A severe combined immunodeficient-hu in vivo mouse model of human primary mantle cell lymphoma.
Wang, Michael; Zhang, Liang; Han, Xiaohong; Yang, Jing; Qian, Jianfei; Hong, Sungyoul; Lin, Pei; Shi, Yuankai; Romaguera, Jorge; Kwak, Larry W; Yi, Qing
2008-04-01
To establish a severe combined immunodeficient (SCID)-hu in vivo mouse model of human primary mantle cell lymphoma (MCL) for the study of the biology and novel therapy of human MCL. Primary MCL cells were isolated from spleen, lymph node, bone marrow aspirates, or peripheral blood of six different patients and injected respectively into human bone chips, which had been s.c. implanted in SCID-hu. Circulating human beta(2)-microglobulin in mouse serum was used to monitor the engraftment and growth of patient's MCL cells. H&E staining and immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies were used to confirm the tumor growth and migration. Increasing levels of circulating human beta(2)-microglobulin in mouse serum indicated that the patient's MCL cells were engrafted successfully into human bone chip of SCID-hu mice. The engraftment and growth of patient's MCL cells were dependent on human bone marrow microenvironment. Immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies confirmed that patient's MCL cells were able to not only survive and propagate in the bone marrow microenvironment of the human fetal bone chips, but also similar to the human disease, migrate to lymph nodes, spleen, bone marrow, and gastrointestinal tract of host mice. Treatment of MCL-bearing SCID-hu mice with atiprimod, a novel antitumor compound against the protection of bone marrow stromal cells, induced tumor regression. This is the first human primary MCL animal model that should be useful for the biological and therapeutic research on MCL.
Simmons, T; Goodburn, B; Singhrao, S K
2016-01-01
This feasibility study was undertaken to describe and record the histological characteristics of burnt and unburnt cranial bone fragments from human and non-human bones. Reference series of fully mineralized, transverse sections of cranial bone, from all variables and specimen states, were prepared by manual cutting and semi-automated grinding and polishing methods. A photomicrograph catalogue reflecting differences in burnt and unburnt bone from human and non-humans was recorded and qualitative analysis was performed using an established classification system based on primary bone characteristics. The histomorphology associated with human and non-human samples was, for the main part, preserved following burning at high temperature. Clearly, fibro-lamellar complex tissue subtypes, such as plexiform or laminar primary bone, were only present in non-human bones. A decision tree analysis based on histological features provided a definitive identification key for distinguishing human from non-human bone, with an accuracy of 100%. The decision tree for samples where burning was unknown was 96% accurate, and multi-step classification to taxon was possible with 100% accuracy. The results of this feasibility study strongly suggest that histology remains a viable alternative technique if fragments of cranial bone require forensic examination in both burnt and unburnt states. The decision tree analysis may provide an additional but vital tool to enhance data interpretation. Further studies are needed to assess variation in histomorphology taking into account other cranial bones, ontogeny, species and burning conditions. © The Author(s) 2015.
Histological determination of the human origin from dry bone: a cautionary note for subadults.
Caccia, Giulia; Magli, Francesca; Tagi, Veronica Maria; Porta, Davide Guido Ampelio; Cummaudo, Marco; Márquez-Grant, Nicholas; Cattaneo, Cristina
2016-01-01
Anthropologists are frequently required to confirm or exclude the human origin of skeletal remains; DNA and protein radioimmunoassays are useful in confirming the human origin of bone fragments but are not always successful. Histology may be the solution, but the young subadult structure could create misinterpretation. Histological tests were conducted on femur and skull of 31 human subjects. Each sample was observed focusing on presence or absence of fibrous bone, lamellar bone, radial lamellar bone, plexiform bone, reticular pattern, osteon banding, Haversian bone, primary osteons, secondary osteon and osteon fragments. Samples were divided into five age classes; 1 (<1 year), 2 (1-5 years), 3 (6-10 years), 4 (11-15 years) and 5 (16-20 years). Regarding femurs, class 1 presented the following: 87.5% fibrous bone, 37.5% plexiform bone, 12.5% reticular pattern and 12.5% lamellar bone radially oriented. Class 2 showed 37.5% of fibrous bone, 12.5% of reticular pattern and 37.5% of osteon banding. In the higher age classes, the classical human structures, lamellar bone and osteons were frequently visible, except for one case of reticular pattern, generally considered a distinctive non-human structure. The situation appeared different for the skull, where there was a lack of similar information, both in human and non-human. An analysis of the percentage of lamellar bone and osteons was conducted on femur and skull fragments. A trend of increase of primary osteon number and a decrease of the lamellar bone area has been detected in the femur. The present study has therefore shed some light on further pitfalls in species determination of subadult bone.
Maggiano, Corey M; Maggiano, Isabel S; Tiesler, Vera G; Chi-Keb, Julio R; Stout, Sam D
2016-01-01
This study compares two novel methods quantifying bone shaft tissue distributions, and relates observations on human humeral growth patterns for applications in anthropological and anatomical research. Microstructural variation in compact bone occurs due to developmental and mechanically adaptive circumstances that are 'recorded' by forming bone and are important for interpretations of growth, health, physical activity, adaptation, and identity in the past and present. Those interpretations hinge on a detailed understanding of the modeling process by which bones achieve their diametric shape, diaphyseal curvature, and general position relative to other elements. Bone modeling is a complex aspect of growth, potentially causing the shaft to drift transversely through formation and resorption on opposing cortices. Unfortunately, the specifics of modeling drift are largely unknown for most skeletal elements. Moreover, bone modeling has seen little quantitative methodological development compared with secondary bone processes, such as intracortical remodeling. The techniques proposed here, starburst point-count and 45° cross-polarization hand-drawn histomorphometry, permit the statistical and populational analysis of human primary tissue distributions and provide similar results despite being suitable for different applications. This analysis of a pooled archaeological and modern skeletal sample confirms the importance of extreme asymmetry in bone modeling as a major determinant of microstructural variation in diaphyses. Specifically, humeral drift is posteromedial in the human humerus, accompanied by a significant rotational trend. In general, results encourage the usage of endocortical primary bone distributions as an indicator and summary of bone modeling drift, enabling quantitative analysis by direction and proportion in other elements and populations. © 2015 Anatomical Society.
Goldstein, Robert H; Reagan, Michaela R; Anderson, Kristen; Kaplan, David L; Rosenblatt, Michael
2010-01-01
American women have a nearly 25% lifetime risk of developing breast cancer, with 20–40% of these patients developing life-threatening metastases. Over 70% of patients presenting with metastases have skeletal involvement, which signals progression to an incurable stage. Tumor-stroma cell interactions are only superficially understood, specifically regarding the ability of stromal cells to affect metastasis. In vivo models show that exogenously supplied hBMSCs (human bone-marrow derived stem cells) migrate to breast cancer tumors, but no reports have shown endogenous hBMSC migration from the bone to primary tumors. Here we present a model of in vivo hBMSC migration from a physiologic human bone environment to human breast tumors. Further, hBMSCs alter tumor growth and bone metastasis frequency. hBMSCs may home to certain breast tumors based on tumor-derived TGF-β1. Moreover, at the primary tumor IL-17B/IL-17BR signaling may mediate interactions between hBMSCs and breast cancer cells (BCCs). PMID:21159629
Dwivedi, Prem P; Anderson, Peter J; Powell, Barry C
2012-08-03
Achieving efficient introduction of plasmid DNA into primary cultures of mammalian cells is a common problem in biomedical research. Human primary cranial suture cells are derived from the connective mesenchymal tissue between the bone forming regions at the edges of the calvarial plates of the skull. Typically they are referred to as suture mesenchymal cells and are a heterogeneous population responsible for driving the rapid skull growth that occurs in utero and postnatally. To better understand the molecular mechanisms involved in skull growth, and in abnormal growth conditions, such as craniosynostosis, caused by premature bony fusion, it is essential to be able to easily introduce genes into primary bone forming cells to study their function. A comparison of several lipid-based techniques with two electroporation-based techniques demonstrated that the electroporation method known as nucleofection produced the best transfection efficiency. The parameters of nucleofection, including cell number, amount of DNA and nucleofection program, were optimized for transfection efficiency and cell survival. Two different genes and two promoter reporter vectors were used to validate the nucleofection method and the responses of human primary suture mesenchymal cells by fluorescence microscopy, RT-PCR and the dual luciferase assay. Quantification of bone morphogenetic protein (BMP) signalling using luciferase reporters demonstrated robust responses of the cells to both osteogenic BMP2 and to the anti-osteogenic BMP3. A nucleofection protocol has been developed that provides a simple and efficient, non-viral alternative method for in vitro studies of gene and protein function in human skull growth. Human primary suture mesenchymal cells exhibit robust responses to BMP2 and BMP3, and thus nucleofection can be a valuable method for studying the potential competing action of these two bone growth factors in a model system of cranial bone growth.
Engineering a humanized bone organ model in mice to study bone metastases.
Martine, Laure C; Holzapfel, Boris M; McGovern, Jacqui A; Wagner, Ferdinand; Quent, Verena M; Hesami, Parisa; Wunner, Felix M; Vaquette, Cedryck; De-Juan-Pardo, Elena M; Brown, Toby D; Nowlan, Bianca; Wu, Dan Jing; Hutmacher, Cosmo Orlando; Moi, Davide; Oussenko, Tatiana; Piccinini, Elia; Zandstra, Peter W; Mazzieri, Roberta; Lévesque, Jean-Pierre; Dalton, Paul D; Taubenberger, Anna V; Hutmacher, Dietmar W
2017-04-01
Current in vivo models for investigating human primary bone tumors and cancer metastasis to the bone rely on the injection of human cancer cells into the mouse skeleton. This approach does not mimic species-specific mechanisms occurring in human diseases and may preclude successful clinical translation. We have developed a protocol to engineer humanized bone within immunodeficient hosts, which can be adapted to study the interactions between human cancer cells and a humanized bone microenvironment in vivo. A researcher trained in the principles of tissue engineering will be able to execute the protocol and yield study results within 4-6 months. Additive biomanufactured scaffolds seeded and cultured with human bone-forming cells are implanted ectopically in combination with osteogenic factors into mice to generate a physiological bone 'organ', which is partially humanized. The model comprises human bone cells and secreted extracellular matrix (ECM); however, other components of the engineered tissue, such as the vasculature, are of murine origin. The model can be further humanized through the engraftment of human hematopoietic stem cells (HSCs) that can lead to human hematopoiesis within the murine host. The humanized organ bone model has been well characterized and validated and allows dissection of some of the mechanisms of the bone metastatic processes in prostate and breast cancer.
A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone
Thibaudeau, Laure; Taubenberger, Anna V.; Holzapfel, Boris M.; Quent, Verena M.; Fuehrmann, Tobias; Hesami, Parisa; Brown, Toby D.; Dalton, Paul D.; Power, Carl A.; Hollier, Brett G.; Hutmacher, Dietmar W.
2014-01-01
ABSTRACT The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact ‘organ’ bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo. PMID:24713276
Green, David W; Kim, Eun-Jung; Jung, Han-Sung
2015-09-01
The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. © 2015 Wiley Periodicals, Inc.
Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison
2015-06-05
Zirconia implant and 4x11.5 Titanium implant placed in artificial bone ( polyurethane foam ) at .08 rotations /sec…………………………………28 viii...measurements as they relate to primary Implant Stability. Artificial Bone made of solid ridged polyurethane foam was used as an alternative test...30 pound per cubic foot solid rigid polyurethane blocks used to substitute human cancellous bone
Batey, Michael A.; Almeida, Gilberto S.; Wilson, Ian; Dildey, Petra; Sharma, Abhishek; Blair, Helen; Hide, I. Geoff; Heidenreich, Olaf; Vormoor, Josef; Maxwell, Ross J.; Bacon, Chris M.
2014-01-01
Ewing sarcoma and osteosarcoma represent the two most common primary bone tumours in childhood and adolescence, with bone metastases being the most adverse prognostic factor. In prostate cancer, osseous metastasis poses a major clinical challenge. We developed a preclinical orthotopic model of Ewing sarcoma, reflecting the biology of the tumour-bone interactions in human disease and allowing in vivo monitoring of disease progression, and compared this with models of osteosarcoma and prostate carcinoma. Human tumour cell lines were transplanted into non-obese diabetic/severe combined immunodeficient (NSG) and Rag2−/−/γc−/− mice by intrafemoral injection. For Ewing sarcoma, minimal cell numbers (1000–5000) injected in small volumes were able to induce orthotopic tumour growth. Tumour progression was studied using positron emission tomography, computed tomography, magnetic resonance imaging and bioluminescent imaging. Tumours and their interactions with bones were examined by histology. Each tumour induced bone destruction and outgrowth of extramedullary tumour masses, together with characteristic changes in bone that were well visualised by computed tomography, which correlated with post-mortem histology. Ewing sarcoma and, to a lesser extent, osteosarcoma cells induced prominent reactive new bone formation. Osteosarcoma cells produced osteoid and mineralised “malignant” bone within the tumour mass itself. Injection of prostate carcinoma cells led to osteoclast-driven osteolytic lesions. Bioluminescent imaging of Ewing sarcoma xenografts allowed easy and rapid monitoring of tumour growth and detection of tumour dissemination to lungs, liver and bone. Magnetic resonance imaging proved useful for monitoring soft tissue tumour growth and volume. Positron emission tomography proved to be of limited use in this model. Overall, we have developed an orthotopic in vivo model for Ewing sarcoma and other primary and secondary human bone malignancies, which resemble the human disease. We have shown the utility of small animal bioimaging for tracking disease progression, making this model a useful assay for preclinical drug testing. PMID:24409320
Nevins, Marc L; Camelo, Marcelo; Schupbach, Peter; Nevins, Myron; Kim, Soo-Woo; Kim, David M
2011-01-01
The objective of this study was to assess the osseous healing of buccal plate extraction socket defects. There were four cohorts: group A (mineral collagen bone substitute [MCBS] scaffold alone), group B (MCBS with recombinant human platelet-derived growth factor BB [rhPDGF-BB; 0.3 mg/mL]), group C (MCBS with enamel matrix derivative [EMD]), and group D (combination of EMD with bone ceramic). The primary outcome of bone quality was evaluated using light microscopy, backscatter scanning electron microscopy, and histomorphometrics. Reentry surgery provided an opportunity for clinical observation of the healed ridge morphology. Sixteen patients with buccal wall extraction socket defects were randomized into four treatment groups of equal size. Grafting was provided at the time of extraction with advancement of the buccal flap for primary closure. A trephine core biopsy of the implant site preparation was performed after 5 months for implant placement. Histologic examination identified new bone healing around the biomaterial scaffolds. Statistically significant differences in new bone formation were not observed among the treatment groups. There was a histomorphometric trend toward more new bone for the rhPDGF-BB-treated group (group B). This group had the most favorable ridge morphology for optimal implant placement.
NASA Technical Reports Server (NTRS)
Ma, Y. F.; Jee, W. S.; Ke, H. Z.; Lin, B. Y.; Liang, X. G.; Li, M.; Yamamoto, N.
1995-01-01
The purpose of this study was to determine if human parathyroid hormone-(1-38) (hPTH(1-38)) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses of female rats. The right hindlimbs of 6-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization, the rats were subcutaneously injected with 200 micrograms hPTH(1-38)/kg/day for 15 days (short-term treatment) or 75 days (longer-term treatment). Static bone histomorphometry was performed on the primary spongiosa, and both static and dynamic histomorphometry were performed on the secondary spongiosa of the right proximal tibial metaphyses. Immobilization for 30 days without treatment decreased trabecular bone area, number, and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate in the secondary spongiosa. These changes reached a new steady state thereafter. Treatment with 200 micrograms hPTH(1-38)/kg/day for 15 days, beginning 30 days after immobilization, significantly increased trabecular bone area, thickness, and number in both primary and secondary spongiosa despite continuous immobilization when compared with controls. The short-term PTH treatment (15 days) significantly increased labeling perimeter, mineral apposition rate, and tissue referent-bone formation rate in the secondary spongiosa and stimulated longitudinal bone growth as compared with the controls. Longer PTH treatment (75 days) further increased trabecular bone area, thickness, and number as compared with controls and groups given short-term PTH treatment (15 days). The bone formation indices in the secondary spongiosa of the longer-term treated rats were lower than those of the short-term treated group, but they were still higher than those of controls. Our findings indicate that PTH treatment stimulates cancellous bone formation, and restores and adds extra cancellous bone to the established, disuse-osteopenic proximal tibial metaphysis of female rats with continuously immobilized right hindlimbs. These results suggest that PTH may be useful in treating disuse-induced osteoporosis in humans.
Mai, Ronald; Hagedorn, Manolo Gunnar; Gelinsky, Michael; Werner, Carsten; Turhani, Dritan; Späth, Heike; Gedrange, Tomas; Lauer, Günter
2006-09-01
The aim of this study was to evaluate the ectopic bone formation using tissue engineered cell-seeded constructs with two different scaffolds and primary human maxillary osteoblasts in nude rats over an implantation period of up to 96 days. Collagen I-coated Poly(3)hydroxybutyrate (PHB) embroidery and hydroxyapatite (HAP) collagen tapes were seeded with primary human maxillary osteoblasts (hOB) and implanted into athymic rnu/run rats. A total of 72 implants were placed into the back muscles of 18 rats. 24, 48 and 96 days after implantation, histological and histomorphometric analyses were made. The osteoblastic character of the cells was confirmed by immunocytochemistry and RT-PCR for osteocalcin. Histological analysis demonstrated that all cell-seeded constructs induced ectopic bone formation after 24, 48 and 96 days of implantation. There was more mineralized tissue in PHB constructs than in HAP-collagen tapes (at day 24; p < 0.05). Bone formation decreased with the increasing length of the implantation period. Osteocalcin expression verified the osteoblastic character of the cell-seeded constructs after implantation time. No bone formation and no osteocalcin expression were found in the control groups. Cell-seeded constructs either with PHB embroidery or HAP-collagen tapes can induce ectopic bone formation. However, the amount of bone formed decreased with increasing length of implantation.
NASA Technical Reports Server (NTRS)
Ma, Y. F.; Jee, W. S. S.; Ke, H. Z.; Lin, B. Y.; Liang, X. G.; Li, M.; Yamamoto, N.
1994-01-01
The purpose of this study was to determine if human parathyroid hormone-(1-38) (PTH) can restore cancellous bone mass to the established osteopenic, immobilized proximal tibial metaphyses (PTM) of female rats. The right hindlimbs of six-month-old female Sprague-Dawley rats were immobilized by bandaging the right hindlimbs to the abdomen. After 30 days of right hindlimb immobilization (RHLI), the rats were subcutaneously injected with 200 microgram hPTH(1-38)/kg/day for 15 (short-term) or 75 (longer-term) days. Static bone histomorphometry was performed on the primary spongiosa, while both static and dynamic histomorphometry were performed on the secondary spongiosa of the right PTM. Immobilization for 30 days without treatment decreased trabecular bone area, number and thickness in both primary and secondary spongiosa, and induced an increase in eroded perimeter and a decrease in tissue referent-bone formation rate (BFR/TV) in the secondary spongios. These changes reached a new steady state thereafter. Treatment with 200 microgram hPTH(1-38)/kg/day for 15 days, beginning at 30 days post immobilization (IM), significantly increased trabecular bone area, thickness and number in both primary and secondary spongiosa despite continuous IM when compared to the age-related and IM controls. The short-term (15 days) PTH treatment significantly increased labeling perimeter, mineral apposition rate and BFR/TV in the secondary spongiosa and stimulated longitudinal bone growth as compared to the age-related and IM controls. PTH treatment for longer-term (75 days) further increased trabecular bone area, thickness and number as compared to aging and IM controls and short-term (15 days) PTH treated groups. The bone formation indices in the secondary spongiosa of these longer-term treated rats were lower than that of short-term (15 days) PTH treated group, but they were still higher than those of IM and age-related controls. Our findings indicate that PTH treatment stimulates cancellous bone formation, restores and adds extra cancellous bone to the established, disuse-osteopenic proximal tibial metaphysis of continuously RHLI female rats. These results suggest that PTH may be a useful agent in treatment disuse-induced osteoporosis in humans.
Histomorphological analysis of the variability of the human skeleton: forensic implications.
Cummaudo, Marco; Cappella, Annalisa; Biraghi, Miranda; Raffone, Caterina; Màrquez-Grant, Nicholas; Cattaneo, Cristina
2018-01-20
One of the fundamental questions in forensic medicine and anthropology is whether or not a bone or bone fragment is human. Surprisingly at times for the extreme degradation of the bone (charred, old), DNA cannot be successfully performed and one must turn to other methods. Histological analysis at times can be proposed. However, the variability of a single human skeleton has never been tested. Forty-nine thin sections of long, flat, irregular and short bones were obtained from a well-preserved medieval adult human skeleton. A qualitative histomorphological analysis was performed in order to assess the presence of primary and secondary bone and the presence, absence and orientation of vascular canals. No histological sections exhibited woven or fibro-lamellar bone. Long bones showed a higher variability with an alternation within the same section of areas characterized by tightly packed secondary osteons and areas with scattered secondary osteons immersed in a lamellar matrix. Flat and irregular bones appeared to be characterized by a greater uniformity with scattered osteons in abundant interstitial lamellae. Some cases of "osteon banding" and "drifting osteons" were observed. Although Haversian bone represent the most frequent pattern, a histomorphological variability between different bones of the same individual, in different portions of the same bone, and in different parts of the same section has been observed. Therefore, the present study has highlighted the importance of extending research to whole skeletons without focusing only on single bones, in order to have a better understanding of the histological variability of both human and non-human bone.
Gebert, A; Peters, J; Bishop, N E; Westphal, F; Morlock, M M
2009-01-01
Primary stability is essential to the success of uncemented prostheses. It is strongly influenced by implantation technique, implant design and bone quality. The goal of this study was to investigate the effect of press-fit parameters on the primary stability of uncemented femoral head resurfacing prostheses. An in vitro study with human specimens and prototype implants (nominal radial interference 170 and 420 microm) was used to investigate the effect of interference on primary stability. A finite element model was used to assess the influence of interference, friction between implant and bone, and bone quality. Primary stability was represented by the torque capacity of the implant. The model predicted increasing stability with actual interference, bone quality and friction coefficient; plastic deformation of the bone began at interferences of less than 100 microm. Experimentally, however, stability was not related to interference. This may be due to abrasion or the collapse of trabecular bone structures at higher interferences, which could not be captured by the model. High nominal interferences as tested experimentally appear unlikely to result in improved stability clinically. An implantation force of about 2,500 N was estimated to be sufficient to achieve a torque capacity of about 30 N m with a small interference (70 microm).
A 7-day continuous infusion of PTH or PTHrP suppresses bone formation and uncouples bone turnover.
Horwitz, Mara J; Tedesco, Mary Beth; Sereika, Susan M; Prebehala, Linda; Gundberg, Caren M; Hollis, Bruce W; Bisello, Alessandro; Garcia-Ocaña, Adolfo; Carneiro, Raquel M; Stewart, Andrew F
2011-09-01
Human in vivo models of primary hyperparathyroidism (HPT), humoral hypercalcemia of malignancy (HHM), or lactational bone mobilization for more than 48 hours have not been described previously. We therefore developed 7-day continuous-infusion models using human parathyroid hormone(1-34) [hPTH(1-34)] and human parathyroid hormone-related protein(1-36) [hPTHrP(1-36)] in healthy human adult volunteers. Study subjects developed sustained mild increases in serum calcium (10.0 mg/dL), with marked suppression of endogenous PTH(1-84). The maximal tolerated infused doses over a 7-day period (2 and 4 pmol/kg/h for PTH and PTHrP, respectively) were far lower than in prior, briefer human studies (8 to 28 pmol/kg/h). In contrast to prior reports using higher PTH and PTHrP doses, both 1,25-dihydroxyvitamin D(3) [1,25(OH)(2) D(3) ] and tubular maximum for phosphorus (TmP/GFR) remained unaltered with these low doses despite achievement of hypercalcemia and hypercalciuria. As expected, bone resorption increased rapidly and reversed promptly with cessation of the infusion. However, in contrast to events in primary HPT, bone formation was suppressed by 30% to 40% for the 7 days of the infusions. With cessation of PTH and PTHrP infusion, bone-formation markers abruptly rebounded upward, confirming that bone formation is suppressed by continuous PTH or PTHrP infusion. These studies demonstrate that continuous exposure of the human skeleton to PTH or PTHrP in vivo recruits and activates the bone-resorption program but causes sustained arrest in the osteoblast maturation program. These events would most closely mimic and model events in HHM. Although not a perfect model for lactation, the increase in resorption and the rebound increase in formation with cessation of the infusions are reminiscent of the maternal skeletal calcium mobilization and reversal that occur following lactation. The findings also highlight similarities and differences between the model and HPT. Copyright © 2011 American Society for Bone and Mineral Research.
Keratin 13 expression reprograms bone and brain metastases of human prostate cancer cells.
Li, Qinlong; Yin, Lijuan; Jones, Lawrence W; Chu, Gina C-Y; Wu, Jason B-Y; Huang, Jen-Ming; Li, Quanlin; You, Sungyong; Kim, Jayoung; Lu, Yi-Tsung; Mrdenovic, Stefan; Wang, Ruoxiang; Freeman, Michael R; Garraway, Isla; Lewis, Michael S; Chung, Leland W K; Zhau, Haiyen E
2016-12-20
Lethal progression of prostate cancer metastasis can be improved by developing animal models that recapitulate the clinical conditions. We report here that cytokeratin 13 (KRT13), an intermediate filament protein, plays a directive role in prostate cancer bone, brain, and soft tissue metastases. KRT13 expression was elevated in bone, brain, and soft tissue metastatic prostate cancer cell lines and in primary and metastatic clinical prostate, lung, and breast cancer specimens. When KRT13 expression was determined at a single cell level in primary tumor tissues of 44 prostate cancer cases, KRT13 level predicted bone metastasis and the overall survival of prostate cancer patients. Genetically enforced KRT13 expression in human prostate cancer cell lines drove metastases toward mouse bone, brain and soft tissues through a RANKL-independent mechanism, as KRT13 altered the expression of genes associated with EMT, stemness, neuroendocrine/neuromimicry, osteomimicry, development, and extracellular matrices, but not receptor activator NF-κB ligand (RANKL) signaling networks in prostate cancer cells. Our results suggest new inhibitors targeting RANKL-independent pathways should be developed for the treatment of prostate cancer bone and soft tissue metastases.
Rüger, Matthias; Sellei, Richard M.; Stoffel, Marcus; von Rüden, Christian
2015-01-01
Study Design Cohort study. Objective Expandable anterolateral plates facilitate the reduction of posttraumatic deformities of thoracolumbar spine injuries and are commonly used in cases of unstable injuries or compromised bone quality. In this in vitro study, the craniocaudal yield load of the osseous fixation of an anterior angular stable plate fixation system and the effect of polymethyl methacrylate (PMMA) screw augmentation on the primary stability of the screw–bone interface during kyphosis reduction was evaluated in 12 osteoporotic human thoracolumbar vertebrae. Methods The anterolateral stabilization device used for this study is comprised of two swiveling flanges and an expandable midsection. It facilitates the controlled reduction of kyphotic deformities in situ with a geared distractor. Single flanges were attached to 12 thoracolumbar vertebrae. Six specimens were augmented with PMMA by means of cannulated bone screws. The constructs were subjected to static, displacement-controlled craniocaudal loading to failure in a servohydraulic testing machine. Results The uncemented screws cut out at a mean 393 ± 66 N, whereas the cemented screws showed significantly higher yield load of 966 ± 166 N (p < 0.02). We detected no significant correlation between bone mineral density and yield load in this setting. Conclusion Our results indicate that PMMA augmentation is an effective method to increase two- to threefold the primary stability of the screw–bone interface of an anterolateral spine stabilization system in osteoporotic bone. We recommend it in cases of severely compromised bone quality to reduce the risk of screw loosening during initial kyphosis correction and to increase long-term construct stability. PMID:26835201
Rüger, Matthias; Sellei, Richard M; Stoffel, Marcus; von Rüden, Christian
2016-02-01
Study Design Cohort study. Objective Expandable anterolateral plates facilitate the reduction of posttraumatic deformities of thoracolumbar spine injuries and are commonly used in cases of unstable injuries or compromised bone quality. In this in vitro study, the craniocaudal yield load of the osseous fixation of an anterior angular stable plate fixation system and the effect of polymethyl methacrylate (PMMA) screw augmentation on the primary stability of the screw-bone interface during kyphosis reduction was evaluated in 12 osteoporotic human thoracolumbar vertebrae. Methods The anterolateral stabilization device used for this study is comprised of two swiveling flanges and an expandable midsection. It facilitates the controlled reduction of kyphotic deformities in situ with a geared distractor. Single flanges were attached to 12 thoracolumbar vertebrae. Six specimens were augmented with PMMA by means of cannulated bone screws. The constructs were subjected to static, displacement-controlled craniocaudal loading to failure in a servohydraulic testing machine. Results The uncemented screws cut out at a mean 393 ± 66 N, whereas the cemented screws showed significantly higher yield load of 966 ± 166 N (p < 0.02). We detected no significant correlation between bone mineral density and yield load in this setting. Conclusion Our results indicate that PMMA augmentation is an effective method to increase two- to threefold the primary stability of the screw-bone interface of an anterolateral spine stabilization system in osteoporotic bone. We recommend it in cases of severely compromised bone quality to reduce the risk of screw loosening during initial kyphosis correction and to increase long-term construct stability.
Role of ID Proteins in BMP4 Inhibition of Profibrotic Effects of TGF-β2 in Human TM Cells.
Mody, Avani A; Wordinger, Robert J; Clark, Abbot F
2017-02-01
Increased expression of TGF-β2 in primary open-angle glaucoma (POAG) aqueous humor (AH) and trabecular meshwork (TM) causes deposition of extracellular matrix (ECM) in the TM and elevated IOP. Bone morphogenetic proteins (BMPs) regulate TGF-β2-induced ECM production. The underlying mechanism for BMP4 inhibition of TGF-β2-induced fibrosis remains undetermined. Bone morphogenic protein 4 induces inhibitor of DNA binding proteins (ID1, ID3), which suppress transcription factor activities to regulate gene expression. Our study will determine whether ID1and ID3 proteins are downstream targets of BMP4, which attenuates TGF-β2 induction of ECM proteins in TM cells. Primary human TM cells were treated with BMP4, and ID1 and ID3 mRNA, and protein expression was determined by quantitative PCR (Q-PCR) and Western immunoblotting. Intracellular ID1 and ID3 protein localization was studied by immunocytochemistry. Transformed human TM cells (GTM3 cells) were transfected with ID1 or ID3 expression vectors to determine their potential inhibitory effects on TGF-β2-induced fibronectin and plasminogen activator inhibitor-I (PAI-1) protein expression. Basal expression of ID1-3 was detected in primary human TM cells. Bone morphogenic protein 4 significantly induced early expression of ID1 and ID3 mRNA (P < 0.05) and protein in primary TM cells, and a BMP receptor inhibitor blocked this induction. Overexpression of ID1 and ID3 significantly inhibited TGF-β2-induced expression of fibronectin and PAI-1 in TM cells (P < 0.01). Bone morphogenic protein 4 induced ID1 and ID3 expression suppresses TGF-β2 profibrotic activity in human TM cells. In the future, targeting specific regulators may control the TGF-β2 profibrotic effects on the TM, leading to disease modifying IOP lowering therapies.
Hu, Hongcheng; Pu, Yinfei; Lu, Songhe; Zhang, Kuo; Guo, Yuan; Lu, Hui; Li, Deli; Li, Xuefen; Li, Zichen; Wu, Yuwei; Tang, Zhihui
2015-01-01
A plastic and biodegradable bone substitute consists of poly (l-lactic-co-glycolic) acid and 30 wt % β-tricalcium phosphate has been previously fabricated, but its osteogenic capability required further improvement. We investigated the use of globular adiponectin (gAPN) as an anabolic agent for tissue-engineered bone using this scaffold. A qualitative analysis of the bone regeneration process was carried out using μCT and histological analysis 12 weeks after implantation. CBCT (Cone Beam Computed Tomography) superimposition was used to characterise the effect of the different treatments on bone formation. In this study, we also explored adiponectin’s (APN) influence on primary cultured human jaw bone marrow mesenchymal stem cells gene expressions involved in the osteogenesis. We found that composite scaffolds loaded with gAPN or bone morphogenetic protein 2 (BMP2) exhibited significantly increased bone formation and mineralisation following 12 weeks in the extraction sockets of beagle dogs, as well as enhanced expression of osteogenic markers. In vitro investigation revealed that APN also promoted osteoblast differentiation of primary cultured human jaw bone marrow mesenchymal stem cells (h-JBMMSCs), accompanied by increased activity of alkaline phosphatase, greater mineralisation, and production of the osteoblast-differentiated genes osteocalcin, bone sialoprotein and collagen type I, which was reversed by APPL1 siRNA. Therefore, the composite scaffold loaded with APN exhibited superior activity for guided bone regeneration compared with blank control or Bio-Oss® (a commercially available product). The composite scaffold with APN has significant potential for clinical applications in bone tissue engineering. PMID:26492241
Boos, Anja M; Weigand, Annika; Deschler, Gloria; Gerber, Thomas; Arkudas, Andreas; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P
2014-01-01
New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA) bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2), and different carrier materials (fibrin, cell culture medium, autologous serum) was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 μg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin). Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly in the group with autologous serum and after 12 weeks in every experimental group. This study clearly demonstrates the positive effects of autologous serum in combination with mesenchymal stem cells and rhBMP-2 on bone formation in a primary stable silica-embedded nano-HA bone grafting material in the sheep model. In further experiments, the results will be transferred to the sheep arteriovenous loop model in order to engineer an axially vascularized primary stable bone replacement in clinically relevant size for free transplantation. PMID:25429218
Aging of microstructural compartments in human compact bone
NASA Technical Reports Server (NTRS)
Akkus, Ozan; Polyakova-Akkus, Anna; Adar, Fran; Schaffler, Mitchell B.
2003-01-01
Composition of microstructural compartments in compact bone of aging male subjects was assessed using Raman microscopy. Secondary mineralization of unremodeled fragments persisted for two decades. Replacement of these tissue fragments with secondary osteons kept mean composition constant over age, but at a fully mineralized limit. Slowing of remodeling may increase fracture susceptibility through an increase in proportion of highly mineralized tissue. In this study, the aging process in the microstructural compartments of human femoral cortical bone was investigated and related to changes in the overall tissue composition within the age range of 17-73 years. Raman microprobe analysis was used to assess the mineral content, mineral crystallinity, and carbonate substitution in fragments of primary lamellar bone that survived remodeling for decades. Tissue composition of the secondary osteonal population was investigated to determine the composition of turned over tissue volume. Finally, Raman spectral analysis of homogenized tissue was performed to evaluate the effects of unremodeled and newly formed tissue on the overall tissue composition. The chemical composition of the primary lamellar bone exhibited two chronological stages. Organic matrix became more mineralized and the crystallinity of the mineral improved during the first stage, which lasted for two decades. The mineral content and the mineral crystallinity did not vary during the second stage. The results for the primary lamellar bone demonstrated that physiological mineralization, as evidenced by crystal growth and maturation, is a continuous process that may persist as long as two decades, and the growth and maturation process stops after the organic matrix becomes "fully mineralized." The average mineral content and the average mineral crystallinity of the homogenized tissue did not change with age. It was also observed that the mineral content of the homogenized tissue was consistently greater than the osteons and similar to the "fully mineralized" stage of primary bone. The results of this study demonstrated that unremodeled compartments of bone grow older through maturation and growth of mineral crystals in a protracted fashion. However, the secondary osteonal remodeling impedes this aging process and maintains the mean tissue age fairly constant over decades. Therefore, slowing of remodeling may lead to brittle bone tissue through accumulation of fully mineralized tissue fragments.
Mechanistic aspects of fracture and R-curve behavior in elk antler bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Launey, Maximilien E.; Chen, Po-Yu; McKittrick, Joanna
Bone is an adaptative material that is designed for different functional requirements; indeed, bones have a variety of properties depending on their role in the body. To understand the mechanical response of bone requires the elucidation of its structure-function relationships. Here, we examine the fracture toughness of compact bone of elk antler which is an extremely fast growing primary bone designed for a totally different function than human (secondary) bone. We find that antler in the transverse (breaking) orientation is one of the toughest biological materials known. Its resistance to fracture is achieved during crack growth (extrinsically) by a combinationmore » of gross crack deflection/twisting and crack bridging via uncracked 'ligaments' in the crack wake, both mechanisms activated by microcracking primarily at lamellar boundaries. We present an assessment of the toughening mechanisms acting in antler as compared to human cortical bone, and identify an enhanced role of inelastic deformation in antler which further contributes to its (intrinsic) toughness.« less
PRGF exerts a cytoprotective role in zoledronic acid-treated oral cells.
Anitua, Eduardo; Zalduendo, Mar; Troya, María; Orive, Gorka
2016-04-01
Bisphosphonates-related osteonecrosis of the jaw (BRONJ) is a common problem in patients undergoing long-term administration of highly potent nitrogen-containing bisphosphonates (N-BPs). This pathology occurs via bone and soft tissue mechanism. Zoledronic acid (ZA) is the most potent intravenous N-BP used to prevent bone loss in patients with bone dysfunction. The objective of this in vitro study was to evaluate the role of different ZA concentrations on the cells from human oral cavity, as well as the potential of plasma rich in growth factors (PRGF) to overcome the negative effects of this BP. Primary human gingival fibroblasts and primary human alveolar osteoblasts were used. Cell proliferation was evaluated by means of a fluorescence-based method. A colorimetric assay to detect DNA fragmentation undergoing apoptosis was used to determine cell death, and the expression of both NF-κB and pNF-κB were quantified by Western blot analysis. ZA had a cytotoxic effect on both human gingival fibroblasts and human alveolar osteoblasts. This BP inhibits cell proliferation, stimulates apoptosis, and induces inflammation. However, the addition of PRGF suppresses all these negative effects of the ZA. PRGF shows a cytoprotective role against the negative effects of ZA on primary oral cells. At present, there is no definitive treatment for bisphosphonates-related osteonecrosis of the jaw (BRONJ), being mainly palliatives. Our results revealed that PRGF has a cytoprotective role in cells exposed to zoledronic acid, thus providing a reliable adjunctive therapy for the treatment of BRONJ pathology.
Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei
2015-01-01
Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects.
Cilia/Ift protein and motor -related bone diseases and mouse models.
Yuan, Xue; Yang, Shuying
2015-01-01
Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.
Doostmohammadi, A; Monshi, A; Fathi, M H; Karbasi, S; Braissant, O; Daniels, A U
2011-10-01
In this study, the cytotoxicity evaluation of prepared 63S bioactive glass and bone-derived hydroxyapatite particles with yeast and human chondrocyte cells was carried out using isothermal micro-nano calorimetry (IMNC), which is a new method for studying cell/biomaterial interactions. Bioactive glass particles were made via sol-gel method and hydroxyapatite was obtained from bovine bone. Elemental analysis was carried out by XRF and EDXRF. Amorphous structure of the glass and completely crystalline structure of HA were detected by XRD analysis. Finally, the cytotoxicity of bioactive glass and bone-derived HA particles with yeast and cultured human chondrocyte cells was evaluated using IMNC. The results confirmed the viability, growth and proliferation of human chondrocyte cells in contact with 63S bioactive glass, and bone-derived HA particles. Also the results indicated that yeast model which is much easier to handle, can be considered as a good proxy and can provide a rapid primary estimate of the ranges to be used in assays involving human cells. All of these results confirmed that IMNC is a convenient method which caters to measuring the cell-biomaterial interactions alongside the current methods.
Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W; Zurita, Amado J; Liu, Jie; Sikes, Charles; Multani, Asha S; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V; Prieto, Victor G; Kundra, Vikas; Vazquez, Elba S; Troncoso, Patricia; Raymond, Austin K; Logothetis, Christopher J; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M
2008-08-01
In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor-negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer-induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor-null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells.
Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W.; Zurita, Amado J.; Liu, Jie; Sikes, Charles; Multani, Asha S.; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V.; Prieto, Victor G.; Kundra, Vikas; Vazquez, Elba S.; Troncoso, Patricia; Raymond, Austin K.; Logothetis, Christopher J.; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M.
2008-01-01
In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor–negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer–induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor–null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells. PMID:18618013
Labour, Marie-Noëlle; Riffault, Mathieu; Christensen, Søren T; Hoey, David A
2016-10-17
The recruitment of mesenchymal stem cells (MSCs) is a crucial process in the development, maintenance and repair of tissues throughout the body. Transforming growth factor-β1 (TGFβ1) is a potent chemokine essential for the recruitment of MSCs in bone, coupling the remodelling cycle. The primary cilium is a sensory organelle with important roles in bone and has been associated with cell migration and more recently TGFβ signalling. Dysregulation of TGFβ signalling or cilia has been linked to a number of skeletal pathologies. Therefore, this study aimed to determine the role of the primary cilium in TGFβ1 signalling and associated migration in human MSCs. In this study we demonstrate that low levels of TGFβ1 induce the recruitment of MSCs, which relies on proper formation of the cilium. Furthermore, we demonstrate that receptors and downstream signalling components in canonical TGFβ signalling localize to the cilium and that TGFβ1 signalling is associated with activation of SMAD3 at the ciliary base. These findings demonstrate a novel role for the primary cilium in the regulation of TGFβ signalling and subsequent migration of MSCs, and highlight the cilium as a target to manipulate this key pathway and enhance MSC recruitment for the treatment of skeletal diseases.
Güleçyüz, Mehmet F; Kraus-Petersen, Michael; Schröder, Christian; Ficklscherer, Andreas; Wagenhäuser, Markus U; Braun, Christian; Müller, Peter E; Pietschmann, Matthias F
2018-02-01
The incidence of osteoporosis and rotator cuff tears increases with age. Cement augmentation of bones is an established method in orthopedic and trauma surgery. This study analyses if polymethylmethacrylate or bioabsorbable cement can improve the primary stability of a bioabsorbable suture anchor in vitro in comparison to a non-augmented suture anchor in osteoporotic human humeri. The trabecular bone mineral density was measured to ensure osteopenic human specimens. Then the poly-l-lactic acid Bio-Corkscrew® FT was implanted in the greater tuberosity footprint with polymethylmethacrylate Refobacin® cement augmentation ( n = 8), with Cerament™ Bone Void Filler augmentation ( n = 8) and without augmentation ( n = 8). Using a cyclic testing protocol, the failure loads, system displacement, and failure modes were recorded. The Cerament™ augmented Bio-Corkscrew® FT yielded the highest failure loads (206.7 N), followed by polymethylmethacrylate Refobacin® augmentation (206.1 N) and without augmentation (160.0 N). The system displacement was lowest for Cerament™ augmentation (0.72 mm), followed by polymethylmethacrylate (0.82 mm) and without augmentation (1.50 mm). Statistical analysis showed no significant differences regarding the maximum failure loads ( p = 0.1644) or system displacement ( p = 0.4199). The main mode of failure for all three groups was suture slippage. The primary stability of the Bio-Corkscrew® FT is not influenced by bone cement augmentation with polymethylmethacrylate Refobacin® or with bioabsorbable Cerament™ in comparison to the non-cemented anchors. The cement augmentation of rotator cuff suture anchors in osteoporotic bones remains questionable since biomechanical tests show no significant advantage.
Pérez-Campo, Flor M; May, Tobias; Zauers, Jeannette; Sañudo, Carolina; Delgado-Calle, Jesús; Arozamena, Jana; Berciano, María T; Lafarga, Miguel; Riancho, José A
2017-03-01
Different model systems using osteoblastic cell lines have been developed to help understand the process of bone formation. Here, we report the establishment of two human osteoblastic cell lines obtained from primary cultures upon transduction of immortalizing genes. The resulting cell lines had no major differences to their parental lines in their gene expression profiles. Similar to primary osteoblastic cells, osteocalcin transcription increased following 1,25-dihydroxyvitamin D 3 treatment and the immortalized cells formed a mineralized matrix, as detected by Alizarin Red staining. Moreover, these human cell lines responded by upregulating ALPL gene expression after treatment with the demethylating agent 5-aza-2'-deoxycytidine (AzadC), as shown before for primary osteoblasts. We further demonstrate that these cell lines can differentiate in vivo, using a hydroxyapatite/tricalcium phosphate composite as a scaffold, to produce bone matrix. More importantly, we show that these cells respond to demethylating treatment, as shown by the increase in SOST mRNA levels, the gene encoding sclerostin, upon treatment of the recipient mice with AzadC. This also confirms, in vivo, the role of DNA methylation in the regulation of SOST expression previously shown in vitro. Altogether our results show that these immortalized cell lines constitute a particularly useful model system to obtain further insight into bone homeostasis, and particularly into the epigenetic mechanisms regulating sclerostin production.
Patient-specific 3D microfluidic tissue model for multiple myeloma.
Zhang, Wenting; Lee, Woo Y; Siegel, David S; Tolias, Peter; Zilberberg, Jenny
2014-08-01
In vitro culturing of primary multiple myeloma cells (MMC) has been a major challenge as this plasma cell malignancy depends on the bone marrow environment for its survival. Using a microfluidic platform to emulate the dynamic physiology of the bone marrow microenvironment, we report here a new approach for culturing difficult to preserve primary human MMC. The system uses a three-dimensional ossified tissue to mimic the tumor niche and recapitulate interactions between bone marrow cells and osteoblasts (OSB). To this end, the human fetal OSB cell line hFOB 1.19 was cultured in an eight-chamber microfluidic culture device to facilitate the seeding of mononuclear cells from bone marrow aspirates from three multiple myeloma patients. Optical microscopy, used for real-time monitoring of mononuclear cell interactions with the ossified tissue, confirmed that these are drawn toward the OSB layer. After 3 weeks, cocultures were characterized by flow cytometry to evaluate the amount of expansion of primary MMC (with CD138(+) and CD38(+)CD56(+) phenotypes) in this system. For each of the three patients analyzed, bone marrow mononuclear cells underwent, on an average, 2 to 5 expansions; CD38(+)CD56(+) cells underwent 1 to 3 expansions and CD138(+) cells underwent 2.5 to 4.6 expansions. This approach is expected to provide a new avenue that can facilitate: (1) testing of personalized therapeutics for multiple myeloma patients; (2) evaluation of new drugs without the need for costly animal models; and (3) studying the biology of multiple myeloma, and in particular, the mechanisms responsible for drug resistance and relapse.
Adipose-Derived Stem Cells in Functional Bone Tissue Engineering: Lessons from Bone Mechanobiology
Bodle, Josephine C.; Hanson, Ariel D.
2011-01-01
This review aims to highlight the current and significant work in the use of adipose-derived stem cells (ASC) in functional bone tissue engineering framed through the bone mechanobiology perspective. Over a century of work on the principles of bone mechanosensitivity is now being applied to our understanding of bone development. We are just beginning to harness that potential using stem cells in bone tissue engineering. ASC are the primary focus of this review due to their abundance and relative ease of accessibility for autologous procedures. This article outlines the current knowledge base in bone mechanobiology to investigate how the knowledge from this area has been applied to the various stem cell-based approaches to engineering bone tissue constructs. Specific emphasis is placed on the use of human ASC for this application. PMID:21338267
Bello, Silvia M; Saladié, Palmira; Cáceres, Isabel; Rodríguez-Hidalgo, Antonio; Parfitt, Simon A
2015-05-01
A recurring theme of late Upper Palaeolithic Magdalenian human bone assemblages is the remarkable rarity of primary burials and the common occurrence of highly-fragmentary human remains mixed with occupation waste at many sites. One of the most extensive Magdalenian human bone assemblages comes from Gough's Cave, a sizeable limestone cave set in Cheddar Gorge (Somerset), UK. After its discovery in the 1880s, the site was developed as a show cave and largely emptied of sediment, at times with minimal archaeological supervision. Some of the last surviving remnants of sediment within the cave were excavated between 1986 and 1992. The excavations uncovered intensively-processed human bones intermingled with abundant butchered large mammal remains and a diverse range of flint, bone, antler, and ivory artefacts. New ultrafiltrated radiocarbon determinations demonstrate that the Upper Palaeolithic human remains were deposited over a very short period of time, possibly during a series of seasonal occupations, about 14,700 years BP (before present). The human remains have been the subject of several taphonomic studies, culminating in a detailed reanalysis of the cranial remains that showed they had been carefully modified to make skull-cups. Our present analysis of the postcrania has identified a far greater degree of human modification than recorded in earlier studies. We identify extensive evidence for defleshing, disarticulation, chewing, crushing of spongy bone, and the cracking of bones to extract marrow. The presence of human tooth marks on many of the postcranial bones provides incontrovertible evidence for cannibalism. In a wider context, the treatment of the human corpses and the manufacture and use of skull-cups at Gough Cave have parallels with other Magdalenian sites in central and western Europe. This suggests that cannibalism during the Magdalenian was part of a customary mortuary practice that combined intensive processing and consumption of the bodies with ritual use of skull-cups. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vozzi, G; Corallo, C; Carta, S; Fortina, M; Gattazzo, F; Galletti, M; Giordano, N
2014-05-01
The application of porous hydroxyapatite (HAp)-collagen as a bone tissue engineering scaffold represents a new trend of mimicking the specific bone extracellular matrix (ECM). The use of HAp in reconstructive surgery has shown that it is slowly invaded by host tissue. Therefore, implant compatibility may be augmented by seeding cells before implantation. Human primary osteoblasts were seeded onto innovative collagen-gelatin-genipin (GP)-HAp scaffolds containing respectively 10%, 20%, and 30% HAp. Cellular adhesion, proliferation, alkaline phosphatase (ALP) activity, osteopontin (OPN), and osteocalcin (OC) expressions were evaluated after 3, 7, 15, and 21 days. The three types of scaffolds showed increased cellular proliferation over time in culture (maximum at 21 days) but the highest was recorded in 10% HAp scaffolds. ALP activity was the highest in 10% HAp scaffolds in all the times of evaluation. OC and OPN resulted in higher concentration in 10% HAp scaffolds compared to 20% and 30% HAp (maximum at 21 days). Finally, scanning electron microscopy analysis showed progressive scaffolds adhesion and colonization from the surface to the inside from day 3 to day 21. In vitro attachment, proliferation, and colonization of human primary osteoblasts on collagen-GP-HAp scaffolds with different percentages of HAp (10%, 20%, and 30%) all increased over time in culture, but comparing different percentages of HAp, they seem to increase with decreasing of HAp component. Therefore, the mechanical properties (such as the stiffness due to the HAp%) coupled with a good biomimetic component (collagen) are the parameters to set up in composite scaffolds design for bone tissue engineering. Copyright © 2013 Wiley Periodicals, Inc.
Human bone perivascular niche-on-a-chip for studying metastatic colonization.
Marturano-Kruik, Alessandro; Nava, Michele Maria; Yeager, Keith; Chramiec, Alan; Hao, Luke; Robinson, Samuel; Guo, Edward; Raimondi, Manuela Teresa; Vunjak-Novakovic, Gordana
2018-02-06
Eight out of 10 breast cancer patients die within 5 years after the primary tumor has spread to the bones. Tumor cells disseminated from the breast roam the vasculature, colonizing perivascular niches around blood capillaries. Slow flows support the niche maintenance by driving the oxygen, nutrients, and signaling factors from the blood into the interstitial tissue, while extracellular matrix, endothelial cells, and mesenchymal stem cells regulate metastatic homing. Here, we show the feasibility of developing a perfused bone perivascular niche-on-a-chip to investigate the progression and drug resistance of breast cancer cells colonizing the bone. The model is a functional human triculture with stable vascular networks within a 3D native bone matrix cultured on a microfluidic chip. Providing the niche-on-a-chip with controlled flow velocities, shear stresses, and oxygen gradients, we established a long-lasting, self-assembled vascular network without supplementation of angiogenic factors. We further show that human bone marrow-derived mesenchymal stem cells, which have undergone phenotypical transition toward perivascular cell lineages, support the formation of capillary-like structures lining the vascular lumen. Finally, breast cancer cells exposed to interstitial flow within the bone perivascular niche-on-a-chip persist in a slow-proliferative state associated with increased drug resistance. We propose that the bone perivascular niche-on-a-chip with interstitial flow promotes the formation of stable vasculature and mediates cancer cell colonization.
Marques da Costa, Maria Eugenia; Daudigeos-Dubus, Estelle; Gomez-Brouchet, Anne; Bawa, Olivia; Rouffiac, Valerie; Serra, Massimo; Scotlandi, Katia; Santos, Conceição; Geoerger, Birgit; Gaspar, Nathalie
2018-03-01
Osteosarcoma is one of the most common primary bone tumors in childhood and adolescence. Metastases occurrence at diagnosis or during disease evolution is the main therapeutic challenge. New drug evaluation to improve patient survival requires the development of various preclinical models mimicking at best the complexity of the disease and its metastatic potential. We describe here the development and characteristics of two orthotopic bioluminescent (Luc/mKate2) cell-derived xenograft (CDX) models, Saos-2-B-Luc/mKate2-CDX and HOS-Luc/mKate2-CDX, in different immune (nude and NSG mouse strains) and bone (intratibial and paratibial with periosteum activation) contexts. IVIS SpectrumCT system allowed both longitudinal computed tomography (CT) and bioluminescence real-time follow-up of primary tumor growth and metastatic spread, which was confirmed by histology. The murine immune context influenced tumor engraftment, primary tumor growth, and metastatic spread to lungs, bone, and spleen (an unusual localization in humans). Engraftment in NSG mice was found superior to that found in nude mice and intratibial bone environment more favorable to engraftment compared to paratibial injection. The genetic background of the two CDX models also led to distinct primary tumor behavior observed on CT scan. Saos-2-B-Luc/mKate2-CDX showed osteocondensed, HOS-Luc/mKate2-CDX osteolytic morphology. Bioluminescence defined a faster growth of the primary tumor and metastases in Saos-2-B-Luc/mKate2-CDX than in HOS-Luc/mKate2-CDX. The early detection of primary tumor growth and metastatic spread by bioluminescence allows an improved exploration of osteosarcoma disease at tumor progression, and metastatic spread, as well as the evaluations of anticancer treatments. Our orthotopic models with metastatic spread bring complementary information to other types of existing osteosarcoma models. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Does osteoporosis reduce the primary tilting stability of cementless acetabular cups?
von Schulze Pellengahr, Christoph; von Engelhardt, Lars V; Wegener, Bernd; Müller, Peter E; Fottner, Andreas; Weber, Patrick; Ackermann, Ole; Lahner, Matthias; Teske, Wolfram
2015-04-21
Cementless hip cups need sufficient primary tilting stability to achieve osseointegration. The aim of the study was to assess differences of the primary implant stability in osteoporotic bone and in bone with normal bone density. To assess the influence of different cup designs, two types of threaded and two types of press-fit cups were tested. The maximum tilting moment for two different cementless threaded cups and two different cementless press-fit cups was determined in macerated human hip acetabuli with reduced (n=20) and normal bone density (n=20), determined using Q-CT. The tilting moments for each cup were determined five times in the group with reduced bone density and five times in the group with normal bone density, and the respective average values were calculated. The mean maximum extrusion force of the threaded cup Zintra was 5670.5 N (max. tilting moment 141.8 Nm) in bone with normal density and.5748.3 N (max. tilting moment 143.7 Nm) in osteoporotic bone. For the Hofer Imhof (HI) threaded cup it was 7681.5 N (192.0 Nm) in bone with normal density and 6828.9 N (max. tilting moment 170.7 Nm) in the group with osteoporotic bone. The mean maximum extrusion force of the macro-textured press-fit cup Metallsockel CL was 3824.6 N (max. tilting moment 95.6 Nm) in bone with normal and 2246.2 N (max. tilting moment 56.2 Nm) in osteoporotic bone. For the Monoblock it was 1303.8 N (max. tilting moment 32.6 Nm) in normal and 1317 N (max. tilting moment 32.9 Nm) in osteoporotic bone. There was no significance. A reduction of the maximum tilting moment in osteoporotic bone of the ESKA press-fit cup Metallsockel CL was noticed. Results on macerated bone specimens showed no statistically significant reduction of the maximum tilting moment in specimens with osteoporotic bone density compared to normal bone, neither for threaded nor for the press-fit cups. With the limitation that the results were obtained using macerated bone, we could not detect any restrictions for the clinical indication of the examined cementless cups in osteoporotic bone.
Promoting Endochondral Bone Repair Using Human Osteoarthritic Articular Chondrocytes.
Bahney, Chelsea S; Jacobs, Linsey; Tamai, Robert; Hu, Diane; Luan, Tammy F; Wang, Miqi; Reddy, Sanjay; Park, Michelle; Limburg, Sonja; Kim, Hubert T; Marcucio, Ralph; Kuo, Alfred C
2016-03-01
Current tissue engineering strategies to heal critical-size bone defects through direct bone formation are limited by incomplete integration of grafts with host bone and incomplete graft vascularization. An alternative strategy for bone regeneration is the use of cartilage grafts that form bone through endochondral ossification. Endochondral cartilages stimulate angiogenesis and are remodeled into bone, but are found in very small quantities in growth plates and healing fractures. We sought to develop engineered endochondral cartilage grafts using osteoarthritic (OA) articular chondrocytes as a cell source. Such chondrocytes often undergo hypertrophy, which is a characteristic of endochondral cartilages. We compared the ability of unmodified human OA (hOA) cartilage and cartilage grafts formed in vitro from hOA chondrocytes to undergo endochondral ossification in mice. Scaffold-free engineered chondrocyte grafts were generated by pelleting chondrocytes, followed by culture with transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein 4. Samples derived from either primary or passaged chondrocytes were implanted subcutaneously into immunocompromised mice. Grafts derived from passaged chondrocytes from three patients were implanted into critical-size tibial defects in mice. Bone formation was assessed with histology after 4 weeks of implantation. The composition of tibial repair tissue was quantified with histomorphometry. Engineered cartilage grafts generated from passaged OA chondrocytes underwent endochondral ossification after implantation either subcutaneously or in bone. Cartilage grafts integrated with host bone at 15 out of 16 junctions. Grafts variably remodeled into woven bone, with the proportion of bony repair tissue in tibial defects ranging from 22% to 85% (average 48%). Bony repair tissue bridged the tibial defects in half of the animals. In contrast, unmodified OA cartilage and engineered grafts formed from primary chondrocytes did not undergo endochondral ossification in vivo. hOA chondrocytes can adopt an endochondral phenotype after passaging and TGF-β superfamily treatment. Engineered endochondral cartilage grafts can integrate with host bone, undergo ossification, and heal critical-size long-bone defects in a mouse model. However, additional methods to further enhance ossification of these grafts are required before the clinical translation of this approach.
Pabst, Reinhard
2018-05-22
In immunology and anatomy textbooks the bone marrow is described as a typical "primary lymphoid organ" producing lymphoid cells independent of antigens. The hematopoietic bone marrow is largely age-dependent organ with great anatomical and functional differences among various species. There are estimates that about 12% of all lymphoid cells in the human body are found in the bone marrow at any given time (2% in the peripheral blood). Enormous numbers of T lymphocytes migrate to the bone marrow and partly return later to the blood. Many of these lymphocytes are memory CD4 + and CD8 + T cells. A few days after immunization a wave of plasma cells and their precursors migrate to the bone marrow where they lose their migratory response to CXCL-12 and CXCL9. There is a relative enrichment of CD19 + B cells in the bone marrow outnumbering those in the blood and secondary lymphoid organs. This is not due to local production. The proliferation and migration kinetics of these lymphoid cells in the bone marrow have to be studied in more detail as this is of major clinical relevance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Animal models for bone tissue engineering and modelling disease
Griffin, Michelle
2018-01-01
ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995
Sun, Yi; Tian, Yuke; Li, Haifeng; Zhang, Dengwen; Sun, Qiang
2017-01-01
Background . This study aimed to investigate the use of human bone marrow mesenchymal stem cells (hBMSCs) genetically engineered with the human proenkephalin (hPPE) gene to treat bone cancer pain (BCP) in a rat model. Methods . Primary cultured hBMSCs were passaged and modified with hPPE, and the cell suspensions (6 × 10 6 ) were then intrathecally injected into a rat model of BCP. Paw mechanical withdrawal threshold (PMWT) was measured before and after BCP. The effects of hPPE gene transfer on hBMSC bioactivity were analyzed in vitro and in vivo. Results . No changes were observed in the surface phenotypes and differentiation of hBMSCs after gene transfer. The hPPE-hBMSC group showed improved PMWT values on the ipsilateral side of rats with BCP from day 12 postoperatively, and the analgesic effect was reversed by naloxone. The levels of proinflammatory cytokines such as IL-1 β and IL-6 were ameliorated, and leucine-enkephalin (L-EK) secretion was augmented, in the hPPE-engineered hBMSC group. Conclusion . The intrathecal administration of BMSCs modified with the hPPE gene can effectively relieve pain caused by bone cancer in rats and might be a potentially therapeutic tool for cancer-related pain in humans.
Dumont, Bruno; Castronovo, Vincent; Peulen, Olivier; Blétard, Noëlla; Clézardin, Philippe; Delvenne, Philippe; De Pauw, Edwin A; Turtoi, Andrei; Bellahcène, Akeila
2012-04-06
The classical fate of metastasizing breast cancer cells is to seed and form secondary colonies in bones. The molecules closely associated with these processes are predominantly present at the cell surface and in the extracellular space, establishing the first contacts with the target tissue. In this study, we had the rare opportunity to analyze a bone metastatic lesion and its corresponding breast primary tumor obtained simultaneously from the same patient. Using mass spectrometry, we undertook a proteomic study on cell surface and extracellular protein-enriched material. We provide a repertoire of significantly modulated proteins, some with yet unknown roles in the bone metastatic process as well as proteins notably involved in cancer cell invasiveness and in bone metabolism. The comparison of these clinical data with those previously obtained using a human osteotropic breast cancer cell line highlighted an overlapping group of proteins. Certain differentially expressed proteins are validated in the present study using immunohistochemistry on a retrospective collection of breast tumors and matched bone metastases. Our exclusive set of selected proteins supports the setup of further investigations on both clinical samples and experimental bone metastasis models that will help to reveal the finely coordinated expression of proteins that favor the development of metastases in the bone microenvironment.
Lattanzi, Wanda; Parrilla, Claudio; Fetoni, Annarita; Logroscino, Giandomenico; Straface, Giuseppe; Pecorini, Giovanni; Stigliano, Egidio; Tampieri, Anna; Bedini, Rossella; Pecci, Raffaella; Michetti, Fabrizio; Gambotto, Andrea; Robbins, Paul D.; Pola, Enrico
2012-01-01
Local gene transfer of the human LIM Mineralization Protein (LMP), a novel intracellular positive regulator of the osteoblast differentiation program, can induce efficient bone formation in rodents. In order to develop a clinically relevant gene therapy approach to facilitate bone healing, we have used primary dermal fibroblasts transduced ex vivo with Ad.LMP3 and seeded on an hydroxyapatite/collagen matrix prior to autologous implantation. Here we demonstrate that genetically modified autologous dermal fibroblasts expressing Ad.LMP-3 are able to induce ectopic bone formation following implantation of the matrix into the mouse triceps and paravertebral muscles. Moreover, implantation of the Ad.LMP-3-modified dermal fibroblasts into a rat mandibular bone critical size defect model results in efficient healing as determined by X-ray, histology and three dimensional micro computed tomography (3DμCT). These results demonstrate the effectiveness of the non-secreted intracellular osteogenic factor LMP-3, in inducing bone formation in vivo. Moreover, the utilization of autologous dermal fibroblasts implanted on a biomaterial represents a promising approach for possible future clinical applications aimed at inducing new bone formation. PMID:18633445
Kuchler, Ulrike; Rudelstorfer, Claudia M; Barth, Barbara; Tepper, Gabor; Lidinsky, Dominika; Heimel, Patrick; Watzek, Georg; Gruber, Reinhard
Recombinant human bone morphogenetic protein 2 (rhBMP-2) together with an absorbable collagen carrier (ACS) was approved for augmentation of the maxillary sinus prior to implant placement. The original registration trial was based on a lateral window approach. Clinical outcomes of crestal sinus augmentation with rhBMP-2 have not been reported so far. An uncontrolled pilot trial in which seven patients with a residual maxillary height below 5 mm were enrolled to receive crestal sinus augmentation with rhBMP-2/ACS was conducted. Elevation of the sinus mucosa was performed by gel pressure. Primary endpoints were the gain in augmentation height and volume measured by computed tomography after 6 months. Evaluation of bone quality at the time of implant placement was based on histology. Secondary endpoints were the clinical and radiologic evaluation of the implants and patient satisfaction by visual analog scale (VAS) at the 2-year follow-up. Median gain in augmentation height was 7.2 mm (range 0.0 to 17.5 mm). Five patients gained at least 5 mm of bone height. Two patients with a perforation of the sinus mucosa failed to respond to rhBMP-2/ACS and underwent lateral window augmentation. The median gain in augmentation volume of the five patients was 781.3 mm³ (range 426.9 to 1,242.8 mm³). Biopsy specimens showed a cancellous network consisting of primary plexiform bone with little secondary lamellar bone. After 2 years, implants were in function with no signs of inflammation or peri-implant bone loss. Patients were satisfied with the esthetic outcomes and chewing function. This pilot clinical trial supports the original concept that rhBMP-2/ACS supports bone formation, also in crestal sinus augmentation, and emphasizes the relevance of the integrity of the sinus mucosa to predict the bone gain.
Zhang, Jingwei; Dalbay, Melis T; Luo, Xiaoman; Vrij, Erik; Barbieri, Davide; Moroni, Lorenzo; de Bruijn, Joost D; van Blitterswijk, Clemens A; Chapple, J Paul; Knight, Martin M; Yuan, Huipin
2017-07-15
The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Pauksch, Linda; Hartmann, Sonja; Szalay, Gabor; Alt, Volker; Lips, Katrin S
2014-01-01
Peri-prosthetic infections caused by multidrug resistant bacteria have become a serious problem in surgery and orthopedics. The aim is to introduce biomaterials that avoid implant-related infections caused by multiresistant bacteria. The efficacy of silver nanoparticles (AgNP) against a broad spectrum of bacteria and against multiresistant pathogens has been repeatedly described. In the present study polymethylmethacrylate (PMMA) bone cement functionalized with AgNP and/or gentamicin were tested regarding their biocompatibility with bone forming cells. Therefore, influences on viability, cell number and differentiation of primary human mesenchymal stem cells (MSCs) and MSCs cultured in osteogenic differentiation media (MSC-OM) caused by the implant materials were studied. Furthermore, the growth behavior and the morphology of the cells on the testing material were observed. Finally, we examined the induction of cell stress, regarding antioxidative defense and endoplasmatic reticulum stress. We demonstrated similar cytocompatibility of PMMA loaded with AgNP compared to plain PMMA or PMMA loaded with gentamicin. There was no decrease in cell number, viability and osteogenic differentiation and no induction of cell stress for all three PMMA variants after 21 days. Addition of gentamicin to AgNP-loaded PMMA led to a slight decrease in osteogenic differentiation. Also an increase in cell stress was detectable for PMMA loaded with gentamicin and AgNP. In conclusion, supplementation of PMMA bone cement with gentamicin, AgNP, and both results in bone implants with an antibacterial potency and suitable cytocompatibility in MSCs and MSC-OM.
Chhana, Ashika; Callon, Karen E; Pool, Bregina; Naot, Dorit; Watson, Maureen; Gamble, Greg D; McQueen, Fiona M; Cornish, Jillian; Dalbeth, Nicola
2011-09-01
Bone erosion is a common manifestation of chronic tophaceous gout. To investigate the effects of monosodium urate monohydrate (MSU) crystals on osteoblast viability and function. The MTT assay and flow cytometry were used to assess osteoblast cell viability in the MC3T3-E1 and ST2 osteoblast-like cell lines, and primary rat and primary human osteoblasts cultured with MSU crystals. Quantitative real-time PCR and von Kossa stained mineralised bone formation assays were used to assess the effects of MSU crystals on osteoblast differentiation using MC3T3-E1 cells. The numbers of osteoblasts and bone lining cells were quantified in bone samples from patients with gout. MSU crystals rapidly reduced viability in all cell types in a dose-dependent manner. The inhibitory effect on cell viability was independent of crystal phagocytosis and was not influenced by differing crystal length or addition of serum. Long-term culture of MC3T3-E1 cells with MSU crystals showed a reduction in mineralisation and decreased mRNA expression of genes related to osteoblast differentiation such as Runx2, Sp7 (osterix), Ibsp (bone sialoprotein), and Bglap (osteocalcin). Fewer osteoblast and lining cells were present on bone directly adjacent to gouty tophus than bone unaffected by tophus in patients with gout. MSU crystals have profound inhibitory effects on osteoblast viability and differentiation. These data suggest that bone erosion in gout occurs at the tophus-bone interface through alteration of physiological bone turnover, with both excessive osteoclast formation, and reduced osteoblast differentiation from mesenchymal stem cells.
Watt, James; Schlezinger, Jennifer J.
2015-01-01
Environmental obesogens are a newly recognized category of endocrine disrupting chemicals that have been implicated in contributing to the rising rates of obesity in the United States. While obesity is typically regarded as an increase in visceral fat, adipocyte accumulation in the bone has been linked to increased fracture risk, lower bone density, and osteoporosis. Exposure to environmental toxicants that activate peroxisome proliferator activated receptor γ (PPARγ), a critical regulator of the balance of differentiation between adipogenesis and osteogenesis, may contribute to the increasing prevalence of osteoporosis. However, induction of adipogenesis and suppression of osteogenesis are separable activities of PPARγ, and ligands may selectively alter these activities. It currently is unknown whether suppression of osteogenesis is a common toxic endpoint of environmental PPARγ ligands. Using a primary mouse bone marrow culture model, we tested the hypothesis that environmental toxicants acting as PPARγ agonists divert the differentiation pathway of bone marrow-derived multipotent mesenchymal stromal cells towards adipogenesis and away from osteogenesis. The toxicants tested included the organotins tributyltin and triphenyltin, a ubiquitous phthalate metabolite (mono-(2-ethylhexyl) phthalate, MEHP), and two brominated flame retardants (tetrabromobisphenol-a, TBBPA, and mono-(2-ethylhexyl) tetrabromophthalate, METBP). All of the compounds activated PPARγ1 and 2. All compounds increased adipogenesis (lipid accumulation, Fabp4 expression) and suppressed osteogenesis (alkaline phosphatase activity, Osx expression) in mouse primary bone marrow cultures, but with different potencies and efficacies. Despite structural dissimilarities, there was a strong negative correlation between efficacies to induce adipogenesis and suppress osteogenesis, with the organotins being distinct in their exceptional ability to suppress osteogenesis. As human exposure to a mixture of toxicants is likely, albeit at low doses, the fact that multiple toxicants are capable of suppressing bone formation supports the hypothesis that environmental PPARγ ligands represent an emerging threat to human bone health. PMID:25777084
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.
2011-08-05
Highlights: {yields} Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. {yields} First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. {yields} Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. {yields} Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. {yields} Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides themore » reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b{sub 5} and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.« less
Andronowski, Janna M; Mundorff, Amy Z; Pratt, Isaac V; Davoren, Jon M; Cooper, David M L
2017-05-01
Molecular human identification has conventionally focused on DNA sampling from dense, weight-bearing cortical bone tissue, typically from femora or tibiae. A comparison of skeletal elements from three contemporary individuals demonstrated that elements with high quantities of cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially sampling cortical bone may be suboptimal (Mundorff & Davoren, 2014). Despite these findings, the reason for the differential DNA yields between cortical and cancellous bone tissues remains unknown. The primary goal of this work is to ascertain whether differences in bone microstructure can be used to explain differential nuclear DNA yield among bone tissue types observed by Mundorff and Davoren (2014), with a focus on osteocytes and the three-dimensional (3D) quantification of their associated lacunae. Osteocytes and other bone cells are recognized to house DNA in bone tissue, thus examining the density of their lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Lacunae were visualized and quantified using synchrotron radiation-based micro-Computed Tomographic imaging (SR micro-CT). Volumes of interest (VOIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed from the three skeletons sampled for Mundorff and Davoren's (2014) study. Analyses tested the primary hypothesis that the abundance and density of osteocytes (inferred from their lacunar spaces) vary between cortical and cancellous bone tissue types. Results demonstrated that osteocyte lacunar abundance and density vary between cortical and cancellous bone tissue types, with cortical bone VOIs containing a higher lacunar abundance and density. We found that the osteocyte lacunar density values are independent of nuclear DNA yield, suggesting an alternative explanation for the higher nuclear DNA yields from bones with greater quantities of cancellous bone tissue. The use of SR micro-CT allowed for a scale of analysis that revealed a high range of variation in lacunar abundance in both tissue types. Moreover, high-resolution SR micro-CT imaging revealed potential soft tissue remnants within marrow spaces not visible macroscopically. It is hypothesized that soft tissue remnants observed among the trabeculae of skeletal elements with high quantities of cancellous bone tissue are responsible for the high nuclear DNA yields. These findings have significant implications for bone-sample selection for nuclear DNA analysis in a forensic context when skeletal remains are recovered from the ground surface. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-05-07
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.
Generation of human acute lymphoblastic leukemia xenografts for use in oncology drug discovery
Holmfeldt, Linda
2015-01-01
The establishment of reproducible mouse models of acute lymphoblastic leukemia (ALL) is necessary to provide in vivo therapeutic models that recapitulate human ALL, and for amplification of limiting amounts of primary tumor material. A frequently used model is the primary xenograft model that utilizes immunocompromised mice and involves injection of primary patient tumor specimens into mice, and subsequent serial passaging of the tumors by retransplants of cells harvested from the mouse bone marrow and spleen. The tumors generated can then be used for genomic profiling, ex vivo compound testing, mechanistic studies and retransplantation. This unit describes detailed procedures for the establishment and maintenance of primary ALL xenograft panels for potential use in basic research or translational studies. PMID:25737157
Skeletal responses to spaceflight
NASA Technical Reports Server (NTRS)
Morey-Holton, Emily; Arnaud, Sara B.
1991-01-01
The role of gravity in the determination of bone structure is elucidated by observations in adult humans and juvenile animals during spaceflight. The primary response of bone tissue to microgravity is at the interface of the mineral and matrix in the process of biomineralization. This response is manifested by demineralization or retarded growth in some regions of the skeleton and hypermineralization in others. The most pronounced effects are seen in the heelbone and skull, the most distally located bones relative to the heart. Ground based flight simulation models that focus on changes in bone structure at the molecular, organ, and whole body levels are described and compared to flight results. On Earth, the morphologic and compositional changes in the unloaded bones are very similar to changes during flight; however, the ground based changes appear to be more transient. In addition, a redistribution of bone mineral in gravity-dependent bones occurs both in space and during head down positioning on Earth. Longitudinal data provided considerable information on the influence of endocrine and muscular changes on bone structure after unloading.
