ROR2 using a primary co-culture 3D model of epithelial ovarian cancer dissemination to the omentum. METHODS Primary fibroblasts (NOF) and mesothelial (HPMC) cells were isolated from fresh samples of omentum collected from women with benign or non-metastatic conditions and cultured with collagen to produce a organotypic 3D model. Stable shRNA knockdown of ROR1, ROR2 and double ROR1/ROR2 in OVCAR4 cells were plated onto the 3D model to measure adhesion, or using a transwell to measure invasion. Gene expression changes in primary cells upon OVCAR4 interaction was evaluated using indirect transwell co-culture. RESULTS Double knockdown of ROR1 and ROR2 strongly inhibited cell adhesion (p<0.05) and invasion (P<0.05) to the omentum model. ROR2 was up regulated in primary fibroblasts when cultured with OVCAR4 (P=0.05) and ectopic overexpression of ROR2 in NOFs inhibited cell proliferation (P<0.01) but increased cell migration. CONCLUSION The combination of ROR1 and ROR2 signalling influences ovarian cancer dissemination to the omentum, however ROR2 may also play a role in stromal activation during metastasis. Therefore, targeting both ROR1 and ROR2 may be a powerful approach to treating ovarian cancer. PMID:29348860
Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.
Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael
2017-08-01
Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable membrane. MPC proliferation, differentiation and fusion were assessed from cells stained for BrdU, desmin and myogenin. On biopsy cross-sections, fibroblast number was seen to increase, along with myogenic cell number, by d7 and increase further by d30, where fibroblasts were observed to be preferentially located immediately surrounding regenerating muscle fibres. In vitro, the presence of fibroblasts in direct contact with MPCs was found to moderately stimulate MPC proliferation and strongly stimulate both MPC differentiation and MPC fusion. It thus appears, in humans, that fibroblasts exert a strong positive regulatory influence on MPC activity, in line with observations during in vivo skeletal muscle regeneration. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, Sherin T.; Bergström, Petra; Hammarsten, Ola, E-mail: ola.hammarsten@clinchem.gu.se
2014-05-01
Most of the cytotoxicity induced by ionizing radiation is mediated by radical-induced DNA double-strand breaks. Cellular protection from free radicals can be stimulated several fold by sulforaphane-mediated activation of the transcription factor Nrf2 that regulates more than 50 genes involved in the detoxification of reactive substances and radicals. Here, we report that repeated sulforaphane treatment increases radioresistance in primary human skin fibroblasts. Cells were either treated with sulforaphane for four hours once or with four-hour treatments repeatedly for three consecutive days prior to radiation exposure. Fibroblasts exposed to repeated-sulforaphane treatment showed a more pronounced dose-dependent induction of Nrf2-regulated mRNA andmore » reduced amount of radiation-induced free radicals compared with cells treated once with sulforaphane. In addition, radiation- induced DNA double-strand breaks measured by gamma-H2AX foci were attenuated following repeated sulforaphane treatment. As a result, cellular protection from ionizing radiation measured by the 5-ethynyl-2′-deoxyuridine (EdU) assay was increased, specifically in cells exposed to repeated sulforaphane treatment. Sulforaphane treatment was unable to protect Nrf2 knockout mouse embryonic fibroblasts, indicating that the sulforaphane-induced radioprotection was Nrf2-dependent. Moreover, radioprotection by repeated sulforaphane treatment was dose-dependent with an optimal effect at 10 uM, whereas both lower and higher concentrations resulted in lower levels of radioprotection. Our data indicate that the Nrf2 system can be trained to provide further protection from radical damage. - Highlights: • Repeated treatment with sulforaphane protects fibroblasts from ionizing radiation • Repeated sulforaphane treatment attenuates radiation induced ROS and DNA damage • Sulforaphane mediated protection is Nrf2 dependent.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobe, Koji, E-mail: kojinobe@pharm.showa-u.ac.jp; Nobe, Hiromi; Department of Physical Therapy, Bunkyo-Gakuin University
Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibersmore » and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.« less
Ranjan, Rakesh; Thompson, Elizabeth A.; Yoon, Kyungsil; Smart, Robert C.
2009-01-01
We observed that C/EBPα is highly inducible in primary fibroblasts by DNA damaging agents that induce strand breaks, alkylate and crosslink DNA as well as those that produce bulky DNA lesions. Fibroblasts deficient in C/EBPα (C/EBPα-/-) display an impaired G1 checkpoint as evidenced by inappropriate entry into S-phase in response to DNA damage and these cells also display an enhanced G1 to S transition in response to mitogens. The induction of C/EBPα by DNA damage in fibroblasts does not require p53. EMSA analysis of nuclear extracts prepared from UVB- and MNNG-treated fibroblasts revealed increased binding of C/EBPβ to a C/EBP consensus sequence and ChIP analysis revealed increased C/EBPβ binding to the C/EBPα promoter. To determine whether C/EBPβ has a role in the regulation of C/EBPα we treated C/EBPβ-/- fibroblasts with UVB or MNNG. We observed C/EBPα induction was impaired in both UVB- and MNNG- treated C/EBPβ-/- fibroblasts. Our study reveals a novel role for C/EBPβ in the regulation of C/EBPα in response to DNA damage and provides definitive genetic evidence that C/EBPα has a critical role in the DNA damage G1 checkpoint. PMID:19581927
Pericellular Versican Regulates the Fibroblast-Myofibroblast Transition
Hattori, Noriko; Carrino, David A.; Lauer, Mark E.; Vasanji, Amit; Wylie, James D.; Nelson, Courtney M.; Apte, Suneel S.
2011-01-01
The cell and its glycosaminoglycan-rich pericellular matrix (PCM) comprise a functional unit. Because modification of PCM influences cell behavior, we investigated molecular mechanisms that regulate PCM volume and composition. In fibroblasts and other cells, aggregates of hyaluronan and versican are found in the PCM. Dermal fibroblasts from Adamts5−/− mice, which lack a versican-degrading protease, ADAMTS5, had reduced versican proteolysis, increased PCM, altered cell shape, enhanced α-smooth muscle actin (SMA) expression and increased contractility within three-dimensional collagen gels. The myofibroblast-like phenotype was associated with activation of TGFβ signaling. We tested the hypothesis that fibroblast-myofibroblast transition in Adamts5−/− cells resulted from versican accumulation in PCM. First, we noted that versican overexpression in human dermal fibroblasts led to increased SMA expression, enhanced contractility, and increased Smad2 phosphorylation. In contrast, dermal fibroblasts from Vcan haploinsufficient (Vcanhdf/+) mice had reduced contractility relative to wild type fibroblasts. Using a genetic approach to directly test if myofibroblast transition in Adamts5−/− cells resulted from increased PCM versican content, we generated Adamts5−/−;Vcanhdf/+ mice and isolated their dermal fibroblasts for comparison with dermal fibroblasts from Adamts5−/− mice. In Adamts5−/− fibroblasts, Vcan haploinsufficiency or exogenous ADAMTS5 restored normal fibroblast contractility. These findings demonstrate that altering PCM versican content through proteolytic activity of ADAMTS5 profoundly influenced the dermal fibroblast phenotype and may regulate a phenotypic continuum between the fibroblast and its alter ego, the myofibroblast. We propose that a physiological function of ADAMTS5 in dermal fibroblasts is to maintain optimal versican content and PCM volume by continually trimming versican in hyaluronan-versican aggregates. PMID:21828051
Tamai, Miho; Adachi, Eijiro
2013-01-01
The adult liver is wrapped in a connective tissue sheet called the liver capsule, which consists of collagen fibrils and fibroblasts. In this study, we set out to construct a liver organoid tissue that would be comparable to the endogenous liver, using a bioreactor. In vitro liver organoid tissue was generated by combining collagen fibrils, fibroblasts, and primary murine hepatocytes or Hep G2 on a mesh of poly-lactic acid fabric using a bioreactor. Then, the suitability of this liver organoid tissue for transplantation was tested by implanting the constructs into partially hepatectomized BALB/cA-nu/nu mice. As determined by using scanning and transmission electron microscopes, the liver organoid tissues were composed of densely packed collagen fibrils with fibroblasts and aggregates of oval or spherical hepatocytes. Angiogenesis was induced after the transplantation, and blood vessels connected the liver organoid tissue with the surrounding tissue. Thus, a novel approach was applied to generate transplantable liver organoid tissue within a condensed collagen fibril matrix. These results suggested that a dense collagen network populated with fibroblasts can hold a layer of concentrated hepatocytes, providing a three-dimensional microenvrionment suitable for the reestablishment of cell–cell and cell–extracellular matrix (ECM) interactions, and resulting in the maintenance of their liver-specific functions. This liver organoid tissue may be useful for the study of intrahepatic functions of various cells, cytokines, and ECMs, and may fulfill the fundamental requirements of a donor tissue. PMID:23815236
Permissive cytomegalovirus infection of primary villous term and first trimester trophoblasts.
Hemmings, D G; Kilani, R; Nykiforuk, C; Preiksaitis, J; Guilbert, L J
1998-06-01
Forty percent of women with primary cytomegalovirus (CMV) infections during pregnancy infect their fetuses with complications for the baby varying from mild to severe. How CMV crosses the syncytiotrophoblast, the barrier between maternal blood and fetal tissue in the villous placenta, is unknown. Virus may cross by infection of maternal cells that pass through physical breaches in the syncytiotrophoblast or by direct infection of the syncytiotrophoblast, with subsequent transmission to underlying fetal placental cells. In this study, we show that pure (>99.99%), long-term and healthy (>3 weeks) cultures of syncytiotrophoblasts are permissively infected with CMV. Greater than 99% of infectious progeny virus remained cell associated throughout culture periods up to 3 weeks. Infection of term trophoblasts required a higher virus inoculum, was less efficient, and progressed more slowly than parallel infections of placental and human embryonic lung fibroblasts. Three laboratory strains (AD169, Towne, and Davis) and a clinical isolate from a congenitally infected infant all permissively infected trophoblasts, although infection efficiencies varied. The infection of first trimester syncytiotrophoblasts with strain AD169 occurred at higher frequency and progressed more rapidly than infection of term cells but less efficiently and rapidly than infection of fibroblasts. These results show that villous syncytiotrophoblasts can be permissively infected by CMV but that the infection requires high virus titers and proceeds slowly and that progeny virus remains predominantly cell associated.
Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H
1987-01-01
One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978
Wöhrle, Simon; Weiss, Andreas; Ito, Moriko; Kauffmann, Audrey; Murakami, Masato; Jagani, Zainab; Thuery, Anne; Bauer-Probst, Beatrice; Reimann, Flavia; Stamm, Christelle; Pornon, Astrid; Romanet, Vincent; Guagnano, Vito; Brümmendorf, Thomas; Sellers, William R; Hofmann, Francesco; Roberts, Charles W M; Graus Porta, Diana
2013-01-01
Malignant rhabdoid tumors (MRTs) are aggressive pediatric cancers arising in brain, kidney and soft tissues, which are characterized by loss of the tumor suppressor SNF5/SMARCB1. MRTs are poorly responsive to chemotherapy and thus a high unmet clinical need exists for novel therapies for MRT patients. SNF5 is a core subunit of the SWI/SNF chromatin remodeling complex which affects gene expression by nucleosome remodeling. Here, we report that loss of SNF5 function correlates with increased expression of fibroblast growth factor receptors (FGFRs) in MRT cell lines and primary tumors and that re-expression of SNF5 in MRT cells causes a marked repression of FGFR expression. Conversely, siRNA-mediated impairment of SWI/SNF function leads to elevated levels of FGFR2 in human fibroblasts. In vivo, treatment with NVP-BGJ398, a selective FGFR inhibitor, blocks progression of a murine MRT model. Hence, we identify FGFR signaling as an aberrantly activated oncogenic pathway in MRTs and propose pharmacological inhibition of FGFRs as a potential novel clinical therapy for MRTs.
Wöhrle, Simon; Jagani, Zainab; Thuery, Anne; Bauer-Probst, Beatrice; Reimann, Flavia; Stamm, Christelle; Pornon, Astrid; Romanet, Vincent; Guagnano, Vito; Brümmendorf, Thomas; Sellers, William R.; Hofmann, Francesco; Roberts, Charles W. M.; Graus Porta, Diana
2013-01-01
Malignant rhabdoid tumors (MRTs) are aggressive pediatric cancers arising in brain, kidney and soft tissues, which are characterized by loss of the tumor suppressor SNF5/SMARCB1. MRTs are poorly responsive to chemotherapy and thus a high unmet clinical need exists for novel therapies for MRT patients. SNF5 is a core subunit of the SWI/SNF chromatin remodeling complex which affects gene expression by nucleosome remodeling. Here, we report that loss of SNF5 function correlates with increased expression of fibroblast growth factor receptors (FGFRs) in MRT cell lines and primary tumors and that re-expression of SNF5 in MRT cells causes a marked repression of FGFR expression. Conversely, siRNA-mediated impairment of SWI/SNF function leads to elevated levels of FGFR2 in human fibroblasts. In vivo, treatment with NVP-BGJ398, a selective FGFR inhibitor, blocks progression of a murine MRT model. Hence, we identify FGFR signaling as an aberrantly activated oncogenic pathway in MRTs and propose pharmacological inhibition of FGFRs as a potential novel clinical therapy for MRTs. PMID:24204904
Egg drop syndrome virus enters duck embryonic fibroblast cells via clathrin-mediated endocytosis.
Huang, Jingjing; Tan, Dan; Wang, Yang; Liu, Caihong; Xu, Jiamin; Wang, Jingyu
2015-12-02
Previous studies of egg drop syndrome virus (EDSV) is restricted to serological surveys, disease diagnostics, and complete viral genome analysis. Consequently, the infection characteristics and entry routes of EDSV are poorly understood. Therefore, we aimed to explore the entry pathway of EDSV into duck embryonic fibroblast (DEF) cells as well as the infection characteristics and proliferation of EDSV in primary DEF and primary chicken embryo liver (CEL) cells. Transmission electron microscopy revealed that the virus triggered DEF cell membrane invagination as early as 10 min post-infection and that integrated endocytic vesicles formed at 20 min post-infection. The virus yield in EDSV-infected DEF cells treated with chlorpromazine (CPZ), sucrose, methyl-β-cyclodextrin (MβCD), or NH4Cl was measured by quantitative real-time PCR. Compared with the mock treatment, CPZ and sucrose greatly inhibited the production of viral progeny in a dose-dependent manner, while MβCD treatment did not result in a significant difference. Furthermore, NH4Cl had a strong inhibitory effect on the production of EDSV progeny. In addition, indirect immunofluorescence demonstrated that virus particles clustered on the surface of DEF cells treated with CPZ or sucrose. These results indicate that EDSV enters DEF cells through clathrin-mediated endocytosis followed by a pH-dependent step, which is similar to the mechanism of entry of human adenovirus types 2 and 5. Copyright © 2015 Elsevier B.V. All rights reserved.
Thyrotropin-releasing hormone and its analogs accelerate wound healing.
Nie, Chunlei; Yang, Daping; Liu, Nan; Dong, Deli; Xu, Jin; Zhang, Jiewu
2014-06-15
Thyrotropin-releasing hormone (TRH) is a classical hormone that controls thyroid hormone production in the anterior pituitary gland. However, recent evidence suggested that TRH is expressed in nonhypothalamic tissues such as epidermal keratinocytes and dermal fibroblasts, but its function is not clear. This study aimed to investigate the effects of TRH and its analogs on wound healing and explore the underlying mechanisms. A stented excisional wound model was established, and the wound healing among vehicle control, TRH, and TRH analog taltirelin treatment groups was evaluated by macroscopic and histologic analyses. Primary fibroblasts were isolated from rat dermis and treated with vehicle control, TRH or taltirelin, cell migration, and proliferation were examined by scratch migration assay, MTT, and 5-ethynyl-2'- deoxyuridine (EdU) assay. The expression of α-Smooth muscle actin in fibroblasts was detected by Western blot and immunocytochemical analysis. TRH or taltirelin-treated wounds exhibited accelerated wound healing with enhanced granulation tissue formation and increased re-epithelialization and tissue formation. Furthermore, TRH or taltirelin promoted the migration and proliferation of fibroblasts and induced the expression of α-Smooth muscle actin in fibroblasts. TRH is important in upregulating the phenotypes of dermal fibroblasts and plays a role in accelerating wound healing. Copyright © 2014 Elsevier Inc. All rights reserved.
[Exposure of normal Tenon's capsule fibroblasts from pterygium to 5-fluorouracil and mitomycin C].
Viveiros, Magda Massae Hata; Schellini, Silvana Artioli; Candeias, João; Padovani, Carlos Roberto
2007-01-01
To evaluate the fibroblast proliferation activity of normal Tenon's capsule from primary and recurrent patients with pterygium. A randomized prospective study was performed with 41 normal Tenon's capsule fragments from 21 primary and 20 recurrent patients with pterygium. The sample was collected from the inferior cul-de-sac. Proliferation rate from fibroblasts were evaluated after mitomycin C and 5-fluorouracil exposition. Data were submitted to statistical analysis. Of the 41 cultivated normal Tenon's capsules, only 1 from primary and 2 from recurrent pterygium patients proliferated. After antimitotic exposition, the proliferation rate was similar with both drugs. Mitomycin and 5-fluorouracil promote similar inhibition regarding proliferation of normal Tenon's fibroblast cultures.
Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation.
Mathew, Sherin T; Bergström, Petra; Hammarsten, Ola
2014-05-01
Most of the cytotoxicity induced by ionizing radiation is mediated by radical-induced DNA double-strand breaks. Cellular protection from free radicals can be stimulated several fold by sulforaphane-mediated activation of the transcription factor Nrf2 that regulates more than 50 genes involved in the detoxification of reactive substances and radicals. Here, we report that repeated sulforaphane treatment increases radioresistance in primary human skin fibroblasts. Cells were either treated with sulforaphane for four hours once or with four-hour treatments repeatedly for three consecutive days prior to radiation exposure. Fibroblasts exposed to repeated-sulforaphane treatment showed a more pronounced dose-dependent induction of Nrf2-regulated mRNA and reduced amount of radiation-induced free radicals compared with cells treated once with sulforaphane. In addition, radiation- induced DNA double-strand breaks measured by gamma-H2AX foci were attenuated following repeated sulforaphane treatment. As a result, cellular protection from ionizing radiation measured by the 5-ethynyl-2'-deoxyuridine (EdU) assay was increased, specifically in cells exposed to repeated sulforaphane treatment. Sulforaphane treatment was unable to protect Nrf2 knockout mouse embryonic fibroblasts, indicating that the sulforaphane-induced radioprotection was Nrf2-dependent. Moreover, radioprotection by repeated sulforaphane treatment was dose-dependent with an optimal effect at 10 uM, whereas both lower and higher concentrations resulted in lower levels of radioprotection. Our data indicate that the Nrf2 system can be trained to provide further protection from radical damage. Copyright © 2014 Elsevier Inc. All rights reserved.
Disappearance of the telomere dysfunction-induced stress response in fully senescent cells.
Bakkenist, Christopher J; Drissi, Rachid; Wu, Jing; Kastan, Michael B; Dome, Jeffrey S
2004-06-01
Replicative senescence is a natural barrier to cellular proliferation that is triggered by telomere erosion and dysfunction. Here, we demonstrate that ATM activation and H2AX-gamma nuclear focus formation are sensitive markers of telomere dysfunction in primary human fibroblasts. Whereas the activated form of ATM and H2AX-gamma foci were rarely observed in early-passage cells, they were readily detected in late-passage cells. The ectopic expression of telomerase in late-passage cells abrogated ATM activation and H2AX-gamma focus formation, suggesting that these stress responses were the consequence of telomere dysfunction. ATM activation was induced in quiescent fibroblasts by inhibition of TRF2 binding to telomeres, indicating that telomere uncapping is sufficient to initiate the telomere signaling response; breakage of chromosomes with telomeric associations is not required for this activation. Although ATM activation and H2AX-gamma foci were readily observed in late-passage cells, they disappeared once cells became fully senescent, indicating that constitutive signaling from dysfunctional telomeres is not required for the maintenance of senescence.
MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling.
Yang, Bo; Xu, Qiu-Yun; Guo, Chun-Yan; Huang, Jin-Wen; Wang, Shu-Mei; Li, Yong-Mei; Tu, Ying; He, Li; Bi, Zhi-Gang; Ji, Chao; Cheng, Bo
2017-02-21
Ultra Violet (UV)-caused skin cell damage is a main cause of skin cancer. Here, we studied the activity of MHY1485, a mTOR activator, in UV-treated skin cells. In primary human skin keratinocytes, HaCaT keratinocytes and human skin fibroblasts, MHY1485 ameliorated UV-induced cell death and apoptosis. mTOR activation is required for MHY1485-induced above cytoprotective actions. mTOR kinase inhibitors (OSI-027, AZD-8055 and AZD-2014) or mTOR shRNA knockdown almost abolished MHY1485-induced cytoprotection. Further, MHY1485 treatment in skin cells activated mTOR downstream NF-E2-related factor 2 (Nrf2) signaling, causing Nrf2 Ser-40 phosphorylation, stabilization/upregulation and nuclear translocation, as well as mRNA expression of Nrf2-dictated genes. Contrarily, Nrf2 knockdown or S40T mutation almost nullified MHY1485-induced cytoprotection. MHY1485 suppressed UV-induced reactive oxygen species production and DNA single strand breaks in skin keratinocytes and fibroblasts. Together, we conclude that MHY1485 inhibits UV-induced skin cell damages via activating mTOR-Nrf2 signaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Z.Q.; Gault, E.A.; Gobeil, P.
2008-04-10
It is now widely recognized that BPV-1 and less commonly BPV-2 are the causative agents of equine sarcoids. Here we present the generation of equine cell lines harboring BPV-1 genomes and expressing viral genes. These lines have been either explanted from sarcoid biopsies or generated in vitro by transfection of primary fibroblasts with BPV-1 DNA. Previously detected BPV-1 genome variations in equine sarcoids are also found in sarcoid cell lines, and only variant BPV-1 genomes can transform equine cells. These equine cell lines are morphologically transformed, proliferate faster than parental cells, have an extended life span and can grow independentlymore » of substrate. These characteristics are more marked the higher the level of viral E5, E6 and E7 gene expression. These findings confirm that the virus has an active role in the induction of sarcoids and the lines will be invaluable for further studies on the role of BPV-1 in sarcoid pathology.« less
Immortalization of normal human fibroblasts by treatment with 4-nitroquinoline 1-oxide.
Bai, L; Mihara, K; Kondo, Y; Honma, M; Namba, M
1993-02-01
Normal human fibroblasts (the OUMS-24 strain), derived from a 6-week-old human embryo, were transformed (into the OUMS-24F line) and immortalized by repeated treatments (59 times) with 4-nitroquinoline 1-oxide (4NQO). Treatment began during primary culture and ended at the 51st population doubling level (PDL). At the 57th PDL (146 days after the last treatment), morphologically altered, epithelial-type cells appeared, began to grow and became immortal (now past the 100th PDL). However, the control fibroblasts, which were not treated with 4NQO, senesced at the 62nd PDL. The finding that extensive, repeated treatments with 4NQO are required for the immortalization of normal human cells, indicates that multiple mutational events are involved in the immortalization of human cells in general. In other words, immortalization itself seems to be a multi-step process. Karyotypic analysis showed that many cells were hypodiploid before immortalization, but that afterwards chromosomes were distributed broadly in the diploid to tetraploid regions. The immortalized cells showed amplification and enhanced expression of c-myc. Two-dimensional electrophoretic analysis showed that the number of disappearing cellular proteins was greater than the number of the newly appearing ones after the cells became immortalized. Since the immortalized cells showed neither anchorage-independent growth nor tumorigenicity, they are useful for studying factors that can contribute to multi-step carcinogenesis in human cells. In addition, genetically matched normal (OUMS-24) and immortalized (OUMS-24F) cells will be useful for analyzing the genes related to cellular mortality and immortalization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenyao; Li, Xuezhong; Xu, Tong
Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferationmore » and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.« less
Isolation and Characterization of Rat Pituitary Endothelial Cells
Chaturvedi, Kirti; Sarkar, Dipak K.
2010-01-01
Most previous studies that determined the effect of estradiol on angiogenesis used endothelial cells from nonpituitary sources. Because pituitary tumor tissue receives its blood supply via portal and arterial circulation, it is important to use pituitary-derived endothelial cells in studying pituitary angiogenesis. We have developed a magnetic separation technique to isolate endothelial cells from pituitary tissues and have characterized these cells in primary cultures. Endothelial cells of the pituitary showed the existence of endothelial cell marker, CD31, and of von Willebrand factor protein. These cells in cultures also showed immunore-activity of estrogen receptors alpha and beta. The angiogenic factors, vascular endothelial growth factor and basic fibroblast growth factor, significantly increased proliferation and migration of the pituitary-derived endothelial cells in primary cultures. These results suggest that a magnetic separation technique can be used for enrichment of pituitary-derived endothelial cells for determination of cellular mechanisms governing the vascularization in the pituitary. PMID:17028416
Revisiting Cardiac Cellular Composition
Pinto, Alexander R.; Ilinykh, Alexei; Ivey, Malina J.; Kuwabara, Jill T.; D'Antoni, Michelle L.; Debuque, Ryan; Chandran, Anjana; Wang, Lina; Arora, Komal; Rosenthal, Nadia; Tallquist, Michelle D.
2015-01-01
Rationale Accurate knowledge of the cellular composition of the heart is essential to fully understand the changes that occur during pathogenesis and to devise strategies for tissue engineering and regeneration. Objective To examine the relative frequency of cardiac endothelial cells, hematopoietic-derived cells and fibroblasts in the mouse and human heart. Methods and Results Using a combination of genetic tools and cellular markers, we examined the occurrence of the most prominent cell types in the adult mouse heart. Immunohistochemistry revealed that endothelial cells constitute over 60%, hematopoietic-derived cells 5–10%, and fibroblasts under 20% of the non-myocytes in the heart. A refined cell isolation protocol and an improved flow cytometry approach provided an independent means of determining the relative abundance of non-myocytes. High dimensional analysis and unsupervised clustering of cell populations confirmed that endothelial cells are the most abundant cell population. Interestingly, fibroblast numbers are smaller than previously estimated, and two commonly assigned fibroblast markers, Sca-1 and CD90, underrepresent fibroblast numbers. We also describe an alternative fibroblast surface marker that more accurately identifies the resident cardiac fibroblast population. Conclusions This new perspective on the abundance of different cell types in the heart demonstrates that fibroblasts comprise a relatively minor population. By contrast, endothelial cells constitute the majority of non-cardiomyocytes and are likely to play a greater role in physiologic function and response to injury than previously appreciated. PMID:26635390
Gu, Yun; Xue, Chenbin; Zhu, Jianbin; Sun, Hualin; Ding, Fei; Cao, Zheng; Gu, Xiaosong
2014-04-01
Considerable research has been devoted to unraveling the regulation of neural stem cell (NSC) differentiation. The responses of NSCs to various differentiation-inducing stimuli, however, are still difficult to estimate. In this study, we aimed to search for a potent growth factor that was able to effectively induce differentiation of NSCs toward Schwann cells. NSCs were isolated from dorsal root ganglia (DRGs) of adult rats and identified by immunostaining. Three different growth factors were used to stimulate the differentiation of DRG-derived NSCs (DRG-NSCs). We found that among these three growth factors, bFGF was the strongest inducer for the glial differentiation of DRG-NSCs, and bFGF induced the generation of an increased number of Schwann cell-like cells as compared to nerve growth factor (NGF) and neuregulin1-β (NRG). These Schwann cell-like cells demonstrated the same characteristics as those of primary Schwann cells. Furthermore, we noted that bFGF-induced differentiation of DRG-NSCs toward Schwann cells might be mediated by binding to fibroblast growth factor receptor-1 (FGFR-1) through activation of MAPK/ERK signal pathway.
