NASA Astrophysics Data System (ADS)
Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.
2018-04-01
A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.
Swenson, Paul F.; Moore, Paul B.
1979-01-01
An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.
Swenson, Paul F.; Moore, Paul B.
1982-01-01
An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.
Steamer of steam circulation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onodera, M.
1986-09-23
A conveyor steamer is described which consists of: a room enclosed with heat-insulated walls, floor, and ceiling, the room having an entrance and an exit for goods to be steamed, a conveyor means for carrying the goods to be steamed, the conveyor means traversing into the entrance of the room, through the room, and out of the exit of the room; a source of heated primary steam; first pipe means, arranged beneath the conveyor means, for jetting the heated primary steam upwardly from across the floor of the room; second pipe means disposed across the entire ceiling of the roommore » arranged above the conveyor means, for scavenging spent steam from across the entire ceiling of the room; and an ejector-condenser means, interconnected between the first pipe means, the source of primary heated steam and the second pipe means, for mixing the spent steam from the second pipe means with the heated primary steam in the first pipe means; whereby the spent steam mixed with the heated primary steam is caused to recirculate in the first pipe means through the room, thus saving energy and consuming less heated primary steam so that cost reductions will result.« less
NASA Astrophysics Data System (ADS)
Nowicki, Cassandre; Gosselin, Louis
2012-08-01
Efficient smelters currently consume roughly 13 MWh of electricity per ton of aluminum, while roughly half of that energy is lost as thermal waste. Although waste heat is abundant, current thermal integration in primary aluminum facilities remains limited. This is due to both the low quality of waste heat available and the shortage of potential uses within reasonable distance of identified waste heat sources. In this article, we present a mapping of both heat dissipation processes and heat demands around a sample facility (Alcoa Deschambault Quebec smelter). Our primary aim is to report opportunities for heat recovery and integration in the primary aluminum industry. We consider potential heat-to-sink pairings individually and assess their thermodynamic potential for producing energy savings.
Multipurpose insulation system for a radioisotope fueled Mini-Brayton Heat Source Assembly
NASA Technical Reports Server (NTRS)
Aller, P.; Saylor, W.; Schmidt, G.; Wein, D.
1976-01-01
The Mini-Brayton Heat Source Assembly (HSA) consists of a radioisotope fueled heat source, a heat exchanger, a multifoil thermal insulation blanket, and a hermetically sealed housing. The thermal insulation blanket is a multilayer wrap of thin metal foil separated by a sparsely coated oxide. The objectives of the insulation blanket are related to the effective insulation of the HSA during operation, the transfer of the full thermal inventory to the housing when the primary coolant is not flowing, and the transfer of the full thermal inventory to the housing in the event of a flow stoppage of the primary coolant. A description is given of the approaches which have been developed to make it possible for the insulation blanket to meet these requirements.
Bronchart, Filip; De Paepe, Michel; Dewulf, Jo; Schrevens, Eddie; Demeyer, Peter
2013-04-15
In Flanders and the Netherlands greenhouse production systems produce economically important quantities of vegetables, fruit and ornamentals. Indoor environmental control has resulted in high primary energy use. Until now, the research on saving primary energy in greenhouse systems has been mainly based on analysis of energy balances. However, according to the thermodynamic theory, an analysis based on the concept of exergy (free energy) and energy can result in new insights and primary energy savings. Therefore in this paper, we analyse the exergy and energy of various processes, inputs and outputs of a general greenhouse system. Also a total system analysis is then performed by linking the exergy analysis with a dynamic greenhouse climate growth simulation model. The exergy analysis indicates that some processes ("Sources") lie at the origin of several other processes, both destroying the exergy of primary energy inputs. The exergy destruction of these Sources is caused primarily by heat and vapour loss. Their impact can be compensated by exergy input from heating, solar radiation, or both. If the exergy destruction of these Sources is reduced, the necessary compensation can also be reduced. This can be accomplished through insulating the greenhouse and making the building more airtight. Other necessary Sources, namely transpiration and loss of CO2, have a low exergy destruction compared to the other Sources. They are therefore the best candidate for "pump" technologies ("vapour heat pump" and "CO2 pump") designed to have a low primary energy use. The combination of these proposed technologies results in an exergy efficient greenhouse with the highest primary energy savings. It can be concluded that exergy analyses add additional information compared to only energy analyses and it supports the development of primary energy efficient greenhouse systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vacuum Processing Technique for Development of Primary Standard Blackbodies
Navarro, M.; Bruce, S. S.; Johnson, B. Carol; Murthy, A. V.; Saunders, R. D.
1999-01-01
Blackbody sources with nearly unity emittance that are in equilibrium with a pure freezing metal such as gold, silver, or copper are used as primary standard sources in the International Temperature Scale of 1990 (ITS-90). Recently, a facility using radio-frequency induction heating for melting and filling the blackbody crucible with the freeze metal under vacuum conditions was developed at the National Institute of Standards and Technology (NIST). The blackbody development under a vacuum environment eliminated the possibility of contamination of the freeze metal during the process. The induction heating, compared to a resistively heated convection oven, provided faster heating of crucible and resulted in shorter turn-around time of about 7 h to manufacture a blackbody. This paper describes the new facility and its application to the development of fixed-point blackbodies.
Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System
NASA Astrophysics Data System (ADS)
Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang
2016-11-01
In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.
Fluidizing a mixture of particulate coal and char
Green, Norman W.
1979-08-07
Method of mixing particulate materials comprising contacting a primary source and a secondary source thereof whereby resulting mixture ensues; preferably at least one of the two sources has enough motion to insure good mixing and the particulate materials may be heat treated if desired. Apparatus for such mixing comprising an inlet for a primary source, a reactor communicating therewith, a feeding means for supplying a secondary source to the reactor, and an inlet for the secondary source. Feeding means is preferably adapted to supply fluidized materials.
Green, Norman W.
1982-06-15
Method of mixing particulate materials comprising contacting a primary source and a secondary source thereof whereby resulting mixture ensues; preferably at least one of the two sources has enough motion to insure good mixing and the particulate materials may be heat treated if desired. Apparatus for such mixing comprising an inlet for a primary source, a reactor communicating therewith, a feeding means for supplying a secondary source to the reactor, and an inlet for the secondary source. Feeding means is preferably adapted to supply fluidized materials.
78 FR 34105 - Proposed Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... include Natural Gas, Electricity, Fuel Oil, Propane, Wood and Coal. The average annual primary home energy... using a secondary source of heat. Annual Heating Fuel Consumption: The grantee would need to collect...
Operation and maintenance of the Sol-Dance Building solar system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaultney, J.R.
1980-07-29
A 16,400 square foot general office facility has its primary heating provided by a flat plate solar system using hydronic storage and water-to-air transfer coils for distribution. Backup heat is provided by 10 individually controlled air source heat pumps ranging from 3 tons to 5 tons in capacity. These heat pumps also contain electric resistive elements for use during extremely low ambient temperatures. Cooling is also provided by the heat pumps. Each of the two buildings contains a separate domestic hot water system. Primary heat is provided by a closed loop solar unit with electric elements providing backup heat. Amore » 10,000 gallon black steel water tank provides heat storage.« less
Heat-Powered Pump for Liquid Metals
NASA Technical Reports Server (NTRS)
Campana, R. J.
1986-01-01
Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.
Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.
Kondo, K; Kanesue, T; Tamura, J; Okamura, M
2010-02-01
Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.
Solar heating and cooling technical data and systems analysis
NASA Technical Reports Server (NTRS)
Christensen, D. L.
1976-01-01
The accomplishments of a project to study solar heating and air conditioning are outlined. Presentation materials (data packages, slides, charts, and visual aids) were developed. Bibliographies and source materials on materials and coatings, solar water heaters, systems analysis computer models, solar collectors and solar projects were developed. Detailed MIRADS computer formats for primary data parameters were developed and updated. The following data were included: climatic, architectural, topography, heating and cooling equipment, thermal loads, and economics. Data sources in each of these areas were identified as well as solar radiation data stations and instruments.
A novel high-temperature ejector-topping power cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, B.Z.; Lior, N.
1994-01-01
A novel, patented topping power cycle is described that takes its energy from a very high-temperature heat source and in which the temperature of the heat sink is still high enough to operate another, conventional power cycle. The top temperatures heat source is used to evaporate a low saturation pressure liquid, which serves as the driving fluid for compressing the secondary fluid in an ejector. Due to the inherently simple construction of ejectors, they are well suited for operation at temperatures higher than those that can be used with gas turbines. The gases exiting from the ejector transfer heat tomore » the lower temperature cycle, and are separated by condensing the primary fluid. The secondary gas is then used to drive a turbine. For a system using sodium as the primary fluid and helium as the secondary fluid, and using a bottoming Rankine steam cycle, the overall thermal efficiency can be at least 11 percent better than that of conventional steam Rankine cycles.« less
NASA Astrophysics Data System (ADS)
Janovcová, Martina; Jandačka, Jozef; Malcho, Milan
2015-05-01
Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.
Classifications of central solar domestic hot water systems
NASA Astrophysics Data System (ADS)
Guo, J. Y.; Hao, B.; Peng, C.; Wang, S. S.
2016-08-01
Currently, there are many means by which to classify solar domestic hot water systems, which are often categorized according to their scope of supply, solar collector positions, and type of heat storage tank. However, the lack of systematic and scientific classification as well as the general disregard of the thermal performance of the auxiliary heat source is important to DHW systems. Thus, the primary focus of this paper is to determine a classification system for solar domestic hot water systems based on the positions of the solar collector and auxiliary heating device, both respectively and in combination. Field-testing data regarding many central solar DHW systems demonstrates that the position of the auxiliary heat source clearly reflects the operational energy consumption. The consumption of collective auxiliary heating hot water system is much higher than individual auxiliary heating hot water system. In addition, costs are significantly reduced by the separation of the heat storage tank and the auxiliary heating device.
Ground heat flux and power sources of low-enthalpy geothermal systems
NASA Astrophysics Data System (ADS)
Bayer, Peter; Blum, Philipp; Rivera, Jaime A.
2015-04-01
Geothermal heat pumps commonly extract energy from the shallow ground at depths as low as approximately 400 m. Vertical borehole heat exchangers are often applied, which are seasonally operated for decades. During this lifetime, thermal anomalies are induced in the ground and surface-near aquifers, which often grow over the years and which alleviate the overall performance of the geothermal system. As basis for prediction and control of the evolving energy imbalance in the ground, focus is typically set on the ground temperatures. This is reflected in regulative temperature thresholds, and in temperature trends, which serve as indicators for renewability and sustainability. In our work, we examine the fundamental heat flux and power sources, as well as their temporal and spatial variability during geothermal heat pump operation. The underlying rationale is that for control of ground temperature evolution, knowledge of the primary heat sources is fundamental. This insight is also important to judge the validity of simplified modelling frameworks. For instance, we reveal that vertical heat flux from the surface dominates the basal heat flux towards a borehole. Both fluxes need to be accounted for as proper vertical boundary conditions in the model. Additionally, the role of horizontal groundwater advection is inspected. Moreover, by adopting the ground energy deficit and long-term replenishment as criteria for system sustainability, an uncommon perspective is adopted that is based on the primary parameter rather than induced local temperatures. In our synthetic study and dimensionless analysis, we demonstrate that time of ground energy recovery after system shutdown may be longer than what is expected from local temperature trends. In contrast, unrealistically long recovery periods and extreme thermal anomalies are predicted without account for vertical ground heat fluxes and only when the energy content of the geothermal reservoir is considered.
Origin of acoustic emission produced during single point machining
NASA Astrophysics Data System (ADS)
Heiple, C. R.; Carpenter, S. H.; Armentrout, D. L.
1991-05-01
Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emission produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent.
Estimation and harvesting of human heat power for wearable electronic devices
NASA Astrophysics Data System (ADS)
Dziurdzia, P.; Brzozowski, I.; Bratek, P.; Gelmuda, W.; Kos, A.
2016-01-01
The paper deals with the issue of self-powered wearable electronic devices that are capable of harvesting free available energy dissipated by the user in the form of human heat. The free energy source is intended to be used as a secondary power source supporting primary battery in a sensor bracelet. The main scope of the article is a presentation of the concept for a measuring setup used to quantitative estimation of heat power sources in different locations over the human body area. The crucial role in the measurements of the human heat plays a thermoelectric module working in the open circuit mode. The results obtained during practical tests are confronted with the requirements of the dedicated thermoelectric generator. A prototype design of a human warmth energy harvester with an ultra-low power DC-DC converter based on the LTC3108 circuit is analysed.
It is estimated that 62 percent of households in the Navajo Nation use wood as their primary heating source, while 25 percent use gaseous fuels, 11 percent use electricity, and the remaining 2 percent use coal, kerosene, other fossil fuels, or solar energy. A 2010 study by the U....
Methods and systems for the production of hydrogen
Oh, Chang H [Idaho Falls, ID; Kim, Eung S [Ammon, ID; Sherman, Steven R [Augusta, GA
2012-03-13
Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.
Origin of acoustic emission produced during single point machining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiple, C.R,.; Carpenter, S.H.; Armentrout, D.L.
1991-01-01
Acoustic emission was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Acoustic emission produced during tensile and compressive deformation of these alloys has been previously characterized as a function of heat treatment. Heat treatments which increase the strength of 4340 steel increase the amount of acoustic emission produced during deformation, while heat treatments which increase the strength of Ti-6Al-4V decrease the amount of acoustic emission produced during deformation. If chip deformation were the primary source of acoustic emission during single point machining, then opposite trends in the level of acoustic emissionmore » produced during machining as a function of material strength would be expected for these two alloys. Trends in rms acoustic emission level with increasing strength were similar for both alloys, demonstrating that chip deformation is not a major source of acoustic emission in single point machining. Acoustic emission has also been monitored as a function of machining parameters on 6061-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, lead, and teflon. The data suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of acoustic emission. Changes in acoustic emission with tool wear were strongly material dependent. 21 refs., 19 figs., 4 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objectives of the Ingham County Solar Project include: the demonstration of a major operational supplement to fossil fuels, thereby reducing the demand for non-renewable energy sources, demonstration of the economic and technical feasibility of solar systems as an important energy supplement over the expected life of the building, and to encourage Michigan industry to produce and incorporate solar systems in their own facility. The Ingham County solar system consists of approximately 10,000 square feet of solar collectors connected in a closed configuration loop. The primary loop solution is a mixture of water and propylene glycol which flows through themore » tube side of a heat exchanger connected to the primary storage tank. The heat energy which is supplied to the primary storage tank is subsequently utilized to increase the temperature of the laundry water, kitchen water, and domestic potable water.« less
Design and Development of a Residential Gas-Fired Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vineyard, Edward Allan; Abu-Heiba, Ahmad; Mahderekal, Dr. Isaac
2017-01-01
Heating, ventilating, and air-conditioning equipment consumes 43% of the total primary energy consumption in U.S. households. Presently, conventional gas furnaces have maximum heating efficiencies of 98%. Electric air conditioners used in association with the furnace for cooling have a minimum seasonal energy efficiency ratio (SEER) of 14.0. A residential gas-fired heat pump (RGHP) was developed and tested under standard rating conditions, resulting in a significant increase in heating efficiency of over 40% versus conventional natural gas furnaces. The associated efficiency of the RGHP in cooling mode is comparable in efficiency to an electric air conditioner (14.0 SEER) when compared onmore » a primary energy basis. The RGHP is similar in nature to a conventional heat pump but with two main differences. First, the primary energy savings are higher, based on a site versus source comparison, as the result of using natural gas to supply shaft power to the compressor rather than an electric motor. Second, waste heat is recovered from the engine to supplement space heating and reduce the energy input. It can also be used to provide supplemental water heating. The system utilizes a programmable logic controller that allows variable-speed operation to achieve improved control to meet building loads. RGHPs significantly reduce peak electric use during periods of high demand, especially peak summer loads, as well as peak winter loads in regions with widespread use of electric heating. This contributes to leveling year-round gas loads, with the potential to increase annual gas demand in some regions. The widespread adoption of RGHPs will contribute to significant reductions in primary energy consumption and carbon emissions through improved efficiencies.« less
NASA Astrophysics Data System (ADS)
Hayden, Howard
2009-05-01
Until about 1850, the energy used in the US came almost exclusively from firewood. Now we use petroleum, coal, natural gas, nuclear fission, indirect solar energy (biomass, hydro, and wind), geothermal energy, and direct solar energy (solar/thermal, solar/thermal/electric, and photovoltaics). Compared to our ancestors in 1850, we use over 40 times as much energy, of which only about 6 percent is from solar sources, versus 100% in 1850. On a per-capita basis we use about 3.1 times as much energy, in spite of the modern conveniences that to Abraham Lincoln would seem unthinkably lavish. The US uses about 107 EJ of primary energy annually, equivalent to 3.4 TW around-the-clock average power. About 40 percent of that energy goes toward production of electricity. Approximately 2 EJ of heat is obtained from combined heat-and-power plants that produce about 10^9 kWh (3.6 PJ) of electricity. (N.B.: hydro and wind do not involve heat-to-work conversion. By custom, the electrical energy produced by wind and hydro is multiplied by about 3 to generate an as-if quantity of primary energy.) When account is taken of how the electricity is distributed, industry uses 33 percent of the primary energy, followed by transportation (28%), residences (21%), and commercial establishments (18%). ``Fossil fuels'' (coal, oil, and natural gas) account for about 85 percent of our primary energy. Nuclear energy accounts for about 8%. Biomass and hydro, the venerable solar-derived sources, account for about 7%. Geothermal, wind, and direct solar energy account for about 0.4%. This talk will discuss prospects for various alternative sources, including nuclear fission and T. Boone Pickens' plan to displace imported petroleum indirectly by substituting wind for natural gas.
NASA Astrophysics Data System (ADS)
Şoimoşan, Teodora M.; Danku, Gelu; Felseghi, Raluca A.
2017-12-01
Within the thermo-energy optimization process of an existing heating system, the increase of the system's energy efficiency and speeding-up the transition to green energy use are pursued. The concept of multi-energy district heating system, with high harnessing levels of the renewable energy sources (RES) in order to produce heat, is expected to be the key-element in the future urban energy infrastructure, due to the important role it can have in the strategies of optimizing and decarbonizing the existing district heating systems. The issues that arise are related to the efficient integration of different technologies of harnessing renewable energy sources in the energy mix and to the increase of the participation levels of RES, respectively. For the holistic modeling of the district heating system, the concept of the energy hub was used, where the synergy of different primary forms of entered energy provides the system a high degree energy security and flexibility in operation. The optimization of energy flows within the energy hub allows the optimization of the thermo-energy district system in order to approach the dual concept of smart city & smart energy.
Advanced control for ground source heat pump systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Patrick; Gehl, Anthony C.; Liu, Xiaobing
Ground source heat pumps (GSHP), also known as geothermal heat pumps (GHP), are proven advanced HVAC systems that utilize clean and renewable geothermal energy, as well as the massive thermal storage capacity of the ground, to provide space conditioning and water heating for both residential and commercial buildings. GSHPs have higher energy efficiencies than conventional HVAC systems. It is estimated, if GSHPs achieve a 10% market share in the US, in each year, 0.6 Quad Btu primary energy consumption can be saved and 36 million tons carbon emissions can be avoided (Liu et al. 2017). However, the current market sharemore » of GSHPs is less than 1%. The foremost barrier preventing wider adoption of GSHPs is their high installation costs. To enable wider adoption of GSHPs, the costeffectiveness of GSHP applications must be improved.« less
NASA Astrophysics Data System (ADS)
Koo, H. Y.; Kim, J. H.; Hong, S. K.; Ko, Y. N.; Jang, H. C.; Jung, D. S.; Han, J. M.; Hong, Y. J.; Kang, Y. C.; Kang, S. H.; Cho, S. B.
2012-06-01
Fe powders as the heat pellet material for thermal batteries are prepared from iron oxide powders obtained by spray pyrolysis from a spray solution of iron nitrate with ethylene glycol. The iron oxide powders with hollow and thin wall structure produce Fe powders with elongated structure and fine primary particle size at a low reducing temperature of 615 °C. The mean size of the primary Fe powders with elongated structure decreases with increasing concentration of ethylene glycol dissolved into the spray solution. The heat pellets prepared from the fine-size Fe powders with elongated structure have good ignition sensitivities below 1 watt. The heat pellets formed from the Fe powders obtained from the spray solution with 0.5 M EG have an extremely high burn rate of 26 cms-1.
Bagley, Alexander F; Hill, Samuel; Rogers, Gary S; Bhatia, Sangeeta N
2013-09-24
Plasmonic nanomaterials including gold nanorods are effective agents for inducing heating in tumors. Because near-infrared (NIR) light has traditionally been delivered using extracorporeal sources, most applications of plasmonic photothermal therapy have focused on isolated subcutaneous tumors. For more complex models of disease such as advanced ovarian cancer, one of the primary barriers to gold nanorod-based strategies is the adequate delivery of NIR light to tumors located at varying depths within the body. To address this limitation, a series of implanted NIR illumination sources are described for the specific heating of gold nanorod-containing tissues. Through computational modeling and ex vivo studies, a candidate device is identified and validated in a model of orthotopic ovarian cancer. As the therapeutic, imaging, and diagnostic applications of plasmonic nanomaterials progress, effective methods for NIR light delivery to challenging anatomical regions will complement ongoing efforts to advance plasmonic photothermal therapy toward clinical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing
2011-01-01
This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OAmore » ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.« less
Primary Energy Efficiency Analysis of Different Separate Sensible and Latent Cooling Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar
2015-01-01
Separate Sensible and Latent cooling (SSLC) has been discussed in open literature as means to improve air conditioning system efficiency. The main benefit of SSLC is that it enables heat source optimization for the different forms of loads, sensible vs. latent, and as such maximizes the cycle efficiency. In this paper I use a thermodynamic analysis tool in order to analyse the performance of various SSLC technologies including: multi-evaporators two stage compression system, vapour compression system with heat activated desiccant dehumidification, and integrated vapour compression with desiccant dehumidification. A primary coefficient of performance is defined and used to judge themore » performance of the different SSLC technologies at the design conditions. Results showed the trade-off in performance for different sensible heat factor and regeneration temperatures.« less
Thermodynamic Analysis of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument
NASA Technical Reports Server (NTRS)
Shirron, Peter; Kimball, Mark; DiPirro, Michael; Bialas, Tom; Sneiderman, Gary; Porter, Scott; Kelley, Richard
2015-01-01
The Soft X-ray Spectrometer (SXS) instrument on Astro-H will use a 3-stage ADR to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at 1.20 K as the heat sink. In the secondary mode, which is activated when the liquid helium is depleted, two of the stages continuously cool the (empty) helium tank using a 4.5 K Joule-Thomson cooler as the heat sink, and the third stage cools the detectors. In the design phase, a high-fidelity model of the ADR was developed in order to predict both the cooling capacity and heat rejection rates in both operating modes. The primary sources of heat flow are from the salt pills, hysteresis heat from the magnets and magnetic shields, and power dissipated by the heat switches. The flight instrument dewar, ADR, detectors and electronics were integrated in mid-2014 and have since undergone extensive performance testing, in part to validate the performance model. This paper will present the thermodynamic performance of the ADR, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.
NASA Astrophysics Data System (ADS)
Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang
2016-10-01
Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used for residential heating can be replaced with gas-burning wall-heaters, ground-source heat pumps, solar energy and electricity. In areas with inadequate clean energy sources, low-sulfur coal should be used instead of the traditional raw coal with high sulfur and ash content, thereby slightly reducing the emissions of PM, SO2, CO and other toxic pollutants.
Various methods of heat supply for a building which is operated periodically during the year
NASA Astrophysics Data System (ADS)
Małetka, Marek; Laska, Marta
2017-11-01
Stand-alone buildings operated periodically require heat supply for hot water and heating purposes to be carefully analyzed in terms of the technical capabilities, the energy and financial outlays. The paper presents the analysis of heat supply for hot water purposes and central heating in the stand-alone cloakroom building located in Poland. The analysis is undertaken for different variants of heat delivery for a building from electric heaters, gas boiler and district heating solutions to renewable sources applications, namely solar panels and heat pumps. For each solution, usage of usable, final and primary energy was calculated. Also the financial analysis for investments and energy costs were carried out. This analysis has been done in according to SPBT and NPV method for different levels of building use.
A new design of indirectly heated cathode based strip type electron gun.
Maiti, Namita; Lijeesh, K; Barve, U D; Quadri, Nishad; Tembhare, G U; Mukherjee, S; Thakur, K B; Das, A K
2013-08-01
A new design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The design issue addressed is the uniformity of temperature on the solid cathode using (a) a multi-segmented filament with variable height as the primary heat source and (b) trapezoidal shaped single long filament as the primary heat source. The proposed design in this paper is based on computer simulation and validated by extensive experimentations. The design emphasis is on maintaining uniform temperature on the solid cathode. The designed multi-segment filament and the single long filament provide a temperature uniformity on the solid cathode of about 250 K and 110 K, respectively. The better temperature uniformity inspite of the thermal expansion, in case of a single long filament tightly clamped at two ends, has been possible due to shaping of the single filament with a number of constituent sections such that the thermal expansion of different sections forming the actual filament takes care of not only the mechanical stability but also does not affect the emitting surface of the filament. Experiments show that the modified design achieves a one to one correspondence of the solid cathode length and the electron beam length emitted from the solid cathode.
Tian, Qing; Wang, Qi; Zhu, Yanbing; Li, Fang; Zhuang, Lin; Yang, Bo
2017-01-01
Ultrasound pretreatment is a potent step to disintegrate primary sludge (PS). The supernatant of sonicated PS is recycled as an alternative carbon source for biological phosphorus removal. In this study, we investigated the role of temperature on PS disintegration during sonication. We found that a temperature of 60°C yielded a dissolution rate of about 2% soluble chemical oxygen demand (SCOD) as compared to 7% SCOD using sonication at the specific energy (SE) of 7359kJ/kg TS. Using the SE of 6000kJ/kg TS with heat insulation during sonication, the SCOD dissolution rate of PS was similar to the result at the SE of 7051kJ/kg TS without heat insulation. Upon treatment with sonication, the PS released low concentrations of Cu and Zn into the supernatant. The phosphorus-accumulating organisms (PAOs) used the supernatant of sonicated PS as the carbon source. Supplementation with the diluted sonicated PS supernatant (SCOD≈1000mg/L) in anaerobic phase resulted in the release of phosphorus (36mg/L) and the production of polyhydroxyalkanoates (PHAs) (0.36g PHA/g SS). Compared with sodium acetate, higher polyhydroxyvalerate (PHV) faction in the polyhydroxyalkanoates (PHAs) was observed in the biomass when incubated with sonicated PS as the carbon source. This work provides a simple pathway to conserve energy and to enhance efficiencies of ultrasonic pretreatment and the recovery of carbon source from the sludge for improving the phosphorus removal in the ENR system. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo
2016-04-01
Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.
Heat demand mapping and district heating grid expansion analysis: Case study of Velika Gorica
NASA Astrophysics Data System (ADS)
Dorotić, Hrvoje; Novosel, Tomislav; Duić, Neven; Pukšec, Tomislav
2017-10-01
Highly efficient cogeneration and district heating systems have a significant potential for primary energy savings and the reduction of greenhouse gas emissions through the utilization of a waste heat and renewable energy sources. These potentials are still highly underutilized in most European countries. They also play a key role in the planning of future energy systems due to their positive impact on the increase of integration of intermittent renewable energy sources, for example wind and solar in a combination with power to heat technologies. In order to ensure optimal levels of district heating penetration into an energy system, a comprehensive analysis is necessary to determine the actual demands and the potential energy supply. Economical analysis of the grid expansion by using the GIS based mapping methods hasn't been demonstrated so far. This paper presents a heat demand mapping methodology and the use of its output for the district heating network expansion analysis. The result are showing that more than 59% of the heat demand could be covered by the district heating in the city of Velika Gorica, which is two times more than the present share. The most important reason of the district heating's unfulfilled potential is already existing natural gas infrastructure.
Thermoelectric generator having a resiliently mounted removable thermoelectric module
Purdy, David L.; Shapiro, Zalman M.; Hursen, Thomas F.; Maurer, Gerould W.
1976-11-02
An electrical generator having an Isotopic Heat Capsule including radioactive fuel rod 21 as a primary heat source and Thermoelectric Modules 41 and 43 as converters. The Biological Shield for the Capsule is suspended from Spiders at each end each consisting of pretensioned rods 237 and 239 defining planes at right angles to each other. The Modules are mounted in cups 171 of transition members 173 of a heat rejection Fin Assembly whose fins 195 and 197 extend from both sides of the transition member 173 for effective cooling.
Ally, Moonis Raza; Munk, Jeffrey D.; Baxter, Van D.; ...
2015-06-26
This twelve-month field study analyzes the performance of a 7.56W (2.16- ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m 2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kWh at summer and winter thermostat set points of 24.4°C and 21.7°C, respectively. The WA-GSHP shared the same 94.5 m verticalmore » bore ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources.« less
Life-Cycle Evaluation of Domestic Energy Systems
NASA Astrophysics Data System (ADS)
Bando, Shigeru; Hihara, Eiji
Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.
A 'two-tank' seasonal storage concept for solar space heating of buildings
NASA Astrophysics Data System (ADS)
Cha, B. K.; Connor, D. W.; Mueller, R. O.
This paper presents an analysis of a novel 'two-tank' water storage system, consisting of a large primary water tank for seasonal storage of solar energy plus a much smaller secondary water tank for storage of solar energy collected during the heating season. The system offers the advantages of high collection efficiency during the early stages of the heating season, a period when the temperature of the primary tank is generally high. By preferentially drawing energy from the small secondary tank to meet load, its temperature can be kept well below that of the larger primary tank, thereby providing a lower-temperature source for collector inlet fluid. The resulting improvement in annual system efficiency through the addition of a small secondary tank is found to be substantial - for the site considered in the paper (Madison, Wisconsin), the relative percentage gain in annual performance is in the range of 10 to 20%. A simple computer model permits accurate hour-by-hour transient simulation of thermal performance over a yearly cycle. The paper presents results of detailed simulations of collectors and storage sizing and design trade-offs for solar energy systems supplying 90% to 100% of annual heating load requirements.
NASA Astrophysics Data System (ADS)
Smith, Amanda D.
Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission losses are averted, and heat which is a byproduct of power production may be useful to the building. That thermal energy can be used for hot water or space heating, among other applications. This dissertation focuses on CHP systems using natural gas, a common fuel, and systems serving commercial buildings in the United States. First, the necessary price difference between purchased electricity and purchased fuel is analyzed in terms of the efficiencies of system components by comparing CHP with a conventional separate heat and power (SHP) configuration, where power is purchased from the electrical grid and heat is provided by a gas boiler. Similarly, the relationship between CDE due to electricity purchases and due to fuel purchases is analyzed as well as the relationship between primary energy conversion factors for electricity and fuel. The primary energy conversion factor indicates the quantity of source energy necessary to produce the energy purchased at the site. Next, greenhouse gas emissions are investigated for a variety of commercial buildings using CHP or SHP. The relationship between the magnitude of the reduction in emissions and the parameters of the CHP system is explored. The cost savings and reduction in primary energy consumption are evaluated for the same buildings. Finally, a CHP system is analyzed with the addition of a thermal energy storage (TES) component, which can store excess thermal energy and deliver it later if necessary. The potential for CHP with TES to reduce cost, emissions, and primary energy consumption is investigated for a variety of buildings. A case study is developed for one building for which TES does provide additional benefits over a CHP system alone, and the requirements for a water tank TES device are examined.
Investigation of the effects of sliding on wheel tread damage
DOT National Transportation Integrated Search
2005-11-05
Wheel tread spalling is the main source of damage to wheel treads and : a primary cause for wheel removals from service. Severe frictional : heating of the wheel-rail contact patch during sliding causes the : formation of martensite, a hard, brittle ...
NASA Technical Reports Server (NTRS)
Carr, M. H.; Cassen, P.
1976-01-01
Four areas of investigation, each dealing with the measurement of a particular geophysical property, are discussed. These properties are the gravity field, seismicity, magnetism, and heat flow. All are strongly affected by conditions, past or present, in the planetary interior; their measurement is the primary source of information about planetary interiors.
Efficient Use of Cogeneration and Fuel Diversification
NASA Astrophysics Data System (ADS)
Kunickis, M.; Balodis, M.; Sarma, U.; Cers, A.; Linkevics, O.
2015-12-01
Energy policy of the European Community is implemented by setting various goals in directives and developing support mechanisms to achieve them. However, very often these policies and legislation come into contradiction with each other, for example Directive 2009/28/EC on the promotion of the use of energy from renewable sources and Directive 2012/27/EU on energy efficiency, repealing Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand. In this paper, the authors attempt to assess the potential conflicts between policy political objectives to increase the share of high-efficiency co-generation and renewable energy sources (RES), based on the example of Riga district heating system (DHS). If a new heat source using biomass is built on the right bank of Riga DHS to increase the share of RES, the society could overpay for additional heat production capacities, such as a decrease in the loading of existing generating units, thereby contributing to an inefficient use of existing capacity. As a result, the following negative consequences may arise: 1) a decrease in primary energy savings (PES) from high-efficiency cogeneration in Riga DHS, 2) an increase in greenhouse gas (GHG) emissions in the Baltic region, 3) the worsening security situation of electricity supply in the Latvian power system, 4) an increase in the electricity market price in the Lithuanian and Latvian price areas of Nord Pool power exchange. Within the framework of the research, calculations of PES and GHG emission volumes have been performed for the existing situation and for the situation with heat source, using biomass. The effect of construction of biomass heat source on power capacity balances and Nord Pool electricity prices has been evaluated.
NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-09-01
NREL's Energy Systems Integration Facility (ESIF) is meant to investigate new ways to integrate energy sources so they work together efficiently, and one of the key tools to that investigation, a new supercomputer, is itself a prime example of energy systems integration. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also serves as the primary source of building heat for ESIF offices and laboratories. This innovative high-performance computer (HPC) can perform more than a quadrillion calculations per second as part of the world's most energy-efficient HPC datamore » center.« less
The behavior of neutron emissions during ICRF minority heating of plasma at EAST
NASA Astrophysics Data System (ADS)
Zhong, Guoqiang; Cao, Hongrui; Hu, Liqun; Zhou, Ruijie; Xiao, Min; Li, Kai; Pu, Neng; Huang, Juan; Liu, Guangzhu; Lin, Shiyao; Lyu, Bo; Liu, Haiqing; Zhang, Xinjun; EAST Team
2016-07-01
Ion cyclotron radio frequency (ICRF) wave heating is a primary method to heat ions in the Experimental Advanced Superconducting Tokamak (EAST). Through neutron diagnostics, effective ion heating was observed in hydrogenminority heating (MH) scenarios. At present, investigation of deuterium-deuterium (DD) fusion neutrons is mostly based on time-resolved flux monitor and spectrometer measurements. When the ICRF was applied, the neutron intensity became one order higher. The H/H + D ratio was in the range of 5-10%, corresponding to the hydrogen MH dominated scenario, and a strong high energy tail was not displayed on the neutron spectrum that was measured by a liquid scintillator. Moreover, ion temperature in the plasma center (T i) was inversely calculated by the use of neutron source strength (S n) and the plasma density based on classical fusion reaction equations. This result indicates that T i increases by approximately 30% in L-mode plasma, and by more than 50% in H-mode plasma during ICRF heating, which shows good agreement with x-ray crystal spectrometer (XCS) diagnostics. Finally, the DD neutron source strength scaling law, with regard to plasma current (I P) and ICRF coupling power (P RF) on the typical minority heating condition, was obtained by statistical analysis.
Autothermal hydrogen storage and delivery systems
Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA
2011-08-23
Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.
Microenvironmental air quality impact of a commercial-scale biomass heating system.
Tong, Zheming; Yang, Bo; Hopke, Philip K; Zhang, K Max
2017-01-01
Initiatives to displace petroleum and climate change mitigation have driven a recent increase in space heating with biomass combustion. However, there is ample evidence that biomass combustion emits significant quantities of health damaging pollutants. We investigated the near-source micro-environmental air quality impact of a biomass-fueled combined heat and power system equipped with an electrostatic precipitator (ESP) in Syracuse, NY. Two rooftop sampling stations with PM 2.5 and CO 2 analyzers were established in such that one could capture the plume while the other one served as the background for comparison depending on the wind direction. Four sonic anemometers were deployed around the stack to quantify spatially and temporally resolved local wind patterns. Fuel-based emission factors were derived based on near-source measurement. The Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model was then applied to simulate the spatial variations of primary PM 2.5 without ESP. Our analysis shows that the absence of ESP could lead to an almost 7 times increase in near-source primary PM 2.5 concentrations with a maximum concentration above 100 μg m -3 at the building rooftop. The above-ground "hotspots" would pose potential health risks to building occupants since particles could penetrate indoors via infiltration, natural ventilation, and fresh air intakes on the rooftop of multiple buildings. Our results demonstrated the importance of emission control for biomass combustion systems in urban area, and the need to take above-ground pollutant "hotspots" into account when permitting distributed generation. The effects of ambient wind speed and stack temperature, the suitability of airport meteorological data on micro-environmental air quality were explored, and the implications on mitigating near-source air pollution were discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advanced concepts and solutions for geothermal heating applied in Oradea, Romania
NASA Astrophysics Data System (ADS)
Antal, C.; Popa, F.; Mos, M.; Tigan, D.; Popa, B.; Muresan, V.
2017-01-01
Approximately 70% of the total population of Oradea benefits from centralized heating, about 55,000 apartments and 159,000 inhabitants are connected. The heating system of Oradea consists of: sources of thermal energy production (Combined heat and power (CHP) I Oradea and geothermal water heating plants); a transport network of heat; heat distribution network for heating and domestic hot water; substations, most of them equipped with worn and obsolete equipment. Recently, only a few heat exchangers were rehabilitated and electric valves were installed to control the water flow. After heat extraction, geothermal chilled waters from the Oradea area are: discharged into the sewer system of the city, paying a fee to the local water company which manages the city’s sewers; discharged into the small river Peta; or re-injected into the reservoir. In order to ensure environmental protection and a sustainable energy development in Oradea, renewable sources of energy have been promoted in recent years. In this respect, the creation of a new well for geothermal water re-injection into the reservoir limits any accidental thermal pollution of the environment, while ensuring the conservation properties of the aquifer by recharging with geothermal chilled water. The paper presents the achievements of such a project whose aim is to replace thermal energy obtained from coal with geothermal heating. The novelty consists in the fact that within the substation we will replace old heat exchangers, circulation pumps and valves with fully automated substations operating in parallel on both a geothermal system and on a primary heating system of a thermal plant.
A Strong Shallow Heat Source in the Accreting Neutron Star MAXI J0556-332
NASA Astrophysics Data System (ADS)
Deibel, Alex; Cumming, Andrew; Brown, Edward F.; Page, Dany
2015-08-01
An accretion outburst in an X-ray transient deposits material onto the neutron star primary; this accumulation of matter induces reactions in the neutron star’s crust. During the accretion outburst these reactions heat the crust out of thermal equilibrium with the core. When accretion halts, the crust cools to its long-term equilibrium temperature on observable timescales. Here we examine the accreting neutron star transient MAXI J0556-332, which is the hottest transient, at the start of quiescence, observed to date. Models of the quiescent light curve require a large deposition of heat in the shallow outer crust from an unknown source. The additional heat injected is ≈4-10 MeV per accreted nucleon; when the observed decline in accretion rate at the end of the outburst is accounted for, the required heating increases to ≈6-16 MeV. This shallow heating is still required to fit the light curve even after taking into account a second accretion episode, uncertainties in distance, and different surface gravities. The amount of shallow heating is larger than that inferred for other neutron star transients and is larger than can be supplied by nuclear reactions or compositionally driven convection; but it is consistent with stored mechanical energy in the accretion disk. The high crust temperature ({T}b≳ {10}9 {{K}}) makes its cooling behavior in quiescence largely independent of the crust composition and envelope properties, so that future observations will probe the gravity of the source. Fits to the light curve disfavor the presence of Urca cooling pairs in the crust.
Investigation of applications for high-power, self-critical fissioning uranium plasma reactors
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Latham, T. S.; Krascella, N. L.
1976-01-01
Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction.
Strong ocean tidal flow and heating on moons of the outer planets.
Tyler, Robert H
2008-12-11
Data from recent space missions have added strong support for the idea that there are liquid oceans on several moons of the outer planets, with Jupiter's moon Europa having received the most attention. But given the extremely cold surface temperatures and meagre radiogenic heat sources of these moons, it is still unclear how these oceans remain liquid. The prevailing conjecture is that these oceans are heated by tidal forces that flex the solid moon (rock plus ice) during its eccentric orbit, and that this heat entering the ocean does not rapidly escape because of the insulating layer of ice over the ocean surface. Here, however, I describe strong tidal dissipation (and heating) in the liquid oceans; I show that a subdominant and previously unconsidered tidal force due to obliquity (axial tilt of the moon with respect to its orbital plane) has the right form and frequency to resonantly excite large-amplitude Rossby waves in these oceans. In the specific case of Europa, the minimum kinetic energy of the flow associated with this resonance (7.3 x 10(18) J) is two thousand times larger than that of the flow excited by the dominant tidal forces, and dissipation of this energy seems large enough to be a primary ocean heat source.
NASA Technical Reports Server (NTRS)
Stephens, J. B. (Inventor)
1980-01-01
A cryostat for use in a low or a substantially gravity-free environment adapted to cool an experiment through the use of helium 2, or helium in its super fluid state is characterized by a number of interchangeable daughter dewars and helium supply or mother dewar. A low pressure venting system is provided for converting helium contained in the mother dewar to a superfluid state for use as a primary cryogen. Each daughter dewar is adapted to be removably mounted in mated relation on the mother dewar and is characterized by support for an experiment package, a source of helium to be employed as a secondary cryogen. A heat pipe is suspended from each daughter dewar and adapted to be extended into the mother dewar for facilitating cooling of the secondary cryogen. A transfer of heat from the package to the primary cryogen, via the secondary cryogen, is accommodated as a film flow of helium 2 progresses from the heat pipe to the experiment dewar.
Heating Structures Derived from Satellite
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Adler, R.; Haddad, Z.; Hou, A.; Kakar, R.; Krishnamurti, T. N.; Kummerow, C.; Lang, S.; Meneghini, R.; Olson, W.
2004-01-01
Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. The Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, was launched in November 1997. It provides an accurate measurement of rainfall over the global tropics which can be used to estimate the four-dimensional structure of latent heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. This paper describes several different algorithms for estimating latent heating using TRMM observations. The strengths and weaknesses of each algorithm as well as the heating products are also discussed. The validation of heating products will be exhibited. Finally, the application of this heating information to global circulation and climate models is presented.
R and D plans for Broad Area Energy Utilization Network System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemura, Yozo; Ishida, Hiromi; Yanagishita, Hiroshi
1995-12-31
In Japan, approximately 60 percent of the primary energy supply is lost as waste heat due to low thermal energy conversion efficiency. A lot of effort has been made towards energy conservation in industry since 1973 when the oil crisis happened. However, waste heat is not recovered sufficiently at low temperature. Since most of energy in residential and commercial areas is used for air-conditioning and hot water, the temperature of heat for residential and commercial use is almost equal to that of waste heat discharged from industrial sources. Therefore, the Broad Area Energy Utilization Network System (Eco-Energy City) project, whichmore » started in 1993 and will continue over a period of 8 years, is a large-scale national energy conservation project of the Agency of Industrial Science and technology (AIST) of the Ministry of International Trade and Industry (MITI). The aim of this project is to accelerate the full scale utilization of industrial waste heat for residential and commercial use by technological breakthroughs. The concept of the project is as follows: (1) Waste and unutilized heat discharged from industrial sources at relatively high temperature is recovered very efficiently, in multiple stages and in various ways. (2) Recovered heat is transported with a small heat loss over a long distance to residential and commercial areas that have various patterns of consuming relatively low-temperature heat. (3) Transported heat is supplied at consumer sites in different ways depending on the individual consumption pattern. (4) Thermal energy is utilized in the following forms: Cascaded use, combined use and recycling. The key to success is to develop innovative technologies of heat recovery, heat transport, heat supply and systematization of energy supply and demand.« less
Enthalpy restoration in geothermal energy processing system
Matthews, Hugh B.