Kukita, Akiko; Kukita, Toshio; Nagata, Kengo; Teramachi, Junpei; Li, Yin-Ji; Yoshida, Hiroki; Miyamoto, Hiroshi; Gay, Steffen; Pessler, Frank; Shobuike, Takeo
2011-09-01
Since transcription factors expressed in osteoclasts are possible targets for regulation of bone destruction in bone disorders, we investigated the expression of the transcription factor FBI-1/OCZF/LRF (in humans, factor that binds to inducer of short transcripts of human immunodeficiency virus type 1; in rats, osteoclast-derived zinc finger; in mice, leukemia/lymphoma-related factor) in patients with rheumatoid arthritis (RA), and assessed its role in osteoclastogenesis in vivo. Expression of FBI-1/OCZF was investigated in subchondral osteoclasts in human RA and in rat adjuvant-induced arthritis (AIA) using immunostaining and in situ hybridization, respectively. Transgenic mice overexpressing OCZF (OCZF-Tg) under the control of the cathepsin K promoter were generated, and bone mineral density and bone histomorphometric features were determined by peripheral quantitative computed tomography, calcein double-labeling, and specific staining for osteoclasts and osteoblasts. LRF/OCZF expression and the consequence of LRF inhibition were assessed in vitro with RANKL-induced osteoclast differentiation. FBI-1/OCZF was detected in the nuclei of osteoclasts in rat AIA and human RA. RANKL increased the levels of LRF messenger RNA and nuclear-localized LRF protein in primary macrophages. In OCZF-Tg mice, bone volume was significantly decreased, the number of osteoclasts, but not osteoblasts, was increased in long bones, and osteoclast survival was promoted. Conversely, inhibition of LRF expression suppressed the formation of osteoclasts from macrophages in vitro. FBI-1/OCZF/LRF regulates osteoclast formation and apoptosis in vivo, and may become a useful marker and target in treating disorders leading to reduced bone density, including chronic arthritis. Copyright © 2011 by the American College of Rheumatology.
El-Amin, Saadiq F; Attawia, Mohamed; Lu, Helen H; Shah, Asist K; Chang, Richard; Hickok, Noreen J; Tuan, Rocky S; Laurencin, Cato T
2002-01-01
The use of biodegradable polymers in the field of orthopaedic surgery has gained increased popularity, as surgical pins and screws, and as potential biological scaffolds for repairing cartilage and bone defects. One such group of polymers that has gained considerable attention are the polyesters, poly(lactide-co-glycolide) (PLAGA) and polylactic acid (PLA), because of their minimal tissue inflammatory response, favorable biocompatibility and degradation characteristics. The objective of this study was to evaluate human osteoblastic cell adherence and growth on PLAGA and PLA scaffolds by examining integrin receptor (alpha2, alpha3, alpha4, alpha5, alpha6 and beta1) expression. Primary human osteoblastic cells isolated from trabecular bone adhered efficiently to both PLAGA and PLA, with the rate of adherence on PLAGA comparable to that of control tissue culture polystyrene (TCPS), and significantly higher than on PLA polymers at 3, 6 and 12 h. Human osteoblastic phenotypic expression, alkaline phosphatase (ALP) activity was positive on both degradable matrices, whereas osteocalcin levels were significantly higher on cells grown on PLAGA than on PLA composites. Interestingly, the integrin subunits, alpha2, alpha3, alpha4, alpha5, alpha6 and beta1 were all expressed at higher levels by osteoblasts cultured on PLAGA than those on PLA as analyzed by westerns blots and by flow cytometry. Among the integrins, alpha2, beta5 and beta1 showed the greatest difference in levels between the two surfaces. Thus, both PLA and PLAGA support osteoblastic adhesion and its accompanying engagement of integrin receptor and expression of osteocalcin and ALP. However PLAGA consistently appeared to be a better substrate for osteoblastic cells based on these parameters. This study is one of the first to investigate the ability of primary human osteoblastic cells isolated from trabecular bone to adhere to the biodegradable polymers PLAGA and PLA, and to examine the expression of their key adhesion receptors (integrins) on these substrates.
Cytohesin 1 regulates homing and engraftment of human hematopoietic stem and progenitor cells.
Rak, Justyna; Foster, Katie; Potrzebowska, Katarzyna; Talkhoncheh, Mehrnaz Safaee; Miharada, Natsumi; Komorowska, Karolina; Torngren, Therese; Kvist, Anders; Borg, Åke; Svensson, Lena; Bonnet, Dominique; Larsson, Jonas
2017-02-23
Adhesion is a key component of hematopoietic stem cell regulation mediating homing and retention to the niche in the bone marrow. Here, using an RNA interference screen, we identify cytohesin 1 (CYTH1) as a critical mediator of adhesive properties in primary human cord blood-derived hematopoietic stem and progenitor cells (HSPCs). Knockdown of CYTH1 disrupted adhesion of HSPCs to primary human mesenchymal stroma cells. Attachment to fibronectin and ICAM1, 2 integrin ligands, was severely impaired, and CYTH1-deficient cells showed a reduced integrin β1 activation response, suggesting that CYTH1 mediates integrin-dependent functions. Transplantation of CYTH1-knockdown cells to immunodeficient mice resulted in significantly lower long-term engraftment levels, associated with a reduced capacity of the transplanted cells to home to the bone marrow. Intravital microscopy showed that CYTH1 deficiency profoundly affects HSPC mobility and localization within the marrow space and thereby impairs proper lodgment into the niche. Thus, CYTH1 is a novel major regulator of adhesion and engraftment in human HSPCs through mechanisms that, at least in part, involve the activation of integrins. © 2017 by The American Society of Hematology.
Comparison of the reaction of bone-derived cells to enhanced MgCl2-salt concentrations.
Burmester, Anna; Luthringer, Bérengère; Willumeit, Regine; Feyerabend, Frank
2014-01-01
Magnesium-based implants exhibit various advantages such as biodegradability and potential for enhanced in vivo bone formation. However, the cellular mechanisms behind this possible osteoconductivity remain unclear. To determine whether high local magnesium concentrations can be osteoconductive and exclude other environmental factors that occur during the degradation of magnesium implants, magnesium salt (MgCl2) was used as a model system. Because cell lines are preferred targets in studies of non-degradable implant materials, we performed a comparative study of 3 osteosarcoma-derived cell lines (MG63, SaoS2 and U2OS) with primary human osteoblasts. The correlation among cell count, viability, cell size and several MgCl2 concentrations was used to examine the influence of magnesium on proliferation in vitro. Moreover, bone metabolism alterations during proliferation were investigated by analyzing the expression of genes involved in osteogenesis. It was observed that for all cell types, the cell count decreases at concentrations above 10 mM MgCl2. However, detailed analysis showed that MgCl2 has a relevant but very diverse influence on proliferation and bone metabolism, depending on the cell type. Only for primary cells was a clear stimulating effect observed. Therefore, reliable results demonstrating the osteoconductivity of magnesium implants can only be achieved with primary osteoblasts.
Comparison of the reaction of bone-derived cells to enhanced MgCl2-salt concentrations
Burmester, Anna; Luthringer, Bérengère; Willumeit, Regine; Feyerabend, Frank
2014-01-01
Magnesium-based implants exhibit various advantages such as biodegradability and potential for enhanced in vivo bone formation. However, the cellular mechanisms behind this possible osteoconductivity remain unclear. To determine whether high local magnesium concentrations can be osteoconductive and exclude other environmental factors that occur during the degradation of magnesium implants, magnesium salt (MgCl2) was used as a model system. Because cell lines are preferred targets in studies of non-degradable implant materials, we performed a comparative study of 3 osteosarcoma-derived cell lines (MG63, SaoS2 and U2OS) with primary human osteoblasts. The correlation among cell count, viability, cell size and several MgCl2 concentrations was used to examine the influence of magnesium on proliferation in vitro. Moreover, bone metabolism alterations during proliferation were investigated by analyzing the expression of genes involved in osteogenesis. It was observed that for all cell types, the cell count decreases at concentrations above 10 mM MgCl2. However, detailed analysis showed that MgCl2 has a relevant but very diverse influence on proliferation and bone metabolism, depending on the cell type. Only for primary cells was a clear stimulating effect observed. Therefore, reliable results demonstrating the osteoconductivity of magnesium implants can only be achieved with primary osteoblasts. PMID:25482335
Behavior of bone cells in contact with magnesium implant material.
Burmester, Anna; Willumeit-Römer, Regine; Feyerabend, Frank
2017-01-01
Magnesium-based implants exhibit several advantages, such as biodegradability and possible osteoinductive properties. Whether the degradation may induce cell type-specific changes in metabolism still remains unclear. To examine the osteoinductivity mechanisms, the reaction of bone-derived cells (MG63, U2OS, SaoS2, and primary human osteoblasts (OB)) to magnesium (Mg) was determined. Mg-based extracts were used to mimic more realistic Mg degradation conditions. Moreover, the influence of cells having direct contact with the degrading Mg metal was investigated. In exposure to extracts and in direct contact, the cells decreased pH and osmolality due to metabolic activity. Proliferating cells showed no significant reaction to extracts, whereas differentiating cells were negatively influenced. In contrast to extract exposure, where cell size increased, in direct contact to magnesium, cell size was stable or even decreased. The amount of focal adhesions decreased over time on all materials. Genes involved in bone formation were significantly upregulated, especially for primary human osteoblasts. Some osteoinductive indicators were observed for OB: (i) an increased cell count after extract addition indicated a higher proliferation potential; (ii) increased cell sizes after extract supplementation in combination with augmented adhesion behavior of these cells suggest an early switch to differentiation; and (iii) bone-inducing gene expression patterns were determined for all analyzed conditions. The results from the cell lines were inhomogeneous and showed no specific stimulus of Mg. The comparison of the different cell types showed that primary cells of the investigated tissue should be used as an in vitro model if Mg is analyzed. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 165-179, 2017. © 2015 Wiley Periodicals, Inc.
Mahoney, Patrick; Miszkiewicz, Justyna J; Pitfield, Rosie; Schlecht, Stephen H; Deter, Chris; Guatelli-Steinberg, Debbie
2016-06-01
Across mammalian species, the periodicity with which enamel layers form (Retzius periodicity) in permanent teeth corresponds with average body mass and the pace of life history. According to the Havers-Halberg Oscillation hypothesis (HHO), Retzius periodicity (RP) is a manifestation of a biorhythm that is also expressed in lamellar bone. Potentially, these links provide a basis for investigating aspects of a species' biology from fossilized teeth. Here, we tested intra-specific predictions of this hypothesis on skeletal samples of human juveniles. We measured daily enamel growth increments to calculate RP in deciduous molars (n = 25). Correlations were sought between RP, molar average and relative enamel thickness (AET, RET), and the average amount of primary bone growth (n = 7) in humeri of age-matched juveniles. Results show a previously undescribed relationship between RP and enamel thickness. Reduced major axis regression reveals RP is significantly and positively correlated with AET and RET, and scales isometrically. The direction of the correlation was opposite to HHO predictions as currently understood for human adults. Juveniles with higher RPs and thicker enamel had increased primary bone formation, which suggests a coordinating biorhythm. However, the direction of the correspondence was, again, opposite to predictions. Next, we compared RP from deciduous molars with new data for permanent molars, and with previously published values. The lowermost RP of 4 and 5 days in deciduous enamel extends below the lowermost RP of 6 days in permanent enamel. A lowered range of RP values in deciduous enamel implies that the underlying biorhythm might change with age. Our results develop the intra-specific HHO hypothesis. © 2016 Anatomical Society.
Megges, Matthias; Geissler, Sven; Duda, Georg N; Adjaye, James
2015-11-01
An induced pluripotent stem cell line was generated from primary human bone marrow derived mesenchymal stromal cells of a 74 year old donor using retroviruses harboring OCT4, SOX2, KLF4 and c-MYC in combination with the following inhibitors TGFβ receptor-SB 431542, MEK-PD325901, and p53-Pifithrin α. Pluripotency was confirmed both in vitro and in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.
The Roles of the Bone Marrow Microenvironment in Controlling Tumor Dormancy
2016-10-01
into the mammary fat pads of mice. The treatment of animals with scaffolds had no significant effect on primary tumor growth. However, extensive...chips [6e9] or marrow [10] are used and implanted subcutaneously: þ1 617 627 3231. an). f Biomedical Engineering, 4or in the mammary fat pad. While human...5thmammary fat pad using a Hamilton syringe equipped with a 22-gauge needle. To manipulate the microenvironment of the tissue-engineered bone, osmotic
Propagating Humanized BLT Mice for the Study of Human Immunology and Immunotherapy.
Smith, Drake J; Lin, Levina J; Moon, Heesung; Pham, Alexander T; Wang, Xi; Liu, Siyuan; Ji, Sunjong; Rezek, Valerie; Shimizu, Saki; Ruiz, Marlene; Lam, Jennifer; Janzen, Deanna M; Memarzadeh, Sanaz; Kohn, Donald B; Zack, Jerome A; Kitchen, Scott G; An, Dong Sung; Yang, Lili
2016-12-15
The humanized bone marrow-liver-thymus (BLT) mouse model harbors a nearly complete human immune system, therefore providing a powerful tool to study human immunology and immunotherapy. However, its application is greatly limited by the restricted supply of human CD34 + hematopoietic stem cells and fetal thymus tissues that are needed to generate these mice. The restriction is especially significant for the study of human immune systems with special genetic traits, such as certain human leukocyte antigen (HLA) haplotypes or monogene deficiencies. To circumvent this critical limitation, we have developed a method to quickly propagate established BLT mice. Through secondary transfer of bone marrow cells and human thymus implants from BLT mice into NSG (NOD/SCID/IL-2Rγ -/- ) recipient mice, we were able to expand one primary BLT mouse into a colony of 4-5 proBLT (propagated BLT) mice in 6-8 weeks. These proBLT mice reconstituted human immune cells, including T cells, at levels comparable to those of their primary BLT donor mouse. They also faithfully inherited the human immune cell genetic traits from their donor BLT mouse, such as the HLA-A2 haplotype that is of special interest for studying HLA-A2-restricted human T cell immunotherapies. Moreover, an EGFP reporter gene engineered into the human immune system was stably passed from BLT to proBLT mice, making proBLT mice suitable for studying human immune cell gene therapy. This method provides an opportunity to overcome a critical hurdle to utilizing the BLT humanized mouse model and enables its more widespread use as a valuable preclinical research tool.
Shibata, S.; Sakamoto, Y.; Baba, O.; Qin, C.; Murakami, G.; Cho, B.H.
2013-01-01
Immunohistochemical localization of collagen types I, II, and X, aggrecan, versican, dentin matrix protein (DMP)-1, martix extracellular phosphoprotein (MEPE) were performed for Meckel’s cartilage, cranial base cartilage, and mandibular condylar cartilage in human midterm fetuses; staining patterns within the condylar cartilage were compared to those within other cartilaginous structures. Mandibular condylar cartilage contained aggrecan; it also had more type I collagen and a thicker hypertrophic cell layer than the other two types of cartilage; these three characteristics are similar to those of the secondary cartilage of rodents. MEPE immunoreactivity was first evident in the cartilage matrix of all types of cartilage in the human fetuses and in Meckel’s cartilage of mice and rats. MEPE immunoreactivity was enhanced in the deep layer of the hypertrophic cell layer and in the cartilaginous core of the bone trabeculae in the primary spongiosa. These results indicated that MEPE is a component of cartilage matrix and may be involved in cartilage mineralization. DMP-1 immunoreactivity first became evident in human bone lacunae walls and canaliculi; this pattern of expression was comparable to the pattern seen in rodents. In addition, chondroid bone was evident in the mandibular (glenoid) fossa of the temporal bone, and it had aggrecan, collagen types I and X, MEPE, and DMP-1 immunoreactivity; these findings indicated that chondroid bone in this region has phenotypic expression indicative of both hypertrophic chondrocytes and osteocytes. PMID:24441192
Baughn, Linda B; Di Liberto, Maurizio; Niesvizky, Ruben; Cho, Hearn J; Jayabalan, David; Lane, Joseph; Liu, Fang; Chen-Kiang, Selina
2009-02-15
Resistance to growth suppression by TGF-beta1 is common in cancer; however, mutations in this pathway are rare in hematopoietic malignancies. In multiple myeloma, a fatal cancer of plasma cells, malignant cells accumulate in the TGF-beta-rich bone marrow due to loss of both cell cycle and apoptotic controls. Herein we show that TGF-beta activates Smad2 but fails to induce cell cycle arrest or apoptosis in primary bone marrow myeloma and human myeloma cell lines due to its inability to activate G(1) cyclin-dependent kinase (CDK) inhibitors (p15(INK4b), p21(CIP1/WAF1), p27(KIP1), p57(KIP2)) or to repress c-myc and Bcl-2 transcription. Correlating with aberrant activation of CDKs, CDK-dependent phosphorylation of Smad2 on Thr(8) (pT8), a modification linked to impaired Smad activity, is elevated in primary bone marrow myeloma cells, even in asymptomatic monoclonal gammopathy of undetermined significance. Moreover, CDK2 is the predominant CDK that phosphorylates Smad2 on T8 in myeloma cells, leading to inhibition of Smad2-Smad4 association that precludes transcriptional regulation by Smad2. Our findings provide the first direct evidence that pT8 Smad2 couples dysregulation of CDK2 to TGF-beta resistance in primary cancer cells, and they suggest that disruption of Smad2 function by CDK2 phosphorylation acts as a mechanism for TGF-beta resistance in multiple myeloma.
Expression profiling of microRNAs in human bone tissue from postmenopausal women.
De-Ugarte, Laura; Serra-Vinardell, Jenny; Nonell, Lara; Balcells, Susana; Arnal, Magdalena; Nogues, Xavier; Mellibovsky, Leonardo; Grinberg, Daniel; Diez-Perez, Adolfo; Garcia-Giralt, Natalia
2018-01-01
Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.
Human Urine Derived Stem Cells in Combination with β-TCP Can Be Applied for Bone Regeneration.
Guan, Junjie; Zhang, Jieyuan; Li, Haiyan; Zhu, Zhenzhong; Guo, Shangchun; Niu, Xin; Wang, Yang; Zhang, Changqing
2015-01-01
Bone tissue engineering requires highly proliferative stem cells that are easy to isolate. Human urine stem cells (USCs) are abundant and can be easily harvested without using an invasive procedure. In addition, in our previous studies, USCs have been proved to be able to differentiate into osteoblasts, chondrocytes, and adipocytes. Therefore, USCs may have great potential and advantages to be applied as a cell source for tissue engineering. However, there are no published studies that describe the interactions between USCs and biomaterials and applications of USCs for bone tissue engineering. Therefore, the objective of the present study was to evaluate the interactions between USCs with a typical bone tissue engineering scaffold, beta-Tricalcium Phosphate (β-TCP), and to determine whether the USCs seeded onto β-TCP scaffold can promote bone regeneration in a segmental femoral defect of rats. Primary USCs were isolated from urine and seeded on β-TCP scaffolds. Results showed that USCs remained viable and proliferated within β-TCP. The osteogenic differentiation of USCs within the scaffolds was demonstrated by increased alkaline phosphatase activity and calcium content. Furthermore, β-TCP with adherent USCs (USCs/β-TCP) were implanted in a 6-mm critical size femoral defect of rats for 12 weeks. Bone regeneration was determined using X-ray, micro-CT, and histologic analyses. Results further demonstrated that USCs in the scaffolds could enhance new bone formation, which spanned bone defects in 5 out of 11 rats while β-TCP scaffold alone induced modest bone formation. The current study indicated that the USCs can be used as a cell source for bone tissue engineering as they are compatible with bone tissue engineering scaffolds and can stimulate the regeneration of bone in a critical size bone defect.
[Augmentation technique on the proximal humerus].
Scola, A; Gebhard, F; Röderer, G
2015-09-01
The treatment of osteoporotic fractures is still a challenge. The advantages of augmentation with respect to primary in vitro stability and the clinical use for the proximal humerus are presented in this article. In this study six paired human humeri were randomized into an augmented and a non-augmented group. Osteosynthesis was performed with a PHILOS plate (Synthes®). In the augmented group the two screws finding purchase in the weakest cancellous bone were augmented. The specimens were tested in a 3-part fracture model in a varus bending test. The augmented PHILOS plates withstood significantly more load cycles until failure. The correlation to bone mineral density (BMD) showed that augmentation could partially compensate for low BMD. The augmentation of the screws in locked plating in a proximal humerus fracture model is effective in improving the primary stability in a cyclic varus bending test. The targeted augmentation of two particular screws in a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality could be more effective in enhancing the primary stability of a proximal humerus locking plate because the effect of augmentation can be exploited more effectively limiting it to the degree required. The technique of augmentation is simple and can be applied in open and minimally invasive procedures. When the correct procedure is used, complications (cement leakage into the joint) can be avoided.
Cacchioli, Antonio; Ravanetti, Francesca; Bagno, Andrea; Dettin, Monica; Gabbi, Carlo
2009-10-01
Peptide and protein exploitation for the biochemical functionalization of biomaterial surfaces allowed fabricating biomimetic devices able to evoke and promote specific and advantageous cell functions in vitro and in vivo. In particular, cell adhesion improvement to support the osseointegration of implantable devices has been thoroughly investigated. This study was aimed at checking the biological activity of the (351-359) human vitronectin precursor (HVP) sequence, mapped on the human vitronectin protein; the peptide was covalently linked to the surface of titanium cylinders, surgically inserted in the femurs of New Zealand white rabbits and analyzed at short experimental time points (4, 9, and 16 days after surgery). To assess the osteogenic activity of the peptide, three vital fluorochromic bone markers were used (calcein green, xylenol orange, and calcein blue) to stain the areas of newly grown bone. Static and dynamic histomorphometric parameters were measured at the bone-implant interface and at different distances from the surface. The biological role of the (351-359)HVP sequence was checked by comparing peptide-grafted samples and controls, analyzing how and how much its effects change with time across the bone regions surrounding the implant surface. The results obtained reveal a major activity of the investigated peptide 4 days after surgery, within the bone region closest to the implant surface, and larger bone to implant contact 9 and 16 days after surgery. Thus, improved primary fixation of endosseous devices can be foreseen, resulting in an increased osteointegration.
Newton Ede, Matthew P; Philp, Ashleigh M; Philp, Andrew; Richardson, Stephen M; Mohammad, Saeed; Jones, Simon W
2016-05-01
A study examining the clinical protocol of scoliosis wound irrigation, demonstrating povidone-iodine's (PVI) effect on human osteoblast cells. Primary and immortal cell line osteoblasts were treated with 0.35% PVI for 3 minutes, and analyzed for proliferation rate, oxidative capacity, and mineralization. To model spinal wound irrigation with dilute PVI in vitro, in order to investigate the effect of PVI on osteoblast proliferation, metabolism, and bone mineralization. Previously PVI irrigation has been proposed as a safe and effective practice to avoid bacterial growth after spinal surgery. However, recent evidence in multiple cell types suggests that PVI has a deleterious effect on cellular viability and cellular function. Primary and immortal human osteoblast cells were exposed to either phosphate buffered saline control or with 0.35% PVI for 3 minutes. Cellular proliferation was measured over the duration of 7 days by MTS assay. Oxygen consumption rate, extracellular acidification rate, and proton production rate were analyzed using a Seahorse XF24 Bioanalyzer. Protein expression of the electron transport chain subunits CII-SDHB, CIII-UQRCR2, and CV-ATP5A was measured via Western blotting. Mineralized bone nodules were stained with alizarin red. Expressed as a percentage of normal osteoblast proliferation, osteoblasts exposed to 0.35% PVI exhibited a significant 24% decrease in proliferation after 24 hours. This was a sustained response, resulting in a 72% decline in cellular proliferation at 1 week. There was a significant reduction in oxygen consumption rate, extracellular acidification rate, and proton production rate (P < 0.05), in osteoblasts that had been exposed to 0.35% PVI for 3 minutes, coupled with a marked reduction in the protein expression of CII-SDHB. Osteoblasts exposed to 0.35% PVI exhibited reduced bone nodule mineralization compared to control phosphate buffered saline exposed osteoblasts (P < 0.01). PVI has a rapid and detrimental effect on human osteoblast cellular proliferation, metabolic function, and bone nodule mineralization. NA.
Production, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds.
Luthringer, B J C; Ali, F; Akaichi, H; Feyerabend, F; Ebel, T; Willumeit, R
2013-10-01
Despite its non-matching mechanical properties titanium remains the preferred metal implant material in orthopaedics. As a consequence in some cases stress shielding effect occurs, leading to implant loosening, osteopenia, and finally revision surgery. Porous metal scaffolds to allow easier specialised cells ingrowth with mechanical properties closer to the ones of bone can overcome this problem. This should improve healing processes, implant integration, and dynamic strength of implants retaining. Three Ti-6Al-4V materials were metal injection moulded and tailored porosities were effectively achieved. After microstructural and mechanical characterisation, two different primary cells of mesenchymal origin (human umbilical cord perivascular cells and human bone derived cells which revealed to be two pertinent models) as well as one cell line originated from primary osteogenic sarcoma, Saos-2, were bestowed to investigate cell-material interaction on genomic and proteome levels. Biological examinations disclosed that no material has negative impact on early adhesion, proliferation or cell viability. An efficient cell ingrowth into material with an average porosity of 25-50 μm was proved.
Response of human rheumatoid arthritis osteoblasts and osteoclasts to adiponectin.
Krumbholz, Grit; Junker, Susann; Meier, Florian M P; Rickert, Markus; Steinmeyer, Jürgen; Rehart, Stefan; Lange, Uwe; Frommer, Klaus W; Schett, Georg; Müller-Ladner, Ulf; Neumann, Elena
2017-01-01
Adiponectin is an effector molecule in the pathophysiology of rheumatoid arthritis, e.g. by inducing cytokines and matrix degrading enzymes in synovial fibroblasts. There is growing evidence that adiponectin affects osteoblasts and osteoclasts although the contribution to the aberrant bone metabolism in rheumatoid arthritis is unclear. Therefore, the adiponectin effects on rheumatoid arthritis-derived osteoblasts and osteoclasts were evaluated. Adiponectin and its receptors were examined in bone tissue. Primary human osteoblasts and osteoclasts were stimulated with adiponectin and analysed using realtime polymerase chain-reaction and immunoassays. Effects on matrix-production by osteoblasts and differentiation and resorptive activity of osteoclasts were examined. Immunohistochemistry of rheumatoid arthritis bone tissue showed adiponectin expression in key cells of bone remodelling. Adiponectin altered gene expression and cytokine release in osteoblasts and increased IL-8 secretion by osteoclasts. Adiponectin inhibited osterix and induced osteoprotegerin mRNA in osteoblasts. In osteoclasts, MMP-9 and tartrate resistant acid phosphatase expression was increased. Accordingly, mineralisation capacity of osteoblasts decreased whereas resorptive activity of osteoclasts increased. The results confirm the proinflammatory potential of adiponectin and support the idea that adiponectin influences rheumatoid arthritis bone remodelling through alterations in osteoblast and osteoclast.
Loss of Osteoblast Runx3 Produces Severe Congenital Osteopenia
Bauer, Omri; Sharir, Amnon; Kimura, Ayako; Hantisteanu, Shay; Takeda, Shu
2015-01-01
Congenital osteopenia is a bone demineralization condition that is associated with elevated fracture risk in human infants. Here we show that Runx3, like Runx2, is expressed in precommitted embryonic osteoblasts and that Runx3-deficient mice develop severe congenital osteopenia. Runx3-deficient osteoblast-specific (Runx3fl/fl/Col1α1-cre), but not chondrocyte-specific (Runx3fl/fl/Col1α2-cre), mice are osteopenic. This demonstrates that an osteoblastic cell-autonomous function of Runx3 is required for proper osteogenesis. Bone histomorphometry revealed that decreased osteoblast numbers and reduced mineral deposition capacity in Runx3-deficient mice cause this bone formation deficiency. Neonatal bone and cultured primary osteoblast analyses revealed a Runx3-deficiency-associated decrease in the number of active osteoblasts resulting from diminished proliferation and not from enhanced osteoblast apoptosis. These findings are supported by Runx3-null culture transcriptome analyses showing significant decreases in the levels of osteoblastic markers and increases in the levels of Notch signaling components. Thus, while Runx2 is mandatory for the osteoblastic lineage commitment, Runx3 is nonredundantly required for the proliferation of these precommitted cells, to generate adequate numbers of active osteoblasts. Human RUNX3 resides on chromosome 1p36, a region that is associated with osteoporosis. Therefore, RUNX3 might also be involved in human bone mineralization. PMID:25605327
Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans
Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna
2011-01-01
Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and bone resorption parameters in MDX mice compared with wild-type mice, whereas osteoblast parameters and mineral apposition rate were lower. In a panel of circulating pro-osteoclastogenic cytokines evaluated in the MDX sera, interleukin 6 (IL-6) was increased compared with wild-type mice. Likewise, DMD patients showed low bone mineral density (BMD) Z-scores and high bone-resorption marker and serum IL-6. Human primary osteoblasts from healthy donors incubated with 10% sera from DMD patients showed decreased nodule mineralization. Many osteogenic genes were downregulated in these cultures, including osterix and osteocalcin, by a mechanism blunted by an IL-6-neutralizing antibody. In contrast, the mRNAs of osteoclastogenic cytokines IL6, IL11, inhibin-βA, and TGFβ2 were increased, although only IL-6 was found to be high in the circulation. Consistently, enhancement of osteoclastogenesis was noted in cultures of circulating mononuclear precursors from DMD patients or from healthy donors cultured in the presence of DMD sera or IL-6. Circulating IL-6 also played a dominant role in osteoclast formation because ex vivo wild-type calvarial bones cultured with 10% sera of MDX mice showed increase osteoclast and bone-resorption parameters that were dampen by treatment with an IL-6 antibody. These results point to IL-6 as an important mediator of bone loss in DMD and suggest that targeted anti-IL-6 therapy may have a positive impact on the bone phenotype in these patients. © 2011 American Society for Bone and Mineral Research PMID:21509823
Matsuura, N.; Puzon-McLaughlin, W.; Irie, A.; Morikawa, Y.; Kakudo, K.; Takada, Y.
1996-01-01
Cell adhesion receptors (eg, integrins and CD44) play an important role in invasion and metastasis during tumor progression. The increase in integrin alpha 4 beta 1 expression on primary melanomas has been reported to significantly correlate with the development of metastases. alpha 4 beta 1 is a cell surface heterodimer that mediates cell-cell and cell-extracellular matrix interactions through adhesion to vascular cell adhesion molecule (VCAM)-1 and to the IIICS region of fibronectin. To test the effects of alpha 4 beta 1 expression on tumor cell metastasis, Chinese hamster ovary cells were transfected with human alpha 4 cDNA. Whereas alpha 4-negative Chinese hamster ovary cells developed only pulmonary metastasis, alpha 4-positive Chinese hamster ovary cells developed bone and pulmonary metastasis in 3 to 4 weeks when injected intravenously into nude mice. Bone metastasis was inhibited by antibody against alpha 4 or VCAM-1. Expression of alpha 3 beta 1, alpha 6 beta 1, or alpha V beta 1 did not induce bone metastasis. Expression of alpha 4 beta 1 also induced bone metastasis in K562 human erythroleukemia cells injected into SCID mice. These results demonstrate that alpha 4 beta 1 can induce tumor cell trafficking to bone, probably via interaction with VCAM-1 that is constitutively expressed on bone marrow stromal cells. Images Figure 1 Figure 3 PMID:8546226
Tormin, Ariane; Li, Ou; Brune, Jan Claas; Walsh, Stuart; Schütz, Birgit; Ehinger, Mats; Ditzel, Nicholas; Kassem, Moustapha
2011-01-01
Nonhematopoietic bone marrow mesenchymal stem cells (BM-MSCs) are of central importance for bone marrow stroma and the hematopoietic environment. However, the exact phenotype and anatomical distribution of specified MSC populations in the marrow are unknown. We characterized the phenotype of primary human BM-MSCs and found that all assayable colony-forming units-fibroblast (CFU-Fs) were highly and exclusively enriched not only in the lin−/CD271+/CD45−/CD146+ stem-cell fraction, but also in lin−/CD271+/CD45−/CD146−/low cells. Both populations, regardless of CD146 expression, shared a similar phenotype and genotype, gave rise to typical cultured stromal cells, and formed bone and hematopoietic stroma in vivo. Interestingly, CD146 was up-regulated in normoxia and down-regulated in hypoxia. This was correlated with in situ localization differences, with CD146 coexpressing reticular cells located in perivascular regions, whereas bone-lining MSCs expressed CD271 alone. In both regions, CD34+ hematopoietic stem/progenitor cells were located in close proximity to MSCs. These novel findings show that the expression of CD146 differentiates between perivascular versus endosteal localization of non-hematopoietic BM-MSC populations, which may be useful for the study of the hematopoietic environment. PMID:21415267
Pietsch, Arnold P; Raith, Stefan; Ode, Jan-Eric; Teichmann, Jan; Lethaus, Bernd; Möhlhenrich, Stephan C; Hölzle, Frank; Duda, Georg N; Steiner, Timm
2016-06-01
The goal of this study was to determine a combination of screw and transplantation type that offers optimal primary stability for reconstructive surgery. Fibular, iliac crest, and scapular transplants were tested along with artificial bone substrate. Six different kinds of bone screws (Medartis(©)) were compared, each type utilized with one of six specimens from human transplants (n = 6). Controlled screw-in-tests were performed and the required torque was protocolled. Subsequently, pull-out-tests were executed to determine the retention forces. The artificial bone substitute material showed significantly higher retention forces than real bone samples. The self-drilling screws achieved the significantly highest retention values in the synthetic bone substitute material. Cancellous screws achieved the highest retention in the fibular transplants, while self-drilling and cancellous screws demonstrated better retention than cortical screws in the iliac crest. In the scapular graft, no significant differences were found between the screw types. In comparison to the human transplant types, the cortical screws showed the significantly highest values in the fibula and the lowest values in the iliac crest. The best retention was found in the combination of cancellous screws with fibular graft (514.8 N + -252.3 N). For the flat bones (i.e., scapular and illiac crest) we recommend the cancellous screws. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Feasibility of a portable X-ray fluorescence device for bone lead measurements of condor bones.
Specht, Aaron J; Parish, Chris N; Wallens, Emma K; Watson, Rick T; Nie, Linda H; Weisskopf, Marc G
2018-02-15
Lead based ammunition is a primary source of lead exposure, especially for scavenging wildlife. Lead poisoning remains the leading cause of diagnosed death for the critically endangered California condors, which are annually monitored via blood tests for lead exposure. The results of these tests are helpful in determining recent exposure in condors and in defining the potential for exposure to other species including humans. Since condors are victim to acute and chronic lead exposure, being able to measure both would lend valuable information on the rates of exposure and accumulation through time. A commercial portable X-ray fluorescence (XRF) device has been optimized to measure bone lead in vivo in humans, but this device could also be valuable for field measurements of bone lead in avian species. In this study, we performed measurements of bone Pb in excised, bare condor bones using inductively coupled plasma mass spectrometry (ICP-MS), a cadmium 109 (Cd-109) K-shell X-ray fluorescence (KXRF) system, and a portable XRF system. Both KXRF and portable XRF bone Pb measurement techniques demonstrated good correlations with ICP-MS results (r=0.93 and r=0.92 respectively), even with increasing skin thickness (r=0.86 between ICP-MS and portable XRF at 1.54mm of soft tissue). In conclusion, our results suggest that a portable XRF could be a useful option for measurement of bone Pb in avian species in the field. Copyright © 2017 Elsevier B.V. All rights reserved.
Absence of ERRα in Female Mice Confers Resistance to Bone Loss Induced by Age or Estrogen-Deficiency
Rabier, Bénédicte; Monfoulet, Laurent; Dine, Julien; Macari, Claire; Espallergues, Julie; Horard, Béatrice; Giguère, Vincent; Cohen-Solal, Martine; Chassande, Olivier; Vanacker, Jean-Marc
2009-01-01
Background ERRα is an orphan member of the nuclear hormone receptor superfamily, which acts as a transcription factor and is involved in various metabolic processes. ERRα is also highly expressed in ossification zones during mouse development as well as in human bones and cell lines. Previous data have shown that this receptor up-modulates the expression of osteopontin, which acts as an inhibitor of bone mineralization and whose absence results in resistance to ovariectomy-induced bone loss. Altogether this suggests that ERRα may negatively regulate bone mass and could impact on bone fragility that occurs in the absence of estrogens. Methods/Principal Findings In this report, we have determined the in vivo effect of ERRα on bone, using knock-out mice. Relative to wild type animals, female ERRαKO bones do not age and are resistant to bone loss induced by estrogen-withdrawal. Strikingly male ERRαKO mice are indistinguishable from their wild type counterparts, both at the unchallenged or gonadectomized state. Using primary cell cultures originating from ERRαKO bone marrow, we also show that ERRα acts as an inhibitor of osteoblast differentiation. Conclusion/Significance Down-regulating ERRα could thus be beneficial against osteoporosis. PMID:19936213
Myeloproliferative Neoplasm Animal Models
Mullally, Ann; Lane, Steven W.; Brumme, Kristina; Ebert, Benjamin L.
2012-01-01
Synopsis Myeloproliferative neoplasm (MPN) animal models accurately re-capitulate human disease in mice and have been an important tool for the study of MPN biology and therapy. Transplantation of BCR-ABL transduced bone marrow cells into irradiated syngeneic mice established the field of MPN animal modeling and the retroviral bone marrow transplantation (BMT) assay has been used extensively since. Genetically engineered MPN animal models have enabled detailed characterization of the effects of specific MPN associated genetic abnormalities on the hematopoietic stem and progenitor cell (HSPC) compartment and xenograft models have allowed the study of primary human MPN-propagating cells in vivo. All models have facilitated the pre-clinical development of MPN therapies. JAK2V617F, the most common molecular abnormality in BCR-ABL negative MPN, has been extensively studied using retroviral, transgenic, knock-in and xenograft models. MPN animal models have also been used to investigate additional genetic lesions found in human MPN and to evaluate the bone marrow microenvironment in these diseases. Finally, several genetic lesions, although not common, somatically mutated drivers of MPN in humans induce a MPN phenotype in mice. Future uses for MPN animal models will include modeling compound genetic lesions in MPN and studying myelofibrotic transformation. PMID:23009938
Patient-specific in silico models can quantify primary implant stability in elderly human bone.
Steiner, Juri A; Hofmann, Urs A T; Christen, Patrik; Favre, Jean M; Ferguson, Stephen J; van Lenthe, G Harry
2018-03-01
Secure implant fixation is challenging in osteoporotic bone. Due to the high variability in inter- and intra-patient bone quality, ex vivo mechanical testing of implants in bone is very material- and time-consuming. Alternatively, in silico models could substantially reduce costs and speed up the design of novel implants if they had the capability to capture the intricate bone microstructure. Therefore, the aim of this study was to validate a micro-finite element model of a multi-screw fracture fixation system. Eight human cadaveric humerii were scanned using micro-CT and mechanically tested to quantify bone stiffness. Osteotomy and fracture fixation were performed, followed by mechanical testing to quantify displacements at 12 different locations on the instrumented bone. For each experimental case, a micro-finite element model was created. From the micro-finite element analyses of the intact model, the patient-specific bone tissue modulus was determined such that the simulated apparent stiffness matched the measured stiffness of the intact bone. Similarly, the tissue modulus of a small damage region around each screw was determined for the instrumented bone. For validation, all in silico models were rerun using averaged material properties, resulting in an average coefficient of determination of 0.89 ± 0.04 with a slope of 0.93 ± 0.19 and a mean absolute error of 43 ± 10 μm when correlating in silico marker displacements with the ex vivo test. In conclusion, we validated a patient-specific computer model of an entire organ bone-implant system at the tissue-level at high resolution with excellent overall accuracy. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:954-962, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Verbruggen, Stefaan W; Nowlan, Niamh C
2017-04-01
The human pelvis has evolved over time into a remarkable structure, optimised into an intricate architecture that transfers the entire load of the upper body into the lower limbs, while also facilitating bipedal movement. The pelvic girdle is composed of two hip bones, os coxae, themselves each formed from the gradual fusion of the ischium, ilium and pubis bones. Unlike the development of the classical long bones, a complex timeline of events must occur in order for the pelvis to arise from the embryonic limb buds. An initial blastemal structure forms from the mesenchyme, with chondrification of this mass leading to the first recognisable elements of the pelvis. Primary ossification centres initiate in utero, followed post-natally by secondary ossification at a range of locations, with these processes not complete until adulthood. This cascade of events can vary between individuals, with recent evidence suggesting that fetal activity can affect the normal development of the pelvis. This review surveys the current literature on the ontogeny of the human pelvis. Anat Rec, 300:643-652, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
2018-02-01
Dissection 2 primary experimental loading cases Tissue-Level Characterization Quasi -Static Bending (Hueur et al., 2006) High-Rate Combined...Yang Hybrid III Crash-Dummy Lower Ext. under High Speed Vertical Loading: A Combined Experimental and Computational Study Wayne State 14:05...25 Tusit Weerasooriya Mechanical Response of Human and Animal Bones: Overview of ARL Experimental Research ARL 11:50 Wayne Chen
Grimm, Wolf Dieter; Dannan, Aous; Giesenhagen, Bernd; Schau, Ingmar; Varga, Gabor; Vukovic, Mark Alexander; Sirak, Sergey Vladimirovich
2014-01-01
The management of facial defects has rapidly changed in the last decade. Functional and esthetic requirements have steadily increased along with the refinements of surgery. In the case of advanced atrophy or jaw defects, extensive horizontal and vertical bone augmentation is often unavoidable to enable patients to be fitted with implants. Loss of vertical alveolar bone height is the most common cause for a non primary stability of dental implants in adults. At present, there is no ideal therapeutic approach to cure loss of vertical alveolar bone height and achieve optimal pre-implantological bone regeneration before dental implant placement. Recently, it has been found that specific populations of stem cells and/or progenitor cells could be isolated from different dental resources, namely the dental follicle, the dental pulp and the periodontal ligament. Our research group has cultured palatal-derived stem cells (paldSCs) as dentospheres and further differentiated into various cells of the neuronal and osteogenic lineage, thereby demonstrating their stem cell state. In this publication will be shown whether paldSCs could be differentiated into the osteogenic lineage and, if so, whether these cells are able to regenerate alveolar bone tissue in vivo in an athymic rat model. Furthermore, using these data we have started a proof of principle clinical- and histological controlled study using stem cell-rich palatal tissues for improving the vertical alveolar bone augmentation in critical size defects. The initial results of the study demonstrate the feasibility of using stem cell-mediated tissue engineering to treat alveolar bone defects in humans. PMID:24921024
Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan
2015-09-01
Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. © 2015 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial Licence, which permits use, distribution and reproduction in any medium, provided the Contribution is properly cited and is not used for commercial purpose.
NASA Astrophysics Data System (ADS)
Mihailescu, Ion N.; Ristoscu, Carmen; Bigi, Adriana; Mayer, Isaac
Calcium phosphates (CaPs) are alternative substitutes for human bones and so primary candidates for the manufacture of medical implants. Unfortunately, they do not withstand stress in bulk. To overcome this obstacle, a solution was developed to cover metallic implants with functional biomimetic layers.
Primary sacral hydatid cyst. A case report.
Joshi, Nayana; Hernandez-Martinez, Alejandro; Seijas-Vazquez, Roberto
2007-10-01
This case report highlights an unusual osseous spinal presentation of a well described disease, hydatidosis. A 59-year-old woman presented with increasing back pain and bilateral radiculopathy. Examination disclosed symptoms of spinal stenosis and urinary incontinence. Radiographs showed an expansive lytic lesion affecting the pelvic bones with destruction of the bone cortex. Laboratory analyses were performed and the patient underwent CT and MRI studies. Serology for Echinococcus was positive. When assessing sciatica, low back pain or lower limb weakness the pelvic cavity should be examined for hidden disease that might explain the neurological symptoms. Hydatid disease of bone should be considered in the differential diagnosis of any bone mass discovered in the human body. Diagnosis was delayed in this case because the pelvic cavity was not studied when radiculopathy symptoms started and there was no coexisting visceral involvement.
Das, Sakti Prasad; Ganesh, Shankar; Pradhan, Sudhakar; Singh, Deepak; Mohanty, Ram Narayan
2014-09-01
Despite the popularity and an increased use of bone morphogenetic protein to improve bone healing in patients with congenital pseudoarthrosis of the tibia (CPT), no previous study has compared its efficacy against any other procedure. We randomised 20 consecutive patients (mean age 4.1 years) with CPT (Crawford type IV) associated with neurofibromatosis type 1(NF1) and no previous history of surgery into two groups. Group 1 received recombinant human bone morphogenetic protein-7 (rhBMP-7) along with intramedullary Kirschner (K)-wire fixation and autologous bone grafting; group 2 received only K wire and grafting. Outcome measures were time to achieve union, Johnston grade, tibial length and the American Orthopaedic Foot and Ankle Society (AOFAS) score, which were evaluated preoperatively and at five year follow-up. Study results showed that patients in group 1 achieved primary bone union at a mean of 14.5 months [standard error (SE) 5.2], whereas group 2 took a mean of 17.11 months (SE 5.0). However, the log-rank test showed no difference in healing times between groups at all time points (P = 0.636). There was a statistically significant pre- to post operative improvement (P < 0.05) within groups for the other outcome measures. In a five year follow-up, these results suggest that rh-BMP-7 and autologous bone grafting is no better than autologous grafting alone.
Evers, Julia; Lakemeier, Martin; Wähnert, Dirk; Schulze, Martin; Richter, Martinus; Raschke, Michael J; Ochman, Sabine
2017-05-01
Although retrograde intramedullary nails for tibiotalocalcaneal arthrodesis (TTCA) are an established fixation method, few studies have evaluated the stability of the available nail systems. The purpose of this study was to compare biomechanically the primary stability of 2 nail-systems, A3 (Small Bone Innovations) and HAN (Synthes), in human cadavers and analyze the exact point of instability in TTCA by means of optical measurement. In 6 pairs of lower legs (n = 12) of fresh-frozen human cadavers with osteoporotic bone structure, bone mineral density (BMD) was determined. Pairwise randomized implantation of either an HAN or A3 nail was executed. Performance and stability were measured by quasi-static tests using 3D motion tracking (NDI Optotrak-Certus) followed by cyclic loading tests during dorsi- and plantarflexion. 3D optical analysis in quasi-static tests showed a significantly lower degree of movement for the HAN nail in rotational and dorsi-/plantarflexion, especially in the subtalar joint. Cyclic loading tests were consistent with quasi-static tests. The A3 nail offered lower stability during axial torsion in the ankle and subtalar joints and during plantar- and dorsiflexion in the subtalar joint in osteoporotic bones. This study was the first to examine the primary stability of different arthrodesis nails in TTCA and their bony parts with a 3D motion analysis. The better stability of the locking-only HAN nail in this osteoporotic test setup could lead to more favorable results in comparison to the A3 nail in clinical use.
Maggiano, Isabel S; Maggiano, Corey M; Tiesler, Vera G; Chi-Keb, Julio R; Stout, Sam D
2015-10-01
This study quantifies regional histomorphological variation along the human humeral and femoral diaphysis in order to gain information on diaphyseal growth and modeling drift patterns. Three thin sections at 40, 50, and 60% bone length were prepared from a modern Mexican skeletal sample with known age and sex to give a longitudinal perspective on the drifting cortex (12 adults and juveniles total, 7 male and 5 female). Point-count techniques were applied across eight cross-sectional regions of interest using the starburst sampling pattern to quantify percent periosteal and endosteal primary lamellar bone at each diaphyseal level. The results of this study show a posterio-medial drift pattern in the humerus with a posterior rotational trend along the diaphysis. In the femur, we observed a consistent lateral to anteriolateral drift and an increase in primary lamellar bone area of both, periosteal and endosteal origin, towards the distal part of the diaphysis. These observations characterize drifting diaphyses in greater detail, raising important questions about how to resolve microscopic and macroscopic cross-sectional analysis towards a more complete understanding of bone growth and mechanical adaptation. Accounting for modeling drift has the potential to positively impact age and physical activity estimation, and explain some of the significant regional variation in bone histomorphology seen within (and between) bone cross-sections due to differing ages of tissue formation. More study is necessary, however, to discern between possible drift scenarios and characterize populational variation. © 2015 Wiley Periodicals, Inc.
Noninvasive markers of bone metabolism in the rhesus monkey: normal effects of age and gender
NASA Technical Reports Server (NTRS)
Cahoon, S.; Boden, S. D.; Gould, K. G.; Vailas, A. C.
1996-01-01
Measurement of bone turnover in conditions such as osteoporosis has been limited by the need for invasive iliac bone biopsy to reliably determine parameters of bone metabolism. Recent advances in the area of serum and urinary markers of bone metabolism have raised the possibility for noninvasive measurements; however, little nonhuman primate data exist for these parameters. The purpose of this experiment was to define the normal range and variability of several of the newer noninvasive bone markers which are currently under investigation in humans. The primary intent was to determine age and gender variability, as well as provide some normative data for future experiments in nonhuman primates. Twenty-four rhesus macaques were divided into equal groups of male and female according to the following age groupings: 3 years, 5-10 years, 15-20 years, and > 25 years. Urine was collected three times daily for a four-day period and measured for several markers of bone turnoverm including pyridinoline (PYD), deoxypyrodinoline (DPD), hydroxyproline, and creatinine. Bone mineral density measurements of the lumbar spine were performed at the beginning and end of the study period. Serum was also obtained at the time of bone densitometry for measurement of osteocalcin levels by radioimmunoassay. There were no significant differences in bone mineral density, urine PYD, or urine DPD based on gender. Bone density was lowest in the youngest animals, peaked in the 15-20-year group, but again decreased in the oldest animals. The osteocalcin, PYD, and DPD levels followed an inversely related pattern to bone density. The most important result was the relative age insensitivity of the ratio of PYD:DPD in monkeys up to age 20 years. Since bone density changes take months or years to become measurable and iliac biopsies are invasive, the PYD/DPD marker ratio may have important implications for rapid noninvasive measurement of the effects of potential treatments for osteoporosis in the non-human primate model.
Caracappa, Peter F.; Chao, T. C. Ephraim; Xu, X. George
2010-01-01
Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body. PMID:19430219
Caracappa, Peter F; Chao, T C Ephraim; Xu, X George
2009-06-01
Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body.
Di Stefano, Danilo Alessio; Perrotti, Vittoria; Greco, Gian Battista; Cappucci, Claudia; Arosio, Paolo; Piattelli, Adriano; Iezzi, Giovanna
2018-06-01
Implant site preparation may be adjusted to achieve the maximum possible primary stability. The aim of this investigation was to study the relation among bone-to-implant contact at insertion, bone density, and implant primary stability intra-operatively measured by a torque-measuring implant motor, when implant sites were undersized or tapped. Undersized (n=14), standard (n=13), and tapped (n=13) implant sites were prepared on 9 segments of bovine ribs. After measuring bone density using the implant motor, 40 implants were placed, and their primary stability assessed by measuring the integral of the torque-depth insertion curve. Bovine ribs were then processed histologically, the bone-to-implant contact measured and statistically correlated to bone density and the integral. Bone-to-implant contact and the integral of the torque-depth curve were significantly greater for undersized sites than tapped sites. Moreover, a correlation between bone to implant contact, the integral and bone density was found under all preparation conditions. The slope of the bone-to-implant/density and integral/density lines was significantly greater for undersized sites, while those corresponding to standard prepared and tapped sites did not differ significantly. The integral of the torque-depth curve provided reliable information about bone-to-implant contact and primary implant stability even in tapped or undersized sites. The linear relations found among the parameters suggests a connection between extent and modality of undersizing and the corresponding increase of the integral and, consequently, of primary stability. These results might help the physician determine the extent of undersizing needed to achieve the proper implant primary stability, according to the planned loading protocol.
Rafii, Shahin; Jaspers, Janneke E.; White, Ian A.; Hooper, Andrea T.; Doevendans, Pieter A.; Verhaar, Marianne C.
2013-01-01
Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients. PMID:23555959
Westerweel, Peter E; Teraa, Martin; Rafii, Shahin; Jaspers, Janneke E; White, Ian A; Hooper, Andrea T; Doevendans, Pieter A; Verhaar, Marianne C
2013-01-01
Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+)Flk-1(+) EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+) hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.
The orthotropic elastic properties of fibrolamellar bone tissue in juvenile white-tailed deer femora
Barrera, John W.; Le Cabec, Adeline; Barak, Meir M.
2017-01-01
Fibrolamellar bone is a transient primary bone tissue found in fast growing juvenile mammals, several species of birds and large dinosaurs. Despite the fact that this bone tissue is prevalent in many species, the vast majority of bone structural and mechanical studies are focused on humans osteonal bone tissue. Previous research revealed the orthotropic structure of fibrolamellar bone, but only a handful of experiments investigated its elastic properties, mostly in the axial direction. Here we have performed for the first time an extensive biomechanical study to determine the elastic properties of fibrolamellar bone in all three orthogonal directions. We have tested 30 fibrolamellar bone cubes (2×2×2mm) from the femora of five juvenile white-tailed deer (Odocoileus virginianus) in compression. Each bone cube was compressed iteratively, within its elastic region, in the axial, transverse and radial directions and bone stiffness (Young’s modulus) was recorded. Next, the cubes were kept for seven days at 4°C and then compressed again to test whether bone stiffness had significantly deteriorated. Our results demonstrated that bone tissue in the deer femora has orthotropic elastic behavior where the highest stiffness was in the axial direction followed by the transverse and the radial directions respectively (21.6±3.3 GPa, 17.6±3.0 GPa and 14.9±1.9 GPa respectively). Our results also revealed a slight non-significant decrease in bone stiffness after seven days. Finally, our sample size allowed us to establish that population variance was much bigger in the axial direction compared to the radial direction which potentially reflects bone adaptation to the large diversity in loading activity between individuals in the loading direction (axial) compared to the normal (radial) direction. This study confirms that the well mechanically-studied human transverse-isotropic osteonal bone is just one possible functional adaptation of bone tissue and that other vertebrate species use an orthotropic bone tissue structure which is more suitable for their mechanical requirements. PMID:27231028
USDA-ARS?s Scientific Manuscript database
Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. Two models were used...
Macrodamage Accumulation Model for a Human Femur
2017-01-01
The objective of this study was to more fully understand the mechanical behavior of bone tissue that is important to find an alternative material to be used as an implant and to develop an accurate model to predict the fracture of the bone. Predicting and preventing bone failure is an important area in orthopaedics. In this paper, the macrodamage accumulation models in the bone tissue have been investigated. Phenomenological models for bone damage have been discussed in detail. In addition, 3D finite element model of the femur prepared from imaging data with both cortical and trabecular structures is delineated using MIMICS and ANSYS® and simulated as a composite structure. The damage accumulation occurring during cyclic loading was analyzed for fatigue scenario. We found that the damage accumulates sooner in the multiaxial than in the uniaxial loading condition for the same number of cycles, and the failure starts in the cortical bone. The damage accumulation behavior seems to follow a three-stage growth: a primary phase, a secondary phase of damage growth marked by linear damage growth, and a tertiary phase that leads to failure. Finally, the stiffness of the composite bone comprising the cortical and trabecular bone was significantly different as expected. PMID:28951659
Tightening force and torque of nonlocking screws in a reverse shoulder prosthesis.
Terrier, A; Kochbeck, S H; Merlini, F; Gortchacow, M; Pioletti, D P; Farron, A
2010-07-01
Reversed shoulder arthroplasty is an accepted treatment for glenohumeral arthritis associated to rotator cuff deficiency. For most reversed shoulder prostheses, the baseplate of the glenoid component is uncemented and its primary stability is provided by a central peg and peripheral screws. Because of the importance of the primary stability for a good osteo-integration of the baseplate, the optimal fixation of the screws is crucial. In particular, the amplitude of the tightening force of the nonlocking screws is clearly associated to this stability. Since this force is unknown, it is currently not accounted for in experimental or numerical analyses. Thus, the primary goal of this work is to measure this tightening force experimentally. In addition, the tightening torque was also measured, to estimate an optimal surgical value. An experimental setup with an instrumented baseplate was developed to measure simultaneously the tightening force, tightening torque and screwing angle, of the nonlocking screws of the Aquealis reversed prosthesis. In addition, the amount of bone volume around each screw was measured with a micro-CT. Measurements were performed on 6 human cadaveric scapulae. A statistically correlated relationship (p<0.05, R=0.83) was obtained between the maximal tightening force and the bone volume. The relationship between the tightening torque and the bone volume was not statistically significant. The experimental relationship presented in this paper can be used in numerical analyses to improve the baseplate fixation in the glenoid bone. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Atrophic Mandible Fractures: Are Bone Grafts Necessary? An Update.
Castro-Núñez, Jaime; Cunningham, Larry L; Van Sickels, Joseph E
2017-11-01
The management of atrophic mandibular fractures poses a challenge because of anatomic variations and medical comorbidities associated with elderly patients. The purpose of this article is to review and update the literature regarding the management of atrophic mandible fractures using load-bearing reconstruction plates placed without bone grafts. We performed a review of the English-language literature looking for atrophic mandibular fractures with or without continuity defects and reconstruction without bone grafts. Included are 2 new patients from our institution who presented with fractures of their atrophic mandibles and had continuity defects and infections. Both patients underwent reconstruction with a combination of a reconstruction plate, recombinant human bone morphogenetic protein 2, and tricalcium phosphate. This study was approved as an "exempt study" by the Institutional Review Board at the University of Kentucky. This investigation observed the Declaration of Helsinki on medical protocol and ethics. Currently, the standard of care to manage atrophic mandibular fractures with or without a continuity defect is a combination of a reconstruction plate plus autogenous bone graft. However, there is a need for an alternative option for patients with substantial comorbidities. Bone morphogenetic proteins, with or without additional substances, appear to be a choice. In our experience, successful healing occurred in patients with a combination of a reconstruction plate, recombinant human bone morphogenetic protein 2, and tricalcium phosphate. Whereas primary reconstruction of atrophic mandibular fractures with reconstruction plates supplemented with autogenous bone graft is the standard of care, in selected cases in which multiple comorbidities may influence local and/or systemic outcomes, bone morphogenetic proteins and tricalcium phosphate can be used as a predictable alternative to autogenous grafts. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Reppe, Sjur; Datta, Harish K; Gautvik, Kaare M
2017-08-01
The skeleton is a metabolically active organ throughout life where specific bone cell activity and paracrine/endocrine factors regulate its morphogenesis and remodeling. In recent years, an increasing number of reports have used multi-omics technologies to characterize subsets of bone biological molecular networks. The skeleton is affected by primary and secondary disease, lifestyle and many drugs. Therefore, to obtain relevant and reliable data from well characterized patient and control cohorts are vital. Here we provide a brief overview of omics studies performed on human bone, of which our own studies performed on trans-iliacal bone biopsies from postmenopausal women with osteoporosis (OP) and healthy controls are among the first and largest. Most other studies have been performed on smaller groups of patients, undergoing hip replacement for osteoarthritis (OA) or fracture, and without healthy controls. The major findings emerging from the combined studies are: 1. Unstressed and stressed bone show profoundly different gene expression reflecting differences in bone turnover and remodeling and 2. Omics analyses comparing healthy/OP and control/OA cohorts reveal characteristic changes in transcriptomics, epigenomics (DNA methylation), proteomics and metabolomics. These studies, together with genome-wide association studies, in vitro observations and transgenic animal models have identified a number of genes and gene products that act via Wnt and other signaling systems and are highly associated to bone density and fracture. Future challenge is to understand the functional interactions between bone-related molecular networks and their significance in OP and OA pathogenesis, and also how the genomic architecture is affected in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Bone as a Possible Target of Chemical Toxicity of Natural Uranium in Drinking Water
Kurttio, Päivi; Komulainen, Hannu; Leino, Aila; Salonen, Laina; Auvinen, Anssi; Saha, Heikki
2005-01-01
Uranium accumulates in bone, affects bone metabolism in laboratory animals, and when ingested in drinking water increases urinary excretion of calcium and phosphate, important components in the bone structure. However, little is known about bone effects of ingested natural uranium in humans. We studied 146 men and 142 women 26–83 years of age who for an average of 13 years had used drinking water originating from wells drilled in bedrock, in areas with naturally high uranium content. Biochemical indicators of bone formation were serum osteocalcin and amino-terminal propeptide of type I procollagen, and a marker for bone resorption was serum type I collagen carboxy-terminal telopeptide (CTx). The primary measure of uranium exposure was uranium concentration in drinking water, with additional information on uranium intake and uranium concentration in urine. The data were analyzed separately for men and women with robust regression (which suppresses contributions of potential influential observations) models with adjustment for age, smoking, and estrogen use. The median uranium concentration in drinking water was 27 μg/L (interquartile range, 6–116 μg/L). The median of daily uranium intake was 36 μg (7–207 μg) and of cumulative intake 0.12 g (0.02–0.66 g). There was some suggestion that elevation of CTx (p = 0.05) as well as osteocalcin (p = 0.19) could be associated with increased uranium exposure (uranium in water and intakes) in men, but no similar relationship was found in women. Accordingly, bone may be a target of chemical toxicity of uranium in humans, and more detailed evaluation of bone effects of natural uranium is warranted. PMID:15626650
Hoefele, Julia; Rüssmann, Despina; Klein, Barbara; Weber, Lutz T.; Führer, Monika
2008-01-01
BK virus (BKV) is a human polyomavirus. The primary infection occurs typically without specific signs or symptoms. Almost 80% of adults are seropositive. Clinically relevant infections are usually limited to individuals who are immunosuppressed. After primary infection, BKV remains latent in the kidneys and can be reactivated in the setting of immunosuppression. BKV is associated with tubulointerstitial nephritis and ureteric stenosis in renal transplant recipients. Furthermore, BKV-induced haemorrhagic cystitis (HC) is a severe complication of bone marrow transplantation (BMT) in children and adults. A combination of HC and tubulointerstitial nephritis in a patient has not been reported so far. We report on an 11-year-old boy with acute myeloid leukaemia undergoing BMT. BKV infection was reactivated during post-transplant immunosuppressive therapy causing HC associated with tubulointerstitial nephritis. PMID:25983928
Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice
Kaifu, Tomonori; Nakahara, Jin; Inui, Masanori; Mishima, Kenichi; Momiyama, Toshihiko; Kaji, Mitsuji; Sugahara, Akiko; Koito, Hisami; Ujike-Asai, Azusa; Nakamura, Akira; Kanazawa, Kiyoshi; Tan-Takeuchi, Kyoko; Iwasaki, Katsunori; Yokoyama, Wayne M.; Kudo, Akira; Fujiwara, Michihiro; Asou, Hiroaki; Takai, Toshiyuki
2003-01-01
Deletions in the DAP12 gene in humans result in Nasu-Hakola disease, characterized by a combination of bone fractures and psychotic symptoms similar to schizophrenia, rapidly progressing to presenile dementia. However, it is not known why these disorders develop upon deficiency in DAP12, an immunoreceptor signal activator protein initially identified in the immune system. Here we show that DAP12-deficient (DAP12–/–) mice develop an increased bone mass (osteopetrosis) and a reduction of myelin (hypomyelinosis) accentuated in the thalamus. In vitro osteoclast induction from DAP12–/– bone marrow cells yielded immature cells with attenuated bone resorption activity. Moreover, immature oligodendrocytes were arrested in the vicinity of the thalamus, suggesting that the primary defects in DAP12–/– mice are the developmental arrest of osteoclasts and oligodendrocytes. In addition, the mutant mice also showed synaptic degeneration, impaired prepulse inhibition, which is commonly observed in several neuropsychiatric diseases in humans including schizophrenia, and aberrant electrophysiological profiles in the thalami. These results provide a molecular basis for a unique combination of skeletal and psychotic characteristics of Nasu-Hakola disease as well as for schizophrenia and presenile dementia. PMID:12569157
Human water, sodium, and calcium regulation during space flight and exercise
NASA Astrophysics Data System (ADS)
Doty, S. E.; Seagrave, R. C.
When one is exposed to microgravity, fluid which is normally pooled in the lower extremities is redistributed headward and weight bearing bones begin to demineralize due to reduced mechanical stresses. The kidney, which is the primary regulator of body fluid volume and composition, responds to the fluid shift and bone demineralization by increasing the urinary output of water, sodium, and calcium. This research involves developing a mathematical description of how water and electrolytes are internally redistributed and exchanged with the environment during space flight. This model consequently involves kidney function and the associated endocrine system. The model agrees well with actual data, including that a low sodium diet can prevent bone demineralization. Therefore, assumptions made to develop the model are most likely valid. Additionally, various levels of activity are also considered in the model since exercise may help to eliminate some of the undesired effects of space flight such as muscle atrophy and bone demineralization.
Human water, sodium, and calcium regulation during space flight and exercise
NASA Astrophysics Data System (ADS)
Doty, S. E.; Seagrave, R. C.
2000-05-01
When one is exposed to microgravity, fluid which is normally pooled in the lower extremities is redistributed headward and weight bearing bones begin to demineralize due to reduced mechanical stresses. The kidney, which is the primary regulator of body fluid volume and composition, responds to the fluid shift and bone demineralization by increasing the urinary output of water, sodium, and calcium. This research involves developing a mathematical description of how water and electrolytes are internally redistributed and exchanged with the environment during space flight. This model consequently involves kidney function and the associated endocrine system. The model agrees well with actual data, including that a low sodium diet can prevent bone demineralization. Therefore, assumptions made to develop the model are most likely valid. Additionally, various levels of activity are also considered in the model since exercise may help to eliminate some of the undesired effects of space flight such as muscle atrophy and bone demineralization.
Kusaka, Soichiro; Uno, Kevin T; Nakano, Takanori; Nakatsukasa, Masato; Cerling, Thure E
2015-08-17
Archaeological remains strongly suggest that the Holocene Japanese hunter-gatherers, the Jomon people, utilized terrestrial plants as their primary food source. However, carbon and nitrogen isotope analysis of bone collagen indicates that they primarily exploited marine resources. We hypothesize that this inconsistency stems from the route of protein synthesis and the different proportions of protein-derived carbon in tooth enamel versus bone collagen. Carbon isotope ratios from bone collagen reflect that of dietary protein and may provide a biased signal of diet, whereas isotope ratios from tooth enamel reflect the integrated diet from all macronutrients (carbohydrates, lipids, and proteins). In order to evaluate the differences in inferred diet between the archaeological evidence and bone collagen isotope data, this study investigated carbon isotopes in Jomon tooth enamel from four coastal sites of the Middle to Late-Final Jomon period (5,000-2,300 years BP). Carbon isotope ratios of human teeth are as depleted as coeval terrestrial mammals, suggesting that C 3 plants and terrestrial mammals were major dietary resources for the Jomon people. Dietary dependence on marine resources calculated from enamel was significantly lower than that calculated from bone collagen. The discrepancy in isotopic ratios between enamel and collagen and the nitrogen isotope ratio in collagen shows a negative correlation on individual and population levels, suggesting diets with variable proportions of terrestrial and marine resources. This study highlights the usefulness of coupling tooth enamel and bone collagen in carbon isotopic studies to reconstruct prehistoric human diet. Am J Phys Anthropol, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Bone metastases of unknown origin: epidemiology and principles of management.
Piccioli, Andrea; Maccauro, Giulio; Spinelli, Maria Silvia; Biagini, Roberto; Rossi, Barbara
2015-06-01
Metastases are the most common malignancies involving bone; breast, prostate, lung and thyroid are the main sites of primary cancer. However, up to 30 % of patients present with bone metastases of unknown origin, where the site of the primary neoplasm cannot be identified at the time of diagnosis despite a thorough history, physical examination, appropriate laboratory testing and modern imaging technology (CT, MRI, PET). Sometimes only extensive histopathological investigations on bone specimens from biopsy can suggest the primary malignancy. At other times, a bone lesion can have such a highly undifferentiated histological appearance that a precise pathological classification on routine hematoxylin-eosin-stained section is not possible. The authors reviewed the relevant literature in an attempt to investigate the epidemiology of the histological primaries finally identified in patients with bone metastases from occult cancer, and a strategy of management and treatment of bone metastases from occult carcinomas is suggested. Lung, liver, pancreas and gastrointestinal tract are common sites for primary occult tumors. Adenocarcinoma is the main histological type, accounting for 70 % of all cases, while undifferentiated cancer accounts for 20 %. Over the past 30 years, lung cancer is the main causative occult primary for bone metastases and has a poor prognosis with an average survival of 4-8 months. Most relevant literature focuses on the need for standardized diagnostic workup, as surgery for bone lesions should be aggressive only when they are solitary and/or the occult primaries have a good prognosis; in these cases, identification of the primary tumor may be important and warrants special diagnostic efforts. However, in most cases, the primary site remains unknown, even after autopsy. Thus, orthopedic surgery has a mainly palliative role in preventing or stabilizing pathological fractures, relieving pain and facilitating the care of the patient in an attempt to provide the most appropriate therapy for the primary tumor as soon as possible. 5.
Paradigm Shift in Thyroid Hormone Mechanism of Action | Center for Cancer Research
Thyroid hormone (TH) is one of the primary endocrine regulators of human metabolism and homeostasis. Acting through three forms of the thyroid hormone receptor (THR; alpha-1, beta-1, and beta-2), TH regulates target gene expression in nearly every cell in the body, modulating fundamental processes, such as basal metabolic rate, long bone growth, and neural maturation. TH is also essential for proper development and differentiation of all cells of the human body.
Karjalainen, Katja; Jaalouk, Diana E; Bueso-Ramos, Carlos; Bover, Laura; Sun, Yan; Kuniyasu, Akihiko; Driessen, Wouter H P; Cardó-Vila, Marina; Rietz, Cecilia; Zurita, Amado J; O'Brien, Susan; Kantarjian, Hagop M; Cortes, Jorge E; Calin, George A; Koivunen, Erkki; Arap, Wadih; Pasqualini, Renata
2015-07-01
The IL11 receptor (IL11R) is an established molecular target in primary tumors of bone, such as osteosarcoma, and in secondary bone metastases from solid tumors, such as prostate cancer. However, its potential role in management of hematopoietic malignancies has not yet been determined. Here, we evaluated the IL11R as a candidate therapeutic target in human leukemia and lymphoma. First, we show that the IL11R protein is expressed in a variety of human leukemia- and lymphoma-derived cell lines and in a large panel of bone marrow samples from leukemia and lymphoma patients, whereas expression is absent from nonmalignant control bone marrow. Moreover, a targeted peptidomimetic prototype (termed BMTP-11), specifically bound to leukemia and lymphoma cell membranes, induced ligand-receptor internalization mediated by the IL11R, and resulted in a specific dose-dependent cell death induction in these cells. Finally, a pilot drug lead-optimization program yielded a new myristoylated BMTP-11 analogue with an apparent improved antileukemia cell profile. These results indicate (i) that the IL11R is a suitable cell surface target for ligand-directed applications in human leukemia and lymphoma and (ii) that BMTP-11 and its derivatives have translational potential against this group of malignant diseases. ©2015 American Association for Cancer Research.
Karjalainen, Katja; Jaalouk, Diana E.; Bueso-Ramos, Carlos; Bover, Laura; Sun, Yan; Kuniyasu, Akihiko; Driessen, Wouter H. P.; Cardó-Vila, Marina; Rietz, Cecilia; Zurita, Amado J.; O’Brien, Susan; Kantarjian, Hagop M.; Cortes, Jorge E.; Calin, George A.; Koivunen, Erkki; Arap, Wadih; Pasqualini, Renata
2015-01-01
Purpose The interleukin-11 receptor (IL-11R) is an established molecular target in primary tumors of bone, such as osteosarcoma, and in secondary bone metastases from solid tumors such as prostate cancer. However, its potential role in management of hematopoietic malignancies has not yet been determined. Here we evaluated the IL-11R as a candidate therapeutic target in human leukemia and lymphoma. Experimental Design and Results First, we show that the IL-11R protein is expressed in a variety of human leukemia- and lymphoma derived cell lines and in a large panel of bone marrow samples from leukemia and lymphoma patients, while expression is absent from non-malignant control bone marrow. Moreover, a targeted peptidomimetic prototype (termed BMTP-11) specifically bound to leukemia and lymphoma cell membranes, induced ligand-receptor internalization mediated by the IL-11R, and resulted in a specific dose-dependent cell death induction in these cells. Finally, a pilot drug lead-optimization program yielded a new myristoylated BMTP-11 analog with an apparent improved anti-leukemia cell profile. Conclusion These results indicate (i) that the IL-11R is a suitable cell surface target for ligand-directed applications in human leukemia and lymphoma and (ii) that BMTP-11 and its derivatives have translational potential against this group of malignant diseases. PMID:25779950
Liu, X. Sherry; Huang, Angela H.; Zhang, X. Henry; Sajda, Paul; Ji, Baohua; Guo, X. Edward
2008-01-01
A three dimensional (3D) computational simulation of dynamic process of trabecular bone remodeling was developed with all the parameters derived from physiological and clinical data. Contributions of the microstructural bone formation deficits: trabecular plate perforations, trabecular rod breakages, and isolated bone fragments, to the rapid bone loss and disruption of trabecular microarchitecture during menopause were studied. Eighteen human trabecular bone samples from femoral neck (FN) and spine were scanned using a micro computed tomography (μCT) system. Bone resorption and formation were simulated as a computational cycle corresponding to 40-day resorption/160-day formation. Resorption cavities were randomly created over the bone surface according to the activation frequency, which was strictly based on clinical data. Every resorption cavity was refilled during formation unless it caused trabecular plate perforation, trabecular rod breakage or isolated fragments. A 20-year-period starting 5 years before and ending 15 years after menopause was simulated for each specimen. Elastic moduli, standard and individual trabeculae segmentation (ITS)-based morphological parameters were evaluated for each simulated 3D image. For both spine and FN groups, the time courses of predicted bone loss pattern by microstructural bone formation deficits were fairly consistent with the clinical measurements. The percentage of bone loss due to trabecular plate perforation, trabecular rod breakage, and isolated bone fragments were 73.2%, 18.9% and 7.9% at the simulated 15 years after menopause. The ITS-based plate fraction (pBV/BV), mean plate surface area (pTb.S), plate number density (pTb.N), and mean rod thickness (rTb.Th) decreased while rod fraction (rBV/BV) and rod number density (rTb.N) increased after the simulated menopause. The dynamic bone remodeling simulation based on microstructural bone formation deficits predicted the time course of menopausal bone loss pattern of spine and FN. Microstructural plate perforation could be the primary cause of menopausal trabecular bone loss. The combined effect of trabeculae perforation, breakage, and isolated fragments resulted in fewer and smaller trabecular plates and more but thinner trabecular rods. PMID:18550463
Jun, Sang Ho; Park, Chang-Joo; Hwang, Suk-Hyun; Lee, Youn Ki; Zhou, Cong; Jang, Hyon-Seok; Ryu, Jae-Jun
2018-12-01
This study was to evaluate the effect of bone graft procedure on the primary stability of implants installed in fresh sockets and assess the vertical alteration of peri-implant bone radiographically. Twenty-three implants were inserted in 18 patients immediately after tooth extraction. The horizontal gap between the implant and bony walls of the extraction socket was grafted with xenografts. The implant stability before and after graft procedure was measured by Osstell Mentor as implant stability quotient before bone graft (ISQ bbg) and implant stability quotient after bone graft (ISQ abg). Peri-apical radiographs were taken to measure peri-implant bone change immediately after implant surgery and 12 months after implant placement. Data were analyzed by independent t test; the relationships between stability parameters (insertion torque value (ITV), ISQ abg, and ISQ bbg) and peri-implant bone changes were analyzed according to Pearson correlation coefficients. The increase of ISQ in low primary stability group (LPSG) was 6.87 ± 3.62, which was significantly higher than the increase in high primary stability group (HPSG). A significant correlation between ITV and ISQ bbg ( R = 0.606, P = 0.002) was found; however, age and peri-implant bone change were not found significantly related to implant stability parameters. It was presented that there were no significant peri-implant bone changes at 1 year after bone graft surgery. Bone graft procedure is beneficial for increasing the primary stability of immediately placed implants, especially when the ISQ of implants is below 65 and that bone grafts have some effects on peri-implant bone maintenance.