Sun, Yan-Wu; Zhang, Yi-Yi; Ke, Xin-Jie; Wu, Xue-Jing; Chen, Zhi-Fen; Chi, Pan
2018-03-05
Radiation-induced intestinal fibrosis (RIF) is a chronic toxicity following radiation, and can be very difficult to treat. Pirfenidone is a promising anti-fibrotic agent that inhibits fibrosis progression in various clinical and experimental studies. This study was aimed to explore whether pirfenidone could protect against RIF, and to evaluate the underlying mechanism. An animal model of RIF was induced by exposure of a single dose of 20 Gy to the pelvis. Rats were orally administered with pirfenidone (200, 400 md/kg/d) for 12 weeks. Primary rat intestinal fibroblasts were cultured to determine the effects of pirfenidone on TGF-β1-induced (5 ng/ml) proliferation and transdifferentiation of fibroblasts. The expression of collagen I, α-SMA, and TGF-β1/Smad/CTGF pathway proteins were analyzed by qRT-PCR and/or western blot analysis. The cell proliferation rate was determined by CCK-8 assay. The results indicated that pirfenidone significantly attenuated fibrotic lesion in irradiated intestines and reduced collagen deposition by inhibiting TGF-β1/Smad/CTGF pathway in rat models. Moreover, in primary rat intestinal fibroblasts, pirfenidone decreased the up-regulation of TGF-β1-induced collagen I and α-SMA by suppressing TGF-β1/Smad/CTGF signaling pathway. Altogether, our findings suggested that pirfenidone attenuated RIF by inhibiting the proliferation and differentiation of intestinal fibroblasts and suppressing the TGF-β1/Smad/CTGF signaling pathway. Copyright © 2018 Elsevier B.V. All rights reserved.
Ambler, Dana R; Fletcher, Nicole M; Diamond, Michael P; Saed, Ghassan M
2012-12-01
Inflammation is known to be involved in the postoperative adhesion development. Interleukin (IL)-6 and tumor necrosis factor (TNF)-α are cytokines that stimulate the acute-phase reaction, which leads to a systemic reaction including inflammation, fever, and activation of the complement and clotting cascades. The goal of this study was to examine the expression of these inflammatory markers, under normal and hypoxic conditions, in normal and adhesion fibroblasts. Primary cultures of fibroblasts were established from normal peritoneum and adhesion tissues from the same patient(s) and cultured under 20% O(2) or hypoxic 2% O(2) conditions for 24 hours. Cells were harvested and total RNA was isolated. Complimentary DNA was generated by reverse transcription and subjected to real-time RT-PCR using specific primers for IL-6 and TNF-α. Both normal peritoneal and adhesion fibroblasts expressed IL-6 and TNF-α. Adhesion fibroblasts exhibited significantly higher levels of IL-6 and TNF-α mRNA as compared to normal peritoneal fibroblasts (p < 0.05). Both IL-6 and TNF-α mRNA levels were upregulated in response to hypoxia in both normal peritoneal and adhesion fibroblasts. The increase in IL-6 and TNF-α mRNA levels of normal fibroblasts reached the levels observed in adhesion fibroblasts. Our results suggest that hypoxia promotes the development of the adhesion phenotype by the induction of inflammatory markers, which may contribute to the development of postoperative adhesions. The inhibition of inflammation may be a potential therapeutic approach in the prevention and/or reduction of postoperative adhesion development.
Earthicle: The Design of a Conceptually New Type of Particle.
Uskoković, Vuk; Pernal, Sebastian; Wu, Victoria M
2017-01-18
The conception and the steps made in the design of a conceptually new type of composite particle, so-called "earthicle", are being described. This particle is meant to roughly mimic the layered structure of the Earth, having zerovalent iron core, silicate mantle, and a thin carbonaceous crust resembling the biosphere and its geological remnants. Particles are made in a stable colloidal form in an aqueous medium, involving chemical precipitation and pyrolysis of citric acid in the solution. The effects of various synthesis parameters were studied, including borohydride and oleate concentrations, APTES/TEOS molar ratio, chemical nature of the carbon precursors, and others. XRD analysis confirmed the predominantly zerovalent iron composition of the core, amorphous silica and crystalline iron silicate/silicide composition of the mesolayer, and the carbonaceous, amorphous graphitic composition of the surface coating. The atomically thin carbon shell was also detected as a distinct shoulder on the broad n-π* absorption resonance and the peak at ∼300 nm, a signature of sp 2 hybridized electronic orbitals and the result of the interband π-π* transition characteristic of graphitic structures. The irregularity of the shape of generally round Fe 0 particles has caused the uniformity of the silica shell to be directly proportional to the particle size. The size of the earthicles ranged from 60 to 500 nm depending on the ionic concentration of the precursors and additives. Silica layer effectively prevented the aggregation of the iron core and increased the biocompatibility of the particles. The point of zero charge first increased from the acidic to the neutral range after coating Fe 0 core with the APTES-functionalized, aminated silica shell and then restored its low value after depositing the carboxylated carbonic crust in a charge-reversal process designed to facilitate the formation of core-multishell structures. Tested on K7M2 osteosarcoma cell line and primary kidney and lung fibroblasts, cytotoxicity was cell-line dependent; however, the trend assessed in both planar and 3D cell culture with respect to the three types of particles, Fe 0 , Fe/SiO 2 , and Fe/SiO 2 /C, was general and independent of the cell line. Thus, the pronounced toxicity of Fe 0 alone became neutralized after the silica layer was coated around Fe 0 . The further addition of the carbonic layer reduced the viability as compared to Fe/SiO 2 , albeit in a statistically significant manner only for K7M2 cell line when compared against the untreated control. Cell response also varied depending on the formulation: while some formulations exhibited lethal effects on kidney fibroblasts, were harmless to lung fibroblasts, and boosted the proliferation of K7M2 osteosarcoma cells, other formulations exhibited the opposite behavior despite being similar in terms of their core/double-shell structure. Compared across three different cancerous cell lines, K7M2 osteosarcoma and U87 and E297 glioblastoma, a similar cell-line dependency in response was observed, yet the viability reduction was consistent for all Fe/SiO 2 /C particles, ranging from 80% to 85% of the untreated control. Carbon surface layer, albeit of graphitic structural nature, was of a markedly more viable character than that of nanosized graphene oxide. The viability of lung fibroblasts incubated with Fe/SiO 2 /C particles was reduced in the presence of the alternating magnetic field of 312.75 A/m and 1 MHz, while the viability reduction caused by Fe/SiO 2 /C particles in kidney fibroblasts and K7M2 cells was converted from statistically insignificant to significant, suggesting that the composite particles could be used for hyperthermia treatments, although their properties should be optimized for a more intense effect. A single-cell immunofluorescent analysis of the interaction of primary kidney fibroblasts and K7M2 osteosarcoma cells with Fe/SiO 2 /C particles demonstrated that the cell uptake and perinuclear localization may be responsible for the necrotic effects. This analysis also showed that composite Fe/SiO 2 /C particles may have the ability to cause the rupture of the cancer cell nucleus while having a harmless effect on the primary cells. Such a promising and selective anticancer activity will be investigated in more detail in future studies.
Latif, Najma; Quillon, Alfred; Sarathchandra, Padmini; McCormack, Ann; Lozanoski, Alec; Yacoub, Magdi H.; Chester, Adrian H.
2015-01-01
Valve interstitial cells (VICs) are fibroblastic in nature however in culture it is widely accepted that they differentiate into a myofibroblastic phenotype. This study assessed a fibroblast culture media formulation for its ability to maintain the phenotype and function of VICs as in the intact healthy valve. Normal human VICs were cultured separately in standard DMEM and in fibroblast media consisting of FGF2 (10ng/ml), insulin (50ng/ml) and 2% FCS for at least a week. Cell morphology, aspect ratio, size, levels and distribution of protein expression, proliferation, cell cycle, contraction and migration were assessed. Some VICs and some valve endothelial cells expressed FGF2 in valve tissue and this expression was increased in calcified valves. VICs in DMEM exhibited large, spread cells whereas VICs in fibroblast media were smaller, elongated and spindly. Aspect ratio and size were both significantly higher in DMEM (p<0.01). The level of expression of α-SMA was significantly reduced in fibroblast media at day 2 after isolation (p<0.01) and the expression of α-SMA, SM22 and EDA-fibronectin was significantly reduced in fibroblast media at days 7 and 12 post-isolation (p<0.01). Expression of cytoskeletal proteins, bone marker proteins and extracellular matrix proteins was reduced in fibroblast media. Proliferation of VICs in fibroblast media was significantly reduced at weeks 1 (p<0.05) and 2 (p<0.01). Collagen gel contraction was significantly reduced in fibroblast media (p<0.05). VICs were found to have significantly fewer and smaller focal adhesions in fibroblast media (p<0.01) with significantly fewer supermature focal adhesions in fibroblast media (p<0.001). Ultrastructurally, VICs in fibroblast media resembled native VICs from intact valves. VICs in fibroblast media demonstrated a slower migratory ability after wounding at 72 hours (p<0.01). Treatment of human VICs with this fibroblast media formulation has the ability to maintain and to dedifferentiate the VICs back to a fibroblastic phenotype with phenotypic and functional characteristics ascribed to cells in the intact valve. This methodology is fundamental in the study of normal valve biology, pathology and in the field of tissue engineering. PMID:26042674
van der Ploeg, Kattria; Chang, Chiwen; Ivarsson, Martin A.; Moffett, Ashley; Wills, Mark R.; Trowsdale, John
2017-01-01
The interaction of inhibitory killer cell Ig-like receptors (KIRs) with human leukocyte antigen (HLA) class I molecules has been characterized in detail. By contrast, activating members of the KIR family, although closely related to inhibitory KIRs, appear to interact weakly, if at all, with HLA class I. KIR2DS1 is the best studied activating KIR and it interacts with C2 group HLA-C (C2-HLA-C) in some assays, but not as strongly as KIR2DL1. We used a mouse 2B4 cell reporter system, which carries NFAT-green fluorescent protein with KIR2DS1 and a modified DAP12 adaptor protein. KIR2DS1 reporter cells were not activated upon coculture with 721.221 cells transfected with different HLA-C molecules, or with interferon-γ stimulated primary dermal fibroblasts. However, KIR2DS1 reporter cells and KIR2DS1+ primary natural killer (NK) cells were activated by C2-HLA-C homozygous human fetal foreskin fibroblasts (HFFFs) but only after infection with specific clones of a clinical strain of human cytomegalovirus (HCMV). Active viral gene expression was required for activation of both cell types. Primary NKG2A−KIR2DS1+ NK cell subsets degranulated after coculture with HCMV-infected HFFFs. The W6/32 antibody to HLA class I blocked the KIR2DS1 reporter cell interaction with its ligand on HCMV-infected HFFFs but did not block interaction with KIR2DL1. This implies a differential recognition of HLA-C by KIR2DL1 and KIR2DS1. The data suggest that modulation of HLA-C by HCMV is required for a potent KIR2DS1-mediated NK cell activation. PMID:28424684
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sassoli, Chiara; Nosi, Daniele; Tani, Alessia
Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the singlemore » muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.« less
Neuvonen, Maarit; Manna, Moutusi; Mokkila, Sini; Javanainen, Matti; Rog, Tomasz; Liu, Zheng; Bittman, Robert; Vattulainen, Ilpo; Ikonen, Elina
2014-01-01
Bacterial cholesterol oxidase is commonly used as an experimental tool to reduce cellular cholesterol content. That the treatment also generates the poorly degradable metabolite 4-cholesten-3-one (cholestenone) has received less attention. Here, we investigated the membrane partitioning of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either cholesterol oxidase treated or part of cellular cholesterol was exchanged for cholestenone with cyclodextrin, cell migration during 22 h was markedly inhibited. Instead, when a similar fraction of cholesterol was removed using cyclodextrin, cells replenished their cholesterol content in 3 h and migrated similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone. PMID:25157633
Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy
Fry, Christopher S.; Lee, Jonah D.; Jackson, Janna R.; Kirby, Tyler J.; Stasko, Shawn A.; Liu, Honglu; Dupont-Versteegden, Esther E.; McCarthy, John J.; Peterson, Charlotte A.
2014-01-01
Our aim in the current study was to determine the necessity of satellite cells for long-term muscle growth and maintenance. We utilized a transgenic Pax7-DTA mouse model, allowing for the conditional depletion of > 90% of satellite cells with tamoxifen treatment. Synergist ablation surgery, where removal of synergist muscles places functional overload on the plantaris, was used to stimulate robust hypertrophy. Following 8 wk of overload, satellite cell-depleted muscle demonstrated an accumulation of extracellular matrix (ECM) and fibroblast expansion that resulted in reduced specific force of the plantaris. Although the early growth response was normal, an attenuation of hypertrophy measured by both muscle wet weight and fiber cross-sectional area occurred in satellite cell-depleted muscle. Isolated primary myogenic progenitor cells (MPCs) negatively regulated fibroblast ECM mRNA expression in vitro, suggesting a novel role for activated satellite cells/MPCs in muscle adaptation. These results provide evidence that satellite cells regulate the muscle environment during growth.—Fry, C. S., Lee, J. D., Jackson, J. R., Kirby, T. J., Stasko, S. A., Liu, H., Dupont-Versteegden, E. E., McCarthy, J. J., Peterson, C. A. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. PMID:24376025
Ali, Shah R; Ranjbarvaziri, Sara; Talkhabi, Mahmood; Zhao, Peng; Subat, Ali; Hojjat, Armin; Kamran, Paniz; Müller, Antonia M S; Volz, Katharina S; Tang, Zhaoyi; Red-Horse, Kristy; Ardehali, Reza
2014-09-12
Fibrosis is mediated partly by extracellular matrix-depositing fibroblasts in the heart. Although these mesenchymal cells are reported to have multiple embryonic origins, the functional consequence of this heterogeneity is unknown. We sought to validate a panel of surface markers to prospectively identify cardiac fibroblasts. We elucidated the developmental origins of cardiac fibroblasts and characterized their corresponding phenotypes. We also determined proliferation rates of each developmental subset of fibroblasts after pressure overload injury. We showed that Thy1(+)CD45(-)CD31(-)CD11b(-)Ter119(-) cells constitute the majority of cardiac fibroblasts. We characterized these cells using flow cytometry, epifluorescence and confocal microscopy, and transcriptional profiling (using reverse transcription polymerase chain reaction and RNA-seq). We used lineage tracing, transplantation studies, and parabiosis to show that most adult cardiac fibroblasts derive from the epicardium, a minority arises from endothelial cells, and a small fraction from Pax3-expressing cells. We did not detect generation of cardiac fibroblasts by bone marrow or circulating cells. Interestingly, proliferation rates of fibroblast subsets on injury were identical, and the relative abundance of each lineage remained the same after injury. The anatomic distribution of fibroblast lineages also remained unchanged after pressure overload. Furthermore, RNA-seq analysis demonstrated that Tie2-derived and Tbx18-derived fibroblasts within each operation group exhibit similar gene expression profiles. The cellular expansion of cardiac fibroblasts after transaortic constriction surgery was not restricted to any single developmental subset. The parallel proliferation and activation of a heterogeneous population of fibroblasts on pressure overload could suggest that common signaling mechanisms stimulate their pathological response. © 2014 American Heart Association, Inc.
[Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].
Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y
2016-09-01
To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.
Chen, Jing-Yi; Li, Chien-Feng; Kuo, Cheng-Chin; Tsai, Kelvin K; Hou, Ming-Feng; Hung, Wen-Chun
2014-07-25
Expression of indoleamine 2,3-dioxygenase (IDO) in primary breast cancer increases tumor growth and metastasis. However, the clinical significance of stromal IDO and the regulation of stromal IDO are unclear. Metabolomics and enzyme-linked immunosorbent assay (ELISA) were used to study the effect of cyclooxygenase-2 (COX-2)-overexpressing breast cancer cells on IDO expression in co-cultured human breast fibroblasts. Biochemical inhibitors and short-hairpin RNA (shRNA) were used to clarify how prostaglandin E2 (PGE2) upregulates IDO expression. Associations of stromal IDO with clinicopathologic parameters were tested in tumor specimens. An orthotopic animal model was used to examine the effect of COX-2 and IDO inhibitors on tumor growth. Kynurenine, the metabolite generated by IDO, increases in the supernatant of fibroblasts co-cultured with COX-2-overexpressing breast cancer cells. PGE2 released by cancer cells upregulates IDO expression in fibroblasts through an EP4/signal transducer and activator of transcription 3 (STAT3)-dependent pathway. Conversely, fibroblast-secreted kynurenine promotes the formation of the E-cadherin/Aryl hydrocarbon receptor (AhR)/S-phase kinase-associated protein 2 (Skp2) complex, resulting in degradation of E-cadherin to increase breast cancer invasiveness. The enhancement of motility of breast cancer cells induced by co-culture with fibroblasts is suppressed by the IDO inhibitor 1-methyl-tryptophan. Pathological analysis demonstrates that upregulation of stromal IDO is a poor prognosis factor and is associated with of COX-2 overexpression. Co-expression of cancer COX-2 and stromal IDO predicts a worse disease-free and metastasis-free survival. Finally, COX-2 and IDO inhibitors inhibit tumor growth in vivo. Integration of metabolomics and molecular and pathological approaches reveals the interplay between cancer and stroma via COX-2, and IDO promotes tumor progression and predicts poor patient survival.
Impaired wound healing in mice deficient in a matricellular protein SPARC (osteonectin, BM-40)
Basu, Amitabha; Kligman, Lorraine H; Samulewicz, Stefan J; Howe, Chin C
2001-01-01
Background SPARC is a matricellular protein involved in cell-matrix interactions. From expression patterns at the wound site and in vitro studies, SPARC has been implicated in the control of wound healing. Here we examined the function of SPARC in cutaneous wound healing using SPARC-null mice and dermal fibroblasts derived from them. Results In large (25 mm) wounds, SPARC-null mice showed a significant delay in healing as compared to wild-type mice (31 days versus 24 days). Granulation tissue formation and extracellular matrix protein production were delayed in small 6 mm SPARC-null wounds initially but were resolved by day 6. In in vitro wound-healing assays, while wild-type primary dermal fibroblasts showed essentially complete wound closure at 11 hours, wound closure of SPARC-null cells was incomplete even at 31 hours. Addition of purified SPARC restored the normal time course of wound closure. Treatment of SPARC-null cells with mitomycin C to analyze cell migration without cell proliferation showed that wound repair remained incomplete after 31 hours. Cell proliferation as measured by 3H-thymidine incorporation and collagen gel contraction by SPARC-null cells were not compromised. Conclusions A significant delay in healing large excisional wounds and setback in granulation tissue formation and extracellular matrix protein production in small wounds establish that SPARC is required for granulation tissue formation during normal repair of skin wounds in mice. A defect in wound closure in vitro indicates that SPARC regulates cell migration. We conclude that SPARC plays a role in wound repair by promoting fibroblast migration and thus granulation tissue formation. PMID:11532190
Cytotoxicity Evaluation of Two Bis-Acryl Composite Resins Using Human Gingival Fibroblasts.
Gonçalves, Fabiano Palmeira; Alves, Gutemberg; Guimarães, Vladi Oliveira; Gallito, Marco Antônio; Oliveira, Felipe; Scelza, Míriam Zaccaro
2016-01-01
Bis-acryl resins are used for temporary dental restorations and have shown advantages over other materials. The aim of this work was to evaluate the in vitro cytotoxicity of two bis-acryl composite resins (Protemp 4 and Luxatemp Star), obtained at 1, 7 and 40 days after mixing the resin components, using a standardized assay employing human primary cells closely related to oral tissues. Human gingival fibroblast cell cultures were exposed for 24 h to either bis-acryl composite resins, polystyrene beads (negative control) and latex (positive control) extracts obtained after incubation by the different periods, at 37 °C under 5% CO2. Cell viability was evaluated using a multiparametric procedure involving sequential assessment (using the same cells) of mitochondrial activity (XTT assay), membrane integrity (neutral red test) and total cell density (crystal violet dye exclusion test). The cells exposed to the resin extracts showed cell viability indexes exceeding 75% after 24 h. Even when cells were exposed to extracts prepared with longer conditioning times, the bis-acryl composite resins showed no significant cytotoxic effects (p>0.05), compared to the control group or in relation to the first 24 h of contact with the products. There were no differences among the results obtained for the bis-acryl composite resins evaluated 24 h, 7 days and 40 days after mixing. It may be concluded that the bis-acryl resins Protemp 4 and Luxatemp Star were cytocompatible with human gingival fibroblasts, suggesting that both materials are suitable for use in contact with human tissues.
Normal Human Fibroblasts Are Resistant to RAS-Induced Senescence
Benanti, Jennifer A.; Galloway, Denise A.