1983-01-01
A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.
An underground nuclear power station using self-regulating heat-pipe controlled reactors
Hampel, V.E.
1988-05-17
A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.
Underground nuclear power station using self-regulating heat-pipe controlled reactors
Hampel, Viktor E.
1989-01-01
A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.
Key aspects of coronal heating
Klimchuk, James A.
2015-01-01
We highlight 10 key aspects of coronal heating that must be understood before we can consider the problem to be solved. (1) All coronal heating is impulsive. (2) The details of coronal heating matter. (3) The corona is filled with elemental magnetic stands. (4) The corona is densely populated with current sheets. (5) The strands must reconnect to prevent an infinite build-up of stress. (6) Nanoflares repeat with different frequencies. (7) What is the characteristic magnitude of energy release? (8) What causes the collective behaviour responsible for loops? (9) What are the onset conditions for energy release? (10) Chromospheric nanoflares are not a primary source of coronal plasma. Significant progress in solving the coronal heating problem will require coordination of approaches: observational studies, field-aligned hydrodynamic simulations, large-scale and localized three-dimensional magnetohydrodynamic simulations, and possibly also kinetic simulations. There is a unique value to each of these approaches, and the community must strive to coordinate better. PMID:25897094
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
NASA Technical Reports Server (NTRS)
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
40 CFR Table 1a to Subpart Dddd of... - Production-Based Compliance Options
Code of Federal Regulations, 2010 CFR
2010-07-01
... the following process units . . . You must meet the following production-based compliance option...) Primary tube dryers 0.26 lb/ODT. (7) Reconstituted wood product board coolers (at new affected sources... dryer heated zones 0.022 lb/MSF 3/8″. (10) Rotary strand dryers 0.18 lb/ODT. (11) Secondary tube dryers...
NASA Technical Reports Server (NTRS)
Katter, L. B.; Peterson, D. J.
1978-01-01
The system identified operates from the primary arc furnace evacuation system as a heat source. Energy from the fume stream is stored as sensible energy in a solid medium (packed bed). A steam-driven turbine is arranged to generate power for peak shaving. A parametric design approach is presented since the overall system design, at optimum payback is strongly dependent upon the nature of the electric pricing structure. The scope of the project was limited to consideration of available technology so that industry-wide application could be achieved by 1985. A search of the literature, coupled with interviews with representatives of major steel producers, served as the means whereby the techniques and technologies indicated for the specific site are extrapolated to the industry as a whole and to the 1985 time frame. The conclusion of the study is that by 1985, a national yearly savings of 1.9 million barrels of oil could be realized through recovery of waste heat from primary arc furnace fume gases on an industry-wide basis. Economic studies indicate that the proposed system has a plant payback time of approximately 5 years.
Watkins, Sharon
2017-01-01
Objectives: The primary objective of this study was to identify patients with heat-related illness (HRI) using codes for heat-related injury diagnosis and external cause of injury in 3 administrative data sets: emergency department (ED) visit records, hospital discharge records, and death certificates. Methods: We obtained data on ED visits, hospitalizations, and deaths for Florida residents for May 1 through October 31, 2005-2012. To identify patients with HRI, we used codes from the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) to search data on ED visits and hospitalizations and codes from the International Classification of Diseases, Tenth Revision (ICD-10) to search data on deaths. We stratified the results by data source and whether the HRI was work related. Results: We identified 23 981 ED visits, 4816 hospitalizations, and 140 deaths in patients with non–work-related HRI and 2979 ED visits, 415 hospitalizations, and 23 deaths in patients with work-related HRI. The most common diagnosis codes among patients were for severe HRI (heat exhaustion or heatstroke). The proportion of patients with a severe HRI diagnosis increased with data source severity. If ICD-9-CM code E900.1 and ICD-10 code W92 (excessive heat of man-made origin) were used as exclusion criteria for HRI, 5.0% of patients with non–work-related deaths, 3.0% of patients with work-related ED visits, and 1.7% of patients with work-related hospitalizations would have been removed. Conclusions: Using multiple data sources and all diagnosis fields may improve the sensitivity of HRI surveillance. Future studies should evaluate the impact of converting ICD-9-CM to ICD-10-CM codes on HRI surveillance of ED visits and hospitalizations. PMID:28379784
Heat exchanger design for hot air ericsson-brayton piston engine
NASA Astrophysics Data System (ADS)
Ďurčanský, P.; Lenhard, R.; Jandačka, J.
2014-03-01
One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.
Bohn, Mark S.; Anselmo, Mark
2001-01-01
Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.
Development of a Thermoacoustic Stirling Engine Technology Demonstrator
NASA Astrophysics Data System (ADS)
Reissner, Alexander; Gerger, Joachim; Hummel, Stefan; Reißig, Jannis; Pawelke, Roland
2014-08-01
Waste heat is a primary source of energy loss in many aerospace and terrestrial applications. FOTEC, an Austrian Research Company located in Wiener Neustadt, is presently developing a micro power converter, promising high efficiencies even for small- scale applications. The converter is based on an innovative thermoacoustic stirling engine concept without any moving parts. Such a maintenance-free engine system would be particularly suitable for advanced space power systems (radioisotope, waste heat) or even within the scope of terrestrial energy harvesting. This paper will summarizes the status of our ongoing efforts on this micro power converter technology.
Conceptual studies for a mercury target circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigg, B.
1996-06-01
For the now favored target design of the European Spallation Source project, i.e. the version using mercury as target material, a basic concept of the primary system has been worked out. It does not include a detailed design of the various components of the target circuit, but tries to outline a feasible solution for the system. Besides the removal of the thermal power of about 3MW produced in the target by the proton beam, the primary system has to satisfy a number of other requirements related to processing, safety, and operation. The basic proposal uses an electromagnetic pump and amore » mercury-water intermediate heat excanger, but other alternatives are also being discussed. Basic safety requirements, i.e. protection against radiation and toxic mercury vapours, are satisfied by a design using an air-tight primary system containment, double-walled tubes in the intermediate heat exchanger, a fail-safe system for decay heat removal, and a remote handling facility for the active part of the system. Much engineering work has still to be done, because many details of the design of the mercury and gas processing systems remain to be clarified, the thermal-hydraulic components need further optimisation, the system for control and instrumentation is only known in outline and a through safety analysis will be required.« less
Novel edible oil sources: Microwave heating and chemical properties.
Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Koubaa, Mohamed; Lopez-Cervantes, Jaime; Yousefabad, Seyed Hossein Asadi; Hosseini, Seyedeh Fatemeh; Karimi, Masoumeh; Motazedian, Azam; Asadifard, Samira
2017-02-01
The aim of this work was to investigate the effect of various microwave heating times (1, 3, 5, 10, and 15min) on the chemical properties of novel edible oil sources, including Mashhadi melon (Cucumis melo var. Iranians cv. Mashhadi), Iranian watermelon (Citrullus lanatus cv. Fire Fon), pumpkin (Cucurbita pepo subsp. pepo var. Styriaca), and yellow apple (Malus domestica cv. Golden Delicious) seed oils. The evaluated parameters were peroxide value (PV), conjugated diene (CD) and triene (CT) values, carbonyl value (CV), p-anisidine value (AnV), oil stability index (OSI), radical scavenging activity (RSA), total tocopherols, total phenolics, as well as chlorophyll and carotenoid contents. Results showed that extended microwave heating involves decreased quality of the seed oils, mainly due to the formation of primary and secondary oxidation products. Microwave heating time also affects the total contents of chlorophylls, carotenoids, phenolics and tocopherols, which clearly decrease by increasing the exposure time. The order of oxidative stability of the analyzed edible oils was pumpkin>Mashhadi melon>Iranian watermelon>yellow apple. The obtained results demonstrated the promising potential of these novel edible oils for different food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahdavi, Mahboobe
Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material through the secondary heat pipes. During the discharging process, secondary heat pipes serve as evaporators and transfer the stored energy to the heat engine. (Abstract shortened by ProQuest.).
Precipitation Processes Derived from TRMM Satellite Data, Cloud Resolving Model and Field Campaigns
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Einaudi, Franco (Technical Monitor)
2001-01-01
Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid. and solid water. Present large-scale weather and climate models can simulate cloud latent heat release only crudely thus reducing their confidence in predictions on both global and regional scales. In this paper, NASA Tropical Rainfall Measuring (TRMM) precipitation radar (PR) derived rainfall information and the Goddard Convective and Stratiform Heating (CSH) algorithm used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to October 2000. Rainfall latent heating and radar reflectively structure between ENSO (1997-1998 winter) and non-ENSO (1998-1999 winter) periods are examined and compared. The seasonal variation of heating over various geographic locations (i.e. Indian ocean vs west Pacific; Africa vs S. America) are also analyzed. In addition, the relationship between rainfall latent heating maximum heating level), radar reflectively and SST are examined.
NASA Astrophysics Data System (ADS)
Latosov, Eduard; Volkova, Anna; Siirde, Andres; Kurnitski, Jarek; Thalfeldt, Martin
2017-05-01
District heating (DH) offers the most effective way to enhance the efficiency of primary energy use, increasing the share of renewable energy in energy consumption and decreasing the amount of CO2 emissions. According to Article 9 section 1 of the Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings, the Member states of the European Union are obligated to draw up National Plans for increasing the number of nearly zero-energy buildings [1]. Article 2 section 2 of the same Directive states that the energy used in nearly zero-energy buildings should be created covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby. Thus, the heat distributed by DH systems and produced by manufacturing devices located in close vicinity of the building also have to be taken into account in determining the energy consumption of the building and the share of renewable energy used in the nearly zero-energy buildings. With regard to the spreading of nearly zero-energy and zero-energy houses, the feasibility of on-site energy (heat and/or electricity) production and consumption in DH areas energy (i.e. parallel consumption, when the consumer, connected to DH system, consumes energy for heat production from other sources besides the DH system as well) needs to be examined. In order to do that, it is necessary to implement a versatile methodological approach based on the principles discussed in this article.
Development of a Residential Ground-Source Integrated Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, C Keith; Baxter, Van D; Hern, Shawn
2013-01-01
A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internalmore » control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.« less
Stratification of a closed region containing two buoyancy sources
NASA Astrophysics Data System (ADS)
Thompson, Andrew; Linden, Paul
2005-11-01
Many closed systems such as lakes, ocean basins, rooms etc. have inputs of buoyancy at different levels. We address the question of how the resulting stratification depends on the location of these sources. For example a lake is heated and cooled at the surface, while for a room cool air may be applied at the ceiling but the heat source may be a person standing on the floor. We present an experimental study of convection in a finite box in which we systematically vary the vertical location of two well-separated, constant buoyancy sources. We specifically consider the case of a dense source and a light source so that there is no net buoyancy flux into the tank. We study the development of the large-time stratification in the tank, which falls between one of two limits. When the location of the dense source is significantly higher than the light source, the fluid is well mixed and the system remains largely unstratified. When the location of the light source is significantly higher than the dense source, a two- layer stratification develops. We find that the circulation pattern is dominated by counter-flowing shear layers (Wong, Griffiths & Hughes, 2001), whose number and strength are strongly influenced by the buoyancy source locations. The shear layers are the primary means of communication between the plumes and thus play a large role in the resulting stratification. We support our findings with a simple numerical model.
Effect of melter feed foaming on heat flux to the cold cap
NASA Astrophysics Data System (ADS)
Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.
2017-12-01
The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in quenched cold caps from the laboratory-scale melter.
Effect of melter feed foaming on heat flux to the cold cap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, SeungMin; Hrma, Pavel; Pokorny, Richard
The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolvedmore » gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in the laboratory-scale melter.« less
Process feasibility study in support of silicon material, task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30 and 350 C. The binary gas mixtures include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon.
Heat exchanger with auxiliary cooling system
Coleman, John H.
1980-01-01
A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.
NASA Astrophysics Data System (ADS)
Borquist, Eric
Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, time, and required equipment. Testing involved filling the micro-channel heat exchanger with 3MTM NovecTM HFE-7200 working fluid. The working fluid was chosen for appropriate physical and environmental properties for the prototypes intended application. Using a dry heat exchanger as the baseline, the addition of the working fluid proved advantageous by increasing energy output by 8% while decreasing overall device temperatures. Upon successful experimental testing of the physical device, internal operation was determined based on implementation of the lattice Boltzmann method, a physics-based statistical method that actively tracked the phase change occurring in a simulated micro-channel. The simulation demonstrated three primary areas of phase change occurring, surfaces adjacent to where the heat source and heat sink were located and the bulk vapor-liquid interface, which agreed with initial device design intentions. Condensation film thickness grew to 5microm over the time interval, while the bulk interface tracked from initial 12microm from the lid to 20microm from the lid. Surface tension effects dominating vapor pressure kept the liquid near the heat source; however, the temperature and pressure VLE data suggested vapor interface growth from the heated surface to 5microm above the heated copper plate. Reinforcing the simulation results, including location and movement of phase interfaces, was accomplished through a thorough ten dimensionless number analyses. These specialized ratios indicated dominant fluid and heat transfer behavior including phase change conditions. Thus, fabrication and empirical results for the heat energy harvesting prototype were successful and computational modeling provided understanding of applicable internal system behavior.
Space Science for Children: All about the Sun [Videotape].
ERIC Educational Resources Information Center
1999
This 23-minute videotape aims to give children, grades K-4, a broad understanding of the center of our solar system, the sun. It explains how the sun provides us with life-giving light and heat, how it's responsible for our seasons and weather, and why it's the primary source of energy on Earth. A hands-on activity in which children create their…
Plant model of KIPT neutron source facility simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.
2016-02-01
Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system ismore » coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.« less
NASA Astrophysics Data System (ADS)
Zhang, Renping
2017-12-01
A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.
Thermal electron heating rate: A derivation
NASA Technical Reports Server (NTRS)
Hoegy, W. R.
1983-01-01
The thermal electron heating rate is an important heat source term in the ionospheric electron energy balance equation, representing heating by photoelectrons or by precipitating higher energy electrons. A formula for the thermal electron heating rate is derived from the kinetic equation using the electron-electron collision operator as given by the unified theory of Kihara and Aono. This collision operator includes collective interactions to produce a finite collision operator with an exact Coulomb logarithm term. The derived heating rate O(e) is the sum of three terms, O(e) = O(p) + S + O(int), which are respectively: (1) primary electron production term giving the heating from newly created electrons that have not yet suffered collisions with the ambient electrons; (2) a heating term evaluated on the energy surface m(e)/2 = E(T) at the transition between Maxwellian and tail electrons at E(T); and (3) the integral term representing heating of Maxwellian electrons by energetic tail electrons at energies ET. Published ionospheric electron temperature studies used only the integral term O(int) with differing lower integration limits. Use of the incomplete heating rate could lead to erroneous conclusions regarding electron heat balance, since O(e) is greater than O(int) by as much as a factor of two.
Method and apparatus for melting metals
Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley
2006-03-14
A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.
Turap, Yusan; Talifu, Dilinuer; Wang, Xinming; Aierken, Tuergong; Rekefu, Suwubinuer; Shen, Hao; Ding, Xiang; Maihemuti, Mailikezhati; Tursun, Yalkunjan; Liu, Wei
2018-05-30
Polycyclic aromatic hydrocarbons (PAHs) are of considerable concern due to their potential as human carcinogens. Thus, determining the characteristics, potential source, and examining the oxidative capacity of PAHs to protect human health is essential. This study investigated the PM 2.5 -bound PAHs at Dushanzi, a large petrochemical region in Xinjiang as well as northwest China. A total of 33 PM 2.5 samples with 13 PAHs, together with molecular tracers (levoglucosan, and element carbon), were analyzed during the non-heating and heating periods. The results showed that the PM 2.5 concentrations were 70.22 ± 22.30 and 95.47 ± 61.73 μg/m 3 , while that of total PAHs were 4.07 ± 2.03 and 60.33 ± 30.80 ng/m 3 in sampling period, respectively. The fluoranthene, pyrene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene were the most abundant (top five) PAHs, accounting for 71.74 and 72.80% of total PAH mass during non-heating and heating periods. The BaP equivalent (BaPeq) concentration exceeded 1 ng/m 3 as recommended by National Ambient Air Quality Standards during heating period. The diagnostic ratios and positive matrix factorization indicated that oil industry, biomass burning, coal combustion, and vehicle emissions are the primary sources. The coal combustion remarkably increased during heating period. The plasmid scission assay (PSA) results showed that higher DNA damage rate was observed during heating period. PAHs in PM 2.5 such as Chr, BaP, and IcdP were found to have significantly positive correlations with the plasmid DNA damage rates. Additionally, the relationship among BaPeq and DNA damage rate suggested that synergistic reaction may modify the toxicity of PAHs.
Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control
NASA Technical Reports Server (NTRS)
Ku, Jentung; Paiva, Kleber; Mantelli, Marcia
2011-01-01
The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly accomplished by cold biasing the reservoir and using electrical heaters to provide the required control power. Using this method, the loop operating temperature can be controlled within +/- 0.5K. However, because of the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP has been carried out to investigate the effects on the LHP operation when the control temperature sensor is placed on the heat source instead of the reservoir. In these tests, the LHP reservoir is cold-biased and is heated by a control heater. Tests results show that it is feasible to use the heat source temperature for feedback control of the LHP operation. Using this method, the heat source temperature can be maintained within a tight range for moderate and high powers. At low powers, however, temperature oscillations may occur due to interactions among the reservoir control heater power, the heat source mass, and the heat output from the heat source. In addition, the heat source temperature could temporarily deviate from its set point during fast thermal transients. The implication is that more sophisticated feedback control algorithms need to be implemented for LHP transient operation when the heat source temperature is used for feedback control.
Water treatment capacity of forward osmosis systems utilizing power plant waste heat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.
Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less
Water treatment capacity of forward osmosis systems utilizing power plant waste heat
Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.
2015-06-11
Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less
Relative Role of Horizontal and Vertical Processes in Arctic Amplification
NASA Astrophysics Data System (ADS)
Kim, K. Y.
2017-12-01
The physical mechanism of Arctic amplification is still controversial. Specifically, relative role of vertical processes resulting from the reduction of sea ice in the Barents-Kara Seas is not clearly understood in comparison with the horizontal advection of heat and moisture. Using daily data, heat and moisture budgets are analyzed during winter (Dec. 1-Feb. 28) over the region of sea ice reduction in order to delineate the relative roles of horizontal and vertical processes. Detailed heat and moisture budgets in the atmospheric column indicate that the vertical processes, release of turbulent heat fluxes and evaporation, are a major contributor to the increased temperature and specific humidity over the Barents-Kara Seas. In addition, greenhouse effect caused by the increased specific humidity, also plays an important role in Arctic amplification. Horizontal processes such as advection of heat and moisture are the primary source of variability (fluctuations) in temperature and specific humidity in the atmospheric column. Advection of heat and moisture, on the other hand, is little responsible for the net increase in temperature and specific humidity over the Barents-Kara Seas.
Lunar Surface Stirling Power Systems Using Isotope Heat Sources
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2010-01-01
For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.
Near-chip compliant layer for reducing perimeter stress during assembly process
Schultz, Mark D.; Takken, Todd E.; Tian, Shurong; Yao, Yuan
2018-03-20
A heat source (single semiconductor chip or group of closely spaced semiconductor chips of similar height) is provided on a first side of a substrate, which substrate has on said first side a support member comprising a compressible material. A heat removal component, oriented at an angle to said heat source, is brought into proximity of said heat source such that said heat removal component contacts said support member prior to contacting said heat source. Said heat removal component is assembled to said heat source such that said support member at least partially absorbs global inequality of force that would otherwise be applied to said heat source, absent said support member comprising said compressible material.
Near-chip compliant layer for reducing perimeter stress during assembly process
Schultz, Mark D.; Takken, Todd E.; Tian, Shurong; Yao, Yuan
2017-02-14
A heat source (single semiconductor chip or group of closely spaced semiconductor chips of similar height) is provided on a first side of a substrate, which substrate has on said first side a support member comprising a compressible material. A heat removal component, oriented at an angle to said heat source, is brought into proximity of said heat source such that said heat removal component contacts said support member prior to contacting said heat source. Said heat removal component is assembled to said heat source such that said support member at least partially absorbs global inequality of force that would otherwise be applied to said heat source, absent said support member comprising said compressible material.
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, P.R.; McLennan, G.A.
1984-08-30
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, Paul R.; McLennan, George A.
1985-01-01
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
NASA Astrophysics Data System (ADS)
Li, Yuan-Wei; Cao, Bing-Yang
2013-12-01
The thermal conductivity of (5, 5) single-walled carbon nanotubes (SWNTs) with an internal heat source is investigated by using nonequilibrium molecular dynamics (NEMD) simulation incorporating uniform heat source and heat source-and-sink schemes. Compared with SWNTs without an internal heat source, i.e., by a fixed-temperature difference scheme, the thermal conductivity of SWNTs with an internal heat source is much lower, by as much as half in some cases, though it still increases with an increase of the tube length. Based on the theory of phonon dynamics, a function called the phonon free path distribution is defined to develop a simple one-dimensional heat conduction model considering an internal heat source, which can explain diffusive-ballistic heat transport in carbon nanotubes well.
Alternative Energy Sources for United States Air Force Installations
1975-08-01
easy to maintain, and have a relatively long life expectancy. b. Linear Focus Parabolic trough collectors have been fabricated by two primary methods...engineered and economically manufactured and dis- tributed solar collectors . Development, optimization, production design, and manufacture of these units is...193 and domestic hnt water heating. These systems function by converting the solar energy incident on a collector surface to thermal energy in a working
CO2 heat pumps for commercial building applications with simultaneous heating and cooling demand
NASA Astrophysics Data System (ADS)
Dharkar, Supriya
Many commercial buildings, including data centers, hotels and hospitals, have a simultaneous heating and cooling demand depending on the season, occupation and auxiliary equipment. A data center on the Purdue University, West Lafayette campus is used as a case study. The electrical equipment in data centers produce heat, which must be removed to prevent the equipment temperature from rising to a certain level. With proper integration, this heat has the potential to be used as a cost-effective energy source for heating the building in which the data center resides or the near-by buildings. The proposed heat pump system utilizes carbon dioxide with global warming potential of 1, as the refrigerant. System simulations are carried out to determine the feasibility of the system for a 12-month period. In addition, energy, environmental and economic analyses are carried out to show the benefits of this alternative technology when compared to the conventional system currently installed in the facility. Primary energy savings of ~28% to ~61%, a payback period of 3 to 4.5 years and a decrease in the environmental impact value by ~36% makes this system an attractive option. The results are then extended to other commercial buildings.
Exhaust heated hydrogen and oxygen producing catalytic converter for combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, E.T.
1977-07-26
A steam generator is provided in operative association with a source of water and the exhaust system of a combustion engine including an air induction system provided with primary fuel inlet structure and supplemental fuel inlet structure. The steam generator derives its heat for converting water into steam from the exhaust system of the combustion engine and the steam generator includes a steam outlet communicated with and opening into one end of an elongated tubular housing disposed in good heat transfer relation with the exhaust system of the combustion engine and having a gas outlet at its other end communicatedmore » with the supplemental fuel inlet of the induction system. The tubular housing has iron filings disposed therein and is in such heat transfer relation with the exhaust system of the combustion engine so as to elevate the temperature of steam passing therethrough and to heat the iron filings to the extent that passage of the heated steam over the heated filings will result in hydrogen and oxygen gas being produced in the tubular housing for subsequent passage to the supplemental fuel inlet of the combustion engine induction system.« less
Henrich, Florian; Magerl, Walter; May, Arne
2014-01-01
This study tested a modified experimental model of heat-induced hyperalgesia, which improves the efficacy to induce primary and secondary hyperalgesia and the efficacy-to-safety ratio reducing the risk of tissue damage seen in other heat pain models. Quantitative sensory testing was done in eighteen healthy volunteers before and after repetitive heat pain stimuli (60 stimuli of 48°C for 6 s) to assess the impact of repetitive heat on somatosensory function in conditioned skin (primary hyperalgesia area) and in adjacent skin (secondary hyperalgesia area) as compared to an unconditioned mirror image control site. Additionally, areas of flare and secondary hyperalgesia were mapped, and time course of hyperalgesia determined. After repetitive heat pain conditioning we found significant primary hyperalgesia to heat, and primary and secondary hyperalgesia to pinprick and to light touch (dynamic mechanical allodynia). Acetaminophen (800 mg) reduced pain to heat or pinpricks only marginally by 11% and 8%, respectively (n.s.), and had no effect on heat hyperalgesia. In contrast, the areas of flare (−31%) and in particular of secondary hyperalgesia (−59%) as well as the magnitude of hyperalgesia (−59%) were significantly reduced (all p<0.001). Thus, repetitive heat pain induces significant peripheral sensitization (primary hyperalgesia to heat) and central sensitization (punctate hyperalgesia and dynamic mechanical allodynia). These findings are relevant to further studies using this model of experimental heat pain as it combines pronounced peripheral and central sensitization, which makes a convenient model for combined pharmacological testing of analgesia and anti-hyperalgesia mechanisms related to thermal and mechanical input. PMID:24911787
Using spacecraft trace contaminant control systems to cure sick building syndrome
NASA Technical Reports Server (NTRS)
Graf, John C.
1994-01-01
Many residential and commercial buildings with centralized, recirculating, heating ventilation and air conditioning systems suffer from 'Sick Building Syndrome.' Ventilation rates are reduced to save energy costs, synthetic building materials off-gas contaminants, and unsafe levels of volatile organic compounds (VOC's) accumulate. These unsafe levels of contaminants can cause irritation of eyes and throat, fatigue and dizziness to building occupants. Increased ventilation, the primary method of treating Sick Building Syndrome is expensive (due to increased energy costs) and recently, the effectiveness of increased ventilation has been questioned. On spacecraft venting is not allowed, so the primary methods of air quality control are; source control, active filtering, and destruction of VOC's. Four non-venting contaminant removal technologies; strict material selection to provide source control, ambient temperature catalytic oxidation, photocatalytic oxidation, and uptake by higher plants, may have potential application for indoor air quality control.
NASA Astrophysics Data System (ADS)
Stanfield, R.; Dong, X.; Su, H.; Xi, B.; Jiang, J. H.
2016-12-01
In the past few years, studies have found a strong connection between atmospheric heat transport across the equator (AHTEQ) and the position of the ITCZ. This study investigates the seasonal, annual-mean and interannual variability of the ITCZ position and explores the relationships between the ITCZ position and inter-hemispheric energy transport in NASA NEWS products, multiple reanalyses datasets, and CMIP5 simulations. We find large discrepancies exist in the ITCZ-AHTEQ relationships in these datasets and model simulations. The components of energy fluxes are examined to identify the primary sources for the discrepancies among the datasets and models results.
NASA Astrophysics Data System (ADS)
Liu, Chih Hao; Skryabina, M. N.; Singh, Manmohan; Li, Jiasong; Wu, Chen; Sobol, E.; Larin, Kirill V.
2015-03-01
Current clinical methods of reconstruction surgery involve laser reshaping of nasal cartilage. The process of stress relaxation caused by laser heating is the primary method to achieve nasal cartilage reshaping. Based on this, a rapid, non-destructive and accurate elasticity measurement would allow for a more robust reshaping procedure. In this work, we have utilized a phase-stabilized swept source optical coherence elastography (PhSSSOCE) to quantify the Young's modulus of porcine nasal septal cartilage during the relaxation process induced by heating. The results show that PhS-SSOCE was able to monitor changes in elasticity of hyaline cartilage, and this method could potentially be applied in vivo during laser reshaping therapies.
NASA Astrophysics Data System (ADS)
Carton, James; Chepurin, Gennady
2017-04-01
While atmospheric reanalyses do not ingest data from the subsurface ocean they must produce fluxes consistent with, for example, ocean storage and divergence of heat transport. Here we present a test of the consistency of two different atmospheric reanalyses with 2.5 million global ocean temperature observations during the data-rich eight year period 2007-2014. The examination is carried out by using atmospheric reanalysis variables to drive the SODA3 ocean reanalysis system, and then collecting and analyzing the temperature analysis increments (observation misfits). For the widely used MERRA2 and ERA-Int atmospheric reanalyses the temperature analysis increments reveal inconsistencies between those atmospheric fluxes and the ocean observations in the range of 10-30 W/m2. In the interior basins excess heat during a single assimilation cycle is stored primarily locally within the mixed layer, a simplification of the heat budget that allows us to identify the source of the error as the specified net surface heat flux. Along the equator the increments are primarily confined to thermocline depths indicating the primary source of the error is dominated by heat transport divergence. The error in equatorial heat transport divergence, in turn, can be traced to errors in the strength of the equatorial trade winds. We test our conclusions by introducing modifications of the atmospheric reanalyses based on analysis of ocean temperature analysis increments and repeating the ocean reanalysis experiments using the modified surface fluxes. Comparison of the experiments reveals that the modified fluxes reduce the misfit to ocean observations as well as the differences between the different atmospheric reanalyses.
Variable pressure power cycle and control system
Goldsberry, Fred L.
1984-11-27
A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.
Subsurface urban heat islands in German cities.
Menberg, Kathrin; Bayer, Peter; Zosseder, Kai; Rumohr, Sven; Blum, Philipp
2013-01-01
Little is known about the intensity and extension of subsurface urban heat islands (UHI), and the individual role of the driving factors has not been revealed either. In this study, we compare groundwater temperatures in shallow aquifers beneath six German cities of different size (Berlin, Munich, Cologne, Frankfurt, Karlsruhe and Darmstadt). It is revealed that hotspots of up to +20K often exist, which stem from very local heat sources, such as insufficiently insulated power plants, landfills or open geothermal systems. When visualizing the regional conditions in isotherm maps, mostly a concentric picture is found with the highest temperatures in the city centers. This reflects the long-term accumulation of thermal energy over several centuries and the interplay of various factors, particularly in heat loss from basements, elevated ground surface temperatures (GST) and subsurface infrastructure. As a primary indicator to quantify and compare large-scale UHI intensity the 10-90%-quantile range UHII(10-90) of the temperature distribution is introduced. The latter reveals, in comparison to annual atmospheric UHI intensities, an even more pronounced heating of the shallow subsurface. Copyright © 2012 Elsevier B.V. All rights reserved.
Carbothermic reduction with parallel heat sources
Troup, Robert L.; Stevenson, David T.
1984-12-04
Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.
Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control
NASA Technical Reports Server (NTRS)
Ku, Jentung; Paiva, Kleber; Mantelli, Marcia
2011-01-01
Loop heat pipes (LHPs) have been used for thermal control of several NASA and commercial orbiting spacecraft. The LHP operating temperature is governed by the saturation temperature of its compensation chamber (CC). Most LHPs use the CC temperature for feedback control of its operating temperature. There exists a thermal resistance between the heat source to be cooled by the LHP and the LHP's CC. Even if the CC set point temperature is controlled precisely, the heat source temperature will still vary with its heat output. For most applications, controlling the heat source temperature is of most interest. A logical question to ask is: "Can the heat source temperature be used for feedback control of the LHP operation?" A test program has been implemented to answer the above question. Objective is to investigate the LHP performance using the CC temperature and the heat source temperature for feedback control
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. A. Anderson; P. Sabharwall
2014-01-01
The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate thatmore » heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.« less
Powell, James R.; Salzano, Francis J.
1978-01-01
Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.
Ecker, Amir L.; Pietsch, Joseph A.
1982-01-01
What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.
30 CFR 56.4500 - Heat sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Heat sources. 56.4500 Section 56.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 56.4500 Heat sources. Heat sources capable of producing combustion...
30 CFR 57.4500 - Heat sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Heat sources. 57.4500 Section 57.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 57.4500 Heat sources. Heat sources capable of producing combustion...
30 CFR 57.4500 - Heat sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Heat sources. 57.4500 Section 57.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 57.4500 Heat sources. Heat sources capable of producing combustion...
30 CFR 57.4500 - Heat sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Heat sources. 57.4500 Section 57.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 57.4500 Heat sources. Heat sources capable of producing combustion...
30 CFR 56.4500 - Heat sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Heat sources. 56.4500 Section 56.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 56.4500 Heat sources. Heat sources capable of producing combustion...
30 CFR 56.4500 - Heat sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Heat sources. 56.4500 Section 56.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 56.4500 Heat sources. Heat sources capable of producing combustion...
30 CFR 57.4500 - Heat sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Heat sources. 57.4500 Section 57.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 57.4500 Heat sources. Heat sources capable of producing combustion...
30 CFR 56.4500 - Heat sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Heat sources. 56.4500 Section 56.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 56.4500 Heat sources. Heat sources capable of producing combustion...
Ion heating and short wavelength fluctuations in a helicon plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scime, E. E.; Carr, J. Jr.; Galante, M.
2013-03-15
For typical helicon source parameters, the driving antenna can couple to two plasma modes; the weakly damped 'helicon' wave, and the strongly damped, short wavelength, slow wave. Here, we present direct measurements, obtained with two different techniques, of few hundred kHz, short wavelength fluctuations that are parametrically driven by the primary antenna and localized to the edge of the plasma. The short wavelength fluctuations appear for plasma source parameters such that the driving frequency is approximately equal to the lower hybrid frequency. Measurements of the steady-state ion temperature and fluctuation amplitude radial profiles suggest that the anomalously high ion temperaturesmore » observed at the edge of helicon sources result from damping of the short wavelength fluctuations. Additional measurements of the time evolution of the ion temperature and fluctuation profiles in pulsed helicon source plasmas support the same conclusion.« less
Passive rejection of heat from an isotope heat source through an open door
NASA Technical Reports Server (NTRS)
Burns, R. K.
1971-01-01
The isotope heat-source design for a Brayton power system includes a door in the thermal insulation through which the heat can be passively rejected to space when the power system is not operating. The results of an analysis to predict the heat-source surface temperature and the heat-source heat-exchanger temperature during passive heat rejection as a function of insulation door opening angle are presented. They show that for a door opening angle greater than 20 deg, the temperatures are less than the steady-state temperatures during power system operation.
NASA Technical Reports Server (NTRS)
1973-01-01
Major conclusions of the space shuttle heat source assembly study are reported that project a minimum weight design for a Titan 3 C synchronous orbit mission; requirements to recover the heat source in orbit are eliminated. This concept permits location of the heat source end enclosure supports and heat source assembly support housing in a low temperature region external to the insulation enclosure and considers titanium and beryllium alloys for these support elements. A high melting insulation blanket consisting of nickel foil coated with zirconia, or of gold foil separated with glass fiber layers, is selected to provide emergency cooling in the range 2000 to 2700 F to prevent the isotope heat source from reaching unsafe temperatures. A graphic view of the baseline heat source assembly is included.
Limited energy study, Buildings 750 and 798, Fort Richardson, Alaska. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
The purpose of this study is to identify and evaluate Energy Conservation Opportunities (ECOs) for two motor pool facilities, Buildings 750 and 798, to determine their energy savings potential, economic feasibility, and to document results for possible future funding. Buildings 750 and 798 are heated by steam supplied from a central plant. The central plant uses natural gas as a primary fuel source to produce steam for both heating and electrical energy generation. Since power is produced on the base there is not a demand charge for electrical energy. Two ECOs examined the use of natural gas in conjunction withmore » steam as a method of heating the buildings. Annual baseline energy consumption and cost data for each building is presented. The heating system in Building 750 was found to be severely under capacity. This is the result of the disabling of the under-floor heating system and the roof top MAUs. Building 798 also has had the under-floor heating system disabled. However, baseline simulations show that the remaining system is capable of maintaining thermostat setpoints during all but the coldest days of a typical year.« less
Characterization of an inductively coupled plasma source with convergent nozzle
NASA Astrophysics Data System (ADS)
Dropmann, Michael; Clements, Kathryn; Edgren, Josh; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell
2015-11-01
The inductively heated plasma generator (IPG6-B) located in the CASPER labs at Baylor University has recently been characterized for both air, nitrogen and helium. A primary area of research within the intended scope of the instrument is the analysis of material degradation under high heat fluxes such as those imposed by a plasma during atmospheric entry of a spacecraft and at the divertor within various fusion experiment. In order to achieve higher flow velocities and respectively higher heat fluxes, a new exit flange has been designed to allow the installation of nozzles with varying geometries at the exit of the plasma generator. This paper will discuss characterization of the plasma generator for a convergent nozzle accelerating the plasma jet to supersonic velocity. The diagnostics employed include a cavity calorimeter to measure the total plasma power, a Pitot probe to measure stagnation pressure and a heat flux probe to measure the local heat flux. Radial profiles of stagnation pressure and heat flux allowing the determination of the local plasma enthalpy in the plasma jet will be presented. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Maxworth, Ashanthi; Golkowski, Mark; University of Colorado Denver Team
2013-10-01
ELF/VLF wave generation via HF modulated ionospheric heating has been practiced for many years as a unique way to generate waves in the ELF/VLF band (3 Hz - 30 kHz). This paper presents experimental results and associated theoretical modeling from work performed at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. An experiment was designed to investigate the modulation frequency dependence of the generated ELF/VLF signal amplitudes and polarization at multiple sites at distances of 37 km, 50 km and 99 km from the facility. While no difference is observed for X mode versus O mode modulation of the heating wave, it is found that ELF/VLF amplitude and polarization as a function of modulated ELF/VLF frequency is different for each site. An ionospheric heating code is used to determine the primary current sources leading to the observations.
Ensuring safety of implanted devices under MRI using reversed RF polarization.
Overall, William R; Pauly, John M; Stang, Pascal P; Scott, Greig C
2010-09-01
Patients with long-wire medical implants are currently prevented from undergoing magnetic resonance imaging (MRI) scans due to the risk of radio frequency (RF) heating. We have developed a simple technique for determining the heating potential for these implants using reversed radio frequency (RF) polarization. This technique could be used on a patient-to-patient basis as a part of the standard prescan procedure to ensure that the subject's device does not pose a heating risk. By using reversed quadrature polarization, the MR scan can be sensitized exclusively to the potentially dangerous currents in the device. Here, we derive the physical principles governing the technique and explore the primary sources of inaccuracy. These principles are verified through finite-difference simulations and through phantom scans of implant leads. These studies demonstrate the potential of the technique for sensitively detecting potentially dangerous coupling conditions before they can do any harm. 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Das, Kalidas; Chakraborty, Tanmoy; Kumar Kundu, Prabir
2017-12-01
Comparative flow features of two different nanofluids containing TiO2 nanoparticles along a rotating disk near a stagnation point are theoretically addressed here. The primary fluids are presumed as ethylene glycol and water. The influences of non-uniform heat absorption/generation with homogeneous and heterogeneous chemical reactions have been integrated to modify the energy and concentration profiles. By virtue of similarity conversions, the leading partial differential system has been standardized into non-linear ODEs and then cracked analytically by NDM and numerically by RK-4 based shooting practice. Impressions of emerging parameters on the flow regime have been reported by tables and graphs coupled with required discussions. One of our results predicts that, with the augmentation of TiO2 nanoparticles concentration, the rate of heat transport for ethylene glycol nanofluid becomes 30-36% higher compared to that of a water nanofluid.
Kucbel, Marek; Corsaro, Agnieszka; Švédová, Barbora; Raclavská, Helena; Raclavský, Konstantin; Juchelková, Dagmar
2017-12-01
Black carbon - a primary component of particulate matter emitted from an incomplete combustion of fossil fuels, biomass, and biofuels - has been found to have a detrimental effect on human health and the environment. Since black carbon emissions data are not readily available, no measures are implemented to reduce black carbon emissions. The temporal and seasonal variations of black carbon concentrations were evaluated during 2012-2014. The data were collected in the highly polluted European city - Ostrava, Czech Republic, surrounded by major highways and large industries. Significantly higher black carbon concentrations were obtained in Ostrava, relative to other European cities and the magnitude was equivalent to the magnitude of black carbon concentrations measured in Poland and China. The data were categorized to heating and non-heating seasons based on the periodic pattern of daily and monthly average concentrations of black carbon. A higher black carbon concentration was obtained during heating season than non-heating season and was primarily associated with an increase in residential coal burning and meteorological parameters. The concentration of black carbon was found to be negatively correlated with temperature and wind speed, and positively correlated with the relative humidity. Other black carbon sources potentially included emissions from vehicle exhaust and the local steel-producing industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Infrared imaging for tumor detection using antibodies conjugated magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Levy, Arie; Gannot, Israel
2008-04-01
Thermography is a well known approach for cost effective early detection of concourse tumors. However, till now - more than 5 decades after its introduction - it is not considered as a primary tool for cancer early detection, mainly because its poor performance compared to other techniques. This work offers a new thermographic approach for tumor detection which is based on the use of antibody conjugated magnetic nanoparticles ("MNP") as a tumor specific marker. Wename this method "Thermal Beacon Thermography" ("TBT"), and it has the potential to provide considerable advantages over conventional thermographic approach. TBT approach is based on the fact that MNP are producing heat when subjected to an alternating magnetic field ("AMF"). Once these particles are injected to the patient blood stream, they specifically accumulate at the tumor site, providing a local heat source at the tumor that can be activated and deactivated by external control. This heat source can be used as a "thermal beacon" in order to detect and locate tumor by detecting temperature changes at the skin surface using an IR camera and comparing them to a set of pre-calculated numerical predictions. Experiments were conducted using an in vitro tissue model together with industrial inductive heating system and an IR camera. The results shows that this approach can specifically detect small tumor phantom (D=1.5mm) which was embedded below the surface of the tissue phantom.
Status of geothermal direct use in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bujakowski, W.
1997-12-31
Geothermal Energy uses the natural heat of the Earth. It is a local energy source, competitive, renewable and acceptable from the ecological and social points of view, which is used either for the electricity production, or for direct application such as a district heating. A great number of operating geothermal installations are found in Europe. European Community energy programs foresee in the coming years a great reduction of conventional fuel consumption, due to the risks that dependency on imported fuels implies and to the future environmental problems, which a mass exploitation of these fuels can lead to. Thus, EC energymore » policy is aimed at a drastic reduction of oil consumption and at diversification of primary energy sources. This paper will present the results from the exploration and evaluation of geothermal water resources in Poland. Herewith, a short description of performed projects, examples of designed geothermal water utilization, some economical, sociological, ecological and political aspects of present out and future projects will be presented.« less
Thermal response properties of protective clothing fabrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baitinger, W.F.