Strassburg, Sandra; Nabar, Nikita; Lampert, Florian; Goerke, Sebastian M; Pfeifer, Dietmar; Finkenzeller, Günter; Stark, Gerhard B; Simunovic, Filip
2017-07-01
Vascularization is essential for bone development, fracture healing, and bone tissue engineering. We have previously described that coculture of primary human osteoblasts (hOBs) and human umbilical vein endothelial cells (HUVECs) improves differentiation of both cell types. Investigating the role of microRNAs (miRNAs) in this system, we found that miR-126 is highly upregulated in hOBs following coculturing with HUVECs. In this study we performed miR-126 gain-of-function and loss-of-function experiments in hOBs followed by microarray analysis in order to identify targets of miR-126. The transcript cluster IDs were sieved by applying cut-off criteria and by selecting transcripts which were upregulated following miR-126 downregulation and vice versa. The calmodulin regulated spectrin associated protein 1 (CAMSAP1) mRNA was confirmed to be differentially regulated by miR-126. Using the luciferase reporter assay it was demonstrated that CAMSAP1 is directly targeted by miR-126. In this study, we show that miR-126 and CAMSAP1 directly interact in hOBs. This finding has potential implications for tissue engineering applications. J. Cell. Biochem. 118: 1756-1763, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cagáňová, Veronika; Borský, Jiří; Smahel, Zbyněk; Velemínská, Jana
2014-01-01
To describe the effect of secondary alveolar bone grafting in patients with unilateral cleft lip and palate by comparison with a sample of patients who have undergone primary periosteoplasty. Cephalometric analysis of lateral x-ray films in a retrospective semilongitudinal study. Lateral x-ray films of 18 secondary alveolar bone grafting patients and 48 primary periosteoplasty patients at 10 years of age and again at 15 years of age. The treatment of secondary alveolar bone grafting patients included lip repair according to Tennison, palatoplasty including retropositioning, pharyngeal flap surgery, and secondary alveolar bone grafting. The lips of primary periosteoplasty patient were repaired using the methods of Tennison and Veau, followed by primary periosteoplasty, palatoplasty including retropositioning, and pharyngeal flap surgery. Lateral radiographs were assessed using classical morphometry. There were few significant differences at 10 years of age between the secondary alveolar bone grafting and primary periosteoplasty patients. At 15 years of age, there were several significant differences. Compared with primary periosteoplasty patients, subsequent development in patients who had undergone secondary alveolar bone grafting was characterized by a significantly better position of the upper and lower dentoalveolar components in relation to the facial plane, a higher increase in the global convexity of the soft profile, a significantly better maxillary inclination, and a more favorable development of vertical intermaxillary relationships. Craniofacial development in secondary alveolar bone grafting patients was better than that in primary periosteoplasty patients due to the more marked facial convexity, the increased prominence of the nose, and better vertical intermaxillary relationships.
Shi, Wengui; Xie, Yanfang; He, Jinpeng; Zhou, Jian; Gao, Yuhai; Wei, Wenjun; Ding, Nan; Ma, Huiping; Xian, Cory J; Chen, Keming; Wang, Jufang
2017-05-12
It is well documented that microgravity in space environment leads to bone loss in astronauts. These physiological changes have also been validated by human and animal studies and modeled in cell-based analogs. However, the underlying mechanisms are elusive. In the current study, we identified a novel phenomenon that primary cilia (key sensors and functioning organelles) of rat calvarial osteoblasts (ROBs) gradually shrank and disappeared almost completely after exposure to simulated microgravity generated by a random positioning machine (RPM). Along with the abrogation of primary cilia, the differentiation, maturation and mineralization of ROBs were inhibited. We also found that the disappearance of primary cilia was prevented by treating ROBs with cytochalasin D, but not with LiCl or dynein light chain Tctex-type 1 (Dynlt1) siRNA. The repression of the differentiation, maturation and mineralization of ROBs was effectively offset by cytochalasin D treatment in microgravity conditions. Blocking ciliogenesis using intraflagellar transport protein 88 (IFT88) siRNA knockdown inhibited the ability of cytochalasin D to counteract this reduction of osteogenesis. These results indicate that the abrogation of primary cilia may be responsible for the microgravity's inhibition on osteogenesis. Reconstruction of primary cilia may become a potential strategy against bone loss induced by microgravity.
The effect of antiresorptives on bone quality.
Recker, Robert R; Armas, Laura
2011-08-01
Currently, antiresorptive therapy in the treatment and prevention of osteoporosis includes bisphosphonates, estrogen replacement, selective estrogen receptor modulators (raloxifene), and denosumab (a human antibody that inactivates RANKL). The original paradigm driving the development of antiresorptive therapy was that inhibition of bone resorption would allow bone formation to continue and correct the defect. However, it is now clear increases in bone density account for little of the antifracture effect of these treatments. We examined the antifracture benefit of antiresorptives deriving from bone quality changes. We searched the archive of nearly 30,000 articles accumulated over more than 40 years in our research center library using a software program (Refman™). Approximately 250 publications were identified in locating the 69 cited here. The findings document antiresorptive agents are not primarily anabolic. All cause a modest increase in bone density due to a reduction in the bone remodeling space; however, the majority of their efficacy is due to suppression of the primary cause of osteoporosis, ie, excessive bone remodeling not driven by mechanical need. All of them improve some element(s) of bone quality. Antiresorptive therapy reduces risk of fracture by improving bone quality through halting removal of bone tissue and the resultant destruction of microarchitecture of bone and, perhaps to some extent, by improving the intrinsic material properties of bone tissue. Information presented here may help clinicians to improve selection of patients for antiresorptive therapy by avoiding them in cases clearly not due to excessive bone remodeling.
Yang, Jing; He, Jin; Wang, Ji; Cao, Yabing; Ling, Jianhua; Qian, Jianfei; Lu, Yong; Li, Haiyan; Zheng, Yuhuan; Lan, Yongsheng; Hong, Sungyoul; Matthews, Jairo; Starbuck, Michael W; Navone, Nora M; Orlowski, Robert Z.; Lin, Pei; Kwak, Larry W.; Yi, Qing
2012-01-01
Bone destruction is a hallmark of multiple myeloma and affects more than 80% of patients. However, current therapy is unable to completely cure and/or prevent bone lesions. Although it is accepted that myeloma cells mediate bone destruction by inhibition of osteoblasts and activation of osteoclasts, the underlying mechanism is still poorly understood. This study demonstrates that constitutive activation of p38 mitogen-activated protein kinase in myeloma cells is responsible for myeloma-induced osteolysis. Our results show that p38 is constitutively activated in most myeloma cell lines and primary myeloma cells from patients. Myeloma cells with high/detectable p38 activity, but not those with low/undetectable p38 activity, injected into SCID or SCID-hu mice caused bone destruction. Inhibition or knockdown of p38 in human myeloma reduced or prevented myeloma-induced osteolytic bone lesions without affecting tumor growth, survival, or homing to bone. Mechanistic studies showed that myeloma cell p38 activity inhibited osteoblastogenesis and bone formation and activated osteoclastogenesis and bone resorption in myeloma-bearing SCID mice. This study elucidates a novel molecular mechanism—sactivation of p38 signaling in myeloma cells—by which myeloma cells induce osteolytic bone lesions and indicates that targeting myeloma cell p38 may be a viable approach to treating or preventing myeloma bone disease. PMID:22425892
Photodynamic therapy of diseased bone
NASA Astrophysics Data System (ADS)
Bisland, Stuart K.; Yee, Albert; Siewerdsen, Jeffery; Wilson, Brian C.; Burch, Shane
2005-08-01
Objective: Photodynamic therapy (PDT) defines the oxygen-dependent reaction that occurs upon light-mediated activation of a photosensitizing compound, culminating in the generation of cytotoxic, reactive oxygen species, predominantly, singlet oxygen. We are investigating PDT treatment of diseased bone. Methods: Using a rat model of human breast cancer (MT-1)-derived bone metastasis we confirmed the efficacy of benzoporphyrin-derivative monoacid (BPD-MA)-PDT for treating metastatic lesions within vertebrae or long bones. Results: Light administration (150 J) 15 mins after BPDMA (2.5 mg/Kg, i.v.) into the lumbar (L3) vertebra of rats resulted in complete ablation of the tumour and surrounding bone marrow 48 hrs post-PDT without paralysis. Porcine vertebrae provided a model comparable to that of human for light propagation (at 150 J/cm) and PDT response (BPD-MA; 6 mg/m2, i.v.) in non-tumour vertebrae. Precise fibre placement was afforded by 3-D cone beam computed tomography. Average penetration depth of light was 0.16 +/- 0.04 cm, however, the necrotic/non-necrotic interface extended 0.6 cm out from the treatment fiber with an average incident fluence rate of 4.3 mW/cm2. Non-necrotic tissue damage was evident 2 cm out from the treatment fiber. Current studies involving BPD-MA-PDT treatment of primary osteosarcomas in the forelimbs of dogs are very promising. Magnetic resonance imaging 24 hr post treatment reveal well circumscribed margins of treatment that encompass the entire 3-4 cm lesion. Finally, we are also interested in using 5-aminolevulinic acid (ALA) mediated PDT to treat osteomyelitis. Response to therapy was monitored as changes in bioluminescence signal of staphylococcus aureus (SA)-derived biofilms grown onto 0.5 cm lengths of wire and subjected to ALA-PDT either in vitro or in vivo upon implant into the intramedullary space of rat tibia. Transcutaneous delivery of PDT (75 J/cm2) effectively eradicated SAbiofilms within bone. Conclusions: Results support the application of PDT to the treatment of primary or metastatic lesions within bone. Secondly, that ALA-PDT may be useful as a treatment for osteomyelitis. Further studies aim to optimize the parameters of delivering PDT into bone and explore imaging technologies that can be used for clinical PDT.
Dvorak, Melita M; De Joussineau, Cyrille; Carter, D Howard; Pisitkun, Trairak; Knepper, Mark A; Gamba, Gerardo; Kemp, Paul J; Riccardi, Daniela
2008-01-01
Thiazide diuretics are used, worldwide, as the first-choice drug for patients with uncomplicated hypertension. In addition to their anti-hypertensive actions, they increase bone mineral density and reduce the prevalence of fractures, indicating that thiazides may have a role in the management of postmenopausal osteoporosis. Traditionally, the bone-protective effects of thiazides have been attributed to an increase in renal calcium reabsorption, secondary to the inhibition of the sodium chloride cotransporter, NCC, expressed in the kidney distal tubule. Whether thiazides exert a direct osteoanabolic effect independently of their renal action is controversial. Here we demonstrate that freshly frozen sections of human and rat bone express NCC, principally in bone-forming cells, the osteoblasts. In primary and established culture models of osteoblasts, fetal rat calvarial (FRC) and human MG63 cells, NCC protein is virtually absent in proliferating cells while its expression is dramatically increased during differentiation. Thiazides directly stimulate the production of osteoblast markers, runt-related transcription factor 2 (runx2) and osteopontin, in the absence of a proliferative effect. Using overexpression/knockdown studies in FRC cells, we show that thiazides, but not loop diuretics, increase mineralized nodule formation acting on NCC. Overall, our study demonstrates that thiazides stimulate osteoblast differentiation and bone mineral formation independently of their renal actions. In addition to their use as part of a therapeutic treatment plan for elderly, hypertensive individuals, our discovery opens up the possibility that bone-specific drug targeting by thiazides may be developed for the prevention and treatment of osteoporosis in the patient population as a whole. PMID:17656470
Yu, Bin-Sheng; Yang, Zhan-Kun; Li, Ze-Min; Zeng, Li-Wen; Wang, Li-Bing; Lu, William Weijia
2011-08-01
An in vitro biomechanical cadaver study. To evaluate the pull-out strength after 5000 cyclic loading among 4 revision techniques for the loosened iliac screw using corticocancellous bone, longer screw, traditional cement augmentation, and boring cement augmentation. Iliac screw loosening is still a clinical problem for lumbo-iliac fusion. Although many revision techniques using corticocancellous bone, larger screw, and polymethylmethacrylate (PMMA) augmentation were applied in repairing pedicle screw loosening, their biomechanical effects on the loosened iliac screw remain undetermined. Eight fresh human cadaver pelvises with the bone mineral density values ranging from 0.83 to 0.97 g/cm were adopted in this study. After testing the primary screw of 7.5 mm diameter and 70 mm length, 4 revision techniques were sequentially established and tested on the same pelvis as follows: corticocancellous bone, longer screw with 100 mm length, traditional PMMA augmentation, and boring PMMA augmentation. The difference of the boring technique from traditional PMMA augmentation is that PMMA was injected into the screw tract through 3 boring holes of outer cortical shell without removing the screw. On an MTS machine, after 5000 cyclic compressive loading of -200∼-500 N to the screw head, axial maximum pull-out strengths of the 5 screws were measured and analyzed. The pull-out strengths of the primary screw and 4 revised screws with corticocancellous bone, longer screw and traditional and boring PMMA augmentation were 1167 N, 361 N, 854 N, 1954 N, and 1820 N, respectively. Although longer screw method obtained significantly higher pull-out strength than corticocancellous bone (P<0.05), the revised screws using these 2 techniques exhibited notably lower pull-out strength than the primary screw and 2 PMMA-augmented screws (P<0.05). Either traditional or boring PMMA screw showed obviously higher pull-out strength than the primary screw (P<0.05); however, no significant difference of pull-out strength was detected between the 2 PMMA screws (P>0.05). Wadding corticocancellous bone and increasing screw length failed to provide sufficient anchoring strength for a loosened iliac screw; however, both traditional and boring PMMA-augmented techniques could effectively increase the fixation strength. On the basis of the viewpoint of minimal invasion, the boring PMMA augmentation may serve as a suitable salvage technique for iliac screw loosening.
Schmelzer, Eva; Finoli, Anthony; Nettleship, Ian; Gerlach, Jörg C
2015-04-01
The construction and long-term maintenance of three-dimensional in vitro bone marrow models is of great interest but still quite challenging. Here we describe the use of a multi-compartment hollow-fiber membrane based three-dimensional perfusion bioreactor for long-term culture of whole human bone marrow mononuclear cells. We also investigated bioreactors with incorporated open-porous foamed hydroxyapatite scaffolds, mimicking the in vivo bone matrix. Cells in bioreactors with and without scaffolds were cultured to 6 weeks and compared to Petri dish controls. Cells were analyzed for gene expression, surface markers by flow cytometry, metabolic activity, hematopoietic potential, viability, and attachment by immunocytochemistry. Cells in bioreactors were metabolic active during long-term culture. The percentages of hematopoietic stem cell and mature endothelial cell fractions were maintained in bioreactors. The expression of most of the analyzed genes stabilized and increased after long-term culture of 6 weeks. Compared to Petri dish culture controls, bioreactor perfusion culture improved in both the short and long-term, the colony formation unit capacity of hematopoietic progenitors. Cells attached to the ample surface area provided by hydroxyapatite scaffolds. The implementation of a hydroxyapatite scaffold did not influence colony formation capacity, percentages of cell type specific fractions, gene expression, cell viability or metabolic turnover when compared to control cells cultured in bioreactors without scaffolds. In conclusion, three-dimensional perfusion bioreactor culture enables long-term maintenance of primary human bone marrow cells, with hydroxyapatite scaffolds providing an in vivo-like scaffold for three-dimensional culture. © 2015 Wiley Periodicals, Inc.
Fan, Xiaoxia; Ren, Haohao; Chen, Shutian; Wang, Guangni; Deng, Tianyu; Chen, Xingtao; Yan, Yonggang
2014-04-01
The compressive strength of the original bone tissue was tested, based on the raw human thigh bone, bovine bone, pig bone and goat bone. The four different bone-like apatites were prepared by calcining the raw bones at 800 degrees C for 8 hours to remove organic components. The comparison of composition and structure of bone-like apatite from different bone sources was carried out with a composition and structure test. The results indicated that the compressive strength of goat bone was similar to that of human thigh bone, reached (135.00 +/- 7.84) MPa; Infrared spectrum (IR), X-ray diffraction (XRD) analysis results showed that the bone-like apatite from goat bone was much closer to the structure and phase composition of bone-like apatite of human bones. Inductively Coupled Plasma (ICP) test results showed that the content of trace elements of bone-like apatite from goat bone was closer to that of apatite of human bone. Energy Dispersive Spectrometer (EDS) results showed that the Ca/P value of bone-like apatite from goat bone was also close to that of human bone, ranged to 1.73 +/- 0.033. Scanning electron microscopy (SEM) patterns indicated that the macrographs of the apatite from human bone and that of goat bone were much similar to each other. Considering all the results above, it could be concluded that the goat bone-like apatite is much similar to that of human bone. It can be used as a potential natural bioceramic material in terms of material properties.
Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia
2015-01-01
New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days' implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days' implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration.
Hesse, E; Brand, J; Bastian, L; Krettek, C; Meller, R
2008-07-01
Melorheostosis is a rare, benign, and sporadically occurring osteosclerosis of unknown cause. The onset of the disease is usually in early adulthood. Melorheostosis affects both genders, develops progressively, and is usually limited to one side of the human body. The sclerosis originates predominantly from the cortices of the long bones of the lower limbs and rarely the upper limbs. Frequently, the sclerosis involves the soft tissue surrounding the affected bones which may cause limitations in the range of motion, contractures, deformities, and pain. Melorheostosis is usually diagnosed by radiograms. Pain relief and restoration of the full range of motion are the primary goals of the therapeutic approach. A good outcome cannot always be achieved and a recurrence of the disease happens very often.
[Comparation on Haversian system between human and animal bones by imaging analysis].
Lu, Hui-Ling; Zheng, Jing; Yao, Ya-Nan; Chen, Sen; Wang, Hui-Pin; Chen, Li-Xian; Guo, Jing-Yuan
2006-04-01
To explore the differences in Haversian system between human and animal bones through imaging analysis and morphology description. Thirty-five slices grinding from human being as well as dog, pig, cow and sheep bones were observed to compare their structure, then were analysed with the researchful microscope. Plexiform bone or oeston band was not found in human bones; There were significant differences in the shape, size, location, density of Haversian system, between human and animal bones. The amount of Haversian lamella and diameter of central canal in human were the biggest; Significant differences in the central canal diameter and total area percentage between human and animal bones were shown by imaging analysis. (1) Plexiform bone and osteon band could be the exclusive index in human bone; (2) There were significant differences in the structure of Haversian system between human and animal bones; (3) The percentage of central canals total area was valuable in species identification through imaging analysis.
Global miRNA expression and correlation with mRNA levels in primary human bone cells
Laxman, Navya; Rubin, Carl-Johan; Mallmin, Hans; Nilsson, Olle; Pastinen, Tomi; Grundberg, Elin; Kindmark, Andreas
2015-01-01
MicroRNAs (miRNAs) are important post-transcriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. The aim of this study was to investigate miRNA–mRNA interactions that may be relevant for bone metabolism by assessing correlations and interindividual variability in miRNA levels as well as global correlations between miRNA and mRNA levels in a large cohort of primary human osteoblasts (HOBs) obtained during orthopedic surgery in otherwise healthy individuals. We identified differential expression (DE) of 24 miRNAs, and found 9 miRNAs exhibiting DE between males and females. We identified hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b and their target genes as important modulators of bone metabolism. Further, we used an integrated analysis of global miRNA–mRNA correlations, mRNA-expression profiling, DE, bioinformatics analysis, and functional studies to identify novel target genes for miRNAs with the potential to regulate osteoblast differentiation and extracellular matrix production. Functional studies by overexpression and knockdown of miRNAs showed that, the differentially expressed miRNAs hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b target genes highly relevant to bone metabolism, e.g., collagen, type I, α1 (COL1A1), osteonectin (SPARC), Runt-related transcription factor 2 (RUNX2), osteocalcin (BGLAP), and frizzled-related protein (FRZB). These miRNAs orchestrate the activities of key regulators of osteoblast differentiation and extracellular matrix proteins by their convergent action on target genes and pathways to control the skeletal gene expression. PMID:26078267
Hatoum, Georges; Meshkin, Cyrus; Alkhunaizi, Sufana; Levene, Richard; Formoso-Onofrio, Julie
2015-01-01
Chronic lymphocytic leukemia (CLL) is a common malignancy which may coexist with other primary cancers. CLL is rarely the cause of solitary bone lesions; such lesions in the context of CLL are believed to result from either Richter’s transformation or metastasis from another primary malignancy. Renal cell carcinoma (RCC), on the other hand, is a malignancy which frequently metastasizes to bone and may cause an osteolytic solitary bone lesion. The origin of a solitary bone lesion in a patient with multiple potential primary malignancies has prognostic implications and affects treatment protocol, and as such must be diagnosed accurately. We describe a patient with CLL and a history of RCC who is found to have an incidental solitary bone lesion of the T11 vertebra. After two separate CT-guided biopsies revealed various lymphoid cell predominance and no evidence of RCC, treatment with low dose external beam radiation therapy (EBRT) was employed. Post-therapy MRI showed further propagation of the lesion. Surgical corpectomy was subsequently performed and postoperative pathology of the lesion was consistent with RCC. The patient was treated with bisphosphonates and a higher dose of EBRT. Our case illustrates the importance of surgical excisional biopsy for accurately diagnosing the primary source metastatic to the bone in a patient with CLL and another potential primary cancer. PMID:29147427
Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...
An, Shaofeng; Gao, Yan; Huang, Xiangya; Ling, Junqi; Liu, Zhaohui; Xiao, Yin
2015-05-01
The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell-Counting kit-8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.
Primary pericranial Ewing's sarcoma on the temporal bone: A case report.
Kawano, Hiroto; Nitta, Naoki; Ishida, Mitsuaki; Fukami, Tadateru; Nozaki, Kazuhiko
2016-01-01
Primary Ewing's sarcoma originating in the pericranium is an extremely rare disease entity. A 9-year-old female patient was admitted to our department due to a left temporal subcutaneous mass. The mass was localized under the left temporal muscle and attached to the surface of the temporal bone. Head computed tomography revealed a mass with bony spicule formation on the temporal bone, however, it did not show bone destruction or intracranial invasion. F-18 fluorodeoxyglucose positron emission tomography showed no lesions other than the mass on the temporal bone. Magnetic resonance imaging showed that the mass was located between the temporal bone and the pericranium. The mass was completely resected with the underlying temporal bone and the overlying deep layer of temporal muscle, and was diagnosed as primary Ewing's sarcoma. Because the tumor was located in the subpericranium, we created a new classification, "pericranial Ewing's sarcoma," and diagnosed the present tumor as pericranial Ewing's sarcoma. We herein present an extremely rare case of primary pericranial Ewing's sarcoma that developed on the temporal bone.
Postradiation atrophy of mature bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergun, H.; Howland, W.J.
1980-01-01
The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographic evidence of atrophy, localized osteopenia, is late in appearing. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. The differentiationmore » of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.« less
Fernández, Tulio; Olave, Gilberto; Valencia, Carlos H; Arce, Sandra; Quinn, Julian M W; Thouas, George A; Chen, Qi-Zhi
2014-07-01
Vascularization of an artificial graft represents one of the most significant challenges facing the field of bone tissue engineering. Over the past decade, strategies to vascularize artificial scaffolds have been intensively evaluated using osteoinductive calcium phosphate (CaP) biomaterials in animal models. In this work, we observed that CaP-based biomaterials implanted into rat calvarial defects showed remarkably accelerated formation and mineralization of new woven bone in defects in the initial stages, at a rate of ∼60 μm/day (0.8 mg/day), which was considerably higher than normal bone growth rates (several μm/day, 0.1 mg/day) in implant-free controls of the same age. Surprisingly, we also observed histological evidence of primary osteon formation, indicated by blood vessels in early-region fibrous tissue, which was encapsulated by lamellar osteocyte structures. These were later fully replaced by compact bone, indicating complete regeneration of calvarial bone. Thus, the CaP biomaterial used here is not only osteoinductive, but vasculogenic, and it may have contributed to the bone regeneration, despite an absence of osteons in normal rat calvaria. Further investigation will involve how this strategy can regulate formation of vascularized cortical bone such as by control of degradation rate, and use of models of long, dense bones, to more closely approximate repair of human cortical bone.
Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia
2017-01-01
The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960
Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.
2016-01-01
OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity. PMID:27626477
Primary telangiectatic osteosarcoma of occipital bone: a case report and review of literature.
Patibandla, Mohana Rao; Uppin, Shantveer G; Thotakura, Amit Kumar; Panigrahi, Manas K; Challa, Sundaram
2011-01-01
Telangiectatic osteosarcoma (TOS), an uncommon variant of osteosarcoma, involving skull bones is extremely rare. We present clinico-pathological, imageological and treatment outcome of a primary TOS of occipital bone in a 30-year-old woman and review the previously reported skull bone TOS. We suggest that TOS should be included in the differential diagnosis of destructive lytic lesions involving the skull bones. As radical surgical procedures are not applicable to skull bones, the outcome is poor even with adjuvant chemotherapy.
A rare case of primary bone lymphoma mimicking a pelvic abscess
Al Wattar, BH; Mohanty, K
2011-01-01
Primary bone lymphoma (PBL) is a rare, malignant, neoplastic disorder of the skeleton that accounts for less than 5% of all primary bone tumours. We present an extremely rare case of PBL mimicking a pelvic abscess around the sacroiliac joint, which has never been reported in the medical literature, and discuss learning points highlighted from this case. PMID:22004625
Primary bone tumors of adulthood
Teo, Harvey E L; Peh, Wilfred C G
2004-01-01
Imaging plays a crucial role in the evaluation of primary bone tumors in adults. Initial radiographic evaluation is indicated in all cases with suspected primary bone tumors. Radiographs are useful for providing the diagnosis, a short list of differential diagnosis or at least indicating the degree of aggressiveness of the lesion. More detailed information about the lesion, such as cortical destruction or local spread, can be obtained using cross-sectional imaging techniques such as computed tomography and magnetic resonance imaging. This article discusses the characteristic features of the more common primary bone tumors of adulthood, and also the pre-treatment evaluation and staging of these lesions using imaging techniques. PMID:18250012
Hsu, Jui-Ting; Fuh, Lih-Jyh; Tu, Ming-Gene; Li, Yu-Fen; Chen, Kuan-Ting; Huang, Heng-Li
2013-04-01
This study investigated how the primary stability of a dental implant as measured by the insertion torque value (ITV), Periotest value (PTV), and implant stability quotient (ISQ) is affected by varying thicknesses of cortical bone and strengths of trabecular bone using synthetic bone models. Four synthetic cortical shells (with thicknesses of 0, 1, 2, and 3 mm) were attached to four cellular rigid polyurethane foams (with elastic moduli of 137, 47.5, 23, and 12.4 MPa) and one open-cell rigid polyurethane foam which mimic the osteoporotic bone (with an elastic modulus 6.5 MPa), to represent the jawbones with various cortical bone thicknesses and strengths of trabecular bone. A total of 60 bone specimens accompanied with implants was examined by a torque meter, Osstell resonance frequency analyzer, and Periotest electronic device. All data were statistically analyzed by two-way analysis of variance. In addition, second-order nonlinear regression was utilized to assess the correlations of the primary implant stability with the four cortex thicknesses and five strengths of trabecular bone. ITV, ISQ, and PTV differed significantly (p < .05) and were strongly correlated with the thickness of cortical bone (R(2) > 0.9) and the elastic modulus of trabecular bone (R(2) = 0.74-0.99). The initial stability at the time of implant placement is influenced by both the cortical bone thickness and the strength of trabecular bone; however, these factors are mostly nonlinearly correlated with ITV, PTV, and ISQ. Using ITV and PTV seems more suitable for identifying the primary implant stability in osteoporotic bone with a thin cortex. © 2011 Wiley Periodicals, Inc.
Fahmy, Rania A; Mahmoud, Naguiba; Soliman, Samia; Nouh, Samir R; Cunningham, Larry; El-Ghannam, Ahmed
2015-12-01
The aim of the present study was to evaluate the effect of a porous silica-calcium phosphate composite (SCPC50) loaded with and without recombinant human bone morphogenetic protein-2 (rhBMP-2) on alveolar ridge augmentation in saddle-type defects. Micro-granules of SCPC50 resorbable bioactive ceramic were coated with rhBMP-2 10 mg and then implanted into a saddle-type defect (12 × 7 mm) in a dog mandible and covered with a collagen membrane. Control groups included defects grafted with SCPC50 granules without rhBMP-2 and un-grafted defects. Bone healing was evaluated at 8 and 16 weeks using histologic and histomorphometric techniques. The increase in bone height and total defect fill were assessed for each specimen using the ImageJ 1.46 program. The release kinetics of rhBMP-2 was determined in vitro. The height of the bone in the grafted defects and the total defect fill were statistically analyzed. SCPC50 enhanced alveolar ridge augmentation as indicated by the increased vertical bone height, bone surface area, and bone volume after 16 weeks. SCPC50-rhBMP-2 provided a sustained release profile of a low effective dose (BMP-2 4.6 ± 1.34 pg/mL per hour) during the 1- to 21-day period. The slow rate of release of rhBMP-2 from SCPC50 accelerated synchronized complete bone regeneration and graft material resorption in 8 weeks. Successful rapid reconstruction of the alveolar ridge by SCPC50 and SCPC50-rhBMP-2 occurred without any adverse excessive bone formation, inflammation, or fluid-filled voids. Results of this study suggest that SCPC50 is an effective graft material to preserve the alveolar ridge after tooth extraction. Coating SCPC50-rhBMP-2 further accelerated bone regeneration and a considerable increase in vertical bone height. These findings make SCPC50 the primary choice as a carrier for rhBMP-2. SCPC50-rhBMP-2 can serve as an alternative to autologous bone grafting. Published by Elsevier Inc.
Zinonos, Irene; Labrinidis, Agatha; Lee, Michelle; Liapis, Vasilios; Hay, Shelley; Ponomarev, Vladimir; Diamond, Peter; Zannettino, Andrew C.W.; Findlay, David M.; Evdokiou, Andreas
2017-01-01
Apomab, a fully human agonistic DR5 monoclonal antibody, triggers apoptosis through activation of the extrinsic apoptotic signaling pathway. In this study, we assessed the cytotoxic effect of Apomab in vitro and evaluated its antitumor activity in murine models of breast cancer development and progression. MDA-MB-231-TXSA breast cancer cells were transplanted into the mammary fat pad or directly into the tibial marrow cavity of nude mice. Apomab was administered early, postcancer cell transplantation, or after tumors progressed to an advanced stage. Tumor burden was monitored progressively using bioluminescence imaging, and the development of breast cancer–induced osteolysis was measured using micro-computed tomography. In vitro, Apomab treatment induced apoptosis in a panel of breast cancer cell lines but was without effect on normal human primary osteoblasts, fibroblasts, or mammary epithelial cells. In vivo, Apomab exerted remarkable tumor suppressive activity leading to complete regression of well-advanced mammary tumors. All animals transplanted with breast cancer cells directly into their tibiae developed large osteolytic lesions that eroded the cortical bone. In contrast, treatment with Apomab following an early treatment protocol inhibited both intraosseous and extraosseous tumor growth and prevented breast cancer–induced osteolysis. In the delayed treatment protocol, Apomab treatment resulted in the complete regression of advanced tibial tumors with progressive restoration of both trabecular and cortical bone leading to full resolution of osteolytic lesions. Apomab represents a potent immunotherapeutic agent with strong activity against the development and progression of breast cancer and should be evaluated in patients with primary and metastatic disease. PMID:19808976
Your feet were made for walking.
Hicks, Gareth
2014-12-01
Our feet are made up of 52 bones: around a quarter of all the bones in the human body. At the bottom of each foot there are four layers of muscle designed to carry our weight and to help us run, jump, walk and skip. As a rule, we tend to ignore our feet; that is, until they hurt. A straw poll of midwives during the Primary Care 2014 conference in May revealed the majority to have foot pain. The aim of this short article is to outline the basics of foot function and to provide midwives with practical tips on foot care, which ought to help relieve some of that foot pain.
Phenotypic research on senile osteoporosis caused by SIRT6 deficiency
Zhang, De-Mao; Cui, Di-Xin; Xu, Ruo-Shi; Zhou, Ya-Chuan; Zheng, Li-Wei; Liu, Peng; Zhou, Xue-Dong
2016-01-01
Osteoporosis is a serious public bone metabolic disease. However, the mechanisms underlying bone loss combined with ageing, which is known as senile osteoporosis, remains unknown. Here we show the detailed phenotype of this disease caused by SIRT6 knock out (KO) in mice. To the best of our knowledge, this is the first study to reveal that SIRT6 is expressed in both bone marrow stroma cells and bone-related cells in both mouse and human models, which suggests that SIRT6 is an important regulator in bone metabolism. SIRT6-KO mice exhibit a significant decrease in body weight and remarkable dwarfism. The skeleton of the SIRT6-KO mouse is deficient in cartilage and mineralized bone tissue. Moreover, the osteocalcin concentration in blood is lower, which suggests that bone mass is markedly lost. Besides, the tartrate-resistant acid phosphatase 5b (TRAP5b) concentration is much higher, which suggests that bone resorption is overactive. Both trabecular and cortical bones exhibit severe osteopenia, and the bone mineral density is decreased. Moreover, double-labelling analysis shows that bone formation is much slower. To determine whether SIRT6 directly regulates bone metabolism, we cultured primary bone marrow stromal cells for osteogenesis and osteoclastogenesis separately to avoid indirect interference in vivo responses such as inflammation. Taken together, these results show that SIRT6 can directly regulate osteoblast proliferation and differentiation, resulting in attenuation in mineralization. Furthermore, SIRT6 can directly regulate osteoclast differentiation and results in a higher number of small osteoclasts, which may be related to overactive bone resorption. PMID:27357320
Animal Models of Cancer-Associated Hypercalcemia
Kohart, Nicole A.; Elshafae, Said M.; Breitbach, Justin T.; Rosol, Thomas J.
2017-01-01
Cancer-associated hypercalcemia (CAH) is a frequently-occurring paraneoplastic syndrome that contributes to substantial patient morbidity and occurs in both humans and animals. Patients with CAH are often characterized by markedly elevated serum calcium concentrations that result in a range of clinical symptoms involving the nervous, gastrointestinal and urinary systems. CAH is caused by two principle mechanisms; humorally-mediated and/or through local osteolytic bone metastasis resulting in excessive calcium release from resorbed bone. Humoral hypercalcemia of malignancy (HHM) is the most common mechanism and is due to the production and release of tumor-associated cytokines and humoral factors, such as parathyroid hormone-related protein (PTHrP), that act at distant sites to increase serum calcium concentrations. Local osteolytic hypercalcemia (LOH) occurs when primary or metastatic bone tumors act locally by releasing factors that stimulate osteoclast activity and bone resorption. LOH is a less frequent cause of CAH and in some cases can induce hypercalcemia in concert with HHM. Rarely, ectopic production of parathyroid hormone has been described. PTHrP-mediated hypercalcemia is the most common mechanism of CAH in human and canine malignancies and is recognized in other domestic species. Spontaneous and experimentally-induced animal models have been developed to study the mechanisms of CAH. These models have been essential for the evaluation of novel approaches and adjuvant therapies to manage CAH. This review will highlight the comparative aspects of CAH in humans and animals with a discussion of the available animal models used to study the pathogenesis of this important clinical syndrome. PMID:29056680
Liapis, Vasilios; Labrinidis, Agatha; Zinonos, Irene; Hay, Shelley; Ponomarev, Vladimir; Panagopoulos, Vasilios; DeNichilo, Mark; Ingman, Wendy; Atkins, Gerald J.; Findlay, David M.; Zannettino, Andrew CW.; Evdokiou, Andreas
2015-01-01
Tumour hypoxia is a major cause of treatment failure for a variety of malignancies. However, tumour hypoxia also offers treatment opportunities, exemplified by the development compounds that target hypoxic regions within tumours. TH-302 is a pro-drug created by the conjugation of 2-nitroimidazole to bromo-isophosphoramide (Br-IPM). When TH-302 is delivered to regions of hypoxia, Br-IPM, the DNA cross linking toxin, is released. In this study we assessed the cytotoxic activity of TH-302 against osteosarcoma cells in vitro and evaluated its anticancer efficacy as a single agent, and in combination with doxorubicin, in an orthotopic mouse model of human osteosarcoma (OS). In vitro, TH-302 was potently cytotoxic to osteosarcoma cells selectively under hypoxic conditions, whereas primary normal human osteoblasts were protected. Animals transplanted with OS cells directly into their tibiae and left untreated developed mixed osteolytic/osteosclerotic bone lesions and subsequently developed lung metastases. TH-302 reduced tumor burden in bone and cooperated with doxorubicin to protect bone from osteosarcoma induced bone destruction, while it also reduced lung metastases. TH-302 may therefore be an attractive therapeutic agent with strong activity as a single agent and in combination with chemotherapy against OS. PMID:25444931
Liapis, Vasilios; Labrinidis, Agatha; Zinonos, Irene; Hay, Shelley; Ponomarev, Vladimir; Panagopoulos, Vasilios; DeNichilo, Mark; Ingman, Wendy; Atkins, Gerald J; Findlay, David M; Zannettino, Andrew C W; Evdokiou, Andreas
2015-02-01
Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. However, tumor hypoxia also offers treatment opportunities, exemplified by the development compounds that target hypoxic regions within tumors. TH-302 is a pro-drug created by the conjugation of 2-nitroimidazole to bromo-isophosphoramide (Br-IPM). When TH-302 is delivered to regions of hypoxia, Br-IPM, the DNA cross linking toxin, is released. In this study we assessed the cytotoxic activity of TH-302 against osteosarcoma cells in vitro and evaluated its anticancer efficacy as a single agent, and in combination with doxorubicin, in an orthotopic mouse model of human osteosarcoma (OS). In vitro, TH-302 was potently cytotoxic to osteosarcoma cells selectively under hypoxic conditions, whereas primary normal human osteoblasts were protected. Animals transplanted with OS cells directly into their tibiae and left untreated developed mixed osteolytic/osteosclerotic bone lesions and subsequently developed lung metastases. TH-302 reduced tumor burden in bone and cooperated with doxorubicin to protect bone from osteosarcoma induced bone destruction, while it also reduced lung metastases. TH-302 may therefore be an attractive therapeutic agent with strong activity as a single agent and in combination with chemotherapy against OS. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.
Denosumab is effective in the treatment of bone marrow oedema syndrome.
Rolvien, Tim; Schmidt, Tobias; Butscheidt, Sebastian; Amling, Michael; Barvencik, Florian
2017-04-01
Bone marrow oedema (BMO) syndrome describes a painful condition with increase of interstitial fluid within bone and is often lately diagnosed due to unspecific symptoms. The underlying causes are diverse while it is widely assumed that in cases of BMO local bone resorption is increased. Denosumab, a human monoclonal antibody that binds to the receptor activator of nuclear factor kappa-B ligand (RANKL) inhibits osteoclastic bone resorption and is commonly administered in the treatment of osteoporosis. Besides one previous case report, its clinical effectiveness in the treatment of bone marrow oedema has not been elucidated. We treated 14 patients with primary (idiopathic) bone marrow oedema of the lower extremity with single dose denosumab application. Mean time between onset of pain and therapy was 155days. MRI scans were performed for initial diagnosis, and 6-12 weeks after denosumab injection. Vitamin D and calcium homeostasis were strived to be balanced before initiation of therapy. Furthermore bone status was analysed using Dual-energy X-ray absorptiometry (DXA) and extended bone turnover serum markers. After 6-12 weeks, BMO dissolved partly or completely in 93%, while a complete recovery was observed in 50% of the individuals. Visual analogue scale (VAS) evaluation revealed a significant decrease in pain level. Furthermore, bone turnover decreased significantly after treatment. No adverse reactions were reported. In conclusion, our retrospective analysis shows that denosumab is highly effective in the treatment of bone marrow oedema and therefore represents an alternative treatment option. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pappalardo, S; Mastrangelo, F; Reale Marroccia, D; Cappello, V; Ciampoli, C; Carlino, V; Tanteri, L; Costanzo, M; Sinatra, F; Tetè, S
2008-01-01
Insufficient bone density of the alveolar crests, caused by loss of the dental elements, sometimes impedes the primary stability of an integrated bone implant. The techniques of bone regeneration allow to obtain a sufficient quantity of alveolar bone to permit the implant rehabilitation of the edentulous crests. Today several grafting materials are available and they have different characteristics, according to their structure, which influence the different behaviour of the grafting materials to the bone and the implant surface. The aim of this study is to evaluate the interaction between a human osteosarcoma MG63 cell line and three different biomaterials: polylactic-co-glycolic acid (PLAGA), deproteinized bovine bone and demineralised freeze-dried bone allograft (DFDBA). From this study a different behaviour emerges of the osteoblast-like MG63 cells in relation to the sublayer on which these cells were placed in culture. The results of the study, in fact, demonstrate that the most osteoconductive material of the three analysed is the DFDBA, followed by DPBB. On the contrary, the PLGA, because of its roughness, does not seem to represent a valid support for cell growth, and does not encourage any morphologic modification in tumor cells. Furthermore, deproteinized bovine bone shows a differentiating effect which could lead to hypothesise an osteoconductive capacity of this biomaterial. Further studies should be carried out with the aim of explaining the results obtained.
Leukemia inhibitory factor: a novel bone-active cytokine.
Reid, L R; Lowe, C; Cornish, J; Skinner, S J; Hilton, D J; Willson, T A; Gearing, D P; Martin, T J
1990-03-01
A number of cytokines have been found to be potent regulators of bone resorption and to share the properties originally attributed to osteoclast-activating factor. One such activity, differentiation-inducing factor (DIF, D-factor) from mouse spleen cells, shares a number of biological and biochemical properties with the recently characterized and cloned leukemia inhibitory factor (LIF). We have assessed the effects of recombinant LIF on bone resorption and other parameters in neonatal mouse calvaria. Both recombinant murine and human (h) LIFs stimulated 45Ca release from prelabeled calvaria in a dose-dependent manner. The increase in bone resorption was associated with an increase in the number of osteoclasts per mm2 bone. The osteolytic effect of hLIF were blocked by 10(-7) M indomethacin. hLIF also stimulated incorporation of [3H] thymidine into calvaria, but the dose-response relationship was distinct from that for bone resorption, and this effect was not blocked by indomethacin. Similarly, hLIF increased [3H]phenylalanine incorporation into calvaria, and this was also not inhibited by indomethacin. It is concluded that LIF stimulates bone resorption by a mechanism involving prostaglandin production, but that a distinct mechanism is responsible for its stimulation of DNA and protein synthesis. The primary structure of LIF differs from that of other fully characterized, bone-active cytokines, and it, thus, represents a novel factor which may be involved in the normal regulation of bone cell function.
Cancer-associated bone disease.
Rizzoli, R; Body, J-J; Brandi, M-L; Cannata-Andia, J; Chappard, D; El Maghraoui, A; Glüer, C C; Kendler, D; Napoli, N; Papaioannou, A; Pierroz, D D; Rahme, M; Van Poznak, C H; de Villiers, T J; El Hajj Fuleihan, G
2013-12-01
Bone is commonly affected in cancer. Cancer-induced bone disease results from the primary disease, or from therapies against the primary condition, causing bone fragility. Bone-modifying agents, such as bisphosphonates and denosumab, are efficacious in preventing and delaying cancer-related bone disease. With evidence-based care pathways, guidelines assist physicians in clinical decision-making. Of the 57 million deaths in 2008 worldwide, almost two thirds were due to non-communicable diseases, led by cardiovascular diseases and cancers. Bone is a commonly affected organ in cancer, and although the incidence of metastatic bone disease is not well defined, it is estimated that around half of patients who die from cancer in the USA each year have bone involvement. Furthermore, cancer-induced bone disease can result from the primary disease itself, either due to circulating bone resorbing substances or metastatic bone disease, such as commonly occurs with breast, lung and prostate cancer, or from therapies administered to treat the primary condition thus causing bone loss and fractures. Treatment-induced osteoporosis may occur in the setting of glucocorticoid therapy or oestrogen deprivation therapy, chemotherapy-induced ovarian failure and androgen deprivation therapy. Tumour skeletal-related events include pathologic fractures, spinal cord compression, surgery and radiotherapy to bone and may or may not include hypercalcaemia of malignancy while skeletal complication refers to pain and other symptoms. Some evidence demonstrates the efficacy of various interventions including bone-modifying agents, such as bisphosphonates and denosumab, in preventing or delaying cancer-related bone disease. The latter includes treatment of patients with metastatic skeletal lesions in general, adjuvant treatment of breast and prostate cancer in particular, and the prevention of cancer-associated bone disease. This has led to the development of guidelines by several societies and working groups to assist physicians in clinical decision making, providing them with evidence-based care pathways to prevent skeletal-related events and bone loss. The goal of this paper is to put forth an IOF position paper addressing bone diseases and cancer and summarizing the position papers of other organizations.
Postradiation atrophy of mature bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erguen, H.; Howland, W.J.
1980-01-01
The growing number of oncological patients subjected to radiotherapy require the diagnostic radiologist to be aware of expected bone changes following irradiation and the differentiation of this entity from metastasis. The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographicmore » evidence of atrophy, localized osteopenia, is late in appearing, mainly because of the relative insensitivity of radiographs in detecting demineralization. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. In vivo midrodensitometric analysis and radionuclide bone and bone marrow scans can reveal early changes following irradiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.« less
Postradiation atrophy of mature bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergun, H.; Howland, W.J.
1980-01-01
The growing number of oncological patients subjected to radiotherapy require the diagnostic radiologist to be aware of expected bone changes following irradiation and the differentiation of this entity from metastasis. The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographicmore » evidence of atrophy, localized osteopenia, is late in appearing, mainly because of the relative insensitivity of radiographs in detecing demineralization. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. In vivo midrodensitometric analysis and radionuclide bone and bone marrow scans can reveal early changes following irradiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.« less
Targeting mast cells in gastric cancer with special reference to bone metastases
Leporini, Christian; Ammendola, Michele; Marech, Ilaria; Sammarco, Giuseppe; Sacco, Rosario; Gadaleta, Cosmo Damiano; Oakley, Caroline; Russo, Emilio; De Sarro, Giovambattista; Ranieri, Girolamo
2015-01-01
Bone metastases from gastric cancer (GC) are considered a relatively uncommon finding; however, they are related to poorer prognosis. Both primary GC and its metastatic progression rely on angiogenesis. Several lines of evidence from GC patients strongly support the involvement of mast cells (MCs) positive to tryptase (MCPT) in primary gastric tumor angiogenesis. Recently, we analyzed infiltrating MCs and neovascularization in bone tissue metastases from primary GC patients, and observed a significant correlation between infiltrating MCPT and angiogenesis. Such a finding suggested the involvement of peritumoral MCPT by infiltrating surrounding tumor cells, and in bone metastasis angiogenesis from primary GC. Thus, an MCPT-stimulated angiogenic process could support the development of metastases in bone tissue. From this perspective, we aim to review the hypothetical involvement of tumor-infiltrating, peritumoral MCPT in angiogenesis-mediated GC cell growth in the bone microenvironment and in tumor-induced osteoclastic bone resorption. We also focus on the potential use of MCPT targeting agents, such as MCs tryptase inhibitors (gabexate mesylate, nafamostat mesylate) or c-KitR tyrosine kinase inhibitors (imatinib, masitinib), as possible new anti-angiogenic and anti-resorptive strategies for the treatment of GC patients affected by bone metastases. PMID:26457010
NASA Astrophysics Data System (ADS)
Li, K.-T.; Zhang, J.; Duan, Q.-Q.; Bi, Y.; Bai, D.-Q.; Ou, Y.-S.
2014-06-01
A giant cell tumor in bone is the common primary bone tumor with aggressive features, occurring mainly in young adults. Photodynamic therapy is a new therapeutic technique for tumors. In this study, we investigated the effects of Pyropheophorbide-α methyl ester (MPPa)-mediated photodynamic therapy on the proliferation of giant cell tumor cells and its mechanism of action. Cell proliferation was evaluated using an MTT assay. Cellular apoptosis was detected by Hoechst nuclear staining, and flow cytometric assay. Mitochondrial membrane potential changes and cytochrome c, caspase-9, caspase-3, and Bcl-2 expression was assessed. Finally, we found that MPPa-mediated photodynamic therapy could effectively suppress the proliferation of human giant cell tumor cells and induce apoptosis. The mitochondrial pathway was involved in the MPPa-photodynamic therapy-induced apoptosis.
Whyte, Michael P; Wenkert, Deborah; McAlister, William H; Novack, Deborah V; Nenninger, Angie R; Zhang, Xiafang; Huskey, Margaret; Mumm, Steven
2010-01-01
Dysosteosclerosis (DSS), an extremely rare dense bone disease, features short stature and fractures and sometimes optic atrophy, cranial nerve palsy, developmental delay, and failure of tooth eruption in infancy or early childhood consistent with osteopetrosis (OPT). Bone histology during childhood shows unresorbed primary spongiosa from deficient osteoclast action. Additionally, there is remarkable progressive flattening of all vertebrae and, by adolescence, paradoxical metaphyseal osteopenia with thin cortical bone. Reports of consanguinity indicate autosomal recessive inheritance, yet more affected males than females suggest X-linked recessive inheritance. We investigated a nonconsanguineous girl with DSS. Osteosclerosis was discovered at age 7 months. Our studies, spanning ages 11 to 44 months, showed weight at approximately 50th percentile, and length diminishing from approximately 30th percentile to –2.3 SD. Head circumference was +4 SD. The patient had frontal bossing, blue sclera, normal teeth, genu valgum, and unremarkable joints. Radiographs showed orbital and facial sclerosis, basilar thickening, bone-in-bone appearance of the pelvis, sclerotic long bone ends, and fractures of ribs and extremities. Progressive metaphyseal widening occurred as vertebrae changed from ovoid to flattened and became beaked anteriorly. A hemogram was normal. Consistent with OPT, serum parathyroid hormone (PTH) concentrations reflected dietary calcium levels. Serum bone alkaline phosphatase, osteocalcin, and TRACP-5b were subnormal. The iliac crest contained excessive primary spongiosa and no osteoclasts. No mutations were identified in the splice sites or exons for the genes encoding chloride channel 7, T-cell immune regulator 1, OPT-associated transmembrane protein 1, and monocyte colony-stimulating factor (M-CSF) and its receptor C-FMS, ANKH, OPG, RANK, and RANKL. Genomic copy-number microarray was unrevealing. Hence, DSS is a distinctive OPT of unknown etiology featuring osteoclast deficiency during early childhood. How osteopenia follows is an enigma of human skeletal pathobiology. © 2010 American Society for Bone and Mineral Research. PMID:20499338
Bagi, Cedo M; Zakur, David E; Berryman, Edwin; Andresen, Catharine J; Wilkie, Dean
2015-08-25
To acquire the most meaningful understanding of human arthritis, it is essential to select the disease model and methodology translatable to human conditions. The primary objective of this study was to evaluate a number of analytic techniques and biomarkers for their ability to accurately gauge bone and cartilage morphology and metabolism in the medial meniscal tear (MMT) model of osteoarthritis (OA). MMT surgery was performed in rats to induce OA. A dynamic weight bearing system (DWB) system was deployed to evaluate the weight-bearing capacity of the front and hind legs in rats. At the end of a 10-week study cartilage pathology was evaluated by micro computed tomography (μCT), contrast enhanced μCT (EPIC μCT) imaging and traditional histology. Bone tissue was evaluated at the tibial metaphysis and epiphysis, including the subchondral bone. Histological techniques and dynamic histomorphometry were used to evaluate cartilage morphology and bone mineralization. The study results showed a negative impact of MMT surgery on the weight-bearing capacity of the operated limb. Surgery caused severe and extensive deterioration of the articular cartilage at the medial tibial plateau, as evidenced by elevated CTX-II in serum, EPIC μCT and histology. Bone analysis by μCT showed thickening of the subchondral bone beneath the damaged cartilage, loss of cancellous bone at the metaphysis and active osteophyte formation. The study emphasizes the need for using various methodologies that complement each other to provide a comprehensive understanding of the pathophysiology of OA at the organ, tissue and cellular levels. Results from this study suggest that use of histology, μCT and EPIC μCT, and functional DWB tests provide powerful combination to fully assess the key aspects of OA and enhance data interpretation.
Noel, Kenson E; Mardirossian, George; Schneider, Lawrence
2007-05-01
Kaposi's sarcoma (KS) is a common mucocutaneous manifestation of acquired immunodeficiency syndrome (AIDS). Primary bone lesions have been reported but are rare. A 38-year-old African-American male who was human immunodeficiency virus (HIV)-positive appeared for the evaluation of an asymptomatic well-defined radiolucency of the mandibular midline discovered on routine radiographic examination. The adjacent central incisors were asymptomatic, nonmobile, and vital. The overlying mucosa and cortical plate were intact. Excision of the lesion revealed a fleshy, pink-red soft tissue mass with a uniform consistency. Histological examination showed a malignant spindle cell neoplasm containing numerous extravasated erythrocytes. The tumor cells exhibited positive immunohistochemical staining for CD31, CD34, and human herpesvirus 8. One year after surgical procedure, the surgical defect showed radiographic evidence of repair and there was no sign of recurrent tumor. This case represents the fourth reported instance of primary intraosseous involvement of the jaws with KS.
NASA Astrophysics Data System (ADS)
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-04-01
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e
Eap, Sandy; Keller, Laetitia; Schiavi, Jessica; Huck, Olivier; Jacomine, Leandro; Fioretti, Florence; Gauthier, Christian; Sebastian, Victor; Schwinté, Pascale; Benkirane-Jessel, Nadia
2015-01-01
New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days’ implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days’ implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration. PMID:25709432
Primary Ewing's Sarcoma of the temporal bone in an infant.
Goudarzipour, Kourosh; Shamsian, Shahin; Alavi, Samin; Nourbakhsh, Kazem; Aghakhani, Roxana; Eydian, Zahra; Arzanian, Mohammad Taghi
2015-04-01
Introduction : Ewing's sarcoma is the second most common primary malignant tumor of bone found in children after Osteosarcoma. It accounts for 4-9% of primary malignant bone tumors and it affects bones of the skull or face in only 1-4% of cases. Hence it rarely affects the head and neck. Subject and Method : In this case report, we describe a case of primary Ewing's sarcoma occurring in the temporal bone. The tumor was surgically excised, and the patient underwent chemotherapy for ten months. Results : Neither recurrence nor distant metastasis was noted in these 10 months after surgery but about 18 months after surgery our patient was expired. Conclusion : Although the prognosis of Ewing's sarcoma is generally poor because of early metastasis to the lungs and to other bones, a review of the article suggested that Ewing's sarcoma occurring in the skull can often be successfully managed by intensive therapy with radical excision and chemotherapy. This result was supported by the case reported here.
Diagnosing and discriminating between primary and secondary aneurysmal bone cysts
Sasaki, Hiromi; Nagano, Satoshi; Shimada, Hirofumi; Yokouchi, Masahiro; Setoguchi, Takao; Ishidou, Yasuhiro; Kunigou, Osamu; Maehara, Kosuke; Komiya, Setsuro
2017-01-01
Aneurysmal bone cysts (ABCs) are benign bony lesions frequently accompanied by multiple cystic lesions and aggressive bone destruction. They are relatively rare lesions, representing only 1% of bone tumors. The pathogenesis of ABCs has yet to be elucidated. In the present study, a series of 22 cases of primary and secondary ABC from patients treated in Department of Orthopedic Surgery, Kagoshima University Hospital (Kagoshima, Japan) from 2001–2015 were retrospectively analyzed. The average age at the time of diagnosis of primary ABC was 17.9 years. Intralesional curettage and artificial bone grafting were performed in the majority of the patients with primary ABC. The local recurrence rate following curettage for primary ABC was 18%, and the cause of local recurrence was considered to be insufficient curettage. Although no adjuvant therapy was administered during the surgeries, it may assist the prevention of local recurrence in certain cases. The cases of secondary ABC were preceded by benign bone tumors, including fibrous dysplasia, giant cell tumors, chondroblastoma and non-ossifying fibroma. The features of the secondary ABC typically reflected those of the preceding bone tumor. In the majority of cases, distinguishing the primary ABC from the secondary ABC was possible based on characteristic features, including age of the patient at diagnosis and the tumor location. In cases that exhibit ambiguous features, including a soft tissue mass or a thick septal enhancement on the preoperative magnetic resonance images, a biopsy must be obtained in order to exclude other types of aggressive bone tumors, including giant cell tumor, osteosarcoma and telangiectatic osteosarcoma. PMID:28454393
Röderer, Götz; Scola, Alexander; Schmölz, Werner; Gebhard, Florian; Windolf, Markus; Hofmann-Fliri, Ladina
2013-10-01
Proximal humerus fracture fixation can be difficult because of osteoporosis making it difficult to achieve stable implant anchorage in the weak bone stock even when using locking plates. This may cause implant failure requiring revision surgery. Cement augmentation has, in principle, been shown to improve stability. The aim of this study was to investigate whether augmentation of particular screws of a locking plate aimed at a region of low bone quality is effective in improving stability in a proximal humerus fracture model. Twelve paired human humerus specimens were included. Quantitative computed tomography was performed to determine bone mineral density (BMD). Local bone quality in the direction of the six proximal screws of a standard locking plate (PHILOS, Synthes) was assessed using mechanical means (DensiProbe™). A three-part fracture model with a metaphyseal defect was simulated and fixed with the plate. Within each pair of humeri the two screws aimed at the region of the lowest bone quality according to the DensiProbe™ were augmented in a randomised manner. For augmentation, 0.5 ml of bone cement was injected in a screw with multiple outlets at its tip under fluoroscopic control. A cyclic varus-bending test with increasing upper load magnitude was performed until failure of the screw-bone fixation. The augmented group withstood significantly more load cycles. The correlation of BMD with load cycles until failure and BMD with paired difference in load cycles to failure showed that augmentation could compensate for a low BMD. The results demonstrate that augmentation of screws in locked plating in a proximal humerus fracture model is effective in improving primary stability in a cyclic varus-bending test. The augmentation of two particular screws aimed at a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality could be more effective in enhancing the primary stability of a proximal humerus locking plate because the effect of augmentation can be exploited more effectively limiting it to the degree required. Copyright © 2013 Elsevier Ltd. All rights reserved.
Alcantara, Marice B; Nemazannikova, Natalie; Elahy, Mina; Dass, Crispin R
2014-11-01
Pigment epithelium-derived factor (PEDF) has proven anti-osteosarcoma activity. However, the mechanism(s) underpinning its ability to reduce primary bone tumour (osteosarcoma) metastasis is unknown. Adult and fetal murine bone were immunostained for PEDF, collagen I (major protein in bone) and its processing proteins, heat shock protein 47 (HSP47, a chaperone protein for collagen I), membrane type I matrix metalloproteinase (MT1-MMP, a collagenase), and matrix metalloproteinase 2 (MMP-2, which is activated by MT1-MMP). Immunoblotting and immunocytochemistry were used to observe levels of the above biomarkers when human osteosarcoma cells were treated with PEDF. Immunohistochemical staining in adult and fetal bone mirrors collagen I. PEDF localised to ridges of trabecular bone in tibial cortex and to megakaryocytes within bone marrow. Second, we observed that PEDF upregulates collagen I, HSP47 and MT1-MMP, while downregulating MMP-2 in osteosarcoma cells in vitro. PEDF is a promising antagonist to osteosarcoma cell metastasis via downregulation of MMP-2, and can induce tumour cells to further adopt differentiative properties, thereby possibly reducing their aggressive growth in vitro and in vivo. © 2014 Royal Pharmaceutical Society.
Arthritogenic alphaviral infection perturbs osteoblast function and triggers pathologic bone loss
Chen, Weiqiang; Foo, Suan-Sin; Rulli, Nestor E.; Taylor, Adam; Sheng, Kuo-Ching; Herrero, Lara J.; Herring, Belinda L.; Lidbury, Brett A.; Li, Rachel W.; Walsh, Nicole C.; Sims, Natalie A.; Smith, Paul N.; Mahalingam, Suresh
2014-01-01
Arthritogenic alphaviruses including Ross River virus (RRV), Sindbis virus, and chikungunya virus cause worldwide outbreaks of musculoskeletal disease. The ability of alphaviruses to induce bone pathologies remains poorly defined. Here we show that primary human osteoblasts (hOBs) can be productively infected by RRV. RRV-infected hOBs produced high levels of inflammatory cytokine including IL-6. The RANKL/OPG ratio was disrupted in the synovial fluid of RRV patients, and this was accompanied by an increase in serum Tartrate-resistant acid phosphatase 5b (TRAP5b) levels. Infection of bone cells with RRV was validated using an established RRV murine model. In wild-type mice, infectious virus was detected in the femur, tibia, patella, and foot, together with reduced bone volume in the tibial epiphysis and vertebrae detected by microcomputed tomographic (µCT) analysis. The RANKL/OPG ratio was also disrupted in mice infected with RRV; both this effect and the bone loss were blocked by treatment with an IL-6 neutralizing antibody. Collectively, these findings provide previously unidentified evidence that alphavirus infection induces bone loss and that OBs are capable of producing proinflammatory mediators during alphavirus-induced arthralgia. The perturbed RANKL/OPG ratio in RRV-infected OBs may therefore contribute to bone loss in alphavirus infection. PMID:24733914
Differentiating human bone from animal bone: a review of histological methods.
Hillier, Maria L; Bell, Lynne S
2007-03-01
This review brings together a complex and extensive literature to address the question of whether it is possible to distinguish human from nonhuman bone using the histological appearance of cortical bone. The mammalian species included are rat, hare, badger, racoon dog, cat, dog, pig, cow, goat, sheep, deer, horse, water buffalo, bear, nonhuman primates, and human and are therefore not exhaustive, but cover those mammals that may contribute to a North American or Eurasian forensic assemblage. The review has demonstrated that differentiation of human from certain nonhuman species is possible, including small mammals exhibiting Haversian bone tissue and large mammals exhibiting plexiform bone tissue. Pig, cow, goat, sheep, horse, and water buffalo exhibit both plexiform and Haversian bone tissue and where only Haversian bone tissue exists in bone fragments, differentiation of these species from humans is not possible. Other primate Haversian bone tissue is also not distinguishable from humans. Where differentiation using Haversian bone tissue is undertaken, both the general microstructural appearance and measurements of histological structures should be applied. Haversian system diameter and Haversian canal diameter are the most optimal and diagnostic measurements to use. Haversian system density may be usefully applied to provide an upper and lower limit for humans.
Dankbar, Berno; Fennen, Michelle; Brunert, Daniela; Hayer, Silvia; Frank, Svetlana; Wehmeyer, Corinna; Beckmann, Denise; Paruzel, Peter; Bertrand, Jessica; Redlich, Kurt; Koers-Wunrau, Christina; Stratis, Athanasios; Korb-Pap, Adelheid; Pap, Thomas
2015-09-01
Myostatin (also known as growth and differentiation factor 8) is a secreted member of the transforming growth factor-β (TGF-β) family that is mainly expressed in skeletal muscle, which is also its primary target tissue. Deletion of the myostatin gene (Mstn) in mice leads to muscle hypertrophy, and animal studies support the concept that myostatin is a negative regulator of muscle growth and regeneration. However, myostatin deficiency also increases bone formation, mainly through loading-associated effects on bone. Here we report a previously unknown direct role for myostatin in osteoclastogenesis and in the progressive loss of articular bone in rheumatoid arthritis (RA). We demonstrate that myostatin is highly expressed in the synovial tissues of RA subjects and of human tumor necrosis factor (TNF)-α transgenic (hTNFtg) mice, a model for human RA. Myostatin strongly accelerates receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast formation in vitro through transcription factor SMAD2-dependent regulation of nuclear factor of activated T-cells (NFATC1). Myostatin deficiency or antibody-mediated inhibition leads to an amelioration of arthritis severity in hTNFtg mice, chiefly reflected by less bone destruction. Consistent with these effects in hTNFtg mice, the lack of myostatin leads to increased grip strength and less bone erosion in the K/BxN serum-induced arthritis model in mice. The results strongly suggest that myostatin is a potent therapeutic target for interfering with osteoclast formation and joint destruction in RA.
Grützmeier, Sven; Porwit, Anna; Schmitt, Corinna; Sandström, Eric; Åkerlund, Börje; Ernberg, Ingemar
2016-01-01
Most malignant lymphomas in HIV-patients are caused by reactivation of EBV-infection. Some lymphomas have a very rapid fulminant course. HHV-8 has also been reported to be a cause of lymphoma. The role of CMV in the development of lymphoma is not clear, though both CMV and HHV-8 have been reported in tissues adjacent to the tumour in Burkitt lymphoma patients. Here we present a patient with asymptomatic HIV infection, that contracted a primary cytomegalovirus (CMV) infection and human herpes virus 8 (HHV-8) infection. Three weeks before onset of symptoms the patient had unprotected sex which could be possible source of his CMV and also HHV-8 infection He deteriorated rapidly and died with a generalized anaplastic large cell lymphoma (ALCL). A Caucasian homosexual male with asymptomatic human immunodeficiency virus (HIV) infection contracted a primary cytomegalovirus (CMV) infection and human herpes virus 8 (HHV-8) infection. He deteriorated rapidly and died with a generalized anaplastic large cell lymphoma (ALCL). Clinical and laboratory records were compiled. Immunohistochemistry was performed on lymphoid tissues, a liver biopsy, a bone marrow aspirate and the spleen during the illness and at autopsy. Serology and PCR for HIV, CMV, EBV, HHV-1-3 and 6-8 was performed on blood drawn during the course of disease. The patient presented with an acute primary CMV infection. Biopsies taken 2 weeks before death showed a small focus of ALCL in one lymph node of the neck. Autopsy demonstrated a massive infiltration of ALCL in lymph nodes, liver, spleen and bone marrow. Blood samples confirmed primary CMV- infection, a HHV-8 infection together with reactivation of Epstein- Barr-virus (EBV). Primary CMV-infection and concomitant HHV-8 infection correlated with reactivation of EBV. We propose that these two viruses influenced the development and progression of the lymphoma. Quantitative PCR blood analysis for EBV, CMV and HHV-8 could be valuable in diagnosis and treatment of this type of very rapidly developing lymphoma. It is also a reminder of the importance of prevention and prophylaxis of several infections by having protected sex.
Paradigm Shift in Thyroid Hormone Mechanism of Action | Center for Cancer Research
Thyroid hormone (TH) is one of the primary endocrine regulators of human metabolism and homeostasis. Acting through three forms of the thyroid hormone receptor (THR; alpha-1, beta-1, and beta-2), TH regulates target gene expression in nearly every cell in the body, modulating fundamental processes, such as basal metabolic rate, long bone growth, and neural maturation. TH is
Matin, Khalrul; Senpuku, Hidenobu; Hanada, Nobuhiro; Ozawa, Hidehiro; Ejiri, Sadakazu
2003-01-01
Difficulties relating to bone regeneration that complicate immediate implant placement include buccal and/or lingual fenestrations, primary anchorage of the implants, and the need for protection from functional loading during the osseointegration period. The objective of this pilot study was to evaluate bone regeneration by recombinant human bone morphogenetic protein-2 (rhBMP-2) around immediate implants placed in maxillary sockets in rats. A total of 16 cylindric 0.8 x 1.8-mm commercially pure, solid titanium Implants were placed immediately after gentle extraction of the maxillary first molar teeth of 8 male Wistar rats. The sockets were randomly divided into 3 groups: group 1 (n = 6) received rhBMP-2 with polylactic acid/polyglycolic acid copolymer-coated gelatin sponge carrier; group 2 (n = 5) received only the carrier; and group 3 (n = 5) received no grafting materials following placement The rats were euthanized at 90 days postsurgery for microscopic analysis. In group 1, the implant body remained submerged completely, including the coronal part, which was fully covered by a significant amount (30% of total height) of regenerated cortical bone, even though the implant could easily be pulled out by a tweezer at the time of placement. Close approximation between the implant surface and regenerated bone could also be detected, indicating good bone-to-implant contact. In contrast, only peri-implant bone regeneration occurred in group 2, and an approximate 0.3-mm coronal part of the implant remained exposed. When no grafting materials were used (group 3), almost one third of the total length of the implant was exfoliated out of the socket when no grafting materials were used. Based on previous study and data from 16 sockets of the present study, it could be concluded that rhBMP-2 facilitated the regeneration of bone around immediate implants. In particular, the bone covering the coronal part could have been regenerated shortly after surgery, which helped to maintain the implant body inside the socket during the integration period in rats.
2014-01-01
Background Ewing’s sarcoma (ES) is the second most frequent primitive malignant bone tumor in adolescents with a very poor prognosis for high risk patients, mainly when lung metastases are detected (overall survival <15% at 5 years). Zoledronic acid (ZA) is a potent inhibitor of bone resorption which induces osteoclast apoptosis. Our previous studies showed a strong therapeutic potential of ZA as it inhibits ES cell growth in vitro and ES primary tumor growth in vivo in a mouse model developed in bone site. However, no data are available on lung metastasis. Therefore, the aim of this study was to determine the effect of ZA on ES cell invasion and metastatic properties. Methods Invasion assays were performed in vitro in Boyden’s chambers covered with Matrigel. Matrix Metalloproteinase (MMP) activity was analyzed by zymography in ES cell culture supernatant. In vivo, a relevant model of spontaneous lung metastases which disseminate from primary ES tumor was induced by the orthotopic injection of 106 human ES cells in the tibia medullar cavity of nude mice. The effect of ZA (50 μg/kg, 3x/week) was studied over a 4-week period. Lung metastases were observed macroscopically at autopsy and analysed by histology. Results ZA induced a strong inhibition of ES cell invasion, probably due to down regulation of MMP-2 and −9 activities as analyzed by zymography. In vivo, ZA inhibits the dissemination of spontaneous lung metastases from a primary ES tumor but had no effect on the growth of established lung metastases. Conclusion These results suggest that ZA could be used early in the treatment of ES to inhibit bone tumor growth but also to prevent the early metastatic events to the lungs. PMID:24612486
Scheele, Christian; Pietschmann, Matthias F; Schröder, Christian; Grupp, Thomas; Holderied, Melanie; Jansson, Volmar; Müller, Peter E
2017-03-01
Unicompartmental total knee arthroplasty (UKA) is a well-established treatment option for unicondylar osteoarthritis, and generally leads to better functional results than tricompartimental total knee arthroplasty (TKA). However, revision rates of UKAs are reported as being higher; a major reason for this is aseptic loosening of the tibial component due to implant-cement-bone interface fatigue. The objective of this study was to determine the effects of trabecular bone preparation, prior to implantation of tibial UKAs, on morphological and biomechanical outcomes in a cadaver study. Cemented UKAs were performed in 18 human cadaver knees after the bone bed was cleaned using pulsed lavage (Group A), conventional brush (Group B) or no cleaning at all (Group C, control). Morphologic cement penetration and primary stability were measured. The area proportion under the tibial component without visible cement penetration was significantly higher in Group C (21.9%, SD 11.9) than in both Group A (7.1%, SD 5.8), and Group B (6.5%, SD 4.2) (P=0.007). The overall cement penetration depth did not differ between groups. However, in the posterior part, cement penetration depth was significantly higher in Group B (1.9mm, SD 0.3) than in both Group A (1.3mm, SD 0.3) and Group C (1.4mm, SD 0.3) (P=0.015). The mode of preparation did not show a substantial effect on primary stability tested under dynamic compression-shear test conditions (P=0.910). Bone preparation significantly enhances cement interdigitation. The application of a brush shows similar results compared with the application of pulsed lavage. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism
Chen, Julia C.; Hoey, David A.; Chua, Mardonn; Bellon, Raymond; Jacobs, Christopher R.
2016-01-01
It has long been suspected, but never directly shown, that bone formed to accommodate an increase in mechanical loading is related to the creation of osteoblasts from skeletal stem cells. Indeed, biophysical stimuli potently regulate osteogenic lineage commitment in vitro. In this study, we transplanted bone marrow cells expressing green fluorescent protein, to enable lineage tracing, and subjected mice to a biophysical stimulus, to elicit a bone-forming response. We detected cells derived from transplanted progenitors embedded within the bone matrix near active bone-forming surfaces in response to loading, demonstrating for the first time, that mechanical signals enhance the homing and attachment of bone marrow cells to bone surfaces and the commitment to an osteogenic lineage of these cells in vivo. Furthermore, we used an inducible Cre/Lox recombination system to delete kinesin family member 3A (Kif3a), a gene that is essential for primary cilia formation, at will in transplanted cells and their progeny, regardless of which tissue may have incorporated them. Disruption of the mechanosensing organelle, the primary cilium in a progenitor population, significantly decreased the amount of bone formed in response to mechanical stimulation. The collective results of our study directly demonstrate that, in a novel experimental stem cell mechanobiology model, mechanical signals enhance osteogenic lineage commitment in vivo and that the primary cilium contributes to this process.—Chen, J. C., Hoey, D. A., Chua, M., Bellon, R., Jacobs, C. R. Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism. PMID:26675708
Su, Nan; Sun, Qidi; Li, Can; Lu, Xiumin; Qi, Huabing; Chen, Siyu; Yang, Jing; Du, Xiaolan; Zhao, Ling; He, Qifen; Jin, Min; Shen, Yue; Chen, Di; Chen, Lin
2010-01-01
Achondroplasia (ACH) is a short-limbed dwarfism resulting from gain-of-function mutations in fibroblast growth factor receptor 3 (FGFR3). Previous studies have shown that ACH patients have impaired chondrogenesis, but the effects of FGFR3 on bone formation and bone remodeling at adult stages of ACH have not been fully investigated. Using micro-computed tomography and histomorphometric analyses, we found that 2-month-old Fgfr3G369C/+ mice (mouse model mimicking human ACH) showed decreased bone mass due to reduced trabecular bone volume and bone mineral density, defect in bone mineralization and increased osteoclast numbers and activity. Compared with primary cultures of bone marrow stromal cells (BMSCs) from wild-type mice, Fgfr3G369C/+ cultures showed decreased cell proliferation, increased osteogenic differentiation including up-regulation of alkaline phosphatase activity and expressions of osteoblast marker genes, and reduced bone matrix mineralization. Furthermore, our studies also suggest that decreased cell proliferation and enhanced osteogenic differentiation observed in Fgfr3G369C/+ BMSCs are caused by up-regulation of p38 phosphorylation and that enhanced Erk1/2 activity is responsible for the impaired bone matrix mineralization. In addition, in vitro osteoclast formation and bone resorption assays demonstrated that osteoclast numbers and bone resorption area were increased in cultured bone marrow cells derived from Fgfr3G369C/+ mice. These findings demonstrate that gain-of-function mutation in FGFR3 leads to decreased bone mass by regulating both osteoblast and osteoclast activities. Our studies provide new insight into the mechanism underlying the development of ACH. PMID:20053668
Cancer-associated bone disease
Body, J.-J.; Brandi, M.-L.; Cannata-Andia, J.; Chappard, D.; El Maghraoui, A.; Glüer, C.C.; Kendler, D.; Napoli, N.; Papaioannou, A.; Pierroz, D.D.; Rahme, M.; Van Poznak, C.H.; de Villiers, T.J.; El Hajj Fuleihan, G.