2004-01-01
Oncogenic stimuli are thought to induce senescence in normal cells in order to protect against transformation and to induce proliferation in cells with altered p53 and/or retinoblastoma (Rb) pathways. In human fibroblasts, RAS initiates senescence through upregulation of the cyclin-dependent kinase inhibitor p16INK4A. We show here that in contrast to cultured fibroblast strains, freshly isolated normal fibroblasts are resistant to RAS-induced senescence and instead show some characteristics of transformation. RAS did not induce growth arrest or expression of senescence-associated β-galactosidase, and Rb remained hyperphosphorylated despite elevated levels of p16. Instead, RAS promoted anchorage-independent growth of normal fibroblasts, although expression of hTert with RAS increased colony formation and allowed normal fibroblasts to bypass contact inhibition. To test the hypothesis that p16 levels determine how cells respond to RAS, we expressed RAS in freshly isolated fibroblasts that expressed very low levels of p16, in hTert-immortalized fibroblasts that had accumulated intermediate levels of p16, and in IMR90 fibroblasts with high levels of p16. RAS induced growth arrest in cells with higher p16 levels, and this effect was reversed by p16 knockdown in the hTert-immortalized fibroblasts. These findings indicate that culture-imposed stress sensitizes cells to RAS-induced arrest, whereas early passage cells do not arrest in response to RAS. PMID:15024073
Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells
Tielen, Frans; Elstak, Edo; Benschop, Julian; Grimbergen, Max; Stallen, Jan; Janssen, Richard; van Marle, Andre; Essrich, Christian
2017-01-01
Phenotypic assays using human primary cells are highly valuable tools for target discovery and validation in drug discovery. Expression knockdown (KD) of such targets in these assays allows the investigation of their role in models of disease processes. Therefore, efficient and fast modes of protein KD in phenotypic assays are required. The CRISPR/Cas9 system has been shown to be a versatile and efficient means of gene inactivation in immortalized cell lines. Here we describe the use of adenoviral (AdV) CRISPR/Cas9 vectors for efficient gene inactivation in two human primary cell types, normal human lung fibroblasts and human bronchial epithelial cells. The effects of gene inactivation were studied in the TGF-β-induced fibroblast to myofibroblast transition assay (FMT) and the epithelial to mesenchymal transition assay (EMT), which are SMAD3 dependent and reflect pathogenic mechanisms observed in fibrosis. Co-transduction (co-TD) of AdV Cas9 with SMAD3-targeting guide RNAs (gRNAs) resulted in fast and efficient genome editing judged by insertion/deletion (indel) formation, as well as significant reduction of SMAD3 protein expression and nuclear translocation. This led to phenotypic changes downstream of SMAD3 inhibition, including substantially decreased alpha smooth muscle actin and fibronectin 1 expression, which are markers for FMT and EMT, respectively. A direct comparison between co-TD of separate Cas9 and gRNA AdV, versus TD with a single “all-in-one” Cas9/gRNA AdV, revealed that both methods achieve similar levels of indel formation. These data demonstrate that AdV CRISPR/Cas9 is a useful and efficient tool for protein KD in human primary cell phenotypic assays. The use of AdV CRISPR/Cas9 may offer significant advantages over the current existing tools and should enhance target discovery and validation opportunities. PMID:28800587
Mansukhani, Alka; Bellosta, Paola; Sahni, Malika; Basilico, Claudio
2000-01-01
Fibroblast growth factors (FGF) play a critical role in bone growth and development affecting both chondrogenesis and osteogenesis. During the process of intramembranous ossification, which leads to the formation of the flat bones of the skull, unregulated FGF signaling can produce premature suture closure or craniosynostosis and other craniofacial deformities. Indeed, many human craniosynostosis disorders have been linked to activating mutations in FGF receptors (FGFR) 1 and 2, but the precise effects of FGF on the proliferation, maturation and differentiation of the target osteoblastic cells are still unclear. In this report, we studied the effects of FGF treatment on primary murine calvarial osteoblast, and on OB1, a newly established osteoblastic cell line. We show that FGF signaling has a dual effect on osteoblast proliferation and differentiation. FGFs activate the endogenous FGFRs leading to the formation of a Grb2/FRS2/Shp2 complex and activation of MAP kinase. However, immature osteoblasts respond to FGF treatment with increased proliferation, whereas in differentiating cells FGF does not induce DNA synthesis but causes apoptosis. When either primary or OB1 osteoblasts are induced to differentiate, FGF signaling inhibits expression of alkaline phosphatase, and blocks mineralization. To study the effect of craniosynostosis-linked mutations in osteoblasts, we introduced FGFR2 carrying either the C342Y (Crouzon syndrome) or the S252W (Apert syndrome) mutation in OB1 cells. Both mutations inhibited differentiation, while dramatically inducing apoptosis. Furthermore, we could also show that overexpression of FGF2 in transgenic mice leads to increased apoptosis in their calvaria. These data provide the first biochemical analysis of FGF signaling in osteoblasts, and show that FGF can act as a cell death inducer with distinct effects in proliferating and differentiating osteoblasts. PMID:10851026
Nowakowska, Danuta; Saczko, Jolanta; Bieżuńska-Kusiak, Katarzyna; Choromańska, Anna; Dubińska-Magiera, Magda; Ziętek, Marek; Kulbacka, Julita
2014-03-01
Contemporary gingival retraction chemicals are not without disagreeable side-effects; there appears to be no best gingival retraction agent. The aim of this research was to select the most biocompatible retraction agents based on examination of the parameters of oxidative stress in fibroblasts derived from human primary cell culture. In this in vitro study we evaluated parameters of oxidative stress after treatment with retraction agents. Visine, Afrin, Neosynephrin, Strazolin and Adrenaline were the commercial products studied as gingival retraction agents. Additionally we examined three experimental agents. We determined lipid peroxidation and protein damage and monitored changes in cellular cytoskeleton proteins. Proliferative and survival efficiency were also evaluated. Oxidative changes included by evaluated retraction agents were at the lowest level in the case of the experimental gels. Also cytoskeleton observations suggest that the experimental agents did not degrade the cellular structure of human gingival fibroblasts (HGFs). The current study was performed because of a need to project new nontoxic and save retraction agents for peridontological therapeutic usage. We suggest that the new investigational gels are most biocompatible with periodontal tissues and can be applied as new vasoconstrictor chemical retraction agents. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stepensky, Polina; Rensing-Ehl, Anne; Gather, Ruth; Revel-Vilk, Shoshana; Fischer, Ute; Nabhani, Schafiq; Beier, Fabian; Brümmendorf, Tim H.; Fuchs, Sebastian; Zenke, Simon; Firat, Elke; Pessach, Vered Molho; Borkhardt, Arndt; Rakhmanov, Mirzokhid; Keller, Bärbel; Warnatz, Klaus; Eibel, Hermann; Niedermann, Gabriele; Elpeleg, Orly
2015-01-01
Autoimmune cytopenia is a frequent manifestation of primary immunodeficiencies. Two siblings presented with Evans syndrome, viral infections, and progressive leukopenia. DNA available from one patient showed a homozygous frameshift mutation in tripeptidyl peptidase II (TPP2) abolishing protein expression. TPP2 is a serine exopeptidase involved in extralysosomal peptide degradation. Its deficiency in mice activates cell death programs and premature senescence. Similar to cells from naïve, uninfected TPP2-deficient mice, patient cells showed increased major histocompatibility complex I expression and most CD8+ T-cells had a senescent CCR7-CD127−CD28−CD57+ phenotype with poor proliferative responses and enhanced staurosporine-induced apoptosis. T-cells showed increased expression of the effector molecules perforin and interferon-γ with high expression of the transcription factor T-bet. Age-associated B-cells with a CD21− CD11c+ phenotype expressing T-bet were increased in humans and mice, combined with antinuclear antibodies. Moreover, markers of senescence were also present in human and murine TPP2-deficient fibroblasts. Telomere lengths were normal in patient fibroblasts and granulocytes, and low normal in lymphocytes, which were compatible with activation of stress-induced rather than replicative senescence programs. TPP2 deficiency is the first primary immunodeficiency linking premature immunosenescence to severe autoimmunity. Determination of senescent lymphocytes should be part of the diagnostic evaluation of children with refractory multilineage cytopenias. PMID:25414442
Yang, Yang; Poe, Jonathan C.; Yang, Lisong; Fedoriw, Andrew; Desai, Siddhi; Magnuson, Terry; Li, Zhiguo; Fedoriw, Yuri; Araki, Kimi; Gao, Yanzhe; Tateishi, Satoshi; Sarantopoulos, Stefanie; Vaziri, Cyrus
2016-01-01
In cultured cancer cells the E3 ubiquitin ligase Rad18 activates Trans-Lesion Synthesis (TLS) and the Fanconi Anemia (FA) pathway. However, physiological roles of Rad18 in DNA damage tolerance and carcinogenesis are unknown and were investigated here. Primary hematopoietic stem and progenitor cells (HSPC) co-expressed RAD18 and FANCD2 proteins, potentially consistent with a role for Rad18 in FA pathway function during hematopoiesis. However, hematopoietic defects typically associated with fanc-deficiency (decreased HSPC numbers, reduced engraftment potential of HSPC, and Mitomycin C (MMC) -sensitive hematopoiesis), were absent in Rad18−/− mice. Moreover, primary Rad18−/− mouse embryonic fibroblasts (MEF) retained robust Fancd2 mono-ubiquitination following MMC treatment. Therefore, Rad18 is dispensable for FA pathway activation in untransformed cells and the Rad18 and FA pathways are separable in hematopoietic cells. In contrast with responses to crosslinking agents, Rad18−/− HSPC were sensitive to in vivo treatment with the myelosuppressive agent 7,12 Dimethylbenz[a]anthracene (DMBA). Rad18-deficient fibroblasts aberrantly accumulated DNA damage markers after DMBA treatment. Moreover, in vivo DMBA treatment led to increased incidence of B cell malignancy in Rad18−/− mice. These results identify novel hematopoietic functions for Rad18 and provide the first demonstration that Rad18 confers DNA damage tolerance and tumor-suppression in a physiological setting. PMID:26883629
Meléndez, Giselle C.; Manteufel, Edward J.; Dehlin, Heather M.; Register, Thomas C.; Levick, Scott P.
2015-01-01
Background The sensory nerve neuropeptide substance P (SP) regulates cardiac fibrosis in rodents under pressure overload conditions. Interestingly, SP induces transient increase expression of specific genes in isolated rat cardiac fibroblasts, without resultant changes in cell function. This suggests that SP ‘primes’ fibroblasts, but does not directly activate them. We investigated whether these unusual findings are specific to rodent fibroblasts or are translatable to a larger animal model more closely related to humans. Methods We compared the effects of SP on genes associated with extracellular matrix (ECM) regulation, cell-cell adhesion, cell-matrix adhesion and ECM in cardiac fibroblasts isolated from a non-human primate and Sprague-Dawley rats. Results We found that rodent and non-human primate cardiac fibroblasts showed similar ECM regulation and cell adhesion gene expression responses to SP. There were, however, large discrepancies in ECM genes which did not result in collagen or laminin synthesis in rat or non-human primate fibroblasts in response to SP. Conclusions This study further supports the notion that SP serves as a ‘primer’ for fibroblasts rather than initiating direct effects and suggests that rodent fibroblasts are a suitable model for studying gene and functional responses to SP in the absence of human or non-human primate fibroblasts. PMID:25550118
Deppe, Janina; Popp, Tanja; Egea, Virginia; Steinritz, Dirk; Schmidt, Annette; Thiermann, Horst; Weber, Christian; Ries, Christian
2016-05-01
Skin exposure to sulfur mustard (SM) provokes long-term complications in wound healing. Similar to chronic wounds, SM-induced skin lesions are associated with low levels of oxygen in the wound tissue. Normally, skin cells respond to hypoxia by stabilization of the transcription factor hypoxia-inducible factor 1 alpha (HIF-1α). HIF-1α modulates expression of genes including VEGFA, BNIP3, and MMP2 that control processes such as angiogenesis, growth, and extracellular proteolysis essential for proper wound healing. The results of our studies revealed that exposure of primary normal human epidermal keratinocytes (NHEK) and primary normal human dermal fibroblasts (NHDF) to SM significantly impaired hypoxia-induced HIF-1α stabilization and target gene expression in these cells. Addition of a selective inhibitor of the oxygen-sensitive prolyl hydroxylase domain-containing protein 2 (PHD-2), IOX2, fully recovered HIF-1α stability, nuclear translocation, and target gene expression in NHEK and NHDF. Moreover, functional studies using a scratch wound assay demonstrated that the application of IOX2 efficiently counteracted SM-mediated deficiencies in monolayer regeneration under hypoxic conditions in NHEK and NHDF. Our findings describe a pathomechanism by which SM negatively affects hypoxia-stimulated HIF-1α signaling in keratinocytes and fibroblasts and thus possibly contributes to delayed wound healing in SM-injured patients that could be treated with PHD-2 inhibitors.
Host responses in tissue repair and fibrosis.
Duffield, Jeremy S; Lupher, Mark; Thannickal, Victor J; Wynn, Thomas A
2013-01-24
Myofibroblasts accumulate in the spaces between organ structures and produce extracellular matrix (ECM) proteins, including collagen I. They are the primary "effector" cells in tissue remodeling and fibrosis. Previously, leukocyte progenitors termed fibrocytes and myofibroblasts generated from epithelial cells through epithelial-to-mesenchymal transition (EMT) were considered the primary sources of ECM-producing myofibroblasts in injured tissues. However, genetic fate mapping experiments suggest that mesenchyme-derived cells, known as resident fibroblasts, and pericytes are the primary precursors of scar-forming myofibroblasts, whereas epithelial cells, endothelial cells, and myeloid leukocytes contribute to fibrogenesis predominantly by producing key fibrogenic cytokines and by promoting cell-to-cell communication. Numerous cytokines derived from T cells, macrophages, and other myeloid cell populations are important drivers of myofibroblast differentiation. Monocyte-derived cell populations are key regulators of the fibrotic process: They act as a brake on the processes driving fibrogenesis, and they dismantle and degrade established fibrosis. We discuss the origins, modes of activation, and fate of myofibroblasts in various important fibrotic diseases and describe how manipulation of macrophage activation could help ameliorate fibrosis.
Oxidant-Induced Cell Death and Nrf2-Dependent Antioxidative Response Are Controlled by Fra-1/AP-1
Vaz, Michelle; Machireddy, Narsa; Irving, Ashley; Potteti, Haranatha R.; Chevalier, Karinne; Kalvakolanu, Dhananjaya
2012-01-01
AP-1 (Jun/Fos) transcription factors play key roles in various biological processes, including cell death. Here we report a novel role for Fra-1 in oxidant-induced cell death controlled by modulating antioxidant gene expression. Fra-1-deficient (Fra-1Δ/Δ) mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts (PLFs) were remarkably resistant to H2O2- and diquat-induced cell death, compared to their wild-type (Fra-1+/+) counterparts. Fra-1 deficiency ablated oxidant-induced mitochondrion-dependent apoptosis. Fra-1Δ/Δ cells had elevated basal levels of antioxidant enzymes and intracellular glutathione (GSH), which were further stimulated by oxidants. Loss of Fra-1 led to an increased half-life of transcription factor Nrf2 and increased recruitment of this protein to the promoters of antioxidant genes and increased their expression. Depletion of intracellular GSH or RNA interference (RNAi)-mediated knockdown of Nqo1, Hmox1, and Nrf2 restored oxidant-induced cell death in Fra-1Δ/Δ cells. Thus, Fra-1 appears to increase susceptibility to oxidants and promotes cell death by attenuating Nrf2-driven antioxidant responses. PMID:22393254
Identification of cell density signal molecule
Schwarz, R.I.
1998-04-21
Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use. 2 figs.
Daly, Aisling J; McIlreavey, Leanne; Irwin, Chris R
2008-07-01
Invasion and metastasis of oral squamous cell carcinoma (OSCC) is dependent on signals received from stromal fibroblasts present in the surrounding connective tissue. The aim of this study was to investigate the regulation of expression of two important signaling molecules--HGF and SDF-1--by both stromal fibroblasts and their 'activated' form, myofibroblasts, and to determine the role of these two factors in stimulating OSCC cell invasion in vitro. Fibroblasts and myofibroblasts produced similar levels of HGF and SDF-1. IL-1alpha and OSCC cell conditioned medium both stimulated HGF and SDF-1 expression, while TGF-beta(1) inhibited production of each factor. Myofibroblast-derived conditioned medium stimulated OSCC cell invasion through matrigel. Blocking antibodies to both HGF and SDF-1 reduced the level of invasion. In fibroblast-free organotypic raft cultures, addition of HGF and SDF-1 stimulated OSCC cell invasion into the underlying collagen gel, although the pattern of invasion differed from that induced by fibroblasts. Fibroblast-derived HGF and SDF-1 appear to play central roles in the reciprocal interactions between OSCC cells and underlying stromal fibroblasts leading to the local invasion of oral cancer.
Öztürk Akcora, Büsra; Storm, Gert; Prakash, Jai; Bansal, Ruchi
2017-01-01
Hepatic fibrosis, a progressive chronic disease mainly caused by hepatitis viral infections, alcohol abuse or metabolic syndrome leading to liver dysfunction and is the growing cause of mortality worldwide. Tyrosine kinase inhibitor BIBF1120 (Nintedanib) has been evaluated in clinical trials for idiopathic pulmonary fibrosis and advanced Hepatocellular carcinoma, but has not been explored for liver fibrosis yet. In this study, we aimed to investigate the therapeutic effects and mechanism of BIBF1120 in liver fibrogenesis. The effects of BIBF1120 were evaluated in TGFβ-activated mouse 3T3 fibroblasts, LX2 cells, primary human hepatic stellate cells (HSCs) and CCl4-induced liver fibrogenesis mouse model. Fibroblasts-conditioned medium studies were performed to assess the paracrine effects on macrophages and endothelial cells. In-vitro in TGFβ-activated fibroblasts, BIBF1120 significantly inhibited expression of major fibrotic parameters, wound-healing and contractility. In vivo in CCl4-induced acute liver injury model, post-disease BIBF1120 administration significantly attenuated collagen accumulation and HSC activation. Interestingly, BIBF1120 drastically inhibited intrahepatic inflammation and angiogenesis. To further elucidate the mechanism of action, 3T3-conditioned medium studies demonstrated increased 3T3-mediated macrophage chemotaxis and endothelial cells tube formation and activation, which was significantly decreased by BIBF1120. These results suggests that BIBF1120 can be a potential therapeutic approach for the treatment of liver fibrosis. PMID:28291245
Moon, JoonHo; Lee, Choongil; Kim, Su Jin; Choi, Ji-Yei; Lee, Byeong Chun; Kim, Jin-Soo; Jang, Goo
2014-05-27
Although noncancerous immortalized cell lines have been developed by introducing genes into human and murine somatic cells, such cell lines have not been available in large domesticated animals like pigs. For immortalizing porcine cells, primary porcine fetal fibroblasts were isolated and cultured using the human telomerase reverse transcriptase (hTERT) gene. After selecting cells with neomycin for 2 weeks, outgrowing colonized cells were picked up and subcultured for expansion. Immortalized cells were cultured for more than 9 months without changing their doubling time (~24 hours) or their diameter (< 20 µm) while control cells became replicatively senescent during the same period. Even a single cell expanded to confluence in 100 mm dishes. Furthermore, to knockout the CMAH gene, designed plasmids encoding a transcription activator-like effector nuclease (TALENs) pairs were transfected into the immortalized cells. Each single colony was analyzed by the mutation-sensitive T7 endonuclease I assay, fluorescent PCR, and dideoxy sequencing to obtain three independent clonal populations of cells that contained biallelic modifications. One CMAH knockout clone was chosen and used for somatic cell nuclear transfer. Cloned embryos developed to the blastocyst stage. In conclusion, we demonstrated that immortalized porcine fibroblasts were successfully established using the human hTERT gene, and the TALENs enabled biallelic gene disruptions in these immortalized cells.
Moon, JoonHo; Lee, Choongil; Kim, Su Jin; Choi, Ji-Yei; Lee, Byeong Chun; Kim, Jin-Soo; Jang, Goo
2014-01-01
Although noncancerous immortalized cell lines have been developed by introducing genes into human and murine somatic cells, such cell lines have not been available in large domesticated animals like pigs. For immortalizing porcine cells, primary porcine fetal fibroblasts were isolated and cultured using the human telomerase reverse transcriptase (hTERT) gene. After selecting cells with neomycin for 2 weeks, outgrowing colonized cells were picked up and subcultured for expansion. Immortalized cells were cultured for more than 9 months without changing their doubling time (~24 hours) or their diameter (< 20 µm) while control cells became replicatively senescent during the same period. Even a single cell expanded to confluence in 100 mm dishes. Furthermore, to knockout the CMAH gene, designed plasmids encoding a transcription activator-like effector nuclease (TALENs) pairs were transfected into the immortalized cells. Each single colony was analyzed by the mutation-sensitive T7 endonuclease I assay, fluorescent PCR, and dideoxy sequencing to obtain three independent clonal populations of cells that contained biallelic modifications. One CMAH knockout clone was chosen and used for somatic cell nuclear transfer. Cloned embryos developed to the blastocyst stage. In conclusion, we demonstrated that immortalized porcine fibroblasts were successfully established using the human hTERT gene, and the TALENs enabled biallelic gene disruptions in these immortalized cells. PMID:24866481
Rojas, Isolde G; Boza, Yadira V; Spencer, Maria Loreto; Flores, Maritza; Martínez, Alejandra
2012-01-01
Actinic cheilitis (AC) is characterized by epithelial and connective tissue alterations caused by ultraviolet sunlight overexposure known as photodamage. Fibroblasts have been linked to photodamage and tumor progression during skin carcinogenesis; however, their role in early lip carcinogenesis remains unknown. The aim of this study was to assess the density of fibroblasts in AC and normal lip (NL) samples and determine their association with markers of lip photodamage. Fibroblasts, mast cells, p53, COX-2, and elastin were detected in NL (n = 20) and AC (n = 28) biopsies using immunohistochemistry/histochemistry. Mast cell and fibroblast density and epithelial p53 and COX-2 expression scores were then obtained. Elastosis was scored 1-4 according to elastin fiber density and tortuosity. Fibroblasts, mast cells, p53, COX-2, and elastosis were increased in AC as compared to NL (P < 0.001). Multivariate analysis showed an association between fibroblast and mast cell density at the papillary and reticular areas of AC and NL (P < 0.05). Papillary fibroblast density was also associated with epithelial p53 and COX-2 expression (P < 0.05). Increased fibroblast density, both papillary and reticular, was found in the high elastosis group (scores 3-4) as compared to the low elastosis group (scores 1-2) (P < 0.01). Increased reticular mast cell density was detected only in the high elastosis group (P < 0.01). Fibroblasts are increased in AC, and they are associated with mast cell density, epithelial p53 and COX-2 expression, and actinic elastosis. Therefore, fibroblasts may contribute to lip photodamage and could be considered useful markers of early lip carcinogenesis. © 2011 John Wiley & Sons A/S.
Chaudhri, Virendra K.; Salzler, Gregory G.; Dick, Salihah A.; Buckman, Melanie S.; Sordella, Raffaella; Karoly, Edward D.; Mohney, Robert; Stiles, Brendon M.; Elemento, Olivier; Altorki, Nasser K.; McGraw, Timothy E.
2013-01-01
SUMMARY Cancer cells undergo a metabolic reprogramming but little is known about metabolic alterations of other cells within tumors. We use mass spectrometry-based profiling and a metabolic pathway-based systems analysis to compare 21 primary human lung tumor cancer-associated fibroblast lines (CAFs) to “normal” fibroblast lines (NFs) generated from adjacent non-neoplastic lung tissue. CAFs are pro-tumorigenic, although the mechanisms by which CAFs support tumors have not been elucidated. We have identified several pathways whose metabolite abundance globally distinguished CAFs from NFs, suggesting that metabolic alterations are not limited to cancer cells. In addition, we found metabolic differences between CAFs from high and low glycolytic tumors that might reflect distinct roles of CAFs related to the tumor’s glycolytic capacity. One such change was an increase of dipeptides in CAFs. Dipeptides primarily arise from the breakdown of proteins. We found in CAFs an increase in basal macroautophagy which likely accounts for the increase in dipeptides. Furthermore, we demonstrate a difference between CAFs and NFs in the induction of autophagy promoted by reduced glucose. In sum, our data suggest increased autophagy may account for metabolic differences between CAFs and NFs and may play additional as yet undetermined roles in lung cancer. PMID:23475953
Khonsari, H; Schneider, M; Al-Mahdawi, S; Chianea, Y G; Themis, M; Parris, C; Pook, M A; Themis, M
2016-12-01
Friedreich ataxia (FRDA) is a progressive neurodegenerative disease caused by deficiency of frataxin protein, with the primary sites of pathology being the large sensory neurons of the dorsal root ganglia and the cerebellum. FRDA is also often accompanied by severe cardiomyopathy and diabetes mellitus. Frataxin is important in mitochondrial iron-sulfur cluster (ISC) biogenesis and low-frataxin expression is due to a GAA repeat expansion in intron 1 of the FXN gene. FRDA cells are genomically unstable, with increased levels of reactive oxygen species and sensitivity to oxidative stress. Here we report the identification of elevated levels of DNA double strand breaks (DSBs) in FRDA patient and YG8sR FRDA mouse model fibroblasts compared to normal fibroblasts. Using lentivirus FXN gene delivery to FRDA patient and YG8sR cells, we obtained long-term overexpression of FXN mRNA and frataxin protein levels with reduced DSB levels towards normal. Furthermore, γ-irradiation of FRDA patient and YG8sR cells revealed impaired DSB repair that was recovered on FXN gene transfer. This suggests that frataxin may be involved in DSB repair, either directly by an unknown mechanism, or indirectly via ISC biogenesis for DNA repair enzymes, which may be essential for the prevention of neurodegeneration.
Negahdari, Samira; Galehdari, Hamid; Kesmati, Mahnaz; Rezaie, Anahita; Shariati, Gholamreza
2017-01-01
Among the most important factors in wound healing pathways are transforming growth factor beta1 and vascular endothelial growth factor. Fibroblasts are the main cell in all phases wound closure. In this study, the extracts of plant materials such as Adiantum capillus-veneris , Commiphora molmol , Aloe vera , and henna and one mixture of them were used to treatment of normal mouse skin fibroblasts. Cytotoxic effects of each extract and their mixture were assessed on mouse skin fibroblasts cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We performed migration assays to assess migration properties of mouse skin fibroblasts cells in response to the extracts. Changes in the gene expression of the Tgf β1 and Vegf-A genes were monitored by real-time polymerase chain reaction. A. capillus-veneris , C. molmol and henna extract improved the expression of Tgfβ1 gene. All used extracts upregulated the expression of Vegf-A gene and promoted the migration of mouse fibroblast cells in vitro . The present study demonstrated that the mentioned herbal extracts might be effective in wound healing, through the improvement in the migration of fibroblast cells and regulating the gene expression of Tgfβ1 and Vegf-A genes in fibroblast cells treated with extracts.
Perineurial-like Cells and EMA Expression in the Suprachoroidal Region of the Human Eye.
Gilbert, Andrea R; Chévez-Barrios, Patricia; Cykowski, Matthew D
2018-05-01
The suprachoroidal region of the eye comprises vascular channels, melanocytes, and thin fibroblasts with elongated cytoplasm that are positioned directly adjacent to the densely collagenous sclera. Morphological similarities between these suprachoroidal fibroblasts and arachnoid cells and perineurial cells have been recognized, but whether these fibroblasts have a perineurial cell-like immunophenotype is not known. To further examine the relationship of these three cell types, we investigated the comparative expression of epithelial membrane antigen (EMA), the tight junction protein claudin-1, glucose transporter-1 (Glut-1), and CD34 in suprachoroidal fibroblasts, arachnoid of the optic nerve sheath, and perineurium of ciliary nerves in eight human eye specimens. Granular, diffuse, and cytoplasmic EMA expression was seen in suprachoroidal fibroblasts, but this was not contiguous with the similar pattern of EMA expression in adjacent perineurium and arachnoid. CD34 expression in suprachoroidal fibroblasts was also seen, similar to arachnoid and perineurium. Claudin-1 and Glut-1 were not consistently expressed in suprachoroidal fibroblasts, distinguishing them from perineurial cells in particular and suggesting that these fibroblasts do not arise directly from adjacent arachnoid or perineurium. Nonetheless, the overlapping morphology and protein expression suggest phenotypic similarities in these cells that protect and support adjacent retina, optic nerve, and peripheral nerve.
Brentnall, Teresa A; Lai, Lisa A; Coleman, Joshua; Bronner, Mary P; Pan, Sheng; Chen, Ru
2012-01-01
Cancer-associated fibroblasts, comprised of activated fibroblasts or myofibroblasts, are found in the stroma surrounding solid tumors. These myofibroblasts promote invasion and metastasis of cancer cells. Mechanisms regulating the activation of the fibroblasts and the initiation of invasive tumorigenesis are of great interest. Upregulation of the cytoskeletal protein, palladin, has been detected in the stromal myofibroblasts surrounding many solid cancers and in expression screens for genes involved in invasion. Using a pancreatic cancer model, we investigated the functional consequence of overexpression of exogenous palladin in normal fibroblasts in vitro and its effect on the early stages of tumor invasion. Palladin expression in stromal fibroblasts occurs very early in tumorigenesis. In vivo, concordant expression of palladin and the myofibroblast marker, alpha smooth muscle actin (α-SMA), occurs early at the dysplastic stages in peri-tumoral stroma and progressively increases in pancreatic tumorigenesis. In vitro introduction of exogenous 90 kD palladin into normal human dermal fibroblasts (HDFs) induces activation of stromal fibroblasts into myofibroblasts as marked by induction of α-SMA and vimentin, and through the physical change of cell morphology. Moreover, palladin expression in the fibroblasts enhances cellular migration, invasion through the extracellular matrix, and creation of tunnels through which cancer cells can follow. The fibroblast invasion and creation of tunnels results from the development of invadopodia-like cellular protrusions which express invadopodia proteins and proteolytic enzymes. Palladin expression in fibroblasts is triggered by the co-culture of normal fibroblasts with k-ras-expressing epithelial cells. Overall, palladin expression can impart myofibroblast properties, in turn promoting the invasive potential of these peri-tumoral cells with invadopodia-driven degradation of extracellular matrix. Palladin expression in fibroblasts can be triggered by k-ras expression in adjacent epithelial cells. This data supports a model whereby palladin-activated fibroblasts facilitate stromal-dependent metastasis and outgrowth of tumorigenic epithelium.
Human Lung Fibroblasts Present Bacterial Antigens to Autologous Lung Th Cells.
Hutton, Andrew J; Polak, Marta E; Spalluto, C Mirella; Wallington, Joshua C; Pickard, Chris; Staples, Karl J; Warner, Jane A; Wilkinson, Tom M A
2017-01-01
Lung fibroblasts are key structural cells that reside in the submucosa where they are in contact with large numbers of CD4 + Th cells. During severe viral infection and chronic inflammation, the submucosa is susceptible to bacterial invasion by lung microbiota such as nontypeable Haemophilus influenzae (NTHi). Given their proximity in tissue, we hypothesized that human lung fibroblasts play an important role in modulating Th cell responses to NTHi. We demonstrate that fibroblasts express the critical CD4 + T cell Ag-presentation molecule HLA-DR within the human lung, and that this expression can be recapitulated in vitro in response to IFN-γ. Furthermore, we observed that cultured lung fibroblasts could internalize live NTHi. Although unable to express CD80 and CD86 in response to stimulation, fibroblasts expressed the costimulatory molecules 4-1BBL, OX-40L, and CD70, all of which are related to memory T cell activation and maintenance. CD4 + T cells isolated from the lung were predominantly (mean 97.5%) CD45RO + memory cells. Finally, cultured fibroblasts activated IFN-γ and IL-17A cytokine production by autologous, NTHi-specific lung CD4 + T cells, and cytokine production was inhibited by a HLA-DR blocking Ab. These results indicate a novel role for human lung fibroblasts in contributing to responses against bacterial infection through activation of bacteria-specific CD4 + T cells. Copyright © 2016 by The American Association of Immunologists, Inc.