1995-12-31
In the industrial workplace, it becomes increasingly incumbent upon employers to require employees to use suitable protective equipment and to wear protective apparel. When workers may be subjected to accidental radiant, flame, or electric arc heat sources, work clothing should be used that does not become involved in burning. It is axiomatic that work clothing should not become a primary fuel source, adding to the level of heat exposure, since clothing is usually in intimate contact with the skin. Further, clothing should provide sufficient insulation to protect the skin from severe burn injury. If the worker receives such protection frommore » clothing, action then may be taken to escape the confronted thermal hazard. Published laboratory test methods are used to measure flame resistance and thermal responses of flame resistant fabrics in protective clothing. The purpose of this article is to review these test methods, to discuss certain limitations in application, and to suggest how flame resistant cotton fabrics may be used to enhance worker safety.« less
Thermal Performance Analysis of a Geologic Borehole Repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reagin, Lauren
2016-08-16
The Brazilian Nuclear Research Institute (IPEN) proposed a design for the disposal of Disused Sealed Radioactive Sources (DSRS) based on the IAEA Borehole Disposal of Sealed Radioactive Sources (BOSS) design that would allow the entirety of Brazil’s inventory of DSRS to be disposed in a single borehole. The proposed IPEN design allows for 170 waste packages (WPs) containing DSRS (such as Co-60 and Cs-137) to be stacked on top of each other inside the borehole. The primary objective of this work was to evaluate the thermal performance of a conservative approach to the IPEN proposal with the equivalent of twomore » WPs and two different inside configurations using Co-60 as the radioactive heat source. The current WP configuration (heterogeneous) for the IPEN proposal has 60% of the WP volume being occupied by a nuclear radioactive heat source and the remaining 40% as vacant space. The second configuration (homogeneous) considered for this project was a homogeneous case where 100% of the WP volume was occupied by a nuclear radioactive heat source. The computational models for the thermal analyses of the WP configurations with the Co-60 heat source considered three different cooling mechanisms (conduction, radiation, and convection) and the effect of mesh size on the results from the thermal analysis. The results of the analyses yielded maximum temperatures inside the WPs for both of the WP configurations and various mesh sizes. The heterogeneous WP considered the cooling mechanisms of conduction, convection, and radiation. The temperature results from the heterogeneous WP analysis suggest that the model is cooled predominantly by conduction with effect of radiation and natural convection on cooling being negligible. From the thermal analysis comparing the two WP configurations, the results suggest that either WP configuration could be used for the design. The mesh sensitivity results verify the meshes used, and results obtained from the thermal analyses were close to being independent of mesh size. The results from the computational case and analytically-calculated case for the homogeneous WP in benchmarking were almost identical, which indicates that the computational approach used here was successfully verified by the analytical solution.« less
NASA Astrophysics Data System (ADS)
Akhmetova, I. G.; Chichirova, N. D.
2016-12-01
Heat supply is the most energy-consuming sector of the economy. Approximately 30% of all used primary fuel-and-energy resources is spent on municipal heat-supply needs. One of the key indicators of activity of heat-supply organizations is the reliability of an energy facility. The reliability index of a heat supply organization is of interest to potential investors for assessing risks when investing in projects. The reliability indices established by the federal legislation are actually reduced to a single numerical factor, which depends on the number of heat-supply outages in connection with disturbances in operation of heat networks and the volume of their resource recovery in the calculation year. This factor is rather subjective and may change in a wide range during several years. A technique is proposed for evaluating the reliability of heat-supply organizations with the use of the simple additive weighting (SAW) method. The technique for integrated-index determination satisfies the following conditions: the reliability level of the evaluated heat-supply system is represented maximum fully and objectively; the information used for the reliability-index evaluation is easily available (is located on the Internet in accordance with demands of data-disclosure standards). For reliability estimation of heat-supply organizations, the following indicators were selected: the wear of equipment of thermal energy sources, the wear of heat networks, the number of outages of supply of thermal energy (heat carrier due to technological disturbances on heat networks per 1 km of heat networks), the number of outages of supply of thermal energy (heat carrier due to technologic disturbances on thermal energy sources per 1 Gcal/h of installed power), the share of expenditures in the cost of thermal energy aimed at recovery of the resource (renewal of fixed assets), coefficient of renewal of fixed assets, and a coefficient of fixed asset retirement. A versatile program is developed and the analysis of heat-supply organizations is performed by the example of the Republic of Tatarstan. The assessment system is based on construction of comparative ratings of heat-supply organizations. A rating is the assessment of reliability of the organization, is characterized by a numerical value, and makes it possible to compare organizations engaged in the same kind of activity between each other.
Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.
2009-01-01
Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.
NASA Technical Reports Server (NTRS)
Levy, L. L., Jr.; Burns, R. K.
1972-01-01
A theoretical investigation has been made to design an isotope heat source capable of satisfying the conflicting thermal requirements of steady-state operation and atmosphere entry. The isotope heat source must transfer heat efficiently to a heat exchange during normal operation with a power system in space, and in the event of a mission abort, it must survive the thermal environment of atmosphere entry and ground impact without releasing radioactive material. A successful design requires a compatible integration of the internal components of the heat source with the external aerodynamic shape. To this end, configurational, aerodynamic, motion, and thermal analyses were coupled and iterated during atmosphere entries at suborbital through superorbital velocities at very shallow and very steep entry angles. Results indicate that both thermal requirements can be satisfied by a heat source which has a single stable aerodynamic orientation at hypersonic speeds. For such a design, the insulation material required to adequately protect the isotope fuel from entry heating need extend only half way around the fuel capsule on the aerodynamically stable (wind-ward) side of the heat source. Thus, a low-thermal-resistance, conducting heat path is provided on the opposite side of the heat source through which heat can be transferred to an adjacent heat exchanger during normal operation without exceeding specified temperature limits.
21 CFR 872.6475 - Heat source for bleaching teeth.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...
21 CFR 872.6475 - Heat source for bleaching teeth.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...
21 CFR 872.6475 - Heat source for bleaching teeth.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...
21 CFR 872.6475 - Heat source for bleaching teeth.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...
21 CFR 872.6475 - Heat source for bleaching teeth.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...
A capital cost comparison of commercial ground-source heat pump systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafferty, K.
1994-06-01
The purpose of the report is to compare capital costs associated with the three designs of ground source heat pumps. Specifically, the costs considered are those associated with the heat source/heat sink or ground source portion of the system. In order to standardize the heat rejection over the three designs, it was assumed that the heat pump loop would operate at a temperature range of 85{degree} (to the heat pumps) to 95{degree} (from the heat pumps) under peak conditions. The assumption of constant loop temperature conditions for all three permits an apples-to-apples comparison of the alternatives.
2008-05-12
Aircraft Maintenance Hangar 2 peaking power generators, boilers , and various sources of fugitive volatile organic compounds (VOCs). There are...nature. The boilers on the base are used primarily for generating steam for comfort heating of the buildings. Natural gas is used as the primary...fuel, with No. 2 Diesel Fuel and Air Mixed Propane as backups for most of the large boilers . 4.3 Air Quality Requirements at Robins AFB Robins AFB is
Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback.
Forbes, John C; Krumholz, Mark R; Goldbaum, Nathan J; Dekel, Avishai
2016-07-28
Photoelectric heating--heating of dust grains by far-ultraviolet photons--has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity--as is expected with photoelectric heating,but not with supernovae--reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time,suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.
Solar heating and cooling: Technical data and systems analysis
NASA Technical Reports Server (NTRS)
Christensen, D. L.
1975-01-01
The solar energy research is reported including climatic data, architectural data, heating and cooling equipment, thermal loads, and economic data. Lists of data sources presented include: selected data sources for solar energy heating and cooling; bibliography of solar energy, and other energy sources; sources for manufacturing and sales, solar energy collectors; and solar energy heating and cooling projects.
Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China.
Pang, Jiaping; Wen, Xuefa; Sun, Xiaomin
2016-01-01
The stable isotope composition of atmospheric CO2 can be used as a tracer in the study of urban carbon cycles, which are affected by anthropogenic and biogenic CO2 components. Continuous measurements of the mixing ratio and δ(13)C of atmospheric CO2 were conducted in Beijing from Nov. 15, 2012 to Mar. 8, 2014 including two heating seasons and a vegetative season. Both δ(13)C and the isotopic composition of source CO2 (δ(13)CS) were depleted in the heating seasons and enriched in the vegetative season. The diurnal variations in the CO2 mixing ratio and δ(13)C contained two peaks in the heating season, which are due to the effects of morning rush hour traffic. Seasonal and diurnal patterns of the CO2 mixing ratio and δ(13)C were affected by anthropogenic emissions and biogenic activity. Assuming that the primary CO2 sources at night (22:00-04:00) were coal and natural gas combustion during heating seasons I and II, an isotopic mass balance analysis indicated that coal combustion had average contributions of 83.83±14.11% and 86.84±12.27% and that natural gas had average contributions of 16.17±14.11% and 13.16±12.27%, respectively. The δ(13)C of background CO2 in air was the main error source in the isotopic mass balance model. Both the mixing ratio and δ(13)C of atmospheric CO2 had significant linear relationships with the air quality index (AQI) and can be used to indicate local air pollution conditions. Energy structure optimization, for example, reducing coal consumption, will improve the local air conditions in Beijing. Copyright © 2015 Elsevier B.V. All rights reserved.
Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China
NASA Astrophysics Data System (ADS)
Pang, J.; Wen, X.; Sun, X.
2016-12-01
The stable isotope composition of atmospheric CO2 can be used as a tracer in the study of urban carbon cycles, which are affected by anthropogenic and biogenic CO2 components. Continuous measurements of the mixing ratio and δ13C of atmospheric CO2 were conducted in Beijing from Nov. 15, 2012 to Mar. 8, 2014 including two heating seasons and a vegetative season. Both δ13C and the isotopic composition of source CO2 (δ13CS) were depleted in the heating seasons and enriched in the vegetative season. The diurnal variations in the CO2 mixing ratio and δ13C contained two peaks in the heating season, which are due to the effects of morning rush hour traffic. Seasonal and diurnal patterns of the CO2 mixing ratio and δ13C were affected by anthropogenic emissions and biogenic activity. Assuming that the primary CO2 sources at night (22:00-04:00) were coal and natural gas combustion during heating seasons I and II, an isotopic mass balance analysis indicated that coal combustion had average contributions of 83.83 ± 14.11% and 86.84 ± 12.27% and that natural gas had average contributions of 16.17 ± 14.11% and 13.16 ± 12.27%, respectively. The δ13C of background CO2 in air was the main error source in the isotopic mass balance model. Both the mixing ratio and δ13C of atmospheric CO2 had significant linear relationships with the air quality index (AQI) and can be used to indicate local air pollution conditions. Energy structure optimization, for example, reducing coal consumption, will improve the local air conditions in Beijing.
NASA Astrophysics Data System (ADS)
Skliarov, Volodymyr
2018-03-01
Many additive manufacturing (AM) systems are based on laser technology. The advantage of laser technology is that it provides a high-intensity and high-collimation energy beam that can be controlled. Since AM requires that the material on each layer has to be solid or connected to the previous one, the energy of laser radiation is exactly the needed technical tool for the processing of the material. AM uses two types of laser processing: cutting and heating. One of the most popular (common) types of measurements in the field of laser metrology is the control of the energy parameters of the sources of laser radiation. At present, calorimeters provide the highest accuracy of absolute measurements of laser radiation in the power range from several watts to tens of kilowatts. The main elements that determine the accuracy of reproduction, maintenance and transfer of the unit of laser power are the primary measuring converters (PMCs), which are the part of the equipment of the national primary measurement standards of Ukraine. A significant contribution to the uncertainty budget of the primary measuring calorimetric converter is the unbalanced replacement of laser radiation by the heat flux that calibrates this converter. The heterogeneous internal structure of the calorimetric primary converter, the nonlinearity of processes occurring in it, and the multifactorial process of its calibration substantially complicate the development of primary measuring converters. The purpose of this paper is to simulate the thermal field of the primary converter for maximum reduction of the uncertainty of calibration. The presented research is a part of the scientific work that NSC "Institute of Metrology" carries out under COOMET and EMPIRE projects. The modeling was performed in the academic version of ANSYS.
Five primary sources of organic aerosols in the urban atmosphere of Belgrade (Serbia).
Zangrando, Roberta; Barbaro, Elena; Kirchgeorg, Torben; Vecchiato, Marco; Scalabrin, Elisa; Radaelli, Marta; Đorđević, Dragana; Barbante, Carlo; Gambaro, Andrea
2016-11-15
Biomass burning and primary biological aerosol particles (PBAPs) represent important primary sources of organic compounds in the atmosphere. These particles and compounds are able to affect climate and human health. In the present work, using HPLC-orbitrapMS, we determined the atmospheric concentrations of molecular markers such as anhydrosugars and phenolic compounds that are specific for biomass burning, as well as the concentrations of sugars, alcohol sugars and d- and l-amino acids (D-AAs and L-AAs) for studying PBAPs in Belgrade (Serbia) aerosols collected in September-December 2008. In these samples, high levels of all these biomarkers were observed in October. Relative percentages of vanillic (V), syringic compounds (S) and p-coumaric acid (PA), as well as levoglucosan/mannosan (L/M) ratios, helped us discriminate between open fire events and wood combustion for domestic heating during the winter. L-AAs and D-AAs (1% of the total) were observed in Belgrade aerosols mainly in September-October. During open fire events, mean D-AA/L-AA (D/L) ratio values of aspartic acid, threonine, phenylalanine, alanine were significantly higher than mean D/L values of samples unaffected by open fire. High levels of AAs were observed for open biomass burning events. Thanks to four different statistical approaches, we demonstrated that Belgrade aerosols are affected by five sources: a natural source, a source related to fungi spores and degraded material and three other sources linked to biomass burning: biomass combustion in open fields, the combustion of grass and agricultural waste and the combustion of biomass in stoves and industrial plants. The approach employed in this work, involving the determination of specific organic tracers and statistical analysis, proved useful to discriminate among different types of biomass burning events. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamed Alemohammad, Seyed; Fang, Bin; Konings, Alexandra G.; Aires, Filipe; Green, Julia K.; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre
2017-09-01
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.
NASA Astrophysics Data System (ADS)
Delpueyo, D.; Balandraud, X.; Grédiac, M.
2013-09-01
The aim of this paper is to present a post-processing technique based on a derivative Gaussian filter to reconstruct heat source fields from temperature fields measured by infrared thermography. Heat sources can be deduced from temperature variations thanks to the heat diffusion equation. Filtering and differentiating are key-issues which are closely related here because the temperature fields which are processed are unavoidably noisy. We focus here only on the diffusion term because it is the most difficult term to estimate in the procedure, the reason being that it involves spatial second derivatives (a Laplacian for isotropic materials). This quantity can be reasonably estimated using a convolution of the temperature variation fields with second derivatives of a Gaussian function. The study is first based on synthetic temperature variation fields corrupted by added noise. The filter is optimised in order to reconstruct at best the heat source fields. The influence of both the dimension and the level of a localised heat source is discussed. Obtained results are also compared with another type of processing based on an averaging filter. The second part of this study presents an application to experimental temperature fields measured with an infrared camera on a thin plate in aluminium alloy. Heat sources are generated with an electric heating patch glued on the specimen surface. Heat source fields reconstructed from measured temperature fields are compared with the imposed heat sources. Obtained results illustrate the relevancy of the derivative Gaussian filter to reliably extract heat sources from noisy temperature fields for the experimental thermomechanics of materials.
Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs
Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui; ...
2016-09-19
Accurate simulation of the South Asian summer monsoon (SAM) is still an unresolved challenge. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to show that most of the simulation errors in the precipitation distribution and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and themore » trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land–atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. Ultimately, these results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land–atmosphere interactions in the development and maintenance of SAM.« less
Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs
NASA Astrophysics Data System (ADS)
Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui; Touma, Danielle; Ruby Leung, L.
2017-07-01
Accurate simulation of the South Asian summer monsoon (SAM) is still an unresolved challenge. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to show that most of the simulation errors in the precipitation distribution and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and the trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land-atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. These results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land-atmosphere interactions in the development and maintenance of SAM.
Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui
2016-09-19
Accurate simulation of the South Asian summer monsoon (SAM) is still an unresolved challenge. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to show that most of the simulation errors in the precipitation distribution and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and themore » trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land–atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. These results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land–atmosphere interactions in the development and maintenance of SAM.« less
NASA Technical Reports Server (NTRS)
Ku, Jentung; Paiva, Kleber; Mantelli, Marcia
2011-01-01
The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly done by cold biasing the reservoir and using electrical heaters to provide the required control power. With this method, the loop operating temperature can be controlled within 0.5K or better. However, because the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if the LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP was carried out to investigate the effects on the LHP operation when the control temperature sensor was placed on the heat source instead of the reservoir. In these tests, the LHP reservoir was cold-biased and was heated by a control heater. Test results show that it was feasible to use the heat source temperature for feedback control of the LHP operation. In particular, when a thermoelectric converter was used as the reservoir control heater, the heat source temperature could be maintained within a tight range using a proportional-integral-derivative or on/off control algorithm. Moreover, because the TEC could provide both heating and cooling to the reservoir, temperature oscillations during fast transients such as loop startup could be eliminated or substantially reduced when compared to using an electrical heater as the control heater.
NASA Astrophysics Data System (ADS)
Wang, Hong; Duan, Huanlin; Chen, Aidong
2018-02-01
In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.
1996-01-01
This report describes the progress made during the second Quarter of a two year project to demonstrate that the air pollution, from a traveling grate stoker being used to heat water at a central heating plant in Krakow Poland, can be reduced significantly by replacing the unwashed, unsized coal now being used with a mechanically cleaned, double sized stoker fuel and by optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted in the other central heating plants in Krakow and indeed throughout Eastern European cities wheremore » coal is the primary source of heating fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC a central heating company in Krakow and Naftokrak-Naftobudowa, preparation plant designers and fabricators for this effort. The washability data from a 20mm x 0.5mm size fraction of raw coal from the Staszic Mine were evaluated. The data show that the ash content of this coal can be reduced from 24.4 percent to 6.24 percent by washing in a heavy media cyclone at 1.825 sp.gr.; the actual yield of clean coal would be 76.1 percent. The quest for long-term sources of raw coal to feed the proposed 300 tph stoker coal preparation plant continued throughout the reporting period. Meetings were held with Polish coal preparation equipment suppliers to obtain price and delivery quotations for long lead-time process equipment. Preliminary cost evaluations were the topic of several meetings with financial institutions regarding the cost of producing a quality stoker coal in Poland and for identifying sources of private capital to help cost share the project. The search for markets for surplus production from the new plant continued.« less
NASA Astrophysics Data System (ADS)
Orville, R. E.
2004-12-01
A major field program will occur in summer 2005 to determine the sources and causes for the enhanced cloud-to-ground lightning over Houston, Texas. This program will be in association with simultaneous experiments supported by the Environmental Protection Agency (EPA) and the Texas Commission on Environmental Quality (TCEQ), formally the Texas Natural Resource Conservation Commission (TNRCC). Recent studies covering the period 1989-2002 document a 60 percent increase of cloud-to-ground lightning in the Houston area as compared to surrounding background values, which is second in flash density only to the Tampa Bay, Florida area. We suggest that the elevated flash densities could result from several factors, including 1) the convergence due to the urban heat island effect and complex sea breeze (thermal hypothesis), and 2) the increasing levels of air pollution from anthropogenic sources producing numerous small cloud droplets and thereby suppressing mean droplet size (aerosol hypothesis). The latter effect would enable more cloud water to reach the mixed phase region where it is involved in the formation of precipitation and the separation of electric charge, leading to an enhancement of lightning. The primary goals of HEAT are to examine the effects of (1) pollution, (2) the urban heat island, and (3) the complex coastline on storms and lightning characteristics in the Houston area. The transport of air pollutants by Houston thunderstorms will be investigated. In particular, the relative amounts of lightning-produced and convectively transported NOx into the upper troposphere will be determined, and a comparison of the different NOx sources in the urban area of Houston will be developed. The HEAT project is based on the observation that there is an enhancement in cloud-to-ground (CG) lightning. Total lightning (intracloud (IC) and CG) will be measured using a lightning mapping system (LDAR II) to observe if there is an enhancement in intracloud lightning as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb Aldrich; Lois Arena; Dianne Griffiths
2010-12-31
This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis bymore » 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).« less
Parallel-plate heat pipe apparatus having a shaped wick structure
Rightley, Michael J.; Adkins, Douglas R.; Mulhall, James J.; Robino, Charles V.; Reece, Mark; Smith, Paul M.; Tigges, Chris P.
2004-12-07
A parallel-plate heat pipe is disclosed that utilizes a plurality of evaporator regions at locations where heat sources (e.g. semiconductor chips) are to be provided. A plurality of curvilinear capillary grooves are formed on one or both major inner surfaces of the heat pipe to provide an independent flow of a liquid working fluid to the evaporator regions to optimize heat removal from different-size heat sources and to mitigate the possibility of heat-source shadowing. The parallel-plate heat pipe has applications for heat removal from high-density microelectronics and laptop computers.
Lewandowska, A U; Bełdowska, M; Witkowska, A; Falkowska, L; Wiśniewska, K
2018-08-15
PM1 aerosols were collected at the coastal station in Gdynia between 1st January and 31st December 2012. The main purpose of the study was to determine the variability in concentrations of mercury Hg(p), organic carbon (OC) and elemental carbon (EC) in PM1 aerosols under varying synoptic conditions in heating and non-heating periods. Additionally, sources of origin and bonds of mercury with carbon species were identified. The highest concentrations of Hg(p), OC and EC were found during the heating period. Then all analyzed PM1 components had a common, local origin related to the consumption of fossil fuels for heating purposes under conditions of lower air temperatures and poor dispersion of pollutants. Long periods without precipitation also led to the increase in concentration of all measured PM1 compounds. In heating period mercury correlated well with elemental carbon and primary and secondary organic carbon when air masses were transported from over the land. At that time, the role of transportation was of minor importance. In the non-heating period, the concentration of all analyzed compounds were lower than in the heating period, which could be associated with the reduced influence of combustion processes, higher precipitation and, in the case of mercury, also the evaporation of aerosols at higher air temperatures. However, when air masses were transported from over the sea or from the port/shipyard areas the mercury concentration increased significantly. In the first case higher air humidity, solar radiation and ozone concentration as well as the presence of marine aerosols could further facilitate the conversion of gaseous mercury into particulate mercury and its concentration increase. In the second case Hg(p) could be adsorbed on particles rich in elemental carbon and primary organic carbon emitted from ships. Copyright © 2018 Elsevier Inc. All rights reserved.
Convective heat transfer in a porous enclosure saturated by nanofluid with different heat sources
NASA Astrophysics Data System (ADS)
Muthtamilselvan, M.; Sureshkumar, S.
2018-03-01
The present study is proposed to investigate the effects of various lengths and different locations of the heater on the left sidewall in a square lid-driven porous cavity filled with nanofluid. A higher temperature is maintained on the left wall where three different lengths and three different locations of the heat source are considered for the analysis. The right wall is kept at a lower temperature while the top and bottom walls, and the remaining portions of the heated wall are adiabatic. The governing equations are solved by finite volume method. The results show that among the different lengths of the heat source, an enhancement in the heat transfer rate is observed only for the length LH = 1/3 of the heat source. In the case of location of the heat source, the overall heat transfer rate is increased when the heat source is located at the top of the hot wall. For Ri = 1 and 0.01, a better heat transfer rate is obtained when the heat source is placed at the top of the hot wall whereas for Ri = 100, it occurs when the heating portion is at the middle of the hot wall. As the solid volume fraction increases, the viscosity of the fluid is increased, which causes a reduction in the flow intensity. An addition of nanoparticles in the base fluid enhances the overall heat transfer rate significantly for all Da considered. The permeability of the porous medium plays a major role in convection of nanofluid than porosity. A high heat transfer rate (57.26%) is attained for Da = 10-1 and χ = 0.06.
Computational inverse methods of heat source in fatigue damage problems
NASA Astrophysics Data System (ADS)
Chen, Aizhou; Li, Yuan; Yan, Bo
2018-04-01
Fatigue dissipation energy is the research focus in field of fatigue damage at present. It is a new idea to solve the problem of calculating fatigue dissipation energy by introducing inverse method of heat source into parameter identification of fatigue dissipation energy model. This paper introduces the research advances on computational inverse method of heat source and regularization technique to solve inverse problem, as well as the existing heat source solution method in fatigue process, prospects inverse method of heat source applying in fatigue damage field, lays the foundation for further improving the effectiveness of fatigue dissipation energy rapid prediction.
Ice ages and the thermal equilibrium of the earth, II
Adam, D.P.
1975-01-01
The energy required to sustain midlatitude continental glaciations comes from solar radiation absorbed by the oceans. It is made available through changes in relative amounts of energy lost from the sea surface as net outgoing infrared radiation, sensible heat loss, and latent heat loss. Ice sheets form in response to the initial occurrence of a large perennial snowfield in the subarctic. When such a snowfield forms, it undergoes a drastic reduction in absorbed solar energy because of its high albedo. When the absorbed solar energy cannot supply local infrared radiation losses, the snowfield cools, thus increasing the energy gradient between itself and external, warmer areas that can act as energy sources. Cooling of the snowfield progresses until the energy gradients between the snowfield and external heat sources are sufficient to bring in enough (latent plus sensible) energy to balance the energy budget over the snowfield. Much of the energy is imported as latent heat. The snow that falls and nourishes the ice sheet is a by-product of the process used to satisfy the energy balance requirements of the snowfield. The oceans are the primary energy source for the ice sheet because only the ocean can supply large amounts of latent heat. At first, some of the energy extracted by the ice sheet from the ocean is stored heat, so the ocean cools. As it cools, less energy is lost as net outgoing infrared radiation, and the energy thus saved is then available to augment evaporation. The ratio between sensible and latent heat lost by the ocean is the Bowen ratio; it depends in part on the sea surface temperature. As the sea surface temperature falls during a glaciation, the Bowen ratio increases, until most of the available energy leaves the oceans as sensible, rather than latent heat. The ice sheet starves, and an interglacial period begins. The oscillations between stadial and interstadial intervals within a glaciation are caused by the effects of varying amounts of glacial meltwater entering the oceans as a surface layer that acts to reduce the amount of energy available for glacial nourishment. This causes the ice sheet to melt back, which continues the supply of meltwater until the ice sheet diminishes to a size consistent with the reduced rate of nourishment. The meltwater supply then decreases, the rate of nourishment increases, and a new stadial begins. ?? 1975.
A heat receiver design for solar dynamic space power systems
NASA Technical Reports Server (NTRS)
Baker, Karl W.; Dustin, Miles O.; Crane, Roger
1990-01-01
An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.
NASA Technical Reports Server (NTRS)
Rodgers, C. D. (Editor)
1984-01-01
Intercomparison of middle atmosphere meteorological data from a variety of sources is discussed. The primary aim was to intercompare data on stratospheric and mesospheric temperatures from a variety of sounding systems in order to characterize the differences, to understand the reasons for them, and to help users of the data to understand how these differences will affect derived quantities such as heat and momentum fluxes which are significant in studies of stratospheric dynamics.
Sayell, E.H.
1973-10-23
A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)
Retrieval of Latent Heating from TRMM Measurements
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Smith, E. A.; Adler, R. F.; Hou, A. Y.; Meneghini, R.; Simpson, J.; Haddad, Z. S.; Iguchi, T.; Satoh, S.; Kakar, R.;
2006-01-01
Precipitation, in driving the global hydrological cycle, strongly influences the behavior of the Earth's weather and climate systems and is central to their variability. Two-thirds of the global rainfall occurs over the Tropics, which leads to its profound effect on the general circulation of the atmosphere. This is because its energetic equivalent, latent heating (LH), is the tropical convective heat engine's primary fuel source as originally emphasized by Riehl and Malkus (1958). At low latitudes, LH stemming from extended bands of rainfall modulates large-scale zonal and meridional circulations and their consequent mass overturnings (e.g., Hartmann et al. 1984; Hack and Schubert 1990). Also, LH is the principal energy source in the creation, growth, vertical structure, and propagation of long-lived tropical waves (e.g., Puri 1987; Lau and Chan 1988). Moreover, the distinct vertical distribution properties of convective and stratiform LH profiles help influence climatic outcomes via their tight control on large-scale circulations (Lau and Peng 1987; Nakazawa 1988; Sui and Lau 1988; Emanuel et al. 1994; Yanai et al. 2000; Sumi and Nakazawa 2002; Schumacher et al. 2004). The purpose of this paper is to describe how LH profiles are being derived from satellite precipitation rate retrievals, focusing on those being made with Tropical Rainfall Measuring Mission (TRMM) satellite measurements.
Sewage sludge drying process integration with a waste-to-energy power plant.
Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C
2015-08-01
Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimum load distribution between heat sources based on the Cournot model
NASA Astrophysics Data System (ADS)
Penkovskii, A. V.; Stennikov, V. A.; Khamisov, O. V.
2015-08-01
One of the widespread models of the heat supply of consumers, which is represented in the "Single buyer" format, is considered. The methodological base proposed for its description and investigation presents the use of principles of the theory of games, basic propositions of microeconomics, and models and methods of the theory of hydraulic circuits. The original mathematical model of the heat supply system operating under conditions of the "Single buyer" organizational structure provides the derivation of a solution satisfying the market Nash equilibrium. The distinctive feature of the developed mathematical model is that, along with problems solved traditionally within the bounds of bilateral relations of heat energy sources-heat consumer, it considers a network component with its inherent physicotechnical properties of the heat network and business factors connected with costs of the production and transportation of heat energy. This approach gives the possibility to determine optimum levels of load of heat energy sources. These levels provide the given heat energy demand of consumers subject to the maximum profit earning of heat energy sources and the fulfillment of conditions for formation of minimum heat network costs for a specified time. The practical realization of the search of market equilibrium is considered by the example of a heat supply system with two heat energy sources operating on integrated heat networks. The mathematical approach to the solution search is represented in the graphical form and illustrates computations based on the stepwise iteration procedure for optimization of levels of loading of heat energy sources (groping procedure by Cournot) with the corresponding computation of the heat energy price for consumers.
Heating device for semiconductor wafers
Vosen, Steven R.
1999-01-01
An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.
Heating device for semiconductor wafers
Vosen, S.R.
1999-07-27
An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, D W; Trammel, B C; Dixit, B S
1979-02-01
Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. The concept of an HP-WHR system is developed, the potential performance and economics of such a system is evaluated and the potential for application is examined. A thermodynamic performance analysis of a hypothetical system projects an overall system coefficient of performance (C.O.P.) of from 2.181 to 2.264 formore » wastewater temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the implementation of this system is projected to be 5.014 QUADS, or the energy equivalent of 687 millions tons of coal, from 1980 to the year 2000. Economic analysis shows the HP-WHR scheme to be cost-competitive, on the basis of a net present value life cycle cost comparison, with conventional residential and light commercial HVAC systems.« less
Method and apparatus for fuel gas moisturization and heating
Ranasinghe, Jatila; Smith, Raub Warfield
2002-01-01
Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.
NASA Astrophysics Data System (ADS)
Ren, Yanqin; Wang, Gehui; Wu, Can; Wang, Jiayuan; Li, Jianjun; Zhang, Lu; Han, Yanni; Liu, Lang; Cao, Cong; Cao, Junji; He, Qing; Liu, Xinchun
2017-01-01
Size-segregated aerosols were collected in Urumqi, a megacity in northwest China, during two heating seasons, i.e., before (heating season І: January-March 2012) and after (heating season II: January-March 2014) the project "shifting coal to natural gas", and determined for n-alkanes, PAHs and oxygenated PAHs to investigate the impact of replacement of coal by natural gas on organic aerosols in the urban atmosphere. Our results showed that compared to those in heating season I concentrations of n-alkanes, PAHs and OPAHs decreased by 74%, 74% and 82% in heating season II, respectively. Source apportionment analysis suggested that coal combustion, traffic emission and biomass burning are the major sources of the determined organics during the heating seasons in Urumqi. Traffic emission is the main source for n-alkanes in the city. Coal combustion is the dominant source of PAHs and OPAHs in heating season І, but traffic emission becomes their major source in heating season ІI. Relative contributions of coal combustion to n-alkanes, PAHs and OPAHs in Urumqi decreased from 21 to 75% in heating season I to 4.0-21% in heating season II due to the replacement of coal with natural gas for house heating. Health risk assessment further indicated that compared with that in heating season I the number of lung cancer related to PAHs exposure in Urumqi decreased by 73% during heating season II due to the project implementation. Our results suggest that replacing coal by clean energy sources for house heating will significantly mitigate air pollution and improve human health in China.
Design of Heat Exchanger for Ericsson-Brayton Piston Engine
Durcansky, Peter; Papucik, Stefan; Jandacka, Jozef
2014-01-01
Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy—energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. PMID:24977174
Design of heat exchanger for Ericsson-Brayton piston engine.
Durcansky, Peter; Papucik, Stefan; Jandacka, Jozef; Holubcik, Michal; Nosek, Radovan
2014-01-01
Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy--energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element.
NASA Astrophysics Data System (ADS)
Ustinov, D. A.; Sukhikh, A. A.; Sidenkov, D. V.; Ustinov, V. A.
2017-10-01
The heat supply by means of heat pumps is considered now as a rational method of local heating which can lead to economy of primary fuel. At use of low-potential heat, for example, the heat of a ground (5 … 18 °C) or ground waters (8 … 10°C) only small depressing of temperature of these sources (on 3 … 5°C) is possible that demands application of heat exchangers with intensified heatmass transfer surfaces. In thermal laboratory of TOT department the 200 W experimental installation has been developed for research of process of boiling of freon R134a. The principle of action of the installation consists in realisation of reverse thermodynamic cycle and consecutive natural measurement of characteristics of elements of surfaces of heat exchangers of real installations at boiling points of freon from-10°C to +10°C and condensing temperatures from 15°C to 50 °C. The evaporator casing has optical windows for control of process of boiling of freon on ribbed on technology of distorting cut tubes. Temperature measurement in characteristic points of a cycle is provided by copper-constantan thermocouples which by means of ADT are connected to the computer that allows treat results of measurements in a real time mode. The structure of a two-phase flow investigated by means of the optical procedure based on laser technique.
10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.
Code of Federal Regulations, 2010 CFR
2010-01-01
... wall, and that is industrial equipment. It includes a prime source of refrigeration, separable outdoor... refrigeration as its prime heat source, that has a supplementary heat source available, with the choice of hot... water, or gas, but may not include reverse cycle refrigeration as a heating means. Single package...
10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.
Code of Federal Regulations, 2011 CFR
2011-01-01
... wall, and that is industrial equipment. It includes a prime source of refrigeration, separable outdoor... refrigeration as its prime heat source, that has a supplementary heat source available, with the choice of hot... water, or gas, but may not include reverse cycle refrigeration as a heating means. Single package...
10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.
Code of Federal Regulations, 2012 CFR
2012-01-01
... mounting through the wall, and that is industrial equipment. It includes a prime source of refrigeration... utilizes reverse cycle refrigeration as its prime heat source, that has a supplementary heat source..., hot water, or gas, but may not include reverse cycle refrigeration as a heating means. Single package...
NASA Technical Reports Server (NTRS)
Davis, Donald Y. (Inventor); Hitch, Bradley D. (Inventor)
1994-01-01
A fluid channeling system includes a fluid ejector, a heat exchanger, and a fluid pump disposed in series flow communication The ejector includes a primary inlet for receiving a primary fluid, and a secondary inlet for receiving a secondary fluid which is mixed with the primary fluid and discharged therefrom as ejector discharge. Heat is removed from the ejector discharge in the heat exchanger, and the heat exchanger discharge is compressed in the fluid pump and channeled to the ejector secondary inlet as the secondary fluid In an exemplary embodiment, the temperature of the primary fluid is greater than the maximum operating temperature of a fluid motor powering the fluid pump using a portion of the ejector discharge, with the secondary fluid being mixed with the primary fluid so that the ejector discharge temperature is equal to about the maximum operating temperature of the fluid motor.
Thermal to Electric Energy Conversion for Cyclic Heat Loads
NASA Astrophysics Data System (ADS)
Whitehead, Benjamin E.
Today, we find cyclic heat loads almost everywhere. When we drive our cars, the engines heat up while we are driving and cool while parked. Processors heat while the computer is in use at the office and cool when idle at night. The sun heats the earth during the day and the earth radiates that heat into space at night. With modern technology, we have access to a number of methods to take that heat and convert it into electricity, but, before selecting one, we need to identify the parameters that inform decision making. The majority of the parameters for most systems include duty cycle, total cost, weight, size, thermal efficiency, and electrical efficiency. However, the importance of each of these will depend on the application. Size and weight take priority in a handheld device, while efficiency dominates in a power plant, and duty cycle is likely to dominate in highly demanding heat pump applications. Over the past decade, developments in semiconductor technology has led to the creation of the thermoelectric generator. With no moving parts and a nearly endlessly scalable nature, these generators present interesting opportunities for taking advantage of any source of waste heat. However, these generators are typically only capable of 5-8% efficiency from conversion of thermal to electric energy. [1]. Similarly, advancements in photovoltaic cells has led to the development of thermophotovoltaics. By heating an emitter to a temperature so it radiates light, a thermophotovoltaic cell then converts that light into electricity. By selecting materials that emit light in the optimal ranges of the appropriate photovoltaic cells, thermophotovoltaic systems can potentially exceed the current maximum of 10% efficiency. [2]. By pressurizing certain metal powders with hydrogen, hydrogen can be bound to the metal, creating a metal hydride, from which hydrogen can be later re-extracted under the correct pressure and temperature conditions. Since this hydriding reaction is exothermic, and dehydriding is endothermic, we can use the reaction to control temperature and store or release energy as desired. Connecting the liberated hydrogen gas to a hydrogen/air or hydrogen/oxygen fuel cell can then generate useful electrical power. A fuel cell operates by flowing hydrogen and oxygen over a membrane that only allows protons through. This process creates a voltage through the separation of the negatively charged electrons and positively charged water. Typical fuel cells operate at 30-40% efficiency with research aiming to increase that number to 65% with solid oxide fuel cells. [3]. In this thesis, I develop several models to size metal hydride systems, identify the critical design parameters of a metal hydride system, and predict hydrogen production for a given heat source. The first model consists of a lumped parameter treatment that analyzes how the effects of varying metal hydrides and heat source values change the dehydriding process. The second model uses COMSOLRTM Multiphysics to create a higher fidelity simulation of the heat transfer within a metal hydride bed by calculating the spatial heat transfer as well as the porous nature of the system. The Comsol model shows that thermal conductivity is the highest sensitivity parameter of those studied, and therefore should be the primary focus for system design. The model also shows that the efficiency of the system is relatively independent of the duty cycle of the heat source.
NASA Astrophysics Data System (ADS)
Ma, Rui; Zheng, Chunmiao; Zachara, John M.; Tonkin, Matthew
2012-08-01
A tracer test using both bromide and heat tracers conducted at the Integrated Field Research Challenge site in Hanford 300 Area (300A), Washington, provided an instrument for evaluating the utility of bromide and heat tracers for aquifer characterization. The bromide tracer data were critical to improving the calibration of the flow model complicated by the highly dynamic nature of the flow field. However, most bromide concentrations were obtained from fully screened observation wells, lacking depth-specific resolution for vertical characterization. On the other hand, depth-specific temperature data were relatively simple and inexpensive to acquire. However, temperature-driven fluid density effects influenced heat plume movement. Moreover, the temperature data contained "noise" caused by heating during fluid injection and sampling events. Using the hydraulic conductivity distribution obtained from the calibration of the bromide transport model, the temperature depth profiles and arrival times of temperature peaks simulated by the heat transport model were in reasonable agreement with observations. This suggested that heat can be used as a cost-effective proxy for solute tracers for calibration of the hydraulic conductivity distribution, especially in the vertical direction. However, a heat tracer test must be carefully designed and executed to minimize fluid density effects and sources of noise in temperature data. A sensitivity analysis also revealed that heat transport was most sensitive to hydraulic conductivity and porosity, less sensitive to thermal distribution factor, and least sensitive to thermal dispersion and heat conduction. This indicated that the hydraulic conductivity remains the primary calibration parameter for heat transport.
Finite Element Modelling of the Apollo Heat Flow Experiments
NASA Astrophysics Data System (ADS)
Platt, J.; Siegler, M. A.; Williams, J.
2013-12-01
The heat flow experiments sent on Apollo missions 15 and 17 were designed to measure the temperature gradient of the lunar regolith in order to determine the heat flux of the moon. Major problems in these experiments arose from the fact that the astronauts were not able to insert the probes below the thermal skin depth. Compounding the problem, anomalies in the data have prevented scientists from conclusively determining the temperature dependent conductivity of the soil, which enters as a linear function into the heat flow calculation, thus stymieing them in their primary goal of constraining the global heat production of the Moon. Different methods of determining the thermal conductivity have yielded vastly different results resulting in downward corrections of up to 50% in some cases from the original calculations. Along with problems determining the conductivity, the data was inconsistent with theoretical predictions of the temperature variation over time, leading some to suspect that the Apollo experiment itself changed the thermal properties of the localised area surrounding the probe. The average temperature of the regolith, according to the data, increased over time, a phenomenon that makes calculating the thermal conductivity of the soil and heat flux impossible without knowing the source of error and accounting for it. The changes, possibly resulting from as varied sources as the imprint of the Astronauts boots on the lunar surface, compacted soil around the bore stem of the probe or even heat radiating down the inside of the tube, have convinced many people that the recorded data is unusable. In order to shed some light on the possible causes of this temperature rise, we implemented a finite element model of the probe using the program COMSOL Multi-physics as well as Matlab. Once the cause of the temperature rise is known then steps can be taken to account for the failings of the experiment and increase the data's utility.
Energy and exergy assessments for an enhanced use of energy in buildings
NASA Astrophysics Data System (ADS)
Goncalves, Pedro Manuel Ferreira
Exergy analysis has been found to be a useful method for improving the conversion efficiency of energy resources, since it helps to identify locations, types and true magnitudes of wastes and losses. It has also been applied for other purposes, such as distinguishing high- from low-quality energy sources or defining the engineering technological limits in designing more energy-efficient systems. In this doctoral thesis, the exergy analysis is widely applied in order to highlight and demonstrate it as a significant method of performing energy assessments of buildings and related energy supply systems. It aims to make the concept more familiar and accessible for building professionals and to encourage its wider use in engineering practice. Case study I aims to show the importance of exergy analysis in the energy performance assessment of eight space heating building options evaluated under different outdoor environmental conditions. This study is concerned with the so-called "reference state", which in this study is calculated using the average outdoor temperature for a given period of analysis. Primary energy and related exergy ratios are assessed and compared. Higher primary exergy ratios are obtained for low outdoor temperatures, while the primary energy ratios are assumed as constant for the same scenarios. The outcomes of this study demonstrate the significance of exergy analysis in comparison with energy analysis when different reference states are compared. Case study II and Case study III present two energy and exergy assessment studies applied to a hotel and a student accommodation building, respectively. Case study II compares the energy and exergy performance of the main end uses of a hotel building located in Coimbra in central Portugal, using data derived from an energy audit. Case study III uses data collected from energy utilities bills to estimate the energy and exergy performance associated to each building end use. Additionally, a set of energy supply options are proposed and assessed as primary energy demand and exergy efficiency, showing it as a possible benchmarking method for future legislative frameworks regarding the energy performance assessment of buildings. Case study IV proposes a set of complementary indicators for comparing cogeneration and separate heat and electricity production systems. It aims to identify the advantages of exergy analysis relative to energy analysis, giving particular examples where these advantages are significant. The results demonstrate that exergy analysis can reveal meaningful information that might not be accessible using a conventional energy analysis approach, which is particularly evident when cogeneration and separated systems provide heat at very different temperatures. Case study V follows the exergy analysis method to evaluate the energy and exergy performance of a desiccant cooling system, aiming to assess and locate irreversibilities sources. The results reveal that natural gas boiler is the most inefficient component of the plant in question, followed by the chiller and heating coil. A set of alternative heating supply options for desiccant wheel regeneration is proposed, showing that, while some renewables may effectively reduce the primary energy demand of the plant, although this may not correspond to the optimum level of exergy efficiency. The thermal and chemical exergy components of moist air are also evaluated, as well as, the influence of outdoor environmental conditions on the energy/exergy performance of the plant. This research provides knowledge that is essential for the future development of complementary energy- and exergy-based indicators, helping to improve the current methodologies on performance assessments of buildings, cogeneration and desiccant cooling systems. The significance of exergy analysis is demonstrated for different types of buildings, which may be located in different climates (reference states) and be supplied by different types of energy sources. (Abstract shortened by ProQuest.).
Synergy between fast-ion transport by core MHD and test blanket module fields in DIII-D experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidbrink, W. W.; Austin, M. E.; Collins, C. S.