2016-01-01
Bone is commonly affected in cancer. Cancer-induced bone disease results from the primary disease, or from therapies against the primary condition, causing bone fragility. Bone-modifying agents, such as bisphosphonates and denosumab, are efficacious in preventing and delaying cancer-related bone disease. With evidence-based care pathways, guidelines assist physicians in clinical decision-making. Of the 57 million deaths in 2008 worldwide, almost two thirds were due to non-communicable diseases, led by cardiovascular diseases and cancers. Bone is a commonly affected organ in cancer, and although the incidence of metastatic bone disease is not well defined, it is estimated that around half of patients who die from cancer in the USA each year have bone involvement. Furthermore, cancer-induced bone disease can result from the primary disease itself, either due to circulating bone resorbing substances or metastatic bone disease, such as commonly occurs with breast, lung and prostate cancer, or from therapies administered to treat the primary condition thus causing bone loss and fractures. Treatment-induced osteoporosis may occur in the setting of glucocorticoid therapy or oestrogen deprivation therapy, chemotherapy-induced ovarian failure and androgen deprivation therapy. Tumour skeletal-related events include pathologic fractures, spinal cord compression, surgery and radiotherapy to bone and may or may not include hypercalcaemia of malignancy while skeletal complication refers to pain and other symptoms. Some evidence demonstrates the efficacy of various interventions including bone-modifying agents, such as bisphosphonates and denosumab, in preventing or delaying cancer-related bone disease. The latter includes treatment of patients with metastatic skeletal lesions in general, adjuvant treatment of breast and prostate cancer in particular, and the prevention of cancer-associated bone disease. This has led to the development of guidelines by several societies and working groups to assist physicians in clinical decision making, providing them with evidence-based care pathways to prevent skeletal-related events and bone loss. The goal of this paper is to put forth an IOF position paper addressing bone diseases and cancer and summarizing the position papers of other organizations. PMID:24146095
Giner, Mercè; Rios, Ma José; Montoya, Ma José; Vázquez, Ma Angeles; Miranda, Cristina; Pérez-Cano, Ramón
2011-01-15
The osteoprotegerin/RANKL system modulates bone remodelling. Alendronate and raloxifene are anti-resorptive drugs effective in osteoporotic disease. They reduce fracture risk, the activity of bone remodelling and increase bone mineral density. It is not known if they can exert a direct effect in osteoblasts via the osteoprotegerin/RANKL system. Our objective was to assess the effects of alendronate and raloxifene among osteoprotegerin production (ELISA), as well as osteoprotegerin and RANKL expression (RT-PCR), in primary cultures of human osteoblasts (hOB). We compared 17 osteoporotic patients with 16 patients affected by osteoarthritis in basal conditions and after incubation with alendronate (10(-6) M), raloxifene (10(-7) M) or 17-β estradiol (10(-7) M) for 24 h. The statistical analysis was determined by ANOVA. Osteoprotegerin protein secretion in hOB cultures was higher in patients with osteoporosis than osteoarthritis. Osteoprotegerin secretion levels remained unchanged after each treatment. The osteoporotic group was more sensitive to treatment. Both raloxifene (34%) and estradiol (37%) increased osteoprotegerin mRNA expression, and alendronate (118%) and raloxifene (61%) increased the mRNA expression of RANKL. The RANKL/osteoprotegerin mRNA ratio was higher in osteoporotic than osteoarthritic patients. In the osteoporotic group, the RANKL/osteoprotegerin mRNA ratio was significantly increased after treatment with alendronate (112%) and after treatment with raloxifene (60%). These results indicate a direct action of alendronate and raloxifene on hOB cultures from osteoporotic patients, and the cited drugs are able to modulate the osteoprotegerin/RANKL system. Copyright © 2010 Elsevier B.V. All rights reserved.
Barger, Anne M; Fan, Timothy M; de Lorimier, Louis-Philippe; Sprandel, Ian T; O'Dell-Anderson, Kristen
2007-01-01
Receptor activator of nuclear factor kappa-B (RANK), RANK-ligand (RANKL), and the soluble decoy receptor osteoprotegerin (OPG) form a key axis modulating osteoclastogenesis. In health, RANKL-expressing bone stromal cells and osteoblasts activate osteoclasts through RANK ligation, resulting in homeostatic bone resorption. Skeletal tumors of dogs and cats, whether primary or metastatic, may express RANKL and directly induce malignant osteolysis. Bone malignancies of dogs and cats may express RANKL, thereby contributing to pathologic bone resorption and pain. Furthermore, relative RANKL expression in bone tumors may correlate with radiographic characteristics of bone pathology. Forty-two dogs and 6 cats with spontaneously-occurring tumors involving bones or soft tissues were evaluated. A polyclonal anti-human RANKL antibody was validated for use in canine and feline cells by flow cytometry and immunocytochemistry. Fifty cytologic specimens were collected from bone and soft tissue tumors of 48 tumor-bearing animals and assessed for RANKL expression. In 15 canine osteosarcoma (OSA) samples, relative RANKL expression was correlated with radiographic characteristics of bone pathology. Expression of RANKL by neoplastic cells was identified in 32/44 canine and 5/6 feline tumor samples. In 15 dogs with OSA, relative RANKL expression did not correlate with either radiographic osteolysis or bone mineral density as assessed by dual energy x-ray absorptiometry. In dogs and cats, tumors classically involving bone and causing pain, often may express RANKL. Confirming RANKL expression in tumors is a necessary step toward the rational institution of novel therapies targeting malignant osteolysis via RANKL antagonism.
Croker, Sarah L; Reed, Warren; Donlon, Denise
2016-03-01
The task of identifying fragments of long bone shafts as human or non-human is difficult but necessary, for both forensic and archaeological cases, and a fast simple method is particularly useful. Previous literature suggests there may be differences in the thickness of the cortical bone between these two groups, but this has not been tested thoroughly. The aim of this study was not only to test this suggestion, but also to provide data that could be of practical assistance for future comparisons. The major limb bones (humerus, radius, femur and tibia) of 50 Caucasoid adult skeletons of known age and sex were radiographed, along with corresponding skeletal elements from sheep, pigs, cattle, large dogs and kangaroos. Measurements were taken from the radiographs at five points along the bone shaft, of shaft diameter, cortical bone thickness, and a cortical thickness index (sum of cortices divided by shaft diameter) in both anteroposterior and mediolateral orientations. Each variable for actual cortical bone thickness as well as cortical thickness indices were compared between the human group (split by sex) and each of the non-human groups in turn, using Student's t-tests. Results showed that while significant differences did exist between the human groups and many of the non-human groups, these were not all in the same direction. That is, some variables in the human groups were significantly greater than, and others were significantly less than, the corresponding variable in the non-human groups, depending on the particular non-human group, sex of the human group, or variable under comparison. This was the case for measurements of both actual cortical bone thickness and cortical thickness index. Therefore, for bone shaft fragments for which the skeletal element is unknown, the overlap in cortical bone thickness between different areas of different bones is too great to allow identification using this method alone. However, by providing extensive cortical bone thickness data for a range of bones, this study may be able to assist in the identification of some bone fragments by providing another piece of evidence that, used in conjunction with other clues, can provide a likely determination of the origin of a bone fragment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Dobnig, H.; Turner, R. T.
1997-01-01
PTH treatment can result in dramatic increases in cancellous bone volume in normal and osteopenic rats. However, this potentially beneficial response is only observed after pulsatile treatment; continuous infusion of PTH leads to hypercalcemia and bone abnormalities. The purpose of these studies was to determine the optimal duration of the PTH pulses. A preliminary study revealed that human PTH-(1-34) (hPTH) is cleared from circulation within 6 h after sc administration of an anabolic dose of the hormone (80 microg/kg). To establish the effects of gradually extending the duration of exposure to hPTH without increasing the daily dose, we programmed implanted Alzet osmotic pumps to deliver the 80 microg/kg x day dose of the hormone during pulses of 1, 2, and 6 h/day, or 40 microg/kg x day continuously. Discontinuous infusion was accomplished by alternate spacing of external tubing with hPTH solution and sesame oil. After 6 days of treatment, we evaluated serum chemistry and bone histomorphometry. As negative and positive controls, groups of rats received pumps that delivered vehicle only and 80 microg/kg x day hPTH by daily sc injection, respectively. Dynamic and static bone histomorphometry revealed that the daily sc injection and 1 h/day infusion dramatically increased osteoblast number and bone formation in the proximal tibial metaphysis, whereas longer infusion resulted in systemic side-effects, including up to a 10% loss in body weight, hypercalcemia, and histological changes in the proximal tibia resembling abnormalities observed in patients with chronic primary hyperparathyroidism, including peritrabecular marrow fibrosis and focal bone resorption. Infusion for as little as 2 h/day resulted in minor weight loss and changes in bone histology that were intermediate between sc and continuous administration. The results demonstrate that the therapeutic interval for hPTH exposure is brief, but that programmed administration of implanted hormone is a feasible alternative to daily injection as a route for administration of the hormone.
NASA Technical Reports Server (NTRS)
Bromage, Timothy G.; Doty, Stephen B.; Smolyar, Igor; Holton, Emily
1996-01-01
Our stated primary objective is to quantify the growth rate variability of rat lamellar bone exposed to micro and macrogravity (2G). The primary significance of the proposed work is that an elegant method will be established that unequivocally characterizes the morphological consequences of gravitational factors on developing bone. The integrity of this objective depends upon our successful preparation of thin sections suitable for imaging individual bone lamellae, and our imaging and quantitation of growth rate variability in populations of lamellae from individual bone samples.
E-cadherin and beta-catenin are down-regulated in prostatic bone metastases.
Bryden, A A G; Hoyland, J A; Freemont, A J; Clarke, N W; Schembri Wismayer, D; George, N J R
2002-03-01
To determine the E-cadherin and beta-catenin expression phenotype in untreated primary prostate cancer and corresponding bone metastases. Paired bone metastasis and primary prostate specimens were obtained from 14 men with untreated metastatic prostate carcinoma. The tumours were histologically graded by an independent pathologist. Expression of mRNA for E-cadherin and beta-catenin was detected within the tumour cells using in-situ hybridization with a 35S-labelled cDNA probe. The expression of E-cadherin and beta-catenin were graded as uniform, heterogeneous or negative. The mRNA for E-cadherin was expressed in 13 of 14 primary carcinomas and 11 bone metastases; beta-catenin was expressed by 13 and nine, respectively. Of the primary tumours, nine expressed E-cadherin and beta-catenin uniformly; in contrast, all metastases had down-regulated E-cadherin and/or beta-catenin. The down-regulation of E-cadherin and beta-catenin are a feature of the metastatic phenotype, which may be a significant factor in the genesis of bone metastases. However, this does not appear to be reflected in the expression of these molecules in the primary tumours.
Parathyroid hormone-related peptide activates and modulates TRPV1 channel in human DRG neurons.
Shepherd, A J; Mickle, A D; McIlvried, L A; Gereau, R W; Mohapatra, D P
2018-05-24
Parathyroid hormone-related peptide (PTHrP) is associated with advanced tumor growth and metastasis, especially in breast, prostate and myeloma cancers that metastasize to bones, resulting in debilitating chronic pain conditions. Our recent studies revealed that the receptor for PTHrP, PTH1R, is expressed in mouse DRG sensory neurons, and its activation leads to flow-activation and modulation of TRPV1 channel function, resulting in peripheral heat and mechanical hypersensitivity. In order to verify the translatability of our findings in rodents to humans, we explored whether this signalling axis operates in primary human DRG sensory neurons. Analysis of gene expression data from recently reported RNA deep sequencing experiments performed on mouse and human DRGs reveals that PTH1R is expressed in DRG and tibial nerve. Furthermore, exposure of cultured human DRG neurons to PTHrP leads to slow-sustained activation of TRPV1 and modulation of capsaicin-induced channel activation. Both activation and modulation of TRPV1 by PTHrP were dependent on PKC activity. Our findings suggest that functional PTHrP/PTH1R-TRPV1 signalling exists in human DRG neurons, which could contribute to local nociceptor excitation in the vicinity of metastatic bone tumor microenvironment. © 2018 European Pain Federation - EFIC®.
Skeletal stem cell and bone implant interactions are enhanced by LASER titanium modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisti, Karin E., E-mail: karinellensisti@gmail.com; Biomaterials Group, Institute of Chemistry, São Paulo State University; Federal University of Mato Grosso do Sul
Purpose: To evaluate the osteo-regenerative potential of Titanium (Ti) modified by Light Amplification by Stimulated Emission of Radiation (LASER) beam (Yb-YAG) upon culture with human Skeletal Stem Cells (hSSCs{sup 1}). Methods: Human skeletal cell populations were isolated from the bone marrow of haematologically normal patients undergoing primary total hip replacement following appropriate consent. STRO-1{sup +} hSSC{sup 1} function was examined for 10 days across four groups using Ti discs: i) machined Ti surface group in basal media (Mb{sup 2}), ii) machined Ti surface group in osteogenic media (Mo{sup 3}), iii) LASER-modified Ti group in basal media (Lb{sup 4}) and, iv)more » LASER-modified Ti group in osteogenic media (Lo{sup 5}). Molecular analysis and qRT-PCR as well as functional analysis including biochemistry (DNA, Alkaline Phosphatase (ALP{sup 6}) specific activity), live/dead immunostaining (Cell Tracker Green (CTG{sup 7})/Ethidium Homodimer-1 (EH-1{sup 8})), and fluorescence staining (for vinculin and phalloidin) were undertaken. Inverted, confocal and Scanning Electron Microscopy (SEM) approaches were used to characterise cell adherence, proliferation, and phenotype. Results: Enhanced cell spreading and morphological rearrangement, including focal adhesions were observed following culture of hSSCs{sup 1} on LASER surfaces in both basal and osteogenic conditions. Biochemical analysis demonstrated enhanced ALP{sup 6} specific activity on the hSSCs{sup 1}-seeded on LASER-modified surface in basal culture media. Molecular analysis demonstrated enhanced ALP{sup 6} and osteopontin expression on titanium LASER treated surfaces in basal conditions. SEM, inverted microscopy and confocal laser scanning microscopy confirmed extensive proliferation and migration of human bone marrow stromal cells on all surfaces evaluated. Conclusions: LASER-modified Ti surfaces modify the behaviour of hSSCs.{sup 1} In particular, SSC{sup 1} adhesion, osteogenic gene expression, cell morphology and cytoskeleton structure were affected. The current studies show Ti LASER modification can enhance the osseointegration between Ti and skeletal cells, with important implications for orthopaedic application. - Highlights: • Bone stem cells on LASER Ti surface display enhanced cell growth and viability. • Bone stem cells on LASER Ti surface exhibit marked biocompatibility. • Human bone stem cells on LASER Ti surface exhibit altered morphology. • LASER Ti enhance osteogenic differentiation of human bone skeletal stem cells. • LASER Ti provides a unique approach to enhance osseointegration with the material.« less
Floreani, A; Carderi, I; Ferrara, F; Rizzotto, E R; Luisetto, G; Camozzi, V; Baldo, V
2007-06-01
International guidelines for managing osteoporosis in cirrhosis or severe cholestasis indicate a <-2.5 t-score as a cut-off for medical treatment, while no treatment is recommended in the case of osteopenia (t-scores ranging from -1.0 to -2.5). We conducted a prospective study in primary biliary cirrhosis with a view to optimizing the rationale for the medical treatment of bone loss. All naïve post-menopausal women with primary biliary cirrhosis were enrolled in the study. Bone metabolism was evaluated by measuring 25-hydroxy-vitamin D, parathyroid hormone, osteocalcin. Bone mineral density was assessed at the lumbar spine by dual-photon X-ray absorptiometry at the baseline and every 2 years for up to 4 years. Patients with either osteopenia or osteoporosis received the following treatment: oral calcium carbonate (1000 mg/day)+vitamin D3 (880 IU/day)+i.m. disodium clodronate 100mg every 10 days for 4 years. Ninety-six patients completed the study: 30 had a normal bone mineral density (group 1), 37 had osteopenia (group 2), 29 had osteoporosis (group 3). No significant differences in biochemical parameters of bone metabolism were observed between the three groups. A total of 288 bone mineral density measurements were taken. Linear regression analysis failed to reveal significant changes in t-score over the follow-up in all groups. A 4-year treatment with clodronate+calcium/vitamin D3 supplements does not significantly improve osteoporosis or osteopenia in primary biliary cirrhosis women in menopause, but prevents the natural bone loss in these patients. Extensive international trials are warranted to optimize the prevention and treatment of bone loss in primary biliary cirrhosis.
Wang, Yuli; Yin, Ying; Jiang, Fei; Chen, Ning
2015-02-01
Human amnion mesenchymal stem cells (HAMSCs) can be obtained from human amniotic membrane, a highly abundant and readily available tissue. HAMSC sources present fewer ethical issues, have low immunogenicity, anti-inflammatory properties, considerable advantageous characteristics, and are considered an attractive potential treatment material in the field of regenerative medicine. We used a co-culture system to determine whether HAMSCs could promote osteogenesis in human bone marrow mesenchymal stem cells (HBMSCs). We isolated HAMSCs from discarded amnion samples and collected them using pancreatin/collagenase digestion. We cultured HAMSCs and HBMSCSs in basal medium. Activity of alkaline phosphatase (ALP), an early osteogenesis marker, was increased in the co-culture system compared to the control single cultures, which we also confirmed by ALP staining. We used immunofluorescence testing to investigate the effects of co-culturing with HAMSCs on HBMSC proliferation, which revealed that the co-culturing enhanced EdU expression in HBMSCs. Western blotting and quantitative real-time PCR indicated that co-culturing promoted osteogenesis in HBMSCs. Furthermore, Alizarin red S staining revealed that extracellular matrix calcium levels in mineralized nodule formation produced by the co-cultures were higher than that in the controls. Using the same co-culture system, we further observed the effects of HAMSCs on osteogenic differentiation in primary osteoblasts by Western blotting, which better addressed the mechanism for HAMSCs in bone regeneration. The results showed HAMSCs are osteogenic and not only play a role in promoting HBMSC proliferation and osteogenic differentiation but also in osteoblasts, laying the foundation for new regenerative medicine methods.
Bertho, Jean Marc; Demarquay, Christelle; Mouiseddine, Moubarak; Douenat, Noémie; Stefani, Johanna; Prat, Marie; Paquet, François
2008-08-01
To define the ability of human bone marrow (BM) stromal cells to produce fms-like tyrosine kinase 3 (Flt3)-ligand (FL), and the effect of irradiation, tumour necrosis factor-alpha (TNFalpha) or tumour growth factor beta (TGFbeta) on FL production. Primary BM stromal cell cultures were irradiated at 2-10 Gy or were stimulated with TNFalpha or TGFbeta1. The presence of FL was tested in culture supernatants and in cell lysate. The presence of a membrane-bound form of FL and the level of gene expression were also tested. Primary BM stromal cells spontaneously released FL. This production was increased by TNFalpha but not by TGFbeta1 or by irradiation. Chemical induction of osteoblastic differentiation from BM stromal cells also induced an increase in FL release. Our results suggest that the observed increase in FL concentration after in vivo irradiation is an indirect effect. The possible implication of BM stromal cells in these mechanisms is discussed.
Arriero, María del Mar; Ramis, Joana M.; Perelló, Joan; Monjo, Marta
2012-01-01
Background Inoxitol hexakisphosphate (IP6) has been found to have an important role in biomineralization and a direct effect inhibiting mineralization of osteoblasts in vitro without impairing extracellular matrix production and expression of alkaline phosphatase. IP6 has been proposed to exhibit similar effects to those of bisphosphonates on bone resorption, however, its direct effect on osteoclasts (OCL) is presently unknown. Methodology/Principal Findings The aim of the present study was to investigate the effect of IP6 on the RAW 264.7 monocyte/macrophage mouse cell line and on human primary osteoclasts. On one hand, we show that IP6 decreases the osteoclastogenesis in RAW 264.7 cells induced by RANKL, without affecting cell proliferation or cell viability. The number of TRAP positive cells and mRNA levels of osteoclast markers such as TRAP, calcitonin receptor, cathepsin K and MMP-9 was decreased by IP6 on RANKL-treated cells. On the contrary, when giving IP6 to mature osteoclasts after RANKL treatment, a significant increase of bone resorption activity and TRAP mRNA levels was found. On the other hand, we show that 1 µM of IP6 inhibits osteoclastogenesis of human peripheral blood mononuclear cells (PBMNC) and their resorption activity both, when given to undifferentiated and to mature osteoclasts. Conclusions/Significance Our results demonstrate that IP6 inhibits osteoclastogenesis on human PBMNC and on the RAW264.7 cell line. Thus, IP6 may represent a novel type of selective inhibitor of osteoclasts and prove useful for the treatment of osteoporosis. PMID:22905230
Delta-Tocotrienol: Radiation Protection and Effects on Signal Transduction Pathways
2011-06-15
Delta- Tocotrienol : Radiation Protection and Effects on Signal Transduction Pathways Venkataraman Srinivasan, PhD Mang Xiao, MD Principal...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Delta- Tocotrienol : Radiation Protection And Effects On...Mechanisms? 17 Survival of γ-irradiated mouse bone marrow and primary human hematopoietic CD34+ cells was significantly enhanced by Delta- tocotrienol (DT3
Yu, D; Li, Q; Mu, X; Chang, T; Xiong, Z
2008-10-01
Active artificial bone composed of poly lactide-co-glycolide (PLGA)/ tricalcium phosphate (TCP) was prefabricated using low-temperature rapid-prototyping technology so that the process of osteogenesis could be observed in it. PLGA and TCP were the primary materials, they were molded at low temperature, then recombinant human bone morphogenetic protein-2 (rhBMP-2) was added to form an active artificial bone. Goats with standard cranial defects were randomly divided into experimental (implants with rhBMP-2 added) and control (implants without rhBMP-2) groups, and osteogenesis was observed and evaluated by imaging and biomechanical and histological examinations. The PLGA-TCP artificial bone scaffold (90% porosity) had large and small pores of approximately 360microm and 3-5microm diameter. Preliminary and complete repair of the cranial defect in the goats occurred 12 and 24 weeks after surgery, respectively. The three-point bending strength of the repaired defects attained that of the normal cranium. In conclusion, low-temperature rapid-prototyping technology can preserve the biological activity of this scaffold material. The scaffold has a good three-dimensional structure and it becomes an active artificial bone after loading with rhBMP-2 with a modest degradation rate and excellent osteogenesis in the goat.
NASA Technical Reports Server (NTRS)
Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.
1996-01-01
During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.
Vibration therapy: clinical applications in bone
Thompson, William R.; Yen, Sherwin S.; Rubin, Janet
2015-01-01
Purpose of review The musculoskeletal system is largely regulated through dynamic physical activity and is compromised by cessation of physical loading. There is a need to recreate the anabolic effects of loading on the musculoskeletal system, especially in frail individuals who cannot exercise. Vibration therapy is designed to be a nonpharmacological analogue of physical activity, with an intention to promote bone and muscle strength. Recent findings Animal and human studies suggest that high-frequency, low-magnitude vibration therapy improves bone strength by increasing bone formation and decreasing bone resorption. There is also evidence that vibration therapy is useful in treating sarcopenia, which confounds skeletal fragility and fall risk in aging. Enhancement of skeletal and muscle strength involves regulating the differentiation of mesenchymal stem cells to build these tissues; mesenchymal stem cell lineage allocation is positively promoted by vibration signals. Summary Vibration therapy may be useful as a primary treatment as well as an adjunct to both physical and pharmacological treatments, but future studies must pay close attention to compliance and dosing patterns, and importantly, the vibration signal, be it low-intensity vibration (<1g) appropriate for treatment of frail individuals or high-intensity vibration (>1g) marketed as a training exercise. PMID:25354044
Detry, C; Lamour, V; Castronovo, V; Bellahcène, A
2008-02-01
Bone sialoprotein (BSP) expression is detected in a variety of human osteotropic cancers. High expression of BSP in breast and prostate primary carcinomas is associated with progression and bone metastases development. In this study, we examined the transcriptional regulation of BSP gene expression in MDA-MB-231 and MCF-7 human breast cancer cells compared with Saos-2 human osteoblast-like cells. BSP human promoter deletion analyses delineated a -56/-84 region, which comprises a cAMP response element (CRE) that was sufficient for maximal promoter activity in breast cancer cell lines. We found that the basic fibroblast growth factor response element (FRE) also located in the proximal promoter was a crucial regulator of human BSP promoter activity in Saos-2 but not in breast cancer cells. Promoter activity experiments in combination with DNA mobility shift assays demonstrated that BSP promoter activity is under the control of the CRE element, through CREB-1, JunD and Fra-2 binding, in MDA-MB-231, MCF-7 and in Saos-2 cells. Forskolin, a protein kinase A pathway activator, failed to enhance BSP transcriptional activity suggesting that CRE site behaves as a constitutive rather than an inducible element in these cell lines. Over-expression of JunD and Fra-2 increased BSP promoter activity and upregulated endogenous BSP protein expression in MCF-7 and Saos-2 cells while siRNA-mediated inhibition of both factors expression significantly reduced BSP protein level in MDA-MB-231. Collectively, these data provide with new transcriptional mechanisms, implicating CREB and AP-1 factors, that control BSP gene expression in breast cancer cells.
Ghosh, Sanjib Kumar; Biswas, Sudipa; Sharma, Suranjali; Chakraborty, Soumya
2017-06-01
Over the years a number of investigators have analysed the morphology of wormian bones in different population groups across the world. There have been significant variations between findings reported in these studies, and this has prompted researchers to focus on the influence of genetic factors on the morphology of these bones. In the light of the above observation, we considered it justified to conduct anatomical studies on wormian bones in different population groups; hence, we undertook the present study to look into the morphological details of these bones among a population in the eastern part of India. We observed a total of 120 adult dry human skulls of unknown age and sex, and noted the anatomical details of wormian bones when present. It was observed that wormian bones were present in 45 % of skulls, and that 30 % of skulls had more than one wormian bone. We also found that 2.5 % of the skulls had ten or more wormian bones, which is considered as pathognomonic. Maximum incidence (53.33 %) was observed at the lambdoid suture and minimum incidence at the bregma and metopic suture (0.61 % in each case). We noted a high incidence (21.21 %) of Inca bone/lambdoid ossicle, and bilaterally symmetrical wormian bones were present in 12.5 % study skulls. There were statistically significant (P < 0.05) variations between the findings of the present study and values reported in previous studies conducted in other regions of India and different parts of the world. Our observations favour the view that genetic influence primarily determines the morphology of wormian bones.
Cummins, Nathan W.; Klicpera, Anna; Sainski, Amy M.; Bren, Gary D.; Khosla, Sundeep; Westendorf, Jennifer J.; Badley, Andrew D.
2011-01-01
Patients with HIV infection have decreased numbers of osteoblasts, decreased bone mineral density and increased risk of fracture compared to uninfected patients; however, the molecular mechanisms behind these associations remain unclear. We questioned whether Gp120, a component of the envelope protein of HIV capable of inducing apoptosis in many cell types, is able to induce cell death in bone-forming osteoblasts. We show that treatment of immortalized osteoblast-like cells and primary human osteoblasts with exogenous Gp120 in vitro at physiologic concentrations does not result in apoptosis. Instead, in the osteoblast-like U2OS cell line, cells expressing CXCR4, a receptor for Gp120, had increased proliferation when treated with Gp120 compared to control (P<0.05), which was inhibited by pretreatment with a CXCR4 inhibitor and a G-protein inhibitor. This suggests that Gp120 is not an inducer of apoptosis in human osteoblasts and likely does not directly contribute to osteoporosis in infected patients by this mechanism. PMID:21931863
Elimination of leukemic cells from human transplants by laser nano-thermolysis
NASA Astrophysics Data System (ADS)
Lapotko, Dmitri; Lukianova, Ekaterina; Potapnev, Michail; Aleinikova, Olga; Oraevsky, Alexander
2006-02-01
We describe novel ex vivo method for elimination of tumor cells from bone marrow and blood, Laser Activated Nano-Thermolysis for Cell Elimination Technology (LANTCET) and propose this method for purging of transplants during treatment of leukemia. Human leukemic cells derived from real patients with different diagnoses (acute lymphoblastic leukemias) were selectively damaged by LANTCET in the experiments by laser-induced micro-bubbles that emerge inside individual specifically-targeted cells around the clusters of light-absorbing gold nanoparticles. Pretreatment of the transplants with diagnosis-specific primary monoclonal antibodies and gold nano-particles allowed the formation of nanoparticle clusters inside leukemic cells only. Electron microscopy found the nanoparticulate clusters inside the cells. Total (99.9%) elimination of leukemic cells targeted with specific antibodies and nanoparticles was achieved with single 10-ns laser pulses with optical fluence of 0.2 - 1.0 J/cm2 at the wavelength of 532 nm without significant damage to normal bone marrow cells in the same transplant. All cells were studied for the damage/viability with several control methods after their irradiation by laser pulses. Presented results have proved potential applicability of developed LANTCET technology for efficient and safe purging (cleaning of residual tumor cells) of human bone marrow and blood transplants. Design of extra-corporeal system was proposed that can process the transplant for one patient for less than an hour with parallel detection and counting residual leukemic cells.
An in vitro study of adherence of coagulase-negative staphylococci to bone chip columns.
Lazarovich, Zilia; Boldur, Ida; Reifer, Rachel; Nitzan, Yeshayahu
2006-09-01
Coagulase-negative staphylococci (CNS) have become a dominant cause of bone infections and their adherence to the infected bones is a prerequisite for the initiation of these infections. In the present study we investigated and compared the adherence of CNS bacteria to human, chicken and rabbit bones. The study was performed using columns made of bone powder from the three different sources, and measurement of the extent of adhesion to bones of CNS bacteria as an in vitro model which is based on particles of matrix that are closely related to the natural matrix. The adhesion to rabbit bone was relatively high, while adhesion to both human and chicken bone columns was lower and almost identical. Pretreatment of the CNS bacteria with sodium periodate, beta-galactosidase or proteinase K significantly inhibited by 50-60% the adhesion to human bones. Pretreatment of CNS bacteria with subinhibitory concentrations of vancomycin or tunicamycin increased their adherence to human bones several-fold. When the bones were pretreated with vancomycin a considerable increase in the adhesion rate of the bacteria to human and chicken bones was seen. A smaller increase in adherence was observed after pretreatment of human bones with the antibiotic tunicamycin. Salicylic acid or benzalkonium chloride (BZC) also resulted in an increase in adhesion to these pretreated bones. From the results obtained it seems that pretreatment of the CNS bacteria with certain reagents exposes adhesins on the surface of the CNS bacteria. On the other hand, pretreatment of the bones with other reagents may enable a better exposure of receptors located on the bone cells and, as a consequence, may improve the adhesion of the CNS bacteria to the treated bones.
Metabolic analysis of osteoarthritis subchondral bone based on UPLC/Q-TOF-MS.
Yang, Gang; Zhang, Hua; Chen, Tingmei; Zhu, Weiwen; Ding, Shijia; Xu, Kaiming; Xu, Zhongwei; Guo, Yanlei; Zhang, Jian
2016-06-01
Osteoarthritis (OA), one of the most widespread musculoskeletal joint diseases among the aged, is characterized by the progressive loss of articular cartilage and continuous changes in subchondral bone. The exact pathogenesis of osteoarthritis is not completely clear. In this work, ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) in combination with multivariate statistical analysis was applied to analyze the metabolic profiling of subchondral bone from 42 primary osteoarthritis patients. This paper described a modified two-step method for extracting the metabolites of subchondral bone from primary osteoarthritis patients. Finally, 68 metabolites were identified to be significantly changed in the sclerotic subchondral bone compared with the non-sclerotic subchondral bone. Taurine and hypotaurine metabolism and beta-alanine metabolism were probably relevant to the sclerosis of subchondral bone. Taurine, L-carnitine, and glycerophospholipids played a vital regulation role in the pathological process of sclerotic subchondral bone. In the sclerotic process, beta-alanine and L-carnitine might be related to the increase of energy consumption. In addition, our findings suggested that the intra-cellular environment of sclerotic subchondral bone might be more acidotic and hypoxic compared with the non-sclerotic subchondral bone. In conclusion, this study provided a new insight into the pathogenesis of subchondral bone sclerosis. Our results indicated that metabolomics could serve as a promising approach for elucidating the pathogenesis of subchondral bone sclerosis in primary osteoarthritis. Graphical Abstract Metabolic analysis of osteoarthritis subchondral bone.
Does stapes surgery improve tinnitus in patients with otosclerosis?
Ismi, Onur; Erdogan, Osman; Yesilova, Mesut; Ozcan, Cengiz; Ovla, Didem; Gorur, Kemal
Otosclerosis (OS) is the primary disease of the human temporal bone characterized by conductive hearing loss and tinnitus. The exact pathogenesis of tinnitus in otosclerosis patients is not known and factors affecting the tinnitus outcome in otosclerosis patients are still controversial. To find the effect of stapedotomy on tinnitus for otosclerosis patients. Fifty-six otosclerosis patients with preoperative tinnitus were enrolled to the study. Pure tone average Air-Bone Gap values, preoperative tinnitus pitch, Air-Bone Gap closure at tinnitus frequencies were evaluated for their effect on the postoperative outcome. Low pitch tinnitus had more favorable outcome compared to high pitch tinnitus (p=0.002). Postoperative average pure tone thresholds Air-Bone Gap values were not related to the postoperative tinnitus (p=0.213). There was no statistically significant difference between postoperative Air-Bone Gap closure at tinnitus frequency and improvement of high pitch tinnitus (p=0.427). There was a statistically significant difference between Air-Bone Gap improvement in tinnitus frequency and low pitch tinnitus recovery (p=0.026). Low pitch tinnitus is more likely to be resolved after stapedotomy for patients with otosclerosis. High pitch tinnitus may not resolve even after closure of the Air-Bone Gap at tinnitus frequencies. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Zahoor, Muhammad; Westhrin, Marita; Aass, Kristin Roseth; Moen, Siv Helen; Misund, Kristine; Psonka-Antonczyk, Katarzyna Maria; Giliberto, Mariaserena; Buene, Glenn; Sundan, Anders; Waage, Anders; Sponaas, Anne-Marit; Standal, Therese
2017-12-26
Multiple myeloma (MM) is a hematologic cancer characterized by expansion of malignant plasma cells in the bone marrow. Most patients develop an osteolytic bone disease, largely caused by increased osteoclastogenesis. The myeloma bone marrow is hypoxic, and hypoxia may contribute to MM disease progression, including bone loss. Here we identified interleukin-32 (IL-32) as a novel inflammatory cytokine expressed by a subset of primary MM cells and MM cell lines. We found that high IL-32 gene expression in plasma cells correlated with inferior survival in MM and that IL-32 gene expression was higher in patients with bone disease compared with those without. IL-32 was secreted from MM cells in extracellular vesicles (EVs), and those EVs, as well as recombinant human IL-32, promoted osteoclast differentiation both in vitro and in vivo. The osteoclast-promoting activity of the EVs was IL-32 dependent. Hypoxia increased plasma-cell IL-32 messenger RNA and protein levels in a hypoxia-inducible factor 1α-dependent manner, and high expression of IL-32 was associated with a hypoxic signature in patient samples, suggesting that hypoxia may promote expression of IL-32 in MM cells. Taken together, our results indicate that targeting IL-32 might be beneficial in the treatment of MM bone disease in a subset of patients.
Zahoor, Muhammad; Aass, Kristin Roseth; Moen, Siv Helen; Misund, Kristine; Psonka-Antonczyk, Katarzyna Maria; Giliberto, Mariaserena; Buene, Glenn; Sundan, Anders; Waage, Anders; Sponaas, Anne-Marit
2017-01-01
Multiple myeloma (MM) is a hematologic cancer characterized by expansion of malignant plasma cells in the bone marrow. Most patients develop an osteolytic bone disease, largely caused by increased osteoclastogenesis. The myeloma bone marrow is hypoxic, and hypoxia may contribute to MM disease progression, including bone loss. Here we identified interleukin-32 (IL-32) as a novel inflammatory cytokine expressed by a subset of primary MM cells and MM cell lines. We found that high IL-32 gene expression in plasma cells correlated with inferior survival in MM and that IL-32 gene expression was higher in patients with bone disease compared with those without. IL-32 was secreted from MM cells in extracellular vesicles (EVs), and those EVs, as well as recombinant human IL-32, promoted osteoclast differentiation both in vitro and in vivo. The osteoclast-promoting activity of the EVs was IL-32 dependent. Hypoxia increased plasma-cell IL-32 messenger RNA and protein levels in a hypoxia-inducible factor 1α–dependent manner, and high expression of IL-32 was associated with a hypoxic signature in patient samples, suggesting that hypoxia may promote expression of IL-32 in MM cells. Taken together, our results indicate that targeting IL-32 might be beneficial in the treatment of MM bone disease in a subset of patients. PMID:29296919
The Relevance of Mouse Models for Investigating Age-Related Bone Loss in Humans
2013-01-01
Mice are increasingly used for investigation of the pathophysiology of osteoporosis because their genome is easily manipulated, and their skeleton is similar to that of humans. Unlike the human skeleton, however, the murine skeleton continues to grow slowly after puberty and lacks osteonal remodeling of cortical bone. Yet, like humans, mice exhibit loss of cancellous bone, thinning of cortical bone, and increased cortical porosity with advancing age. Histologic evidence in mice and humans alike indicates that inadequate osteoblast-mediated refilling of resorption cavities created during bone remodeling is responsible. Mouse models of progeria also show bone loss and skeletal defects associated with senescence of early osteoblast progenitors. Additionally, mouse models of atherosclerosis, which often occurs in osteoporotic participants, also suffer bone loss, suggesting that common diseases of aging share pathophysiological pathways. Knowledge of the causes of skeletal fragility in mice should therefore be applicable to humans if inherent limitations are recognized. PMID:23689830
Mammalian bone palaeohistology: a survey and new data with emphasis on island forms
Scheyer, Torsten M.; Veitschegger, Kristof; Forasiepi, Analia M.; Amson, Eli; Van der Geer, Alexandra A.E.; Van den Hoek Ostende, Lars W.; Hayashi, Shoji; Sánchez-Villagra, Marcelo R.
2015-01-01
The interest in mammalian palaeohistology has increased dramatically in the last two decades. Starting in 1849 via descriptive approaches, it has been demonstrated that bone tissue and vascularisation types correlate with several biological variables such as ontogenetic stage, growth rate, and ecology. Mammalian bone displays a large variety of bone tissues and vascularisation patterns reaching from lamellar or parallel-fibred to fibrolamellar or woven-fibred bone, depending on taxon and individual age. Here we systematically review the knowledge and methods on cynodont and mammalian bone microstructure as well as palaeohistology and discuss potential future research fields and techniques. We present new data on the bone microstructure of two extant marsupial species and of several extinct continental and island placental mammals. Extant marsupials display mainly parallel-fibred primary bone with radial and oblique but mainly longitudinal vascular canals. Three juvenile specimens of the dwarf island hippopotamid Hippopotamus minor from the Late Pleistocene of Cyprus show reticular to plexiform fibrolamellar bone. The island murid Mikrotia magna from the Late Miocene of Gargano, Italy displays parallel-fibred primary bone with reticular vascularisation and strong remodelling in the middle part of the cortex. Leithia sp., the dormouse from the Pleistocene of Sicily, is characterised by a primary bone cortex consisting of lamellar bone and a high amount of compact coarse cancellous bone. The bone cortex of the fossil continental lagomorph Prolagus oeningensis and three fossil species of insular Prolagus displays mainly parallel-fibred primary bone and reticular, radial as well as longitudinal vascularisation. Typical for large mammals, secondary bone in the giant rhinocerotoid Paraceratherium sp. from the Late Oligocene of Turkey is represented by dense Haversian bone. The skeletochronological features of Sinomegaceros yabei, a large-sized deer from the Pleistocene of Japan closely related to Megaloceros, indicate a high growth rate. These examples and the synthesis of existing data show the potential of bone microstructure to reveal essential information on life history evolution. The bone tissue and the skeletochronological data of the sampled island species suggest the presence of various modes of bone histological modification and mammalian life history evolution on islands to depend on factors of island evolution such as island size, distance from mainland, climate, phylogeny, and time of evolution. PMID:26528418
Moscoso, I; Centeno, A; López, E; Rodriguez-Barbosa, J I; Santamarina, I; Filgueira, P; Sánchez, M J; Domínguez-Perles, R; Peñuelas-Rivas, G; Domenech, N
2005-01-01
Cell transplantation to regenerate injured tissues is a promising new treatment for patients suffering several diseases. Bone marrow contains a population of progenitor cells known as mesenchymal stem cells (MSCs), which have the capability to colonize different tissues, replicate, and differentiate into multilineage cells. Our goal was the isolation, characterization, and immortalization of porcine MSCs (pMSCs) to study their potential differentiation "in vitro" into cardiomyocytes. pMSCs were obtained from the aspirated bone marrow of Large-White pigs. After 4 weeks in culture, adherent cells were phenotypically characterized by flow cytometry and immunochemistry by using monoclonal antibodies. Primary pMSCs were transfected with the plasmid pRNS-1 to obtain continuous growing cloned cell lines. Fresh pMSCs and immortalized cells were treated with 5-azacytidine to differentiate them into cardiomyocytes. Flow cytometry analysis of isolated pMSCs demonstrated the following phenotype, CD90(pos), CD29(pos), CD44(pos), SLA-I(pos), CD106(pos), CD46(pos) and CD45(neg), CD14(neg), CD31(neg), and CD11b(neg), similar to that described for human MSC. We derived several stable immortalized MSC cell lines. One of these, called pBMC-2, was chosen for further characterization. After "in vitro" stimulation of both primary or immortalized cells with 5-azacytidine, we obtained different percentages (30%-50%) of cells with cardiomyocyte characteristics, namely, positive for alpha-Actin and T-Troponin. Thus, primary or immortalized pMSCs derived from bone marrow and cultured were able to differentiate "ex vivo" into cardiac-like muscle cells. These elements may be potentials tools to improve cardiac function in a swine myocardial infarct model.
NASA Astrophysics Data System (ADS)
Borgers, Charlotte; van Wieringen, Astrid; D'hondt, Christiane; Verhaert, Nicolas
2018-05-01
The cochlea is the main contributor in bone conduction perception. Measurements of differential pressure in the cochlea give a good estimation of the cochlear input provided by bone conduction stimulation. Recent studies have proven the feasibility of intracochlear pressure measurements in chinchillas and in human temporal bones to study bone conduction. However, similar measurements in fresh-frozen whole human cadaveric heads could give a more realistic representation of the five different transmission pathways of bone conduction to the cochlea compared to human temporal bones. The aim of our study is to develop and validate a framework for intracochlear pressure measurements to evaluate different aspects of bone conduction in whole human cadaveric heads. A proof of concept describing our experimental setup is provided together with the procedure. Additionally, we also present a method to fix the stapes footplate in order to simulate otosclerosis in human temporal bones. The effectiveness of this method is verified by some preliminary results.
Salamanna, Francesca; Borsari, Veronica; Brogini, Silvia; Giavaresi, Gianluca; Parrilli, Annapaola; Cepollaro, Simona; Cadossi, Matteo; Martini, Lucia; Mazzotti, Antonio; Fini, Milena
2016-11-22
One of the main limitations, when studying cancer-bone metastasis, is the complex nature of the native bone environment and the lack of reliable, simple, inexpensive models that closely mimic the biological processes occurring in patients and allowing the correct translation of results. To enhance the understanding of the mechanisms underlying human bone metastases and in order to find new therapies, we developed an in vitro three-dimensional (3D) cancer-bone metastasis model by culturing human breast or prostate cancer cells with human bone tissue isolated from female and male patients, respectively. Bone tissue discarded from total hip replacement surgery was cultured in a rolling apparatus system in a normoxic or hypoxic environment. Gene expression profile, protein levels, histological, immunohistochemical and four-dimensional (4D) micro-CT analyses showed a noticeable specificity of breast and prostate cancer cells for bone colonization and ingrowth, thus highlighting the species-specific and sex-specific osteotropism and the need to widen the current knowledge on cancer-bone metastasis spread in human bone tissues. The results of this study support the application of this model in preclinical studies on bone metastases and also follow the 3R principles, the guiding principles, aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes.
Salamanna, Francesca; Borsari, Veronica; Brogini, Silvia; Giavaresi, Gianluca; Parrilli, Annapaola; Cepollaro, Simona; Cadossi, Matteo; Martini, Lucia; Mazzotti, Antonio; Fini, Milena
2016-01-01
One of the main limitations, when studying cancer-bone metastasis, is the complex nature of the native bone environment and the lack of reliable, simple, inexpensive models that closely mimic the biological processes occurring in patients and allowing the correct translation of results. To enhance the understanding of the mechanisms underlying human bone metastases and in order to find new therapies, we developed an in vitro three-dimensional (3D) cancer-bone metastasis model by culturing human breast or prostate cancer cells with human bone tissue isolated from female and male patients, respectively. Bone tissue discarded from total hip replacement surgery was cultured in a rolling apparatus system in a normoxic or hypoxic environment. Gene expression profile, protein levels, histological, immunohistochemical and four-dimensional (4D) micro-CT analyses showed a noticeable specificity of breast and prostate cancer cells for bone colonization and ingrowth, thus highlighting the species-specific and sex-specific osteotropism and the need to widen the current knowledge on cancer-bone metastasis spread in human bone tissues. The results of this study support the application of this model in preclinical studies on bone metastases and also follow the 3R principles, the guiding principles, aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes. PMID:27765913
Bacterial profile in primary teeth with necrotic pulp and periapical lesions.
da Silva, Léa Assed Bezerra; Nelson-Filho, Paulo; Faria, Gisele; de Souza-Gugelmin, Maria Cristina Monteiro; Ito, Izabel Yoko
2006-01-01
The objective of this study was to evaluate the bacterial profile in root canals of human primary teeth with necrotic pulp and periapical lesions using bacterial culture. A total of 20 primary teeth with necrotic pulp and radiographically visible radiolucent areas in the region of the bone furcation and/or the periapical region were selected. After crown access, 4 sterile absorbent paper points were introduced sequentially into the root canal for collection of material. After 30 s, the paper points were removed and placed in a test tube containing reduced transport fluid (RTF) and were sent for microbiological evaluation. Anaerobic microorganisms were found in 100% of the samples, black-pigmented bacilli in 30%, aerobic microorganisms in 60%, streptococci in 85%, gram-negative aerobic rods in 15% and staphylococci were not quantified. Mutans streptococci were found in 6 root canals (30%), 5 canals with Streptococcus mutans and 1 canal with Streptococcus mutans and Streptococcus sobrinus. It was concluded that in root canals of human primary teeth with necrotic pulp and periapical lesions, the infection is polymicrobial with predominance of anaerobic microorganisms.
Occurrence of metastases in beagles with skeletal malignancies induced by internal irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, R.D.; Angus, W.; Taylor, G.N.
1994-03-01
Metastases from malignant bone tumors often are responsible for the fatal effects of these cancers. Characteristics of primary skeletal malignancies in beagles injected with bone-seeking radionuclides were studied by Thurman (1971) and summarized by Thurman et al. (1971). There were 212 tumors in 186 of these dogs for which we subsequently received information on bone tumor metastases. Evaluation of bone and soft tissue slides from these animals allowed us to compare parameters reported previously with the occurrence of grossly apparent bone tumor metastases. Data included growth-rate of the primary tumor, volume of the primary tumor at death, sex of themore » animal, growth period of the primary tumor, degree of calcification of the primary tumor, skeletal location of the primary tumor, cumulative radiation dose to the skeleton, dose equivalent to the skeleton, and year of death. For most of the comparisons, no significant differences could be established between dogs with and without metastases. However, tumor volume at death appeared to be correlated with probability of metastasis (p < 0.05), with the larger tumors being associated with higher rates of metastasis. Comparisons of dogs with and without metastases as a function of tumor growth-rate did not, for the most part, yield significantly different results between groups. 10 refs., 11 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parreiras Nogueira, Liebert; Barroso, Regina Cely; Pereira de Almeida, Andre
2012-05-17
This work aims to evaluate histomorphometric quantification by synchrotron radiation computed microto-mography in bones of human and rat specimens. Bones specimens are classified as normal and pathological (for human samples) and irradiated and non-irradiated samples (for rat ones). Human bones are specimens which were affected by some injury, or not. Rat bones are specimens which were irradiated, simulating radiotherapy procedures, or not. Images were obtained on SYRMEP beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. The system generated 14 {mu}m tomographic images. The quantification of bone structures were performed directly by the 3D rendered images using a home-made software.more » Resolution yielded was excellent what facilitate quantification of bone microstructures.« less
Araujo, John C; Poblenz, Ann; Corn, Paul; Parikh, Nila U; Starbuck, Michael W; Thompson, Jerry T; Lee, Francis; Logothetis, Christopher J; Darnay, Bryant G
2009-11-01
Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.
Primary Ewing's Sarcoma of the Temporal Bone: A Rare Case Report and Literature Review.
Gupta, Divya; Gulati, Achal; Purnima
2017-09-01
Ewing's sarcoma is a malignant, round cell tumor arising from the bones and primarily affecting children and adolescent, accounting for 3 % of all childhood malignancies. Although the long bones and the trunk are typically affected, rare cases of it involving isolated bones throughout the body have been reported. Involvement of the skull bones is rare, constituting 1-6 % of the total Ewing's sarcoma cases but those affecting the cranial bones are rarer still, constituting only 1 %. We describe an 8 months old infant having Ewing sarcoma, of the petrous and mastoid parts of temporal bone along with the occipital bone, whose clinical presentation mimicked mastoiditis with facial nerve palsy. We discuss the clinical and therapeutic course of an extensive primary Ewing sarcoma of the temporal bone, which was treated without performing surgery and review this entity's literature in detail.
Choroidal metastasis from primary bone leiomyosarcoma.
Cristina, Nieto Gómez; Francisco, Escudero Domínguez; Vanesa, Rivero Gutiérrez; Fernando, Cruz González; Luis, Cacharro Moras; Emiliano, Hernández Galilea
2015-10-01
Choroidal metastases, the most common form of intraocular malignancies, are principally caused by primary tumors from breast, lung, and gastrointestinal tract. These lesions are mostly symptomatic and rarely detected incidentally in the extension study of a previously diagnosed tumor. Leiomyosarcoma is a neoplasm of mesenchymal cells with smooth muscle differentiation and represents the most prevalent soft-tissue sarcoma. Leiomyosarcoma is a notably rare tumor in ophthalmic region. We report a case of primary bone leiomyosarcoma metastatic to the choroid that was treated with chemotherapy and surgery. Although three cases of choroidal metastasis from leiomyosarcomas have been already reported, to our knowledge this is the first case of choroidal metastasis from primary bone leiomyosarcoma.
Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts
Verron, Elise; Masson, Martial; Khoshniat, Solmaz; Duplomb, Laurence; Wittrant, Yohann; Baud'huin, Marc; Badran, Zahi; Bujoli, Bruno; Janvier, Pascal; Scimeca, Jean-Claude; Bouler, Jean-Michel; Guicheux, Jérôme
2010-01-01
Background and purpose: Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach: In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. Key results: Gallium dose-dependently (0–100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. Conclusions and implications: Gallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation. PMID:20397300
Carlson, Matthew L; Sweeney, Alex D; Modest, Mara C; Van Gompel, Jamie J; Haynes, David S; Neff, Brian A
2015-11-01
Inverting papillomas (IPs) are benign locally invasive tumors that most commonly present within the sinonasal cavity. Temporal bone involvement is exceedingly rare, with fewer than 30 cases reported within the English literature to date. Case series and systematic review of the literature. Four consecutive subjects with temporal bone inverting papilloma (TBIP) were treated, and an additional 28 previously published cases were identified in the literature. Main outcome measures were disease presentation, diagnostic evaluation, management strategy, and outcome. A total of 32 cases were analyzed. The median age at diagnosis was 54 years (mean 54.1; range 19-81 years). Nineteen (59%) patients had synchronous or metachronous sinonasal IP, whereas 13 (41%) had isolated temporal bone disease without sinus involvement. Over half of the patients undergoing microsurgical resection experienced at least one recurrence. Compared to patients with a history of sinus IP, subjects with primary TBIP were younger at time of presentation (44 vs. 58 years; P=0.012); were more commonly female (62% vs. 32%; P=0.15); and were less likely to have intracranial spread (8% vs. 26%; P=0.36), cranial neuropathy (8% vs. 26%; P=0.36), human papillomavirus positivity (11% vs. 57%; P=0.11), or associated carcinoma (0% vs. 47%; P=0.004). Inverting papilloma of the lateral skull base is rare and can pose a significant therapeutic challenge. Primary lesions of the temporal bone appear to follow a less aggressive clinical course when compared to those arising in association with sinonasal disease. Gross total resection is the preferred method of treatment, when feasible, given the high rate of recurrence with subtotal resection and risk of associated malignancy. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Hosogane, Naobumi; Huang, Zhiping; Rawlins, Bernard A.; Liu, Xia; Boachie-Adjei, Oheneba; Boskey, Adele L.; Zhu, Wei
2010-01-01
Stromal derived factor-1 (SDF-1) is a chemokine signaling molecule that binds to its transmembrane receptor CXC chemokine receptor-4 (CXCR4). While we previously detected that SDF-1 was co-required with bone morphogenetic protein 2 (BMP2) for differentiating mesenchymal C2C12 cells into osteoblastic cells, it is unknown whether SDF-1 is similarly involved in the osteogenic differentiation of mesenchymal stem cells (MSCs). Therefore, here we examined the role of SDF-1 signaling during BMP2-induced osteogenic differentiation of primary MSCs that were derived from human and mouse bone marrow. Our data showed that blocking of the SDF-1/CXCR4 signal axis or adding SDF-1 protein to MSCs significantly affected BMP2-induced alkaline phosphatase (ALP) activity and osteocalcin (OCN) synthesis, markers of preosteoblasts and mature osteoblasts, respectively. Moreover, disrupting the SDF-1 signaling impaired bone nodule mineralization during terminal differentiation of MSCs. Furthermore, we detected that blocking of the SDF-1 signaling inhibited the BMP2-induced early expression of Runt-related factor-2 (Runx2) and osterix (Osx), two “master” regulators of osteogenesis, and the SDF-1 effect was mediated via intracellular Smad and Erk activation. In conclusion, our results demonstrated a regulatory role of SDF-1 in BMP2-induced osteogenic differentiation of MSCs, as perturbing the SDF-1 signaling affected the differentiation of MSCs towards osteoblastic cells in response to BMP2 stimulation. These data provide novel insights into molecular mechanisms underlying MSC osteogenesis, and will contribute to the development of MSC therapies for enhancing bone formation and regeneration in broad orthopaedic situations. PMID:20362069
Atomic scale chemical tomography of human bone
NASA Astrophysics Data System (ADS)
Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn
2017-01-01
Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale - the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.
Sonntag, Frank; Schilling, Niels; Mader, Katja; Gruchow, Mathias; Klotzbach, Udo; Lindner, Gerd; Horland, Reyk; Wagner, Ilka; Lauster, Roland; Howitz, Steffen; Hoffmann, Silke; Marx, Uwe
2010-07-01
Dynamic miniaturized human multi-micro-organ bioreactor systems are envisaged as a possible solution for the embarrassing gap of predictive substance testing prior to human exposure. A rational approach was applied to simulate and design dynamic long-term cultures of the smallest possible functional human organ units, human "micro-organoids", on a chip the shape of a microscope slide. Each chip contains six identical dynamic micro-bioreactors with three different micro-organoid culture segments each, a feed supply and waste reservoirs. A liver, a brain cortex and a bone marrow micro-organoid segment were designed into each bioreactor. This design was translated into a multi-layer chip prototype and a routine manufacturing procedure was established. The first series of microscopable, chemically resistant and sterilizable chip prototypes was tested for matrix compatibility and primary cell culture suitability. Sterility and long-term human cell survival could be shown. Optimizing the applied design approach and prototyping tools resulted in a time period of only 3 months for a single design and prototyping cycle. This rapid prototyping scheme now allows for fast adjustment or redesign of inaccurate architectures. The designed chip platform is thus ready to be evaluated for the establishment and maintenance of the human liver, brain cortex and bone marrow micro-organoids in a systemic microenvironment. Copyright (c) 2010 Elsevier B.V. All rights reserved.
[A boy with a painful knee: bone tumour or stress fracture?].
Robben, Bart J; Jutte, Paul C
2012-01-01
The symptoms of a stress fracture are almost identical to those of most bone tumours. Even with the use of various imaging techniques, it can be difficult to establish the correct diagnosis. Although a primary bone tumour requires early treatment to improve its prognosis, the discriminative factor in the diagnosis of a stress fracture is its clinical development over time. A 10-year-old boy was referred to our outpatient clinic on the suspicion of a primary bone tumour in his right tibia. A case was once described in this journal in which a stress fracture had eventually led to an amputation. The suspicion of primary bone tumour often marks the start of a long and intense diagnostic course. A stress fracture is the major diagnostic pitfall when there is a suspicion of such a tumour. If doubts persist after a diagnostic work-up by imaging, consultation with the Bone Tumour Committee is indicated. The patient can also be quickly referred to a centre specialised in treating bone tumours, as was the case in this article.
Long-Bone Injury Criteria for Use with the Articulated Total Body Model
1981-01-01
bone - human, canine, bovine, etc.; condition of bone - dry, wet , embalmed , fresh; subject variations - height, weight, health, sex, age, etc; whole bone...stress strain curves ob- tained by McElhaney for various strain rates in compression. This is for embalmed human compact bone. Ultimate stress, ultimate...reported for fresh human bone of 25,000 psi (see Table 1). Recall that the McElhaney data is from embalmed subjects. If it is assumed, for lack of any real
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... individuals were identified. The 60 associated funerary objects are 1 splinter awl made from deer bone, 1 tip... flakes, 47 non-human skeletal fragments and non-human teeth, and 2 bags of non-human bone. In the Federal... identified. The 34 associated funerary objects are 28 non-human bone fragments, 1 miniature bone club, and 5...
Dursun, Ceyda Kanli; Dursun, Erhan; Eratalay, Kenan; Orhan, Kaan; Tatar, Ilkan; Baris, Emre; Tözüm, Tolga Fikret
2016-03-01
The aim of this randomized controlled study was to comparatively analyze the new bone (NB), residual bone, and graft-bone association in bone biopsies retrieved from augmented maxillary sinus sites by histomorphometry and microcomputed tomography (MicroCT) in a split-mouth model to test the efficacy of porous titanium granules (PTG) in maxillary sinus augmentation. Fifteen patients were included in the study and each patient was treated with bilateral sinus augmentation procedure using xenograft (equine origine, granule size 1000-2000 μm) and xenograft (1 g) + PTG (granule size 700-1000 μm, pore size >50 μm) (1 g), respectively. After a mean of 8.4 months, 30 bone biopsies were retrieved from the implant sites for three-dimensional MicroCT and two-dimensional histomorphometric analyses. Bone volume and vital NB percentages were calculated. Immediate after core biopsy, implants having standard dimensions were placed and implant stability quotient values were recorded at baseline and 3 months follow-up. There were no significant differences between groups according to residual bone height, residual bone width, implant dimensions, and implant stability quotient values (baseline and 3 months). According to MicroCT and two-dimensional histomorphometric analyses, the volume of newly formed bone was 57.05% and 52.67%, and 56.5% and 55.08% for xenograft + PTG and xenograft groups, respectively. No statistically significant differences found between groups according to NB percentages and higher Hounsfield unit values were found for xenograft + PTG group. The findings of the current study supports that PTG, which is a porous, permanent nonresorbable bone substitute, may have a beneficial osteoconductive effect on mechanical strength of NB in augmented maxillary sinus.
Morello, Emanuela; Martano, Marina; Buracco, Paolo
2011-09-01
Osteosarcoma (OSA) is the most common primary bone tumour in dogs. The appendicular locations are most frequently involved and large to giant breed dogs are commonly affected, with a median age of 7-8 years. OSA is a locally invasive neoplasm with a high rate of metastasis, mostly to the lungs. Due to similarities in biology and treatment of OSA in dogs and humans, canine OSA represents a valid and important tumour model. Differences between canine and human OSAs include the age of occurrence (OSA is most commonly an adolescent disease in humans), localisation (the stifle is the most common site of localisation in humans) and limited use of neoadjuvant chemotherapy in canine OSA. Copyright © 2010 Elsevier Ltd. All rights reserved.
Shang‐Guan, Yangfan; Ma, Jing; Hu, Hang; Wang, Linlong; Magdalou, Jacques; Chen, Liaobin
2016-01-01
Abstract Background and Purpose Prenatal exposure to dexamethasone slows down fetal linear growth and bone mineralization but the regulatory mechanism remains unknown. Here we assessed how dexamethasone regulates bone development in the fetus. Experimental Approach Dexamethasone (1 mg·kg−1·day−1) was injected subcutaneously every morning in pregnant rats from gestational day (GD)9 to GD20. Fetal femurs and tibias were harvested at GD20 for histological and gene expression analysis. Femurs of 12‐week‐old female offspring were harvested for microCT (μCT) measurement. Primary chondrocytes were treated with dexamethasone (10, 50, 250 and 1000 nM). Key Results Prenatal dexamethasone exposure resulted in accumulation of hypertrophic chondrocytes and delayed formation of the primary ossification centre in fetal long bone. The retardation was accompanied by reduced maturation of hypertrophic chondrocytes, decreased osteoclast number and down‐regulated expression of osteocalcin and bone sialoprotein in long bone. In addition, the mitogen‐inducible gene‐6 (Mig6) and osteoprotegerin (OPG) expression were stimulated, and the receptor activator of NF‐κB ligand (RANKL) expression was repressed. Moreover, dexamethasone activated OPG and repressed RANKL expression in both primary chondrocytes and primary osteoblasts, and the knockdown of Mig6 abolished the effect of dexamethasone on OPG expression. Further, μCT measurement showed loss of bone mass in femur of 12‐week‐old offspring with prenatal dexamethasone exposure. Conclusions and Implications Prenatal dexamethasone exposure delays endochondral ossification by suppressing chondrocyte maturation and osteoclast differentiation, which may be partly mediated by Mig6 activation in bone. Bone development retardation in the fetus may be associated with reduced bone mass in later life. PMID:27128203
Hadzik, Jakub; Botzenhart, Ute; Krawiec, Maciej; Gedrange, Tomasz; Heinemann, Friedhelm; Vegh, Andras; Dominiak, Marzena
2017-09-01
Short dental implants can be an alternative method of treatment to a vertical bone augmentation procedure at sites of reduced alveolar height. However, for successful treatment, an implant system that causes a minimal marginal bone loss (MBL) should be taken into consideration. The aim of the study has been to evaluate implantation effectiveness for bone level and tissue level short implants provided in lateral aspects of partially edentulous mandible and limited alveolar ridge height. The MBL and primary as well as secondary implant stability were determined in the study. Patients were randomly divided into two groups according to the method of treatment provided. Sixteen short Bone Level Implants (OsseoSpeed TX, Astra tech) and 16 short Tissue Level Implants (RN SLActive ® , Straumann) were successfully placed in the edentulous part of the mandible. The determination of the marginal bone level was based on radiographic evaluation after 12 and 36 weeks. Implant stability was measured immediately after insertion and after 12 weeks. The marginal bone level of Bone Level Implants was significantly lower compared to Tissue Level Implants. Furthermore, the Bone Level Implants had greater primary and secondary stability in comparison with Tissue Level Implants (Primary: 77.8 ISQ versus 66.5 ISQ; Secondary: 78.9 ISQ versus 73.9 ISQ, respectively). Since short Bone Level Implants showed a significantly decreased MBL 12 and 36 weeks after implantation as well as better results for the primary stability compared to Tissue Level Implants, they should preferentially be used for this mentioned indication. Copyright © 2017 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Moreno-Jiménez, Inés; Hulsart-Billstrom, Gry; Lanham, Stuart A.; Janeczek, Agnieszka A.; Kontouli, Nasia; Kanczler, Janos M.; Evans, Nicholas D.; Oreffo, Richard Oc
2016-08-01
Biomaterial development for tissue engineering applications is rapidly increasing but necessitates efficacy and safety testing prior to clinical application. Current in vitro and in vivo models hold a number of limitations, including expense, lack of correlation between animal models and human outcomes and the need to perform invasive procedures on animals; hence requiring new predictive screening methods. In the present study we tested the hypothesis that the chick embryo chorioallantoic membrane (CAM) can be used as a bioreactor to culture and study the regeneration of human living bone. We extracted bone cylinders from human femoral heads, simulated an injury using a drill-hole defect, and implanted the bone on CAM or in vitro control-culture. Micro-computed tomography (μCT) was used to quantify the magnitude and location of bone volume changes followed by histological analyses to assess bone repair. CAM blood vessels were observed to infiltrate the human bone cylinder and maintain human cell viability. Histological evaluation revealed extensive extracellular matrix deposition in proximity to endochondral condensations (Sox9+) on the CAM-implanted bone cylinders, correlating with a significant increase in bone volume by μCT analysis (p < 0.01). This human-avian system offers a simple refinement model for animal research and a step towards a humanized in vivo model for tissue engineering.
Validating in vivo Raman spectroscopy of bone in human subjects
NASA Astrophysics Data System (ADS)
Esmonde-White, Francis W. L.; Morris, Michael D.
2013-03-01
Raman spectroscopy can non-destructively measure properties of bone related to mineral density, mineral composition, and collagen composition. Bone properties can be measured through the skin in animal and human subjects, but correlations between the transcutaneous and exposed bone measurements have only been reported for human cadavers. In this study, we examine human subjects to collect measurements transcutaneously, on surgically exposed bone, and on recovered bone fragments. This data will be used to demonstrate in vivo feasibility and to compare transcutaneous and exposed Raman spectroscopy of bone. A commercially available Raman spectrograph and optical probe operating at 785 nm excitation are used for the in vivo measurements. Requirements for applying Raman spectroscopy during a surgery are also discussed.
A 130,000-year-old archaeological site in southern California, USA.
Holen, Steven R; Deméré, Thomas A; Fisher, Daniel C; Fullagar, Richard; Paces, James B; Jefferson, George T; Beeton, Jared M; Cerutti, Richard A; Rountrey, Adam N; Vescera, Lawrence; Holen, Kathleen A
2017-04-26
The earliest dispersal of humans into North America is a contentious subject, and proposed early sites are required to meet the following criteria for acceptance: (1) archaeological evidence is found in a clearly defined and undisturbed geologic context; (2) age is determined by reliable radiometric dating; (3) multiple lines of evidence from interdisciplinary studies provide consistent results; and (4) unquestionable artefacts are found in primary context. Here we describe the Cerutti Mastodon (CM) site, an archaeological site from the early late Pleistocene epoch, where in situ hammerstones and stone anvils occur in spatio-temporal association with fragmentary remains of a single mastodon (Mammut americanum). The CM site contains spiral-fractured bone and molar fragments, indicating that breakage occured while fresh. Several of these fragments also preserve evidence of percussion. The occurrence and distribution of bone, molar and stone refits suggest that breakage occurred at the site of burial. Five large cobbles (hammerstones and anvils) in the CM bone bed display use-wear and impact marks, and are hydraulically anomalous relative to the low-energy context of the enclosing sandy silt stratum. 230 Th/U radiometric analysis of multiple bone specimens using diffusion-adsorption-decay dating models indicates a burial date of 130.7 ± 9.4 thousand years ago. These findings confirm the presence of an unidentified species of Homo at the CM site during the last interglacial period (MIS 5e; early late Pleistocene), indicating that humans with manual dexterity and the experiential knowledge to use hammerstones and anvils processed mastodon limb bones for marrow extraction and/or raw material for tool production. Systematic proboscidean bone reduction, evident at the CM site, fits within a broader pattern of Palaeolithic bone percussion technology in Africa, Eurasia and North America. The CM site is, to our knowledge, the oldest in situ, well-documented archaeological site in North America and, as such, substantially revises the timing of arrival of Homo into the Americas.
Vitamin A Is a Negative Regulator of Osteoblast Mineralization
Hu, Lijuan; Pejler, Gunnar; Andersson, Göran; Jacobson, Annica; Melhus, Håkan
2013-01-01
An excessive intake of vitamin A has been associated with an increased risk of fractures in humans. In animals, a high vitamin A intake leads to a reduction of long bone diameter and spontaneous fractures. Studies in rodents indicate that the bone thinning is due to increased periosteal bone resorption and reduced radial growth. Whether the latter is a consequence of direct effects on bone or indirect effects on appetite and general growth is unknown. In this study we therefore used pair-feeding and dynamic histomorphometry to investigate the direct effect of a high intake of vitamin A on bone formation in rats. Although there were no differences in body weight or femur length compared to controls, there was an approximately halved bone formation and mineral apposition rate at the femur diaphysis of rats fed vitamin A. To try to clarify the mechanism(s) behind this reduction, we treated primary human osteoblasts and a murine preosteoblastic cell line (MC3T3-E1) with the active metabolite of vitamin A; retinoic acid (RA), a retinoic acid receptor (RAR) antagonist (AGN194310), and a Cyp26 inhibitor (R115866) which blocks endogenous RA catabolism. We found that RA, via RARs, suppressed in vitro mineralization. This was independent of a negative effect on osteoblast proliferation. Alkaline phosphatase and bone gamma carboxyglutamate protein (Bglap, Osteocalcin) were drastically reduced in RA treated cells and RA also reduced the protein levels of Runx2 and Osterix, key transcription factors for progression to a mature osteoblast. Normal osteoblast differentiation involved up regulation of Cyp26b1, the major enzyme responsible for RA degradation, suggesting that a drop in RA signaling is required for osteogenesis analogous to what has been found for chondrogenesis. In addition, RA decreased Phex, an osteoblast/osteocyte protein necessary for mineralization. Taken together, our data indicate that vitamin A is a negative regulator of osteoblast mineralization. PMID:24340023
Coste, Cécile; Neirinckx, Virginie; Sharma, Anil; Agirman, Gulistan; Rogister, Bernard; Foguenne, Jacques; Lallemend, François
2017-01-01
Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow. The main objective of this study was therefore to characterize NCSC from adult human bone marrow. In this purpose, we compared human bone marrow stromal cells to human adipose tissue and dermis, already described for containing NCSC. We performed comparative analyses in terms of gene and protein expression as well as functional characterizations. It appeared that human bone marrow, similarly to adipose tissue and dermis, contains NESTIN+ / SOX9+ / TWIST+ / SLUG+ / P75NTR+ / BRN3A+/ MSI1+/ SNAIL1+ cells and were able to differentiate into melanocytes, Schwann cells and neurons. Moreover, when injected into chicken embryos, all those cells were able to migrate and follow endogenous neural crest migration pathways. Altogether, the phenotypic characterization and migration abilities strongly suggest the presence of neural crest-derived cells in human adult bone marrow. PMID:28683107
Role of Hypomethylating Agents in the Treatment of Bone Marrow Failure
2016-10-01
functional studies, as proposed in Aim 2, to find that cells with cohesin gene mutations are sensitized to hypomethylating agents. We used CRISPR /Cas9...screen loss of function mutations in MDS for response to azacitidine. We used CRISPR /Cas9 genome engineering of primary human hematopoietic stem and...investigate whether sites of altered methylation occur at hydroxymethylated loci. We generated isogenic TF-1 cell line clones using CRISPR -Cas9
Oe, Kenichi; Iida, Hirokazu; Tsuda, Kohei; Nakamura, Tomohisa; Okamoto, Naofumi; Ueda, Yusuke
2017-03-01
The purpose of this study was to identify the long-term durability of the Kerboull-type reinforcement device (KT plate) in acetabular reconstruction for massive bone defects, assessing the remodeling of structural bone grafts. This study retrospectively evaluated 106 hips that underwent acetabular reconstruction using a KT plate between November 2000 and December 2010. Thirty-eight primary total hip arthoplasties (THAs) and 68 revised THAs were performed, and the mean duration of clinical follow-up was 8 years (5-14 years). Regarding reconstructing the acetabular bone defects, autografts were used in 37 hips, allografts in 68 hips, and A-W glass ceramics in 2 hips. One hip exhibited radiological migration and no revision for aseptic loosening. The mean Merle d'Aubigné Clinical Score improved from 7.5 points (4-12 points) preoperatively to 10.9 points (9-18 points) at the last follow-up. The Kaplan-Meier survival rate for radiological migration of primary and revised THAs at 10 years was 100% and 97% (95% confidence interval: 96%-100%), respectively. Bone remodeling was evaluated using the radiological demarcation at the bone-to-bone interface, and an improvement of 100% in primary THAs and 94% in revised THAs was observed. For massive bone defects, acetabular reconstruction using the KT plate with a structural bone grafting can yield successful results. Copyright © 2016 Elsevier Inc. All rights reserved.
Gene therapy improves dental manifestations in hypophosphatasia model mice.
Okawa, R; Iijima, O; Kishino, M; Okawa, H; Toyosawa, S; Sugano-Tajima, H; Shimada, T; Okada, T; Ozono, K; Ooshima, T; Nakano, K
2017-06-01
Hypophosphatasia is a rare inherited skeletal disorder characterized by defective bone mineralization and deficiency of tissue non-specific alkaline phosphatase (TNSALP) activity. The disease is caused by mutations in the liver/bone/kidney alkaline phosphatase gene (ALPL) encoding TNSALP. Early exfoliation of primary teeth owing to disturbed cementum formation, periodontal ligament weakness and alveolar bone resorption are major complications encountered in oral findings, and discovery of early loss of primary teeth in a dental examination often leads to early diagnosis of hypophosphatasia. Although there are no known fundamental treatments or effective dental approaches to prevent early exfoliation of primary teeth in affected patients, several possible treatments have recently been described, including gene therapy. Gene therapy has also been applied to TNSALP knockout mice (Alpl -/- ), which phenocopy the infantile form of hypophosphatasia, and improved their systemic condition. In the present study, we investigated whether gene therapy improved the dental condition of Alpl -/- mice. Following sublethal irradiation (4 Gy) at the age of 2 d, Alpl -/- mice underwent gene therapy using bone marrow cells transduced with a lentiviral vector expressing a bone-targeted form of TNSALP injected into the jugular vein (n = 3). Wild-type (Alpl +/+ ), heterozygous mice (Alpl +/- ) and Alpl -/- mice were analyzed at 9 d of age (n = 3 of each), while Alpl +/+ mice and treated or untreated Alpl -/- mice were analyzed at 1 mo of age (n = 3 of each), and Alpl +/- mice and Alpl -/- mice with gene therapy were analyzed at 3 mo of age (n = 3 of each). A single mandibular hemi-section obtained at 1 mo of age was analyzed using a small animal computed tomography machine to assess alveolar bone formation. Other mandibular hemi-sections obtained at 9 d, 1 mo and 3 mo of age were subjected to hematoxylin and eosin staining and immunohistochemical analysis of osteopontin, a marker of cementum. Immunohistochemical analysis of osteopontin, a marker of acellular cementum, revealed that Alpl -/- mice displayed impaired formation of cementum and alveolar bone, similar to the human dental phenotype. Cementum formation was clearly present in Alpl -/- mice that underwent gene therapy, but did not recover to the same level as that in wild-type (Alpl +/+ ) mice. Micro-computed tomography examination showed that gene therapy improved alveolar bone mineral density in Alpl -/- mice to a similar level to that in Alpl +/+ mice. Our results suggest that gene therapy can improve the general condition of Alpl -/- mice, and induce significant alveolar bone formation and moderate improvement of cementum formation, which may contribute to inhibition of early spontaneous tooth exfoliation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Bromage, Timothy G.; Doty, Stephen B.; Smolyar, Igor; Holton, Emily
1997-01-01
Our stated primary objective is to quantify the growth rate variability of rat lamellar bone exposed to micro- (near zero G: e.g., Cosmos 1887 & 2044; SLS-1 & SLS-2) and macrogravity (2G). The primary significance of the proposed work is that an elegant method will be established that unequivocally characterizes the morphological consequences of gravitational factors on developing bone. The integrity of this objective depends upon our successful preparation of thin sections suitable for imaging individual bone lamellae, and our imaging and quantitation of growth rate variability in populations of lamellae from individual bone samples.
The safety of bone allografts used in dentistry: a review.