Aloe vera: an in vitro study of effects on corneal wound closure and collagenase activity.
Curto, Elizabeth M; Labelle, Amber; Chandler, Heather L
2014-11-01
To evaluate the in vitro effects of an aloe vera solution on (i) the viability and wound healing response of corneal cells and (ii) the ability to alter collagenase and gelatinase activities. Primary cultures of corneal epithelial cells and fibroblasts were prepared from grossly normal enucleated canine globes and treated with an aloe solution (doses ranging from 0.0-2 mg/mL). Cellular viability was evaluated using a colorimetric assay. A corneal wound healing model was used to quantify cellular ingrowth across a defect made on the confluent surface. Anticollagenase and antigelatinase activities were evaluated by incubating a bacterial collagenase/gelatinase with aloe solution (doses ranging from 0.0-500 μg/mL) and comparing outcome measures to a general metalloproteinase inhibitor, 1, 10-phenanthroline, and canine serum (doses ranging from 0.0-100%). None of the concentrations of aloe solution tested significantly affected the viability of corneal epithelial cells or fibroblasts. Concentrations ≤175 μg/mL slightly accelerated corneal epithelial cell wound closure; this change was not significant. Concentrations ≥175 μg/mL significantly (P ≤ 0.001) slowed the rate of corneal fibroblast wound closure, while aloe concentrations <175 μg/mL did not significantly alter fibroblast wound closure. Aloe solution did not alter the ability for collagenase to degrade gelatin or collagen Type I but increased the ability for collagenase to degrade Type IV collagen. Although additional experiments are required, lower concentrations of aloe solution may be beneficial in healing of superficial corneal wounds to help decrease fibrosis and speed epithelialization. An increase in collagenase activity with aloe vera warrants further testing before considering in vivo studies. © 2014 American College of Veterinary Ophthalmologists.
O’Meally, Denis; Quinn, Alexander E.; Sarre, Stephen D.; Georges, Arthur; Marshall Graves, Jennifer A.
2009-01-01
Primary cell lines were established from cultures of tail and toe clips of five species of Australian dragon lizards: Tympanocryptis pinguicolla, Tympanocryptis sp., Ctenophorus fordi, Amphibolurus norrisi and Pogona vitticeps. The start of exponential cell growth ranged from 1 to 5 weeks. Cultures from all specimens had fibroblastic morphology. Cell lines were propagated continuously up to ten passages, cryopreserved and recovered successfully. We found no reduction in cell viability after short term (<6 months) storage at −80 °C. Mitotic metaphase chromosomes were harvested from these cell lines and used in differential staining, banding and fluorescent in situ hybridisation. Cell lines maintained normal diploidy in all species. This study reports a simple non-invasive method for establishing primary cell lines from Australian dragon lizards without sacrifice. The method is likely to be applicable to a range of species. Such cell lines provide a virtually unlimited source of material for cytogenetic, evolutionary and genomic studies. PMID:19199067
DNA-PKcs is critical for telomere capping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilley, David; Tanaka, Hiromi; Hande, M. Prakash
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is critical for DNA repair via the non-homologous end joining (NHEJ) pathway. Previously, it was reported that bone marrow cells and spontaneously transformed fibroblasts from SCID (severe combined immunodeficiency) mice have defects in telomere maintenance. The genetically defective SCID mouse arose spontaneously from its parental strain CB17. One known genomic alteration in SCID mice is a truncation of the extreme carboxyl-terminus of DNA-PKcs, but other as yet unidentified alterations may also exist. We have used a defined system, the DNA-PKcs knockout mouse, to investigate specifically the role DNA-PKcs specifically plays in telomere maintenance.more » We report that primary mouse embryonic fibroblasts (MEFs) and primary cultured kidney cells from 6-8 month old DNA-PKcs deficient mice accumulate a large number of telomere fusions, yet still retain wildtype telomere length. Thus, the phenotype of this defect separates the two-telomere related phenotypes, capping and length maintenance. DNA-PKcs deficient MEFs also exhibit elevated levels of chromosome fragments and breaks, which correlate with increased telomere fusions. Based on the high levels of telomere fusions observed in DNA-PKcs deficient cells, we conclude that DNA-PKcs plays an important capping role at the mammalian telomere.« less
Efficient TALEN-mediated gene knockout in livestock
Carlson, Daniel F.; Tan, Wenfang; Lillico, Simon G.; Stverakova, Dana; Proudfoot, Chris; Christian, Michelle; Voytas, Daniel F.; Long, Charles R.; Whitelaw, C. Bruce A.; Fahrenkrug, Scott C.
2012-01-01
Transcription activator-like effector nucleases (TALENs) are programmable nucleases that join FokI endonuclease with the modular DNA-binding domain of TALEs. Although zinc-finger nucleases enable a variety of genome modifications, their application to genetic engineering of livestock has been slowed by technical limitations of embryo-injection, culture of primary cells, and difficulty in producing reliable reagents with a limited budget. In contrast, we found that TALENs could easily be manufactured and that over half (23/36, 64%) demonstrate high activity in primary cells. Cytoplasmic injections of TALEN mRNAs into livestock zygotes were capable of inducing gene KO in up to 75% of embryos analyzed, a portion of which harbored biallelic modification. We also developed a simple transposon coselection strategy for TALEN-mediated gene modification in primary fibroblasts that enabled both enrichment for modified cells and efficient isolation of modified colonies. Coselection after treatment with a single TALEN-pair enabled isolation of colonies with mono- and biallelic modification in up to 54% and 17% of colonies, respectively. Coselection after treatment with two TALEN-pairs directed against the same chromosome enabled the isolation of colonies harboring large chromosomal deletions and inversions (10% and 4% of colonies, respectively). TALEN-modified Ossabaw swine fetal fibroblasts were effective nuclear donors for cloning, resulting in the creation of miniature swine containing mono- and biallelic mutations of the LDL receptor gene as models of familial hypercholesterolemia. TALENs thus appear to represent a highly facile platform for the modification of livestock genomes for both biomedical and agricultural applications. PMID:23027955
Weyemi, Urbain; Redon, Christophe E; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R; Bonner, Michael Y; Arbiser, Jack L; Bonner, William M
2015-03-01
Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year.
Weyemi, Urbain; Redon, Christophe E.; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R.; Bonner, Michael Y.; Arbiser, Jack L.; Bonner, William M.
2015-01-01
Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year. PMID:25706776
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vi, Linda; Feng, Lucy; Zhu, Rebecca D.
2009-12-10
Dupuytren's disease, (DD), is a fibroproliferative condition of the palmar fascia in the hand, typically resulting in permanent contracture of one or more fingers. This fibromatosis is similar to scarring and other fibroses in displaying excess collagen secretion and contractile myofibroblast differentiation. In this report we expand on previous data demonstrating that POSTN mRNA, which encodes the extra-cellular matrix protein periostin, is up-regulated in Dupuytren's disease cord tissue relative to phenotypically normal palmar fascia. We demonstrate that the protein product of POSTN, periostin, is abundant in Dupuytren's disease cord tissue while little or no periostin immunoreactivity is evident in patient-matchedmore » control tissues. The relevance of periostin up-regulation in DD was assessed in primary cultures of cells derived from diseased and phenotypically unaffected palmar fascia from the same patients. These cells were grown in type-1 collagen-enriched culture conditions with or without periostin addition to more closely replicate the in vivo environment. Periostin was found to differentially regulate the apoptosis, proliferation, {alpha} smooth muscle actin expression and stressed Fibroblast Populated Collagen Lattice contraction of these cell types. We hypothesize that periostin, secreted by disease cord myofibroblasts into the extra-cellular matrix, promotes the transition of resident fibroblasts in the palmar fascia toward a myofibroblast phenotype, thereby promoting disease progression.« less
Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing
2016-01-01
Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment. PMID:27272504
Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing
2016-06-07
Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment.
Cardiac Fibroblast: The Renaissance Cell
Souders, Colby A.; Bowers, Stephanie L.K.; Baudino, Troy A.
2012-01-01
The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. While a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart. PMID:19959782
In vitro effects of ascorbic acid and β-glycerophosphate on human gingival fibroblast cells.
Martinez, Elizabeth F; Donato, Tatiani A G; Arana-Chavez, Victor E
2012-10-01
Ascorbic acid (AA) and β-glycerophosphate (βG) are considered in vitro osteogenic factors important to the differentiation of osteoblastic progenitor and dental pulp cells into mineralized tissue-forming cells. So, the present study investigated in vitro if these mineralizing inducible factors (AA and βG) could influence differentiation of human gingival fibroblasts when compared with human pulp cells and osteogenic cells derived from rat calvaria cultured. The expression of osteopontin (OPN) and osteoadherin (OSAD) was analyzed by indirect immunofluorescence, immunocytochemistry as well as Western-blotting. In addition, the main ultrastructural aspects were also investigated. No mineralized matrix formation occurred on gingival fibroblasts induced with AA+βG. On these cells, no expression of OPN and OSAD was observed when compared with pulp cells, pulp cells induced with AA+βG as well as osteogenic cells. Ultrastructure analysis additionally showed that gingival fibroblasts exhibited typical fibroblast morphology with no nodule formation. The present findings showed that AA and βG could not promote a mineralized cell differentiation of human gingival fibroblasts and confirm that human dental pulp cells, as the osteogenic cells, are capable to form a mineralized extracellular. Copyright © 2012 Elsevier Ltd. All rights reserved.
Agley, Chibeza C.; Rowlerson, Anthea M.; Velloso, Cristiana P.; Lazarus, Norman L.; Harridge, Stephen D. R.
2015-01-01
The repair and regeneration of skeletal muscle requires the action of satellite cells, which are the resident muscle stem cells. These can be isolated from human muscle biopsy samples using enzymatic digestion and their myogenic properties studied in culture. Quantitatively, the two main adherent cell types obtained from enzymatic digestion are: (i) the satellite cells (termed myogenic cells or muscle precursor cells), identified initially as CD56+ and later as CD56+/desmin+ cells and (ii) muscle-derived fibroblasts, identified as CD56– and TE-7+. Fibroblasts proliferate very efficiently in culture and in mixed cell populations these cells may overrun myogenic cells to dominate the culture. The isolation and purification of different cell types from human muscle is thus an important methodological consideration when trying to investigate the innate behavior of either cell type in culture. Here we describe a system of sorting based on the gentle enzymatic digestion of cells using collagenase and dispase followed by magnetic activated cell sorting (MACS) which gives both a high purity (>95% myogenic cells) and good yield (~2.8 x 106 ± 8.87 x 105 cells/g tissue after 7 days in vitro) for experiments in culture. This approach is based on incubating the mixed muscle-derived cell population with magnetic microbeads beads conjugated to an antibody against CD56 and then passing cells though a magnetic field. CD56+ cells bound to microbeads are retained by the field whereas CD56– cells pass unimpeded through the column. Cell suspensions from any stage of the sorting process can be plated and cultured. Following a given intervention, cell morphology, and the expression and localization of proteins including nuclear transcription factors can be quantified using immunofluorescent labeling with specific antibodies and an image processing and analysis package. PMID:25650991
Zammit, C; Coope, R; Gomm, J J; Shousha, S; Johnston, C L; Coombes, R C
2002-04-08
Fibroblast growth factor 8 can transform NIH3T3 cells and its expression has been found to be associated with breast and prostate cancer. Following our finding that fibroblast growth factor 8 mRNA expression is increased in breast cancer, we have undertaken an immunohistochemistry study of fibroblast growth factor 8 expression in a series of human breast tissues and other normal tissues. Our findings confirm increased expression of fibroblast growth factor 8 in malignant breast tissue but also show significant fibroblast growth factor 8 expression in non-malignant breast epithelial cells. No significant difference in fibroblast growth factor 8 expression was found between different grades of ductal carcinoma, lobular carcinoma and ductal carcinoma in-situ or cancer of different oestrogen receptor, progesterone receptor or nodal status. The highest levels of fibroblast growth factor 8 expression were found in lactating breast tissues and fibroblast growth factor 8 was also detected in human milk. A survey of other normal tissues showed that fibroblast growth factor 8 is expressed in the proliferative cells of the dermis and epithelial cells in colon, ovary fallopian tube and uterus. Fibroblast growth factor 8 appears to be expressed in several organs in man and appears to have an importance in lactation.
Gerlach, Max; Kraft, Theresia; Brenner, Bernhard; Petersen, Björn; Niemann, Heiner; Montag, Judith
2018-06-13
During CRISPR/Cas9 mediated genome editing, site-specific double strand breaks are introduced and repaired either unspecific by non-homologous end joining (NHEJ) or sequence dependent by homology directed repair (HDR). Whereas NHEJ-based generation of gene knock-out is widely performed, the HDR-based knock-in of specific mutations remains a bottleneck. Especially in primary cell lines that are essential for the generation of cell culture and animal models of inherited human diseases, knock-in efficacy is insufficient and needs significant improvement. Here, we tested two different approaches to increase the knock-in frequency of a specific point mutation into the MYH7 -gene in porcine fetal fibroblasts. We added a small molecule inhibitor of NHEJ, SCR7 (5,6-bis((E)-benzylideneamino)-2-mercaptopyrimidin-4-ol), during genome editing and screened cell cultures for the point mutation. However, this approach did not yield increased knock-in rates. In an alternative approach, we fused humanized Cas9 (hCas9) to the N-terminal peptide of the Geminin gene ( GMNN ). The fusion protein is degraded in NHEJ-dominated cell cycle phases, which should increase HDR-rates. Using hCas9- GMNN and point mutation-specific real time PCR screening, we found a two-fold increase in genome edited cell cultures. This increase of HDR by hCas9- GMNN provides a promising way to enrich specific knock-in in porcine fibroblast cultures for somatic cloning approaches.
Differences in the Expression and Distribution of Flotillin-2 in Chick, Mice and Human Muscle Cells
Possidonio, Ana Claudia Batista; Soares, Carolina Pontes; Portilho, Débora Morueco; Midlej, Victor; Benchimol, Marlene; Butler-Browne, Gillian; Costa, Manoel Luis; Mermelstein, Claudia
2014-01-01
Myoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion. Flotillins are scaffold proteins that are essential for the formation and dynamics of lipid rafts. Flotillins have been widely studied over the last few years, but still little is known about their role during skeletal muscle differentiation. In the present study, we analyzed the expression and distribution of flotillin-2 in chick, mice and human muscle cells grown in vitro. Primary cultures of chick myogenic cells showed a decrease in the expression of flotillin-2 during the first 72 hours of muscle differentiation. Interestingly, flotillin-2 was found to be highly expressed in chick myogenic fibroblasts and weakly expressed in chick myoblasts and multinucleated myotubes. Flotillin-2 was distributed in vesicle-like structures within the cytoplasm of chick myogenic fibroblasts, in the mouse C2C12 myogenic cell line, and in neonatal human muscle cells. Cryo-immunogold labeling revealed the presence of flotillin-2 in vesicles and in Golgi stacks in chick myogenic fibroblasts. Further, brefeldin A induced a major reduction in the number of flotillin-2 containing vesicles which correlates to a decrease in myoblast fusion. These results suggest the involvement of flotillin-2 during the initial steps of skeletal myogenesis. PMID:25105415
Differences in the expression and distribution of flotillin-2 in chick, mice and human muscle cells.
Possidonio, Ana Claudia Batista; Soares, Carolina Pontes; Portilho, Débora Morueco; Midlej, Victor; Benchimol, Marlene; Butler-Browne, Gillian; Costa, Manoel Luis; Mermelstein, Claudia
2014-01-01
Myoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion. Flotillins are scaffold proteins that are essential for the formation and dynamics of lipid rafts. Flotillins have been widely studied over the last few years, but still little is known about their role during skeletal muscle differentiation. In the present study, we analyzed the expression and distribution of flotillin-2 in chick, mice and human muscle cells grown in vitro. Primary cultures of chick myogenic cells showed a decrease in the expression of flotillin-2 during the first 72 hours of muscle differentiation. Interestingly, flotillin-2 was found to be highly expressed in chick myogenic fibroblasts and weakly expressed in chick myoblasts and multinucleated myotubes. Flotillin-2 was distributed in vesicle-like structures within the cytoplasm of chick myogenic fibroblasts, in the mouse C2C12 myogenic cell line, and in neonatal human muscle cells. Cryo-immunogold labeling revealed the presence of flotillin-2 in vesicles and in Golgi stacks in chick myogenic fibroblasts. Further, brefeldin A induced a major reduction in the number of flotillin-2 containing vesicles which correlates to a decrease in myoblast fusion. These results suggest the involvement of flotillin-2 during the initial steps of skeletal myogenesis.
2009-10-01
AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth Inhibitor...9 Fibroblast Growth Factor -2: an Epithelial Ductal Cell Growth Inhibitor that Drops Out in Breast Cancer
Lu, Jiang; Lu, Kehuan; Li, Dongsheng
2012-01-01
In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. PMID:25624789
Su, Yuan; Shi, Yufang; Stolow, Melissa A.; Shi, Yun-Bo
1997-01-01
Thyroid hormone (T3 or 3,5,3′-triiodothyronine) plays a causative role during amphibian metamorphosis. To investigate how T3 induces some cells to die and others to proliferate and differentiate during this process, we have chosen the model system of intestinal remodeling, which involves apoptotic degeneration of larval epithelial cells and proliferation and differentiation of other cells, such as the fibroblasts and adult epithelial cells, to form the adult intestine. We have established in vitro culture conditions for intestinal epithelial cells and fibroblasts. With this system, we show that T3 can enhance the proliferation of both cell types. However, T3 also concurrently induces larval epithelial apoptosis, which can be inhibited by the extracellular matrix (ECM). Our studies with known inhibitors of mammalian cell death reveal both similarities and differences between amphibian and mammalian cell death. These, together with gene expression analysis, reveal that T3 appears to simultaneously induce different pathways that lead to specific gene regulation, proliferation, and apoptotic degeneration of the epithelial cells. Thus, our data provide an important molecular and cellular basis for the differential responses of different cell types to the endogenous T3 during metamorphosis and support a role of ECM during frog metamorphosis. PMID:9396758
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at; Fullar, Alexandra, E-mail: fullarsz@gmail.com; 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest
2011-09-10
Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated withmore » IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the presence of SCC-25 tumor cells. IL1-{beta} receptor expression in fibroblasts, especially in CAFs represents a major option in coordination of fibroblast and tumor behavior. A key event in IL1-{beta} signaling, the phosphorylation of IRAK1, occurred in co-cultured fibroblasts, which has lead to nuclear translocation of NF{kappa}B{alpha}, and finally to induction of several genes, including BDNF, IRF1, IL-6 and COX-2. The most enhanced induction was found for IL-6 and COX-2.« less
Piran, Mehrdad; Vakilian, Saeid; Piran, Mehran; Mohammadi-Sangcheshmeh, Abdollah; Hosseinzadeh, Simzar; Ardeshirylajimi, Abdolreza
2018-01-23
Migration of fibroblasts into wound area is a critical phenomenon in wound healing process. We used an appropriate system to fabricate an electrospun bioactive scaffold with controlled release of PDGF-BB in order to induce migration of primary skin fibroblast cells. First of all, protein-loaded chitosan nanoparticles based on ionic gelation interaction between chitosan and sodium tripolyphosphate were prepared. Then polycaprolactone electrospun fibers containing chitosan nanoparticles or PDGF-BB-loaded chitosan nanoparticles were prepared. Cellular attachment and morphology of cells seeded on scaffolds with or without PDGF-BB were evaluated by using a fluorescence microscope and scanning electron microscopy. Cells were well-oriented 72 h after seeding on the scaffolds containing PDGF-BB. The mean aspect ratio of populations on scaffold containing PDGF-BB-loaded chitosan nanoparticles was significantly greater than those on the scaffold containing chitosan nanoparticles but no PDGF-BB. Furthermore, the Arp2 gene, which is involved in cell protrusion formation, showed about three times more expression at mRNA level, in cells seeding on PDGF-BB-containing scaffold compared to cells seeding on scaffold containing only chitosan nanoparticles, using Real Time PCR test. Finally, under agarose migration assay results demonstrated that cells' chemotaxic behavior was more toward scaffold containing PDGF-BB compared to the PDGF-BB alone or FBS group. In addition, in terms of distance, the cell mass could grow faster, in response to scaffold containing PDGF-BB compared to FBS or PDGF-BB alone; however, the number of migrating cells might be the same or significantly higher in the latter groups.
Suhovskih, Anastasia V; Kashuba, Vladimir I; Klein, George; Grigorieva, Elvira V
2017-01-02
Microenvironment and stromal fibroblasts are able to inhibit tumor cell proliferation both through secreted signaling molecules and direct cell-cell interactions but molecular mechanisms of these effects remain unclear. In this study, we investigated a role of cell-cell contact-related molecules (protein ECM components, proteoglycans (PGs) and junction-related molecules) in intercellular communications between the human TERT immortalized fibroblasts (BjTERT fibroblasts) and normal (PNT2) or cancer (LNCaP, PC3, DU145) prostate epithelial cells. It was shown that BjTERT-PNT2 cell coculture resulted in significant decrease of both BjTERT and PNT2 proliferation rates and reorganization of transcriptional activity of cell-cell contact-related genes in both cell types. Immunocytochemical staining revealed redistribution of DCN and LUM in PNT2 cells and significant increase of SDC1 at the intercellular contact zones between BjTERT and PNT2 cells, suggesting active involvement of the PGs in cell-cell contacts and contact inhibition of cell proliferation. Unlike to PNT2 cells, PC3 cells did not respond to BjTERT in terms of PGs expression, moderately increased transcriptional activity of junctions-related genes (especially tight junction) and failed to establish PC3-BjTERT contacts. At the same time, PC3 cells significantly down-regulated junctions-related genes (especially focal adhesions and adherens junctions) in BjTERT fibroblasts resulting in visible preference for homotypic PC3-PC3 over heterotypic PC3-BjTERT contacts and autonomous growth of PC3 clones. Taken together, the results demonstrate that an instructing role of fibroblasts to normal prostate epithelial cells is revoked by cancer cells through deregulation of proteoglycans and junction molecules expression and overall disorganization of fibroblast-cancer cell communication.
Leite, Sofia B; Teixeira, Ana P; Miranda, Joana P; Tostões, Rui M; Clemente, João J; Sousa, Marcos F; Carrondo, Manuel J T; Alves, Paula M
2011-06-01
During the last years an increasing number of in vitro models have been developed for drug screening and toxicity testing. Primary cultures of hepatocytes are, by far, the model of choice for those high-throughput studies but their spontaneous dedifferentiation after some time in culture hinders long-term studies. Thus, novel cell culture systems allowing extended hepatocyte maintenance and more predictive long term in vitro studies are required. It has been shown that hepatocytes functionality can be improved and extended in time when cultured as 3D-cell aggregates in environmental controlled stirred bioreactors. In this work, aiming at further improving hepatocytes functionality in such 3D cellular structures, co-cultures with fibroblasts were performed. An inoculum concentration of 1.2×10(5) cell/mL and a 1:2 hepatocyte:mouse embryonic fibroblast ratio allowed to improve significantly the albumin secretion rate and both ECOD (phase I) and UGT (phase II) enzymatic activities in 3D co-cultures, as compared to the routinely used 2D hepatocyte monocultures. Significant improvements were also observed in relation to 3D monocultures of hepatocytes. Furthermore, hepatocytes were able to respond to the addition of beta-Naphtoflavone by increasing ECOD activity showing CYP1A inducibility. The dependence of CYP activity on oxygen concentration was also observed. In summary, the improved hepatocyte specific functions during long term incubation of 3D co-cultures of hepatocytes with fibroblasts indicate that this system is a promising in vitro model for long term toxicological studies. Copyright © 2011 Elsevier Ltd. All rights reserved.
Induction of mesenchymal cell phenotypes in lung epithelial cells by adenovirus E1A.
Behzad, A R; Morimoto, K; Gosselink, J; Green, J; Hogg, J C; Hayashi, S
2006-12-01
Epithelial-mesenchymal transformation is now recognised as an important feature of tissue remodelling. The present report concerns the role of adenovirus infection in inducing this transformation in an animal model of chronic obstructive pulmonary disease. Guinea pig primary peripheral lung epithelial cells (PLECs) transfected with adenovirus E1A (E1A-PLECs) were compared to guinea pig normal lung fibroblasts (NLFs) transfected with E1A (E1A-NLFs). These cells were characterised by PCR, immunocytochemistry, electron microscopy, and Western and Northern blot analyses. Electrophoretic mobility shift assays were performed in order to examine nuclear factor (NF)-kappaB and activator protein (AP)-1 binding activities. E1A-PLECs and E1A-NLFs positive for E1A DNA, mRNA and protein expressed cytokeratin and vimentin but not smooth muscle alpha-actin. Both exhibited cuboidal morphology and junctional complexes, but did not contain lamellar bodies or express surfactant protein A, B or C mRNAs. These two cell types differed, however, in their NF-kappaB and AP-1 binding after lipopolysaccharide stimulation, possibly due to differences in the expression of the subunits that comprise these transcriptional complexes. E1A transfection results in the transformation of peripheral lung epithelial cells and normal lung fibroblasts to a phenotype intermediate between that of the two primary cells. It is postulated that this intermediate phenotype may play a major role in the remodelling of the airways in chronic obstructive pulmonary disease associated with persistence of adenovirus E1A DNA.
Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells
2013-01-01
Scleroderma (systemic sclerosis; SSc) is characterised by fibrosis of the skin and internal organs in the context of autoimmunity and vascular perturbation. Overproduction of extracellular matrix components and loss of specialised epithelial structures are analogous to the process of scar formation after tissue injury. Fibroblasts are the resident cells of connective tissue that become activated at sites of damage and are likely to be important effector cells in SSc. Differentiation into myofibroblasts is a hallmark process, although the mechanisms and cellular origins of this important fibroblastic cell are still unclear. This article reviews fibroblast biology in the context of SSc and highlights the potentially important place of fibroblast effector cells in fibrosis. Moreover, the heterogeneity of fibroblast properties, multiplicity of regulatory pathways and diversity of origin for myofibroblasts may underpin clinical diversity in SSc, and provide novel avenues for targeted therapy. PMID:23796020
Li, Yuan-Yuan; Lu, Shan-Shan; Xu, Ting; Zhang, Hong-Qi; Li, Hua
2015-07-20
This study characterized the cardiac telocyte (TC) population both in vivo and in vitro, and investigated its telomerase activity related to mitosis. Using transmission electron microscopy and a phase contrast microscope, the typical morphological features of cardiac TCs were observed; by targeting the cell surface proteins CD117 and CD34, CD117 + CD34 + cardiac TCs were sorted via flow cytometry and validated by immunofluorescence based on the primary cell culture. Then the optimized basal nutrient medium for selected population was examined with the cell counting kit 8. Under this conditioned medium, the process of cell division was captured, and the telomerase activity of CD117 + CD34 + cardiac TCs was detected in comparison with bone mesenchymal stem cells (BMSCs), cardiac fibroblasts (CFBs), cardiomyocytes (CMs). Cardiac TCs projected characteristic telopodes with thin segments (podomers) in alternation with dilation (podoms). In addition, 64% of the primary cultured cardiac TCs were composed of CD117 + CD34 + cardiac TCs; which was verified by immunofluorescence. In a live cell imaging system, CD117 + CD34 + cardiac TCs were observed to enter into cell division in a short time, followed by an significant invagination forming across the middle of the cell body. Using a real-time quantitative telomeric-repeat amplification assay, the telomerase concentration in CD117 + CD34 + cardiac TCs was obviously lower than in BMSCs and CFBs, and significantly higher than in CMs. Cardiac TCs represent a unique cell population and CD117 + CD34 + cardiac TCs have relative low telomerase activity that differs from BMSCs, CFBs and CMs and thus they might play an important role in maintaining cardiac homeostasis.
Correction of β-thalassemia mutant by base editor in human embryos.
Liang, Puping; Ding, Chenhui; Sun, Hongwei; Xie, Xiaowei; Xu, Yanwen; Zhang, Xiya; Sun, Ying; Xiong, Yuanyan; Ma, Wenbin; Liu, Yongxiang; Wang, Yali; Fang, Jianpei; Liu, Dan; Songyang, Zhou; Zhou, Canquan; Huang, Junjiu
2017-11-01
β-Thalassemia is a global health issue, caused by mutations in the HBB gene. Among these mutations, HBB -28 (A>G) mutations is one of the three most common mutations in China and Southeast Asia patients with β-thalassemia. Correcting this mutation in human embryos may prevent the disease being passed onto future generations and cure anemia. Here we report the first study using base editor (BE) system to correct disease mutant in human embryos. Firstly, we produced a 293T cell line with an exogenous HBB -28 (A>G) mutant fragment for gRNAs and targeting efficiency evaluation. Then we collected primary skin fibroblast cells from a β-thalassemia patient with HBB -28 (A>G) homozygous mutation. Data showed that base editor could precisely correct HBB -28 (A>G) mutation in the patient's primary cells. To model homozygous mutation disease embryos, we constructed nuclear transfer embryos by fusing the lymphocyte or skin fibroblast cells with enucleated in vitro matured (IVM) oocytes. Notably, the gene correction efficiency was over 23.0% in these embryos by base editor. Although these embryos were still mosaic, the percentage of repaired blastomeres was over 20.0%. In addition, we found that base editor variants, with narrowed deamination window, could promote G-to-A conversion at HBB -28 site precisely in human embryos. Collectively, this study demonstrated the feasibility of curing genetic disease in human somatic cells and embryos by base editor system.
Direct and indirect roles of RECQL4 in modulating base excision repair capacity
Schurman, Shepherd H.; Hedayati, Mohammad; Wang, ZhengMing; Singh, Dharmendra K.; Speina, Elzbieta; Zhang, Yongqing; Becker, Kevin; Macris, Margaret; Sung, Patrick; Wilson, David M.; Croteau, Deborah L.; Bohr, Vilhelm A.
2009-01-01
RECQL4 is a human RecQ helicase which is mutated in approximately two-thirds of individuals with Rothmund–Thomson syndrome (RTS), a disease characterized at the cellular level by chromosomal instability. BLM and WRN are also human RecQ helicases, which are mutated in Bloom and Werner's syndrome, respectively, and associated with chromosomal instability as well as premature aging. Here we show that primary RTS and RECQL4 siRNA knockdown human fibroblasts accumulate more H2O2-induced DNA strand breaks than control cells, suggesting that RECQL4 may stimulate repair of H2O2-induced DNA damage. RTS primary fibroblasts also accumulate more XRCC1 foci than control cells in response to endogenous or induced oxidative stress and have a high basal level of endogenous formamidopyrimidines. In cells treated with H2O2, RECQL4 co-localizes with APE1, and FEN1, key participants in base excision repair. Biochemical experiments indicate that RECQL4 specifically stimulates the apurinic endonuclease activity of APE1, the DNA strand displacement activity of DNA polymerase β, and incision of a 1- or 10-nucleotide flap DNA substrate by Flap Endonuclease I. Additionally, RTS cells display an upregulation of BER pathway genes and fail to respond like normal cells to oxidative stress. The data herein support a model in which RECQL4 regulates both directly and indirectly base excision repair capacity. PMID:19567405
Physiologically activated mammary fibroblasts promote postpartum mammary cancer
Guo, Qiuchen; Burchard, Julja; Spellman, Paul
2017-01-01
Women diagnosed with breast cancer within 5 years of childbirth have poorer prognosis than nulliparous or pregnant women. Weaning-induced breast involution is implicated, as the collagen-rich, immunosuppressive microenvironment of the involuting mammary gland is tumor promotional in mice. To investigate the role of mammary fibroblasts, isolated mammary PDGFRα+ cells from nulliparous and postweaning mice were assessed for activation phenotype and protumorigenic function. Fibroblast activation during involution was evident by increased expression of fibrillar collagens, lysyl oxidase, Tgfb1, and Cxcl12 genes. The ability of mammary tumors to grow in an isogenic, orthotopic transplant model was increased when tumor cells were coinjected with involution-derived compared with nulliparous-derived mammary fibroblasts. Mammary tumors in the involution-fibroblast group had increased Ly6C+ monocytes at the tumor border, and decreased CD8+ T cell infiltration and tumor cell death. Ibuprofen treatment suppressed involution-fibroblast activation and tumor promotional capacity, concurrent with decreases in tumor Ly6C+ monocytes, and increases in intratumoral CD8+ T cell infiltration, granzyme levels, and tumor cell death. In total, our data identify a COX/prostaglandin E2 (PGE2)–dependent activated mammary fibroblast within the involuting mammary gland that displays protumorigenic, immunosuppressive activity, identifying fibroblasts as potential targets for the prevention and treatment of postpartum breast cancer. PMID:28352652
NASA Astrophysics Data System (ADS)
Sasidharan, Abhilash; Chandran, Parwathy; Menon, Deepthy; Raman, Sreerekha; Nair, Shantikumar; Koyakutty, Manzoor
2011-09-01
The microenvironment of cancer plays a very critical role in the survival, proliferation and drug resistance of solid tumors. Here, we report an interesting, acidic cancer microenvironment-mediated dissolution-induced preferential toxicity of ZnO nanocrystals (NCs) against cancer cells while leaving primary cells unaffected. Irrespective of the size-scale (5 and 200 nm) and surface chemistry differences (silica, starch or polyethylene glycol coating), ZnO NCs exhibited multiple stress mechanisms against cancer cell lines (IC50 ~150 μM) while normal human primary cells (human dermal fibroblast, lymphocytes, human umbilical vein endothelial cells) remain less affected. Flow cytometry and confocal microscopy studies revealed that ZnO NCs undergo rapid preferential dissolution in acidic (pH ~5-6) cancer microenvironment causing elevated ROS stress, mitochondrial superoxide formation, depolarization of mitochondrial membrane, and cell cycle arrest at S/G2 phase leading to apoptosis. In effect, by elucidating the unique toxicity mechanism of ZnO NCs, we show that ZnO NCs can destabilize cancer cells by utilizing its own hostile acidic microenvironment, which is otherwise critical for its survival.The microenvironment of cancer plays a very critical role in the survival, proliferation and drug resistance of solid tumors. Here, we report an interesting, acidic cancer microenvironment-mediated dissolution-induced preferential toxicity of ZnO nanocrystals (NCs) against cancer cells while leaving primary cells unaffected. Irrespective of the size-scale (5 and 200 nm) and surface chemistry differences (silica, starch or polyethylene glycol coating), ZnO NCs exhibited multiple stress mechanisms against cancer cell lines (IC50 ~150 μM) while normal human primary cells (human dermal fibroblast, lymphocytes, human umbilical vein endothelial cells) remain less affected. Flow cytometry and confocal microscopy studies revealed that ZnO NCs undergo rapid preferential dissolution in acidic (pH ~5-6) cancer microenvironment causing elevated ROS stress, mitochondrial superoxide formation, depolarization of mitochondrial membrane, and cell cycle arrest at S/G2 phase leading to apoptosis. In effect, by elucidating the unique toxicity mechanism of ZnO NCs, we show that ZnO NCs can destabilize cancer cells by utilizing its own hostile acidic microenvironment, which is otherwise critical for its survival. Electronic supplementary information (ESI) available: FTIR data, MTT assay and zinc ion release. See DOI: 10.1039/c1nr10272a
WISP1 mediates IL-6-dependent proliferation in primary human lung fibroblasts.
Klee, S; Lehmann, M; Wagner, D E; Baarsma, H A; Königshoff, M
2016-02-12
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. IPF is characterized by epithelial cell injury and reprogramming, increases in (myo)fibroblasts, and altered deposition of extracellular matrix. The Wnt1-inducible signaling protein 1 (WISP1) is involved in impaired epithelial-mesenchymal crosstalk in pulmonary fibrosis. Here, we aimed to further investigate WISP1 regulation and function in primary human lung fibroblasts (phLFs). We demonstrate that WISP1 is directly upregulated by Transforming growth factor β1 (TGFβ1) and Tumor necrosis factor α (TNFα) in phLFs, using a luciferase-based reporter system. WISP1 mRNA and protein secretion increased in a time- and concentration-dependent manner by TGFβ1 and TNFα in phLFs, as analysed by qPCR and ELISA, respectively. Notably, WISP1 is required for TGFβ1- and TNFα-dependent induction of interleukin 6 (IL-6), a mechanism that is conserved in IPF phLFs. The siRNA-mediated WISP1 knockdown led to a significant IL-6 reduction after TGFβ1 or TNFα stimulation. Furthermore, siRNA-mediated downregulation or antibody-mediated neutralization of WISP1 reduced phLFs proliferation, a process that was in part rescued by IL-6. Taken together, these results strongly indicate that WISP1-induced IL-6 expression contributes to the pro-proliferative effect on fibroblasts, which is likely orchestrated by a variety of profibrotic mediators, including Wnts, TGFβ1 and TNFα.
Emmprin, released as a microvesicle in epithelioid sarcoma, interacts with fibroblasts.
Aoki, Mikiko; Koga, Kaori; Hamasaki, Makoto; Egawa, Nagayasu; Nabeshima, Kazuki
2017-06-01
Emmprin (extracellular matrix metalloproteinase inducer, CD147) is a glycosylated transmembrane protein, consisting of two immunoglobulin domains, that stimulates the production of matrix metalloproteinases (MMPs) by tumor-associated fibroblasts. These effects play important roles in tumor invasion and metastasis. However, the precise mechanisms by which emmprin acts on fibroblasts have not been fully elucidated, especially in sarcoma cells. Previously, we demonstrated that emmprin, expressed in conditioned medium collected from the epithelioid sarcoma cell line (FU-EPS-1), stimulates MMP-2 production via interactions with fibroblasts. In this study, we used microvesicles derived from sarcoma cells, and determined whether emmprin exists in the microvesicles, which enhance the production of MMP-2 via fibroblasts. Microvesicles released from FU-EPS-1 cells were shown to contain full-length emmprin, identified as a 45-kDa protein characterized by polylactosamine glycosylation. Microvesicles collected from FU-EPS-1 cells transfected with emmprin-specific siRNA or transduced with shRNA displayed significantly reduced MMP-2 production by fibroblasts compared with those from control-transfected cells. Our findings show that emmprin is released through microvesicle shedding in sarcoma cells, and emmprin in microvesicles regulates MMP-2 production by influencing the activity of fibroblasts located at sites distant from the tumor cells.
TSPAN12 is a critical factor for cancer–fibroblast cell contact-mediated cancer invasion
Otomo, Ryo; Otsubo, Chihiro; Matsushima-Hibiya, Yuko; Miyazaki, Makoto; Tashiro, Fumio; Ichikawa, Hitoshi; Kohno, Takashi; Ochiya, Takahiro; Yokota, Jun; Nakagama, Hitoshi; Taya, Yoichi; Enari, Masato
2014-01-01
Communication between cancer cells and their microenvironment controls cancer progression. Although the tumor suppressor p53 functions in a cell-autonomous manner, it has also recently been shown to function in a non–cell-autonomous fashion. Although functional defects have been reported in p53 in stromal cells surrounding cancer, including mutations in the p53 gene and decreased p53 expression, the role of p53 in stromal cells during cancer progression remains unclear. We herein show that the expression of α-smooth muscle actin (α-SMA), a marker of cancer-associated fibroblasts (CAFs), was increased by the ablation of p53 in lung fibroblasts. CAFs enhanced the invasion and proliferation of lung cancer cells when cocultured with p53-depleted fibroblasts and required contact between cancer and stromal cells. A comprehensive analysis using a DNA chip revealed that tetraspanin 12 (TSPAN12), which belongs to the tetraspanin protein family, was derepressed by p53 knockdown. TSPAN12 knockdown in p53-depleted fibroblasts inhibited cancer cell proliferation and invasion elicited by coculturing with p53-depleted fibroblasts in vitro, and inhibited tumor growth in vivo. It also decreased CXC chemokine ligand 6 (CXCL6) secretion through the β-catenin signaling pathway, suggesting that cancer cell contact with TSPAN12 in fibroblasts transduced β-catenin signaling into fibroblasts, leading to the secretion of CXCL6 to efficiently promote invasion. These results suggest that stroma-derived p53 plays a pivotal role in epithelial cancer progression and that TSPAN12 and CXCL6 are potential targets for lung cancer therapy. PMID:25512506
Fibroblasts Influence Survival and Therapeutic Response in a 3D Co-Culture Model
Majety, Meher; Pradel, Leon P.; Gies, Manuela; Ries, Carola H.
2015-01-01
In recent years, evidence has indicated that the tumor microenvironment (TME) plays a significant role in tumor progression. Fibroblasts represent an abundant cell population in the TME and produce several growth factors and cytokines. Fibroblasts generate a suitable niche for tumor cell survival and metastasis under the influence of interactions between fibroblasts and tumor cells. Investigating these interactions requires suitable experimental systems to understand the cross-talk involved. Most in vitro experimental systems use 2D cell culture and trans-well assays to study these interactions even though these paradigms poorly represent the tumor, in which direct cell-cell contacts in 3D spaces naturally occur. Investigating these interactions in vivo is of limited value due to problems regarding the challenges caused by the species-specificity of many molecules. Thus, it is essential to use in vitro models in which human fibroblasts are co-cultured with tumor cells to understand their interactions. Here, we developed a 3D co-culture model that enables direct cell-cell contacts between pancreatic, breast and or lung tumor cells and human fibroblasts/ or tumor-associated fibroblasts (TAFs). We found that co-culturing with fibroblasts/TAFs increases the proliferation in of several types of cancer cells. We also observed that co-culture induces differential expression of soluble factors in a cancer type-specific manner. Treatment with blocking antibodies against selected factors or their receptors resulted in the inhibition of cancer cell proliferation in the co-cultures. Using our co-culture model, we further revealed that TAFs can influence the response to therapeutic agents in vitro. We suggest that this model can be reliably used as a tool to investigate the interactions between a tumor and the TME. PMID:26053043
Engulfment of ceramic particles by fibroblasts does not alter cell behavior.
Faye, Pierre-Antoine; Roualdes, Olivier; Rossignol, Fabrice; Hartmann, Daniel Jean; Desmoulière, Alexis
2017-02-17
Despite many studies, the impact of ceramic particles on cell behavior remains unclear. The aim of the present study was to investigate the effects of nano-sized ceramic particles on fibroblastic cells. Fibroblasts (dermal fibroblasts freshly isolated from skin samples and WI26 fibroblastic cells) were cultured in a monolayer in the presence of alumina or cerium-zirconia particles (≈50 nm diameter) at two concentrations (100 or 500 μg ml -1 ). Fluorescent alumina particles were also used. The following properties were analyzed: cell morphology, cytoplasmic ceramic incorporation (using confocal and transmission electron microscopy) and migration (using a silicon insert). Sedimentation field-flow fractionation (SdFFF) was also used to evaluate the rate of incorporation of ceramic particles into the cells. Finally, after treatment with various concentrations of ceramic particles, fibroblasts were also included in a collagen type I lattice constituting a dermal equivalent (DE), and the collagen lattice retraction and cell proliferation were evaluated. In monolayer conditions, the presence of both alumina and cerium-zirconia ceramic particles did not cause any deleterious effects on cultured cells (dermal fibroblast and WI26 cells) and cell fate was not affected in any way by the presence of ceramic particles in the cytoplasm. Confocal (using fluorescent alumina particles) and electron microscopy (using both alumina and cerium-zirconia particles) showed that ceramic particles were internalized in the WI26 cells. Using fluorescent membrane labeling and fluorescent alumina particles, a membrane was observed around the particle-containing vesicles present in the cytoplasm. Electron microscopy on WI26 cells showed the presence of a classical bilayer membrane around the ceramic particles. Interestingly, SdFFF confirmed that some dermal fibroblasts contained many alumina ceramic particles while others contained very few; in WI26 cells, the uptake of alumina ceramic was more homogeneous. In DE, collagen lattice retraction and cell proliferation were unchanged when WI26 fibroblastic cells contained alumina or cerium-zirconia ceramic particles. Our data suggest that ceramic particles are internalized in the cells by endocytosis. The presence of ceramic particles in the cytoplasm has no affect on cell behavior, confirming the excellent biocompatibility of this material and anticipating a minimal harmful effect of potential wear debris.
Subramaniyan, Sivakumar Allur; Kim, Sidong; Hwang, Inho
2016-10-01
The present study was carried out to understand the interaction between fibroblast and 3T3-L1 preadipocyte cells under H 2 O 2 -induced oxidative stress condition. H 2 O 2 (40 μM) was added in co-culture and monoculture of fibroblast and 3T3-L1 cell. The cells in the lower well were harvested for analysis and the process was carried out for both cells. The cell growth, oxidative stress markers, and antioxidant enzymes were analyzed. Additionally, the mRNA expressions of caspase-3 and caspase-7 were selected for analysis of apoptotic pathways and TNF-α and NF-κB were analyzed for inflammatory pathways. The adipogenic marker such as adiponectin and PPAR-γ and collagen synthesis markers such as LOX and BMP-1 were analyzed in the co-culture of fibroblast and 3T3-L1 cells. Cell viability and antioxidant enzymes were significantly increased in the co-culture compared to the monoculture under stress condition. The apoptotic, inflammatory, adipogenic, and collagen-synthesized markers were significantly altered in H 2 O 2 -induced co-culture of fibroblast and 3T3-L1 cells when compared with the monoculture of H 2 O 2 -induced fibroblast and 3T3-L1 cells. In addition, the confocal microscopical investigation indicated that the co-culture of H 2 O 2 -induced 3T3-L1 and fibroblast cells increases collagen type I and type III expression. From our results, we suggested that co-culture of fat cell (3T3-L1) and fibroblast cells may influence/regulate each other and made the cells able to withstand against oxidative stress and aging. It is conceivable that the same mechanism might have been occurring from cell to cell while animals are stressed by various environmental conditions.
MCP‐1 downregulates MMP‐9 export via vesicular redistribution to lysosomes in rat portal fibroblasts
Hickman, DaShawn A.; Syal, Gaurav; Fausther, Michel; Lavoie, Elise G.; Goree, Jessica R.; Storrie, Brian; Dranoff, Jonathan A.
2014-01-01
Abstract Portal fibroblasts (PF) are one of the two primary cell types contributing to the myofibroblast population of the liver and are thus essential to the pathogenesis of liver fibrosis. Monocyte chemoattractant protein‐1 (MCP‐1) is a known profibrogenic chemokine that may be of particular importance in biliary fibrosis. We examined the effect of MCP‐1 on release of matrix metalloproteinase‐9 (MMP‐9) by rat PF. We found that MCP‐1 blocks PF release of MMP‐9 in a posttranslational fashion. We employed an optical and electron microscopic approach to determine the mechanism of this downregulation. Our data demonstrated that, in the presence of MCP‐1, MMP‐9‐containing vesicles were shunted to a lysosome‐like compartment. This is the first report of a secretory protein to be so regulated in fibrogenic cells. PMID:25413315
Question of bone marrow stromal fibroblast traffic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, M.A.; Lamela, R.A.; Patt, H.M.
Bone marrow stromal fibroblasts (CFU-F) normally do not exchange bone marrow sites in vivo. Restitution of the CFU-F after radiation damage is primarily recovery by the local fibroblasts from potentially lethal damage. Migration of stromal fibroblasts from shielded sites to an irradiated site makes a minimal contribution, if any, to CFU-F recovery. Determination of the relative contribution of donor stromal cells in bone marrow transplants by karyotyping the proliferating bone marrow stromal cells in vitro may not reflect the relative distribution of fibroblasts in the marrow. If there is residual damage to the host stromal fibroblasts from treatment before transplantation,more » these cells may not be able to proliferate in vitro. Therefore, an occasional transplanted fibroblast may contribute most of the metaphase figures scored for karyotype.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jozaki, K.; Kuriu, A.; Hirota, S.
1991-03-01
When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3)more » and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.« less
Induced Pluripotent Stem (iPS) Cells in Dentistry: A Review
Malhotra, Neeraj
2016-01-01
iPS cells are derived from somatic cells via transduction and expression of selective transcription factors. Both viral-integrating (like retroviral) and non-integrating (like, mRNA or protein-based) techniques are available for the production of iPS cells. In the field of dentistry, iPS cells have been derived from stem cells of apical papilla, dental pulp stem cells, and stem cells from exfoliated deciduous teeth, gingival and periodontal ligament fibroblasts, and buccal mucosa fibroblasts. iPS cells have the potential to differentiate into all derivatives of the 3 primary germ layers i.e. ectoderm, endoderm, and mesoderm. They are autogeneically accessible, and can produce patient-specific or disease-specific cell lines without the issue of ethical controversy. They have been successfully tested to produce mesenchymal stem cells-like cells, neural crest-like cells, ameloblasts-like cells, odontoblasts-like cells, and osteoprogenitor cells. These cells can aid in regeneration of periodontal ligament, alveolar bone, cementum, dentin-pulp complex, as well as possible Biotooth formation. However certain key issues like, epigenetic memory of iPS cells, viral-transduction, tumorgenesis and teratoma formation need to be overcome, before they can be successfully used in clinical practice. The article discusses the sources, pros and cons, and current applications of iPS cells in dentistry with an emphasis on encountered challenges and their solutions. PMID:27572712
Percival, J M; Thomas, G; Cock, T A; Gardiner, E M; Jeffrey, P L; Lin, J J; Weinberger, R P; Gunning, P
2000-11-01
The nonmuscle actin cytoskeleton consists of multiple networks of actin microfilaments. Many of these filament systems are bound by the actin-binding protein tropomyosin (Tm). We investigated whether Tm isoforms could be cell cycle regulated during G0 and G1 phases of the cell cycle in synchronised NIH 3T3 fibroblasts. Using Tm isoform-specific antibodies, we investigated protein expression levels of specific Tms in G0 and G1 phases and whether co-expressed isoforms could be sorted into different compartments. Protein levels of Tms 1, 2, 5a, 6, from the alpha Tm(fast) and beta-Tm genes increased approximately 2-fold during mid-late G1. Tm 3 levels did not change appreciably during G1 progression. In contrast, Tm 5NM gene isoform levels (Tm 5NM-1-11) increased 2-fold at 5 h into G1 and this increase was maintained for the following 3 h. However, Tm 5NM-1 and -2 levels decreased by a factor of three during this time. Comparison of the staining of the antibodies CG3 (detects all Tm 5NM gene products), WS5/9d (detects only two Tms from the Tm 5NM gene, Tm 5NM-1 and -2) and alpha(f)9d (detects specific Tms from the alpha Tm(fast) and beta-Tm genes) antibodies revealed 3 spatially distinct microfilament systems. Tm isoforms detected by alpha(f)9d were dramatically sorted from isoforms from the Tm 5NM gene detected by CG3. Tm 5NM-1 and Tm 5NM-2 were not incorporated into stress fibres, unlike other Tm 5NM isoforms, and marked a discrete, punctate, and highly polarised compartment in NIH 3T3 fibroblasts. All microfilament systems, excluding that detected by the WS5/9d antibody, were observed to coalign into parallel stress fibres at 8 h into G1. However, Tms detected by the CG3 and alpha(f)9d antibodies were incorporated into filaments at different times indicating distinct temporal control mechanisms. Microfilaments in NIH 3T3 cells containing Tm 5NM isoforms were more resistant to cytochalasin D-mediated actin depolymerisation than filaments containing isoforms from the alpha Tm(fast) and beta-Tm genes. This suggests that Tm 5NM isoforms may be in different microfilaments to alpha Tm(fast) and beta-Tm isoforms even when present in the same stress fibre. Staining of primary mouse fibroblasts showed identical Tm sorting patterns to those seen in cultured NIH 3T3 cells. Furthermore, we demonstrate that sorting of Tms is not restricted to cultured cells and can be observed in human columnar epithelial cells in vivo. We conclude that the expression and localisation of Tm isoforms are differentially regulated in G0 and G1 phase of the cell cycle. Tms mark multiple microfilament compartments with restricted tropomyosin composition. The creation of distinct microfilament compartments by differential sorting of Tm isoforms is observable in primary fibroblasts, cultured 3T3 cells and epithelial cells in vivo. Copyright 2000 Wiley-Liss, Inc.
Large 3D direct laser written scaffolds for tissue engineering applications
NASA Astrophysics Data System (ADS)
Trautmann, Anika; Rüth, Marieke; Lemke, Horst-Dieter; Walther, Thomas; Hellmann, Ralf
2018-01-01
We report on the fabrication of three-dimensional direct laser written scaffolds for tissue engineering and the seeding of primary fibroblasts on these structures. Scaffolds are realized by two-photon absorption induced polymerization in the inorganic-organic hybrid polymer OrmoComp using a 515 nm femtosecond laser. A nonstop single-line single-pass writing process is implemented in order to produce periodic reproducible large scaled structures with a dimension in the range of several millimeters and reduce process time to less than one hour. This method allows us to determine optimized process parameters for writing stable structures while achieving pore sizes ranging from 5 μm to 90 μm and a scanning speed of up to 5 mm/s. After a multi-stage post-treatment, normal human dermal fibroblasts are applied to the scaffolds to test if these macroscopic structures with large surface and numerous small gaps between the pores provide nontoxic conditions. Furthermore, we study the cell behavior in this environment and observe both cell growth on as well as ingrowth on the three-dimensional structures. In particular, fibroblasts adhere and grow also on the vertical walls of the scaffolds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meeuwen, J.A. van; Nijmeijer, S.; Mutarapat, T.