2015-07-21
We measured fast-ion transport caused by the combination of MHD and a mock-up test-blanket module (TBM) coil in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36 ±0.27more » to 2.6 ±0.5 MW/m -2.« less
Three dimensional investigation of the shock train structure in a convergent-divergent nozzle
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Mahmood; Roohi, Ehsan
2014-12-01
Three-dimensional computational fluid dynamics analyses have been employed to study the compressible and turbulent flow of the shock train in a convergent-divergent nozzle. The primary goal is to determine the behavior, location, and number of shocks. In this context, full multi-grid initialization, Reynolds stress turbulence model (RSM), and the grid adaption techniques in the Fluent software are utilized under the 3D investigation. The results showed that RSM solution matches with the experimental data suitably. The effects of applying heat generation sources and changing inlet flow total temperature have been investigated. Our simulations showed that changes in the heat generation rate and total temperature of the intake flow influence on the starting point of shock, shock strength, minimum pressure, as well as the maximum flow Mach number.
NASA Astrophysics Data System (ADS)
Beitone, C.; Balandraud, X.; Delpueyo, D.; Grédiac, M.
2017-01-01
This paper presents a post-processing technique for noisy temperature maps based on a gradient anisotropic diffusion (GAD) filter in the context of heat source reconstruction. The aim is to reconstruct heat source maps from temperature maps measured using infrared (IR) thermography. Synthetic temperature fields corrupted by added noise are first considered. The GAD filter, which relies on a diffusion process, is optimized to retrieve as well as possible a heat source concentration in a two-dimensional plate. The influence of the dimensions and the intensity of the heat source concentration are discussed. The results obtained are also compared with two other types of filters: averaging filter and Gaussian derivative filter. The second part of this study presents an application for experimental temperature maps measured with an IR camera. The results demonstrate the relevancy of the GAD filter in extracting heat sources from noisy temperature fields.
Metal Alloy Compositions And Process Background Of The Invention
Flemings, Merton C.; Martinez-Ayers, Raul A.; de Figueredo, Anacleto M.; Yurko, James A.
2003-11-11
A skinless metal alloy composition free of entrapped gas and comprising primary solid discrete degenerate dendrites homogeneously dispersed within a secondary phase is formed by a process wherein the metal alloy is heated in a vessel to render it a liquid. The liquid is then rapidly cooled while vigorously agitating it under conditions to avoid entrapment of gas while forming solid nuclei homogeneously distributed in the liquid. Agitation then is ceased when the liquid contains a small fraction solid or the liquid-solid alloy is removed from the source of agitation while cooling is continued to form the primary solid discrete degenerate dendrites in liquid secondary phase. The solid-liquid mixture then can be formed such as by casting.
Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and dynamics explorer
NASA Technical Reports Server (NTRS)
Erlandson, Robert E.
1994-01-01
The overall objective of this research is to investigate the generation and propagation of electromagnetic ion cyclotron (EMIC) waves in the frequency range from 0.2 to 5 Hz (Pc 1 frequency band). Data used in this research were acquired by the AMPTE/CCE, DE-1, and DE-2 satellites. One of the primary questions addressed in this research is the role which EMIC waves have on the transfer of energy from the equatorial magnetosphere to the ionosphere. The primary result from this research is that some fraction of EMIC waves, generated in the equatorial magnetosphere, are Landau damped in the ionosphere and are therefore a heat source for ionospheric electrons. This result as well as other results are summarized below.
NASA Astrophysics Data System (ADS)
Brandstätter, J.; Kurz, W.; Krenn, K.; Micheuz, P.
2015-12-01
We present new data from microthermometric analyses of fluid inclusions entrapped in hydrothermal veins within lithified sediments and Cocos Ridge (CCR) basalt from IODP Expedition 344 site U1414 (Costa Rica) and concern on a primary task of Expedition 344, i.e. to evaluate fluid/rock interaction, the hydrologic system, and the geochemical processes (indicated by composition and volume of fluids) active within the incoming Cocos Plate. Mineralization of the veins and crosscutting relationships gives constraints for the different generation of veins. Calcium carbonate, commonly aragonite in the upper part and calcite in the lower part of the igneous basement, is usually present in veins as a late phase following the quartz precipitation and the clay minerals formation. The sequence of vein generations in the lithified sediments close to the contact within the CCR basalt is characterized by smaller veins filled by quartz, followed by massive intersecting calcite veins. A high fluid pressure can be concluded, due to wall rock fragments embedded within the filling and fractured mineral grains in the ground mass, which are close to the veins. This requires that the magmatic basement and the lithified sediments were covered by sequences of low permeability sediments forming a barrier that enabled build up elevated fluid pressure. The investigation of fluid inclusions in the lowest units of borehole 344-U1414, give clues about the source of the fluids and about the vein evolution within the incoming Cocos Plate close to Middle American Trench. The microthermometric analyses of the primary, almost aqueous, inclusions indicate a temperature range during entrapment between 200 and 420°C. The data indicate that seawater within the Cocos Ridge aquifer communicated with high-temperature fluids and/or were modified by heat advection. We consider the Galapagos hotspot and/ or the Cocos-Nazca spreading center as heat source. Fluids originated from mobilized sediment pore water and invaded seawater. Isotope and heat flow data indicate a deep fluid source within the Cocos Plate oceanic crust too.
Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle
NASA Astrophysics Data System (ADS)
Fic, Adam; Składzień, Jan; Gabriel, Michał
2015-03-01
Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.
Solid state lighting devices and methods with rotary cooling structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less
Method for welding an article and terminating the weldment within the perimeter of the article
NASA Technical Reports Server (NTRS)
Snyder, John H. (Inventor); Smashey, Russell W. (Inventor); Boerger, Eric J. (Inventor); Borne, Bruce L. (Inventor)
2000-01-01
An article is welded, as in weld repair of a defect, by positioning a weld lift-off block at a location on the surface of the article adjacent to the intended location of the end of the weldment on the surface of the article. The weld lift-off block has a wedge shape including a base contacting the surface of the article, and an upper face angled upwardly from the base from a base leading edge. A weld pool is formed on the surface of the article by directly heating the surface of the article using a heat source. The heat source is moved relative to the surface of the article and onto the upper surface of the weld lift-off block by crossing the leading edge of the wedge, without discontinuing the direct heating of the article by the heat source. The heating of the article with the heat source is discontinued only after the heat source is directly heating the upper face of the weld lift-off block, and not the article.
Contact Force Compensated Thermal Stimulators for Holistic Haptic Interfaces.
Sim, Jai Kyoung; Cho, Young-Ho
2016-05-01
We present a contact force compensated thermal stimulator that can provide a consistent tempera- ture sensation on the human skin independent of the contact force between the thermal stimulator and the skin. Previous passive thermal stimulators were not capable of providing a consistent tem- perature on the human skin even when using identical heat source voltage due to an inconsistency of the heat conduction, which changes due to the force-dependent thermal contact resistance. We propose a force-based feedback method that monitors the contact force and controls the heat source voltage according to this contact force, thus providing consistent temperature on the skin. We composed a heat circuit model equivalent to the skin heat-transfer rate as it is changed by the contact forces; we obtained the optimal voltage condition for the constant skin heat-transfer rate independent of the contact force using a numerical estimation simulation tool. Then, in the experiment, we heated real human skin at the obtained heat source voltage condition, and investigated the skin heat transfer-rate by measuring the skin temperature at various times at different levels of contact force. In the numerical estimation results, the skin heat-transfer rate for the contact forces showed a linear profile in the contact force range of 1-3 N; from this profile we obtained the voltage equation for heat source control. In the experimental study, we adjusted the heat source voltage according to the contact force based on the obtained equation. As a result, without the heat source voltage control for the contact forces, the coefficients of variation (CV) of the skin heat-transfer rate in the contact force range of 1-3 N was found to be 11.9%. On the other hand, with the heat source voltage control for the contact forces, the CV of the skin heat-transfer rate in the contact force range of 1-3 N was found to be barely 2.0%, which indicate an 83.2% improvement in consistency compared to the skin heat-transfer rate without the heat source voltage control. The present technique provides a consistent temperature sensation on the human skin independent of the body movement environment; therefore, it has high potential for use in holistic haptic interfaces that have thermal displays.
Oh, Sang-Eun; Yoon, Joung Yee; Gurung, Anup; Kim, Dong-Jin
2014-08-01
This study investigated the effects of different sludge pretreatment methods (ultrasonic vs. combined heat/alkali) with varied sources of municipal sewage sludge (primary sludge (PS), secondary excess sludge (ES), anaerobic digestion sludge (ADS)) on electricity generation in microbial fuel cells (MFCs). Introduction of ultrasonically pretreated sludge (PS, ES, ADS) to MFCs generated maximum power densities of 13.59, 9.78 and 12.67mW/m(2) and soluble COD (SCOD) removal efficiencies of 87%, 90% and 57%, respectively. The sludge pretreated by combined heat/alkali (0.04N NaOH at 120°C for 1h) produced maximum power densities of 10.03, 5.21 and 12.53mW/m(2) and SCOD removal efficiencies of 83%, 75% and 74% with PS, ES and ADS samples, respectively. Higher SCOD by sludge pretreatment enhanced performance of the MFCs and the electricity generation was linearly proportional to the SCOD removal, especially for ES. Copyright © 2014 Elsevier Ltd. All rights reserved.
Igual, M; García-Martínez, E; Camacho, M M; Martínez-Navarrete, N
2016-04-01
Fruits are widely revered for their micronutrient properties. They serve as a primary source of vitamins and minerals as well as of natural phytonutrients with antioxidant properties. Jam constitutes an interesting way to preserve fruit. Traditionally, this product is obtained by intense heat treatment that may cause irreversible loss of these bioactive compounds responsible for the health-related properties of fruits. In this work, different grapefruit jams obtained by conventional, osmotic dehydration (OD) without thermal treatment and/or microwave (MW) techniques were compared in terms of their vitamin, organic acid and phytochemical content and their stability through three months of storage. If compared with heating, osmotic treatments lead to a greater loss of organic acids and vitamin C during both processing and storage. MW treatments permit jam to be obtained which has a similar nutritional and functional value than that obtained when using a conventional heating method, but in a much shorter time. © The Author(s) 2015.
Monthly petroleum product price report, November 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-03-03
This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products (motor gasoline, diesel fuels, residual fuel oils, aviation fuels, kerosene, petrochemical feedstocks, heating oils, and liquefied petroleum gases). The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in thismore » publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia.« less
Monthly petroleum product price report, December 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-03-30
This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products (motor gasoline, diesel fuels, residual fuel oils, aviation fuels, kerosene, petrochemical feedstocks, heating oils, and liquefied petroleum gases). The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in thismore » publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia.« less
NASA Astrophysics Data System (ADS)
Castelo, A.; Mendioroz, A.; Celorrio, R.; Salazar, A.; López de Uralde, P.; Gorosmendi, I.; Gorostegui-Colinas, E.
2017-05-01
Lock-in vibrothermography is used to characterize vertical kissing and open cracks in metals. In this technique the crack heats up during ultrasound excitation due mainly to friction between the defect's faces. We have solved the inverse problem, consisting in determining the heat source distribution produced at cracks under amplitude modulated ultrasound excitation, which is an ill-posed inverse problem. As a consequence the minimization of the residual is unstable. We have stabilized the algorithm introducing a penalty term based on Total Variation functional. In the inversion, we combine amplitude and phase surface temperature data obtained at several modulation frequencies. Inversions of synthetic data with added noise indicate that compact heat sources are characterized accurately and that the particular upper contours can be retrieved for shallow heat sources. The overall shape of open and homogeneous semicircular strip-shaped heat sources representing open half-penny cracks can also be retrieved but the reconstruction of the deeper end of the heat source loses contrast. Angle-, radius- and depth-dependent inhomogeneous heat flux distributions within these semicircular strips can also be qualitatively characterized. Reconstructions of experimental data taken on samples containing calibrated heat sources confirm the predictions from reconstructions of synthetic data. We also present inversions of experimental data obtained from a real welded Inconel 718 specimen. The results are in good qualitative agreement with the results of liquids penetrants testing.
Temperature control system for a J-module heat exchanger
Basdekas, Demetrios L.; Macrae, George; Walsh, Joseph M.
1978-01-01
The level of primary fluid is controlled to change the effective heat transfer area of a heat exchanger utilized in a liquid metal nuclear power plant to eliminate the need for liquid metal control valves to regulate the flow of primary fluid and the temperature of the effluent secondary fluid.
Code of Federal Regulations, 2014 CFR
2014-07-01
... used to heat waste gas to combustion temperatures. Any energy recovery section is not physically formed..., photoionization, or thermal conductivity. Primary fuel means the fuel that provides the principal heat input (i.e... flame, the primary purpose of which is to transfer heat to a process fluid or process material that is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to heat waste gas to combustion temperatures. Any energy recovery section is not physically formed..., photoionization, or thermal conductivity. Primary fuel means the fuel that provides the principal heat input (i.e... flame, the primary purpose of which is to transfer heat to a process fluid or process material that is...
Advanced radioisotope heat source for Stirling Engines
NASA Astrophysics Data System (ADS)
Dobry, T. J.; Walberg, G.
2001-02-01
The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions. .
ASHRAE's new Chiller Heat Recovery Application Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorgan, C.B.; Dorgan, C.E.
2000-07-01
The new Chiller Heat Recovery Application Guide, published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE), provides a comprehensive reference manual on the options available for chiller heat recovery. The information in the guide will assist engineers, owners, and system operators in evaluating the potential of integrating chiller heat recovery into their cooling and heating systems. The primary focus is on new construction and applications where a chiller is being replaced due to inefficiency, high operating and maintenance (O and M) costs, or elimination of refrigerants containing ozone-depleting chemicals known as CFC/HCFCs. While chiller systems for commercialmore » buildings are the primary focus of the guide, the information and procedures also apply to industrial heat pumps. The function of this paper is to highlight key information contained in the guide, including the major benefits of chiller heat recovery, primary candidates, and application procedures. A description of the guide's general format and contents is also provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Rui; Zheng, Chunmiao; Zachara, John M.
A tracer test using both bromide and heat tracers conducted at the Integrated Field Research Challenge site in Hanford 300 Area (300A), Washington, provided an instrument for evaluating the utility of bromide and heat tracers for aquifer characterization. The bromide tracer data were critical to improving the calibration of the flow model complicated by the highly dynamic nature of the flow field. However, most bromide concentrations were obtained from fully screened observation wells, lacking depth-specific resolution for vertical characterization. On the other hand, depth-specific temperature data were relatively simple and inexpensive to acquire. However, temperature-driven fluid density effects influenced heatmore » plume movement. Moreover, the temperature data contained “noise” caused by heating during fluid injection and sampling events. Using the hydraulic conductivity distribution obtained from the calibration of the bromide transport model, the temperature depth profiles and arrival times of temperature peaks simulated by the heat transport model were in reasonable agreement with observations. This suggested that heat can be used as a cost-effective proxy for solute tracers for calibration of the hydraulic conductivity distribution, especially in the vertical direction. However, a heat tracer test must be carefully designed and executed to minimize fluid density effects and sources of noise in temperature data. A sensitivity analysis also revealed that heat transport was most sensitive to hydraulic conductivity and porosity, less sensitive to thermal distribution factor, and least sensitive to thermal dispersion and heat conduction. This indicated that the hydraulic conductivity remains the primary calibration parameter for heat transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alemohammad, Seyed Hamed; Fang, Bin; Konings, Alexandra G.
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux ( H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimatesmore » of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events – such as the 2015 El Niño – on surface turbulent fluxes and GPP.« less
Alemohammad, Seyed Hamed; Fang, Bin; Konings, Alexandra G.; ...
2017-09-20
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux ( H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimatesmore » of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events – such as the 2015 El Niño – on surface turbulent fluxes and GPP.« less
Centaurus X-3. [early x-ray binary star spectroscopy
NASA Technical Reports Server (NTRS)
Hutchings, J. B.; Cowley, A. P.; Crampton, D.; Van Paradus, J.; White, N. E.
1979-01-01
Spectroscopic observations of Krzeminski's star at dispersions 25-60 A/mm are described. The primary is an evolved star of type O6-O8(f) with peculiarities, some of which are attributable to X-ray heating. Broad emission lines at 4640A (N III), 4686 A(He II) and H-alpha show self-absorption and do not originate entirely from the region near the X-ray star. The primary is not highly luminous (bolometric magnitude about -9) and does not show signs of an abnormally strong stellar wind. The X-ray source was 'on' at the time of optical observations. Orbital parameters are presented for the primary, which yield masses of 17 + or - 2 and 1.0 + or - 3 solar masses for the stars. The optical star is undermassive for its luminosity, as are other OB-star X-ray primaries. The rotation is probably synchronized with the orbital motion. The distance to Cen X-3 is estimated to be 10 + or - 1 kpc. Basic data for 12 early-type X-ray primaries are discussed briefly
Latent Heating Retrievals Using the TRMM Precipitation Radar: A Multi-Seasonal Study
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Lang, S.; Meneghini, R.; Halverson, J.; Johnson, R.; Simpson, J.; Einaudi, Franco (Technical Monitor)
2001-01-01
Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. Present largescale weather and climate models can simulate latent heat release only crudely, thus reducing their confidence in predictions on both global and regional scales. This paper represents the first attempt to use NASA Tropical Rainfall Measuring Mission (TRMM) rainfall information to estimate the four-dimensional structure of global monthly latent heating profiles over the global tropics from December 1997 to October 2000. The Goddard Convective-Stratiform. Heating (CSH) algorithm and TRMM precipitation radar data are used for this study. We will examine and compare the latent heating structures between 1997-1998 (winter) ENSO and 1998-2000 (non-ENSO). We will also examine over the tropics. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental; Indian oceans vs west Pacific; Africa vs S. America) will be also examined and compared. In addition, we will examine the relationship between latent heating (max heating level) and SST. The period of interest also coincides with several TRMM field campaigns that recently occurred over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and in the central Pacific in 1999 (KWAJEX). Sounding diagnosed Q1 budgets from these experiments could provide a means of validating the retrieved profiles of latent heating from the CSH algorithm.
NASA Astrophysics Data System (ADS)
Kang, Min-Jee; Chun, Hye-Yeong; Kim, Young-Ha
2017-04-01
Spatiotemporal variations in momentum flux spectra of convective gravity waves (CGWs) at the source level (cloud top), including nonlinear forcing effects, are examined using an off-line version of CGW parameterization and global reanalysis data. We used 1-hourly NCEP Climate Forecast System Reanalysis (CFSR) forecast data for a period of 32 years (1979-2010), with a horizontal resolution of 1° x1°. The cloud-top momentum flux (CTMF) is not solely proportional to the convective heating rate but is affected by the wave-filtering and resonance factor (WFRF), background stability and temperature underlying the convection. Consequently, the primary peak of CTMF is in the winter hemisphere midlatitude in association with storm-track region where secondary peak of convective heating exists, whereas the secondary peak of CTMF appears in the summer hemisphere tropics and intertropical convergence zone (ITCZ), where primary peak of convective heating exists. The magnitude of CTMF fluctuates largely with 1 year and 1 day periods, commonly in major CTMF regions. At low latitudes and Pacific storm track region, a 6-month period is also significant, and the decadal cycle appears in the Asian summer monsoon region and the Andes Mountains. The equatorial eastern Pacific region exhibits substantial inter-annual to decadal scale of variability with decreasing trend that is described as statistically significant. Interestingly, the correlation between convective heating and the CTMF is relatively lower in the equatorial region than in other regions. The CTMF spectra in the large-CTMF regions reveal that the spectrum shape and width changes with season and location, along with anisotropic shape of the CTMF spectrum, caused by changes in wind speed at the cloud top and the moving speed of convection. The CTMF in the 10°N to 10°S during the period of February to May 2010, when the PreConcordiasi campaign held, approximately follows a lognormal distribution but with a slight underestimation in the tail of the probability density function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Wei; Chen Qingrong; Petrosian, Vahe
2013-04-20
Where particle acceleration and plasma heating take place in relation to magnetic reconnection is a fundamental question for solar flares. We report analysis of an M7.7 flare on 2012 July 19 observed by SDO/AIA and RHESSI. Bi-directional outflows in forms of plasmoid ejections and contracting cusp-shaped loops originate between an erupting flux rope and underlying flare loops at speeds of typically 200-300 km s{sup -1} up to 1050 km s{sup -1}. These outflows are associated with spatially separated double coronal X-ray sources with centroid separation decreasing with energy. The highest temperature is located near the nonthermal X-ray loop-top source wellmore » below the original heights of contracting cusps near the inferred reconnection site. These observations suggest that the primary loci of particle acceleration and plasma heating are in the reconnection outflow regions, rather than the reconnection site itself. In addition, there is an initial ascent of the X-ray and EUV loop-top source prior to its recently recognized descent, which we ascribe to the interplay among multiple processes including the upward development of reconnection and the downward contractions of reconnected loops. The impulsive phase onset is delayed by 10 minutes from the start of the descent, but coincides with the rapid speed increases of the upward plasmoids, the individual loop shrinkages, and the overall loop-top descent, suggestive of an intimate relation of the energy release rate and reconnection outflow speed.« less
A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency
Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; ...
2015-03-23
Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier’s law for heat conduction dramatically overpredicts the rate ofmore » heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. In conclusion, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.« less
A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency
NASA Astrophysics Data System (ADS)
Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; Frazer, Travis D.; Anderson, Erik H.; Chao, Weilun; Falcone, Roger W.; Yang, Ronggui; Murnane, Margaret M.; Kapteyn, Henry C.; Nardi, Damiano
2015-04-01
Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier's law for heat conduction dramatically overpredicts the rate of heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. Finally, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.
Design and experimental investigation of a neon cryogenic loop heat pipe
NASA Astrophysics Data System (ADS)
He, Jiang; Guo, Yuandong; Zhang, Hongxing; Miao, Jianyin; Wang, Lu; Lin, Guiping
2017-11-01
Next generation space infrared sensor and detector have pressing requirement for cryogenic heat transport technology in the temperature range of 30-40 K. Cryogenic loop heat pipe (CLHP) has excellent thermal performance and particular characteristics such as high flexibility transport lines and no moving parts, thus it is regarded as an ideal thermal control solution. A neon CLHP referring to infrared point-to-point heat transfer element in future space application has been designed and experimented. And it could realize supercritical startup successfully. Experimental results show that the supercritical startup were realized successfully at cases of 1.5 W secondary evaporator power, but the startup was failed when 0.5 and 1 W heat load applied to secondary evaporator. The maximum heat transport capability of primary evaporator is between 4.5 and 5 W with proper auxiliary heat load. Before startup, even the heat sink temperature decreased to 35 K, the primary evaporator can still maintain at almost 290 K; and the primary evaporator temperature increased at once when the powers were cut off, which indicated the CLHP has a perfect function of thermal switch. The CLHP could adapt to sudden changes of the primary evaporator power, and reach a new steady-state quickly. Besides, some failure phenomena were observed during the test, which indicated that proper secondary evaporator power and heat sink temperature play important roles on the normal operation.
Pyrolysis reactor and fluidized bed combustion chamber
Green, Norman W.
1981-01-06
A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.
Transient performance and temperature field of a natural convection air dehumidifier loop
NASA Astrophysics Data System (ADS)
Fazilati, Mohammad Ali; Sedaghat, Ahmad; Alemrajabi, Ali-Akbar
2017-07-01
In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.
Thermal energy storage for industrial waste heat recovery
NASA Technical Reports Server (NTRS)
Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.
1978-01-01
Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.
Mini-Brayton heat source assembly development
NASA Technical Reports Server (NTRS)
Wein, D.; Zimmerman, W. F.
1978-01-01
The work accomplished on the Mini-Brayton Heat Source Assembly program is summarized. Required technologies to design, fabricate and assemble components for a high temperature Heat Source Assembly (HSA) which would generate and transfer the thermal energy for a spaceborne Brayton Isotope Power System (BIPS) were developed.
Application of sorption heat pumps for increasing of new power sources efficiency
NASA Astrophysics Data System (ADS)
Vasiliev, L.; Filatova, O.; Tsitovich, A.
2010-07-01
In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.
Cottingham, James G.
1977-01-01
Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.
Design of a nuclear isotope heat source assembly for a spaceborne mini-Brayton power module.
NASA Technical Reports Server (NTRS)
Wein, D.; Gorland, S. H.
1973-01-01
Results of a study to develop a feasible design definition of a heat source assembly (HSA) for use in nominal 500-, 1200-, or 2000-W(e) mini-Brayton spacecraft power systems. The HSA is a modular design which is used either as a single unit to provide thermal energy to the 500-W(e) mini-Brayton power module or in parallel with one or two additional HSAs for the 1200- or 2000-W(e) power module systems. Principal components consist of a multihundred watt RTG isotope heat source, a heat source heat exchanger which transfers the thermal energy from the heat source to the mini-Brayton power conversion system, an auxiliary cooling system which provides requisite cooling during nonoperation of the power conversion module and an emergency cooling system which precludes accidental release of isotope fuel in the event of system failure.
Waste-Heat-Driven Cooling Using Complex Compound Sorbents
NASA Technical Reports Server (NTRS)
Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh
2004-01-01
Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.
Energy Savings Potential and RD&D Opportunities for Commercial Building Appliances (2015 Update)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Foley, Kevin
The Department of Energy commissioned a technology characterization and assessment of appliances used in commercial buildings for cooking, cleaning, water heating, and other end-uses. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development, and demonstration opportunities to improve energy efficiency in each end-use. This report serves as an update to a 2009 report of the same name by incorporating updated data and sources where possible and updating the available technology options that provide opportunities for efficiency improvements.
NASA Astrophysics Data System (ADS)
Yang, J.; Mauzerall, D. L.
2017-12-01
During periods of high pollution in winter, household space heating can contribute more than half of PM2.5 concentrations in China's Beijing-Tianjin-Hebei (BTH) region. The majority of rural households and some urban households in the region still heat with small stoves and solid fuels such as raw coal, coal briquettes and biomass. Thus, reducing emissions from residential space heating has become a top priority of the Chinese government's air pollution mitigation plan. Electrified space heating is a promising alternative to solid fuel. However, there is little analysis of the air quality and climate implications of choosing various electrified heating devices and utilizing different electricity sources. Here we conduct an integrated assessment of the air quality, human health and climate implications of various electrified heating scenarios in the BTH region using the Weather Research and Forecasting model with Chemistry. We use the Multi-resolution Emission Inventory for China for the year 2012 as our base case and design two electrification scenarios in which either direct resistance heaters or air source heat pumps are installed to replace all household heating stoves. We initially assume all electrified heating devices use electricity from supercritical coal-fired power plants. We find that installing air source heat pumps reduces CO2 emissions and premature deaths due to PM2.5 pollution more than resistance heaters, relative to the base case. The increased health and climate benefits of heat pumps occur because they have a higher heat conversion efficiency and thus require less electricity for space heating than resistance heaters. We also find that with the same heat pump installation, a hybrid electricity source (40% of the electricity generated from renewable sources and the rest from coal) further reduces both CO2 emissions and premature deaths than using electricity only from coal. Our study demonstrates the air pollution and CO2 mitigation potential and public health benefits of using electrified space heating. In particular, we find air source heat pumps could bring more climate and health benefits than direct resistance heaters. Our results also support policies to integrate renewable energy sources with the reduction of solid fuel combustion for residential space heating.
High-temperature self-circulating thermoacoustic heat exchanger
NASA Astrophysics Data System (ADS)
Backhaus, S.; Swift, G. W.; Reid, R. S.
2005-07-01
Thermoacoustic and Stirling engines and refrigerators use heat exchangers to transfer heat between the oscillating flow of their thermodynamic working fluids and external heat sources and sinks. An acoustically driven heat-exchange loop uses an engine's own pressure oscillations to steadily circulate its own thermodynamic working fluid through a physically remote high-temperature heat source without using moving parts, allowing for a significant reduction in the cost and complexity of thermoacoustic and Stirling heat exchangers. The simplicity and flexibility of such heat-exchanger loops will allow thermoacoustic and Stirling machines to access diverse heat sources and sinks. Measurements of the temperatures at the interface between such a heat-exchange loop and the hot end of a thermoacoustic-Stirling engine are presented. When the steady flow is too small to flush out the mixing chamber in one acoustic cycle, the heat transfer to the regenerator is excellent, with important implications for practical use.
Lunar Surface Stirling Power Systems Using Am-241
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2009-01-01
For many years NASA has used the decay of Pu-238 (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTG), which have provided electrical power for many NASA missions. While RTG's have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency (-5% efficiency) and the scarcity of Plutoinium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14 earth days) isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 watts with 2 GPHS modules at the beginning of life (BOL) (-30% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a 4-fold reduction in the number of GPHS modules. This study considers the use of Americium 241 (Am-241) as a substitute for the Pu-238 in Stirling convertor based Radioisotope Power Systems (RPS) for power levels from 1 O's of watts to 5 kWe. The Am-241 is used as a replacement for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about 1/5 while maintaining approximately the same system mass. In order to obtain the nominal 160 watts electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.
The impact of solar radiation on the heating and cooling of buildings
NASA Astrophysics Data System (ADS)
Witmer, Lucas
This work focuses on the impact of solar energy on the heating and cooling of buildings. The sun can be the primary driver for building cooling loads as well as a significant source of heat in the winter. Methods are presented for the calculation of solar energy incident on tilted surfaces and the irradiance data source options. A key deficiency in current building energy modeling softwares is reviewed with a demonstration of the impact of calculating for shade on opaque surfaces. Several tools include methods for calculating shade incident on windows, while none do so automatically for opaque surfaces. The resulting calculations for fully irradiated wall surfaces underestimate building energy consumption in the winter and overestimate in the summer by significant margins. A method has been developed for processing and filtering solar irradiance data based on local shading. This method is used to compare situations where a model predictive control system can make poor decisions for building comfort control. An MPC system informed by poor quality solar data will negatively impact comfort in perimeter building zones during the cooling season. The direct component of irradiance is necessary for the calculation of irradiance on a tilted surface. Using graphical analysis and conditional probability distributions, this work demonstrates a proof of concept for estimating direct normal irradiance from a multi-pyranometer array by leveraging inter-surface relationships without directly inverting a sky model.
Heating systems for heating subsurface formations
Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX
2011-04-26
Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.
Outpatient clinic visits during heat waves: findings from a large family medicine clinical database.
Vashishtha, Devesh; Sieber, William; Hailey, Brittany; Guirguis, Kristen; Gershunov, Alexander; Al-Delaimy, Wael K
2018-03-10
The purpose of this study was to determine whether heat waves are associated with increased frequency of clinic visits for ICD-9 codes of illnesses traditionally associated with heat waves. During 4 years of family medicine clinic data between 2012 and 2016, we identified six heat wave events in San Diego County. For each heat wave event, we selected a control period in the same season that was twice as long. Scheduling a visit on a heat wave day (versus a non-heat wave day) was the primary predictor, and receiving a primary ICD-9 disease code related to heat waves was the outcome. Analyses were adjusted for age, gender, race/ethnicity and marital status. Of the 5448 visits across the heat wave and control periods, 6.4% of visits (n = 346) were for heat wave-related diagnoses. Scheduling a visit on heat wave day was not associated with receiving a heat wave-related ICD code as compared with the control period (adjusted odds ratio: 1.35; 95% confidence interval: 0.86-1.36; P = 0.51). We show that in a relatively large and demographically diverse population, patients who schedule appointments during heat waves are not being more frequently seen for diagnoses typically associated with heat waves in the acute setting. Given that heat waves are increasing in frequency due to climate change, there is an opportunity to increase utilization of primary care clinics during heat waves.
Process R&D for Particle Size Control of Molybdenum Oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Sujat; Dzwiniel, Trevor; Pupek, Krzysztof
The primary goal of this study was to produce MoO 3 powder with a particle size range of 50 to 200 μm for use in targets for production of the medical isotope 99Mo. Molybdenum metal powder is commercially produced by thermal reduction of oxides in a hydrogen atmosphere. The most common source material is MoO 3, which is derived by the thermal decomposition of ammonium heptamolybdate (AHM). However, the particle size of the currently produced MoO 3 is too small, resulting in Mo powder that is too fine to properly sinter and press into the desired target. In this study,more » effects of heating rate, heating temperature, gas type, gas flow rate, and isothermal heating were investigated for the decomposition of AHM. The main conclusions were as follows: lower heating rate (2-10°C/min) minimizes breakdown of aggregates, recrystallized samples with millimeter-sized aggregates are resistant to various heat treatments, extended isothermal heating at >600°C leads to significant sintering, and inert gas and high gas flow rate (up to 2000 ml/min) did not significantly affect particle size distribution or composition. In addition, attempts to recover AHM from an aqueous solution by several methods (spray drying, precipitation, and low temperature crystallization) failed to achieve the desired particle size range of 50 to 200 μm. Further studies are planned.« less
NASA Astrophysics Data System (ADS)
Zhang, Yin; Wei, Zhiyuan; Zhang, Yinping; Wang, Xin
2017-12-01
Urban heating in northern China accounts for 40% of total building energy usage. In central heating systems, heat is often transferred from heat source to users by the heat network where several heat exchangers are installed at heat source, substations and terminals respectively. For given overall heating capacity and heat source temperature, increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving. In this paper, the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established. Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity, the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method. The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger. It also indicates that in order to improve the thermal performance of the whole system, more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small. This work is important for guiding the optimization design of practical cascade heating systems.
Impact of various operating modes on performance and emission parameters of small heat source
NASA Astrophysics Data System (ADS)
Vician, Peter; Holubčík, Michal; Palacka, Matej; Jandačka, Jozef
2016-06-01
Thesis deals with the measurement of performance and emission parameters of small heat source for combustion of biomass in each of its operating modes. As the heat source was used pellet boiler with an output of 18 kW. The work includes design of experimental device for measuring the impact of changes in air supply and method for controlling the power and emission parameters of heat sources for combustion of woody biomass. The work describes the main factors that affect the combustion process and analyze the measurements of emissions at the heat source. The results of experiment demonstrate the values of performance and emissions parameters for the different operating modes of the boiler, which serve as a decisive factor in choosing the appropriate mode.
Application of an atomic oxygen beam facility to the investigation of shuttle glow chemistry
NASA Technical Reports Server (NTRS)
Arnold, G. S.; Peplinski, D. R.
1985-01-01
A facility for the investigation of the interactions of energetic atomic oxygen with solids is described. The facility is comprised of a four chambered, differentially pumped molecular beam apparatus which can be equipped with one of a variety of sources of atomic oxygen. The primary source is a dc arc heated supersonic nozzle source which produces a flux of atomic oxygen in excess of 10 to the 15th power sq cm/sec at the target, at a velocity of 3.5 km/sec. Results of applications of this facility to the study of the reactions of atomic oxygen with carbon and polyimide films are briefly reviewed and compared to data obtained on various flights of the space shuttle. A brief discussion of possible application of this facility to investigation of chemical reactions which might contribute to atmosphere induced vehicle glow is presented.
Defense Small Business Innovation Research Program (SBIR) Abstracts of Phase I Awards 1984.
1985-04-16
PROTECTION OF SATELLITES FROM DIRECTED ENERGY WEAPONS, IS THE UTILIZATION OF HEAT PIPES WITHIN A SHIELD STRUCTURE. HEAT PIPES COULD BE DESIGNED TO...780 EDEN ROAD LANCASTER, PA 17601 ROBERT M. SHAUBACK TITLE: ANALYSIS AND PERFORMNCE EVALUATION OF HEAT PIPES WITH MULTIPLE HEAT SOURCES TOPIC: 97... PIPES CAPABLE OF ACCEPTING HEAT FROM MULTIPLE HEAT SOURCES. THERE IS NO THOROUGH ANALYTICAL OR EXPERIMENTAL BASIS FOR THE DESIGN OF HEAT PIPES OF
Brandstätter, Jennifer; Kurz, Walter; Krenn, Kurt; Micheuz, Peter
2016-04-01
In this study, we present new data from microthermometry of fluid inclusions entrapped in hydrothermal veins along the Cocos Ridge from the IODP Expedition 344 Site U1414. The results of our study concern a primary task of IODP Expedition 344 to evaluate fluid/rock interaction linked with the tectonic evolution of the incoming Cocos Plate from the Early Miocene up to recent times. Aqueous, low saline fluids are concentrated within veins from both the Cocos Ridge basalt and the overlying lithified sediments of Unit III. Mineralization and crosscutting relationships give constraints for different vein generations. Isochores from primary, reequilibrated, and secondary fluid inclusions crossed with litho/hydrostatic pressures indicate an anticlockwise PT evolution during vein precipitation and modification by isobaric heating and subsequent cooling at pressures between ∼210 and 350 bar. Internal over and underpressures in the inclusions enabled decrepitation and reequilibration of early inclusions but also modification of vein generations in the Cocos Ridge basalt and in the lithified sediments. We propose that lithification of the sediments was accompanied with a first stage of vein development (VU1 and VC1) that resulted from Galapagos hotspot activity in the Middle Miocene. Heat advection, either related to the Cocos-Nazca spreading center or to hotspot activity closer to the Middle America Trench, led to subsequent vein modification (VC2, VU2/3) related to isobaric heating. The latest mineralization (VC3, VU3) within aragonite and calcite veins and some vesicles of the Cocos Ridge basalt occurred during crustal cooling up to recent times. Fluid inclusion analyses and published isotope data show evidence for communication with deeper sourced, high-temperature hydrothermal fluids within the Cocos Plate. The fluid source of the hydrothermal veins reflects aqueous low saline pore water mixed with invaded seawater.
Brandstätter, Jennifer; Krenn, Kurt; Micheuz, Peter
2016-01-01
Abstract In this study, we present new data from microthermometry of fluid inclusions entrapped in hydrothermal veins along the Cocos Ridge from the IODP Expedition 344 Site U1414. The results of our study concern a primary task of IODP Expedition 344 to evaluate fluid/rock interaction linked with the tectonic evolution of the incoming Cocos Plate from the Early Miocene up to recent times. Aqueous, low saline fluids are concentrated within veins from both the Cocos Ridge basalt and the overlying lithified sediments of Unit III. Mineralization and crosscutting relationships give constraints for different vein generations. Isochores from primary, reequilibrated, and secondary fluid inclusions crossed with litho/hydrostatic pressures indicate an anticlockwise PT evolution during vein precipitation and modification by isobaric heating and subsequent cooling at pressures between ∼210 and 350 bar. Internal over and underpressures in the inclusions enabled decrepitation and reequilibration of early inclusions but also modification of vein generations in the Cocos Ridge basalt and in the lithified sediments. We propose that lithification of the sediments was accompanied with a first stage of vein development (VU1 and VC1) that resulted from Galapagos hotspot activity in the Middle Miocene. Heat advection, either related to the Cocos‐Nazca spreading center or to hotspot activity closer to the Middle America Trench, led to subsequent vein modification (VC2, VU2/3) related to isobaric heating. The latest mineralization (VC3, VU3) within aragonite and calcite veins and some vesicles of the Cocos Ridge basalt occurred during crustal cooling up to recent times. Fluid inclusion analyses and published isotope data show evidence for communication with deeper sourced, high‐temperature hydrothermal fluids within the Cocos Plate. The fluid source of the hydrothermal veins reflects aqueous low saline pore water mixed with invaded seawater. PMID:27570496
Contraindications for superficial heat and therapeutic ultrasound: do sources agree?
Batavia, Mitchell
2004-06-01
To determine the amount of agreement among general rehabilitation sources for both superficial heating and therapeutic ultrasound contraindications. English-language textbook and peer-reviewed journal sources, from January 1992 to July 2002. Searches of computerized databases (HealthSTAR, CINAHL, MEDLINE, Embase) as well as Library of Congress Online Catalogs, Books in Print, and AcqWeb's Directory of Publishers and Venders. Sources were excluded if they (1) were published before 1992, (2) failed to address general rehabilitation audiences, or (3) were identified as a researcher's related publication with similar information on the topic. Type and number of contraindications, type of audience, year of publication, number of references, rationales, and alternative treatment strategies. Eighteen superficial heat and 20 ultrasound sources identified anywhere from 5 to 22 and 9 to 36 contraindications/precautions, respectively. Agreement among sources was generally high but ranged from 11% to 95%, with lower agreement noted for pregnancy, metal implants, edema, skin integrity, and cognitive/communicative concerns. Seventy-two percent of superficial heat sources and 25% of ultrasound sources failed to reference at least 1 contraindication claim. Agreement among contraindication sources was generally good for both superficial heat and therapeutic ultrasound. Sources varied with regard to the number of contraindications, references, and rationales cited. Greater reliance on objective data and standardized classification systems may serve to develop more uniform guidelines for superficial heat and therapeutic ultrasound.
Variability of dayside electron temperature at Venus
NASA Technical Reports Server (NTRS)
Mahajan, K. K.; Ghosh, S.; Paul, R.; Hoegy, W. R.
1994-01-01
Langmuir probe measurements on Pioneer Venus Orbiter show that electron temperature (Te) profiles exhibit two distinct regions. The lower, but more extended region is in the main ionosphere where Te increases slowly with altitude. The other, less extended region is in the ionopause, where Te rise sharply with altitude. If horizontal magnetic fields and flux ropes in the ionosphere inhibit vertical thermal conductivity sufficiently, then the observed Te profile could be explained with EUV as the major heat source (Cravens et al., 1980). The rise in Te in the ionopause region has generally been attributed to solar wind heating (Brace and Kliore, 1991). We suggest that this sharp rise in Te is due primarily to the steep fall in electron density, Ne. If the heating rate is essentially unchanged and heat conduction is not of primary importance, then a steep rise in Te will maintain a constant electron cooling rate for a steeply falling Ne. We have observed large orbit to orbit variations in Te in the ionopause region which are found to be inversely related to changes in Ne. Variations in solar wind dynamic pressure do not seem to have a direct effect on Te, rather the effect is indirect coming through the sharp decrease in Ne.
Energy sources of polycyclic aromatic hydrocarbons. [Carcinogenicity of PAHs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerin, M. R.
1977-01-01
Combustion is the predominant end-process by which fossil fuels are converted to energy. Combustion, particularly when inefficient, is also the primary technological source of polycyclic aromatic hydrocarbons (PAHs) released into the environment. The need for liquid fuels to supply the transportation industry and for nonpolluting fuels for heat and power generation provide the incentive to commercialize processes to convert coal to substitute natural gas and oil. These processes represent a potentially massive new source of environmental PAHs. Insuring an adequate supply of energy with minimum impact on the environment and on health is one of the most important, urgent, andmore » challenging goals currently facing science and technology. Polycyclic aromatic hydrocarbon related carcinogenesis is among the most important of possible occupational- and environmental-health impacts of much of the current and projected national energy base. An understanding of the relationship of polycyclic aromatic hydrocarbons (PAHs) to human cancer and a continued surveillance of energy sources for PAH content are necessary to minimize this impact.« less
Low to high temperature energy conversion system
NASA Technical Reports Server (NTRS)
Miller, C. G. (Inventor)
1977-01-01
A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.
1996-01-01
This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling-grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and ideally, throughout Eastern European cities wheremore » coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators-for the execution of this effort. Five potential candidate sources have been located and contracts for coal deliveries should be executed early next quarter. TInitial delays in formalizing the EFH/Polish Partners agreement delayed finalizing the coal supply contracts and hence, precluded collecting the Polish coal samples for characterization and combustion performance studies. Work on this Task will be initialed next quarter after the raw coal supply contracts are executed. A conceptual design for a plant to wash 25mm x 0 raw coal fines at a need rate of 300 mtph was completed. This plant will receive raw coals ranging in ash content from 20 to 30 percent and produce a compliance coal containing about 1 percent ash, 0.8 percent sulfur and 27, 840 KJ/kg (12,000 Btu/lb). A heavy-media cyclone will be used to wash the 20mm x 1mm stoker coal. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and A for identifying sources of private capital to help cost share the project continued.« less
Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China
NASA Astrophysics Data System (ADS)
Lei, Y.; Tan, H. W.; Wang, L. Z.
2017-11-01
Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Singh, Surjan; Rai, K. N.