Holtzclaw, Dan; Toscano, Nicholas; Eisenlohr, Lisa; Callan, Don
2008-09-01
Recent media reports concerning "stolen body parts" have shaken the public's trust in the safety of and the use of ethical practices involving human allografts. The authors provide a comprehensive review of the safety aspects of human bone allografts. The authors reviewed U.S. government regulations, industry standards, independent industry association guidelines, company guidelines and scientific articles related to the use of human bone allografts in the practice of dentistry published in the English language. The use of human bone allografts in the practice of dentistry involves the steps of procurement, processing, use and tracking. Rigorous donor screening and aseptic proprietary processing programs have rendered the use of human bone allografts safe and effective as a treatment option. When purchasing human bone allografts for the practice of dentistry, one should choose products accredited by the American Association of Tissue Banks for meeting uniformly high safety and quality control measures. Knowledge of human bone allograft procurement, processing, use and tracking procedures may allow dental clinicians to better educate their patients and address concerns about this valuable treatment option.
Huang, Wen-Chin; Xie, Zhihui; Konaka, Hiroyuki; Sodek, Jaro; Zhau, Haiyen E; Chung, Leland W K
2005-03-15
Osteocalcin and bone sialoprotein are the most abundant noncollagenous bone matrix proteins expressed by osteoblasts. Surprisingly, osteocalcin and bone sialoprotein are also expressed by malignant but not normal prostate epithelial cells. The purpose of this study is to investigate how osteocalcin and bone sialoprotein expression is regulated in prostate cancer cells. Our investigation revealed that (a) human osteocalcin and bone sialoprotein promoter activities in an androgen-independent prostate cancer cell line of LNCaP lineage, C4-2B, were markedly enhanced 7- to 12-fold in a concentration-dependent manner by conditioned medium collected from prostate cancer and bone stromal cells. (b) Deletion analysis of human osteocalcin and bone sialoprotein promoter regions identified cyclic AMP (cAMP)-responsive elements (CRE) as the critical determinants for conditioned medium-mediated osteocalcin and bone sialoprotein gene expression in prostate cancer cells. Consistent with these results, the protein kinase A (PKA) pathway activators forskolin and dibutyryl cAMP and the PKA pathway inhibitor H-89, respectively, increased or repressed human osteocalcin and bone sialoprotein promoter activities. (c) Electrophoretic mobility shift assay showed that conditioned medium-mediated stimulation of human osteocalcin and bone sialoprotein promoter activities occurs through increased interaction between CRE and CRE-binding protein. (d) Conditioned medium was found to induce human osteocalcin and bone sialoprotein promoter activities via increased CRE/CRE-binding protein interaction in a cell background-dependent manner, with marked stimulation in selected prostate cancer but not bone stromal cells. Collectively, these results suggest that osteocalcin and bone sialoprotein expression is coordinated and regulated through cAMP-dependent PKA signaling, which may define the molecular basis of the osteomimicry exhibited by prostate cancer cells.
Anfinsen, Kristin P.; Grotmol, Tom; Bruland, Oyvind S.; Jonasdottir, Thora J.
2011-01-01
This is one of few published population-based studies describing breed specific rates of canine primary bone tumors. Incidence rates related to dog breeds could help clarify the impact of etiological factors such as birth weight, growth rate, and adult body weight/height on development of these tumors. The study population consisted of dogs within 4 large/giant breeds; Irish wolfhound (IW), Leonberger (LB), Newfoundland (NF), and Labrador retriever (LR), born between January 1st 1989 and December 31st 1998. Questionnaires distributed to owners of randomly selected dogs — fulfilling the criteria of breed, year of birth, and registration in the Norwegian Kennel Club — constituted the basis for this retrospective, population-based survey. Of the 3748 questionnaires received by owners, 1915 were completed, giving a response rate of 51%. Forty-three dogs had been diagnosed with primary bone tumors, based upon clinical examination and x-rays. The breeds IW and LB, with 126 and 72 cases per 10 000 dog years at risk (DYAR), respectively, had significantly higher incidence rates of primary bone tumors than NF and LR (P < 0.0001). Incidence rates for the latter were 11 and 2 cases per 10 000 DYAR, respectively. Pursuing a search for risk factors other than body size/weight is supported by the significantly different risks of developing primary bone tumors between similarly statured dogs, like NF and LB, observed in this study. Defining these breed-specific incidence rates enables subsequent case control studies, ultimately aiming to identify specific etiological factors for developing primary bone tumors. PMID:22210997
Andereggen, Lukas; Frey, Janine; Andres, Robert H; El-Koussy, Marwan; Beck, Jürgen; Seiler, Rolf W; Christ, Emanuel
2017-01-01
In men with prolactinomas, impaired bone density is the principle consequence of hyperprolactinemia-induced hypogonadism. Although dopamine agonists (DAs) are the first-line approach in prolactinomas, surgery can be considered in selected cases. In this study, we aimed to investigate the long-term control of hyperprolactinemia, hypogonadism, and bone health comparing primary medical and surgical therapy in men who had not had prior DA treatment. This is a retrospective case-note study of 44 consecutive men with prolactinomas and no prior DAs managed in a single tertiary referral center. Clinical, biochemical, and radiologic response to the first-line approach were analyzed in the 2 cohorts. Mean age at diagnosis was 47 years (range, 22-78 years). The prevalence of hypogonadism was 86%, and 27% of patients had pathologic bone density at baseline. The primary therapeutic strategy was surgery for 34% and DAs for 66% of patients. Median long-term follow-up was 63 months (range, 17-238 months). Long-term control of hyperprolactinemia required DAs in 53% of patients with primary surgical therapy, versus 90% of patients with primary medical therapy (P = 0.02). Hypogonadism was controlled in 73% of patients. The prevalence of patients with pathologic bone density was 37% at last follow-up, with no differences between the 2 therapeutic cohorts (P = 0.48). Despite control of hyperprolactinemia and hypogonadism in most patients independent of the primary treatment modality, the prevalence of impaired bone health status remains high, and osteodensitometry should be recommended. Copyright © 2016 Elsevier Inc. All rights reserved.
How long bones grow children: Mechanistic paths to variation in human height growth.
Lampl, Michelle; Schoen, Meriah
2017-03-01
Eveleth and Tanner's descriptive documentation of worldwide variability in human growth provided evidence of the interaction between genetics and environment during development that has been foundational to the science of human growth. There remains a need, however, to describe the mechanistic foundations of variability in human height growth patterns. A review of research documenting cellular activities at the endochondral growth plate aims to show how the unique microenvironment and cell functions during the sequential phases of the chondrocyte lifecycle affect long bone elongation, a fundamental source of height growth. There are critical junctures within the chondrocytic differentiation cascade at which environmental influences are integrated and have the ability to influence progression to the hypertrophic chondrocyte phase, the primary driver of long bone elongation. Phenotypic differences in height growth patterns reflect variability in amplitude and frequency of discretely timed hypertrophic cellular expansion events, the cellular basis of saltation and stasis growth biology. Final height is a summary of the dynamic processes carried out by the growth plate cellular machinery. As these cell-level mechanisms unfold in an individual, time-specific manner, there are many critical points at which a genetic growth program can be enhanced or perturbed. Recognizing both the complexity and fluidity of this adaptive system questions the likelihood of a single, optimal growth pattern and instead identifies a larger bandwidth of saltatory frequencies for "normal" growth. Further inquiry into mechanistic sources of variability acting at critical organizational points of chondrogenesis can provide new opportunities for growth interventions. © 2017 Wiley Periodicals, Inc.
Koskela, A; Koponen, J; Lehenkari, P; Viluksela, M; Korkalainen, M; Tuukkanen, J
2017-07-28
Perfluoroalkyl substances (PFAS), including two most commonly studied compounds perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are widely distributed environmental pollutants, used extensively earlier. Due to their toxicological effects the use of PFAS is now regulated. Based on earlier studies on PFOA's distribution in bone and bone marrow in mice, we investigated PFAS levels and their possible link to bone microarchitecture of human femoral bone samples (n = 18). Soft tissue and bone biopsies were also taken from a 49-year old female cadaver for PFAS analyses. We also studied how PFOA exposure affects differentiation of human osteoblasts and osteoclasts. PFAS were detectable from all dry bone and bone marrow samples, PFOS and PFOA being the most prominent. In cadaver biopsies, lungs and liver contained the highest concentrations of PFAS, whereas PFAS were absent in bone marrow. Perfluorononanoic acid (PFNA) was present in the bones, PFOA and PFOS were absent. In vitro results showed no disturbance in osteogenic differentiation after PFOA exposure, but in osteoclasts, lower concentrations led to increased resorption, which eventually dropped to zero after increase in PFOA concentration. In conclusion, PFAS are present in bone and have the potential to affect human bone cells partly at environmentally relevant concentrations.
Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco
2013-02-01
It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.
The Role of Water Compartments in the Material Properties of Cortical Bone
Granke, Mathilde; Does, Mark D.; Nyman, Jeffry S.
2015-01-01
Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in 2 general compartments: within pores and bound to the matrix. The amount of pore water – residing in vascular-lacunar-canalicular space – primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites), and as such, is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using 1H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). NMR/MRI-derived bound water concentration is positively correlated with both strength and toughness of hydrated bone, and may become a useful clinical marker of fracture risk. PMID:25783011
The Role of Water Compartments in the Material Properties of Cortical Bone.
Granke, Mathilde; Does, Mark D; Nyman, Jeffry S
2015-09-01
Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in two general compartments: within pores and bound to the matrix. The amount of pore water-residing in the vascular-lacunar-canalicular space-primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites) and as such is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to the mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using (1)H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments, giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). The NMR/MRI-derived bound water concentration is positively correlated with both the strength and toughness of hydrated bone and may become a useful clinical marker of fracture risk.
Galusha, Aubrey L; Kruger, Pamela C; Howard, Lyn J; Parsons, Patrick J
2018-05-01
Patients receiving long-term parenteral nutrition (PN) are exposed to potentially toxic elements, which may accumulate in bone. Bone samples collected from seven PN patients (average = 14 years) and eighteen hip/knee samples were analyzed for Al as part of a previous investigation. Yttrium was serendipitously detected in the PN bone samples, leading to the present investigation of rare earth elements (REEs). A method for quantitating fifteen REEs in digested bone was developed based on tandem ICP-MS (ICP-MS/MS) to resolve spectral interferences. The method was validated against nine biological reference materials (RMs) for which assigned values were available for most REEs. Values found in two NIST bone SRMs (1400 Bone Ash and 1486 Bone Meal) compared favorably to those reported elsewhere. Method detection limits ranged from 0.9 ng g -1 (Tm) to 5.8 ng g -1 (Y). Median REE values in the PN patient group were at least fifteen times higher than the "control" group, and exceeded all previously reported data for eleven REEs in human bones. REE content in PN bones normalized to the Earth's upper crust revealed anomalies for Gd in two patients, likely from exposure to Gd-containing contrast agents used in MRI studies. A retrospective review of the medical record for one patient revealed an almost certain case of nephrogenic systemic fibrosis, associated with Gd exposure. Analysis of two current PN formulations showed traces of REEs with relative abundances similar to those found in the PN bones, providing convincing evidence that PN solutions were the primary source of REEs in this population. Copyright © 2018 Elsevier GmbH. All rights reserved.
High-strength mineralized collagen artificial bone
NASA Astrophysics Data System (ADS)
Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai
2014-03-01
Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.
Portwood, Scott; Lal, Deepika; Hsu, Yung-Chun; Vargas, Rodrigo; Johnson, Megan K; Wetzler, Meir; Hart, Charles P; Wang, Eunice S
2013-12-01
Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm. Recent evidence has shown the bone marrow microenvironment in patients with AML to be intrinsically hypoxic. Adaptive cellular responses by leukemia cells to survive under low oxygenation also confer chemoresistance. We therefore asked whether therapeutic exploitation of marrow hypoxia via the hypoxia-activated nitrogen mustard prodrug, TH-302, could effectively inhibit AML growth. We assessed the effects of hypoxia and TH-302 on human AML cells, primary samples, and systemic xenograft models. We observed that human AML cells and primary AML colonies cultured under chronic hypoxia (1% O2, 72 hours) exhibited reduced sensitivity to cytarabine-induced apoptosis as compared with normoxic controls. TH-302 treatment resulted in dose- and hypoxia-dependent apoptosis and cell death in diverse AML cells. TH-302 preferentially decreased proliferation, reduced HIF-1α expression, induced cell-cycle arrest, and enhanced double-stranded DNA breaks in hypoxic AML cells. Hypoxia-induced reactive oxygen species by AML cells were also diminished. In systemic human AML xenografts (HEL, HL60), TH-302 [50 mg/kg intraperitoneally (i.p.) 5 times per week] inhibited disease progression and prolonged overall survival. TH-302 treatment reduced the number of hypoxic cells within leukemic bone marrows and was not associated with hematologic toxicities in nonleukemic or leukemic mice. Later initiation of TH-302 treatment in advanced AML disease was as effective as earlier TH-302 treatment in xenograft models. Our results establish the preclinical activity of TH-302 in AML and provide the rationale for further clinical studies of this and other hypoxia-activated agents for leukemia therapy. ©2013 AACR.
Lee, Edmund C; Fitzgerald, Michael; Bannerman, Bret; Donelan, Jill; Bano, Kristen; Terkelsen, Jennifer; Bradley, Daniel P; Subakan, Ozlem; Silva, Matthew D; Liu, Ray; Pickard, Michael; Li, Zhi; Tayber, Olga; Li, Ping; Hales, Paul; Carsillo, Mary; Neppalli, Vishala T; Berger, Allison J; Kupperman, Erik; Manfredi, Mark; Bolen, Joseph B; Van Ness, Brian; Janz, Siegfried
2011-12-01
The clinical success of the first-in-class proteasome inhibitor bortezomib (VELCADE) has validated the proteasome as a therapeutic target for treating human cancers. MLN9708 is an investigational proteasome inhibitor that, compared with bortezomib, has improved pharmacokinetics, pharmacodynamics, and antitumor activity in preclinical studies. Here, we focused on evaluating the in vivo activity of MLN2238 (the biologically active form of MLN9708) in a variety of mouse models of hematologic malignancies, including tumor xenograft models derived from a human lymphoma cell line and primary human lymphoma tissue, and genetically engineered mouse (GEM) models of plasma cell malignancies (PCM). Both cell line-derived OCI-Ly10 and primary human lymphoma-derived PHTX22L xenograft models of diffuse large B-cell lymphoma were used to evaluate the pharmacodynamics and antitumor effects of MLN2238 and bortezomib. The iMyc(Cα)/Bcl-X(L) GEM model was used to assess their effects on de novo PCM and overall survival. The newly developed DP54-Luc-disseminated model of iMyc(Cα)/Bcl-X(L) was used to determine antitumor activity and effects on osteolytic bone disease. MLN2238 has an improved pharmacodynamic profile and antitumor activity compared with bortezomib in both OCI-Ly10 and PHTX22L models. Although both MLN2238 and bortezomib prolonged overall survival, reduced splenomegaly, and attenuated IgG2a levels in the iMyc(Cα)/Bcl-X(L) GEM model, only MLN2238 alleviated osteolytic bone disease in the DP54-Luc model. Our results clearly showed the antitumor activity of MLN2238 in a variety of mouse models of B-cell lymphoma and PCM, supporting its clinical development. MLN9708 is being evaluated in multiple phase I and I/II trials. ©2011 AACR.
Song, Dongzhe; Zhang, Fugui; Reid, Russell R; Ye, Jixing; Wei, Qiang; Liao, Junyi; Zou, Yulong; Fan, Jiaming; Ma, Chao; Hu, Xue; Qu, Xiangyang; Chen, Liqun; Li, Li; Yu, Yichun; Yu, Xinyi; Zhang, Zhicai; Zhao, Chen; Zeng, Zongyue; Zhang, Ruyi; Yan, Shujuan; Wu, Tingting; Wu, Xingye; Shu, Yi; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Wang, Jia; Lee, Michael J; Wolf, Jennifer Moriatis; Huang, Dingming; He, Tong-Chuan
2017-11-01
The cranial suture complex is a heterogeneous tissue consisting of osteogenic progenitor cells and mesenchymal stem cells (MSCs) from bone marrow and suture mesenchyme. The fusion of cranial sutures is a highly coordinated and tightly regulated process during development. Craniosynostosis is a congenital malformation caused by premature fusion of cranial sutures. While the progenitor cells derived from the cranial suture complex should prove valuable for studying the molecular mechanisms underlying suture development and pathogenic premature suture fusion, primary human cranial suture progenitors (SuPs) have limited life span and gradually lose osteoblastic ability over passages. To overcome technical challenges in maintaining sufficient and long-term culture of SuPs for suture biology studies, we establish and characterize the reversibly immortalized human cranial suture progenitors (iSuPs). Using a reversible immortalization system expressing SV40 T flanked with FRT sites, we demonstrate that primary human suture progenitor cells derived from the patent sutures of craniosynostosis patients can be efficiently immortalized. The iSuPs maintain long-term proliferative activity, express most of the consensus MSC markers and can differentiate into osteogenic and adipogenic lineages upon BMP9 stimulation in vitro and in vivo. The removal of SV40 T antigen by FLP recombinase results in a decrease in cell proliferation and an increase in the endogenous osteogenic and adipogenic capability in the iSuPs. Therefore, the iSuPs should be a valuable resource to study suture development, intramembranous ossification and the pathogenesis of craniosynostosis, as well as to explore cranial bone tissue engineering. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Effects of Recombinant Human Lactoferrin on Osteoblast Growth and Bone Status in Piglets.
Li, Qiuling; Zhao, Jie; Hu, Wenping; Wang, Jianwu; Yu, Tian; Dai, Yunping; Li, Ning
2018-04-03
Lactoferrin (LF), an ~80 kDa iron-binding glycoprotein, modulates many biological effects, including antimicrobial and immunomodulatory activities. Recently, it was shown that LF also regulates bone cell activity, suggesting its therapeutic effect on postmenopausal bone loss. However, a minimal amount is known regarding the effects of recombinant human LF (rhLF) supplementation on bone status in young healthy infants. We found osteoblast cell differentiation was significantly promoted in vitro. Furthermore, treatment of human osteoblast cells with rhLF rapidly induced phosphorylation of p44/p42 mitogen-activated protein kinase (p44/p42 MAPK, ERK1/2). In order to investigate the effects of rhLF on bone status in vivo, we used a piglet model, which is a useful model for human infants. Piglets were supplemented with rhLF milk for 30 days. Bone formation markers, Serum calcium concentration, bone mineral density (BMD), bone mineral content (BMC), tibia bone strength, and the overall metabolite profile analysis showed that rhLF was advantageous to the bone growth in piglets. These findings suggest that rhLF supplementation benefits neonate bone health by modulating bone formation.
Laxman, Navya; Rubin, Carl-Johan; Mallmin, Hans; Nilsson, Olle; Tellgren-Roth, Christian; Kindmark, Andreas
2016-03-01
We investigated the impact of treatment with parathyroid hormone (PTH) and dexamethasone (DEX) for 2 and 24h by RNA sequencing of miRNAs in primary human bone (HOB) cells. A total of 207 million reads were obtained, and normalized absolute expression retrieved for 373 most abundant miRNAs. In naïve control cells, 7 miRNAs were differentially expressed (FDR<0.05) between the two time points. Ten miRNAs exhibited differential expression (FDR <0.05) across two time points and treatments after adjusting for expression in controls and were selected for downstream analyses. Results show significant effects on miRNA expression when comparing PTH with DEX at 2h with even more pronounced effects at 24h. Interestingly, several miRNAs exhibiting differences in expression are predicted to target genes involved in bone metabolism e.g. miR-30c2, miR-203 and miR-205 targeting RUNX2, and miR-320 targeting β-catenin (CTNNB1) mRNA expression. CTNNB1and RUNX2 levels were decreased after DEX treatment and increased after PTH treatment. Our analysis also identified 2 putative novel miRNAs in PTH and DEX treated cells at 24h. RNA sequencing showed that PTH and DEX treatment affect miRNA expression in HOB cells and that regulated miRNAs in turn are correlated with expression levels of key genes involved in bone metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.
Interspecies comparison of subchondral bone properties important for cartilage repair.
Chevrier, Anik; Kouao, Ahou S M; Picard, Genevieve; Hurtig, Mark B; Buschmann, Michael D
2015-01-01
Microfracture repair tissue in young adult humans and in rabbit trochlea is frequently of higher quality than in corresponding ovine or horse models or in the rabbit medial femoral condyle (MFC). This may be related to differences in subchondral properties since repair is initiated from the bone. We tested the hypothesis that subchondral bone from rabbit trochlea and the human MFC are structurally similar. Trochlea and MFC samples from rabbit, sheep, and horse were micro-CT scanned and histoprocessed. Samples were also collected from normal and lesional areas of human MFC. The subchondral bone of the rabbit trochlea was the most similar to human MFC, where both had a relatively thin bone plate and a more porous and less dense character of subchondral bone. MFC from animals all displayed thicker bone plates, denser and less porous bone and thicker trabeculae, which may be more representative of older or osteoarthritic patients, while both sheep trochlear ridges and the horse lateral trochlea shared some structural features with human MFC. Since several cartilage repair procedures rely on subchondral bone for repair, subchondral properties should be accounted for when choosing animal models to study and test procedures that are intended for human cartilage repair. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Rare cause of neck pain: tumours of the posterior elements of the cervical spine.
Katsuura, Yoshihiro; Cason, Garrick; Osborn, James
2016-12-15
Here we present two cases of primary bone tumours of the cervical spine in patients who had persistent neck pain-in one case, lasting 8 years. In each case, there was a delay in diagnosis and referral to a spine specialist was prolonged. Primary bone tumours of the spine are rare, which is in contrast to the wide prevalence of cervical neck pain. Many primary care providers may go an entire career without encountering a symptomatic primary cervical spine tumour. In this paper, we discuss the clinical course and treatment of each patient and review the current literature on primary bone tumours of the spine. Owing to the subtle roentgenographic findings of primary cervical tumours, we highlight the importance of advanced imaging in the clinical work-up of simple axial neck pain lasting >6 weeks to avoid misdiagnosis of serious pathology. 2016 BMJ Publishing Group Ltd.
2013-01-01
Background Reports of recurrence following restructuring of primary giant cell tumor (GCT) defects using polymethyl methacrylate (PMMA) bone cementation or allogeneic bone graft with and without adjuvants for intralesional curettage vary widely. Systematic review and meta-analysis were conducted to investigate efficacy of PMMA bone cementation and allogeneic bone grafting following intralesional curettage for GCT. Methods Medline, EMBASE, Google Scholar, and Cochrane databases were searched for studies reporting GCT of bone treatment with PMMA cementation and/or bone grafting with or without adjuvant therapy following intralesional curettage of primary GCTs. Pooled risk ratios and 95% confidence intervals (CIs) for local recurrence risks were calculated by fixed-effects methods. Results Of 1,690 relevant titles, 6 eligible studies (1,293 patients) spanning March 2008 to December 2011 were identified in published data. Treatment outcomes of PMMA-only (n = 374), bone graft-only (n = 436), PMMA with or without adjuvant (PMMA + adjuvant; n = 594), and bone graft filling with or without adjuvant (bone graft + adjuvant; n = 699) were compared. Bone graft-only patients exhibited higher recurrence rates than PMMA-treated patients (RR 2.09, 95% CI (1.64, 2.66), Overall effect: Z = 6.00; P <0.001), and bone graft + adjuvant patients exhibited higher recurrence rates than PMMA + adjuvant patients (RR 1.66, 95% CI (1.21, 2.28), Overall effect: Z = 3.15, P = 0.002). Conclusions Local recurrence was minimal in PMMA cementation patients, suggesting that PMMA is preferable for routine clinical restructuring in eligible GCT patients. Relationships between tumor characteristics, other modern adjuvants, and recurrence require further exploration. PMID:23866921
Yeh, Kuang-Dah; Popowics, Tracy
2011-01-01
Summary The development of alveolar bone adjacent to the tooth root during tooth eruption is not well understood. This study tested the hypothesis that predominantly woven bone forms adjacent to tooth roots during tooth eruption, but that this immature structure transitions to lamellar bone when the tooth comes into function. Additionally, bone resorption was predicted to play a key role in transitioning immature bone to more mature, load-bearing tissue. Miniature pigs were compared at two occlusal stages, 13 weeks (n=3), corresponding with the mucosal penetration stage of M1 tooth eruption, and 23 weeks (n=3), corresponding with early occlusion of M1/M1. Bone samples for RNA extraction and qRT-PCR analysis were harvested from the diastema and adjacent to M1 roots on one side. Following euthanasia, bone samples for hematoxylin and eosin and TRAP staining were harvested from these regions on the other side. In contrast to expectations, both erupting and functioning molars had reticular fibrolamellar structure in alveolar bone adjacent to M1. However, the woven bone matrix in older pigs was thicker and had denser primary osteons. Gene expression data and osteoclast cell counts showed a tendency for more bone resorptive activity near the molars than at distant sites, but no differences between eruptive stages. Thus, although resorption does occur, it is not a primary mechanism in the transition in alveolar bone from eruption to function. Incremental growth of existing woven bone and filling in of primary osteons within the mineralized scaffold generated the fortification necessary to support an erupted and functioning tooth. PMID:21434979
Kawai, Tadashi; Suzuki, Osamu; Matsui, Keiko; Tanuma, Yuji; Takahashi, Tetsu; Kamakura, Shinji
2017-05-01
Recently it was reported that the implantation of octacalcium phosphate (OCP) and collagen composite (OCP-collagen) was effective at promoting bone healing in small bone defects after cystectomy in humans. In addition, OCP-collagen promoted bone regeneration in a critical-sized bone defect of a rodent or canine model. In this study, OCP-collagen was implanted into a human mandibular bone defect with a longer axis of approximately 40 mm, which was diagnosed as a residual cyst with apical periodontitis. The amount of OCP-collagen implanted was about five times greater than the amounts implanted in previous clinical cases. Postoperative wound healing was satisfactory and no infection or allergic reactions occurred. The OCP-collagen-treated lesion was gradually filled with radio-opaque figures, and the alveolar region occupied the whole of the bone defect 12 months after implantation. This study suggests that OCP-collagen could be a useful bone substitute material for repairing large bone defects in humans that might not heal spontaneously. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Inca - interparietal bones in neurocranium of human skulls in central India
Marathe, RR; Yogesh, AS; Pandit, SV; Joshi, M; Trivedi, GN
2010-01-01
Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. Objectives: To find the incidence of Inca variants in Central India. Materials and Methods: In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Results: Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. Conclusions: This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists. PMID:21799611
Inca - interparietal bones in neurocranium of human skulls in central India.
Marathe, Rr; Yogesh, As; Pandit, Sv; Joshi, M; Trivedi, Gn
2010-01-01
Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. To find the incidence of Inca variants in Central India. In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists.
Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation
Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo
2015-01-01
Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696
Relatively well preserved DNA is present in the crystal aggregates of fossil bones
Salamon, Michal; Tuross, Noreen; Arensburg, Baruch; Weiner, Steve
2005-01-01
DNA from fossil human bones could provide invaluable information about population migrations, genetic relations between different groups and the spread of diseases. The use of ancient DNA from bones to study the genetics of past populations is, however, very often compromised by the altered and degraded state of preservation of the extracted material. The universally observed postmortem degradation, together with the real possibility of contamination with modern human DNA, makes the acquisition of reliable data, from humans in particular, very difficult. We demonstrate that relatively well preserved DNA is occluded within clusters of intergrown bone crystals that are resistant to disaggregation by the strong oxidant NaOCl. We obtained reproducible authentic sequences from both modern and ancient animal bones, including humans, from DNA extracts of crystal aggregates. The treatment with NaOCl also minimizes the possibility of modern DNA contamination. We thus demonstrate the presence of a privileged niche within fossil bone, which contains DNA in a better state of preservation than the DNA present in the total bone. This counterintuitive approach to extracting relatively well preserved DNA from bones significantly improves the chances of obtaining authentic ancient DNA sequences, especially from human bones. PMID:16162675
Rérolle, Camille; Saint-Martin, Pauline; Dedouit, Fabrice; Rousseau, Hervé; Telmon, Norbert
2013-09-10
The first step in the identification process of bone remains is to determine whether they are of human or nonhuman origin. This issue may arise when only a fragment of bone is available, as the species of origin is usually easily determined on a complete bone. The present study aims to assess the validity of a morphometric method used by French forensic anthropologists to determine the species of origin: the corticomedullary index (CMI), defined by the ratio of the diameter of the medullary cavity to the total diameter of the bone. We studied the constancy of the CMI from measurements made on computed tomography images (CT scans) of different human bones, and compared our measurements with reference values selected in the literature. The measurements obtained on CT scans at three different sites of 30 human femurs, 24 tibias, and 24 fibulas were compared between themselves and with the CMI reference values for humans, pigs, dogs and sheep. Our results differed significantly from these reference values, with three exceptions: the proximal quarter of the femur and mid-fibular measurements for the human CMI, and the proximal quarter of the tibia for the sheep CMI. Mid-tibial, mid-femoral, and mid-fibular measurements also differed significantly between themselves. Only 22.6% of CT scans of human bones were correctly identified as human. We concluded that the CMI is not an effective method for determining the human origin of bone remains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Shah, Karan M; Quinn, Paul D; Gartland, Alison; Wilkinson, J Mark
2015-01-01
Cobalt and chromium species are released in the local tissues as a result of tribo-corrosion, and affect bone cell survival and function. However we have little understanding of the mechanisms of cellular entry, intracellular distribution, and speciation of the metals that result in impaired bone health. Here we used synchrotron based X-ray fluorescence (XRF), X-ray absorption spectroscopy (XAS), and fluorescent-probing approaches of candidate receptors P2X7R and divalent metal transporter-1 (DMT-1), to better understand the entry, intra-cellular distribution and speciation of cobalt (Co) and chromium (Cr) in human osteoblasts and primary human osteoclasts. We found that both Co and Cr were most highly localized at nuclear and perinuclear sites in osteoblasts, suggesting uptake through cell membrane transporters, and supported by a finding that P2X7 receptor blockade reduced cellular entry of Co. In contrast, metal species were present at discrete sites corresponding to the basolateral membrane in osteoclasts, suggesting cell entry by endocytosis and trafficking through a functional secretory domain. An intracellular reduction of Cr6+ to Cr3+ was the only redox change observed in cells treated with Co2+, Cr3+, and Cr6+. Our data suggest that the cellular uptake and processing of Co and Cr differs between osteoblasts and osteoclasts. © 2014 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society.
Systemic malignancies presenting as primary osteolytic lesion.
Sirelkhatim, A; Kaiserova, E; Kolenova, A; Puskacova, J; Subova, Z; Petrzalkova, D; Banikova, K; Suvada, J; Sejnova, D
2009-01-01
The tumor formation may be the earliest manifestation preceeding other symptoms, signs and bone marrow evidence of systemic malignancy - leukemia/lymphoma. Here we present three cases of systemic malignancy in which bone lesions were the first manifested signs of the disease. All three cases were thought to be orthopedic cases and had been treated as so without genuing improvement. We would like to draw an attention to children who present with multifocal musculoskeletal pain and the importance of whole-body scaning. We describe interesting cases of diffuse large cell lymphoma and leukemia that initially presented as primary osteolytic bone lesion and discuss the differential diagnosis, literature review of non-Hodgkin's lymphoma arising in bone as the primary site (Tab. 1, Fig. 3, Ref. 18). Full Text (Free, PDF) www.bmj.sk.
Nussler, Andreas K; Wildemann, Britt; Freude, Thomas; Litzka, Christian; Soldo, Petra; Friess, Helmut; Hammad, Seddik; Hengstler, Jan G; Braun, Karl F; Trak-Smayra, Viviane; Godoy, Patricio; Ehnert, Sabrina
2014-04-01
Patients with chronic liver diseases frequently exhibit decreased bone mineral densities (BMD), which is defined as hepatic osteodystrophy (HOD). HOD is a multifactorial disease whose regulatory mechanisms are barely understood. Thus, an early diagnosis and therapy is hardly possible. Therefore, the aim of our study consisted in characterizing a mouse model reflecting the human pathomechanism. Serum samples were collected from patients with chronic liver diseases and 12-week old C57Bl6/N mice after 6-week treatment with carbon tetrachloride (CCl4). Repetitive injections of CCl4 induced liver damage in mice, resembling liver fibrosis in patients, as assessed by serum analysis and histological staining. Although CCl4 did not affect primary osteoblast cultures, μCT analysis revealed significantly decreased BMD, bone volume, trabecular number and thickness in CCl4-treated mice. In both HOD patients and CCl4-treated mice, an altered vitamin D metabolism with decreased CYP27A1, CYP2R1, vitamin D-binding protein GC and increased 7-dehydrocholesterol reductase hepatic gene expression, results in decreased 25-OH vitamin D serum levels. Moreover, both groups exhibit excessively high active transforming growth factor-beta (TGF-β) serum levels, inhibiting osteoblast function in vitro. Summarizing, our mouse model presents possible mediators of HOD, e.g. altered vitamin D metabolism and increased active TGF-β. Liver damage and significant changes in bone structure and mineralization are already visible by μCT analysis after 6 weeks of CCl4 treatment. This fast response and easy transferability makes it an ideal model to investigate specific gene functions in HOD.
De Angelis, D; Gibelli, D; Palazzo, E; Sconfienza, L; Obertova, Z; Cattaneo, C
2016-07-01
Personal identification consists of the comparison of ante-mortem information from a missing person with post-mortem data obtained from an unidentified corpse. Such procedure is based on the assessment of individualizing features which may help in providing a conclusive identification between ante-mortem and post-mortem material. Anatomical variants may provide important clues to correctly identify human remains. Areas of idiopathic osteosclerosis (IO), or dense bone islands (DBIs) characterized by radiopaque areas of dense, trabeculated, non-inflamed vital bone represent one of these, potentially individualizing, anatomical features. This study presents a case where the finding of DBI was crucial for a positive identification through CT-scan. A decomposed body was found in an apartment in June 2014 in advanced decomposition and no dental records were available to perform a comparison for positive identification. Genetic tests were not applicable because of the lack of relatives in a direct line. The analysis of the only ante-mortem documentation, a CT-scan to the deceased dating back to August 2009, showed the presence of three DBIs within the trabecular bone of the proximal portion of the right femur. The same bony district was removed from the corpse during the autopsy and analysed by CT-scan, which verified the presence of the same features. Forensic practitioners should therefore be aware of the great importance of anatomical bone variants, such as dense bone islands for identification purposes, and the importance of advanced radiological technique for addressing the individualizing potential of such variants. We propose that anatomical variants of the human skeleton should be considered as being "primary identification characteristics" similar to dental status, fingerprints and DNA. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Bird, Gregory A.; Polsky, Avital; Estes, Patricia; Hanlon, Teri; Hamilton, Haley; Morton, John J.; Gutman, Jonathan; Jimeno, Antonio
2014-01-01
The long-term repopulating hematopoietic stem cell (HSC) population can self-renew in vivo, support hematopoiesis for the lifetime of the individual, and is of critical importance in the context of bone marrow stem cell transplantation. The mechanisms that regulate the expansion of HSCs in vivo and in vitro remain unclear to date. Since the current set of surface markers only allow for the identification of a population of cells that is highly enriched for HSC activity, we will refer to the population of cells we expand as Hematopoietic Stem and Progenitor cells (HSPCs). We describe here a novel approach to expand a cytokine-dependent Hematopoietic Stem and Progenitor Cell (HSPC) population ex vivo by culturing primary adult human or murine HSPCs with fusion proteins including the protein transduction domain of the HIV-1 transactivation protein (Tat) and either MYC or Bcl-2. HSPCs obtained from either mouse bone marrow, human cord blood, human G-CSF mobilized peripheral blood, or human bone marrow were expanded an average of 87 fold, 16.6 fold, 13.6 fold, or 10 fold, respectively. The expanded cell populations were able to give rise to different types of colonies in methylcellulose assays in vitro, as well as mature hematopoietic populations in vivo upon transplantation into irradiated mice. Importantly, for both the human and murine case, the ex vivo expanded cells also gave rise to a self-renewing cell population in vivo, following initial transplantation, that was able to support hematopoiesis upon serial transplantation. Our results show that a self-renewing cell population, capable of reconstituting the hematopoietic compartment, expanded ex vivo in the presence of Tat-MYC and Tat-Bcl-2 suggesting that this may be an attractive approach to expand human HSPCs ex vivo for clinical use. PMID:25170611
Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.
Halling Linder, Cecilia; Enander, Karin; Magnusson, Per
2016-03-01
Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone.
Montgomery, Scott R; Nargizyan, Taya; Meliton, Vicente; Nachtergaele, Sigrid; Rohatgi, Rajat; Stappenbeck, Frank; Jung, Michael E; Johnson, Jared S; Aghdasi, Bayan; Tian, Haijun; Weintraub, Gil; Inoue, Hirokazu; Atti, Elisa; Tetradis, Sotirios; Pereira, Renata C; Hokugo, Akishige; Alobaidaan, Raed; Tan, Yanlin; Hahn, Theodor J; Wang, Jeffrey C; Parhami, Farhad
2014-08-01
Osteogenic factors are often used in orthopedics to promote bone growth, improve fracture healing, and induce spine fusion. Osteogenic oxysterols are naturally occurring molecules that were shown to induce osteogenic differentiation in vitro and promote spine fusion in vivo. The purpose of this study was to identify an osteogenic oxysterol more suitable for clinical development than those previously reported, and evaluate its ability to promote osteogenesis in vitro and spine fusion in rats in vivo. Among more than 100 oxysterol analogues synthesized, Oxy133 induced significant expression of osteogenic markers Runx2, osterix (OSX), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN) in C3H10T1/2 mouse embryonic fibroblasts and in M2-10B4 mouse marrow stromal cells. Oxy133-induced activation of an 8X-Gli luciferase reporter, its direct binding to Smoothened, and the inhibition of Oxy133-induced osteogenic effects by the Hedgehog (Hh) pathway inhibitor, cyclopamine, demonstrated the role of Hh pathway in mediating osteogenic responses to Oxy133. Oxy133 did not stimulate osteogenesis via BMP or Wnt signaling. Oxy133 induced the expression of OSX, BSP, and OCN, and stimulated robust mineralization in primary human mesenchymal stem cells. In vivo, bilateral spine fusion occurred through endochondral ossification and was observed in animals treated with Oxy133 at the fusion site on X-ray after 4 weeks and confirmed with manual assessment, micro-CT (µCT), and histology after 8 weeks, with equal efficiency to recombinant human bone morphogenetic protein-2 (rhBMP-2). Unlike rhBMP-2, Oxy133 did not induce adipogenesis in the fusion mass and resulted in denser bone evidenced by greater bone volume/tissue volume (BV/TV) ratio and smaller trabecular separation. Findings here suggest that Oxy133 has significant potential as an osteogenic molecule with greater ease of synthesis and improved time to fusion compared to previously studied oxysterols. Small molecule osteogenic oxysterols may serve as the next generation of bone anabolic agents for therapeutic development. © 2014 American Society for Bone and Mineral Research.
Araujo, John C.; Poblenz, Ann; Corn, Paul G.; Parikh, Nila U.; Starbuck, Michael W.; Thompson, Jerry T.; Lee, Francis; Logothetis, Christopher J.; Darnay, Bryant G.
2013-01-01
Purpose Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Results Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC50 of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. Experimental design We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Conclusion Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases. PMID:19855158
Osteoblast Menin Regulates Bone Mass in Vivo*
Kanazawa, Ippei; Canaff, Lucie; Abi Rafeh, Jad; Angrula, Aarti; Li, Jingjing; Riddle, Ryan C.; Boraschi-Diaz, Iris; Komarova, Svetlana V.; Clemens, Thomas L.; Murshed, Monzur; Hendy, Geoffrey N.
2015-01-01
Menin, the product of the multiple endocrine neoplasia type 1 (Men1) tumor suppressor gene, mediates the cell proliferation and differentiation actions of transforming growth factor-β (TGF-β) ligand family members. In vitro, menin modulates osteoblastogenesis and osteoblast differentiation promoted and sustained by bone morphogenetic protein-2 (BMP-2) and TGF-β, respectively. To examine the in vivo function of menin in bone, we conditionally inactivated Men1 in mature osteoblasts by crossing osteocalcin (OC)-Cre mice with floxed Men1 (Men1f/f) mice to generate mice lacking menin in differentiating osteoblasts (OC-Cre;Men1f/f mice). These mice displayed significant reduction in bone mineral density, trabecular bone volume, and cortical bone thickness compared with control littermates. Osteoblast and osteoclast number as well as mineral apposition rate were significantly reduced, whereas osteocyte number was increased. Primary calvarial osteoblasts proliferated more quickly but had deficient mineral apposition and alkaline phosphatase activity. Although the mRNA expression of osteoblast marker and cyclin-dependent kinase inhibitor genes were all reduced, that of cyclin-dependent kinase, osteocyte marker, and pro-apoptotic genes were increased in isolated Men1 knock-out osteoblasts compared with controls. In contrast to the knock-out mice, transgenic mice overexpressing a human menin cDNA in osteoblasts driven by the 2.3-kb Col1a1 promoter, showed a gain of bone mass relative to control littermates. Osteoblast number and mineral apposition rate were significantly increased in the Col1a1-Menin-Tg mice. Therefore, osteoblast menin plays a key role in bone development, remodeling, and maintenance. PMID:25538250
Bouleftour, Wafa; Boudiffa, Maya; Wade-Gueye, Ndeye Marième; Bouët, Guénaëlle; Cardelli, Marco; Laroche, Norbert; Vanden-Bossche, Arnaud; Thomas, Mireille; Bonnelye, Edith; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie Hélène; Malaval, Luc
2014-01-01
Adult Ibsp-knockout mice (BSP-/-) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice, while impairing primary mineralization.
Radiopharmaceutical stannic Sn-117m chelate compositions and methods of use
Srivastava, Suresh C.; Meinken, George E.
2001-01-01
Radiopharmaceutical compositions including .sup.117m Sn labeled stannic (Sn.sup.4+) chelates are provided. The chelates are preferably polyhydroxycarboxylate, such as oxalates, tartrates, citrates, malonates, gluconates, glucoheptonates and the like. Methods of making .sup.117m Sn-labeled (Sn.sup.4+) polyhydroxycarboxylic chelates are also provided. The foregoing pharmaceutical compositions can be used in methods of preparing bone for scintigraphical analysis, for radiopharmaceutical skeletal imaging, treatment of pain resulting from metastatic bone involvement, treatment of primary bone cancer, treatment of cancer resulting from metastatic spread to bone from other primary cancers, treatment of pain resulting from rheumatoid arthritis, treatment of bone/joint disorders and to monitor radioactively the skeletal system.
Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue☆
Pemmer, B.; Roschger, A.; Wastl, A.; Hofstaetter, J.G.; Wobrauschek, P.; Simon, R.; Thaler, H.W.; Roschger, P.; Klaushofer, K.; Streli, C.
2013-01-01
Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. PMID:23932972
Ash content of bones in the pigtail monkey, Macaca nemestrina.
NASA Technical Reports Server (NTRS)
Vose, G. P.; Roach, T. L.
1972-01-01
Ash analyses of skeletons of four adult primates, Macaca nemestrina, revealed some similarities and some marked contrasts when compared with published data on human skeletal ash. The skull in both Macaca nemestrina and man has the highest ash content of all bones in the skeleton. While the bones of the arms of humans have an ash content nearly identical to that of the legs (0.3% difference), in Macaca nemestrina the humeri and radii contain 5.4% more ash than the femora and tibiae. Similarly in Macaca nemestrina the bones of the hands contain 3.5% more ash than the bones of the feet, while in humans the same bones agree within 0.3% implying that adaptive use function is a factor in bone ash concentration. The ribs of Macaca nemestrina showed an unexpectedly high ash content in comparison with those of humans. In contrast with the relatively constant ash content throughout the vertebrae in humans, a conspicuous decrease axially was noted in Macaca nemestrina.
Pathological and clinical features of primary osseous tumours of the jaw.
Sarkar, Reena
2014-11-01
Primary bone tumors of the jaw are rare. The neoplastic cells in these tumors are the osteoblasts and osteoclasts. The gnathic bone tumors have also been referred to as borderline. The clinicopathologic approach towards these bony lesions have been reviewed.
Whole-Body Bone Scan Findings after High-Intensity Focused Ultrasound (HIFU) Treatment.
Seo, Ye Young; O, Joo Hyun; Sohn, Hyung Sun; Choi, Eun Kyoung; Yoo, Ik Dong; Oh, Jin Kyoung; Han, Eun Ji; Jung, Seung Eun; Kim, Sung Hoon
2011-12-01
This study aims to examine the findings of (99m)Tc-diphosphonate bone scans in cancer patients with a history of HIFU treatment. Bone scan images of patients with a history of HIFU treatment for primary or metastatic cancer from January 2006 to July 2010 were retrospectively reviewed. Cases of primary bone tumor or HIFU treatment reaching only the superficial soft tissue layer were excluded. Bone scan images of 62 patients (26 female, 36 male; mean age 57 ± 9 years) were studied. HIFU treatment was performed in the liver (n = 40), pancreas (n = 16), and breast (n = 6). Mean interval time between HIFU treatment and bone scan was 106 ± 105 days (range: 1-572 days). Of 62 scans, 43 showed diffusely decreased uptake of bone within the path of HIFU treatment: antero-axillary and/or posterior arcs of right 5th to 11th ribs in 34 cases after treatment of hepatic lesions; anterior arcs of 2nd to 5th ribs in 5 cases after treatment for breast tumors; and posterior arcs of left 9th to 11th ribs or thoraco-lumbar vertebrae in 4 cases after treatment for pancreas tumor. Of 20 patients who had bone scans more than twice, five showed recovered uptake of the radiotracer in the involved ribs in the follow-up bone scan. Of 62 bone scans in patients with a history of HIFU treatment for primary or metastatic cancer, 69% presented diffusely decreased uptake in the bone in the path of HIFU treatment.
Regenerative Stem Cell Therapy for Breast Cancer Bone Metastasis
2014-09-01
13. SUPPLEMENTARY NOTES 14. ABSTRACT Bone is the most common site of metastasis for human breast cancer (BCa), which results in significant...to all major bones as in human patients. 15. SUBJECT TERMS Bone metastasis; osteolysis; osteoprotegerin 16. SECURITY CLASSIFICATION OF: 17...metastasis for human breast cancer (BCa), which results in significant morbidity and mortality in patients with advanced disease. A vicious cycle
Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET
Peinado, Héctor; Alečković, Maša; Lavotshkin, Simon; Matei, Irina; Costa-Silva, Bruno; Moreno-Bueno, Gema; Hergueta-Redondo, Marta; Williams, Caitlin; García-Santos, Guillermo; Nitadori-Hoshino, Ayuko; Hoffman, Caitlin; Badal, Karen; Garcia, Benjamin A.; Callahan, Margaret K.; Yuan, Jianda; Martins, Vilma R.; Skog, Johan; Kaplan, Rosandra N.; Brady, Mary S.; Wolchok, Jedd D.; Chapman, Paul B.; Kang, Yibin; Bromberg, Jacqueline; Lyden, David
2013-01-01
Tumor-derived exosomes are emerging mediators of tumorigenesis with tissue-specific addresses and messages. We explored the function of melanoma-derived exosomes in the formation of primary tumor and metastases in mouse and human subjects. Exosomes from highly metastatic melanoma increased the metastatic behavior of primary tumors by permanently “educating” bone marrow (BM) progenitors via the MET receptor. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites, and reprogrammed BM progenitors towards a c-Kit+Tie2+Met+ pro-vasculogenic phenotype. Reducing Met expression in exosomes diminished the pro-metastatic behavior of BM cells. Importantly, MET expression was elevated in circulating CD45−C-KITlow/+TIE2+ BM progenitors from metastatic melanoma subjects. RAB1a, RAB5b, RAB7, and RAB27a were highly expressed in melanoma cells and Rab27a RNA interference decreased exosome production, preventing BM education, tumor growth and metastasis. Finally, we identified an exosome-specific “melanoma signature” with prognostic and therapeutic potential, comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. PMID:22635005
Terhune, Claire E; Kimbel, William H; Lockwood, Charles A
2013-08-01
Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three-dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non-human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three-dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Copyright © 2013 Wiley Periodicals, Inc.
Kim, Yung-Soo; Lim, Young-Jun
2011-10-01
The aim of this biomechanical study was to assess the influence of self-tapping blades in terms of primary implant stability between implants with self-tapping blades and implants without self-tapping blades using five different analytic methods, especially in medium-density bone. Two different types of dental implants (4 × 10 mm) were tested: self-tapping and non-self-tapping. The fixture design including thread profiles was exactly the same between the two groups; the only difference was the presence of cutting blades on one half of the apical portion of the implant body. Solid rigid polyurethane blocks with corresponding densities were selected to simulate medium-density bone. Five mechanical assessments (insertion torque, resonance frequency analysis [RFA], reverse torque, pull-out and push in test) were performed for primary stability. Implants without self-tapping blades showed significantly higher values (P<0.001) in four biomechanical assessments, except RFA (P=0.684). However, a statistically significant correlation could not be detected between insertion torque values with the four different outcome variables (P>0.05). The outcomes of the present study indicate that the implant body design without self-tapping blades has a good primary stability compared with that with self-tapping blades in medium-density bone. Considering the RFA, a distinct layer of cortical bone on marginal bone will yield implant stability quotient values similar to those in medium-bone density when implants have the same diameter. © 2011 John Wiley & Sons A/S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com; O'Shea, Patrick J.; Fagura, Malbinder
Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitorsmore » caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and mineralisation produced by GSK-3 inhibition. • In rats, 3 GSK-3 inhibitors produced a unique serum bone turnover biomarker profile. • Enhanced bone formation was seen within 7 to 14 days of compound treatment in rats.« less
Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading.
Ryan, Timothy M; Shaw, Colin N
2015-01-13
The postcranial skeleton of modern Homo sapiens is relatively gracile compared with other hominoids and earlier hominins. This gracility predisposes contemporary humans to osteoporosis and increased fracture risk. Explanations for this gracility include reduced levels of physical activity, the dissipation of load through enlarged joint surfaces, and selection for systemic physiological characteristics that differentiate modern humans from other primates. This study considered the skeletal remains of four behaviorally diverse recent human populations and a large sample of extant primates to assess variation in trabecular bone structure in the human hip joint. Proximal femur trabecular bone structure was quantified from microCT data for 229 individuals from 31 extant primate taxa and 59 individuals from four distinct archaeological human populations representing sedentary agriculturalists and mobile foragers. Analyses of mass-corrected trabecular bone variables reveal that the forager populations had significantly higher bone volume fraction, thicker trabeculae, and consequently lower relative bone surface area compared with the two agriculturalist groups. There were no significant differences between the agriculturalist and forager populations for trabecular spacing, number, or degree of anisotropy. These results reveal a correspondence between human behavior and bone structure in the proximal femur, indicating that more highly mobile human populations have trabecular bone structure similar to what would be expected for wild nonhuman primates of the same body mass. These results strongly emphasize the importance of physical activity and exercise for bone health and the attenuation of age-related bone loss.
Marie, Pierre J
2015-04-01
Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.
Dalby, M J; Di Silvio, L; Harper, E J; Bonfield, W
2002-03-01
A bone cement, poly(ethylmethacrylate)/n-butylmethacrylate (PEMA/nBMA) has been developed with lower exotherm and monomer leaching compared to the traditional poly(methylmethacrylate)/methylmethacrylate (PMMA/MMA) cement. This study compares the in vitro biological response to the cements using primary human osteoblast-like cells (HOB). Cell attachment was qualified by immunolocalization of vinculin and actin cytoskeleton, showing more organization on PEMA/nBMA compared to PMMA/MMA. Proliferation was assessed using tritiated thymidine incorporation, and phenotype expression determined by measuring alkaline phosphatase (ALP) activity. An increase in proliferation and ALP activity was observed on PEMA/nBMA compared to PMMA/MMA. The results confirm the biocompatability of PEMA/nBMA, and an enhanced cell attachment and expression of differentiated cell phenotype.
Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification.
Osinga, Rik; Di Maggio, Nunzia; Todorov, Atanas; Allafi, Nima; Barbero, Andrea; Laurent, Frédéric; Schaefer, Dirk Johannes; Martin, Ivan; Scherberich, Arnaud
2016-08-01
: Recapitulation of endochondral ossification (ECO) (i.e., generation of marrow-containing ossicles through a cartilage intermediate) has relevance to develop human organotypic models for bone or hematopoietic cells and to engineer grafts for bone regeneration. Unlike bone marrow-derived stromal cells (also known as bone marrow-derived mesenchymal stromal/stem cells), adipose-derived stromal cells (ASC) have so far failed to form a bone organ by ECO. The goal of the present study was to assess whether priming human ASC to a defined stage of chondrogenesis in vitro allows their autonomous ECO upon ectopic implantation. ASC were cultured either as micromass pellets or into collagen sponges in chondrogenic medium containing transforming growth factor-β3 and bone morphogenetic protein-6 for 4 weeks (early hypertrophic templates) or for two additional weeks in medium supplemented with β-glycerophosphate, l-thyroxin, and interleukin1-β to induce hypertrophic maturation (late hypertrophic templates). Constructs were implanted in vivo and analyzed after 8 weeks. In vitro, ASC deposited cartilaginous matrix positive for glycosaminoglycans, type II collagen, and Indian hedgehog. Hypertrophic maturation induced upregulation of type X collagen, bone sialoprotein, and matrix metalloproteinase13 (MMP13). In vivo, both early and late hypertrophic templates underwent cartilage remodeling, as assessed by MMP13- and tartrate-resistant acid phosphatase-positive staining, and developed bone ossicles, including bone marrow elements, although to variable degrees of efficiency. In situ hybridization for human-specific sequences and staining with a human specific anti-CD146 antibody demonstrated the direct contribution of ASC to bone and stromal tissue formation. In conclusion, despite their debated skeletal progenitor nature, human ASC can generate bone organs through ECO when suitably primed in vitro. Recapitulation of endochondral ossification (ECO) (i.e., generation of marrow-containing ossicles through a cartilage intermediate) has relevance to develop human organotypic models for bone or hematopoietic cells and to engineer grafts for bone regeneration. This study demonstrated that expanded, human adult adipose-derived stromal cells can generate ectopic bone through ECO, as previously reported for bone marrow stromal cells. This system can be used as a model in a variety of settings for mimicking ECO during development, physiology, or pathology (e.g., to investigate the role of BMPs, their receptors, and signaling pathways). The findings have also translational relevance in the field of bone regeneration, which, despite several advances in the domains of materials and surgical techniques, still faces various limitations before being introduced in the routine clinical practice. ©AlphaMed Press.
Interactions Between Adrenal and Calcium-Regulatory Hormones in Human Health
Brown, Jenifer M.; Vaidya, Anand
2014-01-01
Purpose of Review To summarize evidence characterizing the interactions between adrenal- and calcium-regulating hormones, and the relevance of these interactions to human cardiovascular and skeletal health. Recent Findings Human studies support the regulation of parathyroid hormone (PTH) by the renin-angiotensin-aldosterone system (RAAS): angiotensin II may stimulate PTH secretion via an acute and direct mechanism, whereas aldosterone may exert a chronic stimulation of PTH secretion. Studies in primary aldosteronism, congestive heart failure, and chronic kidney disease have identified associations between hyperaldosteronism, hyperparathyroidism, and bone loss, which appear to improve when inhibiting the RAAS. Conversely, elevated PTH and insufficient vitamin D status have been associated with adverse cardiovascular outcomes, which may be mediated by the RAAS. Studies of primary hyperparathyroidism implicate PTH-mediated stimulation of the RAAS, and recent evidence shows that the vitamin D-vitamin D receptor (VDR) complex may negatively regulate renin expression and RAAS activity. Ongoing human interventional studies are evaluating the influence of RAAS inhibition on PTH and the influence of VDR agonists on RAAS activity. Summary While previously considered independent endocrine systems, emerging evidence supports a complex web of interactions between adrenal and calcium-regulating hormones, with implications for human cardiovascular and skeletal health. PMID:24694551
El Eit, Rabab M; Iskandarani, Ahmad N; Saliba, Jessica L; Jabbour, Mark N; Mahfouz, Rami A; Bitar, Nizar M A; Ayoubi, Hanadi R El; Zaatari, Ghazi S; Mahon, Francois-Xavier; De Thé, Hugues B; Bazarbachi, Ali A; Nasr, Rihab R
2014-02-15
Imatinib is the standard of care in chronic meloid leukemia (CML) therapy. However, imatinib is not curative since most patients who discontinue therapy relapse indicating that leukemia initiating cells (LIC) are resistant. Interferon alpha (IFN) induces hematologic and cytogenetic remissions and interestingly, improved outcome was reported with the combination of interferon and imatinib. Arsenic trioxide was suggested to decrease CML LIC. We investigated the effects of arsenic and IFN on human CML cell lines or primary cells and the bone marrow retroviral transduction/transplantation murine CML model. In vitro, the combination of arsenic and IFN inhibited proliferation and activated apoptosis. Importantly, arsenic and IFN synergistically reduced the clonogenic activity of primary bone marrow cells derived from CML patients. Finally, in vivo, combined interferon and arsenic treatment, but not single agents, prolonged the survival of primary CML mice. Importantly, the combination severely impaired engraftment into untreated secondary recipients, with some recipients never developing the disease, demonstrating a dramatic decrease in CML LIC activity. Arsenic/IFN effect on CML LIC activity was significantly superior to that of imatinib. These results support further exploration of this combination, alone or with imatinib aiming at achieving CML eradication rather than long-term disease control. © 2013 UICC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witasp, Erika; Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm; Gustafsson, Ann-Catrin
2005-05-13
Previous studies have suggested that 1,25(OH){sub 2}D{sub 3}, the active form of vitamin D{sub 3}, may increase the survival of bone-forming osteoblasts through an inhibition of apoptosis. On the other hand, vitamin D{sub 3} has also been shown to trigger apoptosis in human cancer cells, including osteosarcoma-derived cell lines. In the present study, we show that 1,25(OH){sub 2}D{sub 3} induces a time- and dose-dependent loss of cell viability in the rat osteosarcoma cell line, UMR-106, and the human osteosarcoma cell line, TE-85. We were unable, however, to detect nuclear condensation, phosphatidylserine externalization, or other typical signs of apoptosis in thismore » model. Moreover, 1,25(OH){sub 2}D{sub 3} failed to protect against apoptosis induced by serum starvation or incubation with the protein kinase inhibitor, staurosporine. These in vitro findings are thus at variance with several previous reports in the literature and suggest that induction of or protection against apoptosis of bone-derived cells may not be a primary function of vitamin D{sub 3}.« less
Meltzer, Hagar; Milrad, Moran; Brenner, Ori; Atkins, Ayelet; Shahar, Ron
2014-01-01
Chronic kidney disease (CKD) is a growing public health concern worldwide, and is associated with marked increase of bone fragility. Previous studies assessing the effect of CKD on bone quality were based on biopsies from human patients or on laboratory animal models. Such studies provide information of limited relevance due to the small size of the samples (biopsies) or the non-physiologic CKD syndrome studied (rodent models with artificially induced CKD). Furthermore, the type, architecture, structure and biology of the bone of rodents are remarkably different from human bones; therefore similar clinicopathologic circumstances may affect their bones differently. We describe the effects of naturally occurring CKD with features resembling human CKD on the skeleton of cats, whose bone biology, structure and composition are remarkably similar to those of humans. We show that CKD causes significant increase of resorption cavity density compared with healthy controls, as well as significantly lower cortical mineral density, cortical cross-sectional area and cortical cross-sectional thickness. Young's modulus, yield stress, and ultimate stress of the cortical bone material were all significantly decreased in the skeleton of CKD cats. Cancellous bone was also affected, having significantly lower trabecular thickness and bone volume over total volume in CKD cats compared with controls. This study shows that naturally occurring CKD has deleterious effects on bone quality and strength. Since many similarities exist between human and feline CKD patients, including the clinicopathologic features of the syndrome and bone microarchitecture and biology, these results contribute to better understanding of bone abnormalities associated with CKD. PMID:25333360
Sobol, Monika; Raj, Stanisława; Skiba, Grzegorz
2018-05-01
Consumption of a high-fat diet, rich in SFA, causes deterioration of bone properties. Some studies suggest that feeding inulin to animals may increase mineral absorption and positively affect bone quality; however, these studies have been carried out only on rodents fed a standard diet. The primary objective of this study was to determine the effect of inulin on bone health of pigs (using it as an animal model for humans) fed a high-fat diet rich in SFA, having an unbalanced ratio of lysine:metabolisable energy. It was hypothesised that inulin reduces the negative effects of such a diet on bone health. At 50 d of age, twenty-one pigs were randomly allotted to three groups: the control (C) group fed a standard diet, and two experimental (T and TI) groups fed a high-fat diet rich in SFA. Moreover, TI pigs consumed an extra inulin supply (7 % of daily feed intake). After 10 weeks, whole-body bone mineral content (P=0·0054) and bone mineral density (P=0·0322) were higher in pigs of groups TI and C compared with those of group T. Femur bone mineral density was highest in pigs in group C, lower in group TI and lowest in group T (P=0·001). Femurs of pigs in groups TI and C had similar, but higher, maximum strength compared with femurs of pigs in group T (P=0·0082). In conclusion, consumption of a high-fat diet rich in SFA adversely affected bone health, but inulin supplementation in such a diet diminishes this negative effect.
Marin-Padilla, M; Marin-Padilla, T M
1977-01-01
Specific developmental malformations have been demonstrated in the occipital bone of two chondrodysplastic disorders (achondroplasia and thanatophoric dwarfism). Analysis of these malformations indicates that the occipital bone is primary affected in these disorders. In both cases, the endochondral-derived components of the occipital bone (the basioccipital, the two lateral parts, and the planum nuchale of the squama occipitalis) have failed to grow properly and are smaller and shorter than normal. On the other hand, the planum occipitalis of the squama, which derives from intramembranous ossification, is unaffected. In addition, the nature of these abnormalities indicates that the occipital synchondroses, together with the epiphyseal plates of other bones, are primarily affected in these two chondrodysplasias. The components of the occipital bone formed between the affected synchondroses failed to grow normally. The resulting malformation of the occipital bone is undoubtedly the cause of the shortening of the posterior cerebral fossa and of the considerable narrowing of the foramen magnum often described in these chondrodysplasias. It is postulated that growth disturbances between the affected occipital bone and the unaffected central nervous system results in the inadequacy of the posterior cerebral fossa and the foramen magnum to accommodate the growing brain. Consequently, compression of the brain at the posterior cerebral fossa or the foramen magnum levels could occur and thus lead to neurologic complications such as hydrocephalus and compression of the brain stem. It is suggested that the surgical removal of the fused posterior border of the lateral parts of the occipital bone (partial nuchalectomy) for the purpose of enlarging the narrow foramen magnum may be indicated in those chondrodysplastic children who develop these types of neurologic complications.
... different views of the bone may be uncomfortable. Why the Test is Performed A bone x-ray ... neoplasia (MEN) II Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Paget's disease Primary hyperparathyroidism Rickets Risks There ...
Altered thermogenesis and impaired bone remodeling in Misty mice
Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J
2013-01-01
Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a and less sympathetic innervation compared to wildtype (+/+)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hr), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2 and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wildtype. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wildtype and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular BV/TV loss in the distal femur of Misty mice without affecting wildtype. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold exposure negatively affects bone remodeling. PMID:23553822
Wu, Cheng-Tien; Lu, Tung-Ying; Chan, Ding-Cheng; Tsai, Keh-Sung; Yang, Rong-Sen
2014-01-01
Background: Arsenic is a ubiquitous toxic element and is known to contaminate drinking water in many countries. Several epidemiological studies have shown that arsenic exposure augments the risk of bone disorders. However, the detailed effect and mechanism of inorganic arsenic on osteoblast differentiation of bone marrow stromal cells and bone loss still remain unclear. Objectives: We investigated the effects and mechanism of arsenic on osteoblast differentiation in vitro and evaluated bone mineral density (BMD) and bone microstructure in rats at doses relevant to human exposure from drinking water. Methods: We used a cell model of rat primary bone marrow stromal cells (BMSCs) and a rat model of long-term exposure with arsenic-contaminated drinking water, and determined bone microstructure and BMD in rats by microcomputed tomography (μCT). Results: We observed significant attenuation of osteoblast differentiation after exposure of BMSCs to arsenic trioxide (0.5 or 1 μM). After arsenic treatment during differentiation, expression of runt-related transcription factor-2 (Runx2), bone morphogenetic protein-2 (BMP-2), and osteocalcin in BMSCs was inhibited and phosphorylation of enhanced extracellular signal-regulated kinase (ERK) was increased. These altered differentiation-related molecules could be reversed by the ERK inhibitor PD98059. Exposure of rats to arsenic trioxide (0.05 or 0.5 ppm) in drinking water for 12 weeks altered BMD and microstructure, decreased Runx2 expression, and increased ERK phosphorylation in bones. In BMSCs isolated from arsenic-treated rats, osteoblast differentiation was inhibited. Conclusions: Our results suggest that arsenic is capable of inhibiting osteoblast differentiation of BMSCs via an ERK-dependent signaling pathway and thus increasing bone loss. Citation: Wu CT, Lu TY, Chan DC, Tsai KS, Yang RS, Liu SH. 2014. Effects of arsenic on osteoblast differentiation in vitro and on bone mineral density and microstructure in rats. Environ Health Perspect 122:559–565; http://dx.doi.org/10.1289/ehp.1307832 PMID:24531206
Nakajima, Kengo; Kunimatsu, Ryo; Ando, Kazuyo; Ando, Toshinori; Hayashi, Yoko; Kihara, Takuya; Hiraki, Tomoka; Tsuka, Yuji; Abe, Takaharu; Kaku, Masato; Nikawa, Hiroki; Takata, Takashi; Tanne, Kazuo; Tanimoto, Kotaro
2018-03-11
Cleft lip and palate is the most common congenital anomaly in the orofacial region. Autogenous iliac bone graft, in general, has been employed for closing the bone defect at the alveolar cleft. However, such iliac bone graft provides patients with substantial surgical and psychological invasions. Consequently, development of a less invasive method has been highly anticipated. Stem cells from human exfoliated deciduous teeth (SHED) are a major candidate for playing a significant role in tissue engineering and regenerative medicine. The aim of this study was to elucidate the nature of bone regeneration by SHED as compared to that of human dental pulp stem cells (hDPSCs) and bone marrow mesenchymal stem cells (hBMSCs). The stems cells derived from pulp tissues and bone marrow were transplanted with a polylactic-coglycolic acid barrier membrane as a scaffold, for use in bone regeneration in an artificial bone defect of 4 mm in diameter in the calvaria of immunodeficient mice. Three-dimensional analysis using micro CT and histological evaluation were performed. Degree of bone regeneration with SHED relative to the bone defect was almost equivalent to that with hDPSCs and hBMSCs 12 weeks after transplantation. The ratio of new bone formation relative to the pre-created bone defect was not significantly different among groups with SHED, hDPSCs and hBMSCs. In addition, as a result of histological evaluation, SHED produced the largest osteoid and widely distributed collagen fibers compared to hDPSCs and hBMSCs groups. Thus, SHED transplantation exerted bone regeneration ability sufficient for the repair of bone defect. The present study has demonstrated that SHED is one of the best candidate as a cell source for the reconstruction of alveolar cleft due to the bone regeneration ability with less surgical invasion. Copyright © 2018 Elsevier Inc. All rights reserved.
Stein, Koen; Prondvai, Edina
2014-02-01
We present novel findings on sauropod bone histology that cast doubt on general palaeohistological concepts concerning the true nature of woven bone in primary cortical bone and its role in the rapid growth and giant body sizes of sauropod dinosaurs. By preparing and investigating longitudinal thin sections of sauropod long bones, of which transverse thin sections were published previously, we found that the amount of woven bone in the primary complex has been largely overestimated. Using comparative cellular and light-extinction characteristics in the two section planes, we revealed that the majority of the bony lamina consists of longitudinally organized primary bone, whereas woven bone is usually represented only by a layer a few cells thin in the laminae. Previous arguments on sauropod biology, which have been based on the overestimated amount, misinterpreted formation process and misjudged role of woven bone in the plexiform bone formation of sauropod dinosaurs, are thereby rejected. To explain the observed pattern in fossil bones, we review the most recent advances in bone biology concerning bone formation processes at the cellular and tissue levels. Differentiation between static and dynamic osteogenesis (SO and DO) and the revealed characteristics of SO- versus DO-derived bone tissues shed light on several questions raised by our palaeohistological results and permit identification of these bone tissues in fossils with high confidence. By presenting the methods generally used for investigating fossil bones, we show that the major cause of overestimation of the amount of woven bone in previous palaeohistological studies is the almost exclusive usage of transverse sections. In these sections, cells and crystallites of the longitudinally organized primary bone are cut transversely, thus cells appear rounded and crystallites remain dark under crossed plane polarizers, thereby giving the false impression of woven bone. In order to avoid further confusion in palaeohistological studies, we introduce new osteohistological terms as well as revise widely used but incorrect terminology. To infer the role of woven bone in the bone formation of fast-growing tetrapods, we review some aspects of the interrelationships between the vascularity of bone tissues, basal metabolic rate, body size and growth rate. By putting our findings into the context of osteogenesis, we provide a new model for the diametrical limb bone growth of sauropods and present new implications for the evolution of fast growth in vertebrates. Since biomechanical studies of bone tissues suggest that predominant collagen fibre orientation (CFO) is controlled by endogenous, functional and perhaps phylogenetic factors, the relationship between CFO and bone growth rate as defined by Amprino's rule, which has been the basis for the biological interpretation of several osteohistological features, must be revised. Our findings draw attention to the urgent need for revising widely accepted basic concepts of palaeohistological studies, and for a more integrative approach to bone formation, biomechanics and bone microstructural features of extant and extinct vertebrates to infer life history traits of long extinct, iconic animals like dinosaurs. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
Comparative Chondrogenesis of Human Cell Sources in 3D Scaffolds
Tıg̑lı, R. Seda; Ghosh, Sourabh; Laha, Michael M.; Shevde, Nirupama K.; Daheron, Laurence; Gimble, Jeffrey; Gümüşdereliog̑lu, Menemşe; Kaplan, David L.
2009-01-01
Cartilage tissue can be engineered by starting from a diversity of cell sources, including stem-cell based and primary cell-based platforms. Selecting an appropriate cell source for the process of cartilage tissue engineering or repair is critical and challenging due to the variety of cell options available. In this study, cellular responses of isolated human chondrocytes, human embryonic stem cells and mesenchymal stem cells (MSCs) derived from three sources, human embryonic stem cells, bone marrow and adipose tissue, were assessed for chondrogenic potential in 3D culture. All cell sources were characterized by FACS analysis to compare expression of some surface markers. The cells were differentiated in two different biomaterial matrices, silk and chitosan scaffolds, in the presence and absence of bone morphogenetic protein 6 (BMP-6) along with the standard chondrogenic differentiating factors. Embryonic stem cells derived MSCs showed unique characteristics with preserved chondrogenic phenotype in both scaffolds with regard to chondrogenesis, as determined by real time RT-PCR, histological and microscopic analyses. After 4 weeks of cultivation, embryonic stem cells derived MSCs were promising for chondrogenesis, particularly in the silk scaffolds with BMP-6. The results suggest that cell source differences are important to consider with regard to chondrogenic outcomes and with the variables addressed here, the human embryonic stem cells derived MSCs were the preferred cell source. PMID:19382119
Notsu, Masakazu; Yamaguchi, Toru; Okazaki, Kyoko; Tanaka, Ken-ichiro; Ogawa, Noriko; Kanazawa, Ippei; Sugimoto, Toshitsugu
2014-07-01
In diabetic patients, advanced glycation end products (AGEs) cause bone fragility because of deterioration of bone quality. We previously showed that AGEs suppressed the mineralization of mouse stromal ST2 cells. TGF-β is abundant in bone, and enhancement of its signal causes bone quality deterioration. However, whether TGF-β signaling is involved in the AGE-induced suppression of mineralization during the osteoblast lineage remains unknown. We therefore examined the roles of TGF-β in the AGE-induced suppression of mineralization of ST2 cells and human mesenchymal stem cells. AGE3 significantly (P < .001) inhibited mineralization in both cell types, whereas transfection with small interfering RNA for the receptor for AGEs (RAGEs) significantly (P < .05) recovered this process in ST2 cells. AGE3 increased (P < .001) the expression of TGF-β mRNA and protein, which was partially antagonized by transfection with RAGE small interfering RNA. Treatment with a TGF-β type I receptor kinase inhibitor, SD208, recovered AGE3-induced decreases in osterix (P < .001) and osteocalcin (P < .05) and antagonized the AGE3-induced increase in Runx2 mRNA expression in ST2 cells (P < .001). Moreover, SD208 completely and dose dependently rescued AGE3-induced suppression of mineralization in both cell types. In contrast, SD208 intensified AGE3-induced suppression of cell proliferation as well as AGE3-induced apoptosis in proliferating ST2 cells. These findings indicate that, after cells become confluent, AGE3 partially inhibits the differentiation and mineralization of osteoblastic cells by binding to RAGE and increasing TGF-β expression and secretion. They also suggest that TGF-β adversely affects bone quality not only in primary osteoporosis but also in diabetes-related bone disorder.
Scherrer, Beat; Della Chiesa, Andrea; Polska, Elzbieta; Kutten Berger, Johannes J
Inflammation of bone is caused either by bacterial infection or occasionally by physical stimulus. Primary chronic osteomyelitis of mandibular bone is a chronic inflammation of an unknown cause. Pain, swelling, limited mouth opening, regional lymphadenopathy and hypaesthesia are clinical symptoms at initial presentation. Results of biopsy, computed tomography and scintigraphy reveal the diagnosis of a primary chronic osteomyelitis. Its management is long-term antibiotic therapy, hyperbaric oxygen and surgical therapy, even bisphophonate treatement may be a good option. The case report presents a primary progressive chronic osteomyelitis of the manibular bone of a ten year old boy. Clinical and radiological signs are discussed as well as diagnosis, management and follow-up.
Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model
Kim, Jiae; Peachman, Kristina K.; Jobe, Ousman; Morrison, Elaine B.; Allam, Atef; Jagodzinski, Linda; Casares, Sofia A.; Rao, Mangala
2017-01-01
Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP) models for studying human immunodeficiency virus (HIV)-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several different types of humanized mice have been developed with varying levels of reconstitution of human CD45+ cells. In this study, we utilized humanized Rag1KO.IL2RγcKO.NOD mice expressing HLA class II (DR4) molecule (DRAG mice) infused with HLA-matched hematopoietic stem cells from umbilical cord blood to study early events after HIV-1 infection, since the mucosal tissues of these mice are highly enriched for human lymphocytes and express the receptors and coreceptors needed for HIV-1 entry. We examined the various tissues on days 4, 7, 14, and 21 after an intravaginal administration of a single dose of purified primary HIV-1. Plasma HIV-1 RNA was detected as early as day 7, with 100% of the animals becoming plasma RNA positive by day 21 post-infection. Single cells were isolated from lymph nodes, bone marrow, spleen, gut, female reproductive tissue, and brain and analyzed for gag RNA and strong stop DNA by quantitative (RT)-PCR. Our data demonstrated the presence of HIV-1 viral RNA and DNA in all of the tissues examined and that the virus was replication competent and spread rapidly. Bone marrow, gut, and lymph nodes were viral RNA positive by day 4 post-infection, while other tissues and plasma became positive typically between 7 and 14 days post-infection. Interestingly, the brain was the last tissue to become HIV-1 viral RNA and DNA positive by day 21 post-infection. These data support the notion that humanized DRAG mice could serve as an excellent model for studying the trafficking of HIV-1 to the various tissues, identification of cells harboring the virus, and thus could serve as a model system for HIV-1 pathogenesis and reservoir studies. PMID:29163484
Bone disease in primary hyperparathyroidism
Bandeira, Francisco; Cusano, Natalie E.; Silva, Barbara C.; Cassibba, Sara; Almeida, Clarissa Beatriz; Machado, Vanessa Caroline Costa; Bilezikian, John P.