2008-05-01
Interference of exogenous chemicals with the aromatase enzyme can be useful as a tool to identify chemicals that could act either chemopreventive for hormone-dependent cancer or adverse endocrine disruptive. Aromatase is the key enzyme in the biosynthesis of steroids, as it converts androgens to estrogens. Certain flavonoids, plant derived chemicals, are known catalytic aromatase inhibitors. Various systems are in use to test aromatase inhibitory properties of compounds. Commonly used are microsomes derived from ovary or placental tissue characterized by high aromatase activity. To a lesser extent whole cell systems are used and specifically cell systems that are potential target tissuemore » in breast cancer development. In this study aromatase inhibitory properties of fadrozole, 8-prenylnaringenin and a synthetic lactone (TM-7) were determined in human placental microsomes and in human primary breast fibroblasts. In addition, apigenin, chrysin, naringenin and two synthetic lactones (TM-8 and TM-9) were tested in human microsomes only. Comparison of the aromatase inhibitory potencies of these compounds between the two test systems showed that the measurement of aromatase inhibition in human placental microsomes is a good predictor of aromatase inhibition in human breast fibroblasts.« less
[Possibilities and limitations of fibroblast cultures in the study of animal aging].
Van Gansen, P; Van Lerberghe, N
1987-01-01
INTRODUCTION. Aging--the effect of time--occurs in every living organism. Senescence is the last period of the lifespan, leading to death. It happens in all animals, with the exception of a few didermic species (Hydras) having a stock of embryonic cells and being immortal. The causes of animal senescence are badly known. They depend both on genetic characters (maximal lifespan of a species) and on medium factors (mean expectation of life of the animals of a species). Animal senescence could depend on cell aging: 1) by senescence and death of the differentiated cells, 2) by modified proliferation and differentiation of the stem cells of differentiated tissues, 3) by alterations in the extracellular matrices, 4) by interactions between factors 1) 2) and 3) in each tissue, 5) by interactions between the several tissues of an organism. This complexity badly impedes the experimental study of animal senescence. Normal mammal cells are aging when they are cultivated (in vitro ageing): their phenotype varies and depends on the cell generation (in vitro differentiation); the last cell-generation doesn't divide anymore and declines until death of the culture (in vitro senescence). Analysis of these artificial but well controlled systems allows an experimental approach of the proliferation, differentiation, senescence and death of the cells and of the extracellular matrix functions. Present literature upon in vitro aging of cultivated human cells is essentially made of papers where proliferation and differentiation characteristics are compared between early ("young") and late ("old") cell-generations of the cultures. FIBROBLASTIC CELLS OF THE MOUSE SKIN. This cell type has been studied in our laboratory, using different systems: 1) Primary cultures isolated from peeled skins of 19 day old mouse embryos, 2) Mouse dermis analyzed in the animals, 3) Cultivated explants of skins, 4) Serial sub-cultures of fibroblasts isolated from these explants, 5) Cells cultivated comparably on plane substrates (glass, plastic, collagen films) and on tridimensional matrices (collagen fibres). Systems 2), 3), 4) and 5) have been obtained either from 19 day old embryos or from 6 groups of animals of different ages (from 1/2 till 25 month). In primary cultures (system 1) all the cell generations have been analyzed, including the last one until death of the culture. We have shown that many characters are varying with cell-generation: cell form and cell mass, rate of DNA replication and cell division, rate of RNA transcription, nature of the accumulated and of the synthetized proteins, organization of the cytoskeletal elements, organization of the extracellular matrix, type of cell death.(ABSTRACT TRUNCATED AT 400 WORDS)
[Characterization of epithelial primary culture from human conjunctiva].
Rivas, L; Blázquez, A; Muñoz-Negrete, F J; López, S; Rebolleda, G; Domínguez, F; Pérez-Esteban, A
2014-01-01
To evaluate primary cultures from human conjunctiva supplemented with fetal bovine serum, autologous serum, and platelet-rich autologous serum, over human amniotic membrane and lens anterior capsules. One-hundred and forty-eight human conjunctiva explants were cultured in CnT50(®) supplemented with 1, 2.5, 5 and 10% fetal bovine serum, autologous serum and platelet-rich autologous serum. Conjunctival samples were incubated at 37°C, 5% CO2 and 95% HR, for 3 weeks. The typical phenotype corresponding to conjunctival epithelial cells was present in all primary cultures. Conjunctival cultures had MUC5AC-positive secretory cells, K19-positive conjunctival cells, and MUC4-positive non-secretory conjunctival cells, but were not corneal phenotype (cytokeratin K3-negative) and fibroblasts (CD90-negative). Conjunctiva epithelial progenitor cells were preserved in all cultures; thus, a cell culture in CnT50(®) supplemented with 1 to 5% autologous serum over human amniotic membrane can provide better information of epithelial cell differentiation for the conjunctival surface reconstruction. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.
Collaborative and Defensive Fibroblasts in Tumor Progression and Therapy Resistance.
Chiavarina, Barbara; Turtoi, Andrei
2017-01-01
Tumor microenvironment is a complex network of epithelial cancer cells and non-transformed stromal cells. Of the many stromal cell types, fibroblasts are the most numerous ones and are traditionally viewed as supportive elements of cancer progression. Many studies show that cancer cells engage in active crosstalk with associated fibroblasts in order to obtain key resources, such as growth factors and nutrients. The facets of fibroblast "complicity to murder" in cancer are multiple. However, recent therapeutic attempts aiming at depleting fibroblasts from tumors, perturbed rather simplistic picture. Contrary to the expectations, tumors devoid of fibroblasts accelerated their progression while patients faced poorer outcomes. These studies remind us of the physiologic roles fibroblasts have in maintaining tissue homeostasis even in the presence of cancer. It is becoming increasingly clear that our research focus on advanced tumors has biased our understanding of fibroblast role in tumor biology. The numerous events where the fibroblasts protect the tissue from malignant transformation remain largely unacknowledged, as the tumors are invisible. The present review has the ambition to offer a more balanced view of fibroblasts functions in cancer progression and therapy resistance. We will address the question whether it is possible to synergize the efforts with fibroblasts as the therapeutic concept against tumor progression and therapy resistance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Ricotti, Leonardo; das Neves, Ricardo Pires; Ciofani, Gianni; Canale, Claudio; Nitti, Simone; Mattoli, Virgilio; Mazzolai, Barbara; Ferreira, Lino; Menciassi, Arianna
2014-02-01
F/G-actin ratio modulation is known to have an important role in many cell functions and in the regulation of specific cell behaviors. Several attempts have been made in the latest decades to finely control actin production and polymerization, in order to promote certain cell responses. In this paper we demonstrate the possibility of modulating F/G-actin ratio and mechanical properties of normal human dermal fibroblasts by using boron nitride nanotubes dispersed in the culture medium and by stimulating them with ultrasound transducers. Increasing concentrations of nanotubes were tested with the cells, without any evidence of cytotoxicity up to 10 μg/ml concentration of nanoparticles. Cells treated with nanoparticles and ultrasound stimulation showed a significantly higher F/G-actin ratio in comparison with the controls, as well as a higher Young's modulus. Assessment of Cdc42 activity revealed that actin nucleation/polymerization pathways, involving Rho GTPases, are probably influenced by nanotube-mediated stimulation, but they do not play a primary role in the significant increase of F/G-actin ratio of treated cells, such effect being mainly due to actin overexpression.
MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling
Yang, Bo; Xu, Qiu-Yun; Guo, Chun-Yan; Huang, Jin-Wen; Wang, Shu-Mei; Li, Yong-Mei; Tu, Ying; He, Li; Bi, Zhi-Gang; Ji, Chao; Cheng, Bo
2017-01-01
Ultra Violet (UV)-caused skin cell damage is a main cause of skin cancer. Here, we studied the activity of MHY1485, a mTOR activator, in UV-treated skin cells. In primary human skin keratinocytes, HaCaT keratinocytes and human skin fibroblasts, MHY1485 ameliorated UV-induced cell death and apoptosis. mTOR activation is required for MHY1485-induced above cytoprotective actions. mTOR kinase inhibitors (OSI-027, AZD-8055 and AZD-2014) or mTOR shRNA knockdown almost abolished MHY1485-induced cytoprotection. Further, MHY1485 treatment in skin cells activated mTOR downstream NF-E2-related factor 2 (Nrf2) signaling, causing Nrf2 Ser-40 phosphorylation, stabilization/upregulation and nuclear translocation, as well as mRNA expression of Nrf2-dictated genes. Contrarily, Nrf2 knockdown or S40T mutation almost nullified MHY1485-induced cytoprotection. MHY1485 suppressed UV-induced reactive oxygen species production and DNA single strand breaks in skin keratinocytes and fibroblasts. Together, we conclude that MHY1485 inhibits UV-induced skin cell damages via activating mTOR-Nrf2 signaling. PMID:28061443
Niemiec, Joanna; Adamczyk, Agnieszka; Harazin-Lechowska, Agnieszka; Ambicka, Aleksandra; Grela-Wojewoda, Aleksandra; Majchrzyk, Kaja; Kruczak, Anna; Sas-Korczyńska, Beata; Ryś, Janusz
2018-04-01
We compared the status of stromal podoplanin-positive cancer-associated fibroblasts (ppCAFs) between primary tumors and paired synchronous lymph node metastases (LNMs) and analyzed the prognostic significance of tumoral ppCAFs in 203 patients with human epidermal growth factor receptor 2-positive breast carcinoma. ppCAFs were found in 167/203 and in 35/87 tumors and LNM, respectively. ppCAFs were most frequently found in tumors and corresponding LNM (n=52, 59.8%; p=0.001). However, for all LNMs (n=12) without ppCAFs, their paired tumors also lacked ppCAFs. In both tumors and LNMs, ppCAFs were α-smooth muscle actin-positive and cluster of differentiation 21 protein-negative, suggesting them not to be resident lymph node cells. Moreover, in our series, the presence of ppCAFs in tumors was borderline related to poor disease-free survival (p=0.058). These results speak in favor of a hypothesis suggesting ppCAFs accompany metastatic cancer cells migrating from tumor to LNMs. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
PAI1 mediates fibroblast-mast cell interactions in skin fibrosis.
Pincha, Neha; Hajam, Edries Yousaf; Badarinath, Krithika; Batta, Surya Prakash Rao; Masudi, Tafheem; Dey, Rakesh; Andreasen, Peter; Kawakami, Toshiaki; Samuel, Rekha; George, Renu; Danda, Debashish; Jacob, Paul Mazhuvanchary; Jamora, Colin
2018-05-01
Fibrosis is a prevalent pathological condition arising from the chronic activation of fibroblasts. This activation results from the extensive intercellular crosstalk mediated by both soluble factors and direct cell-cell connections. Prominent among these are the interactions of fibroblasts with immune cells, in which the fibroblast-mast cell connection, although acknowledged, is relatively unexplored. We have used a Tg mouse model of skin fibrosis, based on expression of the transcription factor Snail in the epidermis, to probe the mechanisms regulating mast cell activity and the contribution of these cells to this pathology. We have discovered that Snail-expressing keratinocytes secrete plasminogen activator inhibitor type 1 (PAI1), which functions as a chemotactic factor to increase mast cell infiltration into the skin. Moreover, we have determined that PAI1 upregulates intercellular adhesion molecule type 1 (ICAM1) expression on dermal fibroblasts, rendering them competent to bind to mast cells. This heterotypic cell-cell adhesion, also observed in the skin fibrotic disorder scleroderma, culminates in the reciprocal activation of both mast cells and fibroblasts, leading to the cascade of events that promote fibrogenesis. Thus, we have identified roles for PAI1 in the multifactorial program of fibrogenesis that expand its functional repertoire beyond its canonical role in plasmin-dependent processes.
Perez, Felipe P; Zhou, Ximing; Morisaki, Jorge; Jurivich, Donald
2008-04-01
Hormesis may result when mild repetitive stress increases cellular defense against diverse injuries. This process may also extend in vitro cellular proliferative life span as well as delay and reverse some of the age-dependent changes in both replicative and non-replicative cells. This study evaluated the potential hormetic effect of non-thermal repetitive electromagnetic field shock (REMFS) and its impact on cellular aging and mortality in primary human T lymphocytes and fibroblast cell lines. Unlike previous reports employing electromagnetic radiation, this study used a long wave length, low energy, and non-thermal REMFS (50MHz/0.5W) for various therapeutic regimens. The primary outcomes examined were age-dependent morphological changes in cells over time, cellular death prevention, and stimulation of the heat shock response. REMFS achieved several biological effects that modified the aging process. REMFS extended the total number of population doublings of mouse fibroblasts and contributed to youthful morphology of cells near their replicative lifespan. REMFS also enhanced cellular defenses of human T cells as reflected in lower cell mortality when compared to non-treated T cells. To determine the mechanism of REMFS-induced effects, analysis of the cellular heat shock response revealed Hsp90 release from the heat shock transcription factor (HSF1). Furthermore, REMFS increased HSF1 phosphorylation, enhanced HSF1-DNA binding, and improved Hsp70 expression relative to non-REMFS-treated cells. These results show that non-thermal REMFS activates an anti-aging hormetic effect as well as reduces cell mortality during lethal stress. Because the REMFS configuration employed in this study can potentially be applied to whole body therapy, prospects for translating these data into clinical interventions for Alzheimer's disease and other degenerative conditions with aging are discussed.
March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A; Shlomai, Amir; Mota, Maria M; Fleming, Heather E; Khetani, Salman R; Rice, Charles M; Bhatia, Sangeeta N
2015-12-01
The development of therapies and vaccines for human hepatropic pathogens requires robust model systems that enable the study of host-pathogen interactions. However, in vitro liver models of infection typically use either hepatoma cell lines that exhibit aberrant physiology or primary human hepatocytes in culture conditions in which they rapidly lose their hepatic phenotype. To achieve stable and robust in vitro primary human hepatocyte models, we developed micropatterned cocultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive fibroblast cells. By using this system, which can be established over a period of days, and maintained over multiple weeks, we demonstrate how to recapitulate in vitro hepatic life cycles for the hepatitis B and C viruses and the Plasmodium pathogens P. falciparum and P. vivax. The MPCC platform can be used to uncover aspects of host-pathogen interactions, and it has the potential to be used for drug and vaccine development.
Mitomycin C-induced apoptosis in cultured human Tenon's capsule fibroblasts.
Kim, J W; Kim, S K; Song, I H; Kim, I T
1999-06-01
To investigate the mitomycin C-induced apoptotic cell death of fibroblasts, the primarily cultured human Tenon's capsule fibroblasts were exposed to a clinically used dosage of 0.4 mg/ml of mitomycin C for 5 minutes. TUNEL (TdT-mediated dUTP-biotin nick end labeling) assay and electron microscopic studies were performed to determine the extent of mitomycin C-induced apoptosis. A flow cytometric study was performed to quantify the apoptotic cell population over time. The TUNEL stains were positive and electron microscopy showed features of apoptotic cell death in some fibroblasts 3 and 5 days after treatment. Flow cytometric analysis using Annexin V-propidium iodide double staining detected apoptotic cells 3 days after treatment. These apoptotic cell populations increased at 4 days and were sustained for one week. This study revealed that the clinical effects of mitomycin C on fibroblasts may be mediated not only by antiproliferative but also apoptotic cell death to some degree. Therefore, the apoptotic cell death of fibroblasts induced by mitomycin C should be considered to properly understand the mechanism of wound healing after trabeculectomy with adjunctive mitomycin C.
Zuliani, Thomas; Saiagh, Soraya; Knol, Anne-Chantal; Esbelin, Julie; Dréno, Brigitte
2013-01-01
Fetal skin heals rapidly without scar formation early in gestation, conferring to fetal skin cells a high and unique potential for tissue regeneration and scar management. In this study, we investigated the possibility of using fetal fibroblasts and keratinocytes to stimulate wound repair and regeneration for further allogeneic cell-based therapy development. From a single fetal skin sample, two clinical batches of keratinocytes and fibroblasts were manufactured and characterized. Tolerogenic properties of the fetal cells were investigated by allogeneic PBMC proliferation tests. In addition, the potential advantage of fibroblasts/keratinocytes co-application for wound healing stimulation has been examined in co-culture experiments with in vitro scratch assays and a multiplex cytokines array system. Based on keratin 14 and prolyl-4-hydroxylase expression analyses, purity of both clinical batches was found to be above 98% and neither melanocytes nor Langerhans cells could be detected. Both cell types demonstrated strong immunosuppressive properties as shown by the dramatic decrease in allogeneic PBMC proliferation when co-cultured with fibroblasts and/or keratinocytes. We further showed that the indoleamine 2,3 dioxygenase (IDO) activity is required for the immunoregulatory activity of fetal skin cells. Co-cultures experiments have also revealed that fibroblasts-keratinocytes interactions strongly enhanced fetal cells secretion of HGF, GM-CSF, IL-8 and to a lesser extent VEGF-A. Accordingly, in the in vitro scratch assays the fetal fibroblasts and keratinocytes co-culture accelerated the scratch closure compared to fibroblast or keratinocyte mono-cultures. In conclusion, our data suggest that the combination of fetal keratinocytes and fibroblasts could be of particular interest for the development of a new allogeneic skin substitute with immunomodulatory activity, acting as a reservoir for wound healing growth factors. PMID:23894651
Preclinical safety studies on autologous cultured human skin fibroblast transplantation.
Zeng, Wei; Zhang, Shuying; Liu, Dai; Chai, Mi; Wang, Jiaqi; Zhao, Yuming
2014-01-01
Recently, FDA approved the clinical use of autologous fibroblasts (LAVIV™) for the improvement of nasolabial fold wrinkles in adults. The use of autologous fibroblasts for the augmentation of dermal and subcutaneous defects represents a potentially exciting natural alternative to the use of other filler materials for its long-term corrective ability and absence of allergic adverse effects proved by clinical application. However, compared to the clinical evidence, preclinical studies are far from enough. In this study, human skin-derived fibroblasts were cultured and expanded for both in vitro and in vivo observations. In vitro, the subcultured fibroblasts were divided into two groups. One set of cells underwent cell cycle and karyotype analysis at passages 5 and 10. The second group of cells was cocultured in medium with different concentrations of human skin extract D for the measurement of collagen concentration and cell count. In vivo, the subcultured fibroblasts were injected into nude mice subcutaneously. Biopsies were taken for morphology observation and specific collagen staining at 1, 2, and 3 months after injection. The results in vitro showed no significant differences in cell cycle distribution between passages 5 and 10. Cell proliferation and secretion were inhibited as the concentration of extract D increased. In vivo, the fibroblasts were remarkably denser on the experimental side with no dysplastic cells. Mitotic cells were easily observed at the end of the first month but were rare at the end of the third month. Type III collagen was detected at the end of the first month, while collagen type I was positive at the end of the second month. The content of both collagens increased as time passed. The above results indicated that the use of the autologous fibroblasts was safe, providing a basic support for clinical use of fibroblasts.
Hasaneen, Nadia A; Cao, Jian; Pulkoski-Gross, Ashleigh; Zucker, Stanley; Foda, Hussein D
2016-02-17
Idiopathic pulmonary fibrosis (IPF) is a chronic progressively fatal disease. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) is a glycosylated transmembrane protein that induces the expression of some matrix metalloproteinase (MMP) in neighboring stromal cells through direct epithelial-stromal interactions. EMMPRIN is highly expressed in type II alveolar epithelial cells at the edges of the fibrotic areas in IPF lung sections. However, the exact role of EMMPRIN in IPF is unknown. To determine if EMMPRIN contributes to lung fibroblast proliferation, resistance to apoptosis, and differentiation to myofibroblasts, normal Human lung fibroblasts (NHLF) transiently transfected with either EMMPRIN/GFP or GFP were treated with TGF- β1 from 0 to 10 ng/ml for 48 h and examined for cell proliferation (thymidine incorporation), apoptosis (FACS analysis and Cell Death Detection ELISA assay), cell migration (Modified Boyden chamber) and differentiation to myofibroblasts using Western blot for α-smooth actin of cell lysates. The effect of EMMPRIN inhibition on NHLF proliferation, apoptosis, migration and differentiation to myofibroblasts after TGF- β1 treatment was examined using EMMPRIN blocking antibody. We examined the mechanism by which EMMPRIN induces its effects on fibroblasts by studying the β-catenin/canonical Wnt signaling pathway using Wnt luciferase reporter assays and Western blot for total and phosphorylated β-catenin. Human lung fibroblasts overexpressing EMMPRIN had a significant increase in cell proliferation and migration compared to control fibroblasts. Furthermore, EMMPRIN promoted lung fibroblasts resistance to apoptosis. Lung fibroblasts overexpressing EMMPRIN showed a significantly increased expression of α- smooth muscle actin, a marker of differentiation to myofibroblasts compared to control cells. TGF-β1 increased the expression of EMMPRIN in lung fibroblasts in a dose-dependent manner. Attenuation of EMMPRIN expression with the use of an EMMPRIN blocking antibody markedly inhibited TGF-β1 induced proliferation, migration, and differentiation of fibroblasts to myofibroblasts. EMMPRIN overexpression in lung fibroblasts was found to induce an increase in TOPFLASH luciferase reporter activity when compared with control fibroblasts. These findings indicate that TGF-β1 induces the release of EMMPRIN that activates β-catenin/canonical Wnt signaling pathway. EMMPRIN overexpression induces an anti-apoptotic and pro-fibrotic phenotype in lung fibroblasts that may contribute to the persistent fibro-proliferative state seen in IPF.
Ahmed, Salahuddin; Silverman, Matthew D.; Marotte, Hubert; Kwan, Kevin; Matuszczak, Natalie; Koch, Alisa E.
2010-01-01
Objective Overexpression of the antiapoptotic protein myeloid cell leukemia 1 (Mcl-1) in rheumatoid arthritis (RA) synovial fibroblasts is a major cause of their resistance to tumor necrosis factor α (TNFα)–induced apoptosis. This study was undertaken to evaluate the efficacy of epigallocatechin-3-gallate (EGCG) in down-regulating Mcl-1 expression and its mechanism of RA synovial fibroblast sensitization to TNFα-induced apoptosis. Methods EGCG effects on cultured RA synovial fibroblast cell morphology, proliferation, and viability over 72 hours were determined by microscopy and a fluorescent cell enumeration assay. Caspase 3 activity was determined by a colorimetric assay. Western blotting was used to evaluate the apoptosis mediators poly(ADP-ribose) polymerase (PARP), Mcl-1, Bcl-2, Akt, and nuclear translocation of NF-κB. Results In RA synovial fibroblasts, EGCG (5–50 μM) inhibited constitutive and TNFα-induced Mcl-1 protein expression in a concentration- and time-dependent manner (P < 0.05). Importantly, EGCG specifically abrogated Mcl-1 expression in RA synovial fibroblasts and affected Mcl-1 expression to a lesser extent in osteoarthritis and normal synovial fibroblasts or endothelial cells. Inhibition of Mcl-1 by EGCG triggered caspase 3 activity in RA synovial fibroblasts, which was mediated via down-regulation of the TNFα-induced Akt and NF-κB pathways. Caspase 3 activation by EGCG also suppressed RA synovial fibroblast growth, and this effect was mimicked by Akt and NF-κB inhibitors. Interestingly, Mcl-1 degradation by EGCG sensitized RA synovial fibroblasts to TNFα-induced PARP cleavage and apoptotic cell death. Conclusion Our findings indicate that EGCG itself induces apoptosis and further sensitizes RA synovial fibroblasts to TNFα-induced apoptosis by specifically blocking Mcl-1 expression and, hence, may be of promising adjunct therapeutic value in regulating the invasive growth of synovial fibroblasts in RA. PMID:19404960
Evidence of two distinct functionally specialized fibroblast lineages in breast stroma.
Morsing, Mikkel; Klitgaard, Marie Christine; Jafari, Abbas; Villadsen, René; Kassem, Moustapha; Petersen, Ole William; Rønnov-Jessen, Lone
2016-11-03
The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human breast. We here demonstrate the impact on epithelium of two lineages of breast stromal fibroblasts, one of which accumulates in the TDLU while the other resides outside the TDLU in the interlobular stroma. The two lineages are prospectively isolated by fluorescence activated cell sorting (FACS) based on different expression levels of CD105 and CD26. The characteristics of the two fibroblast lineages are assessed by immunocytochemical staining and gene expression analysis. The differentiation capacity of the two fibroblast populations is determined by exposure to specific differentiating conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271 low /MUC1 high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation of morphological development. Epithelial structure formation and polarization is shown by immunofluorescence and digitalized quantification of immunoperoxidase-stained cultures. Lobular fibroblasts are CD105 high /CD26 low while interlobular fibroblasts are CD105 low /CD26 high . Once isolated the two lineages remain phenotypically stable and functionally distinct in culture. Lobular fibroblasts have properties in common with bone marrow derived mesenchymal stem cells and they specifically convey growth and branching morphogenesis of epithelial progenitors. Two distinct functionally specialized fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial progenitors, i.e. the putative precursors of breast cancer.
Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1
Moon, Jai-Hee; Heo, June Seok; Kim, Jun Sung; Jun, Eun Kyoung; Lee, Jung Han; Kim, Aeree; Kim, Jonggun; Whang, Kwang Youn; Kang, Yong-Kook; Yeo, Seungeun; Lim, Hee-Joung; Han, Dong Wook; Kim, Dong-Wook; Oh, Sejong; Yoon, Byung Sun; Schöler, Hans R; You, Seungkwon
2011-01-01
Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4, Sox2, and Klf4 in combination with c-Myc. Recently, Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells. Here, we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells, and, in combination with Oct4, can replace Sox2, Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells. Furthermore, activation of sonic hedgehog signaling (by Shh, purmorphamine, or oxysterol) compensates for the effects of Bmi1, and, in combination with Oct4, reprograms mouse embryonic and adult fibroblasts into iPS cells. One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile, epigenetic status, and in vitro and in vivo differentiation into all three germ layers, as well as teratoma formation and germline transmission in vivo. These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2, Klf4, and N-Myc allows iPS generation via the addition of Oct4. PMID:21709693
1984-01-01
The 4F2 monoclonal antibody (mAb) has been shown to recognize a 120- kilodalton glycoprotein expressed on the cell surface of human peripheral blood monocytes, activated (but not resting) T or B cells, and T and B lymphoblastoid cell lines. In this report we show that 4F2 mAb specifically binds to the surface of adherent human embryonic fibroblasts but fails to bind to normal adult fibroblasts. Moreover, 4F2 antigen was expressed on sarcoma-derived or SV40-transformed adult fibroblastic cells. Finally, addition of 4F2 mAb inhibited the growth of cultured HT-1080 fibrosarcoma cell line, but had no inhibitory effect on various embryonic and adult normal or transformed fibroblasts. PMID:6538202
Suppression of LRRC19 promotes cutaneous wound healing in pressure ulcers in mice.