2016-06-01
In this paper, the temperature distribution in a finite biological tissue in presence of metabolic and external heat source when the surface subjected to different type of boundary conditions is studied. Classical Fourier, single-phase-lag (SPL) and dual-phase-lag (DPL) models were developed for bio-heat transfer in biological tissues. The analytical solution obtained for all the three models using Laplace transform technique and results are compared. The effect of the variability of different parameters such as relaxation time, metabolic heat source, spatial heat source, different type boundary conditions on temperature distribution in different type of the tissues like muscle, tumor, fat, dermis and subcutaneous based on three models are analyzed and discussed in detail. The result obtained in three models is compared with experimental observation of Stolwijk and Hardy (Pflug Arch 291:129-162, 1966). It has been observe that the DPL bio-heat transfer model provides better result in comparison of other two models. The value of metabolic and spatial heat source in boundary condition of first, second and third kind for different type of thermal therapies are evaluated.
Internal heat gain from different light sources in the building lighting systems
NASA Astrophysics Data System (ADS)
Suszanowicz, Dariusz
2017-10-01
EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.
Performance Analysis of a Ground Source Heat Pump System Using Mine Water as Heat Sink and Source
Liu, Xiaobing; Malhotra, Mini; Walburger, Adam; ...
2016-06-01
This paper summarizes a case study of an innovative ground source heat pump (GSHP) system that uses flooded mines as a heat source and heat sink. This GSHP system provides space conditioning to a 56,000 sq ft 2(5,203 m 2) newly constructed research facility, in conjunction with supplementary existing steam heating and air-cooled chiller systems. Heat transfer performance and overall efficiency of the GSHP system were analysed using the available measured data from January through July 2014. The performance analysis identified some issues with using mine water for cooling and the integration of the GSHP system with the existing steammore » heating system. Recommendations were made to improve the control and operation of the GSHP system. These recommendations, in conjunction with the available measured data, were used to predict the annual energy use of the system. Finally, the energy and cost savings and CO 2 emission reduction potential of the GSHP system were estimated by comparing with a baseline scenario. This case study provides insights into the performance of and potential issues with the mine-water source heat pump system, which is relatively under-explored compared to other GSHP system designs and configurations.« less
Numerical analysis of the heat source characteristics of a two-electrode TIG arc
NASA Astrophysics Data System (ADS)
Ogino, Y.; Hirata, Y.; Nomura, K.
2011-06-01
Various kinds of multi-electrode welding processes are used to ensure high productivity in industrial fields such as shipbuilding, automotive manufacturing and pipe fabrication. However, it is difficult to obtain the optimum welding conditions for a specific product, because there are many operating parameters, and because welding phenomena are very complicated. In the present research, the heat source characteristics of a two-electrode TIG arc were numerically investigated using a 3D arc plasma model with a focus on the distance between the two electrodes. The arc plasma shape changed significantly, depending on the electrode spacing. The heat source characteristics, such as the heat input density and the arc pressure distribution, changed significantly when the electrode separation was varied. The maximum arc pressure of the two-electrode TIG arc was much lower than that of a single-electrode TIG. However, the total heat input of the two-electrode TIG arc was nearly constant and was independent of the electrode spacing. These heat source characteristics of the two-electrode TIG arc are useful for controlling the heat input distribution at a low arc pressure. Therefore, these results indicate the possibility of a heat source based on a two-electrode TIG arc that is capable of high heat input at low pressures.
Geothermal heat pumps for heating and cooling
NASA Astrophysics Data System (ADS)
Garg, Suresh C.
1994-03-01
Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building's energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.
It's Hard Saying Goodbye to an Old Flame
ERIC Educational Resources Information Center
Roy, Ken
2004-01-01
As heat sources go, the old standby for elementary and middle school science laboratories has been the centuries old alcohol lamp. Unfortunately, this inexpensive heat producer has been a continuous source of accidents--many of which are relatively serious. Hot plates are emerging as the most popular source of heat for science experiments. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Lei, E-mail: lye@ipp.ac.cn; Guo, Wenfeng; Xiao, Xiaotao
2014-12-15
A guiding center orbit following code, which incorporates a set of non-singular coordinates for orbit integration, was developed and applied to investigate the alpha particle heating in an ITER-like tokamak with an internal transport barrier. It is found that a relatively large q (safety factor) value can significantly broaden the alpha heating profile in comparison with the local heating approximation; this broadening is due to the finite orbit width effects; when the orbit width is much smaller than the scale length of the alpha particle source profile, the heating profile agrees with the source profile, otherwise, the heating profile canmore » be significantly broadened. It is also found that the stagnation particles move to the magnetic axis during the slowing-down process, thus the effect of stagnation orbits is not beneficial to the helium ash removal. The source profile of helium ash is broadened in comparison with the alpha source profile, which is similar to the heating profile.« less
Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng
2017-05-15
Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.
Thermal load leveling during silicon crystal growth from a melt using anisotropic materials
Carlson, Frederick M.; Helenbrook, Brian T.
2016-10-11
An apparatus for growing a silicon crystal substrate comprising a heat source, an anisotropic thermal load leveling component, a crucible, and a cold plate component is disclosed. The anisotropic thermal load leveling component possesses a high thermal conductivity and may be positioned atop the heat source to be operative to even-out temperature and heat flux variations emanating from the heat source. The crucible may be operative to contain molten silicon in which the top surface of the molten silicon may be defined as a growth interface. The crucible may be substantially surrounded by the anisotropic thermal load leveling component. The cold plate component may be positioned above the crucible to be operative with the anisotropic thermal load leveling component and heat source to maintain a uniform heat flux at the growth surface of the molten silicon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarrell, Mark
Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.
Method and apparatus for desuperheating refrigerant
Zess, James A.; Drost, M. Kevin; Call, Charles J.
1997-01-01
The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim.
Heat source reentry vehicle design study
NASA Technical Reports Server (NTRS)
Ryan, R. L.
1971-01-01
The design details are presented of a flight-type heat source reentry vehicle and heat exchanger compatible with the isotope Brayton power conversion system. The reference reentry vehicle and heat exchanger were modified, orbital and superorbital capability was assessed, and a complete set of detail design layout drawings were provided.
Ground-Source Heat Pumps | Climate Neutral Research Campuses | NREL
cooling requirements and heating loads. GSHPs take advantage of moderate soil temperatures available year Are ground-source heat pumps right for your campus? Are soil conditions suitable? Are heating and consider the following before undertaking an assessment or GSHP installation. Suitable Soil Conditions The
NASA Astrophysics Data System (ADS)
Marin, Julio; Raga, Graciela; Baumgardner, Darrel; Cordova, Ana; Arevalo, Jorge; Pozo, Diana
2015-04-01
Measurements of effective black carbon (eBC) have been made during three seasons (Winter, Spring and Summer) in Valparaiso, a coastal city that is located in the subtropics and is the largest commercial port in Chile. In addition to the ships in the harbor and the trucks that service the shipping industry, the primary public transport in the city is a bus system that uses diesel as its primary fuel source. Adding to the emissions of black and brown carbon (BC, BrC) from mobile sources is an oil refinery approximately 30 km to the north and in the winter many residences use wood burning as a primary source of heating. In winter the wind speeds are low, the boundary layer is shallow and there are frequent night time thermal inversions. The meteorology, coupled with a topography of very steep hillsides surrounding the bay, leads to episodes when the maximum eBC, measured with filter-based and photoacoustic techniques, often exceeds 10 µg m-3 and average mass concentrations are > 1.0 µg m-3. The absorption angstrom exponent (AAE), derived from measurements of the absorption coefficient at 550 nm and 870 nm, provides an indicator of the source of the eBC and brown carbon (BrC). The AAE ranges from 0 - 4, the lowest values, <1, associated with diesel emissions from public transport and the highest values, >3, with biomass combustion. The values in the mid-range appear to be associated with ship emissions or from the oil refinery. Removal of these aerosol particles is linked to the sea/land breeze circulations and periods of heavy fog and drizzle.
Thermoelectric power generator with intermediate loop
Bell, Lon E; Crane, Douglas Todd
2013-05-21
A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.
Thermoelectric power generator with intermediate loop
Bel,; Lon, E [Altadena, CA; Crane, Douglas Todd [Pasadena, CA
2009-10-27
A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.
Ground Source Heat Pumps vs. Conventional HVAC: A Comparison of Economic and Environmental Costs
2009-03-26
of systems are surface water heat pumps (SWHPs), ground water heat pumps (GWHPs), and ground coupled heat pumps ( GCHPs ) (Kavanaugh & Rafferty, 1997...Kavanaugh & Rafferty, 1997). Ground Coupled Heat Pumps (Closed-Loop Ground Source Heat Pumps) GCHPs , otherwise known as closed-loop GSHPs, are the...Significant confusion has arisen through the use of GCHP and closed-loop GSHP terminology. Closed-loop GSHP is the preferred nomenclature for this
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salamon, Todd R; Vyas, Brijesh; Kota, Krishna
An apparatus and a method are provided. Use is made of a wick structure configured to receive a liquid and generate vapor in when such wick structure is heated by heat transferred from heat sources to be cooled off. A vapor channel is provided configured to receive the vapor generated and direct said vapor away from the wick structure. In some embodiments, heat conductors are used to transfer the heat from the heat sources to the liquid in the wick structure.
Influence of Mean-Density Gradient on Small-Scale Turbulence Noise
NASA Technical Reports Server (NTRS)
Khavaran, Abbas
2000-01-01
A physics-based methodology is described to predict jet-mixing noise due to small-scale turbulence. Both self- and shear-noise source teens of Lilley's equation are modeled and the far-field aerodynamic noise is expressed as an integral over the jet volume of the source multiplied by an appropriate Green's function which accounts for source convection and mean-flow refraction. Our primary interest here is to include transverse gradients of the mean density in the source modeling. It is shown that, in addition to the usual quadrupole type sources which scale to the fourth-power of the acoustic wave number, additional dipole and monopole sources are present that scale to lower powers of wave number. Various two-point correlations are modeled and an approximate solution to noise spectra due to multipole sources of various orders is developed. Mean flow and turbulence information is provided through RANS-k(epsilon) solution. Numerical results are presented for a subsonic jet at a range of temperatures and Mach numbers. Predictions indicated a decrease in high frequency noise with added heat, while changes in the low frequency noise depend on jet velocity and observer angle.
NASA Astrophysics Data System (ADS)
Jandačka, Dušan
2015-05-01
Particulate matter results as an aftermath of numerous distinctive processes in the atmosphere and they become a part of everyday life. Their harmful effect and impact on the ambient environment is determined predominantly by the presence of various chemical substances and elements. The chemical composition of these particles (organic and elemental carbon, mineral dust, sea aerosols, secondary particles, especially sulphates and nitrates, heavy metals and further elements) is mainly impacted on by their origin, whereas the primary source of the particulate matter is determined and specified by the profile of chemical elements and substances. Particulate Matter (PM) may originate in various natural resources or anthropogenic sources. Among the natural sources sea salt is to be counted on, dust of the earth crust, pollen and volcanic ashes. Anthropogenic sources do include, predominantly, burning fossil fuels in the fossil-fuel power plants, local heating of households, burning liquefied fossil fuels in the combustion engines of vehicles, noncombustion related emissions as a result of vehicular traffic, resuspension of the road-traffic-related dust.
Coherent vertical structures in numerical simulations of buoyant plumes from wildland fires
Philip Cunningham; Scott L. Goodrick; M. Yousuff Hussaini; Rodman R. Linn
2005-01-01
The structure and dynamics of buoyant plumes arising from surface-based heat sources in a vertically sheared ambient atmospheric flow are examined via simulations of a three-dimensional, compressible numerical model. Simple circular heat sources and asymmetric elliptical ring heat sources that are representative of wildland fires of moderate intensity are considered....
Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, Terry; Slusher, Scott
The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.
Jones, G.J.; Selle, J.E.; Teaney, P.E.
1975-09-30
Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)
Alemohammad, Seyed Hamed; Fang, Bin; Konings, Alexandra G; Aires, Filipe; Green, Julia K; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre
2017-01-01
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed Solar-Induced Fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H and GPP from 2007 to 2015 at 1° × 1° spatial resolution and on monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analysing WECANN retrievals across three extreme drought and heatwave events demonstrates the capability of the retrievals in capturing the extent of these events. Uncertainty estimates of the retrievals are analysed and the inter-annual variability in average global and regional fluxes show the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.
Children exposure to indoor ultrafine particles in urban and rural school environments.
Cavaleiro Rufo, João; Madureira, Joana; Paciência, Inês; Slezakova, Klara; Pereira, Maria do Carmo; Aguiar, Lívia; Teixeira, João Paulo; Moreira, André; Oliveira Fernandes, Eduardo
2016-07-01
Extended exposure to ultrafine particles (UFPs) may lead to consequences in children due to their increased susceptibility when compared to older individuals. Since children spend in average 8 h/day in primary schools, assessing the number concentrations of UFPs in these institutions is important in order to evaluate the health risk for children in primary schools caused by indoor air pollution. Thus, the purpose of this study was to assess and determine the sources of indoor UFP number concentrations in urban and rural Portuguese primary schools. Indoor and outdoor ultrafine particle (UFP) number concentrations were measured in six urban schools (US) and two rural schools (RS) located in the north of Portugal, during the heating season. The mean number concentrations of indoor UFPs were significantly higher in urban schools than in rural ones (10.4 × 10(3) and 5.7 × 10(3) pt/cm(3), respectively). Higher UFP levels were associated with higher squared meters per student, floor levels closer to the ground, chalk boards, furniture or floor covering materials made of wood and windows with double-glazing. Indoor number concentrations of ultrafine-particles were inversely correlated with indoor CO2 levels. In the present work, indoor and outdoor concentrations of UFPs in public primary schools located in urban and rural areas were assessed, and the main sources were identified for each environment. The results not only showed that UFP pollution is present in augmented concentrations in US when compared to RS but also revealed some classroom/school characteristics that influence the concentrations of UFPs in primary schools.
A Deep Space Power System Option Based on Synergistic Power Conversion Technologies
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
2000-01-01
Deep space science missions have typically used radioisotope thermoelectric generator (RTG) power systems. The RTG power system has proven itself to be a rugged and highly reliable power system over many missions, however the thermal-to-electric conversion technology used was approximately 5% efficient. While the relatively low efficiency has some benefits in terms of system integration, there are compelling reasons why a more efficient conversion system should be pursued. The cost savings alone that are available as a result of the reduced isotope inventory are significant. The Advanced Radioisotope Power System (ARPS) project was established to fulfill this goal. Although it was not part of the ARPS project, Stirling conversion technology is being demonstrated with a low level of funding by both NASA and DOE. A power system with Stirling convertors. although intended for use with an isotope heat source. can be combined with other advanced technologies to provide a novel power system for deep space missions. An inflatable primary concentrator would be used in combination with a refractive secondary concentrator (RSC) as the heat source to power the system. The inflatable technology as a structure has made great progress for a variety of potential applications such as communications reflectors, radiators and solar arrays. The RSC has been pursued for use in solar thermal propulsion applications, and it's unique properties allow some advantageous system trades to be made. The power system proposed would completely eliminate the isotope heat source and could potentially provide power for science missions to planets as distant as Uranus. This paper will present the background and developmental status of the technologies and will then describe the power system being proposed.
GAMSOR: Gamma Source Preparation and DIF3D Flux Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M. A.; Lee, C. H.; Hill, R. N.
2017-06-28
Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron capture reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problemsmore » with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, and then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence.« less
The imprint of the cosmic supermassive black hole growth history on the 21 cm background radiation
NASA Astrophysics Data System (ADS)
Tanaka, Takamitsu L.; O'Leary, Ryan M.; Perna, Rosalba
2016-01-01
The redshifted 21 cm transition line of hydrogen tracks the thermal evolution of the neutral intergalactic medium (IGM) at `cosmic dawn', during the emergence of the first luminous astrophysical objects (˜100 Myr after the big bang) but before these objects ionized the IGM (˜400-800 Myr after the big bang). Because X-rays, in particular, are likely to be the chief energy courier for heating the IGM, measurements of the 21 cm signature can be used to infer knowledge about the first astrophysical X-ray sources. Using analytic arguments and a numerical population synthesis algorithm, we argue that the progenitors of supermassive black holes (SMBHs) should be the dominant source of hard astrophysical X-rays - and thus the primary driver of IGM heating and the 21 cm signature - at redshifts z ≳ 20, if (I) they grow readily from the remnants of Population III stars and (II) produce X-rays in quantities comparable to what is observed from active galactic nuclei and high-mass X-ray binaries. We show that models satisfying these assumptions dominate over contributions to IGM heating from stellar populations, and cause the 21 cm brightness temperature to rise at z ≳ 20. An absence of such a signature in the forthcoming observational data would imply that SMBH formation occurred later (e.g. via so-called direct collapse scenarios), that it was not a common occurrence in early galaxies and protogalaxies, or that it produced far fewer X-rays than empirical trends at lower redshifts, either due to intrinsic dimness (radiative inefficiency) or Compton-thick obscuration close to the source.
NASA Astrophysics Data System (ADS)
Song, Moo-Keun; Kim, Jong-Do; Oh, Jae-Hwan
2015-03-01
Presently in shipbuilding, transportation and aerospace industries, the potential to apply welding using laser and laser-arc hybrid heat sources is widely under research. This study has the purpose of comparing the weldability depending on the arc mode by varying the welding modes of arc heat sources in applying laser-arc hybrid welding to aluminum alloy and of implementing efficient hybrid welding while controlling heat input. In the experimental study, we found that hybrid welding using CMT mode produced deeper penetration and sounder bead surface than those characteristics produced during only laser welding, with less heat input compared to that required in pulsed arc mode.
Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard
2017-05-01
This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1962-12-01
A power plant is described that comprises a nuclear reactor and a heat exchanger which is included in primary and secondary circuits. Fluid in the primary circuit extracts heat from the reactor and transfers it in the heat exchanger to the fluid in the secondary circuit which transmits energy to one or more utilization points. Means are provided for detecting, isolating, and removing radioactive fluid from the secondary circuit. (R.J.S.)
Thulium heat source IR D Project 91-031
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, C.E.; Kammeraad, J.E.; Newman, J.G.
1991-01-01
The goal of the Thulium Heat Source study is to determine the performance capability and evaluate the safety and environmental aspects of a thulium-170 heat source. Thulium-170 has several attractive features, including the fact that it decays to a stable, chemically innocuous isotope in a relatively short time. A longer-range goal is to attract government funding for the development, fabrication, and demonstration testing in an Autonomous Underwater Vehicle (AUV) of one or more thulium isotope power (TIP) prototype systems. The approach is to study parametrically the performance of thulium-170 heat source designs in the power range of 5-50 kW{sub th}.more » At least three heat source designs will be characterized in this power range to assess their performance, mass, and volume. The authors will determine shielding requirements, and consider the safety and environmental aspects of their use.« less
NASA Astrophysics Data System (ADS)
Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.
2017-08-01
To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ˜1 GW/m2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured with two pulse lengths and tested under a solenoidal magnetic field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. The tungsten target plate is analyzed for surface damage using a scanning electron microscope.
Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France.
Canha, N; Mandin, C; Ramalho, O; Wyart, G; Ribéron, J; Dassonville, C; Hänninen, O; Almeida, S M; Derbez, M
2016-06-01
The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2 ), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non-heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Tao; Letoquin, Ronan; Keller, Bernd
An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and a remote planar phosphor carrier having at least one conversion material. The phosphor carrier can be remote to the light sources and mounted to the heat sink so that heat from the phosphor carrier spreads into the heat sink. The phosphor carrier can comprise a thermally conductive transparent material and a phosphor layer, with an LED based light source mounted to the heat sink such that light from the light source passes through the phosphor carrier. At least some of the LED lightmore » is converted by the phosphor carrier, with some lamp embodiments emitting a white light combination of LED and phosphor light. The phosphor arranged according to the present invention can operate at lower temperature to thereby operate at greater phosphor conversion efficiency and with reduced heat related damage to the phosphor.« less
NASA Astrophysics Data System (ADS)
Spaccapaniccia, C.; Planquart, P.; Buchlin, J. M. AB(; ), AC(; )
2018-01-01
The Belgian nuclear research institute (SCK•CEN) is developing MYRRHA. MYRRHA is a flexible fast spectrum research reactor, conceived as an accelerator driven system (ADS). The configuration of the primary loop is pool-type: the primary coolant and all the primary system components (core and heat exchangers) are contained within the reactor vessel, while the secondary fluid is circulating in the heat exchangers. The primary coolant is Lead Bismuth Eutectic (LBE). The recent nuclear accident of Fukushima in 2011 changed the requirements for the design of new reactors, which should include the possibility to remove the residual decay heat through passive primary and secondary systems, i.e. natural convection (NC). After the reactor shut down, in the unlucky event of propeller failures, the primary and secondary loops should be able to remove the decay heat in passive way (Natural Convection). The present study analyses the flow and the temperature distribution in the upper plenum by applying laser imaging techniques in a laboratory scaled water model. A parametric study is proposed to study stratification mitigation strategies by varying the geometry of the buffer tank simulating the upper plenum.
Zermoglio, Paula F; Robuchon, Eddy; Leonardi, María Soledad; Chandre, Fabrice; Lazzari, Claudio R
2017-07-01
The use of heat as a cue for the orientation of haematophagous insects towards hot-blooded hosts has been acknowledged for many decades. In mosquitoes, thermoreception has been studied at the molecular, physiological and behavioural levels, and the response to heat has been evaluated in multimodal contexts. However, a direct characterization of how these insects evaluate thermal sources is still lacking. In this study we characterize Aedes aegypti thermal orientation using a simple dual choice paradigm, providing direct evidence on how different attributes of heat sources affect their choice. We found that female mosquitoes, but not males, are able to discriminate among heat sources that are at ambient, host-range and deleterious temperatures when no other stimuli are present, eliciting a positive response towards host-range and an avoidance response towards deleterious temperatures. We also tested the preference of females according to the size and position of the sources. We found that females do not discriminate between heat sources of different sizes, but actively orientate towards closer sources at host temperature. Furthermore, we show that females cannot use IR radiation as an orientation cue. Orientation towards a host involves the integration of cues of different nature in distinct phases of the orientation. Although such integration might be decisive for successful encounter of the host, we show that heat alone is sufficient to elicit orientation behaviour. We discuss the performance of mosquitoes' thermal behaviour compared to other blood-sucking insects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Special Important Aspects of the Thomson Effect
NASA Astrophysics Data System (ADS)
Lashkevych, Igor; Velázquez, J. E.; Titov, Oleg Yu.; Gurevich, Yuri G.
2018-06-01
A comprehensive study of the mechanisms of heating and cooling originating from an electrical current in semiconductor devices is reported. The variation in temperature associated with the Peltier effect is not related to the presence of heat sources and sinks if the heat flux is correctly determined. The Thomson effect is commonly regarded as a heat source/sink proportional to the Thomson coefficient, which is added to the Joule heating. In the present work, we will show that this formulation of the Thomson effect is not sufficiently clear. When the heat flux is correctly defined, the Thomson heat source/sink is proportional to the Seebeck coefficient. In the conditions in which the Peltier effect takes place, the temperature gradient is created, and, consequently, the Thomson effect will occur naturally.
Special Important Aspects of the Thomson Effect
NASA Astrophysics Data System (ADS)
Lashkevych, Igor; Velázquez, J. E.; Titov, Oleg Yu.; Gurevich, Yuri G.
2018-03-01
A comprehensive study of the mechanisms of heating and cooling originating from an electrical current in semiconductor devices is reported. The variation in temperature associated with the Peltier effect is not related to the presence of heat sources and sinks if the heat flux is correctly determined. The Thomson effect is commonly regarded as a heat source/sink proportional to the Thomson coefficient, which is added to the Joule heating. In the present work, we will show that this formulation of the Thomson effect is not sufficiently clear. When the heat flux is correctly defined, the Thomson heat source/sink is proportional to the Seebeck coefficient. In the conditions in which the Peltier effect takes place, the temperature gradient is created, and, consequently, the Thomson effect will occur naturally.
NASA Astrophysics Data System (ADS)
Krasikov, E.
2015-04-01
As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of NPP safety. Therefore present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. There are two approaches to annealing. The first one is so-called «dry» high temperature (∼475°C) annealing. It allows obtaining practically complete recovery, but requires the removal of the reactor core and internals. External heat source (furnace) is required to carry out RPV heat treatment. The alternative approach is to anneal RPV at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps while operating within the RPV design limits. This low temperature «wet» annealing, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible.
Monthly petroleum product price report. [January 1981-January 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riner, C.
1982-01-01
This report provides information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gasmore » plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia. Data are presented on the following: gasoline, No. 1 and No. 2 diesel fuels, No. 1 and No. 2 heating oils, residual fuel oil, aviation fuels, kerosene, and liquefied petroleum gases.« less
Monthly petroleum product price report. [January 1981-February 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riner, C.
1982-02-01
This report provides information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gasmore » plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia. Data are presented on the following: gasoline, No. 1 and No. 2 diesel fuels, No. 1 and No. 2 heating oils, residual fuel oil, aviation fuels, kerosene, and liquefied petroleum gases.« less
Li, Po-Ting; Hsiao, Wan-Ling; Yu, Roch-Chui; Chou, Cheng-Chun
2013-12-01
In the present study, Cronobacter sakazakii, a foodborne pathogen, was first subjected to heat shock at 47 °C for 15 min. Effect of heat shock on the fatty acid and protein profiles, carbon and nitrogen source requirements as well as the susceptibilities of C. sakazakii to Clidox-S, a chlorine-containing disinfectant and Quatricide, a quaternary ammonium compound were investigated. Results revealed that heat shock increased the proportion of myristic acid (14:0), palmitic acid (16:0) and the ratio of saturated fatty acid to unsaturated fatty acid, while reducing the proportion of palmitoleic acid (16:1) and cis-vacceric acid (18:1). In addition, eleven proteins showed enhanced expression, while one protein showed decreased expression in the heat-shocked compared to the non-heat-shocked cells. Non-heat-shocked cells in the medium supplemented with beef extract exhibited the highest maximum population. On the contrary, the highest maximum population of heat-shocked C. sakazakii was noted in the medium having either tryptone or yeast extract as the nitrogen source. Among the various carbon sources examined, the growth of the test organism, regardless of heat shock, was greatest in the medium having glucose as the carbon source. Furthermore, heat shock enhanced the resistance of C. sakazakii to Clidox-S or Quatricide. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method and apparatus for de-superheating refrigerant
Zess, J.A.; Drost, M.K.; Call, C.J.
1997-11-25
The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim. 7 figs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Heater means a water heater that uses electricity as the energy source, is designed to heat and store... that uses gas as the energy source, is designed to heat and store water at a thermostatically... energy source, is designed to heat and store water at a thermostatically controlled temperature of less...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Heater means a water heater that uses electricity as the energy source, is designed to heat and store... that uses gas as the energy source, is designed to heat and store water at a thermostatically... energy source, is designed to heat and store water at a thermostatically controlled temperature of less...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Heater means a water heater that uses electricity as the energy source, is designed to heat and store... that uses gas as the energy source, is designed to heat and store water at a thermostatically... energy source, is designed to heat and store water at a thermostatically controlled temperature of less...
Energy Dissipation and Phase-Space Dynamics in Eulerian Vlasov-Maxwell Turbulence
NASA Astrophysics Data System (ADS)
Tenbarge, Jason; Juno, James; Hakim, Ammar
2017-10-01
Turbulence in a magnetized plasma is a primary mechanism responsible for transforming energy at large injection scales into small-scale motions, which are ultimately dissipated as heat in systems such as the solar corona, wind, and other astrophysical objects. At large scales, the turbulence is well described by fluid models of the plasma; however, understanding the processes responsible for heating a weakly collisional plasma such as the solar wind requires a kinetic description. We present a fully kinetic Eulerian Vlasov-Maxwell study of turbulence using the Gkeyll simulation framework, including studies of the cascade of energy in phase space and formation and dissipation of coherent structures. We also leverage the recently developed field-particle correlations to diagnose the dominant sources of dissipation and compare the results of the field-particle correlation to other dissipation measures. NSF SHINE AGS-1622306 and DOE DE-AC02-09CH11466.
Numerical Study on Natural Vacuum Solar Desalination System with Varying Heat Source Temperature
NASA Astrophysics Data System (ADS)
Ambarita, H.
2017-03-01
A natural vacuum desalination unit with varying low grade heat source temperature is investigated numerically. The objective is to explore the effects of the variable temperature of the low grade heat source on performances and characteristics of the desalination unit. The specifications of the desalination unit are naturally vacuumed with surface area of seawater in evaporator and heating coil are 0.2 m2 and 0.188 m2, respectively. Temperature of the heating coil is simulated based on the solar radiation in the Medan city. A program to solve the governing equations in forward time step marching technique is developed. Temperature of the evaporator, fresh water production rate, and thermal efficiency of the desalination unit are analysed. Simulation is performed for 9 hours, it starts from 8.00 and finishes at 17.00 of local time. The results show that, the desalination unit with operation time of 9 hours can produce 5.705 L of freshwater and thermal efficiency is 81.8 %. This reveals that varying temperature of the heat source of natural vacuum desalination unit shows better performance in comparison with constant temperature of the heat source.
Ground Source Geothermal District Heating and Cooling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowe, James William
2016-10-21
Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reducemore » worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx« less
Grossman, G.
1982-06-16
The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.
Grossman, Gershon
1984-01-01
The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.
Envisioning an Ecologically Sustainable Campus At New England College
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paula Amato; Gregory Palmer
Appropriation funding for our project Ecologically Sustainable Campus - New England College (NH). 67.09. supported five environmental initiatives: (1) a wood pellet boiler for our Science Building, (2) solar hot water panels and systems for five campus buildings, (3) campus-wide energy lighting efficiency project, (4) new efficiency boiler system in Colby Residence Hall, and (5) energy efficient lighting system for the new artificial athletic turf field. (1) New England College purchased and installed a new wood pellet boiler in the Science Building. This new boiler serves as the primary heating source for this building. Our boiler was purchased through Newmore » England Wood Pellet, LLC, located in Jaffrey, New Hampshire. The boiler selected was a Swebo, P500. 300KW wood pellet boiler. The primary goals, objectives, and outcomes of this initiative include the installation of a wood pellet boiler system that is environmentally friendly, highly efficient, and represents a sustainable and renewable resource for New England College. This project was completed on December 15, 2010. (2) New England College purchased and installed solar hot water panels and systems for the Science Building, the Simon Center (student center), the H. Raymond Danforth Library, Gilmore Dining Hall, and Bridges Gymnasium. The College worked with Granite State Plumbing & Heating, LLC, located in Weare, New Hampshire on this project. The solar panels are manufactured by Heat Transfer; the product is Heat Transfer 30-tube collector panels (Evacuated Tube Type) with stainless steel hardware. The interior equipment includes Super Stor Ultra stainless steel super insulated storage tank, Taco 009 Bronze circulator pump, Solar Relay Control Pack, and a Taco Thermal Expansion Tank. The primary goals, objectives, and outcomes of this initiative will allow the College to utilize the sun as an energy resource. These solar hot water panels and systems will alleviate our dependency on fossil fuel as our primary fuel resource and provide a reliable energy source that supplies the hot water needs for sanitation, dishwashing at our dining facilities, and shower facilities for our athletes. This project initiative was completed on June 30, 2010. (3) New England College has completed energy efficiency lighting projects throughout campus, which included upgrades and new systems throughout our buildings. This project also installed efficiency controls for the Lee Clement Arena and refrigeration equipment in the Gilmore Dining Hall. The College worked with Atlantic Energy Solutions, located in Foxboro, Massachusetts on our 50/50 energy efficiency lighting project and campus-wide audit. The actual implementation of the project was completed by D. Poole Electrical Services, located in Center Barnstead, New Hampshire. The primary goals, objectives, and outcomes of this initiative were to install energy efficient lighting systems throughout our campus buildings, which ultimately will provide New England College with a more efficient way to manage and control its energy use. This project initiative was completed on February 15, 2010. (4) New England College purchased and installed a high efficiency and clean burning system for the Colby Residence Hall, which is the primary housing for our freshman. We purchased and installed two Buderus Boilers, model number G515/10 with two Riello Burners, model number RL 38/2. The College worked with Granite State Plumbing & Heating, LLS, located in Weare, New Hampshire on the installation of this high efficiency and clean burning system for the Colby Residence Hall. The primary goals, objectives, and outcomes for this initiative included the installation of a designed system of two boilers to provide redundancy for backup measures. This new system will provide New England College the flexibility to utilize just one smaller boiler to provide heat and hot water during non-peak periods thus continued reduction in energy use and our carbon footprint. This project initiative was completed on September 18, 2009. (5) New England College purchased and installed energy efficient lighting for our new artificial athletic turf field. The College selected Light-Structure Green lighting systems and worked with Musco Lighting, located in Oskaloosa. Iowa. The primary goals, objectives, and outcomes of this initiative were to install innovative lighting systems that significantly reduce energy costs and provide a high level of efficiency, resulting in overall utility savings to the College. This lighting technology combines the energy efficient equipment along with a focused lighting objective (field playing surface) to reduce the number of lighting heads needed to illuminate the playing surface to NCAA standards while reducing energy consumption by 50%. This project was completed on October 15, 2009.« less
NASA Astrophysics Data System (ADS)
Knapik, Maciej
2018-02-01
The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources) methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.
NASA Astrophysics Data System (ADS)
Gebhart, Trey; Baylor, Larry; Winfrey, Leigh
2016-10-01
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.
Lighting system with heat distribution face plate
Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri
2013-09-10
Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.
Heat recovery system employing a temperature controlled variable speed fan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, W.T.
1986-05-20
A heat recovery system is described for use in recovering heat from an industrial process producing a heated fluid comprising: a source of inlet air; a housing coupled to the source and including a heat exchanger; means for passing the heated fluid through the heat exchanger; the housing including means for moving a variable volume of air adjustable over a continuous range from the source through the heat exchanger; air discharge means communicating with the housing for discharging air which has passed through the heat exchanger; a control system including first temperature sensing means for sensing the discharge temperature ofmore » the discharge air moving through the discharge means and a control circuit coupled to the first temperature sensing means and to the moving means for varying the volume of air moved in response to the sensed discharge temperature to control the temperature of discharge air passing through the discharge means at a first predetermined value; and the control system including second temperature sensing means for sensing the temperature of the source of inlet air and valve means coupled to and controlled by the control circuit to cause liquid to bypass the heat exchanger when the inlet air temperature rises above a second predetermined value.« less
Self-contained small utility system
Labinov, Solomon D.; Sand, James R.
1995-01-01
A method and apparatus is disclosed to provide a fuel efficient source of readily converted energy to an isolated or remote energy consumption facility. External heat from any of a large variety of sources is converted to an electrical, mechanical, heat or cooling form of energy. A polyatomic working fluid energized by external heat sources is dissociated to a higher gaseous energy state for expansion through a turbine prime mover. The working fluid discharge from the turbine prime mover is routed to a recouperative heat exchanger for exothermic recombination reaction heat transfer to working fluid discharged from the compressor segment of the thermodynaic cycle discharge. The heated compressor discharge fluid is thereafter further heated by the external heat source to the initial higher energy state. Under the pressure at the turbine outlet, the working fluid goes out from a recouperative heat exchanger to a superheated vapor heat exchanger where it is cooled by ambient medium down to an initial temperature of condensation. Thereafter, the working fluid is condensed to a complete liquid state in a condenser cooled by an external medium. This liquid is expanded isenthalpically down to the lowest pressure of the cycle. Under this pressure, the working fluid is evaporated to the superheated vapor state of the inlet of a compressor.
Radiogenic heat production in sedimentary rocks of the Gulf of Mexico Basin, south Texas
McKenna, T.E.; Sharp, J.M.
1998-01-01
Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we calculate radiogenic heat production for Stuart City (Lower Cretaceous) limestones, Wilcox (Eocene) sandstones and mudrocks, and Frio (Oligocene) sandstones and mudrocks from south Texas. Heat production rates range from a low of 0.07 ?? 0.01 ??W/m3 in clean Stuart City limestones to 2.21 ?? 0.24??W/m3 in Frio mudrocks. Mean heat production rates for Wilcox sandstones, Frio sandstones, Wilcox mudrocks, and Frio mudrocks are 0.88, 1.19, 1.50, and 1.72 ??W/m3, respectively. In general, the mudrocks produce about 30-40% more heat than stratigraphically equivalent sandstones. Frio rocks produce about 15% more heat than Wilcox rocks per unit volume of clastic rock (sandstone/mudrock). A one-dimensional heat-conduction model indicates that this radiogenic heat source has a significant effect on subsurface temperatures. If a thermal model were calibrated to observed temperatures by optimizing basal heat-flow density and ignoring sediment heat production, the extrapolated present-day temperature of a deeply buried source rock would be overestimated.Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we calculate radiogenic heat production for Stuart City (Lower Cretaceous) limestones, Wilcox (Eocene) sandstones and mudrocks, and Frio (Oligocene) sandstones and mudrocks from south Texas. Heat production rates range from a low of 0.07??0.01 ??W/m3 in clean Stuart City limestones to 2.21??0.24 ??W/m3 in Frio mudrocks. Mean heat production rates for Wilcox sandstones, Frio sandstones, Wilcox mudrocks, and Frio mudrocks are 0.88, 1.19, 1.50, and 1.72 ??W/m3, respectively. In general, the mudrocks produce about 30-40% more heat than stratigraphically equivalent sandstones. Frio rocks produce about 15% more heat than Wilcox rocks per unit volume of clastic rock (sandstone/mudrock). A one-dimensional heat-conduction model indicates that this radiogenic heat source has a significant effect on subsurface temperatures. If a thermal model were calibrated to observed temperatures by optimizing basal heat-flow density and ignoring sediment heat production, the extrapolated present-day temperature of a deeply buried source rock would be overestimated.
On the technological development of cotton primary processing, using a new drying-purifying unit
NASA Astrophysics Data System (ADS)
Agzamov, M. M.; Yunusov, S. Z.; Gafurov, J. K.
2017-10-01
The article reflects feasibility study of conducting research on technological development of cotton primary processing with the modified parameters of drying and cleaning process for small litter. As a result of theoretical and experimental research, drying and purifying unit is designed, in which in the existing processes a heat source, exhaust fans, a dryer drum, a peg-drum cleaner of cotton and the vehicle transmitting raw cotton from the dryer to the purifier will be excluded. The experience has shown that when a drying-purifying unit is installed (with eight wheels) purifying effect on the small litter of 34%, ie cleaning effect is higher than of that currently in operation 1XK drum cleaner. According to the research patent of RU UZ FAP 00674 “Apparatus for drying and cleaning fibrous material” is received.
Kuznetsov, Stephen B.
1987-01-01
A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink.
Kuznetsov, S.B.
1987-01-13
A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink. 5 figs.
Heat exchanger with oscillating flow
NASA Technical Reports Server (NTRS)
Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)
1992-01-01
Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators, or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.
Heat exchanger with oscillating flow
NASA Technical Reports Server (NTRS)
Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)
1993-01-01
Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.
Prospects for development of heat supply systems in high-rise districts
NASA Astrophysics Data System (ADS)
Zhila, Viktor; Solovyeva, Elena
2018-03-01
The article analyzes the main advantages and disadvantages of centralized and decentralized heat supply systems in high-rise districts. The main schemes of centralized heat supply systems are considered. They include centralized heat supply from boiler houses, centralized heat supply from autonomous heat sources, heat supply from roof boiler houses and door-to-door heating supply. For each of these variant, the gas distribution systems are considered and analyzed. These systems vary depending on the heat source location. For each of these systems, technical and economic indicators are taken into account, the analysis of which allows choosing the best option for districts where high-rise buildings predominate.
Plasma-catalyzed fuel reformer
Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele
2013-06-11
A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.
The efficiency of the heat pump water heater, during DHW tapping cycle
NASA Astrophysics Data System (ADS)
Gużda, Arkadiusz; Szmolke, Norbert
2017-10-01
This paper discusses one of the most effective systems for domestic hot water (DHW) production based on air-source heat pump with an integrated tank. The operating principle of the heat pump is described in detail. Moreover, there is an account of experimental set-up and results of the measurements. In the experimental part, measurements were conducted with the aim of determining the energy parameters and measures of the economic efficiency related to the presented solution. The measurements that were conducted are based on the tapping cycle that is similar to the recommended one in EN-16147 standard. The efficiency of the air source heat pump during the duration of the experiment was 2.43. In the end of paper, authors conducted a simplified ecological analysis in order to determine the influence of operation of air-source heat pump with integrated tank on the environment. Moreover the compression with the different source of energy (gas boiler with closed combustion chamber and boiler fired by the coal) was conducted. The heat pump is the ecological friendly source of the energy.
Computational study of hydrocarbon adsorption in metal-organic framework Ni2(dhtp).
Sun, Xiuquan; Wick, Collin D; Thallapally, Praveen K; McGrail, B Peter; Dang, Liem X
2011-03-31
Enhancing the efficiency of the Rankine cycle, which is utilized for multiple renewable energy sources, requires the use of a working fluid with a high latent heat of vaporization. To further enhance its latent heat, a working fluid can be placed in a metal organic heat carrier (MOHC) with a high heat of adsorption. One such material is Ni\\DOBDC, in which linear alkanes have a higher heat of adsorption than cyclic alkanes. We carried out molecular dynamics simulations to investigate the structural, diffusive, and adsorption properties of n-hexane and cyclohexane in Ni\\DOBDC. The strong binding for both n-hexane and cyclohexane with Ni\\DOBDC is attributed to the increase of the heat of adsorption observed in experiments. Our structural results indicate the organic linkers in Ni\\DOBDC are the primary binding sites for both n-hexane and cyclohexane molecules. However, at all temperatures and loadings examined in present work, n-hexane clearly showed stronger binding with Ni\\DOBDC than cyclohexane. This was found to be the result of the ability of n-hexane to reconfigure its structure to a greater degree than cyclohexane to gain more contacts between adsorbates and adsorbents. The geometry and flexibility of guest molecules were also related to their diffusivity in Ni\\DOBDC, with higher diffusion for flexible molecules. Because of the large pore sizes in Ni\\DOBDC, energetic effects were the dominant force for alkane adsorption and selectivity.
Pyrotechnic device provides one-shot heat source
NASA Technical Reports Server (NTRS)
Haller, H. C.; Lalli, V. R.
1968-01-01
Pyrotechnic heater provides a one-shot heat source capable of creating a predetermined temperature around sealed packages. It is composed of a blend of an active chemical element and another compound which reacts exothermically when ignited and produces fixed quantities of heat.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source. (v) ASTM E 119-00a, Standard... Method for Surface Flammability of Materials Using a Radiant Heat Energy Source. (vii) ASTM E 648-00, Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source. (v) ASTM E 119-00a, Standard... Method for Surface Flammability of Materials Using a Radiant Heat Energy Source. (vii) ASTM E 648-00, Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source. (v) ASTM E 119-00a, Standard... Method for Surface Flammability of Materials Using a Radiant Heat Energy Source. (vii) ASTM E 648-00, Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Flammability of Flexible Cellular Materials Using a Radiant Heat Energy Source. (v) ASTM E 119-00a, Standard... Method for Surface Flammability of Materials Using a Radiant Heat Energy Source. (vii) ASTM E 648-00, Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source...
NASA Astrophysics Data System (ADS)
Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi
2015-01-01
Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to choose the heat source first and then design the most appropriate structure for the source by applying analytical methods. This report describes how to design a prototype of a thermoelectric power generator using the analytical approach and the results of performance evaluation tests carried out in the field.
NASA Astrophysics Data System (ADS)
Il'yaschenko, D. P.; Chinakhov, D. A.; Mamadaliev, R. A.
2018-01-01
The paper presents results the research in the effect of power sources dynamic characteristics on stability of melting and electrode metal transfer to the weld pool shielded metal arc welding. It is proved that when applying inverter-type welding power sources, heat and mass transfer characteristics change, arc gap short-circuit time and drop generation time are reduced. This leads to reduction of weld pool heat content and contraction of the heat-affected zone by 36% in comparison the same parameters obtained using a diode rectifier.
Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.
1992-01-01
An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.
X-Ray Source Heights in a Solar Flare: Thick-Target Versus Thermal Conduction Front Heating
NASA Technical Reports Server (NTRS)
Reep, J. W.; Bradshaw, S. J.; Holman, G. D.
2016-01-01
Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O'Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.
1996-01-01
This report describes the progress made during the first Quarter of a two year project to demonstrate that the air pollution from a traveling grate stoker being used to heat water at a central heating plant in Krakow Poland can be reduced significantly by replacing the unwashed, unsized coal now being used with a mechanically cleaned, double sized stoker fuel and by optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted in the other central heating plants in Krakow and indeed throughout Eastern European cities wheremore » coal is the primary source of heating fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC a central heating company in Krakow and Naftokrak-Naftobudowa, preparation plant designers and fabricators, for this effort. An evaluation of the washability characteristics of five samples of two coals (Piast and Janina) showed that {open_quotes}compliance-quality{close_quotes} stoker coals could be produced which contained less than 640 g of SO{sub 2}/KJ (1.5 lbs SO{sub 2}/MMBtu) at acceptable plant yields by washing in heavy media cyclones. A search for long-term sources of raw coal to feed the proposed new 300 tph stoker coal preparation plant was initiated. As the quantity of stoker coal that will be produced (300 tph) at the new plant will exceed the demand by MPEC, a search for other and additional potential markets was begun. Because the final cost of the stoker coal will be influenced by such factors as the plant`s proximity to both the raw coal supply and the customers, the availability and cost of utilities, and the availability of suitable refuse disposal areas, these concerns were the topic of discussions at the many meetings that were held between EFH Coal and the Polish Partners.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanai, Michio; Tomita, Tomohiko
1997-11-01
In this paper, an analysis of the heat and moisture budgets of the troposphere is revised and extended. The analysis is based on the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1994. The seasonal and interannual variability of heat sources and sinks and the nature of heating over various geographical locations is examined in detail. Results presented include global distributions of the 15-year mean of the vertically integrated heat source and moisture sink and the outgoing longwave radiation flux for northern winter and northern summer. A time series of monthlymore » mean anomalies of the apparent heat source, the apparent moisture sink, outgoing longwave radiation, sea surface temperature, and divergence at wind fields of 850 hPa and 200 hPa are presented for the equatorial Indian Ocean, the equatorial eastern Pacific Ocean, western Tibet, and eastern Tibet. In the equatorial Indian Ocean, short period oscillation is superimposed upon longer periods. Over the eastern Pacific, a longer periodicity is dominant and the variability of the heat source is very well correlated with similar variations of outgoing longwave radiation, sea surface temperature, and horizontal divergence. The high correlation with these variables suggests that anomalous heating is accompanied by intensified convective activity favored by warmer sea surface temperature. 13 refs., 5 figs.« less
NASA Astrophysics Data System (ADS)
Akhmetova, I. G.; Chichirova, N. D.
2017-11-01
When conducting an energy survey of heat supply enterprise operating several boilers located not far from each other, it is advisable to assess the degree of heat supply efficiency from individual boiler, the possibility of energy consumption reducing in the whole enterprise by switching consumers to a more efficient source, to close in effective boilers. It is necessary to consider the temporal dynamics of perspective load connection, conditions in the market changes. To solve this problem the radius calculation of the effective heat supply from the thermal energy source can be used. The disadvantage of existing methods is the high complexity, the need to collect large amounts of source data and conduct a significant amount of computational efforts. When conducting an energy survey of heat supply enterprise operating a large number of thermal energy sources, rapid assessment of the magnitude of the effective heating radius requires. Taking into account the specifics of conduct and objectives of the energy survey method of calculation of effective heating systems radius, to use while conducting the energy audit should be based on data available heat supply organization in open access, minimize efforts, but the result should be to match the results obtained by other methods. To determine the efficiency radius of Kazan heat supply system were determined share of cost for generation and transmission of thermal energy, capital investment to connect new consumers. The result were compared with the values obtained with the previously known methods. The suggested Express-method allows to determine the effective radius of the centralized heat supply from heat sources, in conducting energy audits with the effort minimum and the required accuracy.
Heat pipe array heat exchanger
Reimann, Robert C.
1987-08-25
A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.
NASA Astrophysics Data System (ADS)
Min, H.; Hu, W.; Zheng, J.; Guo, S.; Wu, Y.; Zeng, L.; Lu, S.; Xie, S.; Zhang, Y.
2017-12-01
Severe regional haze problem in the megacity Beijing and surrounding areas has attracted much attention in recent years. In order to investigate the secondary formation and aging process of urban aerosols, intensive campaigns were conducted in the winter of 2010 and 2013 at an urban site in Beijing. An Aerodyne high resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) was deployed to measure chemical components of PM1, coupled with multiple state of the art online instruments. In the winter of 2010, PM1 mass concentrations changed dramatically along with meteorological conditions. The high average fraction (58%) of primary species in PM1 indicated that primary emissions usually played a more important role. Based on the source apportionment results, 45% POA are from non-fossil sources, contributed by cooking OA and biomass burning OA (BBOA). Cooking OA, accounting for 13-24% of OA, is an important non-fossil carbon source in all years of Beijing and should not be neglected. The fossil sources of POA include hydrocarbon-like OA from vehicle emissions and coal combustion OA (CCOA). The CCOA and BBOA were the two main contributors (57% of OA) for the highest OA concentrations (>100 μg m-3). In the winter of 2013, OOA (MO-OOA and LO-OOA), accounted for 50% of PM1, while (OOA+SNA) contributed 60-80%, suggesting that secondary formation played an important role in the PM pollution. In the winter of 2010 higher OOA/Ox (= NO2 + O3) ratio (0.49 μg m-3 ppb-1) than these ratios from western cities (0.03-0.16 μg m-3 ppb-1) was observed, which may be due to the aqueous reaction or extra SOA formation contributed by semi-VOCs from various primary sources (e.g., BBOA or CCOA). However, aqueous chemistry resulting in efficient secondary formation during occasional periods with high relative humidity may also contribute substantially to haze in winter. CCOA was only identified in winter due to domestic heating. These results signified that the comprehensive management for biomass burning and coal combustion emissions is needed. Further strengthening the regional emission control of primary particulate and precursors of secondary species is expected.
Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; ...
2017-08-11
To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ~1 GW/m 2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured in this paper with two pulse lengths and tested under a solenoidal magneticmore » field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. Finally, the tungsten target plate is analyzed for surface damage using a scanning electron microscope.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.
To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ~1 GW/m 2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured in this paper with two pulse lengths and tested under a solenoidal magneticmore » field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. Finally, the tungsten target plate is analyzed for surface damage using a scanning electron microscope.« less
NASA Astrophysics Data System (ADS)
Poston, Terry L.
1989-10-01
The invention relates generally to the art of self-contained heating devices and in particular to portable heating devices employing chemical reaction to produce heat. Currently, hand-held heat sources, capable of producing heat at a sufficiently high temperature to activate heat-shrink material, rely on either the combustion of flammable material or electrical power to provide energy for generating the required heat. An object of the present invention is to provide a portable device capable of providing sufficient heat to shrink heat-shrinkable tubing. A further object of the invention is to provide a non-flammable heat source suitable for use in the presence of explosive atmospheres. Still another object of the invention is to provide a portable hand-held device for generating heat which can be directed to a specific location on a work surface.
A LOW-E MAGIC ANGLE SPINNING PROBE FOR BIOLOGICAL SOLID STATE NMR AT 750 MHz
McNeill, Seth A.; Gor’kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.
2009-01-01
Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as “Low-E,” was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the Low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane embedded peptides. PMID:19138870
NASA Astrophysics Data System (ADS)
Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T.
2012-11-01
Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control ±10K around 1500°C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.
Experimental investigation on water quality standard of Yangtze River water source heat pump.
Qin, Zenghu; Tong, Mingwei; Kun, Lin
2012-01-01
Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.
Numerical calculation of a sea water heta exchanger using Simulink softwear
NASA Astrophysics Data System (ADS)
Preda, A.; Popescu, L. L.; Popescu, R. S.
2017-08-01
To highlight the heat exchange taking place between seawater as primary agent and the working fluid (water, glycol or Freon) as secondary agent, I have used the Simulink softwear in order to creat a new sequence for numerical calculation of heat exchanging. For optimum heat transfer we opted for a counter movement. The model developed to view the dynamic behavior of the exchanger consists of four interconnected levelsess. In the simulations was found that a finer mesh of the whole exchanger lead to results much closer to reality. There have been various models meshing, starting from a single cell and then advancing noticed an improvement in resultsSimulations were made in both the summer and the winter, using as a secondary agent process water and glycol solution. Studying heat transfer that occurs in the primary exchanger of a heat pump, having the primary fluid sea water with this program, we get the data plausible and worthy of consideration. Inserting into the program, the seasonal water temperatures of Black Sea water layers, we get a encouraging picture about storage capacity and heat transfer of sea water.
NASA Technical Reports Server (NTRS)
1980-01-01
Data and information established for heat sources balance of plant items, thermal energy storage, and heat pumps are presented. Design case descriptions are given along with projected performance values. Capital cost estimates for representative cogeneration plants are also presented.
Heat transfer to four fineness-ratio-1.6 hexagonal prisms with various corner radii at Mach 6
NASA Technical Reports Server (NTRS)
Hunt, J. L.
1972-01-01
An investigation was conducted in the Langley 20-inch Mach 6 tunnel to define the aerodynamic heat transfer to the radioisotope fuel cask (heat source) of the SNAP-19/Pioneer power system. The shape of the SNAP-19/Pioneer heat source is that of a hexagonal prism with flat ends; the fineness ratio, based on maximum (edge to edge) diameter, is 1.61. Phase-change-paint heat-transfer data and schlieren photographs were obtained on four possible 1/2-scale entry configurations of the SNAP-19/Pioneer heat source. Tests were conducted over a wide range of attitudes and at nominal Reynolds numbers, based on the length of the unablated configuration, of 33,000; 84,000; and 2,200,000.
NASA Technical Reports Server (NTRS)
Faghri, A.; Cao, Y.; Buchko, M.
1991-01-01
Experimental profiles for heat pipe startup from the frozen state were obtained, using a high-temperature sodium/stainless steel pipe with multiple heat sources and sinks to investigate the startup behavior of the heat pipe for various heat loads and input locations, with both low and high heat rejection rates at the condensor. The experimental results of the performance characteristics for the continuum transient and steady-state operation of the heat pipe were analyzed, and the performance limits for operation with varying heat fluxes and location are determined.
NASA Astrophysics Data System (ADS)
Kuzevanov, V. S.; Garyaev, A. B.; Zakozhurnikova, G. S.; Zakozhurnikov, S. S.
2017-11-01
A porous wet medium with solid and gaseous components, with distributed or localized heat sources was considered. The regimes of temperature changes at the heating at various initial material moisture were studied. Mathematical model was developed applied to the investigated wet porous multicomponent medium with internal heat sources, taking into account the transfer of the heat by heat conductivity with variable thermal parameters and porosity, heat transfer by radiation, chemical reactions, drying and moistening of solids, heat and mass transfer of volatile products of chemical reactions by flows filtration, transfer of moisture. The algorithm of numerical calculation and the computer program that implements the proposed mathematical model, allowing to study the dynamics of warming up at a local or distributed heat release, in particular the impact of the transfer of moisture in the medium on the temperature field were created. Graphs of temperature change were obtained at different points of the graphics with different initial moisture. Conclusions about the possible control of the regimes of heating a solid porous body by the initial moisture distribution were made.
NASA Astrophysics Data System (ADS)
Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.
2018-05-01
The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.
NASA Astrophysics Data System (ADS)
Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.
2018-02-01
The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.
Waste heat driven absorption refrigeration process and system
Wilkinson, William H.
1982-01-01
Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.
Solid State Welding Development at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Ding, Robert J.; Walker, Bryant
2012-01-01
What is TSW and USW? TSW is a solid state weld process consisting of an induction coil heating source, a stir rod, and non-rotating containment plates Independent heating, stirring and forging controls Decouples the heating, stirring and forging process elements of FSW. USW is a solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate; Ultrasonic energy integrated into non-rotating containment plate and stir rod; Independent heating, stirring and forging controls; Decouples the heating, stirring and forging process elements of FSW.
Modular Heat Exchanger With Integral Heat Pipe
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
1992-01-01
Modular heat exchanger with integral heat pipe transports heat from source to Stirling engine. Alternative to heat exchangers depending on integrities of thousands of brazed joints, contains only 40 brazed tubes.
NASA Astrophysics Data System (ADS)
Yonezawa, Toshio; Watanabe, Masashi; Hashimoto, Atsushi
2015-06-01
Primary water stress corrosion cracking growth rates (PWSCCGRs) in highly cold-worked thermally treated (TT) Alloy 690 have been recently reported as exhibiting significant heat-to-heat variability. Authors hypothesized that these significant differences could be due to the metallurgical characteristics of each heat. In order to confirm this hypothesis, the effect of fundamental metallurgical characteristics on PWSCCGR measurements in cold-worked TT Alloy 690 has been investigated. The following new observations were made in this study: (1) Microcracks and voids were observed in or near eutectic crystals of grain boundary (GB) M23C6 carbides (primary carbides) after cold rolling, but were not observed before cold rolling. These primary carbides with microcracks and voids were observed in both lightly forged and as-cast and cold-rolled TT Alloy 690 (heat A) as well as in a cold-rolled TT Alloy 690 (heat Y) that simulated the chemical composition and carbide banded structure of the material previously tested by Paraventi and Moshier. However, this was not observed in precipitated (secondary) M23C6 GB carbides in heavily forged and cold-rolled TT Alloy 690 heat A and a cold-rolled commercial TT Alloy 690. (2) From microstructural analyses carried out on the various TT Alloy 690 test materials before and after cold rolling, the amount of eutectic crystals (primary carbides and nitrides) M23C6 and TiN depended on the chemical composition. In particular, the amount of M23C6 depended on the fabrication process. Microcracks and voids in or near the M23C6 and TiN precipitates were generated by the cold rolling process. (3) The PWSCCGRs observed in TT Alloy 690 were different for each heat and fabrication process. The PWSCCGR decreased with increasing Vickers hardness of each heat. However, for the same heats and fabrication processes, the PWSCCGR increased with increasing Vickers hardness due to cold work. Thus, the PWSCCGR must be affected not only by hardness (or equivalently the cold working ratio) but also by grain size, microcracks, and voids of primary M23C6 carbides, etc., which in turn depend on chemical composition and the fabrication process.
Ramsey, J M; Salinas, E; Rodríguez, M H
1996-05-01
Naturally acquired transmission-blocking immunity to Plasmodium vivax was studied in three groups of patients from the southern coast of Mexico: primary cases (Group A, 61% of the study population), secondary cases with the prior infection seven or more months earlier (Group B, 23%), and secondary cases with the previous malaria experience within six months of the present study (Group C, 16%). Anopheles albimanus mosquitoes were fed with patients' infected blood cells in the presence of autologous or control serum, with or without heat-inactivation. Patients from all three groups had transmission-blocking immunity, although the quality and quantity of this blocking activity was significantly higher in the two secondary patient groups (B and C). Only primary malaria cases produced transmission-enhancing activity (23% of the cases), which was dependent on heat-labile serum components. The levels of patient group transmission-blocking immunity and mosquito infectivity were used to calculate the probabilities of a mosquito becoming infective after taking a blood meal from a P. vivax-infected patient from any one of the three groups. This probability was 0.025, with Group A patients providing the major source of these infections (92% risk from Group A and 4% risk for Groups B and C).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sackl, S., E-mail: stephanie.sackl@unileoben.ac.at
The continuous heat treatment of high speed steels reduces the process times from several hours to a few minutes. The resulting cost savings as well as lower decarburisation and distortion make the continuous heat treatment favourable over an isothermal heat treatment. However, the microstructure-property relationship during continuous heat treatments is far from being well understood. In order to identify the key microstructural features for the future optimisation of continuous heat treatments of high speed steels this study compares a current industrial continuous and an isothermal heat treatment of steel HS 6-5-2 by means of light optical microscopy, scanning electron microscopy,more » X-ray diffraction, atom probe tomography, and red hardness. After continuous hardening the content of primary carbides is higher and the amount of retained austenite is lower compared to isothermal hardening. Due to the reduced time for dissolution of primary carbides a lower content of alloying elements is present in the martensitic matrix for subsequent tempering. Therefore, the chemical composition of the secondary hardening carbides after tempering is different for a continuous heat treatment. Although the difference in chemistry is quite pronounced, the deterioration of the hardness at elevated temperatures, which strongly influences the performance characteristics of the finished parts, is not altered. - Highlights: •We studied the continuous and isothermal heat treatment of the steel HS 6-5-2. •The amount of primary carbides is higher in a continuously heat treated steel. •The chemistry of secondary hardening carbides changes during tempering. •Continuously heat treated steels exhibit the same performance characteristics.« less
Air source integrated heat pump simulation model for EnergyPlus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; New, Joshua; Baxter, Van
An Air Source Integrated Heat Pump (AS-IHP) is an air source, multi-functional spacing conditioning unit with water heating function (WH), which can lead to great energy savings by recovering the condensing waste heat for domestic water heating. This paper summarizes development of the EnergyPlus AS-IHP model, introducing the physics, sub-models, working modes, and control logic. Based on the model, building energy simulations were conducted to demonstrate greater than 50% annual energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, using the EnergyPlus quick-service restaurant template building. We assessed water heating energy savingmore » potentials using AS-IHP versus both gas and electric baseline systems, and pointed out climate zones where AS-IHPs are promising. In addition, a grid integration strategy was investigated to reveal further energy saving and electricity cost reduction potentials, via increasing the water heating set point temperature during off-peak hours and using larger water tanks.« less
Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre
NASA Astrophysics Data System (ADS)
Yin, Baoquan; Wu, Xiaoting
2018-02-01
In this paper, the temperature distribution of the geothermal field for the vertical borehole ground-coupled heat pump was tested and analysed. Besides the borehole ground-coupled heat pump, the system composed of the ice storage, heat supply network and cooling tower. According to the operation data for nearly three years, the temperature constant zone is in the ground depth of 40m -120m with a temperature gradient of about 3.0°C/100m. The temperature of the soil dropped significantly in the heating season, increased significantly in the cooling season, and reinstated in the transitional season. With the energy balance design of the heating and cooling and the existence of the soil thermal inertia, the soil temperature stayed in a relative stable range and the ground source heat pump system was operated with a relative high efficiency. The geothermal source heat pump was shown to be applicable for large scale utilization.
NASA Astrophysics Data System (ADS)
Matsui, Y.; Watanabe, T.; Satani, T.; Muramatsu, M.; Tanaka, K.; Kitagawa, A.; Yoshida, Y.; Sato, F.; Kato, Y.; Iida, T.
2008-11-01
Multiply charged iron ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with the induction coil which is made from bare molybdenum wire and surrounding the pure iron rod. We optimize the shape of induction heating coil and operation of rf power supply. We conduct experiment to investigate reproducibility and stability in the operation and heating efficiency. Induction heating evaporator produces pure material vapor, because materials directly heated by eddy currents have non-contact with insulated materials which are impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10-4 to 10-3 Pa. We measure temperature of iron rod and film deposition rate by depositing iron vapor to crystal oscillator. We confirm stability and reproducibility of evaporator enough to conduct experiment in ECR ion source. We can obtain required temperature of iron under maximum power of power supply. We are aiming the evaporator higher melting point material than iron.
NASA Astrophysics Data System (ADS)
Khalid, Izzati Khalidah; Mokhtar, Nor Fadzillah Mohd; Bakri, Nur Amirah; Siri, Zailan; Ibrahim, Zarina Bibi; Gani, Siti Salwa Abd
2017-11-01
The onset of oscillatory magnetoconvection for an infinite horizontal nanofluid layer subjected to Soret effect and internal heat source heated from below is examined theoretically with the implementation of linear stability theory. Two important properties that are thermophoresis and Brownian motion are included in the model and three types of lower-upper bounding systems of the model: rigid-rigid, rigid-free as well as free-free boundaries are examined. Eigenvalue equations are gained from a normal mode analysis and executed using Galerkin technique. Magnetic field effect, internal heat source effect, Soret effect and other nanofluid parameters on the oscillatory convection are presented graphically. For oscillatory mode, it is found that the effect of internal heat source is quite significant for small values of the non-dimensional parameter and elevating the internal heat source speed up the onset of convection. Meanwhile, the increasing of the strength of magnetic field in a nanofluid layer reduced the rate of thermal instability and sustain the stabilization of the system. For the Soret effect, the onset of convection in the system is accelerated when the values of the Soret effect is increased.
Infant otitis media and the use of secondary heating sources.
Pettigrew, Melinda M; Gent, Janneane F; Triche, Elizabeth W; Belanger, Kathleen D; Bracken, Michael B; Leaderer, Brian P
2004-01-01
This prospective study investigated the association of exposure to indoor secondary heating sources with otitis media and recurrent otitis media risk in infants. We enrolled mothers living in nonsmoking households and delivering babies between 1993 and 1996 in 12 Connecticut and Virginia hospitals. Biweekly telephone interviews during the first year of life assessed diagnoses from doctors' office visits and use of secondary home heating sources, air conditioner use, and day care. Otitis media episodes separated by more than 21 days were considered to be unique episodes. Recurrent otitis media was defined as 4 or more episodes of otitis media. Repeated-measures logistic regression modeling evaluated the association of kerosene heater, fireplace, or wood stove use with otitis media episodes while controlling for potential confounders. Logistic regression evaluated the relation of these secondary heating sources with recurrent otitis media. None of the secondary heating sources were associated with otitis media or with recurrent otitis media. Otitis media was associated with day care, the winter heating season, birth in the fall, white race, additional children in the home, and a maternal history of allergies in multivariate models. Recurrent otitis media was associated with day care, birth in the fall, white race, and a maternal history of allergies or asthma. We found no evidence that the intermittent use of secondary home heating sources increases the risk of otitis media or recurrent otitis media. This study confirms earlier findings regarding the importance of day care with respect to otitis media risk.
Heat exchanger with leak detecting double wall tubes
Bieberbach, George; Bongaards, Donald J.; Lohmeier, Alfred; Duke, James M.
1981-01-01
A straight shell and tube heat exchanger utilizing double wall tubes and three tubesheets to ensure separation of the primary and secondary fluid and reliable leak detection of a leak in either the primary or the secondary fluids to further ensure that there is no mixing of the two fluids.
Preliminary design study of an alternate heat source assembly for a Brayton isotope power system
NASA Technical Reports Server (NTRS)
Strumpf, H. J.
1978-01-01
Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.
Source replenishment device for vacuum deposition
Hill, Ronald A.
1988-01-01
A material source replenishment device for use with a vacuum deposition apparatus. The source replenishment device comprises an intermittent motion producing gear arrangement disposed within the vacuum deposition chamber. An elongated rod having one end operably connected to the gearing arrangement is provided with a multiarmed head at the opposite end disposed adjacent the heating element of the vacuum deposition apparatus. An inverted U-shaped source material element is releasably attached to the outer end of each arm member whereby said multiarmed head is moved to locate a first of said material elements above said heating element, whereupon said multiarmed head is lowered to engage said material element with the heating element and further lowered to release said material element on the heating element. After vaporization of said material element, second and subsequent material elements may be provided to the heating element without the need for opening the vacuum deposition apparatus to the atmosphere.
Source replenishment device for vacuum deposition
Hill, R.A.
1986-05-15
A material source replenishment device for use with a vacuum deposition apparatus is described. The source replenishment device comprises an intermittent motion producing gear arrangement disposed within the vacuum deposition chamber. An elongated rod having one end operably connected to the gearing arrangement is provided with a multiarmed head at the opposite end disposed adjacent the heating element of the vacuum deposition apparatus. An inverted U-shaped source material element is releasably attached to the outer end of each arm member whereby said multiarmed head is moved to locate a first of said material elements above said heating element, whereupon said multiarmed head is lowered to engage said material element with the heating element and further lowered to release said material element on the heating element. After vaporization of said material element, second and subsequent material elements may be provided to the heating element without the need for opening the vacuum deposition apparatus to the atmosphere.
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott (Inventor); Winfree, William P. (Inventor)
1999-01-01
A method and a portable apparatus for the nondestructive identification of defects in structures. The apparatus comprises a heat source and a thermal imager that move at a constant speed past a test surface of a structure. The thermal imager is off set at a predetermined distance from the heat source. The heat source induces a constant surface temperature. The imager follows the heat source and produces a video image of the thermal characteristics of the test surface. Material defects produce deviations from the constant surface temperature that move at the inverse of the constant speed. Thermal noise produces deviations that move at random speed. Computer averaging of the digitized thermal image data with respect to the constant speed minimizes noise and improves the signal of valid defects. The motion of thermographic equipment coupled with the high signal to noise ratio render it suitable for portable, on site analysis.
Ecker, Amir L.
1983-01-01
A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.
Induced natural convection thermal cycling device
Heung, Leung Kit [Aiken, SC
2002-08-13
A device for separating gases, especially isotopes, by thermal cycling of a separation column using a pressure vessel mounted vertically and having baffled sources for cold and heat. Coils at the top are cooled with a fluid such as liquid nitrogen. Coils at the bottom are either electrical resistance coils or a tubular heat exchange. The sources are shrouded with an insulated "top hat" and simultaneously opened and closed at the outlets to cool or heat the separation column. Alternatively, the sources for cold and heat are mounted separately outside the vessel and an external loop is provided for each circuit.
Process to create simulated lunar agglutinate particles
NASA Technical Reports Server (NTRS)
Gustafson, Robert J. (Inventor); Gustafson, Marty A. (Inventor); White, Brant C. (Inventor)
2011-01-01
A method of creating simulated agglutinate particles by applying a heat source sufficient to partially melt a raw material is provided. The raw material is preferably any lunar soil simulant, crushed mineral, mixture of crushed minerals, or similar material, and the heat source creates localized heating of the raw material.
NASA Technical Reports Server (NTRS)
Schrage, Dean S. (Inventor)
1993-01-01
The present invention is directed to an augmented thermal bus. In the present design a plurity of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pump to maintain isothermality in the source.
NASA Technical Reports Server (NTRS)
Schrage, Dean S. (Inventor)
1996-01-01
The present invention is directed to an augmented thermal bus. In the present design a plurality of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pumps to maintain isothermality in the source.
Mohajerani, Abbas; Bakaric, Jason; Jeffrey-Bailey, Tristan
2017-07-15
The Urban Heat Island (UHI) is a phenomenon that affects many millions of people worldwide. The higher temperatures experienced in urban areas compared to the surrounding countryside has enormous consequences for the health and wellbeing of people living in cities. The increased use of manmade materials and increased anthropogenic heat production are the main causes of the UHI. This has led to the understanding that increased urbanisation is the primary cause of the urban heat island. The UHI effect also leads to increased energy needs that further contribute to the heating of our urban landscape, and the associated environmental and public health consequences. Pavements and roofs dominate the urban surface exposed to solar irradiation. This review article outlines the contribution that pavements make to the UHI effect and analyses localized and citywide mitigation strategies against the UHI. Asphalt Concrete (AC) is one of the most common pavement surfacing materials and is a significant contributor to the UHI. Densely graded AC has low albedo and high volumetric heat capacity, which results in surface temperatures reaching upwards of 60 °C on hot summer days. Cooling the surface of a pavement by utilizing cool pavements has been a consistent theme in recent literature. Cool pavements can be reflective or evaporative. However, the urban geometry and local atmospheric conditions should dictate whether or not these mitigation strategies should be used. Otherwise both of these pavements can actually increase the UHI effect. Increasing the prevalence of green spaces through the installation of street trees, city parks and rooftop gardens has consistently demonstrated a reduction in the UHI effect. Green spaces also increase the cooling effect derived from water and wind sources. This literature review demonstrates that UHI mitigation techniques are best used in combination with each other. As a result of the study, it was concluded that the current mitigation measures need development to make them relevant to various climates and throughout the year. There are also many possible sources of future study, and alternative measures for mitigation have been described, thereby providing scope for future research and development following this review. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guilderson, T. P.; McFarlane, K. J.; McNicol, G.; Hanson, P. J.; Chanton, J.; Wilson, R.; Bosworth, R.; Singleton, M. J.
2015-12-01
A significant uncertainty in future land-surface carbon budgets is the response of wetlands to climate change. A related question is the future net climate (radiative) forcing impact due to ecosystem and environmental change in wetlands. Active wetlands emit both CO2 and CH4 to the atmosphere. CH4 is, over a few decades, a much more potent greenhouse gas than CO2 whereas as a consequence of a much longer atmospheric lifetime, CO2 has a longer 'tail' to its influence. Whether wetlands are a net source or sink of atmospheric carbon under future climate change will depend on the response of the ecosystem to rising temperatures and elevated CO2. The largest uncertainty in future wetland budgets, and its climate forcing, is the stability of the large belowground carbon stocks, often in the form of peat, and the partitioning of CO2 and CH4released via ecosystem respiration. We have characterized the isotopic signatures (14,13C of CO2 and CH4, D-CH4) of the respired carbon used for the production of CO2 and CH4 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) site in the Marcell Experimental Forest, which contains replicated mesocosm manipulations including above/below ground warming and elevated CO2. Deep warming (1-2 m) was initiated in July of 2014 and above ground heating will be initiated in July 2015. Comparison of the respired CO2 and CH4with recently fixed photosynthate, below-ground peat (up to 11,000 years old), and dissolved organic carbon allow us to determine the primary substrates used by the microbial community. Control and pre-perturbed plots are characterized by the consumption and respiration of recently fixed photosynthate and recent (few years to 15 yr) carbon. Although CH4 fluxes have begun to respond to deep-heating, the source of carbon remains similar in the control and perturbed plots. Respired CO2 remains consistent with being sourced from carbon only a few years old. We will present additional data collected in July, August, and September 2015 which will include the combined influence of above and belowground heating.
GAMSOR: Gamma Source Preparation and DIF3D Flux Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M. A.; Lee, C. H.; Hill, R. N.
2016-12-15
Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron absorption reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problemsmore » with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence. With the GAMSOR capability, users can take any valid steady state DIF3D calculation and compute the power distribution due to neutron and gamma heating. The MC2-3 code is the preferable companion code to use for generating neutron and gamma cross section data, but the GAMSOR code can accept cross section data from other sources. To further this aspect, an additional utility code was created which demonstrates how to merge the neutron and gamma cross section data together to carry out a simultaneous solve of the two systems.« less
Forced and natural convection in aggregate-laden nanofluids
NASA Astrophysics Data System (ADS)
Thajudeen, Thaseem; Hogan, Christopher J.
2011-12-01
A number of experimental and theoretical studies of convective heat transfer in nanofluids (liquid suspensions of nanoparticles, typically with features below 100 nm in size) reveal contrasting results; nanoparticles can either enhance or reduce the convective heat transfer coefficient. These disparate conclusions regarding the influence of nanoparticles on convective heat transfer may arise due to the aggregation of nanoparticles, which is often not considered in studies of nanofluids. Here, we examine theoretically forced and natural convective heat transfer of aggregate-laden nanofluids using Monte Carlo-based models to determine how the aggregate morphology influences the convective heat transfer coefficient. Specifically, in this study, it is first shown that standard heat transfer correlations should apply to nanofluids, and the main influence of the nanoparticles is to alter suspension thermal conductivity, dynamic viscosity, density, specific heat, and thermal expansion coefficient. Aggregated particles in suspension are modeled as quasi-fractal aggregates composed of individual primary particles described by the primary particle radius, number of primary particles, fractal (Hausdorff) dimension, pre-exponential factor, and degree of coalescence between primary particles. A sequential algorithm is used to computationally generate aggregates with prescribed morphological descriptors. Four types of aggregates are considered; spanning the range of aggregate morphologies observed in nanofluids. For each morphological type, the influences of aggregates on nanofluid dynamic viscosity and thermal conductivity are determined via first passage-based Brownian dynamics calculations. It is found that depending on both the material properties of the nanoparticles as well as the nanoparticle morphology, the addition of nanoparticles to a suspension can either increase or decrease both the forced and natural convective heat transfer coefficients, with both a 51% increase and a 32% decrease in the heat transfer coefficient achievable at particle volume fractions of 0.05. This study shows clearly that the influence of particle morphology needs to be accounted for in all studies of heat transfer in nanofluids.
Active microchannel heat exchanger
Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA
2001-01-01
The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.
Method for forming synthesis gas using a plasma-catalyzed fuel reformer
Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele
2015-04-28
A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.
Villalobos, Ana M; Barraza, Francisco; Jorquera, Héctor; Schauer, James J
2017-06-01
Temuco is a mid-size city representative of severe wood smoke pollution in southern Chile; i.e., ambient 24-h PM 2.5 concentrations have exceeded 150 μg/m 3 in the winter season and the top concentration reached 372 μg/m 3 in 2010. Annual mean concentrations have decreased but are still above 30 μg/m 3 . For the very first time, a molecular marker source apportionment of ambient organic carbon (OC) and PM 2.5 was conducted in Temuco. Primary resolved sources for PM 2.5 were wood smoke (37.5%), coal combustion (4.4%), diesel vehicles (3.3%), dust (2.2%) and vegetative detritus (0.7%). Secondary inorganic PM 2.5 (sulfates, nitrates and ammonium) contributed 4.8% and unresolved organic aerosols (generated from volatile emissions from incomplete wood combustion), including secondary organic aerosols, contributed 47.1%. Adding the contributions of unresolved organic aerosols to those from primary wood smoke implies that wood burning is responsible for 84.6% of the ambient PM 2.5 in Temuco. This predominance of wood smoke is ultimately due to widespread poverty and a lack of efficient household heating methods. The government has been implementing emission abatement policies but achieving compliance with ambient air quality standards for PM 2.5 in southern Chile remains a challenge. Copyright © 2017 Elsevier Ltd. All rights reserved.
North Pacific Origins of Northern Hemisphere Glaciations: The View from the Kuroshio Extension
NASA Astrophysics Data System (ADS)
Venti, N. L.; Billups, K.; Herbert, T.
2013-12-01
In modern climate, westerly winds augmented by the East Asian winter monsoon (EAWM) cause prodigious ocean-atmosphere heat flux (>100 Wm-2) and provide the primary source of iron to the micronutrient-limited North Pacific. Here we present a suite of high-resolution (2500-year time step) Plio-Pleistocene (3.00-1.76 Ma) proxy records generated in the Kuroshio Current Extension (KCE; Ocean Drilling Program Site 1208). These suggest regularly increased interaction of the EAWM with the North Pacific Ocean prior to obliquity-paced Northern Hemisphere glaciations (NHG). We propose that in the Pleistocene, obliquity-paced EAWM intensification caused NHG by 1) advecting heat and moisture to the atmosphere for snow fall over North America and 2) delivering iron via dust to fertilize the basin, thereby increasing primary productivity and reducing atmospheric CO2 concentrations. To further test this hypothesis, we are exploring appropriate dust proxies and high-resolution CO2 reconstruction. To examine heat transfer, we reconstruct seasonal sea surface temperature (SST) by comparing summer hydrography (salinity and temperature) to a mean annual SST estimate. Planktic foraminifer (warm-water dwelling Globigerinoides ruber) Δδ18O values reflect summer hydrography--KCE warmth. An alkenone-based annual mean SST estimate, on the other hand, incorporates winter cooling from EAWM-enhanced westerlies. With NHG onset at 2.73 Ma, summer SST increases while mean annual SST decreases, suggesting increased heat loss from the subtropical ocean to the mid-latitude atmosphere. On the orbital scale, summer hydrography varies with summer/fall overhead insolation at the 19-kyr precessional band, but not obliquity, a common low-latitude pattern. In contrast, mean annual SST varies primarily at the 41-kyr obliquity period, SST cycles leading high-latitude climate (benthic foraminifer δ18O values). This consistent relationship implies that increased ocean-atmosphere heat transfer in the NW Pacific contributed to rather than resulted from the glaciations. Alkenone mass accumulation rate (MAR), sediment lithology, and magnetic susceptibility support CO2 changes. Alkenone MAR reflects primary productivity because these recalcitrant compounds are produced by certain species of haptophyte algae. Increased productivity and macronutrient (Si, P, N) availability with NHG onset are inferred from increased mean alkenone MAR and decreased sediment reflectance values (low L*; opal-rich sediments) after 2.73 Ma. Like sea surface cooling, the primary productivity and macronutrient proxies vary primarily at 41-kyr periodicity, with regular increases preceding glaciations. Finally, magnetic susceptibility/accumulation should reflect eolian deposition of dust from Asia--EAWM intensity. Increased magnetic accumulation also regularly precedes obliquity-paced glaciations, but with a particularly long lead. This unusual timing may result from contributions of other considerations besides EAWM intensity, such as pedogenic processes affecting oxide phases in Asia.
Solar-powered Rankine heat pump for heating and cooling
NASA Technical Reports Server (NTRS)
Rousseau, J.
1978-01-01
The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.
Simulation and energy analysis of distributed electric heating system
NASA Astrophysics Data System (ADS)
Yu, Bo; Han, Shenchao; Yang, Yanchun; Liu, Mingyuan
2018-02-01
Distributed electric heating system assistssolar heating systemby using air-source heat pump. Air-source heat pump as auxiliary heat sourcecan make up the defects of the conventional solar thermal system can provide a 24 - hour high - efficiency work. It has certain practical value and practical significance to reduce emissions and promote building energy efficiency. Using Polysun software the system is simulated and compared with ordinary electric boiler heating system. The simulation results show that upon energy request, 5844.5kW energy is saved and 3135kg carbon - dioxide emissions are reduced and5844.5 kWhfuel and energy consumption is decreased with distributed electric heating system. Theeffect of conserving energy and reducing emissions using distributed electric heating systemis very obvious.
A regional comparison of solar, heat pump, and solar-heat pump systems
NASA Astrophysics Data System (ADS)
Manton, B. E.; Mitchell, J. W.
1982-08-01
A comparative study of the thermal and economic performance of the parallel and series solar heat pump systems, stand alone solar and stand alone heat pump systems for residential space and domestic hot water heating for the U.S. using FCHART 4.0 is presented. Results show that the parallel solar heat pump system yields the greatest energy savings in the south. Very low cost collectors (50-150 dollars/sq m) are required for a series solar heat pump system in order for it to compete economically with the better of the parallel or solar systems. Conventional oil or gas furnaces need to have a seasonal efficiency of at least 70-85% in order to save as much primary energy as the best primary system in the northeast. In addition, the implications of these results for current or proposed federal tax credit measures are discussed.
Research status and evaluation system of heat source evaluation method for central heating
NASA Astrophysics Data System (ADS)
Sun, Yutong; Qi, Junfeng; Cao, Yi
2018-02-01
The central heating boiler room is a regional heat source heating center. It is also a kind of the urban environment pollution, it is an important section of building energy efficiency. This article through to the evaluation method of central heating boiler room and overviews of the researches during domestic and overseas, summarized the main influence factors affecting energy consumption of industrial boiler under the condition of stable operation. According to the principle of establishing evaluation index system. We can find that is great significance in energy saving and environmental protection for the content of the evaluation index system of the centralized heating system.
NASA Technical Reports Server (NTRS)
Chen, Ming-Ming; Faghri, Amir
1990-01-01
A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.
NASA Astrophysics Data System (ADS)
Erdmann, Michael; Horsfield, Brian
2006-08-01
Gas generation in the deep reaches of sedimentary basins is usually considered to take place via the primary cracking of short alkyl groups from overmature kerogen or the secondary cracking of petroleum. Here, we show that recombination reactions ultimately play the dominant role in controlling the timing of late gas generation in source rocks which contain mixtures of terrigeneous and marine organic matter. These reactions, taking place at low levels of maturation, result in the formation of a thermally stable bitumen, which is the major source of methane at very high maturities. The inferences come from pyrolysis experiments performed on samples of the Draupne Formation (liptinitic Type II kerogen) and Heather Formation (mixed marine-terrigeneous Type III kerogen), both Upper Jurassic source rocks stemming from the Norwegian northern North Sea Viking Graben system. Non-isothermal closed system micro scale sealed vessel (MSSV) pyrolysis, non-isothermal open system pyrolysis and Rock Eval type pyrolysis were performed on the solvent extracted, concentrated kerogens of the two immature samples. The decrease of C 6+ products in the closed system MSSV pyrolysis provided the basis for the calculation of secondary gas (C 1-5) formation. Subtraction of the calculated secondary gas from the total observed gas yields a "remaining" gas. In the case of the Draupne Formation this is equivalent to primary gas cracked directly from the kerogen, as detected by a comparison with multistep open pyrolysis data. For the Heather Formation the calculated remaining gas formation profile is initially attributable to primary gas but there is a second major gas pulse at very high temperature (>550 °C at 5.0 K min -1) that is not primary. This has been explained by a recondensation process where first formed high molecular weight compounds in the closed system yield a macromolecular material that undergoes secondary cracking at elevated temperatures. The experiments provided the input for determination of kinetic parameters of the different gas generation types, which were used for extrapolations to a linear geological heating rate of 10 -11 K min -1. Peak generation temperatures for the primary gas generation were found to be higher for Heather Formation ( Tmax = 190 °C, equivalent to Ro appr. 1.7%) compared to Draupne Formation ( Tmax = 175 °C, equivalent to appr. Ro 1.3%). Secondary gas peak generation temperatures were calculated to be 220 °C for the Heather Formation and 205 to 215 °C for the Draupne Formation, respectively, with equivalent vitrinite reflectance values ( Ro) between 2.4% and 2.0%. The high temperature secondary gas formation from cracking of the recombination residue as detected for the Heather Formation is quantitatively important and is suggested to occur at very high temperatures ( Tmax approx. 250 °C) for geological heating rates. The prediction of a significant charge of dry gas from the Heather Formation at very high maturity levels has important implications for petroleum exploration in the region, especially to the north of the Viking Graben where Upper Jurassic sediments are sufficiently deep buried to have experienced such a process.
NASA Astrophysics Data System (ADS)
Conti, P.; Testi, D.; Grassi, W.
2017-11-01
This work reviews and compares suitable models for the thermal analysis of forced convection over a heat source in a porous medium. The set of available models refers to an infinite medium in which a fluid moves over different three heat source geometries: i.e. the moving infinite line source, the moving finite line source, and the moving infinite cylindrical source. In this perspective, the present work presents a plain and handy compendium of the above-mentioned models for forced external convection in porous media; besides, we propose a dimensionless analysis to figure out the reciprocal deviation among available models, helping the selection of the most suitable one in the specific case of interest. Under specific conditions, the advection term becomes ineffective in terms of heat transfer performances, allowing the use of purely-conductive models. For that reason, available analytical and numerical solutions for purely-conductive media are also reviewed and compared, again, by dimensionless criteria. Therefore, one can choose the simplest solution, with significant benefits in terms of computational effort and interpretation of the results. The main outcomes presented in the paper are: the conditions under which the system can be considered subject to a Darcy flow, the minimal distance beyond which the finite dimension of the heat source does not affect the thermal field, and the critical fluid velocity needed to have a significant contribution of the advection term in the overall heat transfer process.
NASA Astrophysics Data System (ADS)
Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic
2014-03-01
The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.