2015-01-01
Bone disease in severe primary hyperparathyroidism (PHPT) is described classically as osteitis fibrosa cystica (OFC). Bone pain, skeletal deformities and pathological fractures are features of OFC. Bone mineral density is usually extremely low in OFC, but it is reversible after surgical cure. The signs and symptoms of severe bone disease include bone pain, pathologic fractures, proximal muscle weakness with hyperreflexia. Bone involvement is typically characterized as salt-and-pepper appearance in the skull, bone erosions and bone resorption of the phalanges, brown tumors and cysts. In the radiography, diffuse demineralization is observed, along with pathological fractures, particularly in the long bones of the extremities. In severe, symptomatic PHPT, marked elevation of the serum calcium and PTH concentrations are seen and renal involvement is manifested by nephrolithiasis and nephrocalcinosis. A new technology, recently approved for clinical use in the United States and Europe, is likely to become more widely available because it is an adaptation of the lumbar spine DXA image. Trabecular bone score (TBS) is a gray-level textural analysis that provides an indirect index of trabecular microarchitecture. Newer technologies, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), have provided further understanding of the microstructural skeletal features in PHPT. PMID:25166047
Stapedotomy in osteogenesis imperfecta: a prospective study of 32 consecutive cases.
Vincent, Robert; Wegner, Inge; Stegeman, Inge; Grolman, Wilko
2014-12-01
To prospectively evaluate hearing outcomes in patients with osteogenesis imperfecta undergoing primary stapes surgery and to isolate prognostic factors for success. A nonrandomized, open, prospective case series. A tertiary referral center. Twenty-five consecutive patients who underwent 32 primary stapedotomies for osteogenesis imperfecta with evidence of stapes fixation and available postoperative pure-tone audiometry. Primary stapedotomy with vein graft interposition and reconstruction with a regular Teflon piston or bucket handle-type piston. Preoperative and postoperative audiometric evaluation using conventional 4-frequency (0.5, 1, 2, and 4 kHz) audiometry. Air-conduction thresholds, bone-conduction thresholds, and air-bone gap were measured. The overall audiometric results as well as the results of audiometric evaluation at 3 months and at least 1 year after surgery were used. Overall, postoperative air-bone gap closure to within 10 dB was achieved in 88% of cases. Mean (standard deviation) gain in air-conduction threshold was 22 (9.4) dB for the entire case series, and mean (standard deviation) air-bone gap closure was 22 (9.0) dB. Backward multivariate logistic regression showed that a model with preoperative air-bone gap closure and intraoperatively established incus length accurately predicts success after primary stapes surgery. Stapes surgery is a feasible and safe treatment option in patients with osteogenesis imperfecta. Success is associated with preoperative air-bone gap and intraoperatively established incus length.
Effect of metabolic and respiratory acidosis on intracellular calcium in osteoblasts
Bushinsky, David A.
2010-01-01
In vivo, metabolic acidosis {decreased pH from decreased bicarbonate concentration ([HCO3−])} increases urine calcium (Ca) without increased intestinal Ca absorption, resulting in a loss of bone Ca. Conversely, respiratory acidosis [decreased pH from increased partial pressure of carbon dioxide (Pco2)] does not appreciably alter Ca homeostasis. In cultured bone, chronic metabolic acidosis (Met) significantly increases cell-mediated net Ca efflux while isohydric respiratory acidosis (Resp) does not. The proton receptor, OGR1, appears critical for cell-mediated, metabolic acid-induced bone resorption. Perfusion of primary bone cells or OGR1-transfected Chinese hamster ovary (CHO) cells with Met induces transient peaks of intracellular Ca (Cai). To determine whether Resp increases Cai, as does Met, we imaged Cai in primary cultures of bone cells. pH for Met = 7.07 ([HCO3−] = 11.8 mM) and for Resp = 7.13 (Pco2 = 88.4 mmHg) were similar and lower than neutral (7.41). Both Met and Resp induced a marked, transient increase in Cai in individual bone cells; however, Met stimulated Cai to a greater extent than Resp. We used OGR1-transfected CHO cells to determine whether OGR1 was responsible for the greater increase in Cai in Met than Resp. Both Met and Resp induced a marked, transient increase in Cai in OGR1-transfected CHO cells; however, in these cells Met was not different than Resp. Thus, the greater induction of Cai by Met in primary bone cells is not a function of OGR1 alone, but must involve H+ receptors other than OGR1, or pathways sensitive to Pco2, HCO3−, or total CO2 that modify the effect of H+ in primary bone cells. PMID:20504884
Effect of metabolic and respiratory acidosis on intracellular calcium in osteoblasts.
Frick, Kevin K; Bushinsky, David A
2010-08-01
In vivo, metabolic acidosis {decreased pH from decreased bicarbonate concentration ([HCO(3)(-)])} increases urine calcium (Ca) without increased intestinal Ca absorption, resulting in a loss of bone Ca. Conversely, respiratory acidosis [decreased pH from increased partial pressure of carbon dioxide (Pco(2))] does not appreciably alter Ca homeostasis. In cultured bone, chronic metabolic acidosis (Met) significantly increases cell-mediated net Ca efflux while isohydric respiratory acidosis (Resp) does not. The proton receptor, OGR1, appears critical for cell-mediated, metabolic acid-induced bone resorption. Perfusion of primary bone cells or OGR1-transfected Chinese hamster ovary (CHO) cells with Met induces transient peaks of intracellular Ca (Ca(i)). To determine whether Resp increases Ca(i), as does Met, we imaged Ca(i) in primary cultures of bone cells. pH for Met = 7.07 ([HCO(3)(-)] = 11.8 mM) and for Resp = 7.13 (Pco(2) = 88.4 mmHg) were similar and lower than neutral (7.41). Both Met and Resp induced a marked, transient increase in Ca(i) in individual bone cells; however, Met stimulated Ca(i) to a greater extent than Resp. We used OGR1-transfected CHO cells to determine whether OGR1 was responsible for the greater increase in Ca(i) in Met than Resp. Both Met and Resp induced a marked, transient increase in Ca(i) in OGR1-transfected CHO cells; however, in these cells Met was not different than Resp. Thus, the greater induction of Ca(i) by Met in primary bone cells is not a function of OGR1 alone, but must involve H(+) receptors other than OGR1, or pathways sensitive to Pco(2), HCO(3)(-), or total CO(2) that modify the effect of H(+) in primary bone cells.
Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue.
Pemmer, B; Roschger, A; Wastl, A; Hofstaetter, J G; Wobrauschek, P; Simon, R; Thaler, H W; Roschger, P; Klaushofer, K; Streli, C
2013-11-01
Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. © 2013. Published by Elsevier Inc. All rights reserved.
Yang, Wenting; Wang, Dongmei; Lei, Zhoujixin; Wang, Chunhui; Chen, Shanguang
2017-12-01
Astronauts who are exposed to weightless environment in long-term spaceflight might encounter bone density and mass loss for the mechanical stimulus is smaller than normal value. This study built a three dimensional model of human femur to simulate the remodeling process of human femur during bed rest experiment based on finite element analysis (FEA). The remodeling parameters of this finite element model was validated after comparing experimental and numerical results. Then, the remodeling process of human femur in weightless environment was simulated, and the remodeling function of time was derived. The loading magnitude and loading cycle on human femur during weightless environment were increased to simulate the exercise against bone loss. Simulation results showed that increasing loading magnitude is more effective in diminishing bone loss than increasing loading cycles, which demonstrated that exercise of certain intensity could help resist bone loss during long-term spaceflight. At the end, this study simulated the bone recovery process after spaceflight. It was found that the bone absorption rate is larger than bone formation rate. We advise that astronauts should take exercise during spaceflight to resist bone loss.
Braga, V; Dorizzi, R; Brocco, G; Rossini, M; Zamberlan, N; Gatti, D; Adami, S
1995-07-01
Bone alkaline phosphatase was evaluated by wheat-germ lectin precipitation in several clinical conditions. The study included 33 premenopausal healthy women, 46 postmenopausal apparently healthy women, 19 growing children, 24 patients with Paget's disease, 31 patients with primary hyperparathyroidism and 66 patients with hepatobiliary diseases. In postmenopausal women the mean T score (i.e.: the number of SD below or above the mean for premenopausal women) was 2.6 +/- 1.3 (SD) for bone alkaline phosphatase and 1.61 +/- 1.21 for total alkaline phosphatase (p < 0.001). The T score for bone alkaline phosphatase provided a better discrimination from normals for both Paget's disease (22.1 +/- 27.8 versus 12.8 +/- 16 p < 0.001) and primary hyperparathyroidism (8.2 +/- 4.3 versus 4.6 +/- 3.7 p < 0.005 for bone alkaline phosphatase and total alkaline phosphatase respectively). After treatment with intravenous bisphosphonate the percent decrease of bone alkaline phosphatase was larger than that of total alkaline phosphatase both in patients with Paget's disease (-46% versus -72% p < 0.01) and in patients with primary hyperparathyroidism (-21% versus -47% p < 0.02) and an estimate of the precision (delta mean/SD of the delta mean) for bone alkaline phosphatase was 1.9-3.7 times higher than that of total alkaline phosphatase. In twelve osteoporotic patients treated for six months with oral alendronate the decrease in bone turnover was detected with significantly higher precision with bone alkaline phosphatase than with total alkaline phosphatase (p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)
A Method for Whole Protein Isolation from Human Cranial Bone
Lyon, Sarah M.; Mayampurath, Anoop; Rogers, M. Rose; Wolfgeher, Donald J.; Fisher, Sean M.; Volchenboum, Samuel L.; He, Tong-Chuan; Reid, Russell R.
2016-01-01
The presence of the dense hydroxyapatite matrix within human bone limits the applicability of conventional protocols for protein extraction. This has hindered the complete and accurate characterization of the human bone proteome thus far, leaving many bone-related disorders poorly understood. We sought to refine an existing method of protein extraction from mouse bone to extract whole proteins of varying molecular weights from human cranial bone. Whole protein was extracted from human cranial suture by mechanically processing samples using a method that limits protein degradation by minimizing heat introduction to proteins. The presence of whole protein was confirmed by western blotting. Mass spectrometry was used to sequence peptides and identify isolated proteins. The data have been deposited to the ProteomeXchange with identifier PXD003215. Extracted proteins were characterized as both intra- and extracellular and had molecular weights ranging from 9.4-629 kDa. High correlation scores among suture protein spectral counts support the reproducibility of the method. Ontology analytics revealed proteins of myriad functions including mediators of metabolic processes and cell organelles. These results demonstrate a reproducible method for isolation of whole protein from human cranial bone, representing a large range of molecular weights, origins and functions. PMID:27677936
Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Maryka H.
Extensive epidemiological studies have recently demonstrated increased cadmium exposure correlating significantly with decreased bone mineral density and increased fracture incidence in humans at lower exposure levels than ever before evaluated. Studies in experimental animals have addressed whether very low concentrations of dietary cadmium can negatively impact the skeleton. This overview evaluates results in experimental animals regarding mechanisms of action on bone and the application of these results to humans. Results demonstrate that long-term dietary exposures in rats, at levels corresponding to environmental exposures in humans, result in increased skeletal fragility and decreased mineral density. Cadmium-induced demineralization begins soon after exposure,more » within 24 h of an oral dose to mice. In bone culture systems, cadmium at low concentrations acts directly on bone cells to cause both decreases in bone formation and increases in bone resorption, independent of its effects on kidney, intestine, or circulating hormone concentrations. Results from gene expression microarray and gene knock-out mouse models provide insight into mechanisms by which cadmium may affect bone. Application of the results to humans is considered with respect to cigarette smoke exposure pathways and direct vs. indirect effects of cadmium. Clearly, understanding the mechanism(s) by which cadmium causes bone loss in experimental animals will provide insight into its diverse effects in humans. Preventing bone loss is critical to maintaining an active, independent lifestyle, particularly among elderly persons. Identifying environmental factors such as cadmium that contribute to increased fractures in humans is an important undertaking and a first step to prevention.« less
Callebaut, Christian; Liu, Yang; Babusis, Darius; Ray, Adrian; Miller, Michael; Kitrinos, Kathryn
2017-01-01
Tenofovir alafenamide (TAF) is a phosphonoamidate prodrug of the nucleotide HIV reverse transcriptase inhibitor tenofovir (TFV). TAF is approved for the treatment of HIV-1 infection as part of the single-tablet regimen containing elvitegravir, cobicistat, emtricitabine, and TAF. When dosed once-daily, TAF results in approximately 90% lower levels of plasma TFV and a 4-fold increase in intracellular TFV-diphosphate (TFV-DP) in PBMCs compared with the TFV prodrug tenofovir disoproxil fumarate (TDF). Several antiretrovirals, including TDF, have been associated with bone mineral density decreases in patients; the effect of clinically relevant TAF concentrations on primary osteoblast viability was therefore assessed in vitro. Studies in PBMCs determined that a 2-hour TAF exposure at concentrations similar to human plasma Cmax achieved intracellular TFV-DP levels comparable to those observed after the maximum recommended human dose of 25 mg TAF. Comparable intracellular TFV-DP levels were achieved in primary osteoblasts with 2-hour TAF exposure daily for 3 days at concentrations similar to those used for PBMCs (100–400 nM). No change in cell viability was observed in either primary osteoblasts or PBMCs. The mean TAF CC50 in primary osteoblasts after 3 days of daily 2-hour pulses was >500 μM, which is >1033 times higher than the TAF maximum recommended human dose plasma Cmax. In summary, primary osteoblasts were not preferentially loaded by TAF compared with PBMCs, with comparable TFV-DP levels achieved in both cell types. Furthermore, there was no impact on osteoblast cell viability at clinically relevant TAF concentrations. PMID:28182625
Callebaut, Christian; Liu, Yang; Babusis, Darius; Ray, Adrian; Miller, Michael; Kitrinos, Kathryn
2017-01-01
Tenofovir alafenamide (TAF) is a phosphonoamidate prodrug of the nucleotide HIV reverse transcriptase inhibitor tenofovir (TFV). TAF is approved for the treatment of HIV-1 infection as part of the single-tablet regimen containing elvitegravir, cobicistat, emtricitabine, and TAF. When dosed once-daily, TAF results in approximately 90% lower levels of plasma TFV and a 4-fold increase in intracellular TFV-diphosphate (TFV-DP) in PBMCs compared with the TFV prodrug tenofovir disoproxil fumarate (TDF). Several antiretrovirals, including TDF, have been associated with bone mineral density decreases in patients; the effect of clinically relevant TAF concentrations on primary osteoblast viability was therefore assessed in vitro. Studies in PBMCs determined that a 2-hour TAF exposure at concentrations similar to human plasma Cmax achieved intracellular TFV-DP levels comparable to those observed after the maximum recommended human dose of 25 mg TAF. Comparable intracellular TFV-DP levels were achieved in primary osteoblasts with 2-hour TAF exposure daily for 3 days at concentrations similar to those used for PBMCs (100-400 nM). No change in cell viability was observed in either primary osteoblasts or PBMCs. The mean TAF CC50 in primary osteoblasts after 3 days of daily 2-hour pulses was >500 μM, which is >1033 times higher than the TAF maximum recommended human dose plasma Cmax. In summary, primary osteoblasts were not preferentially loaded by TAF compared with PBMCs, with comparable TFV-DP levels achieved in both cell types. Furthermore, there was no impact on osteoblast cell viability at clinically relevant TAF concentrations.
Carretta, Marco; de Boer, Bauke; Jaques, Jenny; Antonelli, Antonella; Horton, Sarah J; Yuan, Huipin; de Bruijn, Joost D; Groen, Richard W J; Vellenga, Edo; Schuringa, Jan Jacob
2017-07-01
Recently, NOD-SCID IL2Rγ -/- (NSG) mice were implanted with human mesenchymal stromal cells (MSCs) in the presence of ceramic scaffolds or Matrigel to mimic the human bone marrow (BM) microenvironment. This approach allowed the engraftment of leukemic samples that failed to engraft in NSG mice without humanized niches and resulted in a better preservation of leukemic stem cell self-renewal properties. To further improve our humanized niche scaffold model, we genetically engineered human MSCs to secrete human interleukin-3 (IL-3) and thrombopoietin (TPO). In vitro, these IL-3- and TPO-producing MSCs were superior in expanding human cord blood (CB) CD34 + hematopoietic stem/progenitor cells. MLL-AF9-transduced CB CD34 + cells could be transformed efficiently along myeloid or lymphoid lineages on IL-3- and TPO-producing MSCs. In vivo, these genetically engineered MSCs maintained their ability to differentiate into bone, adipocytes, and other stromal components. Upon transplantation of MLL-AF9-transduced CB CD34 + cells, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) developed in engineered scaffolds, in which a significantly higher percentage of myeloid clones was observed in the mouse compartments compared with previous models. Engraftment of primary AML, B-cell ALL, and biphenotypic acute leukemia (BAL) patient samples was also evaluated, and all patient samples could engraft efficiently; the myeloid compartment of the BAL samples was better preserved in the human cytokine scaffold model. In conclusion, we show that we can genetically engineer the ectopic human BM microenvironment in a humanized scaffold xenograft model. This approach will be useful for functional study of the importance of niche factors in normal and malignant human hematopoiesis. Copyright © 2017 ISEH - International Society for Experimental Hematology. All rights reserved.
Reuss, Jose M; Pi-Anfruns, Joan; Moy, Peter K
2018-04-01
The aim of this study was to assess the clinical effectiveness of alveolar distraction osteogenesis (ADO) versus recombinant human bone morphogenetic protein-2 (rh-BMP-2) for vertical ridge augmentation. Few data have been published on vertical bone regeneration using rh-BMP-2. The authors implemented a retrospective cohort study and enrolled a sample composed of patients with deficient alveolar vertical bone height. The primary predictor variable was vertical augmentation with BMP-2 and a titanium mesh or ADO. The primary outcome variable was gain in vertical bone height (millimeters) measured using computed tomography. The secondary outcome variable was postoperative complications, namely need for further grafting before or simultaneous with implant placement, soft tissue dehiscence, paresthesia, infection, implant failure, and pain. Other outcomes included implant stability at time of placement and follow-up (implant stability quotient by resonance frequency analysis), surgical time (minutes), and total treatment time until implant placement (weeks). Other study variables included location of reconstruction (maxilla or mandible). Appropriate bivariate statistics were computed and statistical significance was set a P value less than .05. The retrospective review yielded 21 patients in the BMP group and 19 in the ADO group. For the BMP-2 group, the average vertical bone gain was 2.96 ± 1.8 mm overall (maxilla, mean 3.6 ± 3.1 mm; mandible, mean 2.32 ± 1.8 mm). For the ADO group, this gain was 4 ± 1.69 mm overall (maxilla, mean 2.8 ± 1.94 mm; mandible, mean 5.2 ± 4.67 mm). For complications, group BMP showed a statistically minor tendency for more postoperative problems, such as wound dehiscence. For implant survival, group BMP showed a 92.2% survival rate versus 96.3% in group ADO at 3 to 45 months after delivery of the prosthesis (average, 22 months). The 2 techniques showed similar values in absolute vertical bone gain. Group ADO showed a slightly better outcome in outright vertical regenerative potential, albeit with a more frequent need for regrafting before and simultaneous with implant placement. Group BMP showed a lesser need for regrafting, despite having a higher postoperative complication rate. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Okada, M; Ishkitiev, N; Yaegaki, K; Imai, T; Tanaka, T; Fukuda, M; Ono, S; Haapasalo, M
2014-12-01
To determine the differences in stem cell properties, in hepatic differentiation and in the effects of hydrogen sulphide (H2 S) on hepatic differentiation between human bone marrow stem cells (hBMC) and stem cells from human exfoliated primary tooth pulp (SHED). CD117(+) cells were magnetically separated and subjected to hepatic differentiation. CD117(+) cell lineages were characterized for transcription factors indicative of stem cells by qRT-PCR. For the last 9 days of the differentiation, the test cells were exposed to 0.1 ng mL(-1) H2 S. Immunocytochemistry and flow cytometry of albumin, alpha-fetoprotein and carbamoyl phosphate synthetase were carried out after differentiation. Urea concentration and glycogen synthesis were also determined. Genes expressed in SHED were also expressed in BMC. No difference in expression level of hepatic markers was shown by immunofluorescence. SHED showed more positive cells than hBMC (P < 0.01). H2 S increased the number of positive cells in both cultures (P < 0.01). Urea concentration and glycogen synthesis increased significantly after H2 S exposure (P < 0.001 and P < 0.05, respectively). Real-time PCR data were analysed by RT(2) profiler RT-PCR Array Data Analysis version 3.5 (Qiagen), and ELISA data were analysed by Bonferroni's multiple comparison using Windows spss version 16 (SPSS Inc, Chicago, IL, USA). Bonferroni's multiple comparison test was also carried out after angle transformation for the percentage data of flow cytometer using Windows spss(®) version 16 (SPSS Inc). Statistical significance was accepted at P < 0.05. Stem cells from human exfoliated primary tooth pulp and BMC have similar properties. The level of hepatic differentiation in SHED compared with BMC was the same or higher. H2 S increased the level of hepatic differentiation. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Blouin, Stéphane; Fratzl-Zelman, Nadja; Glorieux, Francis H; Roschger, Paul; Klaushofer, Klaus; Marini, Joan C; Rauch, Frank
2017-09-01
In contrast to "classical" forms of osteogenesis imperfecta (OI) types I to IV, caused by a mutation in COL1A1/A2, OI type V is due to a gain-of-function mutation in the IFITM5 gene, encoding the interferon-induced transmembrane protein 5, or bone-restricted interferon-inducible transmembrane (IFITM)-like protein (BRIL). Its phenotype distinctly differs from OI types I to IV by absence of blue sclerae and dentinogenesis imperfecta, by the occurrence of ossification disorders such as hyperplastic callus and forearm interosseous membrane ossification. Little is known about the impact of the mutation on bone tissue/material level in untreated and bisphosphonate-treated patients. Therefore, investigations of transiliac bone biopsy samples from a cohort of OI type V children (n = 15, 8.7 ± 4 years old) untreated at baseline and a subset (n = 8) after pamidronate treatment (2.6 years in average) were performed. Quantitative backscattered electron imaging (qBEI) was used to determine bone mineralization density distribution (BMDD) as well as osteocyte lacunar density. The BMDD of type V OI bone was distinctly shifted toward a higher degree of mineralization. The most frequently occurring calcium concentration (CaPeak) in cortical (Ct) and cancellous (Cn) bone was markedly increased (+11.5%, +10.4%, respectively, p < 0.0001) compared to healthy reference values. Treatment with pamidronate resulted in only a slight enhancement of mineralization. The osteocyte lacunar density derived from sectioned bone area was elevated in OI type V Ct and Cn bone (+171%, p < 0.0001; +183.3%, p < 0.01; respectively) versus controls. The high osteocyte density was associated with an overall immature primary bone structure ("mesh-like") as visualized by polarized light microscopy. In summary, the bone material from OI type V patients is hypermineralized, similar to other forms of OI. The elevated osteocyte lacunar density in connection with lack of regular bone lamellation points to an exuberant primary bone formation and an alteration of the bone remodeling process in OI type V. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Primary Occipital Ewing's Sarcoma with Subsequent Spinal Seeding.
Alqahtani, Ali; Amer, Roaa; Bakhsh, Eman
2017-01-01
Ewing's sarcoma is a primary bone cancer that mainly affects the long bones. This malignancy is particularly common in pediatric patients. Primary cranial involvement accounts for 1% of cases, with occipital involvement considered extremely rare. In this case study, primary occipital Ewing's sarcoma with a posterior fossa mass and subsequent relapse resulting in spinal seeding is reported. A 3-year-old patient presented with a 1-year history of left-sided headaches, localized over the occipital bone with progressive torticollis. Computed tomography (CT) imaging showed a mass in the left posterior fossa compressing the brainstem. The patient then underwent surgical excision followed by adjuvant chemoradiation therapy. Two years later, the patient presented with severe lower back pain and urinary incontinence. Whole-spine magnetic resonance imaging (MRI) showed cerebrospinal fluid (CSF) seeding from the L5 to the S4 vertebrae. Primary cranial Ewing's sarcoma is considered in the differential diagnosis of children with extra-axial posterior fossa mass associated with destructive permeative bone lesions. Although primary cranial Ewing's sarcoma typically has good prognosis, our patient developed metastasis in the lower spine. Therefore, with CNS Ewing's sarcoma, screening of the entire neural axis should be taken into consideration for early detection of CSF seeding metastasis in order to decrease the associated morbidity and mortality.
Analysis of imaging characteristics of primary malignant bone tumors in children
Sun, Yingwei; Liu, Xueyong; Pan, Shinong; Deng, Chunbo; Li, Xiaohan; Guo, Qiyong
2017-01-01
The present study aimed to investigate the imaging characteristics of primary malignant bone tumors in children. The imaging results of 34 children with primary malignant bone tumors confirmed by histopathological diagnosis between March 2008 and January 2014 were retrospectively analyzed. In total, 25 patients had osteosarcoma, with radiography and computed tomography (CT) showing osteolytic bone destruction or/and osteoblastic bone sclerosis, an aggressive periosteal reaction, a soft-tissue mass and cancerous bone. The tumors appeared as mixed magnetic resonance imaging (MRI) signals that were inhomogeneously enhanced. A total of 5 patients presented with Ewing sarcoma, with radiography and CT showing invasive bone destruction and a soft-tissue mass. Of the 5 cases, 2 showed a laminar periosteal reaction. The tumors were shown to have mixed low signal on T1-weighted images (T1WI) and high signal on T2-weighted images (T2WI); 1 case showed marked inhomogeneous enhancement. Another 3 patients exhibited chondrosarcoma. Of these cases, 1 was adjacent to the cortex of the proximal tibia, and presented with local cortical bone destruction and a soft-tissue mass containing scattered punctate and amorphous calcifications. MRI revealed mixed low T1 signal and high T2 signals. Another case was located in the medullary cavity of the distal femur, with radiography revealing a localized periosteal reaction. The tumor appeared with mixed MRI signals, and with involvement of the epiphysis and epiphyseal plates. Radiography and CT of the third case showed bone destruction in the right pubic ramus, with patchy punctate, cambered calcifications in the soft-tissue mass. MRI of the soft-tissue mass revealed isointensity on T1WI and heterogeneous hyperintensity on T2WI. Ossifications and the septum appeared as low T1WI and T2WI. Of the 34 patients, 1 patient presented with lymphoma involving the T12, L1 and L2 vertebrae. CT showed vertebral bone destruction, a soft-tissue mass and a compression fracture of L1. MRI showed a soft-tissue mass with low T1 signal and high T2 signal and marked inhomogeneous enhancement. Overall, osteosarcoma was the most common primary malignant bone tumor, followed by Ewing sarcoma, chondrosarcoma and lymphoma. Osteoblastic or osteolytic bone destruction, an invasive periosteal reaction, soft-tissue masses, a tumor matrix and inhomogeneous enhancement were important imaging features of malignant bone tumors. PMID:29113210
Early prophylactic autogenous bone grafting in type III open tibial fractures.
Kesemenli, Cumhur C; Kapukaya, Ahmet; Subaşi, Mehmet; Arslan, Huseyin; Necmioğlu, Serdar; Kayikçi, Cuma
2004-08-01
The authors report the results achieved in patients with type III open tibial fractures who underwent primary autogenous bone grafting at the time of debridement and skeletal stabilisation. Twenty patients with a mean age of 35.8 years (range, 24-55) were treated between 1996 and 1999. Eight fractures were type IIIA, 11 were type IIIB, and 1 was type IIIC. At the index procedure, wound debridement, external fixation and autogenous bone grafting with bone coverage were achieved. The mean follow-up period was 46 months (range, 34-55). The mean time to fixator removal was 21 weeks (range, 14-35), and the mean time to union was 28 weeks (range, 19-45). Skin coverage was achieved by a myocutaneous flap in 2 patients, late primary closure in 4, and split skin grafting in 14. One (5%) of the patients experienced delayed union, and 1 (5%) developed infection. In tibial type III open fractures, skin coverage may be delayed, using the surrounding soft tissue to cover any exposed bone after thorough débridement and wound cleansing. Primary prophylactic bone grafting performed at the same time reduces the rate of delayed union, shortens the time to union, and does not increase the infection rate.
Wick, Mark R
2014-01-01
Metastatic tumors involving the bones may derive from a number of visceral primary sites, and they can assume several histological appearances. In selected instances, diagnostic confusion with some primary bone tumors may eventuate, necessitating the use of adjunctive pathologic studies to reach a final interpretation. This review considers metastatic osseous neoplasms in the small-cell, large-polygonal-cell, and spindle-cell-pleomorphic microscopic categories. The use of immunohistology and molecular analysis to study such tumors is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility
NASA Astrophysics Data System (ADS)
Mačković, M.; Hoppe, A.; Detsch, R.; Mohn, D.; Stark, W. J.; Spiecker, E.; Boccaccini, A. R.
2012-07-01
Bioactive glasses represent important biomaterials being investigated for the repair and reconstruction of diseased bone tissues, as they exhibit outstanding bonding properties to human bone. In this study, bioactive glass (type 45S5) nanoparticles (nBG) with a mean particle size in the range of 20-60 nm, synthesised by flame spray synthesis, are investigated in relation to in vitro bioreactivity in simulated body fluid (SBF) and response to osteoblast cells. The structure and kinetics of hydroxyapatite formation in SBF were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) revealing a very rapid transformation (after 1 day) of nBG to nanocrystalline bone-like carbonated HAp. Additionally, calcite is formed after 1 day of SBF immersion because of the high surface reactivity of the nBG particles. In the initial state, nBG particles were found to exhibit chain-like porous agglomerates of amorphous nature which are transformed on immersion in SBF into compact agglomerates covered by hydroxyapatite with a reduced size of the primary nanoparticles. In vitro studies revealed high cytocompatibility of nBG with human osteoblast cells, indicated through high lactatedehydrogenase (LDH) and mitochondrial activity as well as alkaline phosphatase activity. Hence, this study contributes to the understanding of the structure and bioactivity of bioactive glass (type 45S5) nanoparticles, providing insights to the phenomena occurring at the nanoscale after immersion in SBF. The results are relevant in relation to the understanding of the nanoparticles' bioreactivity required for applications in bone tissue engineering.
Jin, Pan; Wu, Huayu; Xu, Guojie; Zheng, Li; Zhao, Jinmin
2014-05-01
The proliferation and osteogenic capacity of mesenchymal stem cells (MSCs) needs to be improved for their use in cell-based therapy for osteoporosis. (-)-Epigallocatechin-3-gallate (EGCG), one of the green tea catechins, has been widely investigated in studies of osteoblasts and osteoclasts. However, no consensus on its role as an osteogenic inducer has been reached, possibly because of the various types of cell lines examined and the range of concentrations of EGCG used. In this study, the osteogenic effects of EGCG are studied in primary human bone-marrow-derived MSCs (hBMSCs) by detecting cell proliferation, alkaline phosphatase (ALP) activity and the expression of relevant osteogenic markers. Our results show that EGCG has a strong stimulatory effect on hBMSCs developing towards the osteogenic lineage, especially at a concentration of 5 μM, as evidenced by an increased ALP activity, the up-regulated expression of osteogenic genes and the formation of bone-like nodules. Further exploration has indicated that EGCG directes osteogenic differentiation via the continuous up-regulation of Runx2. The underlying mechanism might involve EGCG affects on osteogenic differentiation through the modulation of bone morphogenetic protein-2 expression. EGCG has also been found to promote the proliferation of hBMSCs in a dose-dependent manner. This might be associated with its antioxidative effect leading to favorable amounts of reactive oxygen species in the cellular environment. Our study thus indicates that EGCG can be used as a pro-osteogenic agent for the stem-cell-based therapy of osteoporosis.
Influence of stem design on the primary stability of megaprostheses of the proximal femur.
Kinkel, Stefan; Graage, Jan Dennis; Kretzer, Jan Philippe; Jakubowitz, Eike; Nadorf, Jan
2013-10-01
Extended bone defects of the proximal femur can be reconstructed by megaprostheses for which aseptic loosening constitutes one of the major failure modes. The basic requirement for long-term success of endoprostheses is primary stability. We therefore assessed whether sufficient primary stability can be achieved by four different megaprostheses in a standardised bone defect of the proximal femur and whether their different design leads to different fixation patterns. Four different designs of proximal femoral replacements were implanted into 16 Sawbones® after preparing segmental bone defects (AAOS type II). Primary rotational stability was analysed by application of a cyclic torque of ±7 Nm and measuring the relative micromotions between bone and implant at different levels. The main fixation zones and differences of fixation patterns of the stem designs were determined by an analysis of variance. All four implants exhibited micromotions below 150 μm, indicating adequate primary stability. Lowest micromotions for all designs were located near the femoral isthmus. The extent of primary stability and the global implant fixation pattern differed considerably and could be related to the different design concepts. All megaprostheses studied provided sufficient primary stability if the fixation conditions of the femoral isthmus were intact. The design characteristics of the different stems largely determined the extent of primary stability and fixation pattern. Understanding these different fixation types could help the surgeon to choose the most suitable implant if the fixation conditions in the isthmus are compromised.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-12
... search through the survey collection led to the discovery of human bone fragments representing, at... survey collection led to the discovery of three human bone fragments representing, at minimum, one... discovery of one human bone fragment representing, at minimum, one individual. No associated funerary...
NASA Astrophysics Data System (ADS)
Izzawati, B.; Daud, R.; Afendi, M.; Majid, M. S. Abdul; Zain, N. A. M.
2017-09-01
Finite element models have been widely used to quantify the stress analysis and to predict the bone fractures of the human body. The present study highlights on the stress analysis of the homogeneous structure of human femur bone during standing up condition. The main objective of this study is to evaluate and understand the biomechanics for human femur bone and to prepare orthotropic homogeneous material models used for FE analysis of the global proximal femur. Thus, it is necessary to investigate critical stress on the human femur bone for future study on implantation of internal fixator and external fixator. The implication possibility to create a valid FE model by simply comparing the FE results with the actual biomechanics structures. Thus, a convergence test was performed by FE model of the femur and the stress analysis based on the actual biomechanics of the human femur bone. An increment of critical stress shows in the femur shaft as the increasing of load on the femoral head and decreasing the pulling force at greater trochanter.
Increased bone formation in mice lacking apolipoprotein E.
Schilling, Arndt F; Schinke, Thorsten; Münch, Christian; Gebauer, Matthias; Niemeier, Andreas; Priemel, Matthias; Streichert, Thomas; Rueger, Johannes M; Amling, Michael
2005-02-01
ApoE is a plasma protein that plays a major role in lipoprotein metabolism. Here we describe that ApoE expression is strongly induced on mineralization of primary osteoblast cultures. ApoE-deficient mice display an increased bone formation rate compared with wildtype controls, thereby showing that ApoE has a physiologic function in bone remodeling. Apolipoprotein E (ApoE) is a protein component of lipoproteins and facilitates their clearance from the circulation. This is confirmed by the phenotype of ApoE-deficient mice that have high plasma cholesterol levels and spontaneously develop atherosclerotic lesions. The bone phenotype of these mice has not been analyzed to date, although an association between certain ApoE alleles and BMD has been reported. Primary osteoblasts were isolated from newborn mouse calvariae and mineralized ex vivo. A genome-wide expression analysis was performed during the course of differentiation using the Affymetrix gene chip system. Bones from ApoE-deficient mice and wildtype controls were analyzed using radiography, micro CT imaging, and undecalcified histology. Cellular activities were assessed using dynamic histomorphometry and by measuring urinary collagen degradation products. Lipoprotein uptake assays were performed with (125)I-labeled triglyceride-rich lipoprotein-remnants (TRL-R) using primary osteoblasts from wildtype and ApoE-deficient mice. Serum concentrations of osteocalcin were determined by radioimmunoassay after hydroxyapatite chromatography. ApoE expression is strongly induced on mineralization of primary osteoblast cultures ex vivo. Mice lacking ApoE display a high bone mass phenotype that is caused by an increased bone formation rate, whereas bone resorption is not affected. This phenotype may be explained by a decreased uptake of triglyceride-rich lipoproteins by osteoblasts, resulting in elevated levels of undercarboxylated osteocalcin in the serum of ApoE-deficient mice. The specific induction of ApoE gene expression during osteoblast differentiation along with the increased bone formation rate observed in ApoE-deficient mice shows that ApoE has a physiologic role as a regulator of osteoblast function.
Beer, Andreas; Gahleitner, André; Holm, Anders; Birkfellner, Wolfgang; Homolka, Peter
2007-02-01
The aim of this study was to quantify the effect of adapted preparation on the insertion torque of self-tapping implants in cancellous bone. In adapted preparation, bone condensation - and thus, insertion torque - is controlled by changing the diameter of the drilling. After preparation of cancellous porcine vertebral bone with drills of 2.85, 3, 3.15 or 3.35 mm final diameters, Brånemark sytem Mk III implants (3.75 x 11.5 mm) were inserted in 141 sites. During implantation, the insertion torque was recorded. Prior to implant insertion, bone mineralization (bone mineral density (BMD)) was measured with dental quantative computed tomography. The BMD values measured at the implant position were correlated with insertion torque for varying bone condensation. Based on the average torque recorded during implant insertion into the pre-drilled canals with a diameter of 3 mm, torque increased by approximately 17% on reducing the diameter of the drill by 5% (to 2.85 mm). On increasing the diameter of the osteotomy to 3.15 mm (5%) or 3.35 mm (12%), torque values decreased by approximately 21% and 50%, respectively. The results demonstrate a correlation between primary stability (average insertion torque) and the diameter of the implant bed on using a screw-shaped implant. Thus, using an individualized bone mineralization-dependent drilling technique, optimized torque values could be achieved in all tested bone qualities with BMDs ranging from 330 to 500 mg/cm(3). The results indicate that using a bone-dependent drilling technique, higher torque values can also be achieved in poor bone using an individualized drilling resulting in higher bone condensation. As immediate function is dependent on primary stability (high insertion torque), this indicates that primary stability can be increased using a modified drilling technique in lesser mineralized bone.
Kim, Yoon Jeong; Henkin, Jeffrey
2015-04-01
Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p < .05. A wide range of bone density was observed. There was a significant difference between the maxilla and mandible. All micro architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.
Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi
2014-01-01
Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1f/f;Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2 weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous by EXT mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss, osteoarthritis and HME. PMID:23958822
Fizazi, Karim; Bosserman, Linda; Gao, Guozhi; Skacel, Tomas; Markus, Richard
2009-08-01
Patients with bone metastases have high rates of RANKL driven bone resorption and an increased risk of skeletal morbidity. Osteoclast mediated bone resorption can be assessed by measuring urine N-telopeptide and can be inhibited by denosumab, a fully human antibody against RANKL. Eligible patients (111) had bone metastases from prostate cancer, other solid tumors or multiple myeloma, 1 or more bone lesions and urine N-telopeptide greater than 50 nM bone collagen equivalents per mM creatinine (urine N-telopeptide greater than 50) despite the use of intravenous bisphosphonates. Patients were stratified by cancer type and screening urine N-telopeptide, and randomized to continue intravenous bisphosphonates every 4 weeks or receive 180 mg subcutaneous denosumab every 4 weeks or 180 mg every 12 weeks. The primary end point was the proportion of patients with urine N-telopeptide less than 50 at week 13. We report the efficacy results for the subset of patients with prostate cancer. Patients with prostate cancer represented 45% (50 of 111) of the study population. At week 13, 22 of 32 (69%) patients in the denosumab arms had urine N-telopeptide less than 50 vs 3 of 16 (19%) in the intravenous bisphosphonates cohort. At week 25, 22 of 32 (69%) denosumab treated patients continued to have urine N-telopeptide less than 50 vs 5 of 16 (31%) treated with intravenous bisphosphonates. Grade 4, asymptomatic, reversible hypophosphatemia, possibly related to denosumab, was reported in 1 patient. In patients with prostate cancer related bone metastases and increased urine N-telopeptide despite intravenous bisphosphonate treatment, denosumab normalized urine N-telopeptide levels more frequently than ongoing intravenous bisphosphonates.
2009-03-14
H, Sodek J, Zhau HE, Chung LW. Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent...with mesenchymal phenotype b2-m b2-Microglobulin BSP Bone sialoprotein C4-2 Lineage derivative cells from LNCaP C4-2B C4-2 cells metastasized to bone...OPN) and bone sialoprotein (BSP), and RANKL, collectively allow- ing cancer cells to survive and thrive in the bone microenvironment [7–9]. Previous
Determinants of Microdamage in Elderly Human Vertebral Trabecular Bone
Follet, Hélène; Farlay, Delphine; Bala, Yohann; Viguet-Carrin, Stéphanie; Gineyts, Evelyne; Burt-Pichat, Brigitte; Wegrzyn, Julien; Delmas, Pierre; Boivin, Georges; Chapurlat, Roland
2013-01-01
Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54–95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen) was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types. PMID:23457465
A 130,000-year-old archaeological site in southern California, USA
Holen, Steven R.; Deméré, Thomas A.; Fisher, Daniel C.; Fullagar, Richard; Paces, James B.; Jefferson, George T.; Beeton, Jared M.; Cerutti, Richard A.; Rountrey, Adam N.; Vescera, Lawrence; Holen, Kathleen A.
2017-01-01
The earliest dispersal of humans into North America is a contentious subject, and proposed early sites are required to meet the following criteria for acceptance: (1) archaeological evidence is found in a clearly defined and undisturbed geologic context; (2) age is determined by reliable radiometric dating; (3) multiple lines of evidence from interdisciplinary studies provide consistent results; and (4) unquestionable artefacts are found in primary context1,2. Here we describe the Cerutti Mastodon (CM) site, an archaeological site from the early late Pleistocene epoch, where in situ hammerstones and stone anvils occur in spatio-temporal association with fragmentary remains of a single mastodon (Mammut americanum). The CM site contains spiral-fractured bone and molar fragments, indicating that breakage occured while fresh. Several of these fragments also preserve evidence of percussion. The occurrence and distribution of bone, molar and stone refits suggest that breakage occurred at the site of burial. Five large cobbles (hammerstones and anvils) in the CM bone bed display use-wear and impact marks, and are hydraulically anomalous relative to the low-energy context of the enclosing sandy silt stratum. 230Th/U radiometric analysis of multiple bone specimens using diffusion–adsorption–decay dating models indicates a burial date of 130.7 ± 9.4 thousand years ago. These findings confirm the presence of an unidentified species of Homo at the CM site during the last interglacial period (MIS 5e; early late Pleistocene), indicating that humans with manual dexterity and the experiential knowledge to use hammerstones and anvils processed mastodon limb bones for marrow extraction and/or raw material for tool production. Systematic proboscidean bone reduction, evident at the CM site, fits within a broader pattern of Palaeolithic bone percussion technology in Africa3,4,5,6, Eurasia7,8,9 and North America10,11,12. The CM site is, to our knowledge, the oldest in situ, well-documented archaeological site in North America and, as such, substantially revises the timing of arrival of Homo into the Americas.
The ever-expanding conundrum of primary osteoporosis: aetiopathogenesis, diagnosis, and treatment.
Stagi, Stefano; Cavalli, Loredana; Seminara, Salvatore; de Martino, Maurizio; Brandi, Maria Luisa
2014-06-07
In recent years, as knowledge regarding the etiopathogenetic mechanisms of bone involvement characterizing many diseases has increased and diagnostic techniques evaluating bone health have progressively improved, the problem of low bone mass/quality in children and adolescents has attracted more and more attention, and the body evidence that there are groups of children who may be at risk of osteoporosis has grown. This interest is linked to an increased understanding that a higher peak bone mass (PBM) may be one of the most important determinants affecting the age of onset of osteoporosis in adulthood. This review provides an updated picture of bone pathophysiology and characteristics in children and adolescents with paediatric osteoporosis, taking into account the major causes of primary osteoporosis (PO) and evaluating the major aspects of bone densitometry in these patients. Finally, some options for the treatment of PO will be briefly discussed.
The ever-expanding conundrum of primary osteoporosis: aetiopathogenesis, diagnosis, and treatment
2014-01-01
In recent years, as knowledge regarding the etiopathogenetic mechanisms of bone involvement characterizing many diseases has increased and diagnostic techniques evaluating bone health have progressively improved, the problem of low bone mass/quality in children and adolescents has attracted more and more attention, and the body evidence that there are groups of children who may be at risk of osteoporosis has grown. This interest is linked to an increased understanding that a higher peak bone mass (PBM) may be one of the most important determinants affecting the age of onset of osteoporosis in adulthood. This review provides an updated picture of bone pathophysiology and characteristics in children and adolescents with paediatric osteoporosis, taking into account the major causes of primary osteoporosis (PO) and evaluating the major aspects of bone densitometry in these patients. Finally, some options for the treatment of PO will be briefly discussed. PMID:24906390
Arnold, Rebecca S.; Fedewa, Stacey A.; Goodman, Michael; Osunkoya, Adeboye O.; Kissick, Haydn T.; Morrissey, Colm; True, Lawrence D.; Petros, John A.
2015-01-01
Background Cancer progression and metastasis occurs such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell’s description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. Methods We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Results Somatic mutations were significantly more numerous in bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (np) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in bone. Other notable somatic mutations that occurred in more than one patient include a tRNA Arg mutation at np 10436 and a tRNA Thr mutation at np 15928. The tRNA Arg mutation was restricted to bone metastases and occurred in three of 10 patients (30%). Somatic mutation at 15928 was not restricted to bone and also occurred in three patients. Conclusions Mitochondrial genomic variation was greater in metastatic sites than the primary tumor and bone metastases had statistically significantly greater numbers of somatic mutations than either the primary or the soft tissue metastases. The genome was not mutated randomly. At least one mutational “hot-spot” was identified at the individual base level (nucleotide position 10398 in bone metastases) indicating a pervasive selective pressure for bone metastatic cells that had acquired the 10398 mtDNA mutation. Two additional recurrent mutations (tRNA Arg and tRNA Thr) support the concept of bone site-specific “survival of the fittest” as revealed by variation in the mitochondrial genome and selective pressure exerted by the metastatic site. PMID:25952970
Arnold, Rebecca S; Fedewa, Stacey A; Goodman, Michael; Osunkoya, Adeboye O; Kissick, Haydn T; Morrissey, Colm; True, Lawrence D; Petros, John A
2015-09-01
Cancer progression and metastasis occur such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell's description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary tumor and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Somatic mutations were significantly more numerous in the bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (n.p.) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in the bone. Other notable somatic mutations that occurred in more than one patient include a tRNA Arg mutation at n.p. 10436 and a tRNA Thr mutation at n.p. 15928. The tRNA Arg mutation was restricted to bone metastases and occurred in three of 10 patients (30%). Somatic mutation at 15928 was not restricted to the bone and also occurred in three patients. Mitochondrial genomic variation was greater in metastatic sites than in the primary tumor and bone metastases had statistically significantly greater numbers of somatic mutations than either the primary or the soft tissue metastases. The genome was not mutated randomly. At least one mutational "hot-spot" was identified at the individual base level (nucleotide position 10398 in bone metastases) indicating a pervasive selective pressure for bone metastatic cells that had acquired the 10398 mtDNA mutation. Two additional recurrent mutations (tRNA Arg and tRNA Thr) support the concept of bone site-specific "survival of the fittest" as revealed by variation in the mitochondrial genome and selective pressure exerted by the metastatic site. Published by Elsevier Inc.
Histomorphometry and cortical robusticity of the adult human femur.
Miszkiewicz, Justyna Jolanta; Mahoney, Patrick
2018-01-13
Recent quantitative analyses of human bone microanatomy, as well as theoretical models that propose bone microstructure and gross anatomical associations, have started to reveal insights into biological links that may facilitate remodeling processes. However, relationships between bone size and the underlying cortical bone histology remain largely unexplored. The goal of this study is to determine the extent to which static indicators of bone remodeling and vascularity, measured using histomorphometric techniques, relate to femoral midshaft cortical width and robusticity. Using previously published and new quantitative data from 450 adult human male (n = 233) and female (n = 217) femora, we determine if these aspects of femoral size relate to bone microanatomy. Scaling relationships are explored and interpreted within the context of tissue form and function. Analyses revealed that the area and diameter of Haversian canals and secondary osteons, and densities of secondary osteons and osteocyte lacunae from the sub-periosteal region of the posterior midshaft femur cortex were significantly, but not consistently, associated with femoral size. Cortical width and bone robusticity were correlated with osteocyte lacunae density and scaled with positive allometry. Diameter and area of osteons and Haversian canals decreased as the width of cortex and bone robusticity increased, revealing a negative allometric relationship. These results indicate that microscopic products of cortical bone remodeling and vascularity are linked to femur size. Allometric relationships between more robust human femora with thicker cortical bone and histological products of bone remodeling correspond with principles of bone functional adaptation. Future studies may benefit from exploring scaling relationships between bone histomorphometric data and measurements of bone macrostructure.
Cusella-De Angelis, Maria Gabriella; Laino, Gregorio; Piattelli, Adriano; Pacifici, Maurizio; De Rosa, Alfredo; Papaccio, Gianpaolo
2007-01-01
Background Scaffold surface features are thought to be important regulators of stem cell performance and endurance in tissue engineering applications, but details about these fundamental aspects of stem cell biology remain largely unclear. Methodology and Findings In the present study, smooth clinical-grade lactide-coglyolic acid 85:15 (PLGA) scaffolds were carved as membranes and treated with NMP (N-metil-pyrrolidone) to create controlled subtractive pits or microcavities. Scanning electron and confocal microscopy revealed that the NMP-treated membranes contained: (i) large microcavities of 80–120 µm in diameter and 40–100 µm in depth, which we termed primary; and (ii) smaller microcavities of 10–20 µm in diameter and 3–10 µm in depth located within the primary cavities, which we termed secondary. We asked whether a microcavity-rich scaffold had distinct bone-forming capabilities compared to a smooth one. To do so, mesenchymal stem cells derived from human dental pulp were seeded onto the two types of scaffold and monitored over time for cytoarchitectural characteristics, differentiation status and production of important factors, including bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF). We found that the microcavity-rich scaffold enhanced cell adhesion: the cells created intimate contact with secondary microcavities and were polarized. These cytological responses were not seen with the smooth-surface scaffold. Moreover, cells on the microcavity-rich scaffold released larger amounts of BMP-2 and VEGF into the culture medium and expressed higher alkaline phosphatase activity. When this type of scaffold was transplanted into rats, superior bone formation was elicited compared to cells seeded on the smooth scaffold. Conclusion In conclusion, surface microcavities appear to support a more vigorous osteogenic response of stem cells and should be used in the design of therapeutic substrates to improve bone repair and bioengineering applications in the future. PMID:17551577
Influence of long-term gravity vector changes on mesenchymal stem cells in vitro
NASA Astrophysics Data System (ADS)
Buravkova, L. B.; Merzlikina, N. V.; Romanov, Yu. A.; Buravkov, S. V.
2005-08-01
In vivo and in vitro studies have identified the bone marrow as the primary source of a multipotential mesenchymal stem cells (MSC) that give rise to progenitors for several mesenchymal tissues, including bone, cartilage, tendon, adipose, muscle and hematopoietic-supporting stroma. It is known that MSC are sensitive to chemical signals and mechanical stimuli. It was also suggested that microgravity may influence on progenitor cells and induce abnormalities in cellular differentiation in muscle and skeletal components leading to the changes in physiological regeneration of these tissues. To prove gravitational sensitivity of MSC, we studied the effects of prolonged clinorotation on cultured human MSC (hMSC) morphology, actin cytoskeleton organization and phenotype. It was found that the proliferation rate was significantly decreased during clinorotation but augmented during recovery. The cell cytoskeleton displayed actin filament thinning and altered morphology at clinorotation. The production of interleukin-6 was increased and expression of surface molecules was modified by simulated microgravity. Observed changes of cultured hMSC behavior suggest the gravitational sensitivity of human stromal progenitor cells.
Altered thermogenesis and impaired bone remodeling in Misty mice.
Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J
2013-09-01
Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a, and less sympathetic innervation compared to wild-type (+/ +)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hours), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2, and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wild-type. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wild-type and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular bone volume/total volume (BV/TV) loss in the distal femur of Misty mice without affecting wild-type. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold exposure negatively affects bone remodeling. Copyright © 2013 American Society for Bone and Mineral Research.
Mesenchymal Stem Cells for Osteochondral Tissue Engineering
Ng, Johnathan; Bernhard, Jonathan; Vunjak-Novakovic, Gordana
2017-01-01
Summary Mesenchymal stem cells (MSC) are of major interest to regenerative medicine, because of the ease of harvesting from a variety of sources (including bone marrow and fat aspirates) and ability to form a range of mesenchymal tissues, in vitro and in vivo. We focus here on the use of MSCs for engineering of cartilage, bone, and complex osteochondral tissue constructs, using protocols that replicate some aspects of the natural mesodermal development. For engineering of human bone, we discuss some of the current advances, and highlight the use of perfusion bioreactors for supporting anatomically exact human bone grafts. For engineering of human cartilage, we discuss limitations of current approaches, and highlight engineering of stratified, mechanically functional human cartilage interfaced with bone by mesenchymal condensation of MSCs. Taken together, the current advances enable engineering physiologically relevant bone, cartilage and osteochondral composites, and physiologically relevant studies of osteochondral development and disease. PMID:27236665
9000 years of salmon fishing on the Columbia River, North America
Butler, V.L.; O'Connor, J. E.
2004-01-01
A large assemblage of salmon bones excavated 50 yr ago from an ???10,000-yr-old archaeological site near The Dalles, Oregon, USA, has been the primary evidence that early native people along the Columbia River subsisted on salmon. Recent debate about the human role in creating the deposit prompted excavation of additional deposits and analysis of archaeologic, geologic, and hydrologic conditions at the site. Results indicate an anthropogenic source for most of the salmonid remains, which have associated radiocarbon dates indicating that the site was occupied as long ago as 9300 cal yr B.P. The abundance of salmon bone indicates that salmon was a major food item and suggests that migratory salmonids had well-established spawning populations in some parts of the Columbia Basin by 9300-8200 yr ago. ?? 2004 University of Washington. All rights reserved.
Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone
Culbertson, Christopher D.; Kyker-Snowman, Kelly; Bushinsky, David A.
2012-01-01
Fibroblast growth factor 23 (FGF23) significantly increases with declining renal function, leading to reduced renal tubular phosphate reabsorption, decreased 1,25-dihydroxyvitamin D, and increased left ventricular hypertrophy. Elevated FGF23 is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the mechanisms by which it is regulated are not clear. Patients with chronic kidney disease have decreased renal acid excretion leading to metabolic acidosis, which has a direct effect on bone cell activity. We hypothesized that metabolic acidosis would directly increase bone cell FGF23 production. Using cultured neonatal mouse calvariae, we found that metabolic acidosis increased medium FGF23 protein levels as well as FGF23 RNA expression at 24 h and 48 h compared with incubation in neutral pH medium. To exclude that the increased FGF23 was secondary to metabolic acidosis-induced release of bone mineral phosphate, we cultured primary calvarial osteoblasts. In these cells, metabolic acidosis increased FGF23 RNA expression at 6 h compared with incubation in neutral pH medium. Thus metabolic acidosis directly increases FGF23 mRNA and protein in mouse bone. If these results are confirmed in humans with chronic kidney disease, therapeutic interventions to mitigate acidosis, such as bicarbonate administration, may also lower levels of FGF23, decrease left ventricular hypertrophy, and perhaps even decrease mortality. PMID:22647635
Bone morphogenetic protein (BMP)1-3 enhances bone repair.
Grgurevic, Lovorka; Macek, Boris; Mercep, Mladen; Jelic, Mislav; Smoljanovic, Tomislav; Erjavec, Igor; Dumic-Cule, Ivo; Prgomet, Stefan; Durdevic, Dragan; Vnuk, Drazen; Lipar, Marija; Stejskal, Marko; Kufner, Vera; Brkljacic, Jelena; Maticic, Drazen; Vukicevic, Slobodan
2011-04-29
Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E(1) osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair. Copyright © 2011 Elsevier Inc. All rights reserved.
Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A; Overgaard, Søren; Bechtold, Joan E
2003-06-01
We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability for the presence of particulate polyethylene. During this procedure, a sclerotic endosteal bone rim forms, and a dense fibrous membrane is engendered, having macrophages with ingested polyethylene and high levels of inflammatory cytokines. At the time of revision after 8 weeks, the cavity is revised with either a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included in each of the 8 treatment groups (total 64 implants in 32 dogs). The observation period was 4 weeks after revision. Outcome measures are based on histomorphometry and mechanical pushout properties. The revision setting was always inferior to its primary counterpart. Bone graft improved the revision fixation in all treatment groups, as also did the HA coating. The sole exception was revision-grafted HA implants, which reached the same fixation as primary Ti and HA grafted implants. The revision, which was less active in general, seems to need the dual stimulation of bone graft and HA implant surface, to obtain the same level of fixation associated with primary implants. Our findings suggest that the combination of HA implant and bone graft may be of benefit in the clinical revision implant setting.
Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A; Overgaard, Søren; Bechtold, Joan E
2015-01-01
We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability for the presence of particulate polyethylene. During this procedure, a sclerotic endosteal bone rim forms, and a dense fibrous membrane is engendered, having macrophages with ingested polyethylene and high levels of inflammatory cytokines. At the time of revision after 8 weeks, the cavity is revised with either a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included in each of the 8 treatment groups (total 64 implants in 32 dogs). The observation period was 4 weeks after revision. Outcome measures are based on histomorphometry and mechanical pushout properties. The revision setting was always inferior to its primary counterpart. Bone graft improved the revision fixation in all treatment groups, as also did the HA coating. The sole exception was revision-grafted HA implants, which reached the same fixation as primary Ti and HA grafted implants. The revision, which was less active in general, seems to need the dual stimulation of bone graft and HA implant surface, to obtain the same level of fixation associated with primary implants. Our findings suggest that the combination of HA implant and bone graft may be of benefit in the clinical revision implant setting. PMID:12899541
Influence of trabecular bone quality and implantation direction on press-fit mechanics.
Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E
2017-02-01
Achieving primary stability of uncemented press-fit prostheses in patients with poor quality bone can involve axial implantation forces large enough to cause bone fracture. Radial implantation eliminates intraoperative impaction forces and could prevent this damage. Platens of two commercial implant surfaces ("Beaded" and "Flaked") were implanted onto trabecular bone specimens of varying quality in a press-fit simulator. Samples were implanted with varying interference, either axially (shear) or radially (normal). Push-in and pull-out forces were measured to assess stability. Microstructural changes in the bone were determined from μCT analysis. For force-defined implantation analysis, push-in and pull-out forces both increased proportionally with increasing radial force, independent of implantation direction, bone quality or implant surface. For position-defined implantation analysis, pull-out forces were generally found to increase with interference and to be greater for radial than axial implantation direction, and to be lower for poor quality bone. Bone density increased locally at the tested interface due to implantation, in particular for the Beaded surface under axial implantation. If a safe radial stress can be determined for cortical bone in a particular patient, the associated implantation force, and pull-out force which represents primary stability, can be directly derived, regardless of implantation direction, bone quality or implant surface. Radial implantation delivers primary stability that is no worse than that for axial implantation and may eliminate potentially damaging impaction forces. Development of implant designs based on this principal might improve implant fixation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:224-233, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Wagner, Alena-Svenja; Glenske, Kristina; Henß, Anja; Kruppke, Benjamin; Rößler, Sina; Hanke, Thomas; Moritz, Andreas; Rohnke, Marcus; Kressin, Monika; Arnhold, Stefan; Schnettler, Reinhard; Wenisch, Sabine
2017-07-04
Herein, we aim to elucidate osteogenic effects of two silica-based xerogels with different degrees of bioactivity on human bone-derived mesenchymal stromal cells by means of scanning electron microscopy, quantitative PCR enhanced osteogenic effects and the formation of an extracellular matrix which could be ascribed to the sample with lower bioactivity. Given the high levels of bioactivity, the cells revealed remarkable sensitivity to extremely low calcium levels of the media. Therefore, additional experiments were performed to elucidate cell behavior under calcium deficient conditions. The results refer to capacity of the bone-derived stromal cells to overcome calcium deficiency even though proliferation, migration and osteogenic differentiation capabilities were diminished. One reason for the differences of the cellular response (on tissue culture plates versus xerogels) to calcium deficiency seems to be the positive effect of silica. The silica could be detected intracellularly as shown by time of flight-secondary ion mass spectrometry after cultivation of primary cells for 21 days on the surfaces of the xerogels. Thus, the present findings refer to different osteogenic differentiation potentials of the xerogels according to the different degrees of bioactivity, and to the role of silica as a stimulator of osteogenesis. Finally, the observed pattern of connexin-based hemichannel gating supports the assumption that connexin 43 is a key factor for calcium-mediated osteogenesis in bone-derived mesenchymal stromal cells.
Benz, Matthias R.; Czernin, Johannes; Tap, William D.; ...
2010-01-01
Purpose . Tmore » he aim of this study was to prospectively evaluate whether FDG-PET allows an accurate assessment of histopathologic response to neoadjuvant treatment in adult patients with primary bone sarcomas. Methods . Twelve consecutive patients with resectable, primary high grade bone sarcomas were enrolled prospectively. FDG-PET/CT imaging was performed prior to the initiation and after completion of neoadjuvant treatment. Imaging findings were correlated with histopathologic response. Results . Histopathologic responders showed significantly more pronounced decreases in tumor FDG-SUVmax from baseline to late follow up than non-responders ( 64 ± 19 % versus 29 ± 30 %, resp.; P = .03 ). Using a 60% decrease in tumor FDG-uptake as a threshold for metabolic response correctly classified 3 of 4 histopathologic responders and 7 of 8 histopathologic non-responders as metabolic responders and non-responders, respectively (sensitivity, 75%; specificity, 88%). Conclusion . These results suggest that changes in FDG-SUVmax at the end of neoadjuvant treatment can identify histopathologic responders and non-responders in adult primary bone sarcoma patients.« less
... Release Monday, June 9, 2014 Hormone treatment restores bone density for young women with menopause-like condition NIH study reveals way to improve bone health for young women with POI. Researchers at ...
Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss
NASA Technical Reports Server (NTRS)
Halloran, B.; Weider, T.; Morey-Holton, E.
1999-01-01
The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.
Synergistic use of adult and embryonic stem cells to study human hematopoiesis.
Martin, Colin H; Kaufman, Dan S
2005-10-01
Embryonic stem cells (ESCs) and adult stem cells both provide important resources to define the mechanisms of hematopoietic cell development. To date, studies that utilize hematopoietic stem cells (HSCs) isolated from sites such as bone marrow or umbilical cord blood have been the primary means to identify molecular and phenotypic characteristics of blood cell populations able to mediate long-term hematopoietic engraftment. Although these HSCs are very useful clinically, they are difficult to expand in culture. Now, basic research on human ESCs provides opportunities for novel investigations into the mechanisms of HSC self-renewal. Eventually, the long history of basic and clinical research with adult hematopoietic cell transplantation could translate to establish human ESCs as a suitable alternative starting cell source for clinical hematopoietic reconstitution.
Zafar, S; Coates, D E; Cullinan, M P; Drummond, B K; Milne, T; Seymour, G J
2016-11-01
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a serious complication of bisphosphonate therapy. The mechanism underlying BRONJ pathogenesis is poorly understood. To determine the effects of zoledronic acid (ZA) and geranylgeraniol (GGOH) on the mevalonate pathway (MVP) in osteoblasts generated from the human mandibular alveolar bone in terms of cell viability/proliferation, migration, apoptosis and gene expression. Primary human osteoblasts (HOBs) isolated from the mandibular alveolar bone were phenotyped. HOBs were cultured with or without ZA and GGOH for up to 72 h. Cellular behaviour was examined using a CellTiter-Blue® viability assay, an Ibidi culture-insert migration assay, an Apo-ONE® Homogeneous Caspase-3/7 apoptosis assay and transmission electron microscopy (TEM). Quantitative real-time reverse transcriptase polymerase chain reaction (qRT 2 -PCR) was used to determine the simultaneous expression of 168 osteogenic and angiogenic genes modulated in the presence of ZA and GGOH. ZA decreased cell viability and migration and induced apoptosis in HOBs. TEM revealed signs of apoptosis in ZA-treated HOBs. However, the co-addition of GGOH ameliorated the effect of ZA and partially restored the cells to the control state. Twenty-eight genes in the osteogenic array and 27 genes in the angiogenic array were significantly regulated in the presence of ZA compared with those in the controls at one or more time points. The cytotoxic effect of ZA on HOBs and its reversal by the addition of GGOH suggests that the effect of ZA on HOBs is mediated via the MVP. The results suggest that GGOH could be used as a possible therapeutic/preventive strategy for BRONJ.
Annunziata, Marco; Oliva, Adriana; Basile, Maria Assunta; Giordano, Michele; Mazzola, Nello; Rizzo, Antonietta; Lanza, Alessandro; Guida, Luigi
2011-11-01
Titanium nitride (TiN) coating has been proposed as an adjunctive surface treatment aimed to increase the physico-mechanical and aesthetic properties of dental implants. In this study we investigated the surface characteristics of TiN-coated titanium plasma sprayed (TiN-TPS) and uncoated titanium plasma sprayed (TPS) surfaces and their biological features towards both primary human bone marrow mesenchymal stem cells (BM-MSC) and bacterial cultures. 15 mm×1 mm TPS and TiN-TPS disks (P.H.I. s.r.l., San Vittore Olona, Milano, Italy) were topographically analysed by confocal optical profilometry. Primary human BM-MSC were obtained from healthy donors, isolated and expanded. Cells were seeded on the titanium disks and cell adhesion, proliferation, protein synthesis and osteoblastic differentiation in terms of alkaline phosphatase activity, osteocalcin synthesis and extracellular mineralization, were evaluated. Furthermore, adhesion and proliferation of Streptococcus pyogenes and Streptococcus sanguinis on both surfaces were also analysed. TiN-TPS disks showed a decreased roughness (about 50%, p < 0.05) and a decreased bacterial adhesion and proliferation compared to TPS ones. No difference (p > 0.05) in terms of BM-MSC adhesion, proliferation and osteoblastic differentiation between TPS and TiN-TPS surfaces was found. TiN coating showed to modify the topographical characteristics of TPS titanium surfaces and to significantly reduce bacterial adhesion and proliferation, although maintaining their biological affinity towards bone cell precursors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Osteoinductive effect of bone bank allografts on human osteoblasts in culture.
de la Piedra, Concepción; Vicario, Carlos; de Acuña, Lucrecia Rodríguez; García-Moreno, Carmen; Traba, Maria Luisa; Arlandis, Santiago; Marco, Fernando; López-Durán, Luis
2008-02-01
Incorporation of a human bone allograft requires osteoclast activity and growth of recipient osteoblasts. The aim of this work was to study the effects produced by autoclavated and -80 degrees C frozen bone allografts on osteoblast proliferation and synthesis of interleukin 6 (IL6), activator of bone resorption, aminoterminal propeptide of procollagen I (PINP), marker of bone matrix formation, and osteoprotegerin (OPG), inhibitor of osteoclast activity and differentiation. Allografts were obtained from human femoral heads. Human osteoblasts were cultured in the presence (problem group) or in the absence (control group) of allografts during 15 days. Allografts produced a decrease in osteoblast proliferation in the first week of the experiment, and an increase in IL6 mRNA, both at 3 h and 2 days, and an increase in the IL6 released to the culture medium the second day of the experiment. We found a decrease in OPG released to the culture on the 2nd and fourth days. These results suggest an increase in bone resorption and a decrease in bone formation in the first week of the experiment. In the second week, allografts produced an increase in osteoblast proliferation and PINP release to the culture medium, indicating an increase in bone formation; an increase in OPG released to the culture medium, which would indicate a decrease in bone resorption; and a decrease in IL6, indicating a decrease in bone resorption stimulation. These results demonstrate that autoclavated and -80 degrees C frozen bone allografts produce in bone environment changes that regulate their own incorporation to the recipient bone.
Ethanol inhibits human bone cell proliferation and function in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friday, K.E.; Howard, G.A.
1991-06-01
The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantlymore » reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.« less
Impact of implant design on primary stability of orthodontic mini-implants.
Wilmes, Benedict; Ottenstreuer, Stephanie; Su, Yu-Yu; Drescher, Dieter
2008-01-01
Skeletal anchorage with mini-implants has greatly broadened the treatment possibilities in orthodontics over the last few years. To reduce implant failure rates, it is advisable to obtain adequate primary stability. The aim of this study was to quantitatively analyze the impact of implant design and dimension on primary stability. Forty-two porcine iliac bone segments were prepared and embedded in resin. To evaluate the primary stability, we documented insertion torques of the following mini-implants: Aarhus Screw, AbsoAnchor, LOMAS, Micro-Anchorage-System, ORLUS and Spider Screw. In each bone, five Dual Top Screws were inserted for reference purposes to achieve comparability among the specimens. We observed wide variation in insertion torques and hence primary stability, depending on mini-implant design and dimension; the great impact that mini-implant diameter has on insertion torques was particularly conspicuous. Conical mini-implants achieved higher primary stabilities than cylindrical designs. The diameter and design of the mini-implant thread have a distinctive impact on primary stability. Depending on the region of insertion and local bone quality, the choice of the mini-implant design and size is crucial to establish sufficient primary stability.
A case report of osteomalacia unmasking primary biliary cirrhosis.
Pawlowska, M; Kapeluto, J E; Kendler, D L
2015-07-01
Osteomalacia, a metabolic bone disease characterized by the inability to mineralize new osteoid, can be caused by vitamin D deficiency. We report a patient with symptomatic, biochemical, and imaging evidence of osteomalacia due to vitamin D deficiency, who as a result of work up for bone disease was diagnosed with early primary biliary cirrhosis. Osteomalacia was treated with high-dose vitamin D and serial bone density scans showed evidence of increasing bone mineral density suggesting osteoid mineralization in response to treatment. The diagnosis of cholestatic liver disease should be considered in all patients presenting with osteomalacia due to vitamin D deficiency, particularly if other cholestatic liver enzymes are elevated in addition to alkaline phosphatase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Monika; Pal, Subhashis; China, Shyamsundar
Aldehyde dehydrogenases (ALDHs) are a family of enzymes involved in detoxifying aldehydes. Previously, we reported that an ALDH inhibitor, disulfiram caused bone loss in rats and among ALDHs, osteoblast expressed only ALDH2. Loss-of-function mutation in ALDH2 gene is reported to cause bone loss in humans which suggested its importance in skeletal homeostasis. We thus studied whether activating ALDH2 by N-(1, 3-benzodioxol-5-ylmethyl)-2, 6-dichlorobenzamide (alda-1) had osteogenic effect. We found that alda-1 increased and acetaldehyde decreased the differentiation of rat primary osteoblasts and expressions of ALDH2 and bone morphogenetic protein-2 (BMP-2). Silencing ALDH2 in osteoblasts abolished the alda-1 effects. Further, alda-1 attenuatedmore » the acetaldehyde-induced lipid-peroxidation and oxidative stress. BMP-2 is essential for bone regeneration and alda-1 increased its expression in osteoblasts. We then showed that alda-1 (40 mg/kg dose) augmented bone regeneration at the fracture site with concomitant increase in BMP-2 protein compared with control. The osteogenic dose (40 mg/kg) of alda-1 attained a bone marrow concentration that was stimulatory for osteoblast differentiation, suggesting that the tissue concentration of alda-1 matched its pharmacologic effect. In addition, alda-1 promoted modeling-directed bone growth and peak bone mass achievement, and increased bone mass in adult rats which reiterated its osteogenic effect. In osteopenic ovariectomized (OVX) rats, alda-1 reversed trabecular osteopenia with attendant increase in serum osteogenic marker (procollagen type I N-terminal peptide) and decrease in oxidative stress. Alda-1 has no effect on liver and kidney function. We conclude that activating ALDH2 by alda-1 had an osteoanabolic effect involving increased osteoblastic BMP-2 production and decreased OVX-induced oxidative stress. - Highlights: • Alda-1 induced osteoblast differentiation that involved upregulation of ALDH2 and BMP-2 • Alda-1 attenuated acetaldehyde-induced inhibition of osteoblast differentiation • Alda-1 enhanced bone regeneration at the fracture site and peak bone mass achievement • Alda-1 reversed trabecular osteopenia in OVX rats via an osteoanabolic mechanism.« less
NASA Technical Reports Server (NTRS)
Durnova, G.; Kaplansky, A.; Morey-Holton, E.
1996-01-01
Tibial bones of rats flown onboard the SLS-2 shuttle mission were studied. Trabecular bone parameters were investigated, including growth plate height, trabecular bone volume, thickness and number, and trabecular separation in the primary and secondary spongiosa. Several histomorphometric changes were noted, allowing researchers to conclude that exposure to microgravity resulted in osteopenia of spongy bone of tibial metaphysis. The roles of bone formation and bone resorption are discussed.
Shiozawa, Yusuke; Pedersen, Elisabeth A.; Taichman, Russell S.
2009-01-01
Despite improvements in current combinational chemotherapy regimens, the prognosis of the (1;19)(q23;p13) translocation (E2A/PBX1) positive B-cell precursor acute lymphoblastic leukemia (ALL) is poor in pediatric leukemia patients. In this study, we examined the roles of GAS6/Mer axis in the interactions between E2A/PBX1 positive B-cell precursor ALL cells and the osteoblastic niche in the bone marrow. The data show that primary human osteoblasts secrete GAS6 in response to the Mer-over-expressed E2A/PBX1 positive ALL cells through MAPK signaling pathway and that leukemia cells migrate toward GAS6 using pathways activated by Mer. Importantly, GAS6 supports the survival and prevents apoptosis from chemotherapy of E2A/PBX1 positive ALL cells by inducing dormancy. Together, these data suggest that GAS6/Mer axis regulates the homing and survival of the E2A/PBX1 positive B-cell precursor ALL in the bone marrow niche. PMID:19922767
Bone tissue engineering: a review in bone biomimetics and drug delivery strategies.
Porter, Joshua R; Ruckh, Timothy T; Popat, Ketul C
2009-01-01
Critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to use engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. A synthetic bone scaffold must be biocompatible, biodegradable to allow native tissue integration, and mimic the multidimensional hierarchical structure of native bone. In addition to being physically and chemically biomimetic, an ideal scaffold is capable of eluting bioactive molecules (e.g., BMPs, TGF-betas, etc., to accelerate extracellular matrix production and tissue integration) or drugs (e.g., antibiotics, cisplatin, etc., to prevent undesired biological response such as sepsis or cancer recurrence) in a temporally and spatially controlled manner. Various biomaterials including ceramics, metals, polymers, and composites have been investigated for their potential as bone scaffold materials. However, due to their tunable physiochemical properties, biocompatibility, and controllable biodegradability, polymers have emerged as the principal material in bone tissue engineering. This article briefly reviews the physiological and anatomical characteristics of native bone, describes key technologies in mimicking the physical and chemical environment of bone using synthetic materials, and provides an overview of local drug delivery as it pertains to bone tissue engineering is included. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.
Pelletier, Jacques C.
1987-01-01
Two cases of primary benign bone tumors were diagnosed radiographically in a chiropractic practice. Although primary osseous tumors are somewhat uncommon, their potential presence emphasizes the importance of x-ray diagnosis as an essential adjunct to chiropractic practice. This procedure may preclude underlying lesions before considering treatment of seemingly uncomplicated injuries. Two such cases are presented: unicameral bone cyst and osteochondroma. ImagesFigure 1Figure 2Figure 3
Surprising origin of two carved bones donated to the Buchenwald Memorial Museum.
Gapert, René
2018-03-28
Unidentified bones were donated to the Buchenwald Memorial Museum in Weimar, Germany. The donor thought the bones may have belonged to internees of the concentration camp and had been decoratively carved by camp personnel. Non-destructive forensic anthropological examination was carried out on the bones to identify their possible origin. Comparative human and non-human bones samples were used to determine the provenance of the bones and the anatomical region they may have come from. Literature and internet searches were conducted to trace the origin of the carved motifs on the bones. The bones were determined to belong to the lower limb region of bovids. The carvings were found to correspond with those of existing bone examples found in some museums in the UK. They were traced to German prisoners of war dating to the First World War. An in-depth examination of the donated bones revealed their non-human provenance. It further showed that no link existed between the bones, internees of the concentration camp, and the time of the camp's existence. It was discovered that they belonged to the period 1914-1918 and form an important part of German prisoner of war history in the UK.
Kim, In Sook; Lee, Eui Nam; Cho, Tae Hyung; Song, Yun Mi; Hwang, Soon Jung; Oh, Ji Hye; Park, Eun Kyung; Koo, Tai Young; Seo, Young-Kwon
2011-02-01
Nonglycosylated recombinant human bone morphogenetic protein (rhBMP)-2 prepared in Escherichia coli (E. coli rhBMP-2) has recently been considered as an alternative to mammalian cell rhBMP-2. However, its clinical use is still limited owing to lack of evidence for osteogenic activity comparable with that of mammalian cell rhBMP-2 via microcomputed tomography-based analysis. Therefore, this study aimed to evaluate the ability of E. coli rhBMP-2 in absorbable collagen sponge to form ectopic and orthotopic bone and to compare it to that of mammalian rhBMP-2. In vitro investigation was performed to study osteoblast differentiation of human mesenchymal stromal cells. Both types of rhBMP-2 enhanced proliferation, alkaline phosphatase activity, and matrix mineralization of human mesenchymal stromal cells at similar levels. Similar tendencies were observed in microcomputed tomography analysis, which determined bone volume, fractional bone volume, trabecular thickness, trabecular separation, bone mineral density, and other characteristics. Histology from an in vivo osteoinductivity test and from a rat calvarial defect model demonstrated a dose-dependent increase in local bone formation. The E. coli rhBMP-2 group (5 μg) not only induced complete regeneration of an 8-mm critical-sized defect at 4 weeks, but also led to new bone with the same bone mineral density as normal bone at 8 weeks, with the same efficiency as that of mammalian cell rhBMP-2 (5 μg). These uniformly favorable results provide evidence that the osteogenic activity of E. coli rhBMP-2 is not inferior to that of mammalian cell rhBMP-2 despite its low solubility and lack of gylcosylation. These results suggest that the application of E. coli rhBMP-2 in absorbable collagen sponge may be a promising equivalent to mammalian cell rhBMP-2 in bone tissue engineering.
Tissue engineering skeletal muscle for orthopaedic applications
NASA Technical Reports Server (NTRS)
Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.
2002-01-01
With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.
Banjar, Arwa Ahmed; Mealey, Brian L
2013-01-01
The goal of this study was to evaluate the effectiveness of demineralized bone matrix (DBM) putty, consisting of demineralized human bone allograft matrix in a carrier of bovine collagen and alginate, for the treatment of periodontal defects in humans. Twenty subjects with at least one site having a probing depth ≥ 6 mm and radiographic evidence of bony defect depth > 3 mm were included. The infrabony defects were grafted with DBM putty bone graft. The following clinical parameters were assessed at baseline and 6 months posttreatment: probing depth (PD), gingival recession (GR), and clinical attachment level (CAL). Bone fill was evaluated using transgingival probing and standardized radiographs taken at baseline and 6 months posttreatment. The 6-month evaluation showed a significant PD reduction of 3.27 ± 1.67 mm and clinical attachment gain of 2.27 ± 1.74 mm. Bone sounding measurements showed a mean clinical bone defect fill of 2.93 ± 1.87 mm and a mean radiographic bone fill of 2.55 ± 2.31 mm. The use of DBM putty was effective for treatment of periodontal bony defects in humans. Significant improvement in CAL, PD, and bone fill was observed at 6 months compared to baseline.
Chen, Aaron Yun; Kleiboeker, Steve; Qiu, Jianming
2011-01-01
Human parvovirus B19 (B19V) causes a variety of human diseases. Disease outcomes of bone marrow failure in patients with high turnover of red blood cells and immunocompromised conditions, and fetal hydrops in pregnant women are resulted from the targeting and destruction of specifically erythroid progenitors of the human bone marrow by B19V. Although the ex vivo expanded erythroid progenitor cells recently used for studies of B19V infection are highly permissive, they produce progeny viruses inefficiently. In the current study, we aimed to identify the mechanism that underlies productive B19V infection of erythroid progenitor cells cultured in a physiologically relevant environment. Here, we demonstrate an effective reverse genetic system of B19V, and that B19V infection of ex vivo expanded erythroid progenitor cells at 1% O2 (hypoxia) produces progeny viruses continuously and efficiently at a level of approximately 10 times higher than that seen in the context of normoxia. With regard to mechanism, we show that hypoxia promotes replication of the B19V genome within the nucleus, and that this is independent of the canonical PHD/HIFα pathway, but dependent on STAT5A and MEK/ERK signaling. We further show that simultaneous upregulation of STAT5A signaling and down-regulation of MEK/ERK signaling boosts the level of B19V infection in erythroid progenitor cells under normoxia to that in cells under hypoxia. We conclude that B19V infection of ex vivo expanded erythroid progenitor cells at hypoxia closely mimics native infection of erythroid progenitors in human bone marrow, maintains erythroid progenitors at a stage conducive to efficient production of progeny viruses, and is regulated by the STAT5A and MEK/ERK pathways. PMID:21698228
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprangers, Sara, E-mail: s.l.sprangers@acta.nl; Schoenmaker, Ton, E-mail: t.schoenmaker@acta.nl; Department of Periodontology, Academic Centre for Dentistry Amsterdam
Bone-degrading osteoclasts are formed through fusion of their monocytic precursors. In the population of human peripheral blood monocytes, three distinct subsets have been identified: classical, intermediate and non-classical monocytes. We have previously shown that when the monocyte subsets are cultured on bone, significantly more osteoclasts are formed from classical monocytes than from intermediate or non-classical monocytes. Considering that this difference does not exist when monocyte subsets are cultured on plastic, we hypothesized that classical monocytes adhere better to the bone surface compared to intermediate and non-classical monocytes. To investigate this, the different monocyte subsets were isolated from human peripheral bloodmore » and cultured on slices of human bone in the presence of the cytokine M-CSF. We found that classical monocytes adhere better to bone due to a higher expression of the integrin αMβ2 and that their ability to attach to bone is significantly decreased when the integrin is blocked. This suggests that integrin αMβ2 mediates attachment of osteoclast precursors to bone and thereby enables the formation of osteoclasts.« less
Kelly, Mick P; Vaughn, Olushola L Akinshemoyin; Anderson, Paul A
2016-05-01
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is approved by the Food and Drug Administration as a viable alternative to bone graft in spinal fusion and maxillary sinus lift. The research questions for meta-analysis were: Is rhBMP-2 an effective bone graft substitute in localized alveolar ridge augmentation and maxillary sinus floor augmentation? What are the potential adverse events? A search of MEDLINE from January 1980 to January 2014 using PubMed, the Cochrane Database of Systematic Reviews and Controlled Trials, CINAHL, and EMBASE was performed. Searches were performed from Medical Subject Headings. The quality of each study included was graded by Review Manager software. The primary outcome variable was bone formation measured as change in bone height on computed tomogram. A systematic review of adverse events also was performed. A random-effects model was chosen. Continuous variables were calculated using the standardized mean difference and 95% confidence intervals (CIs) comparing improvement from baseline of the experimental group with that of the control group. Change in bone height was calculated using logarithmic odds ratio. Test of significance used the Z statistic with a P value of .05. Ten studies met the criteria for systematic review; 8 studies were included in the meta-analysis. Five studies assessed localized alveolar ridge augmentation and resulted in an overall standardized mean difference of 0.56 (CI, 0.20-0.92) in favor of BMP; this result was statistically important. Three studies assessed maxillary sinus floor augmentation and resulted in an overall standardized mean difference of -0.50 (CI, -0.93 to -0.09), which was meaningfully different in favor of the control group. Adverse events were inconsistently reported, ranging from no complications to widespread adverse events. For localized alveolar ridge augmentation, this meta-analysis showed that rhBMP-2 substantially increases bone height. However, rhBMP-2 does not perform as well as the autograft or allograft in maxillary sinus floor augmentation. Long-term clinical success and adverse events need to be reported with more consistency before definitive conclusions can be made. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Tridax procumbens flavonoids promote osteoblast differentiation and bone formation.
Al Mamun, Md Abdullah; Hosen, Mohammad Jakir; Islam, Kamrul; Khatun, Amina; Alam, M Masihul; Al-Bari, Md Abdul Alim
2015-11-18
Tridax procumbens flavonoids (TPFs) are well known for their medicinal properties among local natives. Besides traditionally used for dropsy, anemia, arthritis, gout, asthma, ulcer, piles, and urinary problems, it is also used in treating gastric problems, body pain, and rheumatic pains of joints. TPFs have been reported to increase osteogenic functioning in mesenchymal stem cells. Our previous study showed that TPFs were significantly suppressed the RANKL-induced differentiation of osteoclasts and bone resorption. However, the effects of TPFs to promote osteoblasts differentiation and bone formation remain unclear. TPFs were isolated from Tridax procumbens and investigated for their effects on osteoblasts differentiation and bone formation by using primary mouse calvarial osteoblasts. TPFs promoted osteoblast differentiation in a dose-dependent manner demonstrated by up-regulation of alkaline phosphatase and osteocalcin. TPFs also upregulated osteoblast differentiation related genes, including osteocalcin, osterix, and Runx2 in primary osteoblasts. TPFs treated primary osteoblast cells showed significant upregulation of bone morphogenetic proteins (BMPs) including Bmp-2, Bmp-4, and Bmp-7. Addition of noggin, a BMP specific-antagonist, inhibited TPFs induced upregulation of the osteocalcin, osterix, and Runx2. Our findings point towards the induction of osteoblast differentiation by TPFs and suggested that TPFs could be a potential anabolic agent to treat patients with bone loss-associated diseases such as osteoporosis.
Margulies, B S; DeBoyace, S D; Damron, T A; Allen, M J
2015-10-01
Ewing's sarcoma of bone is a primary childhood malignancy of bone that is treated with X-radiation therapy in combination with surgical excision and chemotherapy. To better study Ewing's sarcoma of bone we developed a novel model of primary Ewing's sarcoma of bone and then treated animals with X-radiation therapy. We identified that uncontrolled tumor resulted in lytic bone destruction while X-radiation therapy decreased lytic bone destruction and increased limb-length asymmetry, a common, crippling complication of X-radiation therapy. Osteoclasts were indentified adjacent to the tumor, however, we were unable to detect RANK-ligand in the Ewing's tumor cells in vitro, which lead us to investigate alternate mechanisms for osteoclast formation. Ewing's sarcoma tumor cells and archival Ewing's sarcoma of bone tumor biopsy samples were shown to express MCSF, which could promote osteoclast formation. Increased monocyte numbers were detected in peripheral blood and spleen in animals with untreated Ewing's sarcoma tumor while monocyte number in animals treated with x-radiation had normal numbers of monocytes. Our data suggest that our Ewing's sarcoma of bone model will be useful in the study Ewing's sarcoma tumor progression in parallel with the effects of chemotherapy and X-radiation therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
Margulies, BS; DeBoyace, SD; Damron, TA; Allen, MJ
2015-01-01
Ewing's sarcoma of bone is a primary childhood malignancy of bone that is treated with X-radiation therapy in combination with surgical excision and chemotherapy. To better study Ewing's sarcoma of bone we developed a novel model of primary Ewing's sarcoma of bone and then treated animals with X-radiation therapy. We identified that uncontrolled tumor resulted in lytic bone destruction while X-radiation therapy decreased lytic bone destruction and increased limb-length asymmetry, a common, crippling complication of X-radiation therapy. Osteoclasts were indentified adjacent to the tumor, however, we were unable to detect RANK-ligand in the Ewing's tumor cells in vitro, which lead us to investigate alternate mechanisms for osteoclast formation. Ewing's sarcoma tumor cells and archival Ewing's sarcoma of bone tumor biopsy samples were shown to express MCSF, which could promote osteoclast formation. Increased monocyte numbers were detected in peripheral blood and spleen in animals with untreated Ewing's sarcoma tumor while monocyte number in animals treated with x-radiation had normal numbers of monocytes. Our data suggest that our Ewing's sarcoma of bone model will be useful in the study Ewing's sarcoma tumor progression in parallel with the effects of chemotherapy and X-radiation therapy. PMID:26051470
Sioen, Isabelle; Mouratidou, Theodora; Herrmann, Diana; De Henauw, Stefaan; Kaufman, Jean-Marc; Molnár, Dénes; Moreno, Luis A; Marild, Staffan; Barba, Gianvincenzo; Siani, Alfonso; Gianfagna, Francesco; Tornaritis, Michael; Veidebaum, Toomas; Ahrens, Wolfgang
2012-10-01
The aim of this study was to investigate the relationship between markers of body fat and bone status assessed as calcaneal bone stiffness in a large sample of European healthy pre- and primary school children. Participants were 7,447 children from the IDEFICS study (spread over eight different European countries), age 6.1 ± 1.8 years (range 2.1-9.9), 50.5 % boys. Anthropometric measurements (weight, height, bioelectrical impedance, waist and hip circumference, and tricipital and subscapular skinfold thickness) as well as quantitative ultrasonographic measurements to determine calcaneal stiffness index (SI) were performed. Partial correlation analysis, linear regression analysis, and ANCOVA were stratified by sex and age group: preschool boys (n = 1,699) and girls (n = 1,599) and primary school boys (n = 2,062) and girls (n = 2,087). In the overall study population, the average calcaneal SI was equal to 80.2 ± 14.0, ranging 42.4-153. The results showed that preschool children with higher body fat had lower calcaneal SI (significant correlation coefficients between -0.05 and -0.20), while primary school children with higher body fat had higher calcaneal SI (significant correlation coefficients between 0.05 and 0.13). After adjusting for fat-free mass, both preschool and primary school children showed an inverse relationship between body fat and calcaneal stiffness. To conclude, body fat is negatively associated with calcaneal bone stiffness in children after adjustment for fat-free mass. Fat-free mass may confound the association in primary school children but not in preschool children. Muscle mass may therefore be an important determinant of bone stiffness.
Kim, Beom-Jun; Kwak, Mi Kyung; Ahn, Seong Hee; Kim, Hyeonmok; Lee, Seung Hun; Song, Kee-Ho; Suh, Sunghwan; Kim, Jae Hyeon; Koh, Jung-Min
2017-08-01
Despite the apparent biological importance of sympathetic activity on bone metabolism in rodents, its role in humans remains questionable. To clarify the link between the sympathetic nervous system and the skeleton in humans. Among 620 consecutive subjects with newly diagnosed adrenal incidentaloma, 31 patients with histologically confirmed pheochromocytoma (a catecholamine-secreting neuroendocrine tumor) and 280 patients with nonfunctional adrenal incidentaloma were defined as cases and controls, respectively. After adjustment for confounders, subjects with pheochromocytoma had 7.2% lower bone mass at the lumbar spine and 33.5% higher serum C-terminal telopeptide of type 1 collagen (CTX) than those without pheochromocytoma (P = 0.016 and 0.001, respectively), whereas there were no statistical differences between groups in bone mineral density (BMD) at the femur neck and total hip and in serum bone-specific alkaline phosphatase (BSALP) level. The odds ratio (OR) for lower BMD at the lumbar spine in the presence of pheochromocytoma was 3.31 (95% confidence interval, 1.23 to 8.56). However, the ORs for lower BMD at the femur neck and total hip did not differ according to the presence of pheochromocytoma. Serum CTX level decreased by 35.2% after adrenalectomy in patients with pheochromocytoma, whereas serum BSALP level did not change significantly. This study provides clinical evidence showing that sympathetic overstimulation in pheochromocytoma can contribute to adverse effects on human bone through the increase of bone loss (especially in trabecular bone), as well as bone resorption. Copyright © 2017 Endocrine Society
Mesenchymal stem cells for bone repair and metabolic bone diseases.
Undale, Anita H; Westendorf, Jennifer J; Yaszemski, Michael J; Khosla, Sundeep
2009-10-01
Human mesenchymal stem cells offer a potential alternative to embryonic stem cells in clinical applications. The ability of these cells to self-renew and differentiate into multiple tissues, including bone, cartilage, fat, and other tissues of mesenchymal origin, makes them an attractive candidate for clinical applications. Patients who experience fracture nonunion and metabolic bone diseases, such as osteogenesis imperfecta and hypophosphatasia, have benefited from human mesenchymal stem cell therapy. Because of their ability to modulate immune responses, allogeneic transplant of these cells may be feasible without a substantial risk of immune rejection. The field of regenerative medicine is still facing considerable challenges; however, with the progress achieved thus far, the promise of stem cell therapy as a viable option for fracture nonunion and metabolic bone diseases is closer to reality. In this review, we update the biology and clinical applicability of human mesenchymal stem cells for bone repair and metabolic bone diseases.
Al Mamun, Md Abdullah; Islam, Kamrul; Alam, Md Jahangir; Khatun, Amina; Alam, M Masihul; Al-Bari, Md Abdul Alim; Alam, Md Jahangir
2015-09-12
The Tridax procumbens flavonoids (TPF), are well known for their medicinal properties among local natives. The TPF are traditionally used for dropsy, anaemia, arthritis, gout, asthma, ulcer, piles, and urinary problems. It also used in treating gastric problems, body pain, and rheumatic pains of joints. The TPF have been reported to increase osteogenic functioning in mesenchymal stem cells. However, their effects on osteoclastogenesis remain unclear. The TPF isolated from T. procumbens and investigated the effects of the TPF inhibit on osteoclast differentiation and bone resorption activities using primary osteoclastic cells. Osteoclast formation was assessed by counting the number of tartrate resistant acid phosphatase (TRAP) positive multinucleated cells and by measuring both TRAP activities. The TPF significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in primary osteoclastic cells. The TPF also decreased the expression of mRNAs related to osteoclast differentiation, including Trap, Cathepsin K, Mmp-9, and Mmp-13 in primary osteoclastic cells. The treatment of primary osteoclastic cells with the TPF decreased Cathepsin K, Mmp-9, and Mmp-13 proteins expression in primary osteoclastic cells. These results indicated that TPF inhibit osteoclastogenesis and pits formation activities. Our results suggest that the TPF could be a potential anti-bone resorptic agent to treat patients with bone loss-associated diseases such as osteoporosis.
Torii, Daisuke; Konishi, Kiyoshi; Watanabe, Nobuyuki; Goto, Shinichi; Tsutsui, Takeki
2015-01-01
The periodontal ligament (PDL) consists of a group of specialized connective tissue fibers embedded in the alveolar bone and cementum that are believed to contain progenitors for mineralized tissue-forming cell lineages. These progenitors may contribute to regenerative cell therapy or tissue engineering methods aimed at recovery of tissue formation and functions lost in periodontal degenerative changes. Some reports using immortal clonal cell lines of cementoblasts, which are cells containing mineralized tissue-forming cell lineages, have shown that their phenotypic alteration and gene expression are associated with mineralization. Immortal, multipotential PDL-derived cell lines may be useful biological tools for evaluating differentiation-inducing agents. In this study, we confirmed the gene expression and mineralization potential of primary and immortal human PDL cells and characterized their immunophenotype. Following incubation with mineralization induction medium containing β-glycerophosphate, ascorbic acid, and dexamethasone, normal human PDL (Pel) cells and an immortal derivative line (Pelt) cells showed higher levels of mineralization compared with cells grown in normal growth medium. Both cell types were positive for putative surface antigens of mesenchymal cells (CD44, CD73, CD90, and CD105). They were also positive for stage-specific embryonic antigen-3, a marker of multipotential stem cells. Furthermore, PDL cells expressed cementum attachment protein and cementum protein 1 when cultured with recombinant human bone morphogenetic protein-2 or -7. The results suggest that normal and immortal human PDL cells contain multipotential mesenchymal stem cells with cementogenic potential.
Esteve-Altava, Borja; Rasskin-Gutman, Diego
2014-01-01
Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. PMID:24975579
Influence of Drilling Speed on Stability of Tapered Dental Implants: An Ex Vivo Experimental Study.
Almeida, Karen P; Delgado-Ruiz, Rafael; Carneiro, Leandro G; Leiva, Alberto Bordonaba; Calvo-Guirado, Jose Luis; Gómez-Moreno, Gerardo; Malmström, Hans; Romanos, Georgios E
2016-01-01
The aim of this study was to evaluate whether the drilling speed used during implant site preparation influences primary stability. Eighty tapered designed implants (3.8 × 10 mm) were inserted following osteotomies created in solid rigid polyurethane foam (simulating bone type II) and cellular rigid polyurethane foam (simulating bone type IV). Half were prepared using drilling speeds of 800 rpm (low speed), and the other half were prepared using speeds of 1,500 rpm (high speed). Following insertion, implant primary stability was measured using Periotest and Osstell (resonance frequency analysis [RFA]) devices. Two-way analysis of variance (ANOVA) used for this study found that the drilling speed used to create the osteotomies appeared to have no significant impact on primary stability. The bone quality and not the osteotomy drilling speed seems to influence the implant primary stability.
Central Cemento-Ossifying Fibroma: Primary Odontogenic or Osseous Neoplasm?
Woo, Sook-Bin
2015-12-01
Currently, central cemento-ossifying fibroma is classified by the World Health Organization as a primary bone-forming tumor of the jaws. However, histopathologically, it is often indistinguishable from cemento-osseous dysplasias in that it forms osteoid and cementicles (cementum droplets) in varying proportions. It is believed that pluripotent cells within the periodontal membrane can be stimulated to produce either osteoid or woven bone and cementicles when stimulated. If this is true, cemento-ossifying fibroma would be better classified as a primary odontogenic neoplasm arising from the periodontal ligament. Cemento-ossifying fibromas also do not occur in the long bones. The present report compares several entities that fall within the diagnostic realm of benign fibro-osseous lesions and reviews the evidence for reclassifying central cemento-ossifying fibroma as a primary odontogenic neoplasm. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Ohshima, Hiroshi
2010-04-01
The assembly of the Japanese Experiment Module "Kibo" to international space station was completed in 2009 and Koichi Wakata became the first Japanese station astronaut who spent more than 4 months in the station. Bone and muscle losses are significant medical concerns for long duration human space flight. Effective countermeasure program for bone loss and muscle atrophy is necessary to avoid post flight bone fracture and joint sprain after landing. The musculoskeletal response to human space flight and current physical countermeasure program for station astronauts are described.
Frangez, Igor; Kasnik, Tea; Cimerman, Matej; Smrke, Dragica Maja
2016-05-03
Calcaneal fractures are relatively rare and difficult to treat. Treatment options vary based on the type of fracture and the surgeon's experiences. In recent years, surgical procedures have increasingly been used due to the better long-term results. We present a case where guided tissue regeneration was performed in a calcaneal fracture that needed primary subtalar arthrodesis. We used the principles of guided tissue regeneration from oral surgery to perform primary subtalar arthrodesis and minimize the risk of non-union. We used a heterologous collagen membrane, which acts as a mechanical barrier and protects the bone graft from the invasion of unwanted cells that could lead to non-union. The collagenous membrane also has osteoconductive properties and is therefore able to increase the osteoblast proliferation rate. A 62-year-old Caucasian woman sustained multiple fractures of her lower limbs and spine after a fall from a ladder. Her left calcaneus had a comminuted multifragmental fracture (Sanders type IV) with severe destruction of the cartilage of her subtalar joint and depression of the Böhler's angle. Therefore, we performed primary arthrodesis of her subtalar joint with elevation of the Böhler's angle using a 7.3 mm titanium screw, a heterologous cortico-cancellous collagenated pre-hydrated bone mix, a heterologous cancellous collagenated bone wedge, and a heterologous collagen membrane (Tecnoss®, Italy). The graft was fully incorporated 12 weeks after the procedure and a year and a half later our patient walks without limping. We present a new use of guided tissue regeneration with heterologous materials that can be used to treat extensive bone defects after bone injuries. We believe that guided tissue regeneration using heterologous materials, including a heterologous collagen membrane that presents a mechanical barrier between soft tissues and bone as well as a stimulative component that enhances bone formation, could be more often used in bone surgery.
Comparison of Bone Grafts From Various Donor Sites in Human Bone Specimens.
Kamal, Mohammad; Gremse, Felix; Rosenhain, Stefanie; Bartella, Alexander K; Hölzle, Frank; Kessler, Peter; Lethaus, Bernd
2018-05-14
The objective of the current study was to compare the three-dimensional (3D) morphometric microstructure in human cadaveric bone specimens taken from various commonly utilized donor sites for autogenous bone grafting. Autogenous bone grafts can be harvested from various anatomic sites and express heterogeneous bone quality with a specific 3D microstructure for each site. The long-term structural integrity and susceptibility to resorption of the graft depend on the selected donor bone. Micro-computed tomography generates high-resolution datasets of bone structures and calcifications making this modality versatile for microarchitecture analysis and quantification of the bone. Six bone specimens, 10 mm in length, where anatomically possible, were obtained from various anatomical sites from 10 human dentate cadavers (4 men, 6 women, mean age 69.5 years). Specimens were scanned using a micro-computed tomography device and volumetrically reconstructed. A virtual cylindrical inclusion was reconstructed to analyze the bone mineral density and structural morphometric analysis using bone indices: relative bone volume, surface density, trabecular thicknesses, and trabecular separation. Calvarial bone specimens showed the highest mineral density, followed by the chin, then mandibular ramus then the tibia, whereas iliac crest and maxillary tuberosity had lower bone mineral densities. The pairwise comparison revealed statistically significant differences in the bone mineral density and relative bone volume index in the calvaria, mandibular ramus, mandibular symphysis groups when compared with those in the iliac crest and maxillary tuberosity, suggesting higher bone quality in the former groups than in the latter; tibial specimens expressed variable results.
Kohata, Kazuhiro; Itoh, Soichiro; Horiuchi, Naohiro; Yoshioka, Taro; Yamashita, Kimihiro
2016-08-12
The electrical potential, which is generated in bone by collagen displacement, has been well documented. However, the role of mineral crystals in bone piezoelectricity has not yet been elucidated. We examined the mechanism that the composite structure of organic and inorganic constituents and their collaborative functions play an important role in the electrical properties of human bone. The electrical potential and bone structure were evaluated using thermally stimulated depolarized current (TSDC) and micro computed tomography, respectively. After electrical polarization of bone specimens, the stored electrical charge was calculated using TSDC measurements. The CO3/PO4 peak ratio was calculated using attenuated total reflection to compare the content of carbonate ion in the bone specimens. The TSDC curve contained 3 peaks at 100, 300 and 500°C, which were classified into 4 patterns. The CO3/PO4 peak ratio positively correlated with the stored charges at approximately 300°C in the polarized bone. There was a positive correlation between the stored bone charge and the bone mineral density only. It is suggested that the peak at 300°C is attributed to carbonate apatite and the total bone mass of human bone, not the three-dimensional structure, affects the stored charge.
A tissue engineering solution for segmental defect regeneration in load-bearing long bones.
Reichert, Johannes C; Cipitria, Amaia; Epari, Devakara R; Saifzadeh, Siamak; Krishnakanth, Pushpanjali; Berner, Arne; Woodruff, Maria A; Schell, Hanna; Mehta, Manav; Schuetz, Michael A; Duda, Georg N; Hutmacher, Dietmar W
2012-07-04
The reconstruction of large defects (>10 mm) in humans usually relies on bone graft transplantation. Limiting factors include availability of graft material, comorbidity, and insufficient integration into the damaged bone. We compare the gold standard autograft with biodegradable composite scaffolds consisting of medical-grade polycaprolactone and tricalcium phosphate combined with autologous bone marrow-derived mesenchymal stem cells (MSCs) or recombinant human bone morphogenetic protein 7 (rhBMP-7). Critical-sized defects in sheep--a model closely resembling human bone formation and structure--were treated with autograft, rhBMP-7, or MSCs. Bridging was observed within 3 months for both the autograft and the rhBMP-7 treatment. After 12 months, biomechanical analysis and microcomputed tomography imaging showed significantly greater bone formation and superior strength for the biomaterial scaffolds loaded with rhBMP-7 compared to the autograft. Axial bone distribution was greater at the interfaces. With rhBMP-7, at 3 months, the radial bone distribution within the scaffolds was homogeneous. At 12 months, however, significantly more bone was found in the scaffold architecture, indicating bone remodeling. Scaffolds alone or with MSC inclusion did not induce levels of bone formation comparable to those of the autograft and rhBMP-7 groups. Applied clinically, this approach using rhBMP-7 could overcome autograft-associated limitations.
Martínez, Constanza E; González, Sergio A; Palma, Verónica; Smith, Patricio C
2016-02-01
Plasma-derived fractions have been used as an autologous source of growth factors; however, limited knowledge concerning their biologic effects has hampered their clinical application. In this study, the authors analyze the content and specific effect of both platelet-rich plasma (PRP) and platelet-poor plasma (PPP) on osteoblastic differentiation using primary cultures of human periodontal ligament stem cells (HPLSCs). The authors evaluated the growth factor content of PRP and PPP using a proteome profiler array and enzyme-linked immunosorbent assay. HPLSCs were characterized by flow cytometry and differentiation assays. The effect of PRP and PPP on HPLSC bone differentiation was analyzed by quantifying calcium deposition after 14 and 21 days of treatment. Albeit at different concentrations, the two fractions had similar profiles of growth factors, the most representative being platelet-derived growth factor (PDGF) isoforms (PDGF-AA, -BB, and -AB), insulin-like growth factor binding protein (IGFBP)-2, and IGFBP-6. Both formulations exerted a comparable stimulus on osteoblastic differentiation even at low doses (2.5%), increasing calcium deposits in HPLSCs. PRP and PPP showed a similar protein profile and exerted comparable effects on bone differentiation. Further studies are needed to characterize and compare the effects of PPP and PRP on bone healing in vivo.
Quantitative in vivo assessment of bone microarchitecture in the human knee using HR-pQCT.
Kroker, Andres; Zhu, Ying; Manske, Sarah L; Barber, Rhamona; Mohtadi, Nicholas; Boyd, Steven K
2017-04-01
High-resolution peripheral quantitative computed tomography (HR-pQCT) is a novel imaging modality capable of visualizing bone microarchitecture in vivo at human peripheral sites such as the distal radius and distal tibia. This research has extended the technology to provide a non-invasive assessment of bone microarchitecture at the human knee by establishing new hardware, imaging protocols and data analysis. A custom leg holder was developed to stabilize a human knee centrally within a second generation HR-pQCT field of view. Five participants with anterior cruciate ligament reconstructions had their knee joint imaged in a continuous scan of 6cm axially. The nominal isotropic voxel size was 60.7μm. Bone mineral density and microarchitecture were assessed within the weight-bearing regions of medial and lateral compartments of the knee at three depths from the weight-bearing articular bone surface, including both the cortical and trabecular bone regions. Scan duration was approximately 18min per knee and produced 5GB of projection data and 10GB of reconstructed image data (2304×2304 image matrix, 1008 slices). Motion during the scan was minimized by the leg holder and was similar in magnitude as a scan of the distal tibia. Bone mineral density and microarchitectural parameters were assessed for 16 volumes of interest in the tibiofemoral joint. This is a new non-invasive in vivo assessment tool for bone microarchitecture in the human knee that provides an opportunity to gain insight into normal, injured and surgically reconstructed human knee bone architecture in cross-sectional or longitudinal studies. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Hsu, J T; Huang, H L; Tsai, M T; Wu, A Y J; Tu, M G; Fuh, L J
2013-02-01
This study investigated the effects of bone stiffness (elastic modulus) and three-dimensional (3D) bone-to-implant contact ratio (BIC%) on the primary stabilities of dental implants using micro-computed tomography (micro-CT) and resonance frequency analyses. Artificial sawbone models with five values of elastic modulus (137, 123, 47.5, 22, and 12.4 MPa) comprising two types of trabecular structure (solid-rigid and cellular-rigid) were investigated for initial implant stability quotient (ISQ), measured using the wireless Osstell resonance frequency analyzer. Bone specimens were attached to 2 mm fibre-filled epoxy sheets mimicking the cortical shell. ISQ was measured after placing a dental implant into the bone specimen. Each bone specimen with an implant was subjected to micro-CT scanning to calculate the 3D BIC% values. The similarity of the cellular type of artificial bone to the trabecular structure might make it more appropriate for obtaining accurate values of primary implant stability than solid-bone blocks. For the cellular-rigid bone models, the ISQ increased with the elastic modulus of cancellous bone. The regression correlation coefficient was 0.96 for correlations of the ISQ with the elasticity of cancellous bone and with the 3D BIC%. The initial implant stability was moderately positively correlated with the elasticity of cancellous bone and with the 3D BIC%. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Bowden, Sasigarn A; Robinson, Renee F; Carr, Roxane; Mahan, John D
2008-06-01
The purpose of this work was to determine the prevalence of vitamin D deficiency and insufficiency in children with osteopenia or osteoporosis and to evaluate the relationship between serum 25-hydroxyvitamin D levels and bone parameters, including bone mineral density. Serum 25-hydroxyvitamin D, 1,25 dihydroxyvitamin D, parathyroid hormone, and other bone markers, as well as bone mineral density, were obtained for 85 pediatric patients with primary osteoporosis (caused by osteogenesis imperfecta or juvenile idiopathic osteoporosis) and secondary osteopenia or osteoporosis caused by various underlying chronic illnesses. Pearson's correlation was used to assess the relationship between vitamin D levels and different bone parameters. Vitamin D insufficiency (defined as serum 25-hydroxyvitamin D <30 ng/mL) was observed in 80.0% of patients. Overt vitamin D deficiency (defined as serum 25-hydroxyvitamin D <10 ng/mL) was present in 3.5% of patients. Using a more recent definition for vitamin D deficiency in adults (defined as serum 25-hydroxyvitamin D <20 ng/mL), 21.1% of the patients had vitamin D deficiency. There was a significant inverse correlation between 25-hydroxyvitamin D and parathyroid hormone levels. There was a positive correlation between 1,25 dihydroxyvitamin D and parathyroid hormone, alkaline phosphatase, and urine markers for bone turnover. Vitamin D insufficiency was remarkably common in pediatric patients with primary and secondary osteopenia or osteoporosis. The inverse relationship between 25-hydroxyvitamin D and parathyroid hormone levels suggests a physiologic impact of insufficient vitamin D levels that may contribute to low bone mass or worsen the primary bone disease. We suggest that monitoring and supplementation of vitamin D should be a priority in the management of pediatric patients with osteopenia or osteoporosis.
Irisin exerts dual effects on browning and adipogenesis of human white adipocytes.
Zhang, Yuan; Xie, Chao; Wang, Hai; Foss, Robin M; Clare, Morgan; George, Eva Vertes; Li, Shiwu; Katz, Adam; Cheng, Henrique; Ding, Yousong; Tang, Dongqi; Reeves, Westley H; Yang, Li-Jun
2016-08-01
To better understand the role of irisin in humans, we examined the effects of irisin in human primary adipocytes and fresh human subcutaneous white adipose tissue (scWAT). Human primary adipocytes derived from 28 female donors' fresh scWAT were used to examine the effects of irisin on browning and mitochondrial respiration, and preadipocytes were used to examine the effects of irisin on adipogenesis and osteogenesis. Cultured fragments of scWAT and perirenal brown fat were used for investigating signal transduction pathways that mediate irisin's browning effect by Western blotting to detect phosphorylated forms of p38, ERK, and STAT3 as well as uncoupling protein 1 (UCP1). Individual responses to irisin in scWAT were correlated with basal expression levels of brown/beige genes. Irisin upregulated the expression of browning-associated genes and UCP1 protein in both cultured primary mature adipocytes and fresh adipose tissues. It also significantly increased thermogenesis at 5 nmol/l by elevating cellular energy metabolism (OCR and ECAR). Treating human scWAT with irisin increased UCP1 expression by activating the ERK and p38 MAPK signaling. Blocking either pathway with specific inhibitors abolished irisin-induced UCP1 upregulation. However, our results showed that UCP1 in human perirenal adipose tissue was insensitive to irisin. Basal levels of brown/beige and FNDC5 genes correlated positively with the browning response of scWAT to irisin. In addition, irisin significantly inhibited adipogenic differentiation but promoted osteogenic differentiation. We conclude that irisin promotes "browning" of mature white adipocytes by increasing cellular thermogenesis, whereas it inhibits adipogenesis and promotes osteogenesis during lineage-specific differentiation. Our findings provide a rationale for further exploring the therapeutic use of irisin in obesity and exercise-associated bone formation.
Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.
2010-01-01
This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.
Morphological Characterization of the Frontal and Parietal Bones of the Human Skull
2017-03-01
ARL-TR- 7962 ● MAR 2017 US Army Research Laboratory Morphological Characterization of the Frontal and Parietal Bones of the...Army Research Laboratory Morphological Characterization of the Frontal and Parietal Bones of the Human Skull by Stephen L Alexander SURVICE...
McCann, M R; Yeung, C; Pest, M A; Ratneswaran, A; Pollmann, S I; Holdsworth, D W; Beier, F; Dixon, S J; Séguin, C A
2017-05-01
Low-amplitude, high-frequency whole-body vibration (WBV) has been adopted for the treatment of musculoskeletal diseases including osteoarthritis (OA); however, there is limited knowledge of the direct effects of vibration on joint tissues. Our recent studies revealed striking damage to the knee joint following exposure of mice to WBV. The current study examined the effects of WBV on specific compartments of the murine tibiofemoral joint over 8 weeks, including microarchitecture of the tibia, to understand the mechanisms associated with WBV-induced joint damage. Ten-week-old male CD-1 mice were exposed to WBV (45 Hz, 0.3 g peak acceleration; 30 min/day, 5 days/week) for 4 weeks, 8 weeks, or 4 weeks WBV followed by 4 weeks recovery. The knee joint was evaluated histologically for tissue damage. Architecture of the subchondral bone plate, subchondral trabecular bone, primary and secondary spongiosa of the tibia was assessed using micro-CT. Meniscal tears and focal articular cartilage damage were induced by WBV; the extent of damage increased between 4 and 8-week exposures to WBV. WBV did not alter the subchondral bone plate, or trabecular bone of the tibial spongiosa; however, a transient increase was detected in the subchondral trabecular bone volume and density. The lack of WBV-induced changes in the underlying subchondral bone suggests that damage to the articular cartilage may be secondary to the meniscal injury we detected. Our findings underscore the need for further studies to assess the safety of WBV in the human population to avoid long-term joint damage. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease
Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel
2014-01-01
Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton’s tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL) –6– or stroma–dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. PMID:23456977
In vitro modeling of human tibial strains during exercise in micro-gravity
NASA Technical Reports Server (NTRS)
Peterman, M. M.; Hamel, A. J.; Cavanagh, P. R.; Piazza, S. J.; Sharkey, N. A.
2001-01-01
Prolonged exposure to micro-gravity causes substantial bone loss (Leblanc et al., Journal of Bone Mineral Research 11 (1996) S323) and treadmill exercise under gravity replacement loads (GRLs) has been advocated as a countermeasure. To date, the magnitudes of GRLs employed for locomotion in space have been substantially less than the loads imposed in the earthbound 1G environment, which may account for the poor performance of locomotion as an intervention. The success of future treadmill interventions will likely require GRLs of greater magnitude. It is widely held that mechanical tissue strain is an important intermediary signal in the transduction pathway linking the external loading environment to bone maintenance and functional adaptation; yet, to our knowledge, no data exist linking alterations in external skeletal loading to alterations in bone strain. In this preliminary study, we used unique cadaver simulations of micro-gravity locomotion to determine relationships between localized tibial bone strains and external loading as a means to better predict the efficacy of future exercise interventions proposed for bone maintenance on orbit. Bone strain magnitudes in the distal tibia were found to be linearly related to ground reaction force magnitude (R(2)>0.7). Strain distributions indicated that the primary mode of tibial loading was in bending, with little variation in the neutral axis over the stance phase of gait. The greatest strains, as well as the greatest strain sensitivity to altered external loading, occurred within the anterior crest and posterior aspect of the tibia, the sites furthest removed from the neutral axis of bending. We established a technique for estimating local strain magnitudes from external loads, and equations for predicting strain during simulated micro-gravity walking are presented.
Kamiya, Nobuhiro; Yamaguchi, Ryosuke; Aruwajoye, Olumide; Kim, Audrey J; Kuroyanagi, Gen; Phipps, Matthew; Adapala, Naga Suresh; Feng, Jian Q; Kim, Harry Kw
2017-08-01
Neurofibromatosis type 1 (NF1, OMIM 162200), caused by NF1 gene mutations, exhibits multi-system abnormalities, including skeletal deformities in humans. Osteocytes play critical roles in controlling bone modeling and remodeling. However, the role of neurofibromin, the protein product of the NF1 gene, in osteocytes is largely unknown. This study investigated the role of neurofibromin in osteocytes by disrupting Nf1 under the Dmp1-promoter. The conditional knockout (Nf1 cKO) mice displayed serum profile of a metabolic bone disorder with an osteomalacia-like bone phenotype. Serum FGF23 levels were 4 times increased in cKO mice compared with age-matched controls. In addition, calcium-phosphorus metabolism was significantly altered (calcium reduced; phosphorus reduced; parathyroid hormone [PTH] increased; 1,25(OH) 2 D decreased). Bone histomorphometry showed dramatically increased osteoid parameters, including osteoid volume, surface, and thickness. Dynamic bone histomorphometry revealed reduced bone formation rate and mineral apposition rate in the cKO mice. TRAP staining showed a reduced osteoclast number. Micro-CT demonstrated thinner and porous cortical bones in the cKO mice, in which osteocyte dendrites were disorganized as assessed by electron microscopy. Interestingly, the cKO mice exhibited spontaneous fractures in long bones, as found in NF1 patients. Mechanical testing of femora revealed significantly reduced maximum force and stiffness. Immunohistochemistry showed significantly increased FGF23 protein in the cKO bones. Moreover, primary osteocytes from cKO femora showed about eightfold increase in FGF23 mRNA levels compared with control cells. The upregulation of FGF23 was specifically and significantly inhibited by PI3K inhibitor Ly294002, indicating upregulation of FGF23 through PI3K in Nf1-deficient osteocytes. Taken together, these results indicate that Nf1 deficiency in osteocytes dramatically increases FGF23 production and causes a mineralization defect (ie, hyperosteoidosis) via the alteration of calcium-phosphorus metabolism. This study demonstrates critical roles of neurofibromin in osteocytes for osteoid mineralization. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Lee, Edmund C.; Fitzgerald, Michael; Bannerman, Bret; Donelan, Jill; Bano, Kristen; Terkelsen, Jennifer; Bradley, Daniel P.; Subakan, Ozlem; Silva, Matthew D.; Liu, Ray; Pickard, Michael; Li, Zhi; Tayber, Olga; Li, Ping; Hales, Paul; Carsillo, Mary; Neppalli, Vishala T.; Berger, Allison J.; Kupperman, Erik; Manfredi, Mark; Bolen, Joseph B.; Van Ness, Brian; Janz, Siegfried
2012-01-01
Purpose The clinical success of the first-in-class proteasome inhibitor bortezomib (VELCADE) has validated the proteasome as a therapeutic target for treating human cancers. MLN9708 is an investigational proteasome inhibitor that, compared with bortezomib, has improved pharmacokinetics, pharmacodynamics, and antitumor activity in preclinical studies. Here, we focused on evaluating the in vivo activity of MLN2238 (the biologically active form of MLN9708) in a variety of mouse models of hematologic malignancies, including tumor xenograft models derived from a human lymphoma cell line and primary human lymphoma tissue, and genetically engineered mouse (GEM) models of plasma cell malignancies (PCM). Experimental Design Both cell line–derived OCI-Ly10 and primary human lymphoma–derived PHTX22L xenograft models of diffuse large B-cell lymphoma were used to evaluate the pharmacodynamics and antitumor effects of MLN2238 and bortezomib. The iMycCα/Bcl-XL GEM model was used to assess their effects on de novo PCM and overall survival. The newly developed DP54-Luc–disseminated model of iMycCα/ Bcl-XL was used to determine antitumor activity and effects on osteolytic bone disease. Results MLN2238 has an improved pharmacodynamic profile and antitumor activity compared with bortezomib in both OCI-Ly10 and PHTX22L models. Although both MLN2238 and bortezomib prolonged overall survival, reduced splenomegaly, and attenuated IgG2a levels in the iMycCα/Bcl-XL GEM model, only MLN2238 alleviated osteolytic bone disease in the DP54-Luc model. Conclusions Our results clearly showed the antitumor activity of MLN2238 in a variety of mouse models of B-cell lymphoma and PCM, supporting its clinical development. MLN9708 is being evaluated in multiple phase I and I/II trials. PMID:21903769
Peterson, Joseph E.; Lenczewski, Melissa E.; Scherer, Reed P.
2010-01-01
Background Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Conclusions/Significance Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure. PMID:20967227
Glenoid bone grafting in primary reverse total shoulder arthroplasty.
Ernstbrunner, Lukas; Werthel, Jean-David; Wagner, Eric; Hatta, Taku; Sperling, John W; Cofield, Robert H
2017-08-01
Severe glenoid bone loss remains a challenge in patients requiring shoulder arthroplasty and may necessitate glenoid bone grafting. The purpose of this study was to determine results, complications, and rates of failure of glenoid bone grafting in primary reverse shoulder arthroplasty. Forty-one shoulders that underwent primary reverse arthroplasty between 2006 and 2013 with a minimum follow-up of 2 years (mean, 2.8 years; range, 2-6 years) were reviewed. Thirty-four (83%) received corticocancellous grafts and 7 (17%) structural grafts. Active range of motion and pain levels were significantly improved (P < .001), with mean American Shoulder and Elbow Surgeons score of 77, Simple Shoulder Test score of 9, and patient satisfaction of 93% at the most recent follow-up. Preoperative severe glenoid erosion and increasing body mass index were significantly associated with worse American Shoulder and Elbow Surgeons scores (P = .04). On radiographic evaluation, 7 patients (18%) had grade 1 or grade 2 glenoid lucency. Glenoid bone graft incorporation was observed in 31 patients (78%). Twelve patients (30%) suffered from grade 1 or grade 2 scapular notching. All of the patients with structural grafts showed graft incorporation and no signs of glenoid lucency. Although glenoid lucency, glenoid graft resorption, and scapular notching were present at short-term to midterm follow-up, none of the patients needed revision surgery. Primary reverse shoulder arthroplasty with glenoid reconstruction using bone graft relieved pain and restored shoulder function and stability. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Peterson, Joseph E; Lenczewski, Melissa E; Scherer, Reed P
2010-10-12
Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.
Keränen, Pauli; Koort, Jyri; Itälä, Ari; Ylänen, Heimo; Dalstra, Michel; Hupa, Mikko; Kommonen, Bertel; Aro, Hannu T
2010-03-15
The aim of the present study was to determine, if bioactive glass (BG) surface inlays improve osseointegration of titanium implants in the proximal femur of adult sheep. In simulation of uncemented primary stems (nine animals), only the proximal part of the implants was grit-blasted and three surface slots of the grit-blasted region were filled with sintered BG microspheres. Primary stems were implanted using press-fit technique. In revision stem simulation (eight animals), grit-blasting was extended over the whole implant and seven perforating holes of the stem were filled by sintered BG granules. Revision stems were implanted with a mixture of autogenous bone graft and BG granules. Comparison with solid partially or fully grit-blasted control stems implanted in the contralateral femurs was performed in the primary and revision stem experiments at 12 and 25 weeks, respectively. Implant incorporation was evaluated by torsional failure testing and histomorphometry. Only one-third of the primary stems anchored mechanically to bone. The revision stems incorporated better and the BG inlays of the revision stems showed ingrowth of new bone. However, there were no significant differences in the torsional failure loads between the stems with BG inlays and the control stems. In conclusion, surface BG inlays gave no measurable advantage in mechanical incorporation of grit-blasted titanium implants. Overall, the proximal sheep femur, characterized by minimal amount of cancellous bone and the presence of adipocytic bone marrow, seemed to present compromised bone healing conditions. (c) 2009 Wiley Periodicals, Inc.
A Novel Temporal Bone Simulation Model Using 3D Printing Techniques.
Mowry, Sarah E; Jammal, Hachem; Myer, Charles; Solares, Clementino Arturo; Weinberger, Paul
2015-09-01
An inexpensive temporal bone model for use in a temporal bone dissection laboratory setting can be made using a commercially available, consumer-grade 3D printer. Several models for a simulated temporal bone have been described but use commercial-grade printers and materials to produce these models. The goal of this project was to produce a plastic simulated temporal bone on an inexpensive 3D printer that recreates the visual and haptic experience associated with drilling a human temporal bone. Images from a high-resolution CT of a normal temporal bone were converted into stereolithography files via commercially available software, with image conversion and print settings adjusted to achieve optimal print quality. The temporal bone model was printed using acrylonitrile butadiene styrene (ABS) plastic filament on a MakerBot 2x 3D printer. Simulated temporal bones were drilled by seven expert temporal bone surgeons, assessing the fidelity of the model as compared with a human cadaveric temporal bone. Using a four-point scale, the simulated bones were assessed for haptic experience and recreation of the temporal bone anatomy. The created model was felt to be an accurate representation of a human temporal bone. All raters felt strongly this would be a good training model for junior residents or to simulate difficult surgical anatomy. Material cost for each model was $1.92. A realistic, inexpensive, and easily reproducible temporal bone model can be created on a consumer-grade desktop 3D printer.
Miscellaneous indications in bone scintigraphy: metabolic bone diseases and malignant bone tumors.
Cook, Gary J R; Gnanasegaran, Gopinath; Chua, Sue
2010-01-01
The diphosphonate bone scan is ideally suited to assess many global, focal or multifocal metabolic bone disorders and there remains a role for conventional bone scintigraphy in metabolic bone disorders at diagnosis, investigation of complications, and treatment response assessment. In contrast, the role of bone scintigraphy in the evaluation of primary malignant bone tumors has reduced with the improvement of morphologic imaging, such as computed tomography and magnetic resonance imaging. However, an increasing role for (18)F-fluorodeoxyglucose positron emission tomography and positron emission tomography/computed tomography is emerging as a functional assessment at diagnosis, staging, and neoadjuvant treatment response assessment.
Kim, Min-Ji; Jang, Woo-Seok; Lee, In-Kyoung; Kim, Jong-Keun; Seong, Ki-Seung; Seo, Cho-Rong; Song, No-Joon; Bang, Min-Hyuk; Lee, Young Min; Kim, Haeng Ran; Park, Ki-Moon; Park, Kye Won
2014-07-01
Pathological increases in adipogenic potential with decreases in osteogenic differentiation occur in osteoporotic bone marrow cells. Previous studies have shown that bioactive materials isolated from natural products can reciprocally regulate adipogenic and osteogenic fates of bone marrow cells. In this study, we showed that Eupatorium japonicum stem extracts (EJE) suppressed lipid accumulation and inhibited the expression of adipocyte markers in multipotent C3H10T1/2 and primary bone marrow cells. Conversely, EJE stimulated alkaline phosphatase activity and induced the expression of osteoblast markers in C3H10T1/2 and primary bone marrow cells. Daily oral administration of 50 mg/kg of EJE for 6 weeks to ovariectomized rats prevented body weight increase and bone mineral density decrease. Finally, activity-guided fractionation led to the identification of coumaric acid and coumaric acid methyl ester as bioactive anti-adipogenic and pro-osteogenic components in EJE. Taken together, our data indicate a promising possibility of E. japonicum as a functional food and as a therapeutic intervention for preventing osteoporosis and bone fractures.
Bone formation in vitro and in nude mice by human osteosarcoma cells.
Ogose, A; Motoyama, T; Hotta, T; Watanabe, H; Takahashi, H E
1995-01-01
Osteosarcomas contain variable amounts of bony tissue, but the mechanism of bone formation by osteosarcoma is not well understood. While a number of cultured human osteosarcoma cell lines have been established, they are maintained by different media and differ qualitatively with regard to bone formation. We examined different media for their ability to support bone formation in vitro and found the alpha-modification of Eagle's minimal essential medium supplemented with beta glycerophosphate was best for this purpose, because it contained the proper calcium and phosphate concentrations. Subsequently, we compared seven human osteosarcoma cell lines under the same experimental conditions to clarify their ability to induce bone formation. NOS-1 cells most frequently exhibited features of bone formation in vitro and in nude mice. Collagen synthesis by tumour cells themselves seemed to be the most important factor for bone volume. However, even HuO9 cells, which lacked collagen synthesis and failed to form bone in vitro, successfully formed tumours containing bone in nude mice. Histological analysis of HuO9 cells in diffusion chambers implanted in nude mice and the findings of polymerase chain reaction indicated that the phenomenon was probably due to bone morphogenetic protein.
Padgett-Vasquez, Steve; Garris, Heath W.; Nagy, Tim R.; D'Abramo, Louis R.; Watts, Stephen A.
2010-01-01
Abstract Zebrafish (Danio rerio) skeletal bone possesses properties similar to human bone, which suggests that they may be used as a model to study mineralization characteristics of the human Haversian system, as well as human bone diseases. One prerequisite for the use of zebrafish as an alternative osteoporotic bone model is to determine whether their bone displays functional plasticity similar to that observed in other bone models. Strontium citrate was supplemented into a laboratory-prepared diet (45% crude protein) to produce dietary strontium levels of 0%, 0.63%, 1.26%, 1.89%, and 2.43% and fed ad libitum twice daily for 12 weeks to 28-day-old intact zebrafish. Length was determined at 4-week intervals, and both weight and length were recorded at 12 weeks. At 12 weeks, seven zebrafish from each dietary level were analyzed for total bone mineral density by microcomputed tomography. Dietary strontium citrate supplementation significantly (p < 0.05) increased zebrafish whole-body and spinal column bone mineral density. In addition, trace amounts of strontium were incorporated into the scale matrix in those zebrafish that consumed strontium-supplemented diets. These findings suggest that zebrafish bone displays plasticity similar to that reported for other bone models (i.e., rat, mouse, and monkey) that received supplements of strontium compounds and zebrafish should be viewed as an increasingly valuable bone model. PMID:20874492
Sagheb, Keyvan; Kumar, Vinay V; Azaripour, Adriano; Walter, Christian; Al-Nawas, Bilal; Kämmerer, Peer W
2017-02-01
The aim of this ex vivo study was to compare implant insertion procedures using piezosurgery and conventional drilling in different qualities of bone. Implant bed preparation time, generated heat, and primary implant stability were analyzed. Fresh ex vivo porcine bone block samples (cancellous, mixed, and cortical bone) were obtained. The bone quality was quantified by ultrasound transmission velocity (UTV). Each bone sample received three implants of the same diameter using each of the techniques of piezosurgery and conventional twist drills. Time for preparation was taken and the temperature while performing the osteotomy was measured using infrared spectroscopy. The primary implant stability after osteotomy was measured using resonance frequency analysis (RFA) and extrusion torque (ET). ANOVA with post hoc Tukey test was carried out to compare the values for the three different groups. The UTV values strongly correlated with the density of the bone samples. There was a significant increase in time (threefold, P < 0.05 [302 s vs. 122 s in cortical bone]) but no difference in the temperature for the piezo group (~37°C in cortical bone). Regardless of the osteotomy technique, there was a statistically significant increase in RFA and ET values in implants inserted in cancellous bone (RFA: piezo 77, drill 76; ET: piezo 22, drill 21), mixed bone (RFA: piezo 85, drill 86; ET: piezo 105, drill 61), and cortical bone (RFA: piezo 90, drill 87; ET piezo 184, drill 79) samples, respectively (P < 0.05). In between the different osteotomy groups, there was no difference in the RFA values but significant higher ET values in mixed/cortical bone samples in favor for the piezosurgery group. Piezosurgery and conventional implant bed drilling procedure do have similar mechanical outcomes regarding primary stability with high RFA values, but the preparation does need more time for piezosurgery group, so that piezosurgery might be a valuable tool in only very specific cases for implant bed preparation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2011-04-01
JP, Floyd ZE, Zvonic S , Smith A , Gravois A , Reiners E, Wu X, Kilroy G, Lefevre M , Gimble JM. Proteomic analysis of primary cultures of human adipose...In brief, in a 6-week old nu/nu mice (n=5/experiment), C4-2B cells (2 x106) were mixed with Matrigel and injected subcutaneously ( s /c), alone or...cells to TRAIL. Cell Mol Life Sci. 2010;67(8):1307-14. PMID: 20063037. 4: Matuskova M , Hlubinova K, Pastorakova A , Hunakova L, Altanerova V
The regulation and regulatory role of collagenase in bone
NASA Technical Reports Server (NTRS)
Partridge, N. C.; Walling, H. W.; Bloch, S. R.; Omura, T. H.; Chan, P. T.; Pearman, A. T.; Chou, W. Y.
1996-01-01
Interstitial collagenase plays an important role in both the normal and pathological remodeling of collagenous extracellular matrices, including skeletal tissues. The enzyme is a member of the family of matrix metalloproteinases. Only one rodent interstitial collagenase has been found but there are two human enzymes, human collagenase-1 and -3, the latter being the homologue of the rat enzyme. In developing rat and mouse bone, collagenase is expressed by hypertrophic chondrocytes, osteoblasts, and osteocytes, a situation that is replicated in a fracture callus. Cultured osteoblasts derived from neonatal rat calvariae show greater amounts of collagenase transcripts late in differentiation. These levels can be regulated by parathyroid hormone (PTH), retinoic acid, and insulin-like growth factors, as well as the degree of matrix mineralization. Much of the work on collagenase in bone has been derived from studies on the rat osteosarcoma cell line, UMR 106-01. All bone-resorbing agents stimulate these cells to produce collagenase mRNA and protein, with PTH being the most potent stimulator. Determination of secreted levels of collagenase has been difficult because UMR cells, normal rat osteoblasts, and rat fibroblasts possess a scavenger receptor that removes the enzyme from the extracellular space, internalizes and degrades it, thus imposing another level of control. PTH can also regulate the abundance of the receptor as well as the expression and synthesis of the enzyme. Regulation of the collagenase gene by PTH appears to involve the cAMP pathway as well as a primary response gene, possibly Fos, which then contributes to induction of the collagenase gene. The rat collagenase gene contains an activator protein-1 sequence that is necessary for basal expression, but other promoter regions may also participate in PTH regulation. Thus, there are many levels of regulation of collagenase in bone perhaps constraining what would otherwise be a rampant enzyme.
Beck, George R; Khazai, Natasha B; Bouloux, Gary F; Camalier, Corinne E; Lin, Yiming; Garneys, Laura M; Siqueira, Joselita; Peng, Limin; Pasquel, Francisco; Umpierrez, Denise; Smiley, Dawn; Umpierrez, Guillermo E
2013-03-01
Thiazolidinedione (TZD) therapy has been associated with an increased risk of bone fractures. Studies in rodents have led to a model in which decreased bone quality in response to TZDs is due to a competition of lineage commitment between osteoblasts (OBs) and adipocytes (ADs) for a common precursor cell, resulting in decreased OB numbers. Our goal was to investigate the effects of TZD exposure on OB-AD lineage determination from primary human bone marrow stromal cells (hBMSCs) both in vitro and in vivo from nondiabetic subjects and patients with type 2 diabetics. Our experimental design included 2 phases. Phase 1 was an in vitro study of TZD effects on the differentiation of hBMSCs into OBs and ADs in nondiabetic subjects. Phase 2 was a randomized, placebo-controlled trial to determine the effects of 6-month pioglitazone treatment in vivo on hBMSC differentiation using AD/OB colony forming unit assays in patients with type 2 diabetes. In vitro, TZDs (pioglitazone and rosiglitazone) enhanced the adipogenesis of hBMSCs, whereas neither altered OB differentiation or function as measured by alkaline phosphatase activity, gene expression, and mineralization. The ability of TZDs to enhance adipogenesis occurred at a specific time/stage of the differentiation process, and pretreating with TZDs did not further enhance adipogenesis. In vivo, 6-month TZD treatment decreased OB precursors, increased AD precursors, and increased total colony number in patients with type 2 diabetes. Our results indicate that TZD exposure in vitro potently stimulates adipogenesis but does not directly alter OB differentiation/mineralization or lineage commitment from hBMSCs. However, TZD treatment in type 2 diabetic patients results in decreased osteoblastogenesis from hBMSCs compared with placebo, indicating an indirect negative effect on OBs and suggesting an alternative model by which TZDs might negatively regulate bone quality. Copyright © 2013 Mosby, Inc. All rights reserved.
Clinical applications of cell-based approaches in alveolar bone augmentation: a systematic review.
Shanbhag, Siddharth; Shanbhag, Vivek
2015-01-01
Cell-based approaches, utilizing adult mesenchymal stem cells (MSCs), are reported to overcome the limitations of conventional bone augmentation procedures. The study aims to systematically review the available evidence on the characteristics and clinical effectiveness of cell-based ridge augmentation, socket preservation, and sinus-floor augmentation, compared to current evidence-based methods in human adult patients. MEDLINE, EMBASE, and CENTRAL databases were searched for related literature. Both observational and experimental studies reporting outcomes of "tissue engineered" or "cell-based" augmentation in ≥5 adult patients alone, or in comparison with non-cell-based (conventional) augmentation methods, were eligible for inclusion. Primary outcome was histomorphometric analysis of new bone formation. Effectiveness of cell-based augmentation was evaluated based on outcomes of controlled studies. Twenty-seven eligible studies were identified. Of these, 15 included a control group (8 randomized controlled trials [RCTs]), and were judged to be at a moderate-to-high risk of bias. Most studies reported the combined use of cultured autologous MSCs with an osteoconductive bone substitute (BS) scaffold. Iliac bone marrow and mandibular periosteum were frequently reported sources of MSCs. In vitro culture of MSCs took between 12 days and 1.5 months. A range of autogenous, allogeneic, xenogeneic, and alloplastic scaffolds was identified. Bovine bone mineral scaffold was frequently reported with favorable outcomes, while polylactic-polyglycolic acid copolymer (PLGA) scaffold resulted in graft failure in three studies. The combination of MSCs and BS resulted in outcomes similar to autogenous bone (AB) and BS. Three RCTs and one controlled trial reported significantly greater bone formation in cell-based than conventionally grafted sites after 3 to 8 months. Based on limited controlled evidence at a moderate-to-high risk of bias, cell-based approaches are comparable, if not superior, to current evidence-based bone grafting methods, with a significant advantage of avoiding AB harvesting. Future clinical trials should additionally evaluate patient-based outcomes and the time-/cost-effectiveness of these approaches. © 2013 Wiley Periodicals, Inc.
Accumulation of carboxymethyl-lysine (CML) in human cortical bone.
Thomas, Corinne J; Cleland, Timothy P; Sroga, Grazyna E; Vashishth, Deepak
2018-05-01
Advanced glycation end-products (AGEs) are a category of post translational modification associated with the degradation of the structural properties of multiple different types of tissues. Typically, AGEs are the result of a series of post-translational modification reactions between sugars and proteins through a process known as non-enzymatic glycation (NEG). Increases in the rate of NEG of bone tissue are associated with type 2 diabetes and skeletal fragility. Current methods of assessing NEG and its impact on bone fracture risk involve measurement of pentosidine or total fluorescent AGEs (fAGEs). However, pentosidine represents only a small fraction of possible fAGEs present in bone, and neither pentosidine nor total fAGE measurement accounts for non-fluorescent AGEs, which are known to form in significant amounts in skin and other collagenous tissues. Carboxymethyl-lysine (CML) is a non-fluorescent AGE that is often measured and has been shown to accumulate in tissues such as skin, heart, arteries, and intervertebral disks, but is currently not assessed in bone. Here we show the localization of CML to collagen I using mass spectrometry for the first time in human bone. We then present a new method using demineralization followed by heating and trypsin digestion to measure CML content in human bone and demonstrate that CML in bone is 40-100 times greater than pentosidine (the current most commonly used marker of AGEs in bone). We then establish the viability of CML as a measurable AGE in bone by showing that levels of CML, obtained from bone using this technique, increase with age (p<0.05) and are correlated with previously reported measures of bone toughness. Thus, CML is a viable non-fluorescent AGE target to assess AGE accumulation and fragility in bone. The method developed here to extract and measure CML from human bone could facilitate the development of a new diagnostic assay to evaluate fracture risk and potentially lead to new therapeutic approaches to address bone fragility. Copyright © 2018 Elsevier Inc. All rights reserved.
Cen, Yan-Hui; Guo, Wen-Wen; Luo, Bin; Lin, Yong-Da; Zhang, Qing-Mei; Zhou, Su-Fang; Luo, Guo-Rong; Xiao, Shao-Wen; Xie, Xiao-Xun
2012-10-01
OY-TES-1 is a member of the CTA (cancer-testis antigen) group expressed in a variety of cancer and restrictedly expressed in adult normal tissues, except for testis. To determine whether MSCs (mesenchymal stem cells) express OY-TES-1 and its possible roles on MSCs, OY-TES-1 expression in MSCs isolated from human bone marrow was tested with RT (reverse transcription)-PCR, immunocytochemistry and Western blot. Using RNAi (RNA interference) technology, OY-TES-1 expression was knocked down followed by analysing cell viability, cell cycle, apoptosis and migration ability. MSCs expressed OY-TES-1 at both mRNA and protein levels. The down-regulation of OY-TES-1 expression in these MSCs caused cell growth inhibition, cell cycle arrest, apoptosis induction and migration ability attenuation. Through these primary results it was suggested that OY-TES-1 may influence the biological behaviour of MSCs.
Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor
2016-01-01
A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938
Schwarz, Frank; Herten, Monika; Sager, Martin; Bieling, Katrin; Sculean, Anton; Becker, Jürgen
2007-04-01
The aim of the present study was to evaluate and compare naturally occuring and ligature-induced peri-implantitis bone defects in humans and dogs. Twenty-four partially and fully edentulous patients undergoing peri-implant bone augmentation procedures due to advanced peri-implant infections were included in this study (n=40 implants). Furthermore, peri-implantitis was induced by ligature placement and plaque accumulation in five beagle dogs for three months following implant insertion (n=15 implants). The ligatures were removed when about 30% of the initial bone was lost. During open flap surgery, configuration and defect characteristics of the peri-implant bone loss were recorded in both humans and dogs. Open flap surgery generally revealed two different classes of peri-implant bone defects. While Class I defects featured well-defined intrabony components, Class II defects were characterized by consistent horizontal bone loss. The allocation of intrabony components of Class I defects regarding the implant body allowed a subdivision of five different configurations (Classes Ia-e). In particular, human defects were most frequently Class Ie (55.3%), followed by Ib (15.8%), Ic (13.3%), Id (10.2%), and Ia (5.4%). Similarly, bone defects in dogs were also most frequently Class Ie (86.6%), while merely two out of 15 defects were Classes Ia and Ic (6.7%, respectively). Within the limits of the present study, it might be concluded that configurations and sizes of ligature-induced peri-implantitis bone defects in dogs seemed to resemble naturally occurring lesions in humans.
de Margerie, E; Robin, J-P; Verrier, D; Cubo, J; Groscolas, R; Castanet, J
2004-02-01
Microstructure-function relationships remain poorly understood in primary bone tissues. The relationship between bone growth rate and bone tissue type, although documented in some species by previous works, remains somewhat unclear and controversial. We assessed this relationship in a species with extreme adaptations, the king penguin (Aptenodytes patagonicus). These birds have a peculiar growth, interrupted 3 months after hatching by the austral winter. Before this interruption, chicks undergo extremely rapid statural and ponderal growth. We recorded experimentally (by means of fluorescent labelling) the growth rate of bone tissue in four long bones (humerus, radius, femur and tibiotarsus) of four king penguin chicks during their fastest phase of growth (3-5 weeks after hatching) and identified the associated bone tissue types ('laminar', 'longitudinal', 'reticular' or 'radial' fibro-lamellar bone tissue). We found the highest bone tissue growth rate known to date, up to 171 microm day(-1) (mean 55 microm day(-1)). There was a highly significant relationship between bone tissue type and growth rate (P<10(-6)). Highest rates were obtained with the radial microarchitecture of fibro-lamellar bone, where cavities in the woven network are aligned radially. This result supports the heuristic value of a relationship between growth rate and bone primary microstructure. However, we also found that growth rates of bone tissue types vary according to the long bone considered (P<10(-5)) (e.g. growth rates were 38% lower in the radius than in the other long bones), a result that puts some restriction on the applicability of absolute growth rate values (e.g. to fossil species). The biomechanical disadvantages of accelerated bone growth are discussed in relation to the locomotor behaviour of the chicks during their first month of life.
The Identification of Proteoglycans and Glycosaminoglycans in Archaeological Human Bones and Teeth
Coulson-Thomas, Yvette M.; Coulson-Thomas, Vivien J.; Norton, Andrew L.; Gesteira, Tarsis F.; Cavalheiro, Renan P.; Meneghetti, Maria Cecília Z.; Martins, João R.; Dixon, Ronald A.; Nader, Helena B.
2015-01-01
Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology. PMID:26107959
[Fluorides in the human bones – selected issues].
Palczewska-Komsa, Mirona; Kalisińska, Elżbieta; Stogiera, Anna; Szmidt, Monika
Long -term intake of luoride leads to skeletal luorosis. The toxicity of luoride, not only for the human body, but also the entire ecosystem makes it necessary to constantly monitor their content in the environment. Accordingly, there is a need to control the level of luorides (F⁻) in humans, particularly in bone tissue, which relects long -term accumulation of these compounds. The aim of the study was to determine the concentration of luoride in the human bones depending on biological factors and environmental conditions on the basis of the published literature. Given the importance of bone tissue as the main reservoir of luoride ions is an important issue to continue to monitor the concentration of F⁻ in this tissue, particularly for people living in the polluted environment luorine compounds. There are numerous works on concentrations of this element in human bones in world literature which proves the great interest in the subject. It should be underlined the need for further study of this issue for people living in different regions of Poland.
Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle
2015-03-01
Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.
Long Bone Histology and Growth Patterns in Ankylosaurs: Implications for Life History and Evolution
Stein, Martina; Hayashi, Shoji; Sander, P. Martin
2013-01-01
The ankylosaurs are one of the major dinosaur groups and are characterized by unique body armor. Previous studies on other dinosaur taxa have revealed growth patterns, life history and evolutionary mechanisms based on their long bone histology. However, to date nothing is known about long bone histology in the Ankylosauria. This study is the first description of ankylosaurian long bone histology based on several limb elements, which were sampled from different individuals from the Ankylosauridae and Nodosauridae. The histology is compared to that of other dinosaur groups, including other Thyreophora and Sauropodomorpha. Ankylosaur long bone histology is characterized by a fibrolamellar bone architecture. The bone matrix type in ankylosaurs is closest to that of Stegosaurus. A distinctive mixture of woven and parallel-fibered bone together with overall poor vascularization indicates slow growth rates compared to other dinosaurian taxa. Another peculiar characteristic of ankylosaur bone histology is the extensive remodeling in derived North American taxa. In contrast to other taxa, ankylosaurs substitute large amounts of their primary tissue early in ontogeny. This anomaly may be linked to the late ossification of the ankylosaurian body armor. Metabolically driven remodeling processes must have liberated calcium to ossify the protective osteodermal structures in juveniles to subadult stages, which led to further remodeling due to increased mechanical loading. Abundant structural fibers observed in the primary bone and even in remodeled bone may have improved the mechanical properties of the Haversian bone. PMID:23894321
Esteve-Altava, Borja; Rasskin-Gutman, Diego
2014-09-01
Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. © 2014 Anatomical Society.
Kurek, Kyle; Del Mare, Sara; Salah, Zaidoun; Abdeen, Suhaib; Sadiq, Hussain; Lee, Sukhee; Gaudio, Eugenio; Zanesi, Nicola; Jones, Kevin B.; DeYoung, Barry; Amir, Gail; Gebhardt, Mark; Warman, Matthew; Stein, Gary S.; Stein, Janet L.; Lian, Jane B.; Aqeilan, Rami I.
2011-01-01
The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma (OS), an aggressive bone tumor with poor prognosis that often metastasizes to lung. On the basis of these observations, we examined the status of WWOX in human OS specimens and cell lines. In human OS clinical samples, WWOX expression was absent or reduced in 58% of tumors examined (P< 0.0001). Compared to the primary tumors, WWOX levels frequently increased in tumors resected following chemotherapy. In contrast, tumor metastases to lung often exhibited reduced WWOX levels, relative to the primary tumor. In human OS cell lines having reduced WWOX expression, ectopic expression of WWOX inhibited proliferation and attenuated invasion in vitro, and suppressed tumorgenicity in nude mice. Expression of WWOX was associated with reduced RUNX2 expression in OS cell lines, whereas Runx2 levels were elevated in femurs of Wwox-deficient mice. Furthermore, WWOX reconstitution in HOS cells was associated with downregulation of RUNX2 levels and RUNX2 target genes, consistent with the ability of WWOX to suppress RUNX2 transactivation activity. In clinical samples, RUNX2 was expressed in the majority of primary tumors and undetectable in most tumors resected following chemotherapy, whereas most metastases were RUNX2 positive. Our results deepen the evidence of a tumor suppressor role for WWOX in OS, furthering its prognostic and therapeutic significance in this disease. PMID:20530675
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
... shaft smoother, 2 shaft smoother fragments, 1 antler awl fragment, 3 bone awl fragments, 1 bone shaft wrench, 1 bone tube, 17 worked antlers, 10 burned antlers, 1 deer jaw, 19 worked bones, 1 cut bone, 1 burned bone fragment, 1 notched bone, 2 decorated bones, 3 bone strips, 52 miscellaneous non-human bones...
21 CFR 892.1180 - Bone sonometer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... device that transmits ultrasound energy into the human body to measure acoustic properties of bone that... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone sonometer. 892.1180 Section 892.1180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES...
21 CFR 892.1180 - Bone sonometer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... device that transmits ultrasound energy into the human body to measure acoustic properties of bone that... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone sonometer. 892.1180 Section 892.1180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES...
Comparative Aspects of Osteosarcoma Pathogenesis in Humans and Dogs
Fan, Timothy M.; Khanna, Chand
2015-01-01
Osteosarcoma (OS) is a primary and aggressive bone sarcoma affecting the skeleton of two principal species, human beings and canines. The biologic behavior of OS is conserved between people and dogs, and evidence suggests that fundamental discoveries in OS biology can be facilitated through detailed and comparative studies. In particular, the relative genetic homogeneity associated with specific dog breeds can provide opportunities to facilitate the discovery of key genetic drivers involved in OS pathogenesis, which, to-date, remain elusive. In this review, known causative factors that predispose to the development OS in human beings and dogs are summarized in detail. Based upon the commonalities shared in OS pathogenesis, it is likely that foundational discoveries in one species will be translationally relevant to the other and emphasizes the unique opportunities that might be gained through comparative scientific approaches. PMID:29061942
Montgomery, Scott R.; Nargizyan, Taya; Meliton, Vicente; Nachtergaele, Sigrid; Rohatgi, Rajat; Stappenbeck, Frank; Jung, Michael E.; Johnson, Jared S.; Aghdasi, Bayan; Tian, Haijun; Weintraub, Gil; Inoue, Hirokazu; Atti, Elisa; Tetradis, Sotirios; Pereira, Renata C; Hokugo, Akishige; Alobaidaan, Raed; Tan, Yanlin; Hahn, Theodor J.; Wang, Jeffrey C; Parhami, Farhad
2015-01-01
Osteogenic factors are often used in orthopedics to promote bone growth, improve fracture healing, and induce spine fusion. Osteogenic oxysterols are naturally occurring molecules that were shown to induce osteogenic differentiation in vitro and promote spine fusion in vivo. The purpose of this study was to identify an osteogenic oxysterol more suitable for clinical development than those previously reported, and evaluate its ability to promote osteogenesis in vitro and spine fusion in rats in vivo. Among more than 100 oxysterol analogues synthesized, Oxy133 induced significant expression of osteogenic markers Runx2, osterix (OSX), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN) in C3H10T1/2 mouse embryonic fibroblasts and in M2-10B4 mouse marrow stromal cells. Oxy133-induced activation of an 8×-Gli luciferase reporter, its direct binding to Smoothened, and the inhibition of Oxy133-induced osteogenic effects by the Hedgehog (Hh) pathway inhibitor, cyclopamine, demonstrated the role of Hh pathway in mediating osteogenic responses to Oxy133. Oxy133 did not stimulate osteogenesis via BMP or Wnt signaling. Oxy133 induced the expression of OSX, BSP, and OCN and stimulated robust mineralization in primary human mesenchymal stem cells. In vivo, bilateral spine fusion occurred through endochondral ossification and was observed in animals treated with Oxy133 at the fusion site on xray after 4 weeks and confirmed with manual assessment, micro CT (μCT), and histology after 8 weeks, with equal efficiency to recombinant human bone morphogenetic protein-2 (rhBMP-2). Unlike rhBMP-2, Oxy133 did not induce adipogenesis in the fusion mass and resulted in denser bone evidenced by greater BV/TV ratio and smaller trabecular separation. Findings here suggest that Oxy133 has significant potential as an osteogenic molecule with greater ease of synthesis and improved time to fusion compared to previously studied oxysterols. Small molecule osteogenic oxysterols may serve as the next generation of bone anabolic agents for therapeutic development. PMID:24591126
Werner-Klein, Melanie; Proske, Judith; Werno, Christian; Schneider, Katharina; Hofmann, Hans-Stefan; Rack, Brigitte; Buchholz, Stefan; Ganzer, Roman; Blana, Andreas; Seelbach-Göbel, Birgit; Nitsche, Ulrich
2014-01-01
Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs) from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null) (NSG) and HLA-I expressing NSG mice (NSG-HLA-A2/HHD) comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses. PMID:24830425
The Nell-1 Growth Factor Stimulates Bone Formation by Purified Human Perivascular Cells
Zhang, Xinli; Péault, Bruno; Chen, Weiwei; Li, Weiming; Corselli, Mirko; James, Aaron W.; Lee, Min; Siu, Ronald K.; Shen, Pang; Zheng, Zhong; Shen, Jia; Kwak, Jinny; Zara, Janette N.; Chen, Feng; Zhang, Hong; Yin, Zack; Wu, Ben; Ting, Kang
2011-01-01
The search for novel sources of stem cells other than bone marrow mesenchymal stem cells (MSCs) for bone regeneration and repair has been a critical endeavor. We previously established an effective protocol to homogeneously purify human pericytes from multiple fetal and adult tissues, including adipose, bone marrow, skeletal muscle, and pancreas, and identified pericytes as a primitive origin of human MSCs. In the present study, we further characterized the osteogenic potential of purified human pericytes combined with a novel osteoinductive growth factor, Nell-1. Purified pericytes grown on either standard culture ware or human cancellous bone chip (hCBC) scaffolds exhibited robust osteogenic differentiation in vitro. Using a nude mouse muscle pouch model, pericytes formed significant new bone in vivo as compared to scaffold alone (hCBC). Moreover, Nell-1 significantly increased pericyte osteogenic differentiation, both in vitro and in vivo. Interestingly, Nell-1 significantly induced pericyte proliferation and was observed to have pro-angiogenic effects, both in vitro and in vivo. These studies suggest that pericytes are a potential new cell source for future efforts in skeletal regenerative medicine, and that Nell-1 is a candidate growth factor able to induce pericyte osteogenic differentiation. PMID:21615216
Anatomical study of the pigs temporal bone by microdissection.
Garcia, Leandro de Borborema; Andrade, José Santos Cruz de; Testa, José Ricardo Gurgel
2014-01-01
Initial study of the pig`s temporal bone anatomy in order to enable a new experimental model in ear surgery. Dissection of five temporal bones of Sus scrofa pigs obtained from UNIFESP - Surgical Skills Laboratory, removed with hole saw to avoid any injury and stored in formaldehyde 10% for better conservation. The microdissection in all five temporal bone had the following steps: inspection of the outer part, external canal and tympanic membrane microscopy, mastoidectomy, removal of external ear canal and tympanic membrane, inspection of ossicular chain and middle ear. Anatomically it is located at the same position than in humans. Some landmarks usually found in humans are missing. The tympanic membrane of the pig showed to be very similar to the human, separating the external and the middle ear. The middle ear`s appearance is very similar than in humans. The ossicular chain is almost exactly the same, as well as the facial nerve, showing the same relationship with the lateral semicircular canal. The temporal bone of the pigs can be used as an alternative for training in ear surgery, especially due the facility to find it and its similarity with temporal bone of the humans.
2004-04-15
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
2004-04-15
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
Rollín, R; Alvarez-Lafuente, R; Marco, F; Jover, J A; Hernández-García, C; Rodríguez-Navas, C; López-Durán, L; Fernández-Gutiérrez, B
2007-04-01
To investigate whether there is a possible viral transmission using mesenchymal stem cells (MSCs) in autologous or allogeneic transplantation in the context of osteoarthritis (OA) patients. The presence of parvovirus B19 (B19), varicella zoster virus (VZV), and human herpesvirus-6 (HHV-6) was studied in MSCs from bone marrow of patients with OA and healthy controls. MSCs were prepared from bone marrow aspirates obtained from 18 patients undergoing joint replacement as a result of OA and from 10 healthy controls. DNA was extracted from primary MSCs' culture established from these cells and quantitative real-time polymerase chain reaction was performed to analyse the prevalence and viral load of B19, VZV and HHV-6. The prevalence of total viral DNA among patients with OA was 16.7% (3/18), with a mean viral load of 29.7 copies/microg of DNA. One out of 18 was positive for B19 (viral load, 61.2 copies/microg of DNA), two for VZV (mean viral load, 14.4 copies/microg of DNA), and none for HHV-6. The prevalence of total viral DNA in the control group was 20% (2/10), with a mean viral load of 13.4 copies/microg of DNA. Both positive results were of B19 parvoviruses. There were no statistically significant differences among patients and controls. This first approach to the viral prevalence in MSCs of bone marrow in OA patients and healthy controls seems to show a very low risk of viral transmission or reactivation in a possible MSCs' transplantation.
Foot-ankle complex injury risk curves using calcaneus bone mineral density data.
Yoganandan, Narayan; Chirvi, Sajal; Voo, Liming; DeVogel, Nicholas; Pintar, Frank A; Banerjee, Anjishnu
2017-08-01
Biomechanical data from post mortem human subject (PMHS) experiments are used to derive human injury probability curves and develop injury criteria. This process has been used in previous and current automotive crashworthiness studies, Federal safety standards, and dummy design and development. Human bone strength decreases as the individuals reach their elderly age. Injury risk curves using the primary predictor variable (e.g., force) should therefore account for such strength reduction when the test data are collected from PMHS specimens of different ages (age at the time of death). This demographic variable is meant to be a surrogate for fracture, often representing bone strength as other parameters have not been routinely gathered in previous experiments. However, bone mineral densities (BMD) can be gathered from tested specimens (presented in this manuscript). The objective of this study is to investigate different approaches of accounting for BMD in the development of human injury risk curves. Using simulated underbody blast (UBB) loading experiments conducted with the PMHS lower leg-foot-ankle complexes, a comparison is made between the two methods: treating BMD as a covariate and pre-scaling test data based on BMD. Twelve PMHS lower leg-foot-ankle specimens were subjected to UBB loads. Calcaneus BMD was obtained from quantitative computed tomography (QCT) images. Fracture forces were recorded using a load cell. They were treated as uncensored data in the survival analysis model which used the Weibull distribution in both methods. The width of the normalized confidence interval (NCIS) was obtained using the mean and ± 95% confidence limit curves. The mean peak forces of 3.9kN and 8.6kN were associated with the 5% and 50% probability of injury for the covariate method of deriving the risk curve for the reference age of 45 years. The mean forces of 5.4 kN and 9.2kN were associated with the 5% and 50% probability of injury for the pre-scaled method. The NCIS magnitudes were greater in the covariate-based risk curves (0.52-1.00) than in the risk curves based on the pre-scaled method (0.24-0.66). The pre-scaling method resulted in a generally greater injury force and a tighter injury risk curve confidence interval. Although not directly applicable to the foot-ankle fractures, when compared with the use of spine BMD from QCT scans to pre-scale the force, the calcaneus BMD scaled data produced greater force at the same risk level in general. Pre-scaling the force data using BMD is an alternate, and likely a more accurate, method instead of using covariate to account for the age-related bone strength change in deriving risk curves from biomechanical experiments using PMHS. Because of the proximity of the calcaneus bone to the impacting load, it is suggested to use and determine the BMD of the foot-ankle bone in future UBB and other loading conditions to derive human injury probability curves for the foot-ankle complex. Copyright © 2017. Published by Elsevier Ltd.
Insulin resistance and bone: a biological partnership.
Conte, Caterina; Epstein, Solomon; Napoli, Nicola
2018-04-01
Despite a clear association between type 2 diabetes (T2D) and fracture risk, the pathogenesis of bone fragility in T2D has not been clearly elucidated. Insulin resistance is the primary defect in T2D. Insulin signalling regulates both bone formation and bone resorption, but whether insulin resistance can affect bone has not been established. On the other hand, evidence exists that bone might play a role in the regulation of glucose metabolism. This article reviews the available experimental and clinical evidence on the interplay between bone and insulin resistance. Interestingly, a bilateral relationship between bone and insulin resistance seems to exist that unites them in a biological partnership.
Diabetes mellitus related bone metabolism and periodontal disease
Wu, Ying-Ying; Xiao, E; Graves, Dana T
2015-01-01
Diabetes mellitus and periodontal disease are chronic diseases affecting a large number of populations worldwide. Changed bone metabolism is one of the important long-term complications associated with diabetes mellitus. Alveolar bone loss is one of the main outcomes of periodontitis, and diabetes is among the primary risk factors for periodontal disease. In this review, we summarise the adverse effects of diabetes on the periodontium in periodontitis subjects, focusing on alveolar bone loss. Bone remodelling begins with osteoclasts resorbing bone, followed by new bone formation by osteoblasts in the resorption lacunae. Therefore, we discuss the potential mechanism of diabetes-enhanced bone loss in relation to osteoblasts and osteoclasts. PMID:25857702
Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases.
Ke, Hua Zhu; Richards, William G; Li, Xiaodong; Ominsky, Michael S
2012-10-01
The processes of bone growth, modeling, and remodeling determine the structure, mass, and biomechanical properties of the skeleton. Dysregulated bone resorption or bone formation may lead to metabolic bone diseases. The Wnt pathway plays an important role in bone formation and regeneration, and expression of two Wnt pathway inhibitors, sclerostin and Dickkopf-1 (DKK1), appears to be associated with changes in bone mass. Inactivation of sclerostin leads to substantially increased bone mass in humans and in genetically manipulated animals. Studies in various animal models of bone disease have shown that inhibition of sclerostin using a monoclonal antibody (Scl-Ab) increases bone formation, density, and strength. Additional studies show that Scl-Ab improves bone healing in models of bone repair. Inhibition of DKK1 by monoclonal antibody (DKK1-Ab) stimulates bone formation in younger animals and to a lesser extent in adult animals and enhances fracture healing. Thus, sclerostin and DKK1 are emerging as the leading new targets for anabolic therapies to treat bone diseases such as osteoporosis and for bone repair. Clinical trials are ongoing to evaluate the effects of Scl-Ab and DKK1-Ab in humans for the treatment of bone loss and for bone repair.
Bone mineral density before and after OLT: long-term follow-up and predictive factors.
Guichelaar, Maureen M J; Kendall, Rebecca; Malinchoc, Michael; Hay, J Eileen
2006-09-01
Fracturing after liver transplantation (OLT) occurs due to the combination of preexisting low bone mineral density (BMD) and early posttransplant bone loss, the risk factors for which are poorly defined. The prevalence and predictive factors for hepatic osteopenia and osteoporosis, posttransplant bone loss, and subsequent bone gain were studied by the long-term posttransplant follow-up of 360 consecutive adult patients with end-stage primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Only 20% of patients with advanced PBC or PSC have normal bone mass. Risk factors for low spinal BMD are low body mass index, older age, postmenopausal status, muscle wasting, high alkaline phosphatase and low serum albumin. A high rate of spinal bone loss occurred in the first 4 posttransplant months (annual rate of 16%) especially in those with younger age, PSC, higher pretransplant bone density, no inflammatory bowel disease, shorter duration of liver disease, current smoking, and ongoing cholestasis at 4 months. Factors favoring spinal bone gain from 4 to 24 months after transplantation were lower baseline and/or 4-month bone density, premenopausal status, lower cumulative glucocorticoids, no ongoing cholestasis, and higher levels of vitamin D and parathyroid hormone. Bone mass therefore improves most in patients with lowest pretransplant BMD who undergo successful transplantation with normal hepatic function and improved gonadal and nutritional status. Patients transplanted most recently have improved bone mass before OLT, and although bone loss still occurs early after OLT, these patients also have a greater recovery in BMD over the years following OLT.
[Encounter of cancer cells with bone. Histological examination of bone metastasis].
Kanda, Hiroaki
2011-03-01
Management of the cancer bone metastasis is important clinical problem. The mechanism (s) of bone metastasis has been studied mainly by animal models and in vitro system. There might be discrepancy between model systems and in vivo human clinical materials. But there is surprisingly rare study of histological examination of human skeletal metastasis, since it is hard to obtain human materials without modification by chemotherapy or irradiation. There are many surgical materials suitable for this examination in our hospital and we have been examined histological features of them. Stromal cells between metastatic cancer cells and OCs (osteoclasts) and÷or OBs (osteoblasts) might play a role in bone metastasis, since these cells are frequently accompanied with OCs÷OBs. We called these stromal cells as "fibroblast-like cells" and examined their nature and roles in bone metastasis. We hope these fibroblast-like cells might become the target of anti bone metastasis therapy, same as osteoclasts targeted by bisphosphonates.
Finos, L; Righi, A; Frisoni, T; Gambarotti, M; Ghinelli, C; Benini, S; Vanel, D; Picci, P
2017-05-01
Extraskeletal myxoid chondrosarcoma is a rare neoplasm of soft tissue. The usual location is in deep parts of the proximal extremities and limb girdles in middle-aged adults. The bone location as primary location is extremely rare and few cases are reported. We present three cases arising in bone with molecular confirmation using both RT-PCR and FISH analysis. Patients include two men and one woman with an age of 62, 69 and 73 years old. The mean size of the lesion was 13cm (range 8-18cm). Tumors arose in the iliac bone in two cases and in the proximal humerus in the other case. At time of diagnosis the three cases show bone cortex and soft tissue involvement. On imaging, lesions have a lobular pattern, are purely lytic, but take up contrast medium after injection. Two patients are alive with disease (local recurrence and lung metastasis) after five years and five years and six months, respectively and one patient died of disease two years after the diagnosis. The primary extraskeletal myxoid chondrosarcoma of bone seems to have a more aggressive behavior than the soft tissue counterpart. The molecular confirmation of diagnosis using RT-PCR is necessary to do the differential diagnosis with other entities, in particular with myoepithelioma that shows similar morphological features and EWSR1 and FUS genes rearrangement. Copyright © 2017 Elsevier GmbH. All rights reserved.
Nordenström, Erik; Westerdahl, Johan; Bergenfelz, Anders
2009-05-01
Primary hyperparathyroidism (pHPT) is associated with decreased bone density and increased fracture risk. A significant number of pHPT patients have low calcium intake and suffer from vitamin deficiency. Thus, we adopted a policy of postoperative supplements with calcium and vitamin D after parathyroid surgery. In this study, we investigated if this policy enhanced the postoperative increase in bone density. Forty-two consecutive patients (83% female) were studied. The first 21 patients received no supplements, whereas the following 21 patients received 1,000 g calcium and 800 IU hydroxy D: -vitamin daily (Ca-D group) for 1 year postoperatively. The patients were monitored with bone density and biochemistry pre- and at 1 year postoperatively. Preoperatively, the patients without vitamin D supplementation (non-Ca-D group) did neither differ in biochemistry, clinical features, nor in bone density from patients in Ca-D group. Postoperatively, there was a tendency that patients in Ca-D group increased their bone density, at all sites measured, in a greater extent than patients that did not receive calcium and vitamin D supplementation. In conclusion, based on our results, it is difficult to give a recommendation of vitamin D supplementation in routine use following surgery for primary hyperparathyroidism. Based on the present data, a calculation of sample size for a future randomized controlled trial is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim
Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulatedmore » with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic acid inhibited RANKL-induced osteoclastogenesis in bone marrow macrophages. • Betulinic acid decreased bone resorption by suppressing osteoclast activity. • Orally administered betulinic acid inhibited cancer-associated bone diseases in mice.« less
Fewtrell, Mary S; Williams, Jane E; Singhal, Atul; Murgatroyd, Peter R; Fuller, Nigel; Lucas, Alan
2009-07-01
Preterm infants are at risk of metabolic bone disease due to inadequate mineral intake with unknown consequences for later bone health. To test the hypotheses that (1) early diet programs peak bone mass and bone turnover; (2) human milk has a beneficial effect on these outcomes; (3) preterm subjects have reduced peak bone mass compared to population reference data. 20 year follow-up of 202 subjects (43% male; 24% of survivors) who were born preterm and randomized to: (i) preterm formula versus banked breast milk or (ii) preterm versus term formula; as sole diet or supplement to maternal milk. Outcome measures were (i) anthropometry; (ii) hip, lumbar spine (LS) and whole body (WB) bone mineral content (BMC) and bone area (BA) measured using DXA; (iii) bone turnover markers. Infant dietary randomization group did not influence peak bone mass or turnover. The proportion of human milk in the diet was significantly positively associated with WBBA and BMC. Subjects receiving >90% human milk had significantly higher WBBA (by 3.5%, p=0.01) and BMC (by 4.8%, p=0.03) than those receiving <10%. Compared to population data, subjects had significantly lower height SDS (-0.41 (SD 1.05)), higher BMI SDS (0.31 (1.33)) and lower LSBMD SDS (-0.29 (1.16)); height and bone mass deficits were greatest in those born SGA with birthweight <1250 g (height SDS -0.81 (0.95), LSBMD SDS -0.61 (1.3)). Infant dietary randomization group did not affect peak bone mass or turnover suggesting the observed reduced final height and LS bone mass, most marked in growth restricted subjects with the lowest birthweight, may not be related to sub-optimal early nutrition. The higher WB bone mass associated with human milk intake, despite its low nutrient content, may reflect non-nutritive factors in breast milk. These findings may have implications for later osteoporosis risk and require further investigation.
Barger, Anne M
2017-01-01
Cytology of bone is a useful diagnostic tool. Aspiration of lytic or proliferative lesions can assist with the diagnosis of inflammatory or neoplastic processes. Bacterial, fungal, and protozoal organisms can result in significant osteomyelitis, and these organisms can be identified on cytology. Neoplasms of bone including primary bone tumors such as osteosarcoma, chondrosarcoma, fibrosarcoma, synovial cell sarcoma, and histiocytic sarcoma and tumors of bone marrow including plasma cell neoplasia and lymphoma and metastatic neoplasia can result in significant bone lysis or proliferation and can be diagnosed effectively with cytology. Copyright © 2016 Elsevier Inc. All rights reserved.
Osteonic organization of limb bones in mammals, including humans, and birds: a preliminary study.
Castrogiovanni, Paola; Imbesi, Rosa; Fisichella, Marco; Mazzone, Venera
2011-01-01
As it is well known, bone tissue is characterized by a calcified extracellular matrix which makes this tissue suitable to support the body and protect the inner organs. Lamellar bone tissue is organized in lamellae, 3-7 microm in thickness, and arranged concentrically around vascular channels: the basic structure in this type of organization is called Haversian system or osteon and the diameter of osteons depends on the number of lamellae. Shape and regional density of osteons are related to the bone segment and the specific functional requirements to meet. Aim of this study is to correlate the compact bone tissue microstructure in various classes of mammals, including humans, and birds in order to find an adequate identification key. The results of our study show that in bone tissue samples from various classes of mammals, including humans, and birds the osteonic structure shows peculiar features, often depending on the rate of bone remodelling, different in different animal species. We conclude that a careful microscopic analysis of bone tissue and the characterization of distinctive osteonic features could give a major contribution to forensic medicine to obtain a more reliable recognition of bone findings.
Altered bone turnover during spaceflight
NASA Technical Reports Server (NTRS)
Turner, R. T.; Morey, E. R.; Liu, C.; Baylink, D. J.
1982-01-01
Modifications in calcium metabolism during spaceflight were studied, using parameters that reflect bone turnover. Bone formation rate, medullary area, bone length, bone density, pore size distribution, and differential bone cell number were evaluated in growing rate both immediately after and 25 days after orbital spaceflights aboard the Soviet biological satellites Cosmos 782 and 936. The primary effect of space flight on bone turnover was a reversible inhibition of bone formation at the periosteal surface. A simultaneous increase in the length of the periosteal arrest line suggests that bone formation ceased along corresponding portions of that surface. Possible reasons include increased secretion of glucocorticoids and mechanical unloading of the skeleton due to near-weightlessness, while starvation and immobilization are excluded as causes.
What is the impact of immunosuppressive treatment on the post-transplant renal osteopathy?
Blaslov, Kristina; Katalinic, Lea; Kes, Petar; Spasovski, Goce; Smalcelj, Ruzica; Basic-Jukic, Nikolina
2014-05-01
Although glucocorticoid therapy is considered to be the main pathogenic factor, a consistent body of evidence suggests that other immunosuppressants might also play an important role in the development of the post-transplant renal osteopathy (PRO) through their pleiotropic pharmacological effects. Glucocorticoids seem to induce osteoclasts' activity suppressing the osteoblasts while data regarding other immunosuppressive drugs are still controversial. Mycophenolate mofetil and azathioprine appear to be neutral regarding the bone metabolism. However, the study analyzing any independent effect of antimetabolites on bone turnover has not been conducted yet. Calcineurin inhibitors (CNIs) induce trabecular bone loss in rodent, with contradictory results in renal transplant recipients. Suppression of vitamin D receptor is probably the underlying mechanism of renal calcium wasting in renal transplant recipients receiving CNI. In spite of an increased 1,25(OH)2 vitamin D level, the kidney is not able to reserve calcium, suggesting a role of vitamin D resistance that may be related to bone loss. More efforts should be invested to determine the role of CNI in PRO. In particular, data regarding the role of mammalian target of rapamycin inhibitors (mTORi), such as sirolimus and everolimus, in the PRO development are still controversial. Rapamycin markedly decreases bone longitudinal growth as well as callus formation in experimental models, but also lowers the rate of bone resorption markers and glomerular filtration in clinical studies. Everolimus potently inhibits primary mouse and human osteoclast activity as well as the osteoclast differentiation. It also prevents the ovariectomy-induced loss of cancellous bone by 60 %, an effect predominantly associated with a decreased osteoclast-mediated bone resorption, resulting in a partial preservation of the cancellous bone. At present, there is no clinical study analyzing the effect of everolimus on bone turnover in renal transplant recipients or comparing sirolimus versus everolimus impact on bone, so only general conclusions could be drawn. Hence, the use of mTORi might be useful in patients with PRO due to their possible potential to inhibit osteoclast activity which might lead to a decreased rate of bone resorption. In addition, it should be also emphasized that they might inhibit osteoblast activity which may lead to a decreased bone formation and adynamic bone disease. Further studies are urgently needed to solve these important clinical dilemmas.
Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M; Yang, Jun; Starbuck, Michael W; Ravoori, Murali K; Kundra, Vikas; Vazquez, Elba; Navone, Nora M
2012-03-01
Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with X-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1-induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p<0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor-bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa growth in bone. Thus, targeting TGF-β receptor I is a valuable intervention in men with advanced PCa. Copyright © 2011 Elsevier Inc. All rights reserved.
Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M.; Yang, Jun; Starbuck, Michael W.; Ravoori, Murali K.; Kundra, Vikas; Vazquez, Elba; Navone, Nora M.
2012-01-01
Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with x-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1–induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6 weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p < 0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor–bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa growth in bone. Thus, targeting TGF-β receptor I is a valuable intervention in men with advanced PCa. PMID:22173053
Reznikov, Natalie; Shahar, Ron; Weiner, Steve
2014-02-01
Lamellar bone is the most common bone type in humans. The predominant components of individual lamellae are plywood-like arrays of mineralized collagen fibrils aligned in different directions. Using a dual-beam electron microscope and the Serial Surface View (SSV) method we previously identified a small, but significantly different layer in rat lamellar bone, namely a disordered layer with collagen fibrils showing little or no preferred orientation. Here we present a 3D structural analysis of 12 SSV volumes (25 complete lamellae) from femora of 3 differently aged human individuals. We identify the ordered and disordered motifs in human bone as in the rat, with several significant differences. The ordered motif shows two major preferred orientations, perpendicular to the long axis of the bone, and aligned within 10-20° of the long axis, as well as fanning arrays. At a higher organizational level, arrays of ordered collagen fibrils are organized into 'rods' around 2 to 3μm in diameter, and the long axes of these 'rods' are parallel to the lamellar boundaries. Human bone also contains a disordered component that envelopes the rods and fills in the spaces between them. The disordered motif is especially well-defined between adjacent layers of rods. The disordered motif and its interfibrillar substance stain heavily with osmium tetroxide and Alcian blue indicating the presence of another organic component in addition to collagen. The canalicular network is confined to the disordered material, along with voids and individual collagen fibrils, some of which are also aligned more or less perpendicular to the lamellar boundaries. The organization of the ordered fibril arrays into rods enveloped in the continuous disordered structure was not observed in rat lamellar bone. We thus conclude that human lamellar bone is comprised of two distinct materials, an ordered material and a disordered material, and contains an additional hierarchical level of organization composed of arrays of ordered collagen fibrils, referred to as rods. This new structural information on human lamellar bone will improve our understanding of structure-mechanical function relations, mechanisms of mechano-sensing and the characterizations of bone pathologies. Copyright © 2013 Elsevier Inc. All rights reserved.
Vitamin D receptor-mediated control of Soggy, Wise, and Hairless gene expression in keratinocytes.
Hsieh, Jui-Cheng; Estess, Rudolf C; Kaneko, Ichiro; Whitfield, G Kerr; Jurutka, Peter W; Haussler, Mark R
2014-02-01
The vitamin D receptor (VDR), but not its hormonal ligand, 1,25-dihydroxyvitamin D3 (1,25D), is required for the progression of the mammalian hair cycle. We studied three genes relevant to hair cycle signaling, DKKL1 (Soggy), SOSTDC1 (Wise), and HR (Hairless), to determine whether their expression is regulated by VDR and/or its 1,25D ligand. DKKL1 mRNA was repressed 49-72% by 1,25D in primary human and CCD-1106 KERTr keratinocytes; a functional vitamin D responsive element (VDRE) was identified at -9590 bp in murine Soggy. Similarly, SOSTDC1 mRNA was repressed 41-59% by 1,25D in KERTr and primary human keratinocytes; a functional VDRE was located at -6215 bp in human Wise. In contrast, HR mRNA was upregulated 1.56- to 2.77-fold by 1,25D in primary human and KERTr keratinocytes; a VDRE (TGGTGAgtgAGGACA) consisting of an imperfect direct repeat separated by three nucleotides (DR3) was identified at -7269 bp in the human Hairless gene that mediated dramatic induction, even in the absence of 1,25D ligand. In parallel, a DR4 thyroid hormone responsive element, TGGTGAggccAGGACA, was identified at +1304 bp in the human HR gene that conferred tri-iodothyronine (T3)-independent transcriptional activation. Because the thyroid hormone receptor controls HR expression in the CNS, whereas VDR functions in concert with the HR corepressor specifically in skin, a model is proposed wherein unliganded VDR upregulates the expression of HR, the gene product of which acts as a downstream comodulator to feedback-repress DKKL1 and SOSTDC1, resulting in integration of bone morphogenic protein and Wnt signaling to drive the mammalian hair cycle and/or influencing epidermal function.
Directing adult human periodontal ligament-derived stem cells to retinal fate.
Huang, Li; Liang, Jiajian; Geng, Yiqun; Tsang, Wai-Ming; Yao, Xiaowu; Jhanji, Vishal; Zhang, Mingzhi; Cheung, Herman S; Pang, Chi Pui; Yam, Gary Hin-Fai
2013-06-06
To investigate the retinal fate competence of human postnatal periodontal ligament (PDL)-derived stem cells (PDLSC) through a directed differentiation mimicking mammalian retinogenesis. Human teeth were collected from healthy subjects younger than 35 years old. Primary PDLSC were isolated by collagenase digestion and cultivated. PDLSC at passage 3 were cultured in the induction media containing Noggin (antagonist of bone morphogenic protein) and Dkk-1 (antagonist of Wnt/β-catenin signaling). Gene expression of neural crest cells, retinal progenitors, and retinal neurons, including photoreceptors, was revealed by RNA analyses, immunofluorescence, and flow cytometry. The neuronal-like property of differentiated cells in response to excitatory glutamate was examined by fluo-4-acetoxymethyl calcium imaging assay. Primary human PDLSC stably expressed marker genes for neural crest (Notch1, BMP2, Slug, Snail, nestin, and Tuj1), mesenchymal stem cell (CD44, CD90, and vimentin), and embryonic stem cell (c-Myc, Klf4, Nanog, and SSEA4). Under low attachment culture, PDLSC generated neurospheres expressing nestin, p75/NGFR, Pax6, and Tuj1 (markers of neural progenitors). When neurospheres were plated on Matrigel-coated surface, they exhibited rosette-like outgrowth. They expressed eye field transcription factors (Pax6, Rx, Lhx, Otx2). By flow cytometry, 94% of cells were Pax6(nuclear)Rx(+), indicative of retinal progenitors. At prolonged induction, they expressed photoreceptor markers (Nrl, rhodopsin and its kinase) and showed significant responsiveness to excitatory glutamate. Primary human PDLSC could be directed to retinal progenitors with competence for photoreceptor differentiation. Human neural crest-derived PDL is readily accessible and can be an ample autologous source of undifferentiated cells for retinal cell regeneration.
Bone Factors Regulating the Osteotropism of Metastatic Breast Cancer
1998-10-01
growth factors and rapid angiogenesis occurs in the immediate vicinity of an active osteoclast. 4,5 Osteoblast-derived bone sialoprotein (BSP...Cells Antigenic Marker Cells Cultured Alone Cells Co-Cultured (2d) MCF-7 MC3T3 MCF-7 MC3T3 human cytokeratin-+ -1 bone sialoprotein (BSP...proteins. Osteonectin, osteopontin and bone sialoprotein have been studied in a series of human breast cancers. 3,15-3 0 Immunohistochemical evaluation
Deletion of Mecom in mouse results in early-onset spinal deformity and osteopenia.
Juneja, Subhash C; Vonica, Alin; Zeiss, Caroline; Lezon-Geyda, Kimberly; Yatsula, Bogdan; Sell, David R; Monnier, Vincent M; Lin, Sharon; Ardito, Thomas; Eyre, David; Reynolds, David; Yao, Zhenqiang; Awad, Hani A; Yu, Hongbo; Wilson, Michael; Honnons, Sylvie; Boyce, Brendan F; Xing, Lianping; Zhang, Yi; Perkins, Archibald S
2014-03-01
Recent studies have indicated a role for a MECOM allele in susceptibility to osteoporotic fractures in humans. We have generated a mutation in Mecom in mouse (termed ME(m1)) via lacZ knock-in into the upstream transcription start site for the gene, resulting in disruption of Mds1 and Mds1-Evi1 transcripts, but not of Evi1 transcripts. We demonstrate that ME(m1/m1) mice have severe kyphoscoliosis that is reminiscent of human congenital or primary kyphoscoliosis. ME(m1/m1) mice appear normal at birth, but by 2weeks, they exhibit a slight lumbar lordosis and narrowed intervertebral space. This progresses to severe lordosis with disc collapse and synostosis, together with kyphoscoliosis. Bone formation and strength testing show that ME(m1/m1) mice have normal bone formation and composition but are osteopenic. While endochondral bone development is normal, it is markedly dysplastic in its organization. Electron micrographs of the 1week postnatal intervertebral discs reveals marked disarray of collagen fibers, consistent with an inherent weakness in the non-osseous connective tissue associated with the spine. These findings indicate that lack of ME leads to a complex defect in both osseous and non-osseous musculoskeletal tissues, including a marked vertebral osteopenia, degeneration of the IVD, and disarray of connective tissues, which is likely due to an inherent inability to establish and/or maintain components of these tissues. Copyright © 2013 Elsevier Inc. All rights reserved.
Schwalbe, H J; Bamfaste, G; Franke, R P
1999-01-01
Quality control in orthopaedic diagnostics according to DIN EN ISO 9000ff requires methods of non-destructive process control, which do not harm the patient by radiation or by invasive examinations. To obtain an improvement in health economy, quality-controlled and non-destructive measurements have to be introduced into the diagnostics and therapy of human joints and bones. A non-invasive evaluation of the state of wear of human joints and of the cracking tendency of bones is, as of today's point of knowledge, not established. The analysis of acoustic emission signals allows the prediction of bone rupture far below the fracture load. The evaluation of dry and wet bone samples revealed that it is possible to conclude from crack initiation to the bone strength and thus to predict the probability of bone rupture.
Krasnodembskaya, Anna; Song, Yuanlin; Fang, Xiaohui; Gupta, Naveen; Serikov, Vladimir; Lee, Jae-Woo; Matthay, Michael A.
2012-01-01
Recent in vivo studies indicate that mesenchymal stem cells (MSCs) may have beneficial effects in the treatment of sepsis induced by bacterial infection. Administration of MSCs in these studies improved survival and enhanced bacterial clearance. The primary objective of this study was to test the hypothesis that human MSCs possessed intrinsic antimicrobial properties. We studied the effect of human MSCs derived from bone marrow on the bacterial growth of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. MSCs as well as their conditioned medium (CM) demonstrated marked inhibition of bacterial growth in comparison with control medium or normal human lung fibroblasts (NHLF). Analysis of expression of major antimicrobial peptides indicated that one of the factors responsible for the antimicrobial activity of MSC CM against Gram-negative bacteria was the human cathelicidin antimicrobial peptide, hCAP-18/LL-37. Both m-RNA and protein expression data showed that the expression of LL-37 in MSCs increased after bacterial challenge. Using an in vivo mouse model of E. coli pneumonia, intratracheal administration of MSCs reduced bacterial growth (in colony-forming unit) in the lung homogenates and in the bronchoalveolar lavage (BAL) fluid, and administration of MSCs simultaneously with a neutralizing antibody to LL-37 resulted in a decrease in bacterial clearance. In addition, the BAL itself from MSC-treated mice had a greater antimicrobial activity in comparison with the BAL of phosphate buffered saline (PBS)-treated mice. Human bone marrow-derived MSCs possess direct antimicrobial activity, which is mediated in part by the secretion of human cathelicidin hCAP-18/LL-37. PMID:20945332
Statins and biomineralization: data from the past and stratagies for the future
NASA Astrophysics Data System (ADS)
Kearney, S.
The background to this paper is based on research conducted by Dr. Gregory Mundy, at the University of Texas Health Science Center, and published in Science, 3rd December 1999. In it, he identified two types of statins (a highly prescribed class of pharmacological compounds, otherwise known as HMG Coa Reductase Inhibitors, that are currently used to lower high cholesterol and treat heart disease) that may have the potential to treat osteoporosis. This research is significant, given that his research found that the two types of statins in question (lovostatin and simvastatin) both decreased osteoclast (i.e. bone decomposing cells) activity while also, and importantly, increasing osteoblast (i.e. bone forming cells) activity. The advantages of such a drug, if found to be truly effective, are many when compared to the current pharmacological treatments of osteoporosis. This is for two primary reasons, namely greater effectiveness and lesser side effects. For example, the widely prescribed class of drugs known as bisphosphonates only block resorption (i.e. stop osteoclast activity) while another drug, calcitonin, causes nausea, vomiting and diarrhea. Hence, this research may have important implications for human spaceflight, in particular as a countermeasure against the bone wastage suffered by astronauts during long duration spaceflight. However, since Mundy's paper was first published, a number of epidemiological (i.e. observational) studies on the relationship between statin use and increased bone mass have been published. While some of these papers supported Mundy's results, a number have thrown doubt on the supposed benefits of statin use to treat osteoporosis. Hence the need to further investigate the actual effectiveness of this drug. It is proposed to utilize the facilities available onboard the international space station (ISS) to supplement ground-based research into this drug. This may encompass utilization of ESA's Biolab and NASA's Human Research Facility. It is acknowledged that the testing of such drugs on astronauts may be a high risk and unacceptable strategy. Hence the use of mouse and/or rat test subjects onboard the ISS may be the most sensible avenue of investigation. An experimental strategy of compound screening using the mice and/or rats, combined with outcome examinations using onboard instruments (such as ESA's bone analysis module and NASA's proposed in-space DEXA scanner), is suggested. In conclusion, this is a case of pharmacological "spin-in", which if successful, has the potential to produce a "spin-out" of enormous benefit - for example, the EU spends approximately 4.8 billion annually on osteoporosis-related hospital health care while 480,000 osteoporosis related hip fractures occur annually within the EU. And this is in addition to the primary expected outcome, namely the discovery of a highly effective drug to aid humans undertaking long duration exploration of the solar system - and importantly, decreasing the possibility of post-spaceflight fractures.
Martyniszyn, L; Szulc-Dąbrowska, L; Boratyńska-Jasińska, A; Niemiałtowski, M
2013-01-01
Induction of autophagy by ectromelia virus (ECTV) in primary cultures of bone marrow-derived macrophages (BMDMs) was investigated. The results showed that ECTV infection of BMDMs resulted in increased formation of autophagosomes, increased level of LC3-II protein present in aggregates and extensive cytoplasmic vacuolization. These data indicate an increased autophagic activity in BMDMs during ECTV infection.
Gauthier, Rémy; Follet, Hélène; Langer, Max; Gineyts, Evelyne; Rongiéras, Frédéric; Peyrin, Françoise; Mitton, David
2018-07-01
Human cortical bone fracture processes depend on the internal porosity network down to the lacunar length scale. Recent results show that at the collagen scale, the maturation of collagen cross-links may have a negative influence on bone mechanical behavior. While the effect of pentosidine on human cortical bone toughness has been studied, the influence of mature and immature enzymatic cross-links has only been studied in relation to strength and work of fracture. Moreover, these relationships have not been studied on different paired anatomical locations. Thus, the aim of the current study was to assess the relationships between both enzymatic and non-enzymatic collagen cross-links and human cortical bone toughness, on four human paired anatomical locations. Single Edge Notched Bending toughness tests were performed for two loading conditions: a quasi-static standard condition, and a condition representative of a fall. These tests were done with 32 paired femoral diaphyses, femoral necks and radial diaphyses (18 women, age 81 ± 12 y.o.; 14 men, age 79 ± 8 y.o.). Collagen enzymatic and non-enzymatic crosslinks were measured on the same bones. Maturation of collagen was defined as the ratio between immature and mature cross-links (CX). The results show that there was a significant correlation between collagen cross-link maturation and bone toughness when gathering femoral and radial diaphyses, but not when considering each anatomical location individually. These results show that the influence of collagen enzymatic and non-enzymatic cross-links is minor when considering human cortical bone crack propagation mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.
Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor
Kuzin, Igor; Sun, Hongliang; Moshkani, Safiekhatoon; Feng, Changyong; Mantalaris, Athanasios; Wu, JH David; Bottaro, Andrea
2011-01-01
Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g. T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo. PMID:21309085
Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor.
Kuzin, Igor; Sun, Hongliang; Moshkani, Safiekhatoon; Feng, Changyong; Mantalaris, Athanasios; Wu, J H David; Bottaro, Andrea
2011-06-01
Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g., T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological, and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo. Copyright © 2011 Wiley Periodicals, Inc.
An Intraoperative Site-specific Bone Density Device: A Pilot Test Case.
Arosio, Paolo; Moschioni, Monica; Banfi, Luca Maria; Di Stefano, Anilo Alessio
2015-08-01
This paper reports a case of all-on-four rehabilitation where bone density at implant sites was assessed both through preoperative computed tomographic (CT) scans and using a micromotor working as an intraoperative bone density measurement device. Implant-supported rehabilitation is a predictable treatment option for tooth replacement whose success depends on the clinician's experience, the implant characteristics and location and patient-related factors. Among the latter, bone density is a determinant for the achievement of primary implant stability and, eventually, for implant success. The ability to measure bone density at the placement site before implant insertion could be important in the clinical setting. A patient complaining of masticatory impairment was presented with a plan calling for extraction of all her compromised teeth, followed by implant rehabilitation. A week before surgery, she underwent CT examination, and the bone density on the CT scans was measured. When the implant osteotomies were created, the bone density was again measured with a micromotor endowed with an instantaneous torque-measuring system. The implant placement protocols were adapted for each implant, according to the intraoperative measurements, and the patient was rehabilitated following an all-on-four immediate loading protocol. The bone density device provided valuable information beyond that obtained from CT scans, allowing for site-specific, intraoperative assessment of bone density immediately before implant placement and an estimation of primary stability just after implant insertion. Measuring jaw-bone density could help clinicians to select implant-placement protocols and loading strategies based on site-specific bone features.
DeLario, Melissa R; Sheehan, Andrea M; Ataya, Ramona; Bertuch, Alison A; Vega, Carlos; Webb, C Renee; Lopez-Terrada, Dolores; Venkateswaran, Lakshmi
2012-05-01
Primary myelofibrosis is a chronic myeloproliferative neoplasm characterized by cytopenias, leukoerythroblastosis, extramedullary hematopoiesis, hepatosplenomegaly and bone marrow fibrosis. Primary myelofibrosis is a rare disorder in adults; children are even less commonly affected by this entity, with the largest pediatric case series reporting on three patients. Most literature suggests spontaneous resolution of myelofibrosis without long term complications in the majority of affected children. We describe the clinical, pathologic, and molecular characteristics and outcomes of nineteen children with primary myelofibrosis treated in our center from 1984 to 2011. Most patients had cytopenia significant enough to require supportive therapy. No child developed malignant transformation and only five of the 19 children (26%) had spontaneous resolution of disease. Sequence analyses for JAK2V617F and MPLW515L mutations were performed on bone marrow samples from 17 and six patients, respectively, and the results were negative. In conclusion, analysis of this large series of pediatric patients with primary myelofibrosis demonstrates distinct clinical, hematologic, bone marrow, and molecular features from adult patients. Copyright © 2012 Wiley Periodicals, Inc.
Micro-CT characterization of human trabecular bone in osteogenesis imperfecta
NASA Astrophysics Data System (ADS)
Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald
2011-03-01
Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.
... leukemia (cancer that starts in the bone marrow) Polycythemia vera (bone marrow disease that leads to an ... PA: Elsevier Saunders; 2013:chap 68. Tefferi A. Polycythemia vera, essential thrombocythemia, and primary myelofibrosis. In: Goldman ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanzi, I; Colbert, C; Bachtell, R
1978-01-01
Two groups of investigators utilized three techniques for evaluating bone mineral mass. In one institution, total-body calcium by total body neutron activation analysis, and bone mineral content of the radius by photon absorptiometry were measured concomitantly. In the other institution, the mean bone mineral content of the three inner phalanges of the left hand was measured by radiographic absorptiometry. These techniques were applied to two groups of subjects: 16 patients with primary osteoporosis and 14 healthy marathon runners. The higher correlation found in osteoporotic patients may be related to the diffuse nature of this condition and to differences in themore » distribution of skeletal mass in the marathon runners.« less
T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.
Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F
2016-09-01
TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.
Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans
NASA Technical Reports Server (NTRS)
Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.
2004-01-01
Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.
Reduced bone density in androgen-deficient women with acquired immune deficiency syndrome wasting.
Huang, J S; Wilkie, S J; Sullivan, M P; Grinspoon, S
2001-08-01
Women with acquired immune deficiency syndrome wasting are at an increased risk of osteopenia because of low weight, changes in body composition, and hormonal alterations. Although women comprise an increasing proportion of human immunodeficiency virus-infected patients, prior studies have not investigated bone loss in this expanding population of patients. In this study we investigated bone density, bone turnover, and hormonal parameters in 28 women with acquired immune deficiency syndrome wasting and relative androgen deficiency (defined as free testosterone < or =3.0 pg/ml, weight < or =90% ideal body weight, weight loss > or =10% from preillness maximum weight, or weight <100% ideal body weight with weight loss > or =5% from preillness maximum weight). Total body (1.04 +/- 0.08 vs. 1.10 +/- 0.07 g/cm2, human immunodeficiency virus-infected vs. control respectively; P < 0.01), anteroposterior lumbar spine (0.94 +/- 0.12 vs. 1.03 +/- 0.09 g/cm2; P = 0.005), lateral lumbar spine (0.71 +/- 0.14 vs. 0.79 +/- 0.09 g/cm2; P = 0.02), and hip (Ward's triangle; 0.68 +/- 0.14 vs. 0.76 +/- 0.12 g/cm2; P = 0.05) bone density were reduced in the human immunodeficiency virus-infected compared with control subjects. Serum N-telopeptide, a measure of bone resorption, was increased in human immunodeficiency virus-infected patients, compared with control subjects (14.6 +/- 5.8 vs. 11.3 +/- 3.8 nmol/liter bone collagen equivalents, human immunodeficiency virus-infected vs. control respectively; P = 0.03). Although body mass index was similar between the groups, muscle mass was significantly reduced in the human immunodeficiency virus-infected vs. control subjects (16 +/- 4 vs. 21 +/- 4 kg, human immunodeficiency virus-infected vs. control, respectively; P < 0.0001). In univariate regression analysis, muscle mass (r = 0.53; P = 0.004) and estrogen (r = 0.51; P = 0.008), but not free testosterone (r = -0.05, P = 0.81), were strongly associated with lumbar spine bone density in the human immunodeficiency virus-infected patients. The association between muscle mass and bone density remained significant, controlling for body mass index, hormonal status, and age (P = 0.048) in multivariate regression analysis. These data indicate that both hormonal and body composition factors contribute to reduced bone density in women with acquired immune deficiency syndrome wasting. Anabolic strategies to increase muscle mass may be useful to increase bone density among osteopenic women with acquired immune deficiency syndrome wasting.
Johnson, C.J.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.
2011-01-01
Ingestion of prion-contaminated materials is postulated to be a primary route of prion disease transmission. Binding of prions to soil (micro)particles dramatically enhances peroral disease transmission relative to unbound prions, and it was hypothesized that micrometer-sized particles present in other consumed materials may affect prion disease transmission via the oral route of exposure. Small, insoluble particles are present in many substances, including soil, human foods, pharmaceuticals, and animal feeds. It is known that meat and bone meal (MBM), a feed additive believed responsible for the spread of bovine spongiform encephalopathy (BSE), contains particles smaller than 20 ??m and that the pathogenic prion protein binds to MBM. The potentiation of disease transmission via the oral route by exposure to MBM or three micrometer-sized mineral feed additives was determined. Data showed that when the disease agent was bound to any of the tested materials, the penetrance of disease was increased compared to unbound prions. Our data suggest that in feed or other prion-contaminated substances consumed by animals or, potentially, humans, the addition of MBM or the presence of microparticles could heighten risks of prion disease acquisition. Copyright ?? 2011 Taylor & Francis Group, LLC.
Johnson, Christopher J.; McKenzie, Debbie; Pedersen, Joel A.; Aiken, Judd M.
2011-01-01
Ingestion of prion-contaminated materials is postulated to be a primary route of prion disease transmission. Binding of prions to soil (micro)particles dramatically enhances peroral disease transmission relative to unbound prions, and it was hypothesized that micrometer-sized particles present in other consumed materials may affect prion disease transmission via the oral route of exposure. Small, insoluble particles are present in many substances, including soil, human foods, pharmaceuticals, and animal feeds. It is known that meat and bone meal (MBM), a feed additive believed responsible for the spread of bovine spongiform encephalopathy (BSE), contains particles smaller than 20 μm and that the pathogenic prion protein binds to MBM. The potentiation of disease transmission via the oral route by exposure to MBM or three micrometer-sized mineral feed additives was determined. Data showed that when the disease agent was bound to any of the tested materials, the penetrance of disease was increased compared to unbound prions. Our data suggest that in feed or other prion-contaminated substances consumed by animals or, potentially, humans, the addition of MBM or the presence of microparticles could heighten risks of prion disease acquisition.
Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta
Poulter, James A.; Murillo, Gina; Brookes, Steven J.; Smith, Claire E. L.; Parry, David A.; Silva, Sandra; Kirkham, Jennifer; Inglehearn, Chris F.; Mighell, Alan J.
2014-01-01
Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid. PMID:24858907
Johnson, Christopher J.; McKenzie, Debbie; Pedersen, Joel A.; Aiken, Judd M.
2011-01-01
Ingestion of prion-contaminated materials is postulated to be a primary route of prion disease transmission. Binding of prions to soil (micro)particles dramatically enhances peroral disease transmission relative to unbound prions, and it was hypothesized that micrometer–sized particles present in other consumed materials may affect prion disease transmission via the oral route of exposure. Small, insoluble particles are present in many substances, including soil, human foods, pharmaceuticals, and animal feeds. It is known that meat and bone meal (MBM), a feed additive believed responsible for the spread of bovine spongiform encephalopathy (BSE), contains particles smaller than 20 μm and that the pathogenic prion protein binds to MBM. The potentiation of disease transmission via the oral route by exposure to MBM or three micrometer-sized mineral feed additives was determined. Data showed that when the disease agent was bound to any of the tested materials, the penetrance of disease was increased compared to unbound prions. Our data suggest that in feed or other prion–contaminated substances consumed by animals or, potentially, humans, the addition of MBM or the presence of microparticles could heighten risks of prion disease acquisition. PMID:21218345
Amiable, Nathalie; Tat, Steeve Kwan; Lajeunesse, Daniel; Duval, Nicolas; Pelletier, Jean-Pierre; Martel-Pelletier, Johanne; Boileau, Christelle
2009-06-01
In osteoarthritis (OA), the subchondral bone undergoes a remodelling process involving several factors synthesized by osteoblasts. In this study, we investigated the expression, production, modulation, and role of PAR-2 in human OA subchondral bone osteoblasts. PAR-2 expression and production were determined by real-time PCR and flow cytometry, respectively. PAR-2 modulation was investigated in OA subchondral bone osteoblasts treated with IL-1 beta (100 pg/ml), TNF-alpha (5 ng/ml), TGF-beta1 (10 ng/ml), PGE(2) (500 nM), IL-6 (10 ng/ml) and IL-17 (10 ng/ml). Membranous RANKL protein was assessed by flow cytometry, and OPG, MMP-1, MMP-9, MMP-13, IL-6 and intracellular signalling pathways by specific ELISAs. Bone resorptive activity was measured by using a co-culture model of human PBMC and OA subchondral bone osteoblasts. PAR-2 expression and production (p<0.05) were markedly increased when human OA subchondral bone osteoblasts were compared to normal. On OA osteoblasts, PAR-2 production was significantly increased by IL-1 beta, TNF-alpha and PGE(2). Activation of PAR-2 with a specific agonist, SLIGKV-NH(2), induced a significant up-regulation of MMP-1, MMP-9, IL-6, and membranous RANKL, but had no effect on MMP-13 or OPG production. Interestingly, bone resorptive activity was also significantly enhanced following PAR-2 activation. The PAR-2 effect was mediated by activation of the MAP kinases Erk1/2 and JNK. This study is the first to demonstrate that PAR-2 activation plays a role in OA subchondral bone resorption via an up-regulation of major bone remodelling factors. These results shed new light on the potential of PAR-2 as a therapeutic target in OA.
Lu, Hongbin; Chen, Can; Xie, Shanshan; Tang, Yifu; Qu, Jin
2018-05-21
Most studies concerning to tendon healing and incorporation into bone are mainly based on animal studies due to the invasive nature of the biopsy procedure. The evidence considering tendon graft healing to bone in humans is limited in several case series or case reports, and therefore, it is difficult to understand the healing process. A computerized search using relevant search terms was performed in the PubMed, EMBASE, Scopus, and Cochrane Library databases, as well as a manual search of reference lists. Searches were limited to studies that investigated tendon graft healing to bone by histologic examination after anterior cruciate ligament (ACL) reconstruction with hamstring. Ten studies were determined to be eligible for this systematic review. Thirty-seven cases were extracted from the included studies. Most studies showed that a fibrovascular interface would form at the tendon-bone interface at the early stage and a fibrous indirect interface with Sharpey-like fibers would be expected at the later stage. Cartilage-like tissue at tendon graft-bone interface was reported in three studies. Tendon graft failed to integrate with the surrounding bone in 10 of the 37 cases. Unexpectedly, suspensory type of fixation was used for the above failure cases. An indirect type of insertion with Sharpey-like fibers at tendon-bone interface could be expected after ACL reconstruction with hamstring. Regional cartilage-like tissue may form at tendon-bone interface occasionally. The underlying tendon-to-bone healing process is far from understood in the human hamstring ACL reconstruction. Further human studies are highly needed to understand tendon graft healing in bone tunnel after hamstring ACL reconstruction. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Tsutsumimoto, Takahiro; Williams, Paul; Yoneda, Toshiyuki
2014-01-01
Neuroblastoma (NB), which arises from embryonic neural crest cells, is the most common extra-cranial solid tumor of childhood. Approximately half of NB patients manifest bone metastasis accompanied with bone pain, fractures and bone marrow failure, leading to disturbed quality of life and poor survival. To study the mechanism of bone metastasis of NB, we established an animal model in which intracardiac inoculation of the SK-N-AS human NB cells in nude mice developed osteolytic bone metastases with increased osteoclastogenesis. SK-N-AS cells induced the expression of receptor activator of NF-κB ligand and osteoclastogenesis in mouse bone marrow cells in the co-culture. SK-N-AS cells expressed COX-2 mRNA and produced substantial amounts of prostaglandin E2 (PGE2). In contrast, the SK-N-DZ and SK-N-FI human NB cells failed to develop bone metastases, induce osteoclastogenesis, express COX-2 mRNA and produce PGE2. Immunohistochemical examination of SK-N-AS bone metastasis and subcutaneous tumor showed strong expression of COX-2. The selective COX-2 inhibitor NS-398 inhibited PGE2 production and suppressed bone metastases with reduced osteoclastogenesis. NS-398 also inhibited subcutaneous SK-N-AS tumor development with decreased angiogenesis and vascular endothelial growth factor-A expression. Of interest, metastasis to the adrenal gland, a preferential site for NB development, was also diminished by NS-398. Our results suggest that COX2/PGE2 axis plays a critical role in the pathophysiology of osteolytic bone metastases and tumor development of the SK-NS-AS human NB. Inhibition of angiogenesis by suppressing COX-2/PGE2 may be an effective therapeutic approach for children with NB. PMID:26909300
Koch, Felix P; Becker, Jürgen; Terheyden, Hendrik; Capsius, Björn; Wagner, Wilfried
2010-11-01
The aim of this prospective, randomized clinical trial was to investigate the potential of recombinant human growth and differentiation factor-5 (rhGDF-5) coated onto β-tricalcium phosphate (β-TCP) (rhGDF-5/β-TCP) to support bone formation after sinus lift augmentation. In total, 31 patients participated in this multicenter clinical trial. They required a two-stage unilateral maxillary sinus floor augmentation (residual bone height <5 mm). According to a parallel-group design, the patients were randomized to three treatment groups: (a) augmentation with rhGDF-5/β-TCP and a 3-month healing period, (b) augmentation with rhGDF-5/β-TCP and a 4-month healing period and (c) medical device β-TCP mixed with autologous bone and a 4-month healing period. The primary study objective was the area of newly formed bone within the augmented area as assessed by histomorphometric evaluation of trephine bur biopsies. The osseous regeneration was similar in each treatment group; the amount of newly formed bone ranged between 28% (± 15.5%) and 31.8% (± 17.9%). Detailed analysis of histological data will be published elsewhere. As secondary efficacy variables, the augmentation height at the surgery site was measured by radiography. The largest augmentation was radiologically achieved in the rhGDF-5/β-TCP - 3-month and the rhGDF-5/β-TCP - 4-month treatment groups. As safety parameters, adverse events were recorded and anti-drug antibody levels were evaluated. Most of the adverse events were judged as unrelated to the study medication. Four out of 47 (8.5%) implants failed in patients treated with rhGDF-5/β-TCP, a result that is in agreement with the general implant failure rate of 5-15%. Transiently very low amounts of anti-rhGDF-5 antibodies were detected in some patients who received rhGDF-5, which was not related to the bone formation outcome. rhGDF-5/β-TCP was found to be effective and safe as the control treatment with autologous bone mixed β-TCP in sinus floor augmentation. Thus, further investigation regarding efficacy and safety will be carried out in larger patient populations. © 2010 John Wiley & Sons A/S.
Li, Zhenzhen; Han, Shichao; Wang, Xingqin; Han, Fu; Zhu, Xiongxiang; Zheng, Zhao; Wang, Hongtao; Zhou, Qin; Wang, Yunchuan; Su, Linlin; Shi, Jihong; Tang, Chaowu; Hu, Dahai
2015-03-11
Bone marrow mesenchymal stem cells (BMSCs), which have the ability to self-renew and to differentiate into multiple cell types, have recently become a novel strategy for cell-based therapies. The differentiation of BMSCs into keratinocytes may be beneficial for patients with burns, disease, or trauma. However, the currently available cells are exposed to animal materials during their cultivation and induction. These xeno-contaminations severely limit their clinical outcomes. Previous studies have shown that the Rho kinase (ROCK) inhibitor Y-27632 can promote induction efficiency and regulate the self-renewal and differentiation of stem cells. In the present study, we attempted to establish a xeno-free system for the differentiation of BMSCs into keratinocytes and to investigate whether Y-27632 can facilitate this differentiation. BMSCs isolated from patients were cultured by using a xeno-free system and characterised by using flow cytometric analysis and adipogenic and osteogenic differentiation assays. Human primary keratinocytes were also isolated from patients. Then, the morphology, population doubling time, and β-galactosidase staining level of these cells were evaluated in the presence or absence of Y-27632 to determine the effects of Y-27632 on the state of the keratinocytes. Keratinocyte-like cells (KLCs) were detected at different time points by immunocytofluorescence analysis. Moreover, the efficiency of BMSC differentiation under different conditions was measured by quantitative real-time-polymerase chain reaction (RT-PCR) and Western blot analyses. The ROCK inhibitor Y-27632 promoted the proliferation and lifespan of human primary keratinocytes. In addition, we showed that keratinocyte-specific markers could be detected in BMSCs cultured in a xeno-free system using keratinocyte-conditioned medium (KCM) independent of the presence of Y-27632. However, the efficiency of the differentiation of BMSCs into KLCs was significantly higher in the presence of Y-27632 using immunofluorescence, quantitative RT-PCR, and Western blot analyses. This study demonstrated that Y-27632 could promote the proliferation and survival of human primary keratinocytes in a xeno-free culture system. In addition, we found that BMSCs have the ability to differentiate into KLCs in KCM and that Y-27632 can facilitate this differentiation. Our results suggest that BMSCs are capable of differentiating into KLCs in vitro and that the ROCK pathway may play a critical role in this process.
Bone Geometry as a Predictor of Tissue Fragility and Stress Fracture Risk
2005-10-01
sectional growth. Bone 14:635–642. 23. Duan Y, Beck TJ, Wang XF, Seeman E 2003 Structural and biomechanical basis of sexual dimorphism in femoral neck...orientation in primary bone? An evaluation in the turkey ulna diaphysis. J Anat 205:121–134. 48. Jepsen KJ, Davy DT, Akkus O 2001 Observations of damage in bone...significantly alter their growth patterns after puberty and predispose them to dras- tically increased bone growth in association with sexual
Ir'ianov, Iu M; Ir'ianova, T Iu
2012-01-01
In the experiment conducted on 30 Wistar rats, the peculiarities of tibial bone defect replacement under conditions of transosseous osteosynthesis and implantation of titanium nickelide mesh structures were studied using the methods of scanning electron microscopy and x-ray electron probe microanalysis. It was demonstrated that implant osseointegration occured 7 days after surgery, and after 30 days the defect was replaced with bone tissue by the type of primary bone wound healing, thus the organotypical remodeling of regenerated bone took place.
The Influence of Primary Microenvironment on Prostate Cancer Osteoblastic Bone Lesion Development
2015-09-01
for inhibiting PCa bone lesion development: 3a. Basic fibroblast growth factor (bFGF) in PC3 bone metastasis: bFGF was identified by cytokine...II receptor (TβRII) knockout (Tgfbr2 KO) mouse models. Col1creERT/Tgfbr2 KO (Col/Tgfbr2 KO), which have TGF-β signaling specific KO in fibroblasts ... fibroblasts and osteoblasts in the bone by Colcre/Tgfbr2 KO, or in the myeloid lineage cells, including osteoclasts in the bone by LysMcre/Tgfbr2 KO
Benndorf, Matthias; Neubauer, Jakob; Langer, Mathias; Kotter, Elmar
2017-03-01
In the diagnostic process of primary bone tumors, patient age, tumor localization and to a lesser extent sex affect the differential diagnosis. We therefore aim to develop a pretest probability calculator for primary malignant bone tumors based on population data taking these variables into account. We access the SEER (Surveillance, Epidemiology and End Results Program of the National Cancer Institute, 2015 release) database and analyze data of all primary malignant bone tumors diagnosed between 1973 and 2012. We record age at diagnosis, tumor localization according to the International Classification of Diseases (ICD-O-3) and sex. We take relative probability of the single tumor entity as a surrogate parameter for unadjusted pretest probability. We build a probabilistic (naïve Bayes) classifier to calculate pretest probabilities adjusted for age, tumor localization and sex. We analyze data from 12,931 patients (647 chondroblastic osteosarcomas, 3659 chondrosarcomas, 1080 chordomas, 185 dedifferentiated chondrosarcomas, 2006 Ewing's sarcomas, 281 fibroblastic osteosarcomas, 129 fibrosarcomas, 291 fibrous malignant histiocytomas, 289 malignant giant cell tumors, 238 myxoid chondrosarcomas, 3730 osteosarcomas, 252 parosteal osteosarcomas, 144 telangiectatic osteosarcomas). We make our probability calculator accessible at http://ebm-radiology.com/bayesbone/index.html . We provide exhaustive tables for age and localization data. Results from tenfold cross-validation show that in 79.8 % of cases the pretest probability is correctly raised. Our approach employs population data to calculate relative pretest probabilities for primary malignant bone tumors. The calculator is not diagnostic in nature. However, resulting probabilities might serve as an initial evaluation of probabilities of tumors on the differential diagnosis list.
QUANTITATIVE PLUTONIUM MICRODISTRIBUTION IN BONE TISSUE OF VERTEBRA FROM A MAYAK WORKER
Lyovkina, Yekaterina V.; Miller, Scott C.; Romanov, Sergey A.; Krahenbuhl, Melinda P.; Belosokhov, Maxim V.
2010-01-01
The purpose was to obtain quantitative data on plutonium microdistribution in different structural elements of human bone tissue for local dose assessment and dosimetric models validation. A sample of the thoracic vertebra was obtained from a former Mayak worker with a rather high plutonium burden. Additional information was obtained on occupational and exposure history, medical history, and measured plutonium content in organs. Plutonium was detected in bone sections from its fission tracks in polycarbonate film using neutron-induced autoradiography. Quantitative analysis of randomly selected microscopic fields on one of the autoradiographs was performed. Data included fission fragment tracks in different bone tissue and surface areas. Quantitative information on plutonium microdistribution in human bone tissue was obtained for the first time. From these data, quantitative relationship of plutonium decays in bone volume to decays on bone surface in cortical and trabecular fractions were defined as 2.0 and 0.4, correspondingly. The measured quantitative relationship of decays in bone volume to decays on bone surface does not coincide with recommended models for the cortical bone fraction by the International Commission on Radiological Protection. Biokinetic model parameters of extrapulmonary compartments might need to be adjusted after expansion of the data set on quantitative plutonium microdistribution in other bone types in human as well as other cases with different exposure patterns and types of plutonium. PMID:20838087
Wang, Xing; Xing, Helin; Zhang, Guilan; Wu, Xia; Zou, Xuan; Feng, Lin; Wang, Dongsheng; Li, Meng; Zhao, Jing; Du, Jianwei; Lv, Yan; E, Lingling; Liu, Hongchen
2016-01-01
Periodontal bone defects occur in a wide variety of clinical situations. Adult stem cell- and biomaterial-based bone tissue regeneration are a promising alternative to natural bone grafts. Recent evidence has demonstrated that two populations of adult bone marrow mesenchymal stromal cells (BMSCs) can be distinguished based on their embryonic origins. These BMSCs are not interchangeable, as bones preferentially heal using cells that share the same embryonic origin. However, the feasibility of tissue engineering using human craniofacial BMSCs was unclear. The goal of this study was to explore human craniofacial BMSC-based therapy for the treatment of localized mandibular defects using a standardized, minimally invasive procedure. The BMSCs' identity was confirmed. Scanning electron microscopy, a cell proliferation assay, and supernatant detection indicated that the nHAC/PLA provided a suitable environment for aBMSCs. Real-time PCR and electrochemiluminescence immunoassays demonstrated that osteogenic markers were upregulated by osteogenic preinduction. Moreover, in a rabbit critical-size mandibular bone defect model, total bone formation in the nHAC/PLA + aBMSCs group was significantly higher than in the nHAC/PLA group but significantly lower than in the nHAC/PLA + preinduced aBMSCs. These findings demonstrate that this engineered bone is a valid alternative for the correction of mandibular bone defects. PMID:27118977
Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D; Davies, John E; Stanford, William L
2016-05-01
Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance--replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. ©AlphaMed Press.
Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D.
2016-01-01
Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance—replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. Significance This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. PMID:26987353
Asgharpour, Zahra; Zioupos, Peter; Graw, Matthias; Peldschus, Steffen
2014-03-01
Computer-aided methods such as finite-element simulation offer a great potential in the forensic reconstruction of injury mechanisms. Numerous studies have been performed on understanding and analysing the mechanical properties of bone and the mechanism of its fracture. Determination of the mechanical properties of bones is made on the same basis used for other structural materials. The mechanical behaviour of bones is affected by the mechanical properties of the bone material, the geometry, the loading direction and mode and of course the loading rate. Strain rate dependency of mechanical properties of cortical bone has been well demonstrated in literature studies, but as many of these were performed on animal bones and at non-physiological strain rates it is questionable how these will apply in the human situations. High strain-rates dominate in a lot of forensic applications in automotive crashes and assault scenarios. There is an overwhelming need to a model which can describe the complex behaviour of bone at lower strain rates as well as higher ones. Some attempts have been made to model the viscoelastic and viscoplastic properties of the bone at high strain rates using constitutive mathematical models with little demonstrated success. The main objective of the present study is to model the rate dependent behaviour of the bones based on experimental data. An isotropic material model of human cortical bone with strain rate dependency effects is implemented using the LS-DYNA material library. We employed a human finite element model called THUMS (Total Human Model for Safety), developed by Toyota R&D Labs and the Wayne State University, USA. The finite element model of the human femur is extracted from the THUMS model. Different methods have been employed to develop a strain rate dependent material model for the femur bone. Results of one the recent experimental studies on human femur have been employed to obtain the numerical model for cortical femur. A forensic application of the model is explained in which impacts to the arm have been reconstructed using the finite element model of THUMS. The advantage of the numerical method is that a wide range of impact conditions can be easily reconstructed. Impact velocity has been changed as a parameter to find the tolerance levels of injuries to the lower arm. The method can be further developed to study the assaults and the injury mechanism which can lead to severe traumatic injuries in forensic cases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems.
Hartman, Kira G; Bortner, James D; Falk, Gary W; Ginsberg, Gregory G; Jhala, Nirag; Yu, Jian; Martín, Martín G; Rustgi, Anil K; Lynch, John P
2014-09-01
Gastrointestinal illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammations are a common element of many gastrointestinal diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, and diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett's esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible. © 2014 by the Society for Experimental Biology and Medicine.
Kim, Duck-Rae; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom; Kim, Sung-Hun
2011-11-01
This study tested the hypothesis that there would be differences in primary stability due to the presence of self cutting blades. We investigated the effect of a self-cutting blade implant design on the primary stability of tapered dental implants in a simulated low-density bone model. Implant fixtures with 2 different designs, one with self-cutting blades and the other without self-cutting blades, were fabricated in the same implant system. Insertion torque, resonance frequency analysis, reverse torque, and pull-out and push-in tests were evaluated in grade no. 10 solid rigid polyurethane foam. All 5 assessments of the group without self-cutting blades were significantly higher than those of the self-cutting group (P < .001). The implants without self-cutting blades create a lateral compression with increased contact surface area and consequently improve the primary stability in a simulated low-density bone model. Copyright © 2011 Mosby, Inc. All rights reserved.
The impact of microgravity on bone in humans.
Grimm, Daniela; Grosse, Jirka; Wehland, Markus; Mann, Vivek; Reseland, Janne Elin; Sundaresan, Alamelu; Corydon, Thomas Juhl
2016-06-01
Experiencing real weightlessness in space is a dream for many of us who are interested in space research. Although space traveling fascinates us, it can cause both short-term and long-term health problems. Microgravity is the most important influence on the human organism in space. The human body undergoes dramatic changes during a long-term spaceflight. In this review, we will mainly focus on changes in calcium, sodium and bone metabolism of space travelers. Moreover, we report on the current knowledge on the mechanisms of bone loss in space, available models to simulate the effects of microgravity on bone on Earth as well as the combined effects of microgravity and cosmic radiation on bone. The available countermeasures applied in space will also be evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.
Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone.
Prisby, Rhonda D
2014-07-01
Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6 month; n=8) and old (22-24 month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via μCT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p<0.05) in the old vs. young rats. Calcified and ossified vessel volumes per tissue volume and calcified vessel volume per patent vessel volume were augmented (p<0.05) 262%, 375% and 263%, respectively, in the old vs. young rats. Ossified and patent vessel number was higher (171%) and lower (40%), respectively, in the old vs. young rats. Finally, adipocyte volume per patent vessel volume was higher (86%) with age. This study is the first to report ossification of bone marrow blood vessels in rats and humans. Ossification presumably results in "microvascular dead space" in regard to loss of patency and vasomotor function as opposed to necrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. Copyright © 2014 Elsevier Inc. All rights reserved.
Bone Marrow Blood Vessel Ossification and “Microvascular Dead Space” in Rat and Human Long Bone
Prisby, Rhonda D.
2014-01-01
Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4–6 mon; n=8) and old (22–24 mon; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner’s Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via µCT to quantify microvascular ossification. Bone marrow blood vessels from rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and “normal” vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p <0.05) in old vs. young rats. Calcified and ossified vessel volumes per tissue volume and calcified vessel volume per patent vessel volume were augmented (p <0.05) 262%, 375% and 263%, respectively, in old vs. young rats. Ossified and patent vessel number was higher (171%) and lower (40%), respectively, in old vs. young rats. Finally, adipocyte volume per patent vessel volume was higher (86%) with age. This study is the first to report ossification of bone marrow blood vessels in rats and humans. Ossification presumably results in “microvascular dead space” in regards to loss of patency and vasomotor function as opposed to necrosis. The progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. PMID:24680721
Constitutional bone impairment in Noonan syndrome.
Baldassarre, Giuseppina; Mussa, Alessandro; Carli, Diana; Molinatto, Cristina; Ferrero, Giovanni Battista
2017-03-01
Noonan syndrome (NS) is an autosomal dominant trait characterized by genotypic and phenotypic variability. It belongs to the Ras/MAPK pathway disorders collectively named Rasopathies or neurocardiofaciocutaneous syndromes. Phenotype is characterized by short stature, congenital heart defects, facial dysmorphisms, skeletal and ectodermal anomalies, cryptorchidism, mild to moderate developmental delay/learning disability, and tumor predisposition. Short stature and skeletal dysmorphisms are almost constant and several studies hypothesized a role for the RAS pathway in regulating bone metabolism. In this study, we investigated the bone quality assessed by phalangeal quantitative ultrasound (QUS) and the metabolic bone profiling in a group of patients with NS, to determine whether low bone mineralization is primary or secondary to NS characteristics. Thirty-five patients were enrolled, including 20 males (55.6%) and 15 females (44.5%) aged 1.0-17.8 years (mean 6.4 ± 4.5, median 4.9 years). Each patients was submitted to clinical examination, estimation of the bone age, laboratory assays, and QUS assessment. Twenty-five percent of the cohort shows reduced QUS values for their age based on bone transmission time. Bone measurement were adjusted for multiple factors frequently observed in NS patients, such as growth retardation, delayed bone age, retarded puberty, and reduced body mass index, potentially affecting bone quality or its appraisal. In spite of the correction attempts, QUS measurement indicates that bone impairment persists in nearly 15% of the cohort studied. Our results indicate that bone impairment in NS is likely primary and not secondary to any of the phenotypic traits of NS, nor consistent with metabolic disturbances. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Skutschas, Pavel; Stein, Koen
2015-01-01
Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and ‘salamander A’) has been generally described as having paedomorphic features (i.e. the presence of Katschenko's Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions. PMID:25682890
Skutschas, Pavel; Stein, Koen
2015-04-01
Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and 'salamander A') has been generally described as having paedomorphic features (i.e. the presence of Katschenko's Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions. © 2015 Anatomical Society.
Cancer metastasis: enactment of the script for human reproductive drama.
Sun, Xichun; Liu, Xiwu
2017-01-01
Based on compelling evidence from many biological disciplines, we put forth a hypothesis for cancer metastasis. In the hypothesis, the metastatic cascade is depicted as human reproduction in miniature. Illustrated in a reproductive light, the staggering resemblance of cancer metastasis to human reproduction becomes evident despite some ostensible dis-similarities. In parallel to the appearance of primordial germ cells during early embryogenesis, the cancer reproductive saga starts with the separation of metastasis initiating cells (MICs) from cancer initiating cells when the primary cancer is still in its infancy. Prime MICs embark on a journey to the host bone marrow where they undergo further development and regulation. Migrating MICs are guided by the same CXCR4/CYCL12 axis as used in the migration of primordial germ cells to the genital ridge. Like the ovary, the host bone marrow features immune privileges, coolness, hypoxia and acidity which are essential for stemness maintenance and regulation. Opportune activation of the MICs via fusion with bone marrow stem cells triggers a frenzy of cellular proliferation and sets them on the move again. This scenario is akin to oocyte fertilization in the Fallopian tube and its subsequent journey towards the decidum. Just as the human reproductive process is plagued with undesirable outcomes so is the cancer metastasis highly inefficient. The climax of the cancer metastatic drama (colonization) is reached when proliferating MIC clusters attempt to settle down on decidum-like premetastatic sites. Successfully colonized clusters blossom into overt macrometastases only after the execution of sophisticated immunomodulation, angiogenesis and vascular remodeling. Similarly, the implanted blastomere needs to orchestrate these feats before flourishing into a new life. What is more, the cancer reproductive drama seems to be directed by a primordial hypothalamus-pituitary-gonad axis. Pursuing this reproductive trail could lead to new frontiers and breakthroughs in cancer research and therapeutics.