Sun, Jie; Wang, Zhijing; Wang, Xirui
2018-02-20
The ischemia-reperfusion (I/R) induced skin lesion has been identified as primary cause of pressure ulcer. Better understanding of the mechanism is required for new therapy development. Leucine rich repeat containing protein 19 (LRRC19) is a recently discovered transmembrane protein containing leucine-rich repeats and plays a role in immune response. To investigate the role of LRRC19 in pressure ulcers, mouse ulcer model was established with two cycles of I/R. The expression of LRRC19 was assessed during injury. siRNA mediated LRRC19 downregulation was applied to investigate the disease severity, immune cell infiltration and pro-inflammatory cytokines production. The primary skin fibroblasts were stimulated with IL-1β to dissect the molecular mechanism. LRRC19 was readily induced in I/R induced lesion site in a pattern mimicking the disease progress as measured by wound area. Knockdown of LRRC19 by siRNA significantly alleviated the disease severity and attenuated immune cell infiltration and pro-inflammatory cytokines production. In primary skin fibroblast model, siRNA knockdown of LRRC19 suppressed IL-1β mediated NFκB activation and its downstream cytokines production. LRRC19 was a novel factor for I/R-induced tissue damage by promoting NFκB dependent pro-inflammatory response. Our results supported that LRRC19 could be a potential therapeutic target for pressure ulcers.
Fibroblasts regulate the migration of MCF7 mammary carcinoma cells in hydrated collagen gel.
Rossi, L; Reverberi, D; Capurro, C; Aiello, C; Cipolla, M; Bonanno, M; Podestà, G
1994-01-01
We have defined a tissue culture method suitable to study cell-cell interactions in an environmental set close to in vivo conditions. It consists of heterotypic cell populations mixed together inside a collagen gel in a chamber slide for a period of up to 14 days. When the three-dimensional system is saturated, cells will start to move on the plastic surface as monolayers surrounding the gel, with a characteristic speed depending on cell type. Usually fibroblasts move fast, while epithelial cells demonstrate a much lower pace of migration. At any given time gel contraction can be measured, and thus the rate of cell expansion, by knowing the distance from the edge of the gel to the leading edge of cell migration. By using this approach it was found that MCF7 mammary carcinoma cells display a great variety of morphologies following their mixture with different fibroblastic cell lines. In particular, when MCF7 cells were mixed with fibroblasts from human fetus, dog thymus and rat kidney, they migrated up to the leading edge of the fibroblastic front as isolated single cells or as cellular aggregates, many of which became necrotic in time, or took on an elongated morphology. Selective necrosis of MCF7 cells was also induced with serum concentration of 15% and 20% FCS, but only when they were mixed with fibroblasts. No necrosis was induced in MCF7 cells cultured alone. From these observations it is suggested that necrosis may sometimes favor the detachment and infiltration of resistant epithelial tumor cells by increasing their autonomous behaviour. Fibroblasts seem to be instrumental in regulating this process.
Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudás, József, E-mail: jozsef.dudas@i-med.ac.at; Fullár, Alexandra, E-mail: fullarsz@gmail.com; 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest
Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factormore » κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.« less
Derivation and characterization of putative embryonic stem cells from cloned rabbit embryos.
Intawicha, Payungsuk; Siriboon, Chawalit; Chen, Chien-Hong; Chiu, Yung-Tsung; Lin, Tzu-An; Kere, Michel; Lo, Neng-Wen; Lee, Kun-Hsiung; Chang, Li-Yung; Chiang, Hsing-I; Ju, Jyh-Cherng
2016-10-15
The present study aimed to establish embryonic stem (ES) cell lines, i.e., ntES cells, using rabbit blastocyst stage embryos cloned by somatic cell nuclear transfer. First, we investigated the development of cloned rabbit embryos reconstructed with normal fibroblasts and fibroblasts transfected with enhanced green fluorescence protein (eGFP). Blastocyst rates were 27.4% and 23.9%, respectively, for the embryos reconstructed with normal fibroblasts and fibroblasts transfected with eGFP compared with that from the parthenogenetic group (43.1%). One ntES cell line was established from embryos reconstructed with eGFP-transfected fibroblasts (1 of 17, 5.9%), and three ntES cell lines were derived from those with normal fibroblasts (3 of 17, 17.6%). All the ntES cell lines retained alkaline phosphatase activity and expressed ES cell-specific markers SSEA-4, Oct-4, TRA-1-60, and TRA-1-81. The pluripotency was further confirmed by reverse transcription-polymerase chain reaction analyses of Oct-4, Nanog, and Sox-2 expressions in ntES cell lines. The differentiation capacity of ntES cells was also examined in vitro and in vivo, by which these ntES cell lines were able to differentiate into all three germ layers through embryoid bodies and teratomas. In conclusion, it is apparent that the efficiency of ntES cells derived using eGFP-transfected donor cells is lower than that with nontransfected, normal fibroblasts donor cells. Similar to those from parthenogenetic embryos, all ntES cell lines derived from cloned rabbit embryos are able to express pluripotency markers and retain their capability to differentiate into various cell lineages both in vitro and in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Pierce, Elizabeth M.; Carpenter, Kristin; Jakubzick, Claudia; Kunkel, Steven L.; Flaherty, Kevin R.; Martinez, Fernando J.; Hogaboam, Cory M.
2007-01-01
Idiopathic interstitial pneumonias (IIPs) are a collection of pulmonary fibrotic diseases of unknown etiopathogenesis. CC chemokine receptor 7 (CCR7) is expressed in IIP biopsies and primary fibroblast lines, but its role in pulmonary fibrosis was not previously examined. To study the in vivo role of CCR7 in a novel model of pulmonary fibrosis, 1.0 × 106 primary fibroblasts grown from idiopathic pulmonary fibrosis/usual interstitial pneumonia, nonspecific interstitial pneumonia, or histologically normal biopsies were injected intravenously into C.B-17 severe combined immunodeficiency (SCID)/beige (bg) mice. At days 35 and 63 after idiopathic pulmonary fibrosis/usual interstitial pneumonia fibroblast injection, patchy interstitial fibrosis and increased hydroxyproline were present in the lungs of immunodeficient mice. Adoptively transferred nonspecific interstitial pneumonia fibroblasts caused a more diffuse interstitial fibrosis and increased hydroxyproline levels at both times, but injected normal human fibroblasts did not induce interstitial remodeling changes in C.B-17SCID/bg mice. Systemic therapeutic immunoneutralization of either human CCR7 or CC ligand 21, its ligand, significantly attenuated the pulmonary fibrosis in groups of C.B-17SCID/bg mice that received either type of IIP fibroblasts. Thus, the present study demonstrates that pulmonary fibrosis is initiated by the intravenous introduction of primary human fibroblast lines into immunodeficient mice, and this fibrotic response is dependent on the interaction between CC ligand 21 and CCR7. PMID:17392156
Armour, Alexis D; Fish, Joel S; Woodhouse, Kimberly A; Semple, John L
2006-03-01
Dermal substitutes derived from xenograft materials require elaborate processing at a considerable cost. Acellularized porcine dermis is a readily available material associated with minimal immunogenicity. The objective of this study was to evaluate acellularized pig dermis as a scaffold for human fibroblasts. In vitro methods were used to evaluate fibroblast adherence, proliferation, and migration on pig acellularized dermal matrix. Acellular human dermis was used as a control. Pig acellularized dermal matrix was found to be inferior to human acellularized dermal matrix as a scaffold for human fibroblasts. Significantly more samples of human acellularized dermal matrix (83 percent, n = 24; p < 0.05) demonstrated fibroblast infiltration below the cell-seeded surface than pig acellularized dermal matrix (31 percent, n = 49). Significantly more (p < 0.05) fibroblasts infiltrated below the surface of human acellularized dermal matrix (mean, 1072 +/- 80 cells per section; n = 16 samples) than pig acellularized dermal matrix (mean, 301 +/- 48 cells per section; n = 16 samples). Fibroblasts migrated significantly less (p < 0.05) distance from the cell-seeded pig acellularized dermal matrix surface than in the human acellularized dermal matrix (78.8 percent versus 38.3 percent cells within 150 mum from the surface, respectively; n = 5). Fibroblasts proliferated more rapidly (p < 0.05) on pig acellularized dermal matrix (n = 9) than on the human acellularized dermal matrix (7.4-fold increase in cell number versus 1.8-fold increase, respectively; n = 9 for human acellularized dermal matrix). There was no difference between the two materials with respect to fibroblast adherence (8120 versus 7436 average adherent cells per section, for pig and human acellularized dermal matrix, respectively; n = 20 in each group; p > 0.05). Preliminary findings suggest that substantial differences may exist between human fibroblast behavior in cell-matrix interactions of porcine and human acellularized dermis.
Zhang, Lin; Li, Yingna; Liang, Chunlian; Yang, Weilin
2014-02-01
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease with unknown etiology and undefined treatment modality. Fibroblasts are regarded as the major cell type that mediates the onset and progression of lung fibrosis by secreting large amounts of extracellular matrix (ECM) proteins, such as connective tissue growth factor (CTGF/CCN2). Current knowledge confers a crucial role of CCN2 in lung fibrosis. CCN5, another member of the CCN family, has been suggested to play an inhibitory role in some fibrotic diseases, such as cardiac fibrosis. However, the role of CCN5 in the process of IPF remains unknown. In the present study, using western blot analysis, we demonstrate that CCN2 is highly expressed in fibroblasts derived from IPF tissue, but is only slightly expressed in normal human lung fibroblasts. However, CCN5 was weakly expressed in all the above cells. qRT-PCR revealed that transforming growth factor (TGF)-β1 stimulation increased CCN2 expression in the IPF-derived cultures of primary human lung fibroblasts (PIFs) in a time- and concentration-dependent manner, but only slightly affected the expression of CCN5. The overexpression of CCN5 induced by the transfection of PIFs with recombinant plasmid did not affect cell viability, proliferation and apoptosis; however, it significantly suppressed the expression of CCN2, α-smooth muscle actin (α-SMA) and collagen type I. The TGF-β1-induced upregulation of the phosphorylation of Akt was reversed by CCN5 overexpression. Our results also demonstrated that adenovirus-mediated CCN5 overexpression in a mouse model of bleomycin-induced IPF significantly decreased the hydroxyproline content in the lungs, as well as TGF-β1 expression in bronchoalveolar lavage fluid. Taken together, our data demonstrate that CCN5 exerts an inhibitory effect on the fibrotic phenotypes of pulmonary fibroblasts in vitro and in vivo, and as such may be a promising target for the treatment of IPF.
Sun, Lina; Sun, Chenming; Liang, Zhanfeng; Li, Hongran; Chen, Lin; Luo, Haiying; Zhang, Hongmei; Ding, Pengbo; Sun, Xiaoning; Qin, Zhihai; Zhao, Yong
2015-01-01
Thymic epithelial cells (TECs) form a 3-dimentional network supporting thymocyte development and maturation. Besides epithelium and thymocytes, heterogeneous fibroblasts are essential components in maintaining thymic microenvironments. However, thymic fibroblast characteristics, development and function remain to be determined. We herein found that thymic non-hematopoietic CD45-FSP1+ cells represent a unique Fibroblast specific protein 1 (FSP1)—fibroblast-derived cell subset. Deletion of these cells in FSP1-TK transgenic mice caused thymus atrophy due to the loss of TECs, especially mature medullary TECs (MHCIIhigh, CD80+ and Aire+). In a cyclophosphamide-induced thymus injury and regeneration model, lack of non-hematopoietic CD45-FSP1+ fibroblast subpopulation significantly delayed thymus regeneration. In fact, thymic FSP1+ fibroblasts released more IL-6, FGF7 and FSP1 in the culture medium than their FSP1- counterparts. Further experiments showed that the FSP1 protein could directly enhance the proliferation and maturation of TECs in the in vitro culture systems. FSP1 knockout mice had significantly smaller thymus size and less TECs than their control. Collectively, our studies reveal that thymic CD45-FSP1+ cells are a subpopulation of fibroblasts, which is crucial for the maintenance and regeneration of TECs especially medullary TECs through providing IL-6, FGF7 and FSP1. PMID:26445893
Hatanaka, Miho; Higashi, Yuko; Fukushige, Tomoko; Baba, Naoko; Kawai, Kazuhiro; Hashiguchi, Teruto; Su, Juan; Zeng, Weiqi; Chen, Xiang; Kanekura, Takuro
2014-12-01
Cluster of differentiation 147 (CD147)/basigin on the malignant tumor cell surface is critical for tumor proliferation, invasiveness, metastasis, and angiogenesis. CD147 expressed on malignant melanoma cells can induce tumor cell invasion by stimulating the production of matrix metalloproteinases (MMPs) by surrounding fibroblasts. Membrane vesicles, microvesicles and exosomes have attracted attention, as vehicles of functional molecules and their association with CD147 has been reported. Cleaved CD147 fragments released from tumor cells were reported to interact with fibroblasts. We investigated the intercellular mechanisms by which CD147 stimulates fibroblasts to induce MMP2 activity. CD147 was knocked-down using short hairpin RNA (shRNA). The stimulatory effect of CD147 in cell culture supernatants, microvesicles, and exosomes on the enzymatic activity of MMP2 was examined by gelatin zymography. Supernatants from A375 control cells induced increased enzymatic activity of fibroblasts; such activity was significantly lower in CD147 knock-down cells. Cleaved CD147 plays a pivotal role in stimulating fibroblasts to induce MMP2 activity. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Effects of mitomycin-C on normal dermal fibroblasts.
Chen, Theodore; Kunnavatana, Shaun S; Koch, R James
2006-04-01
To evaluate the effects of mitomycin-C on the growth and autocrine growth factor production of human dermal fibroblasts from the face. In vitro study using normal adult dermal fibroblast cell lines in a serum-free model. Cell cultures were exposed to 4 mg/mL, 0.4 mg/mL, 0.04 mg/mL, 0.004 mg/mL, and 0.0004 mg/mL concentrations of mitomycin-C solution. Cell counts were performed, and the cell-free supernatants were collected at 0, 1, 3, and 5 days after the initial exposure. Population doubling times were calculated and supernatants were quantitatively assayed for basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta1. Continuous exposure to mitomycin-C caused fibroblast cell death by day 7 at all tested concentrations. A 4 minute exposure to mitomycin-C at 4 mg/mL caused rapid fibroblast cell death. A 4-minute exposure to mitomycin-C at either 0.4 mg/mL or 0.04 mg/mL resulted in decreased fibroblast proliferation. A 4 minute exposure to mitomycin-C at 0.4 mg/mL resulted in a marked increase in the production of both bFGF and TGF-beta1. A clinically ideal concentration of mitomycin-C would slow fibroblast proliferation yet not cause cell death to allow for a wound healing response. Mitomycin-C 0.4 mg/mL for 4 minutes satisfies the above criteria in vitro.
Centrosomal Latency of Incoming Foamy Viruses in Resting Cells
Giron, Marie Lou; Roingeard, Philippe; Clave, Emmanuel; Tobaly-Tapiero, Joelle; Bittoun, Patricia; Toubert, Antoine; de Thé, Hugues; Saïb, Ali
2007-01-01
Completion of early stages of retrovirus infection depends on the cell cycle. While gammaretroviruses require mitosis for proviral integration, lentiviruses are able to replicate in post-mitotic non-dividing cells. Resting cells such as naive resting T lymphocytes from peripheral blood cannot be productively infected by retroviruses, including lentiviruses, but the molecular basis of this restriction remains poorly understood. We demonstrate that in G0 resting cells (primary fibroblasts or peripheral T cells), incoming foamy retroviruses accumulate in close proximity to the centrosome, where they lie as structured and assembled capsids for several weeks. Under these settings, virus uncoating is impaired, but upon cell stimulation, Gag proteolysis and capsid disassembly occur, which allows viral infection to proceed. The data imply that foamy virus uncoating is the rate-limiting step for productive infection of primary G0 cells. Incoming foamy retroviruses can stably persist at the centrosome, awaiting cell stimulation to initiate capsid cleavage, nuclear import, and viral gene expression. PMID:17530924
Shimabuku, Tetsuya; Tamanaha, Ayumi; Kitamura, Bunta; Tanabe, Yasuka; Tawata, Natsumi; Ikehara, Fukino; Arakaki, Kazunari; Kinjo, Takao
2014-01-01
The prevalence of Epstein-Barr virus (EBV) and high-risk human papilloma virus (HPV) infections in patients with oral cancer in Okinawa, southwest islands of Japan, has led to the hypothesis that carcinogenesis is related to EBV and HPV co-infection. To explore the mechanisms of transformation induced by EBV and HPV co-infection, we analyzed the transformation of primary mouse embryonic fibroblasts (MEFs) expressing EBV and HPV-16 genes, alone or in combination. Expression of EBV latent membrane protein-1 (LMP-1) alone or in combination with HPV-16 E6 increased cell proliferation and decreased apoptosis, whereas single expression of EBV nuclear antigen-1 (EBNA-1), or HPV-16 E6 did not. Co-expression of LMP-1 and E6 induced anchorage-independent growth and tumor formation in nude mice, whereas expression of LMP-1 alone did not. Although the singular expression of these viral genes showed increased DNA damage and DNA damage response (DDR), co-expression of LMP-1 and E6 did not induce DDR, which is frequently seen in cancer cells. Furthermore, co-expression of LMP-1 with E6 increased NF-κB signaling, and the knockdown of LMP-1 or E6 in co-expressing cells decreased cell proliferation, anchorage independent growth, and NF-κB activation. These data suggested that expression of individual viral genes is insufficient for inducing transformation and that co-expression of LMP-1 and E6, which is associated with suppression of DDR and increased NF-κB activity, lead to transformation. Our findings demonstrate the synergistic effect by the interaction of oncogenes from different viruses on the transformation of primary MEFs.
2011-10-01
fibroblast growth factor receptors and their prognostic...AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth
Comparative transfection of DNA into primary and transformed mammalian cells from different lineages
2010-01-01
Background The delivery of DNA into human cells has been the basis of advances in the understanding of gene function and the development of genetic therapies. Numerous chemical and physical approaches have been used to deliver the DNA, but their efficacy has been variable and is highly dependent on the cell type to be transfected. Results Studies were undertaken to evaluate and compare the transfection efficacy of several chemical reagents to that of the electroporation/nucleofection system using both adherent cells (primary and transformed airway epithelial cells and primary fibroblasts as well as embryonic stem cells) and cells in suspension (primary hematopoietic stem/progenitor cells and lymphoblasts). With the exception of HEK 293 cell transfection, nucleofection proved to be less toxic and more efficient at effectively delivering DNA into the cells as determined by cell proliferation and GFP expression, respectively. Lipofectamine and nucleofection of HEK 293 were essentially equivalent in terms of toxicity and efficiency. Transient transfection efficiency in all the cell systems ranged from 40%-90%, with minimal toxicity and no apparent species specificity. Differences in efficiency and toxicity were cell type/system specific. Conclusions In general, the Amaxa electroporation/nucleofection system appears superior to other chemical systems. However, there are cell-type and species specific differences that need to be evaluated empirically to optimize the conditions for transfection efficiency and cell survival. PMID:20144189
EGR-1 regulates Ho-1 expression induced by cigarette smoke
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huaqun, E-mail: chenhuaqun@njnu.edu.cn; Wang, Lijuan; Gong, Tao
2010-05-28
As an anti-oxidant molecule, heme oxygenase-1 (HO-1) has been implicated in the protection of lung injury by cigarette smoke (CS). The mechanisms regulating its expression have not been defined. In this report, the role of early growth response 1 (EGR-1) in the regulation of Ho-1 expression was investigated. In C57BL/6 mice with CS exposure, HO-1 was greatly increased in bronchial epithelial cells and alveolar inflammatory cells. In primary cultured mouse lung fibroblasts and RAW264.7 cells exposed to cigarette smoke water extract (CSE), an increase in HO-1 protein level was detected. In addition, CSE induced HO-1 expression was decreased in Egr-1more » deficient mouse embryo fibroblasts (Egr-1{sup -/-} MEFs). Nuclear localization of EGR-1 was examined in mouse lung fibroblasts after exposure to CSE. Luciferase reporter activity assays showed that the enhancer region of the Ho-1 gene containing a proposed EGR-1 binding site was responsible for the induction of HO-1. A higher increase of alveolar mean linear intercept (Lm) was observed in lung tissues, and a larger increase in the number of total cells and monocytes/macrophages from bronchial alveolar lavage fluid was found in CS-exposed mice by loss of function of EGR-1 treatment. In summary, the present data demonstrate that EGR-1 plays a critical role in HO-1 production induced by CS.« less
Tan, Xiaojie; Ding, Yibo; Luo, Yanxin; Cai, Hui; Liu, Yan; Gao, Xianhua; Liu, Qizhi; Yu, Yongwei; Du, Yan; Wang, Hao; Ma, Liye; Wang, Jianping; Chen, Kun; Ding, Yanqing; Fu, Chuangang; Cao, Guangwen
2016-01-01
Periostin (POSTN) expression in cancer cells and circulation has been related to poor prognosis of colorectal carcinoma (CRC). However, the role of POSTN expressed in intra-tumoral stroma on CRC progression remains largely unknown. This study enrolled 1098 CRC patients who received surgical treatment in Shanghai and Guangzhou, Mainland China. In Shanghai cohort, immunohistochemistry score of stromal POSTN expression increased consecutively from adjacent mucosa, primary CRC tissues, to metastatic CRC tissues (P < 0.001), while medium- and high-stromal POSTN expression, rather than epithelial POSTN expression, independently predicted unfavorable prognoses of CRC, adjusted for covariates including TNM stage and postoperative chemotherapy in multivariate Cox models. The results in Shanghai cohort were faithfully replicated in Guangzhou cohort. Stromal POSTN expression dose-dependently predicted an unfavorable prognosis of stage III CRC patients with postoperative chemotherapy in both cohorts. POSTN derived from colonic fibroblasts or recombinant POSTN significantly promoted proliferation, anchorage independent growth, invasion, and chemo-resistance of CRC cells; whereas these effects were counteracted via targeting to PI3K/Akt or Wnt/β-catenin signaling pathway. CRC cell RKO-derived factor(s) significantly induced POSTN production in colonic fibroblasts and autocrine POSTN promoted proliferation, migration, and anchorage independent growth of fibroblasts. Conclusively, stromal POSTN is prognostic and predictive for CRC via creating a niche to facilitate cancer progression. Targeting POSTN-induced signaling pathways may be therapeutic options for metastatic or chemoresistant CRC. PMID:26556874
Mutation induction by charged particles of defined linear energy transfer.
Hei, T K; Chen, D J; Brenner, D J; Hall, E J
1988-07-01
The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines.
Chou, Ya-Shuan; Young, Tai-Horng; Lou, Pei-Jen
2015-11-01
Salivary gland cells are surrounded by a complex stromal environment, in which fibroblasts are the main cells in proximity to the gland cells. In this study, the interaction between parotid gland acinar cells (PGACs), fibroblasts, and biomaterials was investigated. We prepared different biomaterials, including chitosan, polyvinyl alcohol (PVA), poly (ethylene-co-vinyl alcohol) (EVAL), polyvinylidene fluoride (PVDF), and tissue culture polystyrene (TCPS) to culture fibroblasts and then collect their conditioned media to culture PGACs. We observed no difference in AQP3, AQP5, and E-cadherin expression among different fibroblast conditioned medium treatments. Interestingly, α-amylase expression was obviously enhanced in PGACs cultured in the presence of conditioned medium from fibroblasts cultured on PVDF. Higher neurotrophin-4 (NT-4) expression was observed in PVDF-derived fibroblast conditioned medium using a growth factor protein array assay. In addition, directly adding NT-4 into the culture medium significantly promoted α-amylase expression by PGACs. Finally, nestin and βIII-tubulin expression by fibroblasts cultured on PVDF was also enhanced. Together, these results suggest that PVDF could promote α-amylase expression by PGACs via the NT-4 produced by fibroblasts. To date, there is no effective therapy for patients with dry mouth with persistent salivary hypofunction. The study made use of different biomaterials to culture fibroblasts and then collect their conditioned media to culture PGACs. It was found that the effect of fibroblast conditioned medium from PVDF on the α-amylase expression of PGACs was obviously enhanced and higher neurotrophin-4 (NT-4) expression was found in PVDF-derived fibroblast conditioned medium. In addition, directly adding NT-4 into the culture medium significantly promoted the expression of α-amylase by PGACs and the expression of nestin and βIII-tubulin of fibroblasts after being cultured on PVDF was enhanced. Therefore, the present study represents the first description of the role of NT-4 in the expression of α-amylase of PGACs and the role of PVDF in the reprogramming fibroblasts into neural progenitor-like cells, indicating that PVDF could promote the expression of α-amylase by PGACs via the NT-4 produced by fibroblasts. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
In vitro propagation of male germline stem cells from piglets.
Zheng, Yi; Tian, Xiue; Zhang, Yaqing; Qin, Jinzhou; An, Junhui; Zeng, Wenxian
2013-07-01
To study the effects of serum and growth factors on propagation of porcine male germline stem cells (MGSCs) in vitro and develop a culture system for these stem cells. Fresh testicular cells from neonatal piglets were obtained by mechanical dissociation and collagenase-trypsin digestion. After differential plating, non-adhering cells were cultured in media supplemented with different concentrations of serum (0, 1 %, 2 %, 5 %, 10 %). After 10 days of primary culture, the cells were maintained in media supplemented with different concentrations of growth factors (basic fibroblast growth factor and epidermal growth factor at 1, 5, 10 ng/ml). The number of MGSC-derived colonies with different sizes was determined in each treatment to assess the effects of serum concentrations and growth factors. The number of MGSC-derived colonies was significantly higher in the presence of 1 % rather than 10 % fetal bovine serum (FBS). Basic fibroblast growth factor (bFGF) at 1, 5 ng/ml and epidermal growth factor (EGF) at 5, 10 ng/ml significantly promoted colony formation. Immunocytochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and xenotransplantation assays demonstrated the presence of functional stem cells in cultured cell population. In vitro propagation of porcine MGSCs could be maintained in the presence of 1 % FBS and supplementation of growth factors for 1 month.
Pomari, Elena; Dalla Valle, Luisa; Pertile, Paolo; Colombo, Lorenzo; Thornton, M Julie
2015-02-01
Peripheral intracrine sex steroid synthesis from adrenal precursors dehydroepiandrosterone (DHEA) and DHEA-sulfate has evolved in humans. We sought to establish if there are differences in intracrine, paracrine, and endocrine regulation of sex steroids by primary cultures of human skin epidermal keratinocytes and dermal fibroblasts. Microarray analysis identified multifunctional genes modulated by steroids, quantitative RT-PCR (qRT-PCR) mRNA expression, enzymatic assay aromatase activity, scratch assay cell migration, immunocytochemistry α-smooth muscle actin (α-SMA), and collagen gel fibroblast contraction. All steroidogenic components were present, although only keratinocytes expressed the organic anion organic anion transporter protein (OATP) 2B1 transporter. Both expressed the G-protein-coupled estrogen receptor (GPER1). Steroids modulated multifunctional genes, up-regulating genes important in repair and aging [angiopoietin-like 4 (ANGPTL4), chemokine (C-X-C motif) ligand 1 (CXCL1), lamin B1 (LMNB1), and thioredoxin interacting protein (TXNIP)]. DHEA-sulfate (DHEA-S), DHEA, and 17β-estradiol stimulated keratinocyte and fibroblast migration at early (4 h) and late (24-48 h) time points, suggesting involvement of genomic and nongenomic signaling. Migration was blocked by aromatase and steroid sulfatase (STS) inhibitors confirming intracrine synthesis to estrogen. Testosterone had little effect, implying it is not an intermediate. Steroids stimulated fibroblast contraction but not α-SMA expression. Mechanical wounding reduced fibroblast aromatase activity but increased keratinocyte activity, amplifying the bioavailability of intracellular estrogen. Cultured fibroblasts and keratinocytes provide a biologically relevant model system to investigate the complex pathways of sex steroid intracrinology in human skin. © FASEB.
Li, Juan; Yao, Wu; Zhang, Lin; Bao, Lei; Chen, Huiting; Wang, Di; Yue, Zhongzheng; Li, Yiping; Zhang, Miao; Hao, Changfu
2017-05-12
Exposure to crystalline silica is considered to increase the risk of lung fibrosis. The primary effector cell, the myofibroblast, plays an important role in the deposition of extracellular matrix (ECM). DNA methylation change is considered to have a potential effect on myofibroblast differentiation. Therefore, the present study was designed to investigate the genome-wide DNA methylation profiles of lung fibroblasts co-cultured with alveolar macrophages exposed to crystalline silica in vitro. AM/fibroblast co-culture system was established. CCK8 was used to assess the toxicity of AMs. mRNA and protein expression of collagen I, α-SMA, MAPK9 and TGF-β1 of fibroblasts after AMs exposed to 100 μg /ml SiO 2 for 0-, 24-, or 48 h were determined by means of quantitative real-time PCR, immunoblotting and immunohistochemistry. Genomic DNA of fibroblasts was isolated using MeDIP-Seq to sequence. R software, GO, KEGG and Cytoscape were used to analyze the data. SiO 2 exposure increased the expression of collagen I and α-SMA in fibroblasts in co-culture system. Analysis of fibroblast methylome identified extensive methylation changes involved in several signaling pathways, such as the MAPK signaling pathway and metabolic pathways. Several candidates, including Tgfb1 and Mapk9, are hubs who can connect the gene clusters. MAPK9 mRNA expression was significantly higher in fibroblast exposed to SiO 2 in co-culture system for 48 h. MAPK9 protein expression was increased at both 24-h and 48-h treatment groups. TGF-β1 mRNA expression of fibroblast has a time-dependent manner, but we didn't observe the TGF-β1 protein expression. Tgfb1 and Mapk9 are helpful to explore the mechanism of myofibroblast differentiation. The genome-wide DNA methylation profiles of fibroblasts in this experimental silicosis model will be useful for future studies on epigenetic gene regulation during myofibroblast differentiation.
Kovac, Stjepana; Preza, Elisavet; Houlden, Henry; Walker, Matthew C; Abramov, Andrey Y
2018-04-27
Mutations in genes affecting mitochondrial proteins are increasingly recognised in patients with epilepsy, but the factors determining cell fate during seizure activity in these mutations remain unknown. Fluorescent dye imaging techniques were applied to fibroblast cell lines from patients suffering from common mitochondrial mutations and to age-matched controls. Using live cell imaging techniques in fibroblasts, we show that fibroblasts with mutations in the mitochondrial genome had reduced mitochondrial membrane potential and NADH pools and higher redox indices, indicative of respiratory chain dysfunction. Increasing concentrations of ferutinin, a Ca 2+ ionophore, led to oscillatory Ca 2+ signals in fibroblasts resembling dynamic Ca 2+ changes that occur during seizure-like activity. Co-monitoring of mitochondrial membrane potential (ΔΨ m ) changes induced by ferutinin showed accelerated membrane depolarisation and cell collapse in fibroblasts with mutations in the mitochondrial genome when compared to controls. Ca 2+ flash photolysis using caged Ca 2+ confirmed impaired Ca 2+ handling in fibroblasts with mitochondrial mutations. Findings indicate that intracellular Ca 2+ levels cannot be compensated during periods of hyperexcitability, leading to Ca 2+ overload and subsequent cell death in mitochondrial diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campisi, J.; Hafner, J.; Boorstein, R.
/sup 125/I-Iododeoxycytidine (/sup 125/IdC) incorporation into acid-insoluble material was a sensitive, rapid, and quantitative assay for the growth of herpes simplex virus type 1 (HSV-1) in human fibroblasts. Cellular utilization of the isotope was 10 to 25% of the incorporation by infected cells and could be 80% inhibited by tetrahydrouridine (THU). Viral utilization was inhibited by acycloguanosine, thioguanine (TG), and cytosine arabinoside. Isotope was incorporated equally well by growing or quiescent infected cells. HSV-1 was used to probe the metabolic capabilities of three mutant human fibroblast strains. /sup 125/IdC incorporation quantitatively measured the ability of the virus to grow inmore » these cells. Viral /sup 125/IdC incorporation was sensitive to TG in normal fibroblasts but showed a 8- to 10-fold greater resistance to TG in fibroblasts derived from patients with Lesch-Nyhan syndrome (LN). Similarly, the growth of ultraviolet irradiated HSV-1 in normal fibroblasts was 5-fold greater than in fibroblasts derived from patients with xeroderma pigmentosum. In fibroblasts derived from patients with hereditary orotic aciduria, viral /sup 125/IdC incorporation was sensitive to adenosine (AD) at concentrations which were slightly stimulatory in normal fibroblasts. This was a 2-fold difference in AD sensitivity, which the radioassay reliably and quantitatively documented. HSV-1 infected cells could be individually identified by their incorporated /sup 125/IdC; such cells had blackened nuclei in autoradiograms prepared 12 hr after infection. Normal cells infected in the presence of TG had many fewer labeled nuclei than LN cells similarly infected in the presence of the drug. (JMT)« less
Jung, Hee Jin; Lee, A Kyoung; Park, Yeo Jin; Lee, Sanggwon; Kang, Dongwan; Jung, Young Suk; Chung, Hae Young; Moon, Hyung Ryong
2018-06-11
Ultraviolet (UV) radiation exposure is the primary cause of extrinsic skin aging, which results in skin hyperpigmentation and wrinkling. In this study, we investigated the whitening effect of (2 E ,5 E )-2,5-bis(3-hydroxy-4-methoxybenzylidene)cyclopentanone (BHCP) on B16F10 melanoma and its anti-wrinkle activity on Hs27 fibroblasts cells. BHCP was found to potently inhibit tyrosinase, with 50% inhibition concentration (IC 50 ) values of 1.10 µM and 8.18 µM for monophenolase (l-tyrosine) and diphenolase (l-DOPA), and the enzyme kinetics study revealed that BHCP is a competitive-type tyrosinase inhibitor. Furthermore, BHCP significantly inhibited melanin content and cellular tyrosinase activity, and downregulated the levels of microphthalmia-associated transcription factor (MITF), phosphorylated levels of cAMP response element-binding (CREB) protein, and tyrosinase in α-melanocyte stimulating hormone (α-MSH)-induced B16F10 melanoma cells. Moreover, BHCP inhibited the phosphorylation of p65 and expression of matrix metalloproteinases (MMP-1, MMP-9, MMP-12, and MMP-13) in Hs27 fibroblasts stimulated with UV radiation. Therefore, our results demonstrate that BHCP may be a good candidate for the development of therapeutic agents for diseases associated with hyperpigmentation and wrinkling.
Fuller, Maria; Duplock, Stephen; Hein, Leanne K; Rigat, Brigitte A; Mahuran, Don J
2014-08-01
GM2 gangliosidosis is a group of inherited neurodegenerative disorders resulting primarily from the excessive accumulation of GM2 gangliosides (GM2) in neuronal cells. As biomarkers for categorising patients and monitoring the effectiveness of developing therapies are lacking for this group of disorders, we sought to develop methodology to quantify GM2 levels in more readily attainable patient samples such as plasma, leukocytes, and cultured skin fibroblasts. Following organic extraction, gangliosides were partitioned into the aqueous phase and isolated using C18 solid-phase extraction columns. Relative quantification of three species of GM2 was achieved using LC/ESI-MS/MS with d35GM1 18:1/18:0 as an internal standard. The assay was linear over the biological range, and all GM2 gangliosidosis patients were demarcated from controls by elevated GM2 in cultured skin fibroblast extracts. However, in leukocytes only some molecular species could be used for differentiation and in plasma only one was informative. A reduction in GM2 was easily detected in patient skin fibroblasts after a short treatment with media from normal cells enriched in secreted β-hexosaminidase. This method may show promise for measuring the effectiveness of experimental therapies for GM2 gangliosidosis by allowing quantification of a reduction in the primary storage burden. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wu, Honglu; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis
2002-01-01
The recently commercialized multiplex fluorescence in situ hybridization (m-FISH) technique, which allows human chromosomes to be painted in 24 different colors, was used to analyze chromosome aberrations in diploid human fibroblast cells after in vitro radiation exposure. Confluent flasks of a normal primary fibroblast cell line (AG 1522) were irradiated at high dose rates with either gamma rays or 200 MeV/nucleon Fe ions (LET = 440 keV/micron), incubated at 37 C for 24 hours after exposure, and subsequently subcultured. A chemically induced premature chromosome condensation technique was used to collect chromosome samples 32 hours after subculture. Results showed that the fraction of exchanges which were identified as complex, i.e. involving misrejoining of three or more DSB, were higher in the Fe-irradiated samples compared with the gamma-irradiated samples, as has been shown previously using FISH with one or two painted chromosomes . The ratios of complex/simple type exchanges were similar for samples irradiated with 0.7 Gy and 3 Gy of Fe ions, although exchanges involving five or more breaks were found only in 3 Gy irradiated samples. The fraction of incomplete exchanges was also higher in Fe- than gamma-irradiated samples. Data on the distribution of individual chromosome involvement in interchromosomal exchanges will be presented.
Wang, Hao-Yu; Hung, Chao-Ming; Lin, Ying-Chao; Ho, Chi-Tang; Way, Tzong-Der
2017-01-01
“Triple negative breast cancer” (TNBC) is associated with a higher rate and earlier time of recurrence and worse prognosis after recurrence. In this study, we aimed to examine the crosstalk between fibroblasts and TNBC cells. The fibroblasts were isolated from TNBC patients’ tissue in tumor burden zones, distal normal zones and interface zones. The fibroblasts were indicated as cancer-associated fibroblasts (CAFs), normal zone fibroblasts (NFs) and interface zone fibroblasts (INFs). Our study found that INFs grew significantly faster than NFs and CAFs in vitro. The epithelial BT20 cells cultured with the conditioned medium of INFs (INFs-CM) and CAFs (CAFs-CM) showed more spindle-like shape and cell scattering than cultured with the conditioned medium of NFs (NFs-CM). These results indicated that factors secreted by INFs-CM or CAFs-CM could induce the epithelial-mesenchymal transition (EMT) phenotype in BT20 cells. Using an in vitro co-culture model, INFs or CAFs induced EMT and promoted cancer cell migration in BT20 cells. Interestingly, we found that emodin inhibited INFs-CM or CAFs-CM-induced EMT programming and phenotype in BT20 cells. Previous studies reported that CAFs and INFs-secreted TGF-β promoted human breast cancer cell proliferation, here; our results indicated that TGF-β initiated EMT in BT20 cells. Pretreatment with emodin significantly suppressed the TGF-β-induced EMT and cell migration in BT20 cells. These results suggest that emodin may be used as a novel agent for the treatment of TNBC. PMID:28060811
Niu, Yi-Nong; Wang, Kai; Jin, Song; Fan, Dong-Dong; Wang, Ming-Shuai; Xing, Nian-Zeng; Xia, Shu-Jie
2016-01-01
In a large clinical trial, finasteride reduced the rate of low-grade prostate cancer (PCa) while increasing the incidence of high-grade cancer. Whether finasteride promotes the development of high-grade tumors remains controversial. We demonstrated the role of fibroblasts and c-Jun in chemopreventive and therapeutic effect of finasteride on xenograft models of PCa. LNCaP (PC3) cells or recombinants of cancer cells and fibroblasts were implanted in male athymic nude mice treated with finasteride. Tumor growth, cell proliferation, apoptosis, p-Akt, and p-ERK1/2 were evaluated. In LNCaP (PC3) mono-grafted models, finasteride did not change the tumor growth. In recombinant-grafted models, fibroblasts and c-Jun promoted tumor growth; finasteride induced proliferation of LNCaP cells and repressed PC3 cell apoptosis. When c-Jun was knocked out, fibroblasts and/or finasteride did not promote the tumor growth. Finasteride inhibited p-Akt and p-ERK1/2 in mono-culture cancer cells while stimulating the same signaling molecules in the presence of fibroblasts. Reduced p-Akt and p-ERK1/2 were noted in the presence of c-Jun−/− fibroblasts. Fibroblasts and c-Jun promote PCa growth; finasteride further stimulates tumor growth with promoted proliferation, repressed apoptosis, and up-regulated pro-proliferative molecular pathway in the presence of fibroblasts and c-Jun. Stromal-epithelial interactions play critical roles in finasteride's therapeutic effects on PCa. Our findings have preliminary implications in using finasteride as a chemopreventive or therapeutic agent for PCa patients. PMID:26698232
NASA Technical Reports Server (NTRS)
Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.
1999-01-01
We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.
NASA Astrophysics Data System (ADS)
Kapsokalyvas, Dimitrios; Barygina, Victoria; Cicchi, Riccardo; Fiorillo, Claudia; Pavone, Francesco S.
2013-02-01
Psoriasis is an autoimmune disease of the skin characterized by hyperkeratosis, hyperproliferation of the epidermis, inflammatory cell accumulation and increased dilatation of dermal papillary blood vessels. Metabolic activity is increased in the epidermis and the dermis. Oxidative stress is high mainly due to reactive oxygen species (ROS) originating from the skin environment and cellular metabolism. We employed a custom multiphoton microscope coupled with a FLIM setup to image primary culture fibroblast cells from perilesional and lesional psoriatic skin in-vitro. Twophoton excited fluorescence images revealed the morphological differences between healthy and psoriatic fibroblasts. Based on the spectral analysis of the NADH and FAD components the oxidative stress was assessed and found to be higher in psoriatic cells. Furthermore the fluorescence lifetime properties were investigated with a TCSPC FLIM module. Mean fluorescence lifetime was found to be longer in psoriatic lesional cells. Analysis of the fast (τ1) and slow (τ2) decay lifetimes revealed a decrease of the ratio of the contribution of the fast (α1) parameter to the contribution of the slow (α2) parameter. The fluorescence in the examined part of the spectrum is attributed mainly to NADH. The decrease of the ratio (α1)/ (α2) is believed to correlate strongly with the anti-oxidant properties of NADH which can lead to the variation of its population in high ROS environment. This methodology could serve as an index of the oxidative status in cells and furthermore could be used to probe the oxidative stress of tissues in-vivo.
Matveeva, Natalia M; Fishman, Veniamin S; Zakharova, Irina S; Shevchenko, Alexander I; Pristyazhnyuk, Inna E; Menzorov, Aleksei G; Serov, Oleg L
2017-12-22
For the first time, two types of hybrid cells with embryonic stem (ES) cell-like and fibroblast-like phenotypes were produced through the fusion of mouse ES cells with fibroblasts. Transcriptome analysis of 2,848 genes differentially expressed in the parental cells demonstrated that 34-43% of these genes are expressed in hybrid cells, consistent with their phenotypes; 25-29% of these genes display intermediate levels of expression, and 12-16% of these genes maintained expression at the parental cell level, inconsistent with the phenotype of the hybrid cell. Approximately 20% of the analyzed genes displayed unexpected expression patterns that differ from both parents. An unusual phenomenon was observed, namely, the illegitimate activation of Xist expression and the inactivation of one of two X-chromosomes in the near-tetraploid fibroblast-like hybrid cells, whereas both Xs were active before and after in vitro differentiation of the ES cell-like hybrid cells. These results and previous data obtained on heterokaryons suggest that the appearance of hybrid cells with a fibroblast-like phenotype reflects the reprogramming, rather than the induced differentiation, of the ES cell genome under the influence of a somatic partner.
Addis, Russell C.; Ifkovits, Jamie L.; Pinto, Filipa; Kellam, Lori D.; Esteso, Paul; Rentschler, Stacey; Christoforou, Nicolas; Epstein, Jonathan A.; Gearhart, John D.
2013-01-01
Direct conversion of fibroblasts to induced cardiomyocytes (iCMs) has great potential for regenerative medicine. Recent publications have reported significant progress, but the evaluation of reprogramming has relied upon non-functional measures such as flow cytometry for cardiomyocyte markers or GFP expression driven by a cardiomyocyte-specific promoter. The issue is one of practicality: the most stringent measures - electrophysiology to detect cell excitation and the presence of spontaneously contracting myocytes - are not readily quantifiable in the large numbers of cells screened in reprogramming experiments. However, excitation and contraction are linked by a third functional characteristic of cardiomyocytes: the rhythmic oscillation of intracellular calcium levels. We set out to optimize direct conversion of fibroblasts to iCMs with a quantifiable calcium reporter to rapidly assess functional transdifferentiation. We constructed a reporter system in which the calcium indicator GCaMP is driven by the cardiomyocyte-specific Troponin T promoter. Using calcium activity as our primary outcome measure, we compared several published combinations of transcription factors along with novel combinations in mouse embryonic fibroblasts. The most effective combination consisted of Hand2, Nkx2.5, Gata4, Mef2c, and Tbx5 (HNGMT). This combination is >50-fold more efficient than GMT alone and produces iCMs with cardiomyocyte marker expression, robust calcium oscillation, and spontaneous beating that persists for weeks following inactivation of reprogramming factors. HNGMT is also significantly more effective than previously published factor combinations for the transdifferentiation of adult mouse cardiac fibroblasts to iCMs. Quantification of calcium function is a convenient and effective means for the identification and evaluation of cardiomyocytes generated by direct reprogramming. Using this stringent outcome measure, we conclude that HNGMT produces iCMs more efficiently than previously published methods. PMID:23591016
Sawant, Sharada; Dongre, Harsh; Singh, Archana Kumari; Joshi, Shriya; Costea, Daniela Elena; Mahadik, Snehal; Ahire, Chetan; Makani, Vidhi; Dange, Prerana; Sharma, Shilpi; Chaukar, Devendra; Vaidya, Milind
2016-01-01
To study multistep tumorigenesis process, there is a need of in-vitro 3D model simulating in-vivo tissue. Present study aimed to reconstitute in-vitro tissue models comprising various stages of neoplastic progression of tongue tumorigenesis and to evaluate the utility of these models to investigate the role of stromal fibroblasts in maintenance of desmosomal anchoring junctions using transmission electron microscopy. We reconstituted in-vitro models representing normal, dysplastic, and malignant tissues by seeding primary keratinocytes on either fibroblast embedded in collagen matrix or plain collagen matrix in growth factor-free medium. The findings of histomorphometry, immunohistochemistry, and electron microscopy analyses of the three types of 3D cultures showed that the stratified growth, cell proliferation, and differentiation were comparable between co-cultures and their respective native tissues; however, they largely differed in cultures grown without fibroblasts. The immunostaining intensity of proteins, viz., desmoplakin, desmoglein, and plakoglobin, was reduced as the disease stage increased in all co-cultures as observed in respective native tissues. Desmosome-like structures were identified using immunogold labeling in these cultures. Moreover, electron microscopic observations revealed that the desmosome number and their length were significantly reduced and intercellular spaces were increased in cultures grown without fibroblasts when compared with their co-culture counterparts. Our results showed that the major steps of tongue tumorigenesis can be reproduced in-vitro. Stromal fibroblasts play a role in regulation of epithelial thickness, cell proliferation, differentiation, and maintenance of desmosomalanchoring junctions in in-vitro grown tissues. The reconstituted co-culture models could help to answer various biological questions especially related to tongue tumorigenesis.
Sawant, Sharada; Dongre, Harsh; Singh, Archana Kumari; Joshi, Shriya; Costea, Daniela Elena; Mahadik, Snehal; Ahire, Chetan; Makani, Vidhi; Dange, Prerana; Sharma, Shilpi; Chaukar, Devendra; Vaidya, Milind
2016-01-01
To study multistep tumorigenesis process, there is a need of in-vitro 3D model simulating in-vivo tissue. Present study aimed to reconstitute in-vitro tissue models comprising various stages of neoplastic progression of tongue tumorigenesis and to evaluate the utility of these models to investigate the role of stromal fibroblasts in maintenance of desmosomal anchoring junctions using transmission electron microscopy. We reconstituted in-vitro models representing normal, dysplastic, and malignant tissues by seeding primary keratinocytes on either fibroblast embedded in collagen matrix or plain collagen matrix in growth factor-free medium. The findings of histomorphometry, immunohistochemistry, and electron microscopy analyses of the three types of 3D cultures showed that the stratified growth, cell proliferation, and differentiation were comparable between co-cultures and their respective native tissues; however, they largely differed in cultures grown without fibroblasts. The immunostaining intensity of proteins, viz., desmoplakin, desmoglein, and plakoglobin, was reduced as the disease stage increased in all co-cultures as observed in respective native tissues. Desmosome-like structures were identified using immunogold labeling in these cultures. Moreover, electron microscopic observations revealed that the desmosome number and their length were significantly reduced and intercellular spaces were increased in cultures grown without fibroblasts when compared with their co-culture counterparts. Our results showed that the major steps of tongue tumorigenesis can be reproduced in-vitro. Stromal fibroblasts play a role in regulation of epithelial thickness, cell proliferation, differentiation, and maintenance of desmosomalanchoring junctions in in-vitro grown tissues. The reconstituted co-culture models could help to answer various biological questions especially related to tongue tumorigenesis. PMID:27501241
Transcriptional and Cell Cycle Alterations Mark Aging of Primary Human Adipose-Derived Stem Cells.
Shan, Xiaoyin; Roberts, Cleresa; Kim, Eun Ji; Brenner, Ariana; Grant, Gregory; Percec, Ivona
2017-05-01
Adult stem cells play a critical role in the maintenance of tissue homeostasis and prevention of aging. While the regenerative potential of stem cells with low cellular turnover, such as adipose-derived stem cells (ASCs), is increasingly recognized, the study of chronological aging in ASCs is technically difficult and remains poorly understood. Here, we use our model of chronological aging in primary human ASCs to examine genome-wide transcriptional networks. We demonstrate first that the transcriptome of aging ASCs is distinctly more stable than that of age-matched fibroblasts, and further, that age-dependent modifications in cell cycle progression and translation initiation specifically characterize aging ASCs in conjunction with increased nascent protein synthesis and a distinctly shortened G1 phase. Our results reveal novel chronological aging mechanisms in ASCs that are inherently different from differentiated cells and that may reflect an organismal attempt to meet the increased demands of tissue and organ homeostasis during aging. Stem Cells 2017;35:1392-1401. © 2017 AlphaMed Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konings, A.W.
1986-01-01
The direct action of ozone on viability and survival of normal and modified mouse lung fibroblasts has been studied. By cell manipulation of fibroblasts in culture, the content of polyunsaturated fatty acids (PUFA) in the phospholipids was increased from about 6% to about 40%. The cellular content of alpha-tocopherol (alpha-T) (vitamin E) could be drastically enhanced. Vitamin E supplementation to the cell did not influence the PUFA manipulation. Normal, PUFA, and PUFA(alpha-T) fibroblasts were exposed to ozone by bubbling 10 ppm through the cell suspensions for different periods of time (0-6 h). No significant effects of the ozone exposure couldmore » be established when normal fibroblasts were used. The PUFA fibroblasts, however, were very vulnerable to ozone toxicity, both in terms of dye uptake (Trypan blue) and cell death (clonogenic ability). When alpha-tocopherol was present in the cell (200 ng/10(6) cells), a clear protection against ozone toxicity was found. It is concluded that ozone toxicity might be higher under conditions of a relative high amount of polyunsaturated fatty acids in the membrane phospholipids of the cell and a low cellular antioxidant capacity. Cellular membranes are probably an important target for ozone-induced cell death.« less
Quantification of epithelial cells in coculture with fibroblasts by fluorescence image analysis.
Krtolica, Ana; Ortiz de Solorzano, Carlos; Lockett, Stephen; Campisi, Judith
2002-10-01
To demonstrate that senescent fibroblasts stimulate the proliferation and neoplastic transformation of premalignant epithelial cells (Krtolica et al.: Proc Natl Acad Sci USA 98:12072-12077, 2001), we developed methods to quantify the proliferation of epithelial cells cocultured with fibroblasts. We stained epithelial-fibroblast cocultures with the fluorescent DNA-intercalating dye 4,6-diamidino-2-phenylindole (DAPI), or expressed green fluorescent protein (GFP) in the epithelial cells, and then cultured them with fibroblasts. The cocultures were photographed under an inverted microscope with appropriate filters, and the fluorescent images were captured with a digital camera. We modified an image analysis program to selectively recognize the smaller, more intensely fluorescent epithelial cell nuclei in DAPI-stained cultures and used the program to quantify areas with DAPI fluorescence generated by epithelial nuclei or GFP fluorescence generated by epithelial cells in each field. Analysis of the image areas with DAPI and GFP fluorescences produced nearly identical quantification of epithelial cells in coculture with fibroblasts. We confirmed these results by manual counting. In addition, GFP labeling permitted kinetic studies of the same coculture over multiple time points. The image analysis-based quantification method we describe here is an easy and reliable way to monitor cells in coculture and should be useful for a variety of cell biological studies. Copyright 2002 Wiley-Liss, Inc.