NASA Astrophysics Data System (ADS)
Schladitz, Alexander; Leníček, Jan; Beneš, Ivan; Kováč, Martin; Skorkovský, Jiří; Soukup, Aleš; Jandlová, Jana; Poulain, Laurent; Plachá, Helena; Löschau, Gunter; Wiedensohler, Alfred
2015-12-01
A comprehensive air quality study has been carried out at two urban background sites in Annaberg-Buchholz (Germany) and Ústí nad Labem (Czech Republic) in the German-Czech border region between January 2012 and June 2014. Special attention was paid to quantify harmful fractions of particulate matter (PM) and ultrafine particle number concentration (UFP) from solid fuel combustion and vehicular traffic. Source type contributions of UFP were quantified by using the daily concentration courses of UFP and nitrogen oxide. Two different source apportionment techniques were used to quantify relative and absolute mass contributions: positive matrix factorization for total PM2.5 and elemental carbon in PM2.5 and chemical mass balance for total PM1 and organic carbon in PM1. Contributions from solid fuel combustion strongly differed between the non-heating period (April-September) and the heating period (October-March). Major sources of solid fuel combustion in this study were wood and domestic coal combustion, while the proportion of industrial coal combustion was low (<3%). In Ústí nad Labem combustion of domestic brown coal was the most important source of organic carbon ranging from 34% to 43%. Wood combustion was an important source of organic carbon in Annaberg-Buchholz throughout the year. Heavy metals and less volatile polycyclic aromatic hydrocarbons (PAH) in the accumulation mode were related to solid fuel combustion with enhanced concentrations during the heating period. In contrast, vehicular PAH emissions were allocated to the Aitken mode. Only in Ústí nad Labem a significant contribution of photochemical new particle formation (e.g. from sulfur dioxide) to UFP of almost 50% was observed during noontime. UFPs from traffic emissions (nucleation particles) and primary emitted soot particles dominated at both sites during the rest of the day. The methodology of a combined source apportionment of UFP and PM can be adapted to other regions of the world with similar problems of atmospheric pollution to calculate the relative risk in epidemiological health studies for different sub-fractions of PM and UFP. This will enhance the meaningfulness of published relative risks in health studies based on total PM and UFP number concentrations.
GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.
Numerical simulation of hydrothermal circulation in the Cascade Range, north-central Oregon
Ingebritsen, S.E.; Paulson, K.M.
1990-01-01
Alternate conceptual models to explain near-surface heat-flow observations in the central Oregon Cascade Range involve (1) an extensive mid-crustal magmatic heat source underlying both the Quaternary arc and adjacent older rocks or (2) a narrower deep heat source which is flanked by a relatively shallow conductive heat-flow anomaly caused by regional ground-water flow (the lateral-flow model). Relative to the mid-crustal heat source model, the lateral-flow model suggests a more limited geothermal resource base, but a better-defined exploration target. We simulated ground-water flow and heat transport through two cross sections trending west from the Cascade range crest in order to explore the implications of the two models. The thermal input for the alternate conceptual models was simulated by varying the width and intensity of a basal heat-flow anomaly and, in some cases, by introducing shallower heat sources beneath the Quaternary arc. Near-surface observations in the Breitenbush Hot Springs area are most readily explained in terms of lateral heat transport by regional ground-water flow; however, the deep thermal structure still cannot be uniquely inferred. The sparser thermal data set from the McKenzie River area can be explained either in terms of deep regional ground-water flow or in terms of a conduction-dominated system, with ground-water flow essentially confined to Quaternary rocks and fault zones.
Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed
NASA Astrophysics Data System (ADS)
Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.
2018-02-01
Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.
Influence of heat and vibration on the movement of the northern fowl mite (Acari: Macronyssidae).
Owen, Jeb P; Mullens, Bradley A
2004-09-01
Heat and vibration are common host-generated cues that ectoparasites use to orient to hosts. Three experiments evaluated effects of heat and vibration on the movement of northern fowl mite, Ornithonyssus sylviarum (Canestrini & Fanzago). Individual arrested mites in an isolation chamber always initiated movement (walking) after substrate vibration (7.8-min walking duration), but only initiated movement 50% of the time (2.8-min walking duration) upon exposure to a 3 degrees C heat fluctuation. Heat fluctuation in combination with vibration extended the period of activity by approximately 50% (11.6-min walking duration) compared with activity initiated by vibration alone. Mites with longer time off-host moved for shorter durations. In a choice test, individual mites consistently moved closer to a 35 degrees C heat source 1 or 6 mm away, but not to a heat source 11 mm away. In a circular arena, mites were able to orient accurately to a 35 degrees C heat source and reached the arena edge almost 4 times faster (11.2 s) than mites without a heat source (41.2 s). These results suggest that northern fowl mite is capable of directed thermo-orientation, as well as modulation of activity depending on the type of sensory information perceived. The adaptive significance of this orientation for a "permanent" ectoparasite is discussed.
NASA Astrophysics Data System (ADS)
Chen, H.; Hu, C.; Chen, G.; Zhang, Q.
2017-12-01
Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. it is vital that engineers acquire a proper understanding about the Ground Source Heat Pump (GSHP). In this study, the model of the borehole exchanger under conduction manners and heat infiltrates coupling manners was established with FEFLOW. The energy efficiency, heat transfer endurance and heat transfer in the unit depth were introduced to quantify the energy efficient and the endurance period. The performance of a the Borehole Exchanger (BHE) in soil with and without groundwater seepage was analyzed of heat transfer process between the soil and the working fluid. Basing on the model, the varied regularity of energy efficiency performance an heat transfer endurance with the conditions including the different configuration of the BHE, the soil properties, thermal load characteristic were discussed. Focus on the heat transfer process in multi-layer soil which one layer exist groundwater flow. And an investigation about thermal dispersivity was also analyzed its influence on heat transfer performance. The final result proves that the model of heat infiltrates coupling model established in this context is reasonable, which can be applied to engineering design.
NASA Astrophysics Data System (ADS)
Karpov, I. V.; Kshevetskii, S. P.
2017-11-01
The propagation of acoustic-gravity waves (AGW) from a source on the Earth's surface to the upper atmosphere is investigated with methods of mathematical modeling. The applied non-linear model of wave propagation in the atmosphere is based on numerical integration of a complete set of two-dimensional hydrodynamic equations. The source on the Earth's surface generates waves with frequencies near to the Brunt-Vaisala frequency. The results of simulation have revealed that some region of heating the atmosphere by propagated upward and dissipated AGWs arises above the source at altitudes nearby of 200 km. The horizontal scale of this heated region is about 1000 km in the case of the source that radiates AGWs during approximately 1 h. The appearing of the heated region has changed the conditions of AGW propagation in the atmosphere. When the heated region in the upper atmosphere has been formed, further a waveguide regime of propagation of waves with the periods shorter the Brunt-Vaisala period is realized. The upper boundary of the wave-guide coincides with the arisen heated region in the upper atmosphere. The considered mechanism of formation of large-scale disturbances in the upper atmosphere may be useful for explanation of connections of processes in the upper and lower atmospheric layers.
NASA Technical Reports Server (NTRS)
1973-01-01
Conceptual design definitions of a heat source assembly for use in nominal 500 watt electrical (W(e)) 1200 W(e)and 2000 W(e) mini-Brayton isotope power systems are reported. The HSA is an independent package which maintains thermal and nuclear control of an isotope fueled heat source and transfers the thermal energy to a Brayton rotating unit turbine-alternator-compressor power conversion unit.
Enceladus's Plumes: A Rocket Analogy
NASA Astrophysics Data System (ADS)
McNutt, R. L.; Perry, M. E.; Waite, J. H.; Fletcher, G.; Cravens, T. E.
2009-12-01
The plumes of Enceladus, and the source of the E-ring in the Saturnian system, easily rank as the major, significant, and unexpected discovery of the Cassini mission. While clearly the source of the E-ring,the nature of the sources and the energetics and dynamics of the plumes and underlying jets remains a subject of intensive study. Refinements of the observations suggest supersonic flow of the primary, water-vapor effluent. Such behavior implies a sonic critical point in the flow beginning from a heated reservoir of vapor, through a constriction, and out at supersonic speeds in the space above the plume/jet channels. Such geometry and thermal conditions mimic that of a de Laval nozzle, such as used in rocket engines for converting chemically heated combustion products into a directional flow. A chamber temperature of 180K suggests an outflow speed as high as 0.8 km/s. With a column density across a jet of ~3 x 1016 cm-2 (about twice that of the broad plume) and a jet width of ~10 km, the implied outflow of water molecules is ~3 x 1010 cm-3 x π/4 (106 cm)2 x 18 amu x 1.66 x 10-27 amu/kg x 8 x 104 cm/s = ~60 kg/s in each constituent jet, of which eight were identified by the Cassini Ultraviolet Imaging Spectrograph (UVIS) during the occultation measurements of the plume region of Enceladus carried out on 24 October 2007.
Jet fuel based high pressure solid oxide fuel cell system
NASA Technical Reports Server (NTRS)
Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)
2013-01-01
A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
Jet Fuel Based High Pressure Solid Oxide Fuel Cell System
NASA Technical Reports Server (NTRS)
Srinivasan, Hari (Inventor); Hardin, Larry (Inventor); Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Dasgupta, Arindam (Inventor); Bayt, Robert (Inventor)
2015-01-01
A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
Primary Energy of the District city and Suburb
NASA Astrophysics Data System (ADS)
Pitonak, Anton; Lopusniak, Martin; Bagona, Miloslav
2017-10-01
In member states of the European Union, portion of buildings in the total consumption of energy represents 40 %, and their share in CO2 emissions represents 35 %. Taking into account the dependence of the European Union on import of energy, this represents a large quantity of energy and CO2 in spite of the fact that effective solutions for the reduction of energy demand of buildings exist. The European Union adopted three main commitments for fulfilment of criteria by year 2020 in the 20-20-20 Directive. Based on this Directive Slovakia declares support for renovating the building stock. The goal of the paper was to prove that renovation of the building stock is environmentally and energy preferably as construction of new buildings. In the paper, the settlement unit with the suburban one were compared. Both territories are dealt with in Kosice city, in Slovakia. The settlement units include apartment dwelling houses, amenities, parking areas and green. Suburban part contains family houses. The decisive factor for the final assessment of the buildings was global indicator. Global indicator of the energy performance is primary energy. The new building must meet minimum requirements for energy performance and it must be classified to energy class A1 since 2016, and to energy class A0 since 2020. The paper analyses the effects of the use of different resources of heat considering the global indicator. Primary energy was calculated and based on comparable unit. The primary energy was accounted for on the built-up area, area corresponding to district city and suburb, number of inhabitants. The study shows that the lowest values of global indicator are achieved by using wood. The highest values of global indicator are achieved by using electricity or district heating as an energy source. The difference between the highest and lowest value is 87 %. Primary energy based on inhabitant is 98 % lower in settlement unit compared to the suburban one.
Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baratta, A.J.
1997-07-01
To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts andmore » engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.« less
U.S. Space Radioisotope Power Systems and Applications: Past, Present and Future
NASA Technical Reports Server (NTRS)
Cataldo, Robert L.; Bennett, Gary L.
2011-01-01
Radioisotope power systems (RPS) have been essential to the U.S. exploration of outer space. RPS have two primary uses: electrical power and thermal power. To provide electrical power, the RPS uses the heat produced by the natural decay of a radioisotope (e.g., plutonium-238 in U.S. RPS) to drive a converter (e.g., thermoelectric elements or Stirling linear alternator). As a thermal power source the heat is conducted to whatever component on the spacecraft needs to be kept warm; this heat can be produced by a radioisotope heater unit (RHU) or by using the excess heat of a radioisotope thermoelectric generator (RTG). As of 2010, the U.S. has launched 41 RTGs on 26 space systems. These space systems have ranged from navigational satellites to challenging outer planet missions such as Pioneer 10/11, Voyager 1/2, Galileo, Ulysses, Cassini and the New Horizons mission to Pluto. In the fall of 2011, NASA plans to launch the Mars Science Laboratory (MSL) that will employ the new Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) as the principal power source. Hundreds of radioisotope heater units (RHUs) have been launched to provide warmth to Apollo 11, used to provide heating of critical components in a seismic experiment package, Pioneer 10/11, Voyager 1/2, Galileo, Cassini, Mars Pathfinder, MER rovers, etc. to provide temperature control to critical spacecraft electronics and other mechanical devices such as propulsion system propellant valves. A radioisotope (electrical) power source or system (RPS) consists of three basic elements: (1) the radioisotope heat source that provides the thermal power, (2) the converter that transforms the thermal power into electrical power and (3) the heat rejection radiator. Figure 1 illustrates the basic features of an RPS. The idea of a radioisotope power source follows closely after the early investigations of radioactivity by researchers such as Henri Becquerel (1852-1908), Marie Curie (1867-1935), Pierre Curie (1859-1906) and R. J. Strut. Almost 100 years ago, in 1913, English physicist H. G. J. Moseley (1887-1915) constructed the first nuclear battery using a vacuum flask and 20 mCi of radium (Corliss and Harvey, 1964, Proceedings of the Royal Society, 1913). After World War II, serious interest in radioisotope power systems in the U.S. was sparked by studies of space satellites such as North American Aviation s 1947 report on nuclear space power and the RAND Corporation s 1949 report on radioisotope power. (Greenfield, 1947, Gendler and Kock, 1949). Radioisotopes were also considered in early studies of nuclear-powered aircraft (Corliss and Harvey, 1964). In 1951, the U.S. Atomic Energy Commission (AEC) signed several contracts to study a 1-kWe space power plant using reactors or radioisotopes. Several of these studies, which were completed in 1952, recommended the use of RPS. (Corliss and Harvey, 1964). In 1954, the RAND Corporation issued the summary report of the Project Feedback military satellite study in which radioisotope power was considered (Lipp and Salter, 1954, RAND). Paralleling these studies, in 1954, K. C. Jordan and J. H. Birden of the AEC s Mound Laboratory conceived and built the first RTG using chromel-constantan thermocouples and a polonium-210 (210Po or Po-210) radioisotope heat source (see Figure 2). While the power produced (1.8 mWe) was low by today s standards, this first RTG showed the feasibility of RPS. A second thermal battery was built with more Po-210, producing 9.4 mWe. Jordan and Birden concluded that the Po-210 thermal battery would have about ten times the energy of ordinary dry cells of the same mass (Jordan and Birden, 1954). The heat source consisted of a 1-cm-diameter sphere of 57 Ci (1.8 Wt) of Po-210 inside a capsule of nickel-coated cold-rolled steel all inside a container of Lucite. The thermocouples were silver-soldered chromel-constantan. The thermal battery produced 1.8 mWe.
Liao, Wei; Hua, Xue-Ming; Zhang, Wang; Li, Fang
2014-05-01
In the present paper, the authors calculated the plasma's peak electron temperatures under different heat source separation distance in laser- pulse GMAW hybrid welding based on Boltzmann spectrometry. Plasma's peak electron densities under the corresponding conditions were also calculated by using the Stark width of the plasma spectrum. Combined with high-speed photography, the effect of heat source separation distance on electron temperature and electron density was studied. The results show that with the increase in heat source separation distance, the electron temperatures and electron densities of laser plasma did not changed significantly. However, the electron temperatures of are plasma decreased, and the electron densities of are plasma first increased and then decreased.
The Cadarache negative ion experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massmann, P.; Bottereau, J.M.; Belchenko, Y.
1995-12-31
Up to energies of 140 keV neutral beam injection (NBI) based on positive ions has proven to be a reliable and flexible plasma heating method and has provided major contributions to most of the important experiments on virtually all large tokamaks around the world. As a candidate for additional heating and current drive on next step fusion machines (ITER ao) it is hoped that NBI can be equally successful. The ITER NBI parameters of 1 MeV, 50 MW D{degree} demand primary D{sup {minus}} beams with current densities of at least 15 mA/cm{sup 2}. Although considerable progress has been made inmore » the area of negative ion production and acceleration the high demands still require substantial and urgent development. Regarding negative ion production Cs seeded plasma sources lead the way. Adding a small amount of Cs to the discharge (Cs seeding) not only increases the negative ion yield by a factor 3--5 but also has the advantage that the discharge can be run at lower pressures. This is beneficial for the reduction of stripping losses in the accelerator. Multi-ampere negative ion production in a large plasma source is studied in the MANTIS experiment. Acceleration and neutralization at ITER relevant parameters is the objective of the 1 MV SINGAP experiment.« less
A Review on Electroactive Polymers for Waste Heat Recovery.
Kolasińska, Ewa; Kolasiński, Piotr
2016-06-17
This paper reviews materials for thermoelectric waste heat recovery, and discusses selected industrial and distributed waste heat sources as well as recovery methods that are currently applied. Thermoelectric properties, especially electrical conductivity, thermopower, thermal conductivity and the thermoelectric figures of merit, are considered when evaluating thermoelectric materials for waste heat recovery. Alloys and oxides are briefly discussed as materials suitable for medium- and high-grade sources. Electroactive polymers are presented as a new group of materials for low-grade sources. Polyaniline is a particularly fitting polymer for these purposes. We also discuss types of modifiers and modification methods, and their influence on the thermoelectric performance of this class of polymers.
Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Richard W; Rice, C Keith; Baxter, Van D
2007-09-01
The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 dependingmore » on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).« less
A simple 2-d thermal model for GMA welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matteson, M.A.; Franke, G.L.; Vassilaros, M.G.
1996-12-31
The Rosenthal model of heat distribution from a moving source has been used in many applications to predict the temperature distribution during welding. The equation has performed well in its original form or as modified. The expression has a significant limitation for application to gas metal arc welds (GMAW) that have a papilla extending from the root of the weld bead. The shape of the fusion line between the papilla and the plate surface has a concave shape rather than the expected convex shape. However, at some distance from the fusion line the heat affected zone (HAZ) made visible bymore » etching has the expected convex shape predicted by the Rosenthal expression. This anomaly creates a limitation to the use of the Rosenthal expression for predicting GMAW bead shapes or HAZ temperature histories. Current research at the Naval Surface Warfare Center--Carderock Division (NSWC--CD) to develop a computer based model to predict the microstructure of multi-pass GMAW requires a simple expression to predict the fusion line and temperature history of the HAZ for each weld pass. The solution employed for the NSWC--CD research is a modified Rosenthal expression that has a dual heat source. One heat source is a disk source above the plate surface supplying the majority of the heat. The second heat source is smaller and below the surface of the plate. This second heat source helps simulate the penetration power of many GMAW welds that produces the papilla. The assumptions, strengths and limitations of the model are presented along with some applications.« less
A 'compelling case' for bioliquids'.
Monaghan, Andrew
2015-04-01
Bioliquid is often overlooked by organisations when they look to reduce carbon emissions by moving heating or power generation away from fossil fuels to 'renewables'. According to Andrew Monaghan, commercial director at a specialist bioliquid producer, UK Renewable Fuels (UKRF), "although it doesn't have the glamour of some of the 'new' technologies, and bioliquids suffer something of a bad press from the environmental lobby, by any rational and informed reasoning, it really should be first on the list". Here he outlines why, as he puts it, 'second generation bioliquids should be the renewable of choice for many applications, as either the primary or a supplementary source of energy'.
Thaw flow control for liquid heat transport systems
Kirpich, Aaron S.
1989-01-01
In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.
Improving urban district heating systems and assessing the efficiency of the energy usage therein
NASA Astrophysics Data System (ADS)
Orlov, M. E.; Sharapov, V. I.
2017-11-01
The report describes issues in connection with improving urban district heating systems from combined heat power plants (CHPs), to propose the ways for improving the reliability and the efficiency of the energy usage (often referred to as “energy efficiency”) in such systems. The main direction of such urban district heating systems improvement suggests transition to combined heating systems that include structural elements of both centralized and decentralized systems. Such systems provide the basic part of thermal power via highly efficient methods for extracting thermal power plants turbines steam, while peak loads are covered by decentralized peak thermal power sources to be mounted at consumers’ locations, with the peak sources being also reserve thermal power sources. The methodology was developed for assessing energy efficiency of the combined district heating systems, implemented as a computer software product capable of comparatively calculating saving on reference fuel for the system.
NASA Astrophysics Data System (ADS)
Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin
2017-08-01
Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.
DUAL HEATED ION SOURCE STRUCTURE HAVING ARC SHIFTING MEANS
Lawrence, E.O.
1959-04-14
An ion source is presented for calutrons, particularly an electrode arrangement for the ion generator of a calutron ion source. The ion source arc chamber is heated and an exit opening with thermally conductive plates defines the margins of the opening. These plates are electrically insulated from the body of the ion source and are connected to a suitable source of voltage to serve as electrodes for shaping the ion beam egressing from the arc chamber.
Non-isothermal electrochemical model for lithium-ion cells with composite cathodes
NASA Astrophysics Data System (ADS)
Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang
2015-06-01
Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.
Monthly Petroleum Product Price Report, October 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
Data are reported on the prices of petroleum products for the period January 1980 through October 1981. The following products are included in the survey: gasoline, diesel fuels, residual fuels, aviation fuels, kerosene, liquefied petroleum gases heating oils, and No. 5 and No. 6 fuel oils. This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products. The data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy (DOE) to execute its role in monitoring prices. Inmore » addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. Price data in this publication were collected from separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survey of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 States and the District of Columbia.« less
Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source.
Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae; Hwang, Y S
2016-02-01
The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H(-) ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H(-) ion generation in volume-produced negative hydrogen ion sources.
Glass strengthening and patterning methods
Harper, David C; Wereszczak, Andrew A; Duty, Chad E
2015-01-27
High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface--the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.
Synfuel production in nuclear reactors
Henning, C.D.
Apparatus and method for producing synthetic fuels and synthetic fuel components by using a neutron source as the energy source, such as a fusion reactor. Neutron absorbers are disposed inside a reaction pipe and are heated by capturing neutrons from the neutron source. Synthetic fuel feedstock is then placed into contact with the heated neutron absorbers. The feedstock is heated and dissociates into its constituent synfuel components, or alternatively is at least preheated sufficiently to use in a subsequent electrolysis process to produce synthetic fuels and synthetic fuel components.
Heat-transfer analysis of double-pipe heat exchangers for indirect-cycle SCW NPP
NASA Astrophysics Data System (ADS)
Thind, Harwinder
SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. SuperCritical Water (SCW) Nuclear Power Plants (NPPs) are expected to have much higher operating parameters compared to current NPPs, i.e., pressure of about 25 MPa and outlet temperature up to 625 °C. This study presents the heat transfer analysis of an intermediate Heat exchanger (HX) design for indirect-cycle concepts of Pressure-Tube (PT) and Pressure-Vessel (PV) SCWRs. Thermodynamic configurations with an intermediate HX gives a possibility to have a single-reheat option for PT and PV SCWRs without introducing steam-reheat channels into a reactor. Similar to the current CANDU and Pressurized Water Reactor (PWR) NPPs, steam generators separate the primary loop from the secondary loop. In this way, the primary loop can be completely enclosed in a reactor containment building. This study analyzes the heat transfer from a SCW primary (reactor) loop to a SCW and Super-Heated Steam (SHS) secondary (turbine) loop using a double-pipe intermediate HX. The numerical model is developed with MATLAB and NIST REFPROP software. Water from the primary loop flows through the inner pipe, and water from the secondary loop flows through the annulus in the counter direction of the double-pipe HX. The analysis on the double-pipe HX shows temperature and profiles of thermophysical properties along the heated length of the HX. It was found that the pseudocritical region has a significant effect on the temperature profiles and heat-transfer area of the HX. An analysis shows the effect of variation in pressure, temperature, mass flow rate, and pipe size on the pseudocritical region and the heat-transfer area of the HX. The results from the numerical model can be used to optimize the heat-transfer area of the HX. The higher pressure difference on the hot side and higher temperature difference between the hot and cold sides reduces the pseudocritical-region length, thus decreases the heat-transfer surface area of the HX.
Sulfuric acid-sulfur heat storage cycle
Norman, John H.
1983-12-20
A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.
Demonstration of a non-contact x-ray source using an inductively heated pyroelectric accelerator
NASA Astrophysics Data System (ADS)
Klopfer, Michael; Satchouk, Vladimir; Cao, Anh; Wolowiec, Thomas; Alivov, Yahya; Molloi, Sabee
2015-04-01
X-ray emission from pyroelectric sources can be produced through non-contact thermal cycling using induction heating. In this study, we demonstrated a proof of concept non-contact x-ray source powered via induction heating. An induction heater operating at 62.5 kHz provided a total of 6.5 W of delivered peak thermal power with 140 V DC of driving voltage. The heat was applied to a ferrous substrate mechanically coupled to a cubic 1 cm3 Lithium Niobate (LiNbO3) pyroelectric crystal maintained in a 3-12 mTorr vacuum. The maximum temperature reached was 175 °C in 86 s of heating. The cooling cycle began immediately after heating and was provided by passive radiative cooling. The total combined cycle time was 250 s. x-ray photons were produced and analyzed in both heating and cooling phases. Maximum photon energies of 59 keV and 55 keV were observed during heating and cooling, respectively. Non-contact devices such as this, may find applications in cancer therapy (brachytherapy), non-destructive testing, medical imaging, and physics education fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oland, CB
Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributedmore » Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.« less
Large-scale volcano-ground ice interactions on Mars
Squyres, S. W.; Wilhelms, D.E.; Moosman, A.C.
1987-01-01
The process of volcano-ground ice interaction on Mars is investigated by thermodynamic calculations and observations of Viking Orbiter images. We develop a numerical model of volcano-ground ice interaction that includes heat transport by conduction, radiation from the surface, heat transfer to the atmosphere, and H2O phase changes in an ice-rich permafrost. We consider eruption of lava flows over permafrost, and intrusion of sills into permafrost. For eruption of lava over permafrost, most of the heat in the flow is lost by radiation and atmospheric effects. The amount of H2O liquid and vapor produced is small, and its removal would not be sufficient to cause collapse that would lower the surface of the lava flow below the surrounding terrain. For intrusion of a sill, most of the heat in the sill eventually goes into H2O phase changes, producing much larger amounts of water that could have profound geomorphic and geochemical effects. Approximate meltwater discharge rates are calculated for both extrusive and intrusive interactions. We examine two large regions of large-scale volcano-ground ice interactions. Near Aeolis Mensae, intrusion of a complex of dikes and sills into ice-rich ground has produced substantial melting, with mobilization and flow of material. This interaction probably also produced large quantities of palagonite tuff and breccia. Morphologic evidence for progressive fluidization implies that meltwater was stored beneath the surface for some time, and that most of the release of water and volcanic mudflow took place late in the interaction. Northeast of Hellas, several large channels emanate from the area near the volcano Hadriaca Patera. If genetically related to the volcanic activity, large collapse features at the sources of some channels must have originated due to heat from large buried magma bodies. A channel emerging directly from the base of Hadriaca Patera may have originated from release of heat from thick extruded material. Other small channels in the region results from heat released from surface lava flows. Inferred channel discharges may be compared to discharge rates calculated for lava-ground ice interactions. Such comparisons show that meltwater probably accumulated beneath the surface and then was released rapidly, with a discharge rate limited by soil permeability. Volcano-ground ice interaction has been a widespread and important geologic process on Mars, and may be the primary source of palagonites making up the ubiquitous Martian dust. ?? 1987.
Fuel change possibilities in small heat source
NASA Astrophysics Data System (ADS)
Durčanský, Peter; Kapjor, Andrej; Jandačka, Jozef
2017-09-01
Rural areas are characterized by a larger number of older family houses with higher fuel consumption for heating. Some areas are not gasified, which means that the fuel base for heating the buildings is very limited. Heating is mainly covered by solid fuels with high emissions and low efficiency. But at the same time, the amount of energy in the form of biowaste can be evaluated and used further. We will explore the possibilities to convert biogas to heat of using a gas burner in a small heat source. However, the heat produced can be used other than for heating or hot water production. The added value for heat generation can be the production of electricity, in the use of heat energy through cogeneration unit with unconventional heat engine. The proposed solution could economically benefit the entire system, because electricity is a noble form of energy and its use is versatile.
Kisler, Lee-Bareket; Weissman-Fogel, Irit; Sinai, Alon; Sprecher, Elliot; Chistyakov, Andrei V; Shamay-Tsoory, Simone; Moscovitz, Nadav; Granovsky, Yelena
2017-06-15
The primary motor cortex (M1) is a known target for brain stimulation aimed at pain alleviation in chronic pain patients, yet the mechanisms through which analgesia occurs, and the exact pain-motor interrelations are not fully understood. We used noxious contact heat evoked potentials (CHEPs) and cortical source analysis to further explore the relevance of M1 in pain processing. Twenty-four healthy young females received brief noxious heat stimuli to their left non-dominant volar forearm, simultaneously with CHEPs recordings. Thereafter, the pain-evoked activity of M1 and a control area in the occipital cortex (OC) was analyzed and estimated using sLORETA (standardized low-resolution brain electromagnetic tomography). This analysis revealed two phases of M1 pain-evoked activation (phase 1: the peak at 261.5±25.7ms; phase 2: the peak at 381.3±28.3ms). Canonical correlations revealed that M1, but not the OC, was the main factor contributing to the relation with the CHEPs components. In detail, the activity magnitude of M1 first and second phases was related to the N2 and P2 amplitude, respectively. The latency of the second phase was associated with both N2 and P2 latencies. In relation to pain, the latency of M1's first activity phase was positively correlated with pain ratings, suggesting pain interference to synchronized activity in M1. Our results confirm the established relevance of the primary motor cortex to pain processing. Copyright © 2017 Elsevier B.V. All rights reserved.
The influence of heat sink temperature on the seasonal efficiency of shallow geothermal heat pumps
NASA Astrophysics Data System (ADS)
Pełka, Grzegorz; Luboń, Wojciech; Sowiżdżał, Anna; Malik, Daniel
2017-11-01
Geothermal heat pumps, also known as ground source heat pumps (GSHP), are the most efficient heating and cooling technology utilized nowadays. In the AGH-UST Educational and Research Laboratory of Renewable Energy Sources and Energy Saving in Miękinia, shallow geothermal heat is utilized for heating. In the article, the seasonal efficiency of two geothermal heat pump systems are described during the 2014/2015 heating season, defined as the period between 1st October 2014 and 30th April 2015. The first system has 10.9 kW heating capacity (according to European Standard EN 14511 B0W35) and extracts heat from three vertical geothermal loops at a depth of 80m each. During the heating season, tests warmed up the buffer to 40°C. The second system has a 17.03 kW heating capacity and extracts heat from three vertical geothermal loops at a depth of 100 m each, and the temperature of the buffer was 50°C. During the entire heating season, the water temperatures of the buffers was constant. Seasonal performance factors were calculated, defined as the quotient of heat delivered by a heat pump to the system and the sum of electricity consumed by the compressor, source pump, sink pump and controller of heat pumps. The measurements and calculations give the following results: - The first system was supplied with 13 857 kWh/a of heat and consumed 3 388 kWh/a electricity. The SPF was 4.09 and the average temperature of outlet water from heat pump was 40.8°C, and the average temperature of brine flows into the evaporator was 3.7 °C; - The second system was supplied with 12 545 kWh/a of heat and consumed 3 874 kWh/a electricity. The SPF was 3.24 and the average temperature of outlet water from heat pump was 51.6°C, and the average temperature of brine flows into the evaporator was 5.3°C. To summarize, the data shown above presents the real SPF of the two systems. It will be significant in helping to predict the SPF of objects which will be equipped with ground source heat pumps.
Shin, Kyu-Sik; Lee, Dae-Sung; Song, Sang-Woo; Jung, Jae Pil
2017-09-19
In this study, a microelectromechanical system (MEMS) two-dimensional (2D) wind direction and wind speed sensor consisting of a square heating source and four thermopiles was manufactured using the heat detection method. The heating source and thermopiles of the manufactured sensor must be exposed to air to detect wind speed and wind direction. Therefore, there are concerns that the sensor could be contaminated by deposition or adhesion of dust, sandy dust, snow, rain, and so forth, in the air, and that the membrane may be damaged by physical shock. Hence, there was a need to protect the heating source, thermopiles, and the membrane from environmental and physical shock. The upper protective coating to protect both the heating source and thermopiles and the lower protective coating to protect the membrane were formed by using high-molecular substances such as SU-8, Teflon and polyimide (PI). The sensor characteristics with the applied protective coatings were evaluated.
Self-Heating Effects In Polysilicon Source Gated Transistors
Sporea, R. A.; Burridge, T.; Silva, S. R. P.
2015-01-01
Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Petrasso, R. D.; Kane, S. R.
1976-01-01
The physical parameters for the kernels of three solar X-ray flare events have been deduced using photographic data from the S-054 X-ray telescope on Skylab as the primary data source and 1-8 and 8-20 A fluxes from Solrad 9 as the secondary data source. The kernels had diameters of about 5-7 seconds of arc and in two cases electron densities at least as high as 0.3 trillion per cu cm. The lifetimes of the kernels were 5-10 min. The presence of thermal conduction during the decay phases is used to argue: (1) that kernels are entire, not small portions of, coronal loop structures, and (2) that flare heating must continue during the decay phase. We suggest a simple geometric model to explain the role of kernels in flares in which kernels are identified with emerging flux regions.
46 CFR 54.15-5 - Protective devices (modifies UG-125).
Code of Federal Regulations, 2014 CFR
2014-10-01
... evaporator or heat exchanger (see § 54.01-10) shall be equipped with protective devices as required by § 54... unexpected source of heat. (d) Where an additional hazard can be created by exposure of a pressure vessel to fire or other unexpected sources of external heat (for example, vessels used to store liquefied...
46 CFR 54.15-5 - Protective devices (modifies UG-125).
Code of Federal Regulations, 2012 CFR
2012-10-01
... evaporator or heat exchanger (see § 54.01-10) shall be equipped with protective devices as required by § 54... unexpected source of heat. (d) Where an additional hazard can be created by exposure of a pressure vessel to fire or other unexpected sources of external heat (for example, vessels used to store liquefied...
46 CFR 54.15-5 - Protective devices (modifies UG-125).
Code of Federal Regulations, 2013 CFR
2013-10-01
... evaporator or heat exchanger (see § 54.01-10) shall be equipped with protective devices as required by § 54... unexpected source of heat. (d) Where an additional hazard can be created by exposure of a pressure vessel to fire or other unexpected sources of external heat (for example, vessels used to store liquefied...
49 CFR 176.116 - General stowage conditions for Class 1 (explosive) materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... stowage conditions for Class 1 (explosive) materials. (a) Heat and sources of ignition: (1) Class 1... on board. Stowage must be well away from all sources of heat, including steam pipes, heating coils... addition to this separation, there must be insulation to Class A60 standard as defined in 46 CFR 72.05-10(a...
49 CFR 176.116 - General stowage conditions for Class 1 (explosive) materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... stowage conditions for Class 1 (explosive) materials. (a) Heat and sources of ignition: (1) Class 1... on board. Stowage must be well away from all sources of heat, including steam pipes, heating coils... addition to this separation, there must be insulation to Class A60 standard as defined in 46 CFR 72.05-10(a...
49 CFR 176.116 - General stowage conditions for Class 1 (explosive) materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... stowage conditions for Class 1 (explosive) materials. (a) Heat and sources of ignition: (1) Class 1... on board. Stowage must be well away from all sources of heat, including steam pipes, heating coils... addition to this separation, there must be insulation to Class A60 standard as defined in 46 CFR 72.05-10(a...
46 CFR 54.15-5 - Protective devices (modifies UG-125).
Code of Federal Regulations, 2010 CFR
2010-10-01
... evaporator or heat exchanger (see § 54.01-10) shall be equipped with protective devices as required by § 54... unexpected source of heat. (d) Where an additional hazard can be created by exposure of a pressure vessel to fire or other unexpected sources of external heat (for example, vessels used to store liquefied...
46 CFR 54.15-5 - Protective devices (modifies UG-125).
Code of Federal Regulations, 2011 CFR
2011-10-01
... evaporator or heat exchanger (see § 54.01-10) shall be equipped with protective devices as required by § 54... unexpected source of heat. (d) Where an additional hazard can be created by exposure of a pressure vessel to fire or other unexpected sources of external heat (for example, vessels used to store liquefied...
Method for converting heat energy to mechanical energy with 1,2-dichloro-1,1-difluoroethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.C.; Stiel, L.I.
1980-09-30
1,2-dichloro-1,1-difluoroethane is useful as a power fluid with particular suitability for moderate scale Rankine cycle applications based on systems with moderate temperature heat sources. The fluid is utilized in a Rankine cycle application by vaporizing the fluid by passing the same in heat exchange relationship with a heat source and utilizing the kinetic energy of the resulting expanding vapors to perform work. In this manner heat energy is converted to mechanical energy. The fluid is particularly advantageous in a dual cycle system consisting of a Rankine power cycle combined with a vapor compression cooling or heating cycle.
NASA Technical Reports Server (NTRS)
Heyman, Joseph S. (Inventor); Winfree, William P. (Inventor); Cramer, K. Elliott (Inventor); Zalamedia, Joseph N. (Inventor)
1996-01-01
A heat source such as a magnetic induction/eddy current generator remotely heats a region of a surface of a test structure to a desired depth. For example, the frequency of the heating source can be varied to heat to the desired depth. A thermal sensor senses temperature changes in the heated region as a function of time. A computer compares these sensed temperature changes with calibration standards of a similar sample having known disbond and/or inclusion geography(ies) to analyze the test structure. A plurality of sensors can be arranged linearly to sense vector heat flow.
Heat balance and thermal management of the TMT Observatory
NASA Astrophysics Data System (ADS)
Thompson, Hugh; Vogiatzis, Konstantinos
2014-08-01
An extensive campaign of aero-thermal modeling of the Thirty Meter Telescope (TMT) has been carried out and presented in other papers. This paper presents a summary view of overall heat balance of the TMT observatory. A key component of this heat balance that can be managed is the internal sources of heat dissipation to the ambient air inside the enclosure. An engineering budget for both daytime and nighttime sources is presented. This budget is used to ensure that the overall effects on daytime cooling and nighttime seeing are tracked and fall within the modeled results that demonstrate that the observatory meets its performance requirements. In the daytime heat fluxes from air-conditioning, solar loading, infiltration, and deliberate venting through the enclosure top vent are included along with equipment heat sources. In the nighttime convective heat fluxes through the open aperture and vent doors, as well as radiation to the sky are tracked along with the nighttime residual heat dissipations after cooling from equipment in the observatory. The diurnal variation of thermal inertia of large masses, such as the telescope structure, is also included. Model results as well as the overall heat balance and thermal management strategy of the observatory are presented.
Energy recovery during expansion of compressed gas using power plant low-quality heat sources
Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR
2006-03-07
A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.
Baxter, Van D.; Munk, Jeffrey D.
2017-11-08
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Munk, Jeffrey D.
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
Li, Yang; Jing, Yuan Shu; Qin, Ben Ben
2017-01-01
The analysis of the characteristics and footprint climatology of farmland water and heat fluxes has great significance to strengthen regional climate resource management and improve the hydrothermal resource utilization in the region of red soil. Based on quality controlled data from large aperture scintillometer and automatic meteorological station in hilly region of red soil, this paper analyzed in detail the characteristics of farmland water and heat fluxes at different temporal scales and the corresponding source area distribution of flux measurement in the non-rainy season and crop growth period in hilly region of red soil. The results showed that the diurnal variation of water and heat fluxes showed a unimodal trend, but compared with the sunny day, the diurnal variation curves fluctuated more complicatedly on cloudy day. In the whole, either ten-day periods or month scale, the water and heat fluxes were greater in August than in September, while the net radiation flux was more distributed to latent heat exchange. The proportion of net radiation to latent heat flux decreased in September compared to August, but the sensible heat flux was vice versa. With combined effects of weather conditions (particularly wind), stability, and surface condition, the source areas of flux measurement at different temporal scales showed different distribution characteristics. Combined with the underlying surface crops, the source areas at different temporal scales also had different contribution sources.
NASA Astrophysics Data System (ADS)
Tang, Ning; Suzuki, Genki; Morisaki, Hiroshi; Tokuda, Takahiro; Yang, Xiaoyang; Zhao, Lixia; Lin, Jinming; Kameda, Takayuki; Toriba, Akira; Hayakawa, Kazuichi
2017-03-01
Airborne particulates were collected at an urban site (site 1) from 2004 to 2010 and at a suburban site (site 2) in 2010 in Beijing. Nine polycyclic aromatic hydrocarbons (PAHs) and five nitropolycyclic aromatic hydrocarbons (NPAHs) in the airborne particulates were determined by HPLC with fluorescence and chemiluminescence detection, respectively. The concentrations of PAHs and NPAHs were higher in heating season than in non-heating season at the two sites. Both the concentrations of PAHs and NPAHs decreased in the non-heating season but only the concentrations of NPAHs decreased in heating season at site 1, from 2004 to 2010. These findings suggest that source control measures implemented by the city of Beijing helped to reduce air pollution in Beijing. The concentrations of PAHs increased at site 1 in 2010, possibly because of the transport of emissions from windward other areas, such as Shanxi province. Several diagnostic ratios of PAHs and NPAHs showed that the different sources contributed to Beijing's air pollution, although coal combustion was the main source in the heating season and vehicle emission was the main source in the non-heating season. An analysis of physical parameters at Beijing showed that high wind speed can remove atmospheric PAHs and NPAHs in the heating season and that high relative humidity can remove them in the non-heating season.
NASA Astrophysics Data System (ADS)
Gururaja Rao, C.; Nagabhushana Rao, V.; Krishna Das, C.
2008-04-01
Prominent results of a simulation study on conjugate convection with surface radiation from an open cavity with a traversable flush mounted discrete heat source in the left wall are presented in this paper. The open cavity is considered to be of fixed height but with varying spacing between the legs. The position of the heat source is varied along the left leg of the cavity. The governing equations for temperature distribution along the cavity are obtained by making energy balance between heat generated, conducted, convected and radiated. Radiation terms are tackled using radiosity-irradiation formulation, while the view factors, therein, are evaluated using the crossed-string method of Hottel. The resulting non-linear partial differential equations are converted into algebraic form using finite difference formulation and are subsequently solved by Gauss Seidel iterative technique. An optimum grid system comprising 111 grids along the legs of the cavity, with 30 grids in the heat source and 31 grids across the cavity has been used. The effects of various parameters, such as surface emissivity, convection heat transfer coefficient, aspect ratio and thermal conductivity on the important results, including local temperature distribution along the cavity, peak temperature in the left and right legs of the cavity and relative contributions of convection and radiation to heat dissipation in the cavity, are studied in great detail.
Characterization of an electrothermal plasma source for fusion transient simulations
NASA Astrophysics Data System (ADS)
Gebhart, T. E.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.
2018-01-01
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequently ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.
Biasetti, Jacopo; Pustavoitau, Aliaksei; Spazzini, Pier Giorgio
2017-01-01
Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid–solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology. PMID:29094038
Biasetti, Jacopo; Pustavoitau, Aliaksei; Spazzini, Pier Giorgio
2017-01-01
Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid-solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.
Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study
NASA Technical Reports Server (NTRS)
Blad, Blaine L.; Verma, Shashi B.; Hubbard, Kenneth G.; Starks, Patrick; Hays, Cynthia; Norman, John M.; Waltershea, Elizabeth
1988-01-01
The primary objectives of the 1985 study were to test the feasibility of using radio frequency receivers to collect data from automated weather stations and to evaluate the use of the data collected by the automated weather stations for modeling the fluxes of latent heat, sensible heat, and radiation over wheat. The model Cupid was used to calculate these fluxes which were compared with fluxes of these entities measured using micrometeorological techniques. The primary objectives of the 1986 study were to measure and model reflected and emitted radiation streams at a few locations within the First International Satellite Land-Surface Climatology Project Field Experiment (FIFE) site and to compare modeled and measured latent heat and sensible heat fluxes from the prairie vegetation.
NASA Astrophysics Data System (ADS)
Chamkha, A. J.; Rashad, A. M.; Mansour, M. A.; Armaghani, T.; Ghalambaz, M.
2017-05-01
In this work, the effects of the presence of a heat sink and a heat source and their lengths and locations and the entropy generation on MHD mixed convection flow and heat transfer in a porous enclosure filled with a Cu-water nanofluid in the presence of partial slip effect are investigated numerically. Both the lid driven vertical walls of the cavity are thermally insulated and are moving with constant and equal speeds in their own plane and the effect of partial slip is imposed on these walls. A segment of the bottom wall is considered as a heat source meanwhile a heat sink is placed on the upper wall of cavity. There are heated and cold parts placed on the bottom and upper walls, respectively, while the remaining parts are thermally insulated. Entropy generation and local heat transfer according to different values of the governing parameters are presented in detail. It is found that the addition of nanoparticles decreases the convective heat transfer inside the porous cavity at all ranges of the heat sink and source lengths. The results for the effects of the magnetic field show that the average Nusselt number decreases considerably upon the enhancement of the Hartmann number. Also, adding nanoparticles to a pure fluid leads to increasing the entropy generation for all values of D for
Heat treated 9 Cr-1 Mo steel material for high temperature application
Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher
2012-08-21
The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.
The effect of weld stresses on weld quality. [stress fields and metal cracking
NASA Technical Reports Server (NTRS)
Chihoski, R. A.
1972-01-01
A narrow heat source raises the temperature of a spot on a solid piece of material like metal. The high temperature of the spot decreases with distance from the spot. This is true whether the heat source is an arc, a flame, an electron beam, a plasma jet, a laser beam, or any other source of intense, narrowly defined heat. Stress and strain fields around a moving heat source are organized into a coherent visible system. It is shown that five stresses act across the weld line in turn as an arc passes. Their proportions and positions are considerably altered by weld parameters or condition changes. These pushes and pulls affect the metallurgical character and integrity of the weld area even when there is no apparent difference between after-the-fact examples.
NASA Astrophysics Data System (ADS)
Zlotnik, A. A.
2017-04-01
The multidimensional quasi-gasdynamic system written in the form of mass, momentum, and total energy balance equations for a perfect polytropic gas with allowance for a body force and a heat source is considered. A new conservative symmetric spatial discretization of these equations on a nonuniform rectangular grid is constructed (with the basic unknown functions—density, velocity, and temperature—defined on a common grid and with fluxes and viscous stresses defined on staggered grids). Primary attention is given to the analysis of entropy behavior: the discretization is specially constructed so that the total entropy does not decrease. This is achieved via a substantial revision of the standard discretization and applying numerous original features. A simplification of the constructed discretization serves as a conservative discretization with nondecreasing total entropy for the simpler quasi-hydrodynamic system of equations. In the absence of regularizing terms, the results also hold for the Navier-Stokes equations of a viscous compressible heat-conducting gas.
Monthly petroleum-product price report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-07-01
This report provides Congress and the public with information on monthly national weighted average prices for refined petroleum products. the data published are the primary source of price data for refined products for the refining, reselling, and retailing sectors necessary for the Department of Energy (DOE) to execute its role in monitoring prices. In addition, the data provide the information necessary for Congress, DOE, and the public to perform analyses and projections related to energy supplies, demands, and prices. The legislative authority for this survey is the Federal Energy Administration Act of 1974 (PL 93-275). Price data in this publicationmore » were collected fronm separate surveys. Average prices are derived from a survey of refiners, large resellers and/or retailers, and independent gas plant operators. Data from this monthly survey are available from July 1975. Average No. 2 heating oil prices were derived from a sample survye of refiners, resellers, and retailers who sell heating oil. The geographic coverage for this report is the 50 states and the District of Columbia.« less
NASA Astrophysics Data System (ADS)
Glushkov, D. O.; Kuznetsov, G. V.; Strizhak, P. A.
2017-07-01
Characteristics of gas-phase ignition of grinded brown coal (brand 2B, Shive-Ovoos deposit in Mongolia) layer by single and several metal particles heated to a high temperature (above 1000 K) have been investigated numerically. The developed mathematical model of the process takes into account the heating and thermal decomposition of coal at the expense of the heat supplied from local heat sources, release of volatiles, formation and heating of gas mixture and its ignition. The conditions of the joint effect of several hot particles on the main characteristic of the process-ignition delay time are determined. The relation of the ignition zone position in the vicinity of local heat sources and the intensity of combustible gas mixture warming has been elucidated. It has been found that when the distance between neighboring particles exceeds 1.5 hot particle size, an analysis of characteristics and regularities of coal ignition by several local heat sources can be carried out within the framework of the model of "single metal particle / grinded coal / air". Besides, it has been shown with the use of this model that the increase in the hot particle height leads, along with the ignition delay time reduction, to a reduction of the source initial temperatures required for solid fuel ignition. At an imperfect thermal contact at the interface hot particle / grinded coal due to the natural porosity of the solid fuel structure, the intensity of ignition reduces due to a less significant effect of radiation in the area of pores on the heat transfer conditions compared to heat transfer by conduction in the near-surface coal layer without regard to its heterogeneous structure.
Acoustically enhanced heat exchange and drying apparatus
Bramlette, T.T.; Keller, J.O.
1987-07-10
A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yavuzturk, C. C.; Chiasson, A. D.; Filburn, T. P.
This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primary benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance themore » ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems is provided that is based on mathematically robust, validated models. An automated optimization tool is used to balance ground loads and incorporated into the simulation engine. With knowledge of the building loads, thermal properties of the ground, the borehole heat exchanger configuration, the heat pump peak hourly and seasonal COP for heating and cooling, the critical heat pump design entering fluid temperature, and the thermal performance of a solar collector, the total GHX length can be calculated along with the area of a supplemental solar collector array and the corresponding reduced GHX length. An economic analysis module allows for the calculation of the lowest capital cost combination of solar collector area and GHX length. ACKNOWLEDGMENTS This project was funded by the United States Department of Energy DOE-DE-FOA-0000116, Recovery Act Geothermal Technologies Program: Ground Source Heat Pumps. The lead contractor, The University of Hartford, was supported by The University of Dayton, and the Oak Ridge National Laboratories. All funding and support for this project as well as contributions of graduate and undergraduate students from the contributing institutions are gratefully acknowledged.« less
Heat-pump-centered integrated community energy systems: System development summary
NASA Astrophysics Data System (ADS)
Calm, J. M.
1980-02-01
An introduction to district heating systems employing heat pumps to enable use of low temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service water heating, and other thermal services. Otherwise wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. More than one quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less scarce resources not practical in smaller, individual building systems. Seven studies performed for the system development phase are summarized.
A Review on Electroactive Polymers for Waste Heat Recovery
Kolasińska, Ewa; Kolasiński, Piotr
2016-01-01
This paper reviews materials for thermoelectric waste heat recovery, and discusses selected industrial and distributed waste heat sources as well as recovery methods that are currently applied. Thermoelectric properties, especially electrical conductivity, thermopower, thermal conductivity and the thermoelectric figures of merit, are considered when evaluating thermoelectric materials for waste heat recovery. Alloys and oxides are briefly discussed as materials suitable for medium- and high-grade sources. Electroactive polymers are presented as a new group of materials for low-grade sources. Polyaniline is a particularly fitting polymer for these purposes. We also discuss types of modifiers and modification methods, and their influence on the thermoelectric performance of this class of polymers. PMID:28773605
NASA Technical Reports Server (NTRS)
Buchmann, J.; Leitedasilvadias, P.; Moura, A. D.
1985-01-01
A two layer, nonlinear, equatorial beta-plane model, in p-coordinates is used to study the atmospheric response to a large scale prescribed heat source varying in time. The heat source is meant to represent a convective burst with total duration of approximately 48 hours over the Amazon/Bolivia region. The boundary conditions used are meridional velocity zero at 60 deg S, omega w = 0 at the top and zero geometric velocity at the lower boundary. Sensitivity study was done which includes initial state at rest, compared with realistic initial flow. The scale of the heat source is 1500 km in latitude and longitude and it is centered at 10 deg S. Special attention is paid to the distribution and intensity of the induced vertical motion. The model is integrated for two days and the preliminary results show agreement with the observed 200 mb flow. Of interest is the establishment of a trough and descending motion to the northeast of the heat source. A conjucture is thus made that the Amazon heat source and its fluctuations bear some relationship with the drought problem over Northeast Brazil.
Thermoelectric harvesting of low temperature natural/waste heat
NASA Astrophysics Data System (ADS)
Rowe, David Michael
2012-06-01
Apart from specialized space requirements current development in applications of thermoelectric generation mainly relate to reducing harmful carbon emissions and decreasing costly fuel consumption through the recovery of exhaust heat from fossil fuel powered engines and emissions from industrial utilities. Focus on these applications is to the detriment of the wider exploitations of thermoelectrics with other sources of heat energy, and in particular natural occurring and waste low temperature heat, receiving little, if any, attention. In this presentation thermoelectric generation applications, both potential and real in harvesting low temperature waste/natural heat are reviewed. The use of thermoelectrics to harvest solar energy, ocean thermal energy, geothermal heat and waste heat are discussed and their credibility as future large-scale sources of electrical power assessed.
Heat exchanger for solar water heaters
NASA Technical Reports Server (NTRS)
Cash, M.; Krupnick, A. C.
1977-01-01
Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.
Modeling Microscale Electro-thermally Induced Vortex Flows
NASA Astrophysics Data System (ADS)
Paul, Rajorshi; Tang, Tian; Kumar, Aloke
2017-11-01
In presence of a high frequency alternating electric field and a laser induced heat source, vortex flows are generated inside micro-channels. Such electro-thermally influenced micro-vortices can be used for manipulating nano-particles, programming colloidal assemblies, trapping biological cells as well as for fabricating designed bacterial biofilms. In this study, a theoretical model is developed for microscale electro-thermally induced vortex flows with multiple heat sources. Semi-analytical solutions are obtained, using Hankel transformation and linear superposition, for the temperature, pressure and velocity fields. The effect of material properties such as electrical and thermal conductivities, as well as experimental parameters such as the frequency and strength of the alternating electric field, and the intensity and heating profile of the laser source, are systematically investigated. Resolution for a pair of laser sources is determined by analyzing the strength of the micro-vortices under the influence of two heating sources. Results from this work will provide useful insights into the design of efficient optical tweezers and Rapid Electrokinetic Patterning techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossbeck, Martin; Qualls, Louis
To make a manned mission to the surface of the moon or to Mars with any significant residence time, the power requirements will make a nuclear reactor the most feasible source of energy. To prepare for such a mission, NASA has teamed with the DOE to develop Fission Surface Power technology with the goal of developing viable options. The Fission Surface Power System (FSPS) recommended as the initial baseline design includes a liquid metal reactor and primary coolant system that transfers heat to two intermediate liquid metal heat transfer loops. Each intermediate loop transfers heat to two Stirling heat exchangersmore » that each power two Stirling converters. Both the primary and the intermediate loops will use sodium-potassium (NaK) as the liquid metal coolant, and the primary loop will operate at temperatures exceeding 600°C. The alloy selected for the heat exchangers and piping is AISI Type 316L stainless steel. The extensive experience with NaK in breeder reactor programs and with earlier space reactors for unmanned missions lends considerable confidence in using NaK as a coolant in contact with stainless steel alloys. However, the microstructure, chemical segregation, and stress state of a weld leads to the potential for corrosion and cracking. Such failures have been experienced in NaK systems that have operated for times less than the eight year goal for the FSPS. For this reason, it was necessary to evaluate candidate weld techniques and expose welds to high-temperature, flowing NaK in a closed, closely controlled system. The goal of this project was to determine the optimum weld configuration for a NaK system that will withstand service for eight years under FSPS conditions. Since the most difficult weld to make and to evaluate is the tube to tube sheet weld in the intermediate heat exchangers, it was the focus of this research. A pumped loop of flowing NaK was fabricated for exposure of candidate weld specimens at temperatures of 600°C, the expected temperature within the intermediate heat exchangers. Since metal transfer from a high-temperature region to a cooler region is a predominant mode of corrosion in liquid metal systems, specimens were placed at zones in the loop at the above temperature to evaluate the effects of both alloy component leaching and metal deposition. Microstructural analysis was performed to evaluate weld performance on control weld specimens. The research was coordinated with Oak Ridge National Laboratory (ORNL) where most of the weld samples were prepared. In addition, ORNL participated in the loop operation to assist in keeping the testing relevant to the project and to take advantage of the extensive experience in liquid metal research at ORNL.« less
Synthesis and processing of materials for direct thermal-to-electric energy conversion and storage
NASA Astrophysics Data System (ADS)
Thompson, Travis
Currently, fossil fuels are the primary source of energy. Mechanical heat engines convert the chemical potential energy in fossil fuels to useful electrical energy through combustion; a relatively low efficiency process that generates carbon dioxide. This practice has led to a significant increase in carbon dioxide emissions and is contributing to climate change. However, not all heat engines are mechanical. Alternative energy generation technologies to mechanical heat engines are known, yet underutilized. Thermoelectric generators are solid-state devices originally developed by NASA to power deep space spacecraft, which can also convert heat into electricity but without any moving parts. Similar to their mechanical counterparts, any heat source, including the burning of fossil fuels, can be used. However, clean heat sources, such as concentrated solar, can alternatively be used. Since the energy sources for many of the alternative energy technologies is intermittent, including concentrated solar for thermoelectric devices, load matching is difficult or impossible and an energy storage technology is needed in addition to the energy conversion technology. This increases the overall cost and complexity of the systems since two devices are required and represents a significant barrier for mass adoption of an alternative energy technology. However, it is possible to convert heat energy to electrical energy and store excess charge for use at a later time when the demand increases, in a single device. One such of a device is a thermogalvanic generator and is the electrochemical analog of electronic thermoelectric devices. Essentially, a thermogalvanic device represents the combination of thermoelectric and galvanic systems. As such, the rich history of strategies developed by both the thermoelectric community to better the performance of thermoelectric devices and by the electrochemical community to better traditional galvanic devices (i.e. batteries) can be applied to thermogalvanic devices. Although thermogalvanic devices are known, there has been little exploration into the use of thermogalvanic devices for power generation and energy storage. First, this work formalizes the energy problem and introduces the operating principles of thermoelectric, galvanic, and thermogalvanic devices. Second, oxide based thermoelectric materials are explored from a synthetic and processing standpoint. Out of necessity, a new synthetic technique was invented and a novel hot-press technique was developed. Third, a solid Li-ion conducting electrolyte, based on the garnet crystal structure, is identified for the use in a thermogalvanic cell. In order to better understand the conductivity behavior, an in-depth exploration into the variables that control the ionic transport is performed on the electrolyte. Third, a thermogalvanic cell is constructed using this garnet based Li-ion conducting solid electrolyte and the first demonstration of such a cell is presented. Finally, strategies to improve the performance of thermogalvanic cells based on garnet type solid electrolytes are outlined for future work. The purpose of this work is to use an interdisciplinary approach to marry together the electrochemistry of galvanic systems with the strategies used to better semiconductor based thermoelectric materials and ceramics processing techniques to fabricate these systems. This dissertation will explore the interplay of these areas.
TEM Pump With External Heat Source And Sink
NASA Technical Reports Server (NTRS)
Nesmith, Bill J.
1991-01-01
Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.
Franklin, Craig E; Seebacher, Frank
2003-04-01
The effect of heating and cooling on heart rate in the estuarine crocodile Crocodylus porosus was studied in response to different heat transfer mechanisms and heat loads. Three heating treatments were investigated. C. porosus were: (1) exposed to a radiant heat source under dry conditions; (2) heated via radiant energy while half-submerged in flowing water at 23 degrees C and (3) heated via convective transfer by increasing water temperature from 23 degrees C to 35 degrees C. Cooling was achieved in all treatments by removing the heat source and with C. porosus half-submerged in flowing water at 23 degrees C. In all treatments, the heart rate of C. porosus increased markedly in response to heating and decreased rapidly with the removal of the heat source. Heart rate during heating was significantly faster than during cooling at any given body temperature, i.e. there was a significant heart rate hysteresis. There were two identifiable responses to heating and cooling. During the initial stages of applying or removing the heat source, there was a dramatic increase or decrease in heart rate ('rapid response'), respectively, indicating a possible cardiac reflex. This rapid change in heart rate with only a small change or no change in body temperature (<0.5 degrees C) resulted in Q(10) values greater than 4000, calling into question the usefulness of this measure on heart rate during the initial stages of heating and cooling. In the later phases of heating and cooling, heart rate changed with body temperature, with Q(10) values of 2-3. The magnitude of the heart rate response differed between treatments, with radiant heating during submergence eliciting the smallest response. The heart rate of C. porosus outside of the 'rapid response' periods was found to be a function of the heat load experienced at the animal surface, as well as on the mode of heat transfer. Heart rate increased or decreased rapidly when C. porosus experienced large positive (above 25 W) or negative (below -15 W) heat loads, respectively, in all treatments. For heat loads between -15 W and 20 W, the increase in heart rate was smaller for the 'unnatural' heating by convection in water compared with either treatment using radiant heating. Our data indicate that changes in heart rate constitute a thermoregulatory mechanism that is modulated in response to the thermal environment occupied by the animal, but that heart rate during heating and cooling is, in part, controlled independently of body temperature.
Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM
2004-07-27
A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.
Microinstallations Based on Renewable Energy Sources in the Construction Sector
NASA Astrophysics Data System (ADS)
Kurzak, Lucjan
2017-10-01
The focus of this paper is on the status and prognoses of the use of microinstallations based on renewable energy sources to supply heat and power. The technologies that have been important in Europe and Poland for microgeneration of electricity include photovoltaic systems, micro wind turbines and co-generation systems. Solar collectors, heat pumps and biomass have also been used to generate heat. Microinstallations for renewable energy sources represent the initial point and the foundation for the development of micro networks, intelligent networks and the whole prosumer energy sector.
Step - wise transient method - Influence of heat source inertia
NASA Astrophysics Data System (ADS)
Malinarič, Svetozár; Dieška, Peter
2016-07-01
Step-wise transient (SWT) method is an experimental technique for measuring the thermal diffusivity and conductivity of materials. Theoretical models and experimental apparatus are presented and the influence of the heat source capacity are investigated using the experiment simulation. The specimens from low density polyethylene (LDPE) were measured yielding the thermal diffusivity 0.165 mm2/s and thermal conductivity 0.351 W/mK with the coefficient of variation less than 1.4 %. The heat source capacity caused the systematic error of the results smaller than 1 %.
Heat exchanger with intermediate evaporating and condensing fluid
Fraas, Arthur P.
1978-01-01
A shell and tube-type heat exchanger, such as a liquid sodium-operated steam generator for use in nuclear reactors, comprises a shell containing a primary fluid tube bundle, a secondary fluid tube bundle at higher elevation, and an intermediate fluid vaporizing at the surface of the primary fluid tubes and condensing at the surface of the secondary fluid tubes.
Controlled metal-semiconductor sintering/alloying by one-directional reverse illumination
Sopori, Bhushan L.
1993-01-01
Metal strips deposited on a top surface of a semiconductor substrate are sintered at one temperature simultaneously with alloying a metal layer on the bottom surface at a second, higher temperature. This simultaneous sintering of metal strips and alloying a metal layer on opposite surfaces of the substrate at different temperatures is accomplished by directing infrared radiation through the top surface to the interface of the bottom surface with the metal layer where the radiation is absorbed to create a primary hot zone with a temperature high enough to melt and alloy the metal layer with the bottom surface of the substrate. Secondary heat effects, including heat conducted through the substrate from the primary hot zone and heat created by infrared radiation reflected from the metal layer to the metal strips, as well as heat created from some primary absorption by the metal strips, combine to create secondary hot zones at the interfaces of the metal strips with the top surface of the substrate. These secondary hot zones are not as hot as the primary hot zone, but they are hot enough to sinter the metal strips to the substrate.
Laser induced heat source distribution in bio-tissues
NASA Astrophysics Data System (ADS)
Li, Xiaoxia; Fan, Shifu; Zhao, Youquan
2006-09-01
During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.
Reducing indoor air pollutants with air filtration units in wood stove homes.
McNamara, Marcy L; Thornburg, Jonathon; Semmens, Erin O; Ward, Tony J; Noonan, Curtis W
2017-08-15
Biomass burning has been shown to be a major source of poor indoor air quality (IAQ) in developing and higher income countries across the world. Specifically, wood burning for cooking and heating contributes to high indoor concentrations of fine (particles with aerodynamic diameters<2.5μm; PM 2.5 ) and coarse (particles with aerodynamic diameters <10μm and >2.5μm; PMc) particulate matter. Endotoxin, predominantly found within the coarse fraction of airborne particulate matter, is associated with proinflammatory effects and adverse outcomes among susceptible populations. The aim of this study was to assess the efficacy of air filter interventions in reducing indoor PM 2.5 , PMc, and PMc-associated endotoxin concentrations in homes using a wood stove for primary heating. Homes (n=48) were randomized to receive in-room air filtration units with either a high efficiency filter (i.e. active) or a lower efficiency fiberglass filter (i.e., placebo). The active filter intervention showed a 66% reduction in indoor PM 2.5 concentrations (95% CI: 42.2% to 79.7% reduction) relative to the placebo intervention. Both the active and the placebo filters were effective in substantially reducing indoor concentrations of PMc (63.3% and 40.6% average reduction for active and placebo filters, respectively) and PMc-associated endotoxin concentrations (91.8% and 80.4% average reductions, respectively). These findings support the use of high efficiency air filtration units for reducing indoor PM 2.5 in homes using a wood stove for primary heating. We also discovered that using lower efficiency, lower cost filter alternatives can be effective for reducing PMc and airborne endotoxin in homes burning biomass fuel. Copyright © 2017. Published by Elsevier B.V.
Oneida Tribe of Indians of Wisconsin Energy Optimization Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troge, Michael
2014-12-01
Oneida Nation is located in Northeast Wisconsin. The reservation is approximately 96 square miles (8 miles x 12 miles), or 65,000 acres. The greater Green Bay area is east and adjacent to the reservation. A county line roughly splits the reservation in half; the west half is in Outagamie County and the east half is in Brown County. Land use is predominantly agriculture on the west 2/3 and suburban on the east 1/3 of the reservation. Nearly 5,000 tribally enrolled members live in the reservation with a total population of about 21,000. Tribal ownership is scattered across the reservation andmore » is about 23,000 acres. Currently, the Oneida Tribe of Indians of Wisconsin (OTIW) community members and facilities receive the vast majority of electrical and natural gas services from two of the largest investor-owned utilities in the state, WE Energies and Wisconsin Public Service. All urban and suburban buildings have access to natural gas. About 15% of the population and five Tribal facilities are in rural locations and therefore use propane as a primary heating fuel. Wood and oil are also used as primary or supplemental heat sources for a small percent of the population. Very few renewable energy systems, used to generate electricity and heat, have been installed on the Oneida Reservation. This project was an effort to develop a reasonable renewable energy portfolio that will help Oneida to provide a leadership role in developing a clean energy economy. The Energy Optimization Model (EOM) is an exploration of energy opportunities available to the Tribe and it is intended to provide a decision framework to allow the Tribe to make the wisest choices in energy investment with an organizational desire to establish a renewable portfolio standard (RPS).« less
High-Performance Computing Data Center | Computational Science | NREL
liquid cooling to achieve its very low PUE, then captures and reuses waste heat as the primary heating dry cooler that uses refrigerant in a passive cycle to dissipate heat-is reducing onsite water Measuring efficiency through PUE Warm-water liquid cooling Re-using waste heat from computing components
Natural convection in symmetrically heated vertical parallel plates with discrete heat sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manca, O.; Nardini, S.; Naso, V.
Laminar air natural convection in a symmetrically heated vertical channel with uniform flush-mounted discrete heat sources has been experimentally investigated. The effects of heated strips location and of their number are pointed out in terms of the maximum wall temperatures. A flow visualization in the entrance region of the channel was carried out and air temperatures and velocities in two cross sections have been measured. Dimensionless local heat transfer coefficients have been evaluated and monomial correlations among relevant parameters have bee derived in the local Rayleigh number range 10--10{sup 6}. Channel Nusselt number has been correlated in a polynomial formmore » in terms of channel Rayleigh number.« less
Investigating Primary Source Literacy
ERIC Educational Resources Information Center
Archer, Joanne; Hanlon, Ann M.; Levine, Jennie A.
2009-01-01
Primary source research requires students to acquire specialized research skills. This paper presents results from a user study testing the effectiveness of a Web guide designed to convey the concepts behind "primary source literacy". The study also evaluated students' strengths and weaknesses when conducting primary source research. (Contains 3…
NASA Astrophysics Data System (ADS)
Heo, Joon-Young; Gwon, Jin-Han; Park, Jong-Kwan; Lee, Kee-Ahn
2018-05-01
Hypereutectic Al-Si alloy is an aluminum alloy containing at least 12.6 wt.% Si. It is necessary to evenly control the primary Si particle size and distribution in hypereutectic Al-Si alloy. In order to achieve this, there have been attempts to manufacture hypereutectic Al-Si alloy through a liquid phase sintering. This study investigated the microstructures and high temperature mechanical properties of hypereutectic Al-14Si-Cu-Mg alloy manufactured by liquid phase sintering process and changes in them after T6 heat treatment. Microstructural observation identified large amounts of small primary Si particles evenly distributed in the matrix, and small amounts of various precipitation phases were found in grain interiors and grain boundaries. After T6 heat treatment, the primary Si particle size and shape did not change significantly, but the size and distribution of CuAl2 ( θ) and AlCuMgSi ( Q) changed. Hardness tests measured 97.36 HV after sintering and 142.5 HV after heat treatment. Compression tests were performed from room temperature to 300 °C. The results represented that yield strength was greater after heat treatment (RT 300 °C: 351 93 MPa) than after sintering (RT 300 °C: 210 89 MPa). Fracture surface analysis identified cracks developing mostly along the interface between the primary Si particles and the matrix with some differences among temperature conditions. In addition, brittle fracture mode was found after T6 heat treatment.
Geothermal Heat Pump Basics | NREL
a free source of hot water. Geothermal heat pumps use much less energy than conventional heating resources: Geothermal Heat Pumps U.S. Department of Energy's Office of Energy Efficiency and Renewable Heat Pump Basics Geothermal Heat Pump Basics Geothermal heat pumps take advantage of the nearly
Methods for the additive manufacturing of semiconductor and crystal materials
Stowe, Ashley C.; Speight, Douglas
2016-11-22
A method for the additive manufacturing of inorganic crystalline materials, including: physically combining a plurality of starting materials that are used to form an inorganic crystalline compound to be used as one or more of a semiconductor, scintillator, laser crystal, and optical filter; heating or melting successive regions of the combined starting materials using a directed heat source having a predetermined energy characteristic, thereby facilitating the reaction of the combined starting materials; and allowing each region of the combined starting materials to cool in a controlled manner, such that the desired inorganic crystalline compound results. The method also includes, prior to heating or melting the successive regions of the combined starting materials using the directed heat source, heating the combined starting materials to facilitate initial reaction of the combined starting materials. The method further includes translating the combined starting materials and/or the directed heat source between successive locations. The method still further includes controlling the mechanical, electrical, photonic, and/or optical properties of the inorganic crystalline compound.
High geothermal heat flux in close proximity to the Northeast Greenland Ice Stream.
Rysgaard, Søren; Bendtsen, Jørgen; Mortensen, John; Sejr, Mikael K
2018-01-22
The Greenland ice sheet (GIS) is losing mass at an increasing rate due to surface melt and flow acceleration in outlet glaciers. Currently, there is a large disagreement between observed and simulated ice flow, which may arise from inaccurate parameterization of basal motion, subglacial hydrology or geothermal heat sources. Recently it was suggested that there may be a hidden heat source beneath GIS caused by a higher than expected geothermal heat flux (GHF) from the Earth's interior. Here we present the first direct measurements of GHF from beneath a deep fjord basin in Northeast Greenland. Temperature and salinity time series (2005-2015) in the deep stagnant basin water are used to quantify a GHF of 93 ± 21 mW m -2 which confirm previous indirect estimated values below GIS. A compilation of heat flux recordings from Greenland show the existence of geothermal heat sources beneath GIS and could explain high glacial ice speed areas such as the Northeast Greenland ice stream.
Survey of possibility for volcanic energy development
NASA Astrophysics Data System (ADS)
1990-03-01
Volcanic areas, clarification of heat source structure, evaluation of resources and problems on utilization techniques were arranged to search the possibility of future volcanic heat source. It is necessary to improve the exploration accuracy by combining geophysical exploration with geological and geochemical surveys in order to explorate a magma reservoir. Especially, seismic exploration is effective. The surveying procedure is as follows: confirmation of magma existence and grasping the whole image, evaluation of resources, clarification of three-dimensional distribution of magma in a promising area, and heat structure survey by heat flow measurement and others to construct more accurate model for resources. This model is verified finally by practical drilling. Promising areas which are worthy of development, are active volcanic areas in Kyushu, Hakkoda nad Hokkaido. It is desirable to make drilling to the depth of 3 km or magma reservoir to develop the future heat source. It is also required to improve the thermal resistance and corrosion resistance of materials to be used. Heat extraction by a single well is most realistic and the closed coaxial double pipe heat exchanger or open heat exchanger in the well will be used to improve the extraction.
System for thermal energy storage, space heating and cooling and power conversion
Gruen, Dieter M.; Fields, Paul R.
1981-04-21
An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.
Experience Gained on Direct Use of Low Enthalpy Energy in Hotel do Parque, S. Pedro do Sul, Portugal
NASA Astrophysics Data System (ADS)
Ferreira Gomes, L. M.; Neves Trota, A. P.; Reis Afonso de Albuquerque, F. J.
2017-12-01
Despite the high number of thermal flowing springs in Portugal mainland (up to 52 hot springs), ranging temperatures from 20 °C to 77 °C, and with significant water flow rate, few district heating system were implemented in Portugal. Here we present the São Pedro do Sul district heating system, located northern of Portugal. The thermal power plant was designed, completed, and commissioned in 2001 allowing the utilization of the geothermal heat by local users, as Hotel do Parque. The district heating system sums about 15 years of utilization without interruption and with minor drawbacks. On this paper we present the project overview along with thermal power plant specifications and data numbers. Heat comes from a 16.9 L/s of thermal water supplied by a natural spring and a nearby well. Heat from the spring and well sources is transferred to a secondary low mineralized water system by a plate heat exchanger, allowing the heating of space and domestic waters of hotel areas. Based on a theoretically cascade direct use of heat from a 67 °C to a 20 °C water temperature range, available heat totals 29.1*106 kWh yearly. However, past and actual use of heat only reaches around 1.6% of that figure. By comparing with fossil heat sources, actual use of a natural heat source reduces a theoretically amount of 117.9 ton of CO2 emissions by year. The successful use of this district heating system can promote local expansion of new users and other possible heat uses of this renewable energy, giving chance for the district heating system saturation.
Swenson, Paul F.; Moore, Paul B.
1983-01-01
An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.
Swenson, Paul F.; Moore, Paul B.
1977-01-01
An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.
Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y
2015-11-01
This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.
Swenson, Paul F.; Moore, Paul B.
1983-06-21
An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.
Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources
NASA Astrophysics Data System (ADS)
Wajs, Jan; Mikielewicz, Dariusz; Fornalik-Wajs, Elżbieta; Bajor, Michał
2015-12-01
A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.
1996-01-01
This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted by the other central heating plants in Krakow and indeed, throughout Eastern European citiesmore » where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators, for the execution of this effort. The washability data from a 20mm x 0.5mm size fraction of raw coal from the Nikwa Modrejow Mine were evaluated. The data show that the ash content of this coal can be reduced from 34.0 percent to 9.0 percent by washing in a heavy-media cyclone at 1.725 sp.gr.; the actual yield of clean coal would be 63.1 percent. This product would meet compliance limitations of 500 a of SO{sub 2}/GJ. An evaluation of the predicted results that can be expected when washing five different candidate Polish coals shows that compliance products containing less than 640 a SO{sub 2}/GJ and 10 percent ash at attractive yields can be produced by washing the raw coals in a heavy-media cyclone. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and for identifying sources of private capital to help cost share the project continued. The search for markets for utilizing surplus production from the new plant continued.« less
NASA Astrophysics Data System (ADS)
Wang, Qingqing; Sun, Yele; Jiang, Qi; Du, Wei; Sun, Chengzhu; Fu, Pingqing; Wang, Zifa
2015-12-01
Despite extensive efforts into characterization of the sources and formation mechanisms of severe haze pollution in the megacity of Beijing, the response of aerosol composition and optical properties to coal combustion emissions in the heating season remain poorly understood. Here we conducted a 3 month real-time measurement of submicron aerosol (PM1) composition by an Aerosol Chemical Speciation Monitor and particle light extinction by a Cavity Attenuated Phase Shift extinction monitor in Beijing, China, from 1 October to 31 December 2012. The average (±σ) PM1 concentration was 82.4 (±73.1) µg/m3 during the heating period (HP, 15 November to 31 December), which was nearly 50% higher than that before HP (1 October to 14 November). While nitrate and secondary organic aerosol (SOA) showed relatively small changes, organics, sulfate, and chloride were observed to have significant increases during HP, indicating the dominant impacts of coal combustion sources on these three species. The relative humidity-dependent composition further illustrated an important role of aqueous-phase processing for the sulfate enhancement during HP. We also observed great increases of hydrocarbon-like OA (HOA) and coal combustion OA (CCOA) during HP, which was attributed to higher emissions at lower temperatures and coal combustion emissions, respectively. The relationship between light extinction and chemical composition was investigated using a multiple linear regression model. Our results showed that the largest contributors to particle extinction were ammonium nitrate (32%) and ammonium sulfate (28%) before and during HP, respectively. In addition, the contributions of SOA and primary OA to particle light extinction were quantified. The results showed that the OA extinction was mainly caused by SOA before HP and by SOA and CCOA during HP, yet with small contributions from HOA and cooking aerosol for the entire study period. Our results elucidate substantial changes of aerosol composition, formation mechanisms, and optical properties due to coal combustion emissions and meteorological changes in the heating season.
NASA Astrophysics Data System (ADS)
Katskov, Dmitri A.; Sadagov, Yuri M.
2011-06-01
The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a "platform" effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 °C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element determination in Flame AAS with primary line source that is 50-1000 times higher than the limits obtainable with common ETAAS (Electrothermal Atomic Absorption Spectrometry) instrumentation.
Seeking History: Teaching with Primary Sources in Grades 4-6.
ERIC Educational Resources Information Center
Edinger, Monica
This book offers ideas about using primary sources to enhance students' understandings of history. It discusses the following resources, methods, and ideas: types of primary sources; tips on finding and preparing primary sources for student use; personal, local, and remote history activities; detailed descriptions of diverse projects; guidelines…
Characterization of an electrothermal plasma source for fusion transient simulations
Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen; ...
2018-01-21
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less
Characterization of an electrothermal plasma source for fusion transient simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less
RELAP5 Analysis of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hongbin Zhang; Haihua Zhao; Cliff Davis
2008-06-01
An innovative hybrid loop-pool design for sodium cooled fast reactors (SFR-Hybrid) has been recently proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to improve economics and safety of SFRs. In the hybrid loop-pool design, primary loops are formed by connecting the reactor outlet plenum (hot pool), intermediate heat exchangers (IHX), primary pumps and the reactor inlet plenum with pipes. The primary loops are immersed in the cold pool (buffer pool). Passive safety systems -- modular Pool Reactor Auxiliary Cooling Systems (PRACS) – are added to transfer decay heatmore » from the primary system to the buffer pool during loss of forced circulation (LOFC) transients. The primary systems and the buffer pool are thermally coupled by the PRACS, which is composed of PRACS heat exchangers (PHX), fluidic diodes and connecting pipes. Fluidic diodes are simple, passive devices that provide large flow resistance in one direction and small flow resistance in reverse direction. Direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) are immersed in the cold pool to transfer decay heat to the environment by natural circulation. To prove the design concepts, especially how the passive safety systems behave during transients such as LOFC with scram, a RELAP5-3D model for the hybrid loop-pool design was developed. The simulations were done for both steady-state and transient conditions. This paper presents the details of RELAP5-3D analysis as well as the calculated thermal response during LOFC with scram. The 250 MW thermal power conventional pool type design of GNEP’s Advanced Burner Test Reactor (ABTR) developed by Argonne National Laboratory was used as the reference reactor core and primary loop design. The reactor inlet temperature is 355 °C and the outlet temperature is 510 °C. The core design is the same as that for ABTR. The steady state buffer pool temperature is the same as the reactor inlet temperature. The peak cladding, hot pool, cold pool and reactor inlet temperatures were calculated during LOFC. The results indicate that there are two phases during LOFC transient – the initial thermal equilibration phase and the long term decay heat removal phase. The initial thermal equilibration phase occurs over a few hundred seconds, as the system adjusts from forced circulation to natural circulation flow. Subsequently, during long-term heat removal phase all temperatures evolve very slowly due to the large thermal inertia of the primary and buffer pool systems. The results clearly show that passive safety PRACS can effectively transfer decay heat from the primary system to the buffer pool by natural circulation. The DRACS system in turn can effectively transfer the decay heat to the environment.« less
Investigation of Ionospheric Turbulence and Whistler Wave Interactions with Space Plasmas
2012-11-21
an oscillating LOS velocity with the same periodicity as the heating modulation pattern. A set of Fourier periodogram from the MUIR LOS velocity...scale ionospheric turbulence are discussed separately, viz., (a) anomalous heat source-induced acoustic gravity waves (AGW), and (b) HF radio wave...ionospheric ducts, acoustic gravity waves (AGWs), anomalous heat sources, inner and outer radiation belts, L parameter, whistler wave interactions
Heat trap - An optimized far infrared field optics system. [for astronomical sources
NASA Technical Reports Server (NTRS)
Harper, D. A.; Hildebrand, R. H.; Winston, R.; Stiening, R.
1976-01-01
The article deals with the design and performance of a heat trap IR system designed to maximize the concentration and efficient reception of far IR and submillimeter wavelength radiation. The test object is assumed to be extended and/or viewed at wavelengths much longer than the detector, and the entrance aperture is limited to the size of the telescope Airy diffraction disk. The design of lenses, cavity, bolometers, light collectors, and mirrors for the system is discussed. Advantages and feasibility of arrays of heat traps are considered. Beam patterns, flux concentration, and performance variation with wavelength are dealt with. The heat trap is recommended for sensing all types of far IR sources and particularly for extended far IR sources.-
Strategy for Texture Management in Metals Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirka, Michael M.; Lee, Yousub; Greeley, Duncan A.
Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Here, we propose a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials canmore » be controlled. Using this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.« less
Strategy for Texture Management in Metals Additive Manufacturing
Kirka, Michael M.; Lee, Yousub; Greeley, Duncan A.; ...
2017-01-31
Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Here, we propose a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials canmore » be controlled. Using this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.« less
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.; Shashikumar, N. S.; Hayat, T.; Alsaedi, A.
2018-06-01
Present work aims to investigate the features of the exponential space dependent heat source (ESHS) and cross-diffusion effects in Marangoni convective heat mass transfer flow due to an infinite disk. Flow analysis is comprised with magnetohydrodynamics (MHD). The effects of Joule heating, viscous dissipation and solar radiation are also utilized. The thermal and solute field on the disk surface varies in a quadratic manner. The ordinary differential equations have been obtained by utilizing Von Kármán transformations. The resulting problem under consideration is solved numerically via Runge-Kutta-Fehlberg based shooting scheme. The effects of involved pertinent flow parameters are explored by graphical illustrations. Results point out that the ESHS effect dominates thermal dependent heat source effect on thermal boundary layer growth. The concentration and temperature distributions and their associated layer thicknesses are enhanced by Marangoni effect.
Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil
2013-11-19
A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.
Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil
2013-02-19
A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.
Modelling and experimental performance analysis of solar-assisted ground source heat pump system
NASA Astrophysics Data System (ADS)
Esen, Hikmet; Esen, Mehmet; Ozsolak, Onur
2017-01-01
In this study, slinky (the slinky-loop configuration is also known as the coiled loop or spiral loop of flexible plastic pipe)type ground heat exchanger (GHE) was established for a solar-assisted ground source heat pump system. System modelling is performed with the data obtained from the experiment. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used in modelling. The slinky pipes have been laid horizontally and vertically in a ditch. The system coefficient of performance (COPsys) and the heat pump coefficient of performance (COPhp) have been calculated as 2.88 and 3.55, respectively, at horizontal slinky-type GHE, while COPsys and COPhp were calculated as 2.34 and 2.91, respectively, at vertical slinky-type GHE. The obtained results showed that the ANFIS is more successful than that of ANN for forecasting performance of a solar ground source heat pump system.
Recov'Heat: An estimation tool of urban waste heat recovery potential in sustainable cities
NASA Astrophysics Data System (ADS)
Goumba, Alain; Chiche, Samuel; Guo, Xiaofeng; Colombert, Morgane; Bonneau, Patricia
2017-02-01
Waste heat recovery is considered as an efficient way to increase carbon-free green energy utilization and to reduce greenhouse gas emission. Especially in urban area, several sources such as sewage water, industrial process, waste incinerator plants, etc., are still rarely explored. Their integration into a district heating system providing heating and/or domestic hot water could be beneficial for both energy companies and local governments. EFFICACITY, a French research institute focused on urban energy transition, has developed an estimation tool for different waste heat sources potentially explored in a sustainable city. This article presents the development method of such a decision making tool which, by giving both energetic and economic analysis, helps local communities and energy service companies to make preliminary studies in heat recovery projects.
Oscillating-Coolant Heat Exchanger
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.; Blosser, Max L.; Camarda, Charles J.
1992-01-01
Devices useful in situations in which heat pipes inadequate. Conceptual oscillating-coolant heat exchanger (OCHEX) transports heat from its hotter portions to cooler portions. Heat transported by oscillation of single-phase fluid, called primary coolant, in coolant passages. No time-averaged flow in tubes, so either heat removed from end reservoirs on every cycle or heat removed indirectly by cooling sides of channels with another coolant. Devices include leading-edge cooling devices in hypersonic aircraft and "frost-free" heat exchangers. Also used in any situation in which heat pipe used and in other situations in which heat pipes not usable.
Phenomenology of break-up modes in contact free externally heated nanoparticle laden fuel droplets
NASA Astrophysics Data System (ADS)
Pathak, Binita; Basu, Saptarshi
2016-12-01
We study thermally induced atomization modes in contact free (acoustically levitated) nanoparticle laden fuel droplets. The initial droplet size, external heat supplied, and suspended particle concentration (wt. %) in droplets govern the stability criterion which ultimately determines the dominant mode of atomization. Pure fuel droplets exhibit two dominant modes of breakup namely primary and secondary. Primary modes are rather sporadic and normally do not involve shape oscillations. Secondary atomization however leads to severe shape deformations and catastrophic intense breakup of the droplets. The dominance of these modes has been quantified based on the external heat flux, dynamic variation of surface tension, acoustic pressure, and droplet size. Addition of particles alters the regimes of the primary and secondary atomization and introduces bubble induced boiling and bursting. We analyze this new mode of atomization and estimate the time scale of bubble growth up to the point of bursting using energy balance to determine the criterion suitable for parent droplet rupture. All the three different modes of breakup have been well identified in a regime map determined in terms of Weber number and the heat utilization rate which is defined as the energy utilized for transient heating, vaporization, and boiling in droplets.
Solar heating and cooling systems design and development
NASA Technical Reports Server (NTRS)
1976-01-01
Solar heating and heating/cooling systems were designed for single family, multifamily, and commercial applications. Subsystems considered included solar collectors, heat storage systems, auxiliary energy sources, working fluids, and supplementary controls, piping, and pumps.
Methods and systems for remote detection of gases
Johnson, Timothy J.
2007-11-27
Novel systems and methods for remotely detecting at least one constituent of a gas via infrared detection are provided. A system includes at least one extended source of broadband infrared radiation and a spectrally sensitive receiver positioned remotely from the source. The source and the receiver are oriented such that a surface of the source is in the field of view of the receiver. The source includes a heating component thermally coupled to the surface, and the heating component is configured to heat the surface to a temperature above ambient temperature. The receiver is operable to collect spectral infrared absorption data representative of a gas present between the source and the receiver. The invention advantageously overcomes significant difficulties associated with active infrared detection techniques known in the art, and provides an infrared detection technique with a much greater sensitivity than passive infrared detection techniques known in the